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Abstract
The abundance of next-generation sequencing (NGS) data has encouraged the adoption of

machine learning methods to aid in the diagnosis and treatment of human disease. In partic-

ular, the last decade has shown the extensive use of predictive analytics in cancer research

due to the prevalence of rich cellular descriptions of genetic and transcriptomic profiles

of cancer cells. Despite the availability of wide-ranging forms of genomic data, few pre-

dictive models are designed to leverage multidimensional data sources. In this paper, we

introduce a deep learning approach using neural network based information fusion to fa-

cilitate the integration of multi-platform genomic data, and the prediction of cancer cell

sub-class. We propose the dGMU (deep gated multimodal unit), a series of multiplicative

gates that can learn intermediate representations between multi-platform genomic data and

improve cancer cell stratification. We also provide a framework for interpretable dimen-

sionality reduction and assess several methods that visualize and explain the decisions of

the underlying model. Experimental results on nine cancer types and four forms of NGS

data (copy number variation, simple nucleotide variation, RNA expression, and miRNA ex-

pression) showed that the dGMU model improved the classification agreement of unimodal

approaches and outperformed other fusion strategies in class accuracy. The results indicate

that deep learning architectures based on multiplicative gates have the potential to expedite

representation learning and knowledge integration in the study of cancer pathogenesis.
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Symbol Description
X A matrix.
ŷ The model approximation from a neural network.
θ The variable weights in a neural network.
b The bias terms in a neural network.
Θ The set of all parameters in a neural network.
J(·) A neural network cost function.
ψ(·) An activation function.
α An optimization learning rate.
x̃ The noised version of input data x.
x′ The reconstruction of input data x from an autoencoder.
gθ(·) The encoding function of an autoencoder.
fθT (·) The decoding function of an autoencoder.
Z≥0 The set of all non-negative integers.

Table 1: Summary of Mathematical Notations
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Chapter 1

Introduction

Recent advances in biotechnology have enabled a multidimensional approach for explor-

ing human disease. New high-throughput technologies can quantify and characterize the

biomolecules that define the architecture, behaviour, and dynamics of a biological system.

Research in the last decade has introduced a multifaceted exploration of cancer biology at

an unprecedented scale [24]. Cancer research projects are using next-generation sequenc-

ing (NGS) data to characterize the genome, epigenome, and transcriptome to capture the

complexity and phenotypic heterogeneity of cancer cells [11].

Despite the availability of wide-ranging forms of genomic data, few predictive mod-

els are designed to leverage multidimensional data sources. The unilateral approach has

been effective in the identification of single-cell expression profiles, epigenomic states, and

previously uncharacterized sequence variants [21, 28]. However, individual data types are

unable to capture the systems-wide view required to understand the complexity of can-

cer pathology. This has resulted in the need for integrative methods designed to combine

multi-platform data [50]. In the most recent biomedical literature, there have been several

attempts to utilize multi-platform biomedical data, however, these existing methods rely on

linearly fusing data sources, resulting in high data sparsity and an inability to capture both
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intra-modality and cross-modality correlations [29, 31, 39]. In this work, we introduce a

deep learning approach based on the Gated Multimodal Unit (GMU) to facilitate the in-

tegration of multi-platform genomic data and predict cancer cell tissue sub-class. GMUs

are neural networks that utilize multiplicative gates to learn intermediate representations

between diverse sources of information. Here we show that a series of deeply connected

GMUs can be used to extract a biologically relevant latent space from multi-platform ge-

nomic data.

The presence of diverse forms of genomic data has encouraged the use of machine

learning methods in clinical decision support. Clinicians are increasingly adopting coupled

frameworks of NGS and predictive models to support cancer diagnosis and patient strati-

fication. Rapid developments in machine learning are enabling opportunities for improved

clinical decision making in the healthcare industry, however, several key challenges hin-

der its utility by clinicians and researchers. The application of deep learning for medical

predictions often results in a hindered ability to interpret the decision made by the classi-

fier. Healthcare professionals require informative tools that can explain their predictions.

Domain experts need to ensure a level of trust in predictive models by evaluating the useful-

ness, reliability, and internal logic of the system. In this work, we assess several methods

that leverage interpretable dimensionality reduction and model agnostic explanations to

help understand the behaviour of the underlying model.

The remaining content of this thesis is organized as follows. Chapter 2 provides a

general background of machine learning, and in particular reviews the basic concepts of

deep learning, autoencoders, and model generalization. Chapter 3 describes the most re-

cent academic literature pertaining to neural network based dimensionality reduction and

information fusion, and model interpretation in biomedical research. Chapter 4 describes

the main components and architecture of our approach, the dGMU (deep gated multimodal

unit) for integrative information fusion and representation learning. In chapter 5, we pro-

2
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vide a description of the methodologies utilized to evaluate our approach, and in chapter

6 we report the results obtained across a variety of experiments. Lastly, the thesis is con-

cluded in chapter 7 with a summary of the experimental results and a discussion of potential

future research directions.
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Chapter 2

Background

The background material in this chapter provides an overview of the theoretical concepts

and fundamental technologies on which our deep learning approach is built. A few main

concepts must be understood to appreciate the role of deep learning in data integration and

predictive models. The first, and most fundamental to the discussion is an introduction to

Artificial Neural Networks (ANNs), and their extension into the field of deep learning and

information fusion.

2.1 Artificial Neural Networks

Introduction

Early attempts in designing computational systems to exhibit intelligent behaviour were

conducted through formal rule-based programs referred to as Expert Systems [45]. In these

systems, inference engines were used to apply a knowledge base of curated rules to deduce

new rules and make predictions on future behaviour. It soon became evident that the sheer

number of hard-coded rules required to simulate predictive behaviour was several orders of

magnitude higher than what was capable to write or store for even moderately complicated
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tasks. This resulted in a shift from rigid and deductive systems towards inductive systems

that learn to extract information from observed data.

Naturally, complex phenomena generally have dynamic correlations and nonlinear rela-

tionships. Accordingly, various techniques were developed to elucidate nonlinear relation-

ships and emulate intelligent behaviour from observed training data. For instance, in statis-

tics, parametric models were developed so data could be described using finite-dimensional

classes of nonlinear functions such as exponential, polynomial or power functions. How-

ever, these kinds of finite-dimensional models are limited in application to data adequately

described by a bounded array of parametric functions. An additional approach, kernel

methods, are based on non-linear projections of observed data into a latent space that can

measure the distance between observations. New regression values or classifications are

then predicted based on distances in the latent space. Unfortunately, the construction of

the kernel matrix in kernel-based methods becomes oppressive as the size of the data set

increases, rendering these algorithms unfeasible for large data sets. Another class of mod-

els, ANNs, were discovered to elucidate many of the concerns of prior nonlinear models.

ANNs thrive with large data sets and can learn to approximate any nonlinear function.

ANNs are loosely based on the function of biological neurons. In biology, neurons

facilitate the flow of nerve impulses through networks that process and transmit informa-

tion. The processing of inputs and outputs in neural structures allows biological neurons

to adaptively learn and react based on previously observed patterns. ANNs implement this

idea mathematically allowing them to act as nonlinear universal approximators. They per-

form this task by aggregating a cascade of simple nonlinear computations to form robust

and complex nonlinear functions. Recently, ANNs have been particularly successful at

solving large fundamental problems in natural language processing, voice recognition, and

image classification [8, 10, 20].

5
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2.1.1 The Multilayer Perceptron

The simplest form of a multilayer perceptron (MLP) is a feedforward and fully connected

network with a single hidden layer, as shown in Fig. 2.1a. A supervised learning problem

for an MLP involves approximating a nonlinear function f (x). The problem is considered

supervised because each training example is associated with a label y. Consider data set

X ∈ Rm×n composed of m observations on n variables, where the ith observation is xi =

(x1, x2, ..., xn). The computation in a single node of a neural network is simply the linear

combination of vector xi with respective weights θi = (θ1, θ2, ..., θn) and an added bias term

b:

z = b +

n∑
i=1

xiθi (2.1)

The linear combination is then transformed by applying a nonlinear activation function

ψ(z), which maps the weighted inputs to the scalar output of the node. This simple compu-

tation within a single node is the basic building block of an MLP. MLPs contain at least two

layers of these processing nodes (hidden and output layers), along with an input layer for

training data. The hidden and output layers contain parallel processing nodes, each receiv-

ing input from the previous layer. This cascade of information from the input layer towards

the output layer is why MLPs are classically defined as feed forward neural networks.

A nonlinear activation function ψ allows the compositional output function ŷ to map

inputs non-linearly to outputs. Deeper MLPs will contain many more hidden layers then

displayed in Fig. 2.1a and a neural network with n layers can be defined recursively as:

ŷ = ψ(θn(ψ(θn−1(ψ(θn−2(. . . ψ(θ1x + b1) . . .)) + bn−2)) + bn−1) + bn), (2.2)

where the structure of ŷ depends on the desired task (e.g nonlinear regression or classifi-

6
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(a) (b)

Figure 2.1: a) Structure of a feed forward MLP with three layers. b) The output for Logistic,
Tanh and ReLU activation functions for input value range [-4,4].

cation). For regression problems, ŷ is a real value, and for classification problems, ŷ is a k

dimensional vector of real values. So although it is generally advantageous for hidden units

to have nonlinear activation functions, the choice of activation functions for output layers

will largely depend on the desired task. For nonlinear regression, a linear activation func-

tion is generally adequate. However, in classification problems, it can be useful to view the

k dimensional output vector ŷ = (y1, y2, ..., yk) as providing the probabilities a given input

example resides in each respective class. This produces a probability distribution over the k

classes, where entries fall between (0, 1), and the sum of the vector ŷ is one. This behaviour

can be accomplished by the softmax function:

softmax(z) =
ez j∑k
i=1 ezi

for j = {1 . . . k}, (2.3)

where softmax(z) represents the categorical distribution of an arbitrary k dimensional vector

z. Furthermore, with a formally defined arbitrary output function ŷ, the next step requires

the artificial neural network to learn weights and biases in order to produce desired outputs

given input data.

7
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The Cost Function

Training an artificial neural network relies on determining the network parameters that min-

imize the error between outputs ŷ and true values y. This entails producing a model func-

tion, that given inputs, can produce the output to the closest degree. In machine learning,

the notion of a good model is explicitly defined using some cost function J(ŷ, y; Θ), where

Θ = {θ, b} is the set of all network weights and biases. The cost function keeps track of the

model’s prediction error. Finding better models equates to finding better network parame-

ters that minimize the cost function. For nonlinear regression, a commonly used measure

of cost is simply the mean squared error between the output of the neural network and the

true values:

J(ŷ, y; Θ) =

m∑
i=1

(yi − ŷi)2 (2.4)

For classification problems, it is often beneficial to represent categorical true labels y

as binary vectors. This is referred to as one hot encoding, where the ith position of class i

is one, and every other term is zero. For example, in a five-class problem, a class of three

would be coded as y = [0, 0, 1, 0, 0]. In this way, the error must be calculated for each

potential class k over all examples in the sample set. Accordingly, the most commonly used

cost function for classification problems is the cross-entropy loss:

J(ŷ, y; Θ) = −
1
m

m∑
i=1

k∑
j=1

[yi, j log(ŷi, j) + (1 − yi, j) log(1 − ŷi, j)], (2.5)

where the true labels and model predictions are defined as yi, j ∈ {0, 1} and ŷi, j ∈ (0, 1),

respectively. In the computation of cross-entropy loss, k error terms are generated for every

training example. The cross-entropy loss represents the log probability of classes given the

model - that is, maximizing the likely hood of a training example belonging to a specific

class is equivalent to minimizing the cross-entropy loss between ŷ and y.

8
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The Optimization Algorithm

The cost, J(ŷ, y; Θ), is conveniently a function of the training examples and model parame-

ters Θ. In order to effectively minimize the cost function, it is useful to observe how the cost

changes with respect to weights θ. Formally, this is expressed with the partial derivative ∂J
∂θ

.

With this expression, we can search for weights in the direction that cost J decreases. This

technique, called gradient descent, minimize cost by iteratively updating θ in the opposite

direction of the gradient:

θ j = θ j − α
∂

∂θ j
J(ŷ, y; Θ) for j = {1, . . . , n}, (2.6)

where α, the learning rate, controls the size of steps made in the direction of the negative

gradient. Furthermore, in order to compute the gradients of the cost with respect to model

weights, an algorithm called backpropagation is commonly used. The cost function, as

one large nested composite function, contains all of the computations in the neural net-

work. With this, the backpropagation algorithm cleverly applies the chain rule of calculus

to recursively compute the gradients of each weight, as shown in Fig. 2.2.

Fig. 2.2 illustrates the mechanism of a feedforward multilayer perceptron with an in-

put layer Xmn, a hidden layer a(2)
m j, and an output layer ŷmk. The input layer, considered the

first activation a(1)
mn, is used to form the first linear combination z(1)

m f . In the hidden layer,

a nonlinear activation function ψ(z(1)
m j) is used to produce the hidden activations a(2)

m j. In

deeper networks, the preceding layers outputs are continually utilized in a series of linear

combinations, following by nonlinear activation functions until the output layer is reached.

At this point, the model predictions are compared to the true values using cost function

J(ŷmk). In order to train the neural network, or minimize the cost function, the gradient of

the cost function is computed to determine the direction in the parameter space required to

lower network error. The gradient of the cost function is computed efficiently propagating

9
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Figure 2.2: Feedforward and Backpropagation Schematic.

the error back through the network using the derivate chain rule. In Fig. 2.2, backpropa-

gation begins with the output backpropagation-error δ(3)
mk = ( ˆymk − ymk) shown in step 10.

Backpropagation-error is the layer specific approximation error, and the hidden and input

layer backpropagation-errors are represented as δ(2)
mk and δ(1)

m f , respectively. In Eq. 2.6, we

see that the partial derivative of the cost function with respect to each weight is required in

order to compute a gradient update. In this example, the weights of the model are spread

across two matrices, θ(1)
n f and θ(2)

jk . Accordingly, we will calculate gradient matrices of the

same dimension, ∂J/∂θ(1)
n f and ∂J/∂θ(2)

jk , to store the gradient of the cost function with re-

spect to each weight in the model. Starting with ∂J/∂θ(2)
jk , we get the following expression

using squared error as the cost function:

∂J

∂θ(2)
jk

=
∂ 1

2

∑
(ymk − ŷmk)2

∂θ(2)
jk

If we remove the summation from this expression we can compute the gradient for a single

10
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example. Evaluating the resultant derivative produces:

∂J

∂θ(2)
jk

= −(ymk − ŷmk)
∂ŷmk

∂θ(2)
jk

From step 5 in Fig. 2.2, we see that ŷmk = ψ(z(2)
mk). Accordingly, we can now apply the chain

rule to further evaluate the expression:

∂J

∂θ(2)
jk

= −(ymk − ŷmk)
∂ŷmk

∂z(2)
mk

∂z(2)
mk

∂θ(2)
jk

We can now replace ∂ŷmk/∂z(2)
mk with z(2)

mk evaluated by the derivative of the activation func-

tion, ψ′(z(2)
mk). As well, from step 4 in Fig. 2.2, we see that zmk = a(2)

m jθ
(2)
jk . The derivative of

this linear relationship is simply the slope a(2)
m j. We can now simplify our expression:

∂J

∂θ(2)
jk

= −(ymk − ŷmk)ψ′(z
(2)
mk)a

(2)
m j

The hidden layer backpropagation-error is given by δ(2)
mk = −(ymk − ŷmk)ψ′(z

(2)
mk). Notice that

if we transpose the activity matrix a(2)
m j, we can perform matrix multiplication with a(2)

m j and

δ(2)
mk to sum across all examples. This effectively takes care of the earlier omission of the

summation, so that the gradient can be calculated efficiently as shown in step 8 in Fig. 2.2.

The simplified expressions becomes:

∂J

∂θ(2)
jk

= (a(2)
m j)

Tδ(2)
mk

The derivation for ∂J/∂θ(1)
n j is similar to the above:

11
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∂J

∂θ(1)
n j

= δ(2)
mk

∂z(2)
mk

∂θ(1)
n j

= δ(2)
mk

∂z(2)
mk

∂a(2)
m j

∂a(2)
m j

∂θ(1)
n j

= δ(2)
mk (θ(2)

jk )T
∂a(2)

m j

∂θ(1)
n j

= δ(2)
mk (θ(2)

jk )T
∂a(2)

m j

∂z(1)
m f

∂z(1)
m f

∂θ(1)
n j

= δ(2)
mk (θ(2)

jk )T
ψ
′(z(1)

m f )
∂z(1)

m f

∂θ(1)
n j

= (a(1)
mn)T δ(2)

mk (θ(2)
jk )T

ψ
′(z(1)

m f )

= (a(1)
mn)T δ(1)

m j

The simplified expressions for both gradients are closely related. We see that the gradients

depend on the layer activity and the backpropagation-error. In turn, the calculations for

backpropagation-error are dependent on the error terms in the next layer. Thus, the com-

putation of error proceeds backwards from the output layer towards the input layer. This is

where backpropagation, or backwards propagation of errors, gets its name. The error δ` at

layer ` is dependent on the errors δ`+1 at the next layer ` + 1.

2.2 Deep Learning

2.2.1 Deep Neural Networks

Deep learning is a subset of machine learning based on artificial neural networks. Deep

learning employs architectures such as deep neural networks (DNN) that typically have

multiple layers between the input and the output layers. DNNs learn hierarchical represen-

12
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tations of the data through the layers of the network in order to map complex relationships

between the input and the desired outputs. Recently, these networks have made state-of-

the-art breakthroughs in fields such as natural language processing, computer vision, and

speech recognition.

DNNs are especially useful for learning intermediate representations of input data. The

representations are formed with the composition of non-linear transformations through mul-

tiple layers in the network. The output of each layer forms a hierarchy of distributed repre-

sentations that have an increasing level of abstraction as an input flows through the network.

The performance of a DNN depends largely on the representations it learns to output. This

is because the distribution of the input data is generated by a combination of underlying

features and a model that learns to compactly represent the features can generalize for more

variation without requiring as many examples. In cases where the transformation results in

data compression the learning task equates to developing output representations that map

to the naturally occurring input data distribution but in a low dimensional manifold.

2.2.2 Autoencoders

Autoencoders represent a family of unsupervised artificial neural networks that learn latent

data codings for input data. Here, training examples are utilized without labels, and autoen-

coders are trained to generate outputs identical to the inputs. The role of an autoencoder

is split into two tasks, encoding and decoding. The process of encoding maps the input to

lower dimension features, and decoding maps the encoded data back into the original space.

The mapping of an input layer produced by function, gθ(·), can be expressed as:

z = gθ(x) = ψ(θx + b) (2.7)

This latent layer, of potentially reduced dimensionality, can then be decoded back to the

13
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original space with function fθT (·):

x′ = fθT (z) = fθT (gθ(x)) = (θT z + b), (2.8)

where x′ is the reconstructed input data, and θT is the transpose of weights used for encod-

ing. Furthermore, to train the model, the reconstructed output is compared to the original

input using the mean squared error to calculate reconstruction error:

J(x′i , xi; Θ) =
1

2m

m∑
i=1

||xi − x′i ||
2, (2.9)

where Θ = {θ, bθ, θT , bθT } is the set of network parameters used for encoding and decoding

operations.

Denoising Autoencoders

Training an autoencoder with partially corrupted data while comparing the reconstruction

to the original input is a commonly used technique to increase the robustness of an autoen-

coder. This modification produces a variant of the basic autoencoder called a denoising

autoencoder. By adding corruption to the input data, x̃i ∼ µD(x̃i|xi), the autoencoder must

learn parameters that can overcome stochastic noise. The operation µD defines the form of

noise used to corrupt the input data in order to increase robustness, and the reconstruction

error is calculated using cost J(x̃′i , xi; Θ).

Furthermore, deeper frameworks of denoising autoencoders, called stacked denoising

autoencoders (SDAEs), are employed to increase the number of latent abstractions. SDAEs

are composed of multiple layers of incrementally stacked denoising autoencoders that are

trained one layer at a time [43]. In this way, once the kth hidden layer is trained, layer k + 1

can be trained using the kth layer as the input data.

14
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2.3 Improving Machine Learning Models

2.3.1 Regularization

A key aspect of producing a good machine learning model is to avoid overfitting the training

data. The problem of overfitting arises when the model variables and parameters aggres-

sively capture both the underlying pattern and stochastic noise of the training data. The

model is learning information that does not represent the true properties of the underlying

relationship when it captures too much random noise. In this case, the model will perform

well on the test set, but will likely have a poor prediction and generalization power on

examples it has never seen before.

This problem gets worse as the model complexity increases, and the model variables

and parameters have the flexibility to increasingly capture background noise. A way to

avoid overfitting is by using cross-validation. Cross-validation is beneficial because the

model variables and parameters are determined by estimating the error of the model over a

subset of the data the model has not observed. In k-fold cross-validation, this is performed

by dividing the data into k subsets. Then each of the k subsets is used as a validation set, and

the other k − 1 subsets are combined as the training set. Accordingly, the error estimation

gets averaged over the k trials to compute the total effectiveness of the model.

Furthermore, another commonly used way to avoid overfitting is through model reg-

ularization. Regularization is a form of regression that applies a constraint to the model

complexity. Ridge regression involves penalizing the cost function during the training pro-

cedure by adding a multiple of the squared magnitude of the model coefficients. Accord-

ingly, ridge regression employs weighted L2 regularization producing the following loss

equation:
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Loss = J(ŷ, y; Θ) +
λ

2m

m∑
j=1

p∑
k=1

Θ2
j,k , (2.10)

where m is the number of training examples, p is the number of model weights, and λ is

the regularization parameter. Here, λ decides how much the model flexibility should be

penalized. When λ = 0, the penalty term is ignored, and the trained model is susceptible

to overfitting. However, as λ → ∞, the model weights are increasingly penalized and

will approach zero. This will result in under-fitting, where the model loses the ability to

fit the data entirely. Therefore, selecting a good regularization parameter is essential for

optimizing the performance of the machine learning model.

2.3.2 Model Averaging

The dropout technique is a relatively simple way to regularize a neural network using the

concept of model averaging. Dropout entails randomly setting a fraction of the neurons in

the network to zero during forward propagation. At each training step, a neuron is either

kept with a probability of p, or dropped out with probability 1 − p to produce a network

of reduced size. During backpropagation, the weights of dropped out neurons will not be

updated. Accordingly, dropout is training a subsample of the whole neural network on every

training iteration. In this way, dropout can be seen as an ensemble of randomly sampled

models that share parameters. As well, dropout is a useful technique for addressing co-

adapting behaviour in machine learning models. Co-adaptation occurs when neurons learn

to fix the mistakes of other neurons in a fully connected neural network. This is a problem

because co-adapted neurons tend to result in overfitting because they do not generalize

well to new data. With dropout, neurons are forced to learn more robust features that are

independent of the other neurons.

Furthermore, an activation function called maxout was proposed to leverage the model

16



McMaster University — Comput. Sci. & Engineering MSc Thesis — Olatunji Oni

(a)
x z

i j h
i 
(x)

d

k

m

m

Input Layer Hidden Layer Output Layer

(b)

x z
1 j

Input Unit

Fully Connected Unit

Max Pooling Unit

h
i 
(x)

Figure 2.3: a) Structure of a maxout neural network b) Maxout neural network with d = 1,
m = 1, and k =3

averaging performed by dropout [17]. The maxout activation function was shown to im-

prove approximate model averaging in deep models over non-linear activations such as the

Tanh function [17]. Formally, the maxout activation function is defined as:

hi(x) = max
j∈[1,k]

zi, j, (2.11)

where x ∈ Rn is an input vector, zi, j = xT W...i jv + bi j is output for the j-th linear transfor-

mation of the i-th hidden unit, and W ∈ Rd×m×k and b ∈ Rm×k are learned parameters. In

simple terms, maxout accepts an input of dimensionality d and computes k linear transfor-

mations and returns the largest unit for each of the m linear feature extractors. The maxout

activation function is applied by using a small differentiable sub-network as shown in Fig.
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2.3.

ReLu Quadratic
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Figure 2.4: Maxout approximation of ReLu and quadratic activation functions.

In Fig. 2.3a, the hidden layer implements the weighted sum of all inputs. In Eq. 2.11,

this is represented by zi, j = xT W...i j + bi j. The three-dimensional tensor W...i j, represents

the weight vector for the unit in row i and column j of the fully connected units. The max

pooling units simply take the maximum output from the neurons of each row. From Fig.

2.4, we can see how the maxout activation function can approximate a ReLu and quadratic

activation function. In this way, maxout can produce a piecewise linear approximation of

an arbitrary convex function.
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Chapter 3

Related Work

3.1 Dimensionality Reduction

Multi-platform biomedical datasets present numerous challenges for traditional machine

learning and statistical approaches. Biological data are often high-dimensional, noisy and

sparse. High-throughput transcriptome sequencing and genome-wide genotyping arrays

can produce tens of thousands to millions of features, making the identification of biomark-

ers a central issue in cancer research [42]. Representation learning for regularized and data-

driven feature identification has thus emerged as a critical component of the dimensional-

ity reduction paradigm. Various unsupervised methods have been used for dimensionality

reduction and classification of sequencing data. Techniques such as stacked denoising au-

toencoders (SDAEs) have been used to acquire low dimension non-linear feature sets from

breast cancer RNA expression data [40]. Transformative autoencoders have achieved some

success, but these techniques result in encodings that lack direct interpretability. Recently,

various efforts have produced deeply connected genes using an SDAE designed to extract

meaningful subsets of genes that are useful in informing the strategies of clinicians [13,

40].
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3.2 Information Fusion

Given the complexity of biomedical systems, various strategies have been used to integrate

diverse sources of biological information. Data integration methods generally rely on one of

the following two strategies for combining information from multiple modalities. Feature

fusion (early fusion) involves the concatenation of data sources into a feature-based table for

the input into a classifier or predictive model. In decision fusion (late fusion) an independent

model is designed for each modality in order to derive a classification or prediction. The

outputs from the independent models are then combined to produce a consensus, typically

derived by model averaging, taking a majority vote, learning gate parameters, or using

Bayesian frameworks [48].

3.2.1 Mixture of Experts

A commonly used technique in neural network based information fusion involves the use

of probabilistic gating functions to fuse the results of multiple subnetworks. In machine

learning, this approach is referred to as mixture of experts (MoE). This method employs

the use of individualized expert modules that are tailored for subsets of the training data

[22]. The gating network learns to determine how the experts are used for each input ex-

ample. The learning scheme thus consists of learning the parameters for each expert, and

learning the parameters of the gate function. MoE models leverage the strategy of divide

and conquer by dividing one large complex problem into simpler problems whose solutions

can be combined [22]. As well, these models are of interest due to their decreased model

complexity, wide applicability, and advantages of faster deep learning. Recently, several

[14, 19, 29] have proposed MoE variations for general information fusion and biomedical

classification. In the biomedical domain, these more recent efforts have involved processing

sequencing and clinical data in individual deep learning modalities and using a gating net-
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work to weight the contribution of an expert for a given example. In these applications, the

MoE formulation combines a set of expert classifiers, f E
1 , . . . , f E

C , using a gating function

gc that returns a generalized linear function activated by a generic softmax function:

gc(xp; θG
c ) = softmax( f G

c (xp; θG
c )), (3.1)

where f G
c (xp; θc) is a gating function with input xp and unknown parameters θc for the c-th

expert. The final output for MoE is the weighted sum of predictions by the experts:

f (ŷ|x; Θ) =

C∑
c=1

gc(x; θG
c ) f E

c (y|x; θE
c ), (3.2)

where f E
c (y|x; θE

c ) is the output prediction of the c-th expert. The general structure of an

MoE network is shown in Fig. 3.1
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Figure 3.1: Structure of an MoE Network.

3.2.2 Gated Multimodal Units

More recently, several strategies have been successfully employed to increase the accuracy

of joint model classifiers. These methods avoid developing individual models for each

modality or directly combining data sources, but rather incorporate data integration into

the architecture of the classifier or predictive model. In machine learning, gated neural
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networks have shown superior classification performance over traditional fusion methods

[3, 4]. Recent work has shown that neural networks with multiplicative gates can be trained

to relate inputs, their fusion, and their classification into a single model. Accordingly, these

models are uniquely equipped for learning fusion transformation by governing how each

modality contributes to the activation of the network [3]. Fig. 3.2 shows the structure of a

generic GMU. The equations that govern the fusion are described in Chapter 4.

Model 2

Model 1

σ

X
1

X
2

X
1

X
2

0

0

Feature Extraction Fusion Classi!cation

1-

+ ClassifierX
1,2

D
1,2

Figure 3.2: Structure of a GMU Network. The input modalities 1 and 2 are represented by
X1 and X2, respectively. The features from each modality, X0

1 and X0
2 , are fed into the fusion

gates, and X1,2 is the fused joint representation. The decision produced by the classifier is
represented by D1,2.

3.3 Model Interpretation

The ability to interpret the behaviour of a machine learning model can provide valuable

insight into the internal logic of the classifier and the structural importance of the features.

As the applications of predictive systems are integrated deeper into the industrial and scien-

tific domains, it is becoming increasingly important to be able to explain the basis of their

decisions. Certain models benefit from an inherent transparency in interpretation. These

techniques provide a direct link to the features used to make a prediction. Unfortunately,

transparent models such as decision trees, sparse linear models and rule-based systems

have inferior predictive performance compared to more complex model abstractions such
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as random forest classifiers, support vector machines and deep neural networks. This has

encouraged the development of techniques to understand the internal logic of complex pre-

dictive models.

Model agnostic interpretation methods are used to explain the behaviour of models

where the internal logic of the system is not directly available for inspection. Model ag-

nostic methods are flexible in that they can derive explanations from any underlying model.

A widely utilized technique to perform model agnostic interpretation employs the use of a

global surrogate model. Global surrogates approximate the behaviour of a complex model

by using an interpretable model [12]. Interpretable models, such as generalized regression

models or decision trees, are trained to approximate the predictions of an underlying model,

and global explanations are derived from analyzing the surrogate. Another technique used

is permutation feature sensitivity analysis. These methods employ permuting the input and

observing the variation to the model output. Local sensitivity analysis allows the determi-

nation of the specific output variance caused by permuting the elements of the input for a

training example. Recently, combinations of these approaches were developed to extend

the utility of surrogate models with sensitivity analysis, producing an algorithm referred

to as local interpretable model-agnostic explanations (LIME) [36]. LIME generates inter-

pretable explanations by approximating the prediction of any classifier locally for a given

training example. Local explanations of the underlying model are captured by training an

interpretable model on perturbations of the input data. LIME generates a sample set of per-

turbed examples in the neighborhood of the local instance and uses an interpretable model

to draw a decision boundary. Explanations are derived from analyzing the parameters of

the decision boundary. Formally, a local surrogate model g is defined through the following

expression:
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min
g∈G

J( f , g, µxi) + λ(g), (3.3)

where J( f , g, µxi) is a cost function that measures how closely the surrogate model g ap-

proximates the underlying model f while keeping the model complexity λ(g) low. The

proximity measure µxi determines the size of the neighborhood around an example xi. For a

training example, the probability that a classifier maps the input to a class label k is denoted

by yk = f (xi). Accordingly, LIME works to optimize the expression in (3.3) to interpret

why f maps feature vector xi to a class label k.

In order to produce an explanation, LIME first builds a dataset of perturbed instances x̃

by adding noise Zi to the mass center of the training data. The noise, Zi ∼ N(0, σ2), is drawn

from a zero-mean normal distribution with variance σ2. The underlying model can then be

used to generate a sample set that is weighted by their proximity to the selected instance.

The surrogate model can then be trained using a cost function of the mean squared error:

J( f , g, µxi) =
∑

i

µxi( f (x̃i) − g(x̃i))2, (3.4)

The learned weights of the trained model g form an n dimensional vector where each weight

corresponds to a feature in training vector xi. The magnitude of the n-th weight, |wn|,

defines the importance of that features on the prediction. The feature effect is defined by

the polarity of the weight, where wn > 0 or wn < 0 suggests that the feature has a positive or

negative influence on the prediction of the given class, respectively. The LIME procedure

is illustrated in Figure 3.3.
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(a) (b)

(c) (d)

Figure 3.3: Generalized LIME procedure. (a) The red (class 0) and grey (class 1) back-
ground represents the decision function of an underlying model with two variables. (b) The
instance to be explained is shown as a green dot, and the perturbed instances are shown as
black dots. (c) Perturbed instances are given higher weight (shown by size) based on their
proximity to the instance being explained. (d) The yellow line is the local explanation for
the selected instance.
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Chapter 4

Deep Gated Multimodal Units

In this chapter, we propose a novel multimodal fusion approach to integrate information

from multiple genomic sources. While most methods have solely relied on data level fu-

sion (early fusion) or decision level fusion (late fusion), our approach utilizes a series of

cascading gated multimodal units to deeply connect the integration of data fusion and deci-

sion fusion.

4.1 Architecture

The deep gated multimodal unit (dGMU) first contains multiplicative gates designed to con-

struct an intermediate representation of data from multiple modalities. The input modalities

along with the intermediate representation are then fed to a decision network that fuses the

predictions using an additional gate. These two processes can be subdivided into the func-

tion of a representation network and a decision network. This structure is illustrated in Fig.

4.1.

Representation Network

In this network, the input modalities learn a latent representation of the combined input
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Figure 4.1: Deep Gated Multimodal Unit.

data. Each modality becomes the input for a multilayer perceptron (MLP) with a maxout

activation function, maxout(·) [17]. In Fig. 4.1, this produces h1 = maxout(θh1 · x1) and

h2 = maxout(θh2 · x2), for modalities x1 and x2, respectively. Activated by the sigmoid

activation function, σ(·), the gating neuron, z = σ(θz · [x1, x2]), ties both modalities and

controls their contribution to the output of the unit. The output of the representation network

is governed by the following equations:

h1 = maxout(θh1 · x1)

h2 = maxout(θh2 · x2)

z = σ(θz · [x1, x2])

x3(x1, x2; ΘR) = z ∗ h1 + (1 − z) ∗ h2, (4.1)

where latent space, x3(x1, x2; ΘR), depends on inputs x1 and x2, and ΘR = {θh1, θh2, θx3} is
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the set of parameters used for encoding the latent space.

Decision Network

This network makes predictions based on all representations and learns to decide how

decisions influence the activation of the output unit. Each representation from the represen-

tation network becomes the input to an MLP with a rectified linear unit (ReLU) activation

function. Here, gating neuron σ(·) controls the untied contributions of decision gates d1,

d2, and d3. The decision network is governed by the following equation:

ŷ(x1, x2, x3; ΘD) =

3∑
i=1

ReLu(θdi · xi)σ(θdi · [x1, x2, x3]), (4.2)

where the network output, ŷ(x1, x2, x3; ΘD), depends on inputs x1, x2, and x3, and ΘD ={
θd1, θd2, θd3, θg1, θg2, θg3

}
is the set of network parameters used across the untied gates in the

decision network.

4.2 Training

The dGMU model parameters were learned with batch stochastic gradient descent with

ADAM optimization [27]. The training complexity was reduced by using a supervised

pre-training scheme on the decision network [33]. This method is used to initialize the

parameters of the decision network to ease the training of the larger model, reducing com-

putation time and increasing model robustness [9]. The complete network was optimized

using supervised fine-tuning with the connected sub-networks. During the training process,

overfitting was controlled using dropout and L2 regularization. For classification problems,

the global loss is computed using the softmax cross entropy loss as in Equation (2.5). With

regularization, this results in the following global loss:
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Loss = −
1
m

m∑
i=1

k∑
j=1

[yi, j log( ˆyi, j) + (1 − yi, j) log(1 − ˆyi, j)] +
λ

2m

p∑
j=1

q∑
k=1

Θ2
j,k (4.3)

4.3 Implementation

The dGMU model was implemented with original code in Tensorflow version 1.11.0 on

an Nvidia Tesla K80 GPU. With a high level of parallelization and batch training used

during pretraining and finetuning, the model training takes a few minutes, and validation

and testing are conducted in a matter of seconds.

The dGMU model benefits from the modularity of gated multimodal units. Accordingly,

this architecture can be adapted using varying models for each modality depending on the

application. As well, the decision network can be modified to accept inputs from more than

two modalities while only resulting in a linear increase in the number of training weights.

Furthermore, this model generates a latent space in between the representation network and

the decision network. This offers an interesting avenue into investigating the biological

significance of the fused latent representation.
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Chapter 5

Materials and Methods

5.1 Genomic Data Preprocessing

In this report, all genomic data was acquired from the National Cancer Institutes (NCI)

genomic data portal [18]. Healthy and tumorous cell mass RNA expression, microRNA ex-

pression, copy number variation, and simple nucleotide variation data was acquired for nine

different forms of cancer and solid tissue normal (STN) samples. The nine cancer types

included were head and neck squamous cell carcinoma (HNSC), kidney renal clear cell

carcinoma (KIRC), kidney renal papillary (KIRP), liver hepatocellular carcinoma (LIHC),

lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate adenocar-

cinoma (PRAD), thyroid carcinoma (THCA). The following subsections detail the prepro-

cessing steps required to transform and extract features from the raw genomic data.
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5.1.1 Copy Number Variation

Preprocessing

The copy number variation (CNV) data were derived from somatic and germline genotyping

array (Affymetric Genome-Wide Human SNP Array 6.0). The raw CNV data is given as

segmented genomic regions that have the same DNA copy number. This form provides the

number of bound probes and the binary logarithm of the mean intensity (segmented mean)

for each segmented genomic region as shown in Table 5.1.

GDC Aliquot a Chr Start End Probes Segment Mean
00e5b006-6afc-4ea4-90e3-f29741560020 1 62920 814954 31 0.4742
00e5b006-6afc-4ea4-90e3-f29741560020 1 817186 3303537 710 -0.0539
00e5b006-6afc-4ea4-90e3-f29741560020 1 3303596 16477281 7873 0.0117
00e5b006-6afc-4ea4-90e3-f29741560020 1 16477846 16935737 127 0.3408
00e5b006-6afc-4ea4-90e3-f29741560020 1 16935752 30261189 7664 0.0229

a Aliquot cooresponds to KIRC primary tumour UUID 0063a6fa-9ebd-4b71-83c0-aeb17b97eb6.

Table 5.1: Raw CNV Data from Genome Wide SNP Segmentation

To extract features that can be shared between all nine cell mass types, the chromosomal

regions were mapped to genes. Using the BioMart community portal we acquired the start

and end positions of every gene in the human genome assembly GRCh38 (hg38) [38]. The

human genes were then mapped to the CNV regions for each sample type. An example of

the resulting process is shown in Table 5.2.

Ensembl ID Chr Abberration Segment Mean CNV Region Gene Region
ENSG00000237763 1 DEL -1.361 103620877-103717410 103655290-103664554
ENSG00000244057 1 DEL -1.9195 152583230-152613762 152600662-152601086
ENSG00000198502 6 DUP 1.9859 32488906-32533522 32517343-32530287
ENSG00000264892 17 DEL -2.8409 16806233-16815664 16812447-16812651
ENSG00000279442 22 DUP 2.0311 15294547-15315221 15298378-15304556

Table 5.2: Significant CNV Abberations Mapped to Gene Ensembl ID in KIRC
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Dataset

For the i-th cell mass, a set of gi genes were mapped to aberrant regions within the genome.

The set of common genes between all cell mass types were defined as:

n
∩
i=1

gi, (5.1)

Where n is the number of cell mass samples. As a result, the CNV data contained the

segmented mean of 11479 genes for each cell mass sample, resulting in a processed data

matrix C ∈ IR11479 × n.

5.1.2 Transcriptome Expression

Preprocessing

This study utilized RNA sequence (RNA-seq), and microRNA sequence (miRNA-seq) tran-

scriptome expression profiling. The miRNA-seq data is a form of transcriptome profiling

that provides miRNA molecule quantification. The miRNA-seq data used in this study was

derived using the BCGSC miRNA profiling pipeline [6]. Furthermore, RNA-seq is a form

of transcriptome profiling that provides gene expression quantification. The RNA-seq data

used in this study was derived from HTSeq-Counts framework [2].

All expression profiles were organized in relation to cancer subclass, individual case

ID, and sequence ID. An example of this is shown in Fig. 5.1.

Dataset

The expression profiles of the transcriptome expression data had the input feature dimen-

sionality of all assayed genes and miRNA molecules. The miRNA-seq expression data

contained the normalized expression counts of 1881 miRNA molecules, while the RNA-
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Figure 5.1: Normalized miRNA expression profiles.

seq expression data contained the normalized expression counts of 60484 genes. As a re-

sult, the processed miRNA-seq data produced data matrix M ∈ IR1881 × n, and the processed

RNA-seq data produced data matrix R ∈ IR60484 × n.

5.1.3 Simple Nucleotide Variation

Preprocessing

The simple nucleotide variation (SNV) data was obtained in the form of masked somatic

mutations, derived from a MuTect2 Variant Aggregation and Masking workflow [7]. The

SNV data is summarized in Fig. 5.2. In 5.2a, a boxplot of the accumulated gene mutations is

shown for each cancer class. Fig. 5.2b shows a stacked barplot of the distribution of genetic

variations for each cancer class. Fig 5.2c shows a barplot of the somatic mutations. Somatic

mutations are represented using the (>) symbol to denote an alteration from nucleotide X

to nucleotide Y as X>Y. Lastly, in Fig. 5.2d, the variant distribution of the top ten mutated
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genes are illustrated as a series of stacked barplots organized in ascending order by the most

frequently mutated genes.

a) Accumulated gene mutations b) Variant classification distribution

c) Fraction of somatic muations d) Variant distribution of top 10 mutated
genes

Figure 5.2: a) Box plot of accumulated gene mutations for each cancer type. b) Stacked
bar plot showing the distribution of variant classification for each cancer type. c) Bar plot
showing the fraction of all somatic mutations. d) Stacked bar plot detailing the distribution
of the top 10 mutated genes.

In this study, the analysis of the raw SNV data was based on the variant occurrence

frequency of the genetic data. Variation occurrence was mapped to every listed gene for all

available cell samples. This was performed by mapping mutated genes to cell sample IDs

in the raw SNV data, and accumulating the number of mutations for each respective cell

sample.
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Dataset

After preprocessing the SNV data, the variant occurrence frequency was obtained for 20516

human genes for each cell mass sample. The variant occurrence frequency was recorded in

matrix S ∈ {Z≥0}
20516 × m, where the 20516 rows correspond to genes, and the m columns

correspond to the m cell samples per gene. Accordingly, an entry of the matrix S indicates

the number of mutations observed for a cell on a given gene.

5.2 Dimensionality Reduction

In the following, we describe the various forms of dimensionality reduction used to deal

with the high dimensionality of the genomic data and the selection of relevant features.

5.2.1 Stacked Denoising Autoencoder

An SDAE was used to acquire compressed feature vectors from all genomic data sources.

A two-layer SDAE with dimensions 1000, and 500 was trained using a designated train-

ing set. Optimal model parameters were selected based on model performance during 10-

fold cross-validation. Post training, a layer with reduced dimensionality and a low cross-

validation error was selected. The defined objective here was to acquire a reduced mapping

that encodes the original data with minimal loss of meaningful patterns.

5.2.2 Deeply Connected Genes

In our experiments, the weights of the trained SDAE were used to extract the raw features

most strongly connected to the reduced subspace for CNV, RNA-seq and miRNA-seq data

sources. These features were extracted from the SDAE by computing the product of the

weight matrices for each layer [13]. The product of the weights for each layer in the trained
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and optimally parameterized SDAEs were observed to be highly normally distributed as

shown in Fig. 5.3.

(a) (b) (c)

Figure 5.3: Histogram of z-scores from dot product of SDAE weight matrices for (a) CNV
(b) RNA-seq and (c) miRNA-seq.

The most statistically significant features were identified by fitting the weight matrices

to a normal distribution, and computing a p-value to select features that match the prese-

lected experimental dimensions.

5.2.3 Differential Expression

For the transcriptome expression data, deferentially expressed genes were identified, and

utilized as features. The log2(fold change) was computed between the median tumour cell

mass expression and healthy cell mass expression. The most statistically significant features

were identified by fitting the differential expression to a Gaussian distribution and comput-

ing a two-tailed p-value. Features that match the preselected experimental dimensions were

acquired by selecting the top most significant deferentially expressed genes using the two-

tailed p-values.

5.2.4 Clustered Gene Filtering

Due to the sparse nature of the discrete point mutation SNV data, clustered gene filtering

(CGF) was used to select a subset of the most discriminatory genes based on the variant

occurrence frequency matrix S [49]. The procedure involves filtering the genes into groups

based on a similarity criteria, and then selecting a subset of genes from each group that have
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(a) (b)

Figure 5.4: Differential expression log2(fold change) and Gaussian fit for (a) RNA-seq and
(b) miRNA-seq.

the highest mutation frequency because these are likely of more interest. Dimensionality

reduction can be controlled algorithmically through the modulation of distance threshold

dcg f , and the group element threshold ncg f . The distance threshold dictates how similar the

mutation profiles of two genes need to be grouped together. The group element threshold

is the number of genes kept from each group. The CGF algorithm used is summarized in

Algorithm 1.

In line 2, we sum matrix S by its second dimension, such that S sum =
∑

j S i j is a one

dimensional vector of length p. We then produce S ∗sum by sorting matrix S sum in descending

order. The matrix S is then reindexed to match the sorted array so that the genes with

the highest mutation frequency are listed first. Line 5 initializes a p-dimensional array to

store the clustered group numbers for the genes. In steps 7 to 14, the genes of matrix S

are clustered by inter-gene similarity. The similarity metric between two genes A and B is

calculated using the cosine similarity:

d(A, B) =
ABT

‖A‖ ‖B‖
(5.2)

In line 7, the index i iterates through the p genes, starting with the gene with the highest

mutation frequency S 1. The similarity between this gene and all the remaining genes are
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Algorithm 1 Clustered Gene Filtering
Require: Data matrix S ∈ {Z≥0}

p × m

Require: Distance threshold dcg f > 0, and group element threshold ncg f > 0
1: procedure CGF(S , dcg f , ncg f )
2: S sum ← sum(S , axis = 2)
3: S ∗sum ← sort(S sum, order = descending)
4: S ← reindex(S , index = S ∗sum)
5: g = 01,p

6: groupNum← 0
7: for i ∈ {1 . . . p} do
8: if gi = 0 then
9: groupNum← groupNum + 1

10: gi = groupNum
11: for j ∈ {2 . . . p} do
12: if j , i and g j = 0 then
13: if d(S i..., S j...) > dcg f then
14: g j = groupNum
15: gout ← ∅
16: for k ∈ {1 . . .max(g)} do
17: for all gc = k do
18: if gc > ncg f then
19: gout ← gout ∪ gc[1 . . . ncg f ]
20: S cg f ← S [gout, :]
21: return S cg f
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calculated, and if the similarity is larger than the threshold dcg f , the respective gene is

assigned to the group of S 1. After the similarity between S 1 with all genes are computed,

the inter-sample similarity calculations and gene group assignments are repeated for the

next ungrouped element in S . The last step forms the discriminatory subset by selecting the

top ncg f in each group. The indices for the discriminatory subset are stored in the variable

gout, which is initialized as an empty set in line 15. The following two for loops iterate

through all the genes gc for a specific group k, and stores the top ncg f genes as long as the

group does not have fewer than ncg f elements.

5.3 Model Interpretation

5.3.1 Gene-wise Interpretable Explanations

To find a gene-wise explanation, the LIME procedure is used to approximate the dGMU

model with a linear model of class G, such that g(x̃) = wg
T x̃. Perturbed instance x̃ is gener-

ated by individually noising each feature by drawing from a normal distribution. The mean

and standard deviation is taken from each feature in the original dataset X. The perturbed

instance is weighted using an exponential kernel learned over a Euclidean distance by let-

ting µxi(x̃) = exp(−
√∑n

i=1(x − x̃)2)/σ). The kernel width σ is defined as 0.75 times the

square root of the number of training instances (default value for σ is used as established in

[36]). With a locally weighted squared error J, as defined in Eq. (3.3), we learn the weights

wg of the sparse linear model via least squares. Each trained model provides interpretable

explanations through the learned weights. The magnitude of a coefficient relates to the im-

portance of the respective gene in sample xi. Furthermore, genes with a positive weight

coefficient are positively correlated with the prediction of the dGMU model and genes with

a negative weight coefficient are negatively correlated. Accordingly, the explanation of a
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single prediction provides an interpretable framework by indicating the genes that are most

influential. Specifically, a single LIME explanation can explain how the RNA-seq expres-

sion or SNV of the gene correlates with the model prediction.

Algorithm 2 Gene-Wise Global Importance with LIME
Require: Data matrix X, Perturbed data X̃
Require: Decision function f , True labels y
Require: Number of samples M, Class k, Kernel width σ

1: procedure GeneLIME(X, X̃, f , σ,N, k)
2: Xk ← {}

3: for i ∈ {1 . . . M} do
4: if f (X(i)) = k and y(i) = k then
5: Xk ← Xk ∪ X(i)

6: for all x(i) ∈ Xk do
7: Initialize w(i)

g

8: g(i) ← (w(i)
g )T x̃(i)

9: µ(i)
x ← exp

(
−

√∑n
i=1(x(i) − x̃(i))2)/σ

)
10: J( f , g, µx) =

∑
i µ

(i)
x ( f (x̃(i)) − g(x̃(i)))2

11: W← min
g∈G

J( f , g, µx) + λ(g) . Minimize cost function, and store trained weights

12: Gi, j ←
∑p

j=1Wi, j

13: return Gi, j

The gene-wise explanations for a single prediction provides locally faithful insight into the

logic of the classifier. In order to assess the global fidelity of the model, gene-wise expla-

nations are pooled to evaluate the reliability of the predictions as a whole. A procedure for

generating gene-wise LIME explanations is summarized in Algorithm 2. Gene-wise expla-

nations are extended to understand the set of individual instances associated with correctly

labelled predictions. Explanations for a set of correctly labelled instances are relevant in

understanding the reliability of the classifier and assessing how the model behaves glob-

ally. For a given cancer class k, we can denote the dataset of correctly labelled instances

as Xk. The process of producing the matrix Xk is shown in lines 2 to 5 in Algorithm 2.

Furthermore, we can denote the process of deriving an explanation from a subset of sam-
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ples with a function ξ(·). Applying the function ξ(·) is equivalent to performing lines 6 to

11 in Algorithm 2. We now construct an n × p dimensional explanation matrix by setting

Wi, j = ξ(Xk). The matrixWi, j represents the local importance of all n genes for each of

the p correctly labelled instances for a given class. The gene-wise global weights can then

be pooled in an n dimensional vector G =
∑p

j=1Wi j. Accordingly, genes that explain more

instances will be ranked with higher importance.
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Chapter 6

Experimental Results

6.1 Experiment setup

6.1.1 Datasets

In order to validate the experimental methods discussed in this thesis, we utilized various

datasets as shown in Table 6.1.

Experiment Bimodal dataset Method Samples Classes Feature type
Sec. 6.2.1 CNV + miRNA-seq DCF 3988 9 real
Sec. 6.2.1 CNV + miRNA-seq SDAE 3988 9 real
Sec. 6.2.2 RNA-seq + SNV DE + CGF 3375 6 real + integer

Table 6.1: Summary of experimental datasets

6.1.2 Metrics

In these experiments, all models performed multinomial classification. In order to use

binary performance metrics, a one-vs-all approach was taken with the model predictions.

This approach involves treating each individual prediction as a binary classification where
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samples of the correct class are positive and all other samples are negative. This strategy

works because for each input example the models output a k-dimensional vector of real-

valued confidence scores for each of the k classes. The predicted output is then designated

as the label k for which the classifier reports the largest confidence score:

ŷ = argmax
k∈{1...K}

fk(x)

This strategy creates a particular problem related to class distribution in the training set.

Treating each classification as a binary prediction results in an unbalanced distribution.

The set of negatives examples will be much larger than the set of positive examples [5]. As

well, the distribution of labels between the cell types are not equal. This can lead to issues

when evaluating models if the accuracy is the only measure of performance. In order to

avoid issues related to class imbalance, the precision, recall, and F1 score were also used as

performance metrics. The F1 score is the harmonic mean of the recall and precision:

F1 =

(
recall−1 + precision−1

2

)−1

,

where precision and recall are defined as:

precision =
true positives

true positives + f alse positives
recall =

true positives
true positives + f alse negatives

Furthermore, in order to visualize the performance of the multinomial cell type classifica-

tions we used area under the curve (AUC) receiver operating characteristics (ROC). AUC-

ROC plots provide a performance measurement at various statistical thresholds. These

measurements indicate how much the model is capable of discerning between classes. The

higher the AUC, the better the model is at classifying true positives as positive and true
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negatives as negative. ROC curves are produced by plotting the true positive rate (TPR) on

the y-axis, and the false positive rate (FPR) on the x-axis. The TPR is equivalent to recall,

and the FPR is equal to 1 − speci f icity:

speci f icty =
true negatives

true negatives + f alsepositives
FPR =

f alse positives
true negatives + f alse positives

A perfect model has an AUC of 1. This means that the model can perfectly separate

truenegatives and truepositives samples 100% of the time. This results in a ROC curve

where T PR = 1 for FPR ∈ 0, 1. The closer the top left corner of the ROC plot is to the

point (0,1), the better the model. An AUC of 0.5 means the model does not have the ability

of separating the classes. In this case, the model predictions are essentially assigned by

random chance. On the ROC plot, an AUC of 0.5 results in a straight diagonal line.

In order to extend the ROC for multi-class classification, a pairwise comparison was

performed to binarize the output of the classification. Here a one versus all approach was

taken to compute the ROC for individual cancer cell tissue types [1]. Accordingly, the

models were evaluated for their ability to classify an individual cell tissue type against

all other cell tissue types. ROC curves were also drawn using micro-averaging, where

each element of the model classification was considered as a binary prediction, and macro-

averaging, which finds the unweighted mean of all class ROCs.

6.2 Results

In the following, we report the results from all experiments. In all cases, experiments were

constructed using the following experimental settings and constraints:

• The datasets were divided into a 60/20/20 split for training, validation, and testing,
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respectively.

• Hyperparameter tuning was performed on the cross-validation set.

• Experiments were repeated 10 times using 10 fold cross-validation on the training

set.

6.2.1 Classification Agreement and Model Performance

Comparison of Classification Agreement

In order to evaluate the effectiveness of the dGMU model, we compared single modal-

ity, and bimodality classification agreements for SDAE and DCF reduced miRNA-seq and

CNV features. The results for each feature type along with their respective models are

summarized in Table 6.2. The DCF features were observed to result in higher classification

scores for most feature and model type combinations. The only exception was the single

modality CNV with SDAE features, which had a higher accuracy, recall, and macro f1-

score for MLP and SVM models. Independent of the evaluated feature types, the dGMU

model achieved the highest classification metrics amongst the utilized methods.

Comparison of Model Performance

A more exhaustive characterization of the classification performance was achieved with the

multi-class receiver operator characteristic (ROC) curves shown in Fig. 6.1. The false posi-

tive rate versus the true positive rate was plotted for a subset of the best performing models

trained with bimodal DCFs reduced to a dimensionality of 500 from miRNA-seq and CNV

data sources. In all models, as the true positive rate increased, the false positive rate in-

creased exponentially. In order to compare model performance, it was ideal to observe the

rate in which the true positive rate approaches one as the false positive rate increases. The
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Experiment Classification Metric
Modality Feature Model Accuracy Precision Recall F1-Score

Bimodal

SDAE

dGMU 0.8764 0.8739 0.8749 0.8737
GMU 0.8722 0.8700 0.8661 0.8675
MoE 0.7611 0.7617 0.7566 0.7556
MLP 0.8622 0.8613 0.8542 0.8570
SVM 0.8605 0.8567 0.8542 0.8550

DCF

dGMU 0.9373 0.9357 0.9327 0.9341
GMU 0.9273 0.9292 0.9228 0.9255
MoE 0.9156 0.9109 0.9111 0.9109
MLP 0.9189 0.9199 0.9123 0.9154
SVM 0.9172 0.9175 0.9150 0.9136

CNV
SDAE

MLP 0.7586 0.7622 0.7534 0.7526
SVM 0.7343 0.7459 0.7275 0.7321

DCF
MLP 0.7468 0.7795 0.7270 0.7200
SVM 0.7335 0.7460 0.7256 0.7310

miRNA-seq
SDAE

MLP 0.8530 0.8560 0.8425 0.8477
SVM 0.8429 0.8388 0.8347 0.8362

DCF
MLP 0.9097 0.9118 0.9022 0.9052
SVM 0.9072 0.9104 0.9045 0.9004

Table 6.2: Summary of classification agreement for CNV and miRNA-seq reduced to 500
features.

ROC shows the trade-off between sensitivity (true positive rate) and the specificity (1 - false

positive rate) for each model. Model types that have curves closer to the top left corner in-

dicated a better performance. In Fig. 6.1a and 6.1b, we see that the dGMU and GMU ROC

curves cluster more tightly into the top left corner of their plots as opposed to the MLP and

MoE ROC plots. In Fig. 6.1c and 6.1d, the MLP and MoE plots showed a decrease in model

performance as the cluster of curves have decreased slopes. This is especially evident by

observing the significantly lowered benign ROC curves in the MLP and MoE plots. In this

study, it was imperative to maximize the true positive rate while keeping the false positive

rate to a minimum. Accordingly, the area under the curve (AUC) was computed for each

cell tissue type. The models that utilized GMUs were specifically more effective at classi-

fying benign cell tissue types. The MLP and MoE models struggled with this classification

problem resulting in a benign AUC of 0.90 and 0.87, respectively. The GMU based models
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rectified this deficiency, both resulting in a benign AUC of 0.98. Furthermore, utilizing

the ROC averages as a holistic measure of model classification performance, the dGMU

model was observed to have the largest macro-average AUC of 0.98 and shared an identical

micro-average AUC of 0.98 with the single GMU model. This indicates that the deeper

configuration of the GMU improves cell tissue differentiation.

(a) (b)

(c) (d)

Figure 6.1: CNV and miRNA-seq DCF bimodal model ROC plots for (a) dGMU (b) GMU
(c) MLP and (d) MoE models.

In order to evaluate the impact of feature dimensionality on the performance of the

bimodal models, classification experiments were conducted with input dimensionalities

ranging from 10 to 1500 features per modality. Fig. 6.2 shows the error rates observed

for miRNA-seq and CNV DCF inputs at varying sizes. In all models, as the feature di-

mensionality increased, the error rate decreased. Though, the error rate stops improving

rapidly after an input dimensionality of approximately 500. The dGMU model obtained the
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lowest error rate at 5.93%. The dGMU model also demonstrates the highest resistance to

decreasing dimensionality, except for in feature sizes ranging from 100 to 200, where the

GMU model obtained lower error rates.
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Figure 6.2: CNV and miRNA-seq DCF model error rates over a range of input dimension-
alities.

Visualization of dGMU Latent Space

The latent space produced by the dGMU model was visualized with t-distributed stochas-

tic neighbor embedding (t-SNE) [32]. In Fig. 6.3a, the dGMU model was shown to have

a highly discriminatory latent space. The cell tissue types were largely clustered into the

original nine classifications with a perceived level of geometric preservation between re-

lated cancers. These relationships include the kidney renal carcinoma’s KIRC and KIRP,

and the adenocarcinoma’s LUAD and PRAD.

In order to evaluate inherit characteristics of the latent space, we considered the disper-

sion and the mean of the fusion encodings. In Fig. 6.3b, the dispersion was plotted against

the log mean encoded value. The dissemination of the latent encoding was stratified in

relation to the log2(Dispersion) and the log2(Mean). Distinct clusters were observed with

labeled red and green markers for the samples derived from primary tumours and normal

tissue, respectively. The dispersion values scatter with a degree of variance, which was ex-
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Figure 6.3: (a) CNV and miRNA-seq DCF dGMU model latent space clustered with t-
distributed stochastic neighbor embedding (t-SNE). (b) Fold change and dispersion of the
dGMU latent space.

pected given the sample size between the primary tumour and solid tissue normal samples

[23].

6.2.2 dGMU Model Interpretation

We examined the functional enrichment of the top 400 interpretable gene components

through a GO term and KEGG pathway analysis. The top 400 genes that promote posi-

tive explanations for the eight cancer types were identified as having significantly enriched

GO terms and related pathways. The biological process related GO terms with a p-value

smaller than 10−10 and the related KEGG pathways with p-value smaller than 10−3 are pre-

sented in Table 6.3. Many of the statistically significant pathways and terms are related to

DNA replication, DNA repair, and cell cycle processes. This suggests that the genes most

attributed to explaining the cancer classifications are related to cell proliferation and tumor

growth. Furthermore, an additional review of literature was used to identify relationships

between the significantly enriched pathways and the cancer types. The enrichment analysis

of LIHC identified the carbon metabolism (hsa01200) KEGG pathway, and the response to

insulin (GO:0032868), response to activity (GO:0014823), and fatty acid metabolic process

49



MSc Thesis — Olatunji Oni McMaster University — Comput. Sci. & Engineering

(GO:0006631) GO terms. The identification of these biological processes supports signif-

icant research describing the pathophysiological link between the human bodies response

to insulin and the incidence of LIHC [30, 37]. Insulin stimulates the liver to store glu-

cose, and the liver is the primary site for converting excess carbohydrates into fatty acids.

Dysregulated cellular metabolism, where aberrant oncogenic signals alter the expression of

metabolic enzymes, is a reoccurring theme in cancer cells. Currently, there is substantial ev-

idence supporting dysregulated fatty acid metabolism and lipid metabolic reprogramming

in LIHC [35, 44]. Through the application of LIME, we identified that the dGMU model

is using biologically relevant information to stratify cancer classifications. These results

suggest that a domain expert can use the interpretable gene components to understand why

the dGMU model correctly classifies true positive cancer instances.

The cell division (GO:0051301) GO term was found to be significantly enriched in

four cancer types. For HNSC, the pathway related genes were BUB1, LIG1, BIM, CIB1,

SAC3D1, SPC24, BORA, BIRC, ECT2, KIF14, BUB3, and NCAPG. For KIRP, the genes

were MAD2L2, ZWINT, CDCA3, CDK5, CDK7, KIRF2C, PARD3B, PRKCE, CDT1,

BUB1, and TACC1. For LUAD, the genes were ATAD3B, BUB1B, BUB1, DSN1, NEK2,

BIRC5, CDC25C, CDC6, CHEK2, KIF18B, NCAPG, RCC1, SGO1, UBE2C. Lastly, for

LUSC the genes were ATAD3B, BUB1, LIG1, DSN1, MAD2L2, SPC25, ZWINT, MCM5,

PRKCE, RCC2, TACC1, UBE2C. The greatest overlapping similarities were shared be-

tween the two lung cancers LUAD and LUSC, where four genes were shown to be shared.

Despite representing the same biological process related to cell division, between the four

cancer types, the gene sets were observed to be quite heterogeneous. This suggests that the

genes identified as interpretable components have potential applications as biomarkers.

The intuition of the dGMU model was further investigated by examining the top three

explanatory genes derived from LIME analysis for each cancer class. The weighted con-
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Cancer Name
Enriched GO term and Related Pathway

ID Name Enrichment P-value

HNSC

hsa04110 Cell cycle 5.2 4.1E-5
hsa03030 DNA replication 9.8 3.1E-4
hsa04914 Progesterone-mediated oocyte maturation 5.4 6.2E-4

GO:0051301 Cell division 4.7 3.3E-11
GO:0007062 Sister chromatid cohesion 9.2 8.3E-11
GO:0008283 Cell population proliferation 4.4 4.3E-15

KIRC
GO:0007162 Negative regulation of cell adhesion 16.5 1.8E-13
GO:0001666 Response to hypoxia 4.4 5.3E-13

KIRP

hsa04210 Apoptotic process 18.2 1.3E-5
hsa04914 Progesterone-mediated oocyte maturation 5.4 6.2E-4

GO:0051301 Cell division 4.7 3.3E-11
GO:0007062 Sister chromatid cohesion 9.2 8.3E-11

LIHC

hsa01200 Carbon metabolism 6.4 7.04E-4
GO:0032868 Response to insulin 8.6 2.6E-13
GO:0014823 Response to activity 10.8 5.9E-13
GO:0006631 Fatty acid metabolic process 8.9 1.0E-12

LUAD

hsa00630 Glyoxylate and dicarboxylate metabolism 11 9.7E-4
GO:0001525 Angiogenesis 4.1 1.9E-14
GO:0031568 G1/S transition of mitotic cell cycle 5.9 4.1E-14
GO:0007062 Sister chromatid cohesion 6.4 2.5E-15
GO:0051301 Cell division 6.0 8.2E-15

LUSC

hsa03440 Homologous recombination 28.2 8.6E-6
hsa03030 DNA replication 13.6 1.9E-4

GO:0051301 Cell division 5.4 2.8E-17
GO:0000724 Double-strand break repair via homologous recombination 16.4 2.3E-14

PRAD hsa04530 Tight junction 6.5 2.2E-4

THCA
GO:0006260 DNA replication 10.2 3.3E-12
GO:0006974 Cellular response to DNA damage stimulus 4.4 5.03E-13
GO:0006915 Apoptotic process 2.5 1.1E-12

Table 6.3: Summary of enriched gene ontology terms and related pathways.

tribution of these genes along with their respective log2FC from the differential expression

analysis are shown in Fig. 6.4. For HNSC, CDC25A was identified as one of the explana-

tory genes. CDC25A is a protein-coding gene that performs an integral role in cell cycle

progression. In literature, CDC25A is a known oncogene that is overexpressed in head

and neck cancers [16]. This validates the explanation derived from the model that found

CDC25A as a key explanatory gene with an overexpressed log2FC of 5.9. For THCA,

LIME identified PRKCQ and BMP1 as the top two explanatory genes for the dGMU model.

PRKCQ has been identified as having a potential role in the progression of thyroid cancer,

and BMP1 is a known oncogene with potential gene interactions that are influential in the
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Figure 6.4: Top 3 explanatory genes for each cancer class.

carcinogenesis of thyroid cancer [15, 47]. For both KIRC and KIRP the top explanatory

genes, TTYH3 and ALDH2, were identified as prognostic markers for kidney cancer [41].

Accordingly, through the application of LIME explanations, the dGMU model has shown a

substantial utility of biologically relevant information for predicting cancer type class.

Figure 6.5: 2D embedding of RNA-seq and explanation heatmap with a localization of
persistent explanations.
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The location and variability of explanations were visualized using 2D embeddings of

the RNA-seq input data. The RNA-seq data were embedded into 2D images by ordering

the genes based on gene function and then reshaping the 3025 × 1 arrays into 55 × 55

images. An example is shown for five correctly classified HNSC RNA-seq profiles in Fig.

6.5. The first row shows the 2D embedding of the RNA-seq instances and the second

row shows the respective top five positive and negative gene explanations. On the second

row, the positive gene explanations that encouraged the prediction of the correct class were

labeled in red, and the negative gene explanations were labeled in blue. The circled regions

indicate a cluster with a high density of explanatory genes between examples. Although

the explanatory genes were determined locally for a given instance, a general consistency

in positive explanations remained between RNA-seq data input.
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Figure 6.6: Distribution of cumulative contribution over a range of training epochs.

During the dGMU model training scheme, the cumulative weighted contributions for

the RNA-seq and SNV features were examined. We found that as the model increased

in efficacy, the influence of the RNA-seq modality increasingly dominated in weighted

contribution as shown in the top part of Fig. 6.6. The red kernel density function for
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the RNA-seq modality progressively separates and settles at a larger average value than

the blue kernel density function for the SNV modality. This suggests that the RNA-seq

modality contributes stronger explanatory information on average than the SNV modality.

This makes sense as the single modality RNA-seq model obtained a higher accuracy than

the SNV modality as shown by the associated line chart of error rates illustrated alongside

the labelled training epochs on the bottom half of Fig. 6.6.
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Figure 6.7: Top 3 explanatory single nucleotide variations for each cancer class.

The genetic variations of the top 3 explanatory SNV gene regions were visualized across

the cell samples for each cancer class in Fig. 6.7. Each column represents a sample and

each row a different gene. The fields are labeled to indicate the category of SNV that is

present in the region of the respective gene. The left barplot shows the frequency of vari-

ations for each gene, and the associated cancer class is labeled on the right. The mutation

frequency of the top 3 SNV gene regions varied widely across the cancer types. The lung

cancers LUAD and LUSC had the highest presence of SNVs and the remaining cancers
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had very sparse variations across cell samples. An exception to this appeared for the BRAF

gene in the THCA cancer cell samples. The genetic aberrations of all top three genes have

been implicated in the development of various cancers, but genetic variations in HMCN1

and BRCA2 were only found in one case each [25, 26, 34]. Genetic variations in BRAF

were found in more than half of the cell samples, the majority of which were missense

mutations. BRAF is a protein-coding gene involved in the regulation of signalling path-

ways that influence cell division, differentiation, and secretion. Mutations in this gene are

recurrent in THCA and the missense point mutation in which a single nucleotide change

results in valine 600 to glutamic acid (V600E) is the most prevalent [46]. Although THCA

has a low mortality rate, the presence of the V600E mutation is associated with faster can-

cer growth and a higher death rate [46]. Accordingly, the interpretable local explanations

derived from LIME indicate that the dGMU model draws from clinically relevant informa-

tion. This trend is found across the different cancer types. The LIME algorithm indicated

SNVs in cancer-related genes in all cancer types which provides reasonable explanations

that a domain expert can use to understand the prediction of the dGMU model.
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Chapter 7

Conclusion

The dGMU model offers a promising framework for learning fusion representations from

multi-platform genomic data. Our model is devised as a new component in the biomedical

representation learning scheme, making it independent from past methods by leveraging

the paradigms of early and late fusion. The main objective of this work is to utilize di-

mensionality reduction and interpretable features for multimodal cancer phenotype predic-

tion. In our experiments, the dGMU model was able to learn a biologically relevant latent

space using RNA expression and copy number variation from eight cancer types, and it

outperformed both unimodal features and various common fusion strategies in classifica-

tion agreement. The results indicate that deep learning architectures based on GMUs have

the potential to expedite representation learning and knowledge integration in the study of

cancer pathogenesis. Additional evaluations must be made to test further if the dGMU

latent space can produce features that can generalize associations between increasingly di-

verse biomedical data. This effort could include the identification of potential cross cancer

biomarkers by integrating heterogeneous cancer data in ensembles. In future work, we ex-

pect that these kinds of models support integrative and interpretable deep learning methods.

As integrative machine learning methods become more common, we believe that multi-
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plicative gating systems will provide clinicians with viable models to personalize patient

care to their unique genomic profile.

The LIME algorithm was extended to facilitate the interpretation of multi-platform ge-

nomic data. We demonstrated the use of this algorithm on a multimodal neural network

to generate gene-wise RNA-seq and SNV explanations for the classification of correctly

labelled instances. We found that gene-wise explanations are useful for revealing clinically

relevant genes used by the machine learning model to make accurate predictions. We also

demonstrated that the explanations derived from multi-platform genomic data are helpful

for identifying potential biomarkers and validating the predictive influence of known onco-

genes. The additional insight gained by examining the explanations is helpful to gain trust

in the predictions of the dGMU model. For a given classification, a domain expert can

obtain the relative contributions of the modalities and the top explanatory RNA-seq expres-

sion and SNV gene regions. In the future, we would like to evaluate enhanced interpretable

representations that incorporates the interactions between modalities. This involves incor-

porating known pathways and gene-gene relationships as a part of the model. We believe

that correlating deeper biological relationships will help facilitate a greater insight into the

underlying machine learning model.
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