
Segmentation of Breast Cancer Ultrasound Images

Segmentation of Breast Cancer Ultrasound
Images

By Mingjie Jiang, B.Eng.

A Thesis Submitted to the School of Graduate Studies in the Partial
Fulfillment of the Requirements for the Degree Master of Science

McMaster University
c© Copyright by Mingjie Jiang July 4, 2019

http://www.mcmaster.ca/

McMaster University

Master of Science (2019)

Hamilton, Ontario (School of Computational Science and Engineering)

TITLE: Segmentation of Breast Cancer Ultrasound Images

AUTHOR: Mingjie Jiang (McMaster University)

SUPERVISOR: Dr. Ned Nedialkov

NUMBER OF PAGES: x, 90

ii

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
http://www.mcmaster.ca/

Abstract
Breast cancer is the most common cancer occurring in women. Breast-conserving

surgery is a desirable choice for an early-stage breast cancer. An intra-operative

margin assessment of excised breast lesion tissue can help avoid additional surg-

eries. An essential problem in intra-operative margin assessment is how to extract

an accurate boundary of the excised lesion automatically and quickly. To solve

this problem, we segment breast cancer ultrasound (US) images and then generate

boundaries based on the segmentation results.

In this research, we propose a new convolutional neural network model, named

IU-Net, to segment breast cancer US images. IU-Net combines inception blocks

and the well-known U-Net model. We train IU-Net with US images and cor-

responding manually segmented images provided by Dr. Jeffery Carson and his

research group of the Lawson Health Research Institute, London, Ontario, Canada.

We also apply an autoencoder in training IU-Net. The experimental results show

that IU-Net achieves slightly more accurate results than U-Net and uses 3.8x fewer

parameters than U-Net.

iii

Acknowledgements
Firstly, I would like to thank my supervisor Prof. Ned Nedialkov of the de-

partment of computing and software at McMaster University. He gave me a lot of

advice on my research and thesis writing.

I would also like to thank Dr. Jeffery Carson at Lawson Health Research

Institute. He and his research group provided the breast cancer ultrasound images

dataset and also gave me some suggestion on my research.

Finally, I would like to thank my parents and my girlfriend for their continuous

support and encouragement throughout my years of study.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Problem statement . 2

1.2 Summary of methodology . 3

1.3 Contribution . 4

1.4 Thesis outline . 4

2 Related work 5

3 Background 11

3.1 History of CNNs . 11

3.2 Fundamental knowledge . 12

3.3 Layers in CNNs . 18

3.3.1 Convolution and pooling layers 19

3.3.2 Batch normalization Layer 24

3.4 Inception block . 26

3.5 Back propagation . 28

3.6 Optimization algorithm . 35

4 Segmentation networks 39

v

4.1 Autoencoder . 39

4.2 Models . 41

4.2.1 IU-Net architecture . 41

4.2.2 Small IU-Net architecture 42

4.2.3 Mini IU-Net architecture . 43

4.3 Training . 44

4.3.1 Loss function . 44

4.3.2 Regularization . 45

4.3.3 Data preprocessing . 47

4.4 Prediction . 48

4.5 Post-processing . 51

4.5.1 Largest connected component extraction 51

4.5.2 Hole filling . 52

4.5.3 Boundary extraction . 54

5 Experimental results 57

5.1 Programming environment . 57

5.2 Dataset . 58

5.2.1 Original data . 58

5.2.2 Data augmentation . 59

5.3 Training hyperparameters . 61

5.4 Results . 62

6 Conclusion and improvement 80

Bibliography 82

vi

List of Figures

2.1 FCN-32s architecture. 7

2.2 FCN-16s architecture. 8

2.3 FCN-8s architecture. 9

2.4 U-Net architecture. 10

3.1 A simple neural network . 13

3.2 Input data of convolution and pooling layers 19

3.3 Inception block structure. nf denotes number of filters. 27

3.4 A simple CNN architecture. The numbers represent the output of

each layer. 33

4.1 Autoencoder architecture. The numbers represent the output of

each layer. 40

4.2 IU-Net architecture. 42

4.3 small IU-Net architecture. 43

4.4 mini IU-Net architecture. 44

4.5 Limitation of DSC . 46

4.6 An example of 3D US image . 47

4.7 Prediction . 48

4.8 Segmentation from three direction 50

4.9 Largest connected component extraction 53

4.10 Hole filling . 54

4.11 4-connected neighbors and 8-connected neighbors 55

vii

4.12 Boundary extraction . 56

5.1 US image with segmentation A and segmentation B 59

5.2 Image rotation in data augmentation 60

5.3 Image crop in data augmentation 60

5.4 Learning curves of U-Net with λ = 0 and λ = 10−3 62

5.5 Learning curves of IU-Net with λ = 0 and λ = 10−3 62

5.6 Learning curves of small IU-Net with λ = 0 and λ = 10−3 63

5.7 Learning curves of mini IU-Net with λ = 0 and λ = 10−3 63

5.8 Effect of encoder on U-Net . 67

5.9 Effect of encoder on IU-Net . 68

5.10 Effect of encoder on small IU-Net 69

5.11 Effect of encoder on mini IU-Net 70

5.12 Segmented US images by U-Net and their achieved DSC in per-

centages. The red boundary represents segmentation A; the yellow

boundary denotes segmentation B; the blue boundary is the prediction 71

5.13 Segmented US images by U-Net+encoder and their achieved DSC

in percentages. The red boundary represents segmentation A; the

yellow boundary denotes segmentation B; the blue boundary is the

prediction . 72

5.14 Segmented US images by IU-Net and their achieved DSC in per-

centages. The red boundary represents segmentation A; the yellow

boundary denotes segmentation B; the blue boundary is the prediction 73

5.15 Segmented US images by IU-Net+encoder and their achieved DSC

in percentages. The red boundary represents segmentation A; the

yellow boundary denotes segmentation B; the blue boundary is the

prediction . 74

viii

5.16 Segmented US images by small IU-Net and their achieved DSC in

percentages. The red boundary represents segmentation A; the yel-

low boundary denotes segmentation B; the blue boundary is the

prediction . 75

5.17 Segmented US images by small IU-Net+encoder and their achieved

DSC in percentages. The red boundary represents segmentation A;

the yellow boundary denotes segmentation B; the blue boundary is

the prediction . 76

5.18 Segmented US images by mini IU-Net and their achieved DSC in

percentages. the red boundary represents segmentation A; The yel-

low boundary denotes segmentation B; the blue boundary is the

prediction . 77

5.19 Segmented US images by mini IU-Net+encoder and their achieved

DSC in percentages. The red boundary represents segmentation A;

the yellow boundary denotes segmentation B; the blue boundary is

the prediction . 78

ix

List of Tables

1.1 Accuracy and number of parameters 3

5.1 Statistics about the original dataset 58

5.2 Number of augmented images for training. We start with 1554 images 61

5.3 Number of augmented images for testing. We start with 358 images 61

5.4 Training parameters . 61

5.5 Accuracy (with segmentation A as GT) 65

5.6 Accuracy (with segmentation B as GT) 65

5.7 Accuracy and number of parameters 65

5.8 Training time . 66

5.9 Number of layers of models . 66

5.10 Accuracy after post processing . 79

x

Chapter 1

Introduction

Breast cancer is the most common cancer among women [8]. It is also diagnosed

among men, but the incidence is low [22]. The statistics of DeSantis et al. [17]

shows that each American woman has a 12.29% risk of being diagnosed with breast

cancer during her lifetime, and the incidence of in situ breast cancer increased from

1975 to 2010. Breast cancer has five stages (0-4), which are identified by a TNM1

staging system. For an early-stage, breast-conserving surgery (BCS) is usually an

effective method of treatment [31]. It consists of removing the part of the breast

that contains a tumor. Typically, some healthy tissue around the cancer is also

excised. According to [20], the survival rates of BCS and mastectomy are at the

same level. However, BCS can provide better cosmetic effects than mastectomy.

One of the main goals of BCS is to obtain tumor-free resection margins, since

positive margins are in association to an increased risk of local recurrence [19].

Intra-operative margin assessment of excised breast lesion tissue can help avoid

additional surgery. According to the research of Olsha et al. [43], intra-operative

ultrasound (US) imaging can help maintain a low level of re-excision rate after

BCS.
1T–tumor, N–(lymph) nodes, M–metastasis.

1

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

An essential problem in intra-operative US is how to extract an accurate bound-

ary of the excised lesion automatically and quickly. Some artifacts due to the pres-

ence of bags and shadows appear in US images, and these artifacts would degrade

performance of some classic segmentation methods (thresholding, region growing,

or watershed [23]). An accurate boundary of an excised lesion can help surgeons

make better decisions.

The structure of this chapter is as follows. Section 1.1 states the segmentation

problem that is the subject of this thesis. Section 1.2 summarizes our method to

solve this problem and summarizes our experimental results. Section 1.3 is the

contribution of this thesis. Section 1.4 gives an outline of this thesis.

1.1 Problem statement

We are interested in automatically determining the boundary of a tissue in a US

image of breast cancer. We have a data set of 2D slices of 3D US images and

corresponding manually segmented images. Our goal is to employ deep learning

to train a neural network so it can automatically segment the US images and

extract accurate boundaries.

The data set and the segmented images are provided by Dr. J. Carson and

his research group from the Lawson Health Research Institute, London, Ontario,

Canada. They are building a photoacoustic tomography (PAT) imaging system

and produce PAT images of excised breast lesion. However, in a PAT image, the

boundary of a tissue is hard to determine, while such a boundary is clearer in

a US image. They expect that the segmentation result of our networks helps to

determine the boundary of a tissue in a PAT image.

2

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

1.2 Summary of methodology

We build a neural network based on the original U-Net [45] model and the inception

network [57]. We refer to our model as IU-Net, from Inception U-Net. We have

experimented with U-Net, our IU-Net, and two smaller versions of it, small and

mini IU-Net. We also employ an autoencoder in our models.

Our training data set consists of 1912 images of 52 samples, where for each image

we have two manual segmentations results. They are performed by two summer

students of Dr. Jeffery Carson’s research group independently. We choose 358

images of 10 samples as test set, and use data augmentation to enlarge the test

set to 8234 images. Then we measure the accuracy of our models on this test set.

The images are 2D slices in the z direction and we perform data augmentation on

all these images. Then we train our models with augmented training dataset.

To measure the accuracy of our models, we use both the Dice similarity coeffi-

cient (DSC) [18, 55] and the mean-squared-error (MSE) metrics. The results are

given in Table 1.1, where +encoder means training using an encoder.

model DSC MSE # of parameters
mean std mean std

U-Net 91.0% 0.15 2.02× 10−2 2.22× 10−2 7.76× 106

U-Net+encoder 90.6% 0.16 2.08× 10−2 2.29× 10−2 7.76× 106

IU-Net 91.5% 0.12 2.04× 10−2 2.22× 10−2 2.05× 106

IU-Net+encoder 92.0% 0.11 2.01 × 10−2 2.17 × 10−2 2.05× 106

small IU-Net 91.2% 0.14 2.06× 10−2 2.20× 10−2 5.10× 105

small IU-Net+encoder 90.9% 0.14 2.07× 10−2 2.25× 10−2 5.10× 105

mini IU-Net 89.7% 0.16 2.40× 10−2 2.43× 10−2 1.24 × 105

mini IU-Net+encoder 89.7% 0.17 2.29× 10−2 2.38× 10−2 1.24 × 105

Table 1.1: Accuracy and number of parameters

From Table 1.1, we see that all models achieve similar accuracies. IU-Net+encoder

achieves the highest DSC accuracy and the smallest MSE. The number of train-

able parameters of mini IU-Net and mini IU-Net+encoder is the smallest among

3

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

all models.

Furthermore, we also apply multiple post-processing techniques (largest con-

nected component extraction, small hole filling, boundary extraction) to improve

the visualization of boundaries.

1.3 Contribution

In this study, we build a new CNN model (IU-Net) based on the existed model

U-Net and inception network. In addition, the number of trainable parameters of

IU-Net is smaller than the number of trainable parameters of U-Net. We also train

an autoencoder with the manual segmentation results. We use the encoder part

to compute the internal representations of the prediction of the network and cor-

responding manual segmentation. Then we construct a new regularization term in

the loss function by computing the differences between the internal representations

of the prediction and the corresponding manual segmentation. Our experimental

results show that this regularization term can improve the segmentation results

and all models (U-Net, IU-Net and its two smaller version) achieve the similar and

good accuracies.

1.4 Thesis outline

This thesis is organized as follows. In Chapter 2, we introduce related work.

Chapter 3 presents the basic principles and the architecture of convolutional neural

networks (CNNs). Chapter 4 introduces our models, training, prediction and

post-processing techniques. Chapter 5 shows our experimental results. Finally,

Chapter 6 is the conclusion and future research directions.

4

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

Chapter 2

Related work

In this chapter, we overview previous breast US images segmentation methods.

Various breast US image segmentation approaches have been proposed in the last

two decades. Xian et al. [68] classified such methods into six categories: (1)

graph-based, (2) deformable models, (3) learning-based, (4) thresholding, (5) re-

gion growing, and (6) watershed. According to the statistics from [68], (4), (5)

and (6) are not popular in breast US segmentation, we only summarize (1), (2)

and (3) here.

Graph-based approaches apply graph algorithms on a graph associated with the

image to be segmented. Ashton et al. [3] segmented speckle-laden US images by

obtaining the maximum a posteriori (MAP) of the Markov random field (MRF)

associated with the images to be segmented. Boukerroui et al. [7] modified the

method in [3] and segmented breast tumor US images. Xiao et al. [69] combined

MAP and MRF to segment B-mode US images. Xian et al. [67] proposed a breast

US image segmentation framework based on graph cuts. Chiang et al. [11] applied

graph cuts on sonographic breast images. Aleman-Flores et al. [2] segmented breast

US images using normalized cuts [53].

A deformable model (DM) [58] describes a curve (in 2D) or a surface (in 3D),

5

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

whose shape can be changed to fit the object boundary under the impact of forces

(determined by information from the input image). According to the statistics of

Xian et al. [68], DM is the most popular breast US segmentation approach. DMs

can be classified into two categories based on different curve (surface) representa-

tions: parametric deformable models (PDMs) and geometric deformable models

(GDMs). Madabhushi et al. [41] introduced a fully automatic approach for breast

cancer US image segmentation using PDMs. Sahiner [50] segmented 3D breast

US image with PDMs. Yezzi et al. [72] segmented Magnetic Resonance Imaging

(MRI), Computed Tomography (CT) and US with GDMs.

Learning-based approaches are becoming popular in breast cancer US segmenta-

tion recently. These approaches are classified into two categories based on whether

there is labelled data (ground truth) in training learning models: supervised learn-

ing, and unsupervised learning which does not have ground truth.

Boukerroui et al. [7] segmented breast lesion using 2D adaptive k-mean cluster-

ing algorithm. Liu et al. [35] trained a support vector machine (SVM) for breast

cancer US tumor segmentation. Huang et al. [28] built a neural network to seg-

ment 3D breast cancer US images. Huang et al. [27] combined a neural network

and watershed to extract the contour of a breast tumor. Xu et al. [71] segmented

breast US images into four classes (skin, fibroglandular tissue, mass, and fatty

tissue) using CNNs.

In recent years, many deep learning approaches have been introduced to solve

the segmentation problem. Here we introduce two classical neural networks for

segmentation, fully convolutional network (FCN) [38] and U-Net [45].

First we introduce the architecture of the FCN. The FCN has three different

architectures, FCN-32s, FCN-16s and FCN-8s, see Figures 2.1, 2.2 and 2.3. In

these Figures, conv refers to a convolution layer; maxpool is a max pooling layer;

6

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

for more details of convolution and pooling layers, see Chapter 3; upsample(k) is

to enlarge the size of the input image k times; + denotes element-wise addition.

input

conv

maxpool

conv

maxpool

conv

maxpool conv

maxpool

conv

maxpool

upsample(32)

output

Figure 2.1: FCN-32s architecture.

There is no dense (or fully-connected) layer in a FCN. This architecture reduces

the number of trainable parameters compared to previous convolutional neural

networks, which usually have dense layers. The FCN consists of downsampling

path, upsampling path and skip connection (or shortcut). The downsampling path

consists of convolution layers and pooling layers, and their purpose is to extract

semantic features of input data. The upsampling path consists of upsampling

layers, and its purpose is to recover spatial information. The skip connection

transfers information from the downsampling path to the upsampling path; this

helps recover spatial information that may be lost in the pooling layers.

The architecture of U-Net is based on the FCN and also consists of downsam-

pling path, upsampling path and skip connection, see Figure 2.4, where concat.

denotes concatenation. The most significant difference between U-Net and FCN

is whether the downsampling path and upsampling path are symmetric. The ar-

chitecture of U-Net may generate more accurate segmentation results [66] than

7

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

input

conv

maxpool

conv

maxpool

conv

maxpool

conv maxpool

conv

maxpool

upsample(2)

+

upsample(16)

output

Figure 2.2: FCN-16s architecture.

FCN due to the presence of skip connections and convolution layers in upsampling

path. The main drawback of U-Net is the large number of trainable parameters.

In our research, we modify some parts of U-Net to reduce the number of trainable

parameters, see Chapter 4.

Here is the summary of advantages and disadvantages of FCN and U-Net.

FCN has two advantages over previous CNN: FCN has no dense layer, and

FCN employs downsampling, upsampling, and skip-connection architectures. The

disadvantage of FCN is the coarse segmentation result [73], especially the segmen-

tation result of FCN-32s.

U-Net has three advantages over previous CNN: U-Net has no dense layer; U-

Net also applies downsampling, upsampling, and skip-connections; The result of

U-Net may be finer than FCN [66], since U-Net has more convolution layers in the

upsampling path and more skip connections between upsampling and downsam-

pling. However, U-Net has a obvious disadvantage: U-Net has a large number of

8

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

input

conv

maxpool

conv

maxpool

conv

maxpool

conv

maxpool

conv maxpool

upsample(2)

+

upsample(2)

+

upsample(8)

output

Figure 2.3: FCN-8s architecture.

trainable parameters.

There are also other segmentation networks. Badrinarayanan et al. [5] built a

convolutional encoder-decoder architecture SegNet. Luc et al. [39] proposed a

segmentation network using adversarial networks [24]. Visin et al. [63] combined

recurrent neural networks (RNNs) and CNNs to do segmentation. LaLonde et

al. [33] introduced a segmentation network based on capsule networks [49].

9

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

input

conv

conv concat. conv

maxpool upsample(2)

conv conv

conv concat. conv

maxpool upsample(2)

conv conv

conv concat. conv

maxpool upsample(2)

conv conv

conv concat. conv

maxpool upsample(2)

conv conv

conv conv output

Figure 2.4: U-Net architecture.

10

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

Chapter 3

Background

This chapter introduces some of the history and theory underlying CNNs. Sec-

tion 3.1 gives a brief introduction to the history of CNNs and lists some medical

applications of CNNs. Section 3.2 overviews underlying theory. Section 3.3 de-

scribes convolution and pooling layers in a CNN. Section 3.4 presents the inception

block which is used in our models. Section 3.5 presents the back propagation algo-

rithm, which is one of the most important algorithms in training neural networks.

Section 3.6 explains how to update the trainable parameters of a CNN after back

propagation.

3.1 History of CNNs

The research on CNNs developed rapidly in recent years due to the development

of computer hardware such as graphics processing units (GPUs). Lecun et al. [34]

developed a CNN model LeNet-5 to classify handwritten characters. LeNet-5 is

a small network compared to recent CNNs. Chellapilla et al. [10] trained a CNN

using an NVIDIA GeForce 7800 Ultra graphics card and obtained 3-4× speedup

compared to without GPUs. Krizhevsky et al. [32] built a deep CNN AlexNet to

classify 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest [6]

11

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

into 1000 different classes. The architecture of AlexNet is similar to LeNet-

5, but AlexNet is deeper and has a larger number of trainable parameters than

LeNet-5. Simonyan et al. [54] proposed a deeper CNN model VGG-16 (compared

to AlexNet), which achieved higher accuracy than AlexNet. Szegedy et al. [57]

built an inception network. He et al. [25] proposed a CNN architecture residual

network (ResNet). The experimental results show that ResNet is easier to train

than previous neural networks and ResNet achieves the highest accuracy on the

ImageNet LSVRC-2015 contest. Veit et al. [62] illustrated that ResNet can be

viewed as a collection of many relatively shallow networks.

Many researchers have applied CNNs to medical applications. Ciresan et al. [14]

built a 13-layer CNN and an 11-layer CNN to detect mitosis in breast histology

images. Roth et al. [46] presented a method for organ anatomical classification of

medical images using an 11-layer CNN. Pereira et al. [44] studied CNNs for brain

tumor segmentation using magnetic-resonance images. Fakoor et al. [21] applied

deep learning to detect and classify cancer types based on gene expression data.

Su et al. [56] did region segmentation in histopathological breast cancer images

using a simplified AlexNet.

3.2 Fundamental knowledge

In this section, we illustrate the theory of neural networks following a simple

example from [26]. The architecture of this simple network is given in Figure 3.1.

This network is designed to classify two-dimensional points into two classes.

The basic concepts of neural networks are as follows.

Unit: Unit is the basic component of a neural network, and each unit has an input

and an output. In Figure 3.1, each circle refers to a unit.

12

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Figure 3.1: A simple neural network

Layer: There are various types of layers in neural networks. Different layers have

different architectures and have different ways to compute the output of units

in a layer. In this example, the network uses fully-connected layers, that is,

every unit in layer l + 1 is connected with all units in layer l, for l = 1, 2, 3.

Here, the input of each unit in layer l+1 is a weighted sum of the outputs of

all units in layer l. The neural network in Figure 3.1 has four layers (input

layer, layer 2, layer 3 and output layer).

Throughout this thesis we denote the number of layers in a network by L.

Weight W (l)
ij : weight W (l)

ij describes how much influence unit j in layer l − 1 has

on unit i in layer l.

Weights matrix W (l): W (l) =
(
W

(l)
ij

)
∈ RNl×Nl−1 , where Nl−1 and Nl are the

number of units in layer l − 1 and layer l, respectively.

Bias b(l): b(l) ∈ RNl , where Nl is the number of units in layer l. To be specific, b(l)
i

describes how much influence layer l − 1 has on unit i in layer l, regardless

of the outputs of units in layer l − 1.

Activation function: The output of a unit is determined by the input and ac-

tivation function which is normally nonlinear. The sigmoid function σ(x) =

1/(1 + e−x) and the rectified linear unit (ReLU), ReLU(x) = max(x, 0)

13

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

are common choices. Denote by f an activation function. For a vector

x, (f(x))i = f(xi).

Training dataset: Training dataset consists of pairs of an input vector and an

target output vector, that is, {(x(1), y(1)), ..., (x(M), y(M))}, where x(k) is the

kth input vector; y(k) is the kth target output vector; The target output

vector is also named as the ground truth (GT). In this example, x(k) ∈ R2,

y(k) ∈ R2.

Forward propagation: To produce the output of a neural network, we have

to compute the outputs of units layer by layer. This process is forward

propagation.

Cost function J: J = 1
M

∑M
k=1 L(ŷ(k), y(k)) and L : RNL×RNL → R measures the

difference between the prediction of a neural network and its corresponding

ground truth (GT); NL is the number of units in the output layer. In this

example, NL = 2; ŷ(k) is the kth prediction; y(k) is the GT of ŷ(k).

Trainable parameter: Trainable parameter refers to the parameter which will

be updated by gradient descent or other optimization algorithms in training

a neural network. In this example, W (l)
ij , b

(l)
i are trainable parameters.

Gradient descent: Gradient descent [47] is an iterative optimization algorithm

to find the local minimum of the cost function. The purpose of training a

neural network is to compute

argmin
w

J = argmin
w

1
M

M∑
k=1
L
(
ŷ(k), y(k)

)
,

where w = (wi) ∈ Rnp (np is the number of trainable parameters) is a vector

containing all trainable parameters of the network. To achieve this goal, gra-

dient descent is a common choice. In each iteration of the gradient descent,

14

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

we compute the partial derivatives of the cost function J with respect to each

trainable parameter ∂J
∂wi

and then update this parameter by wi ← wi−α ∂J
∂wi

,

where α > 0 is learning rate. See Algorithm 1 for how gradient descent works

in this example.

Back propagation: With gradient descent or some other optimization algorithms

applied in deep learning, we need to compute the partial derivatives of the

loss function with respect to all trainable parameters. Back propagation [48]

is an efficient way to calculate these partial derivatives. In this example,

back propagation is to compute ∂L
∂W

(l)
ij

and ∂L
∂b

(l)
i

, l = 2, 3, 4.

The process of training the neural network in Figure 3.1 with gradient descent

is given in Algorithm 1.

Algorithm 1 Training with gradient descent
Input:
W (l), b(l): initial values for trainable parameters
niter: number of iterations
α: learning rate
training dataset: {(x(1), y(1)), ..., (x(M), y(M))}
for iter = 1 : niter do

for k = 1 : M do
do forward propagation on x(k)

compute ∂L
∂W

(l)
ij

and ∂L
∂b

(l)
i

by back propagation, l = 2, 3, 4.

compute ∂J

∂W
(l)
ij

and ∂J

∂b
(l)
i

, l = 2, 3, 4.

update W (l) and b(l) by gradient descent, that is,
W

(l)
ij ← W

(l)
ij − α ∂J

∂W
(l)
ij

, b(l)
i ← b

(l)
i − α ∂J

∂b
(l)
i

, l = 2, 3, 4.

The key part of Algorithm 1 is the forward and back propagation for each

training data. Here we explain how to perform forward propagation on an input

data x, and how to compute ∂L
∂W

(l)
ij

and ∂L
∂b

(l)
i

by back propagation, l = 2, 3, 4.

15

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

First we perform forward propagation for an input x = (xi) ∈ R2 of this network

and y = (yi) ∈ R2 is the GT, where xi is the input of the ith unit in the input

layer; yi is the target output of the ith unit in the output layer.

To compute the outputs of units in layer 2:

a
(2)
1 = f

(
W

(2)
11 x1 +W

(2)
12 x2 + b

(2)
1

)
a

(2)
2 = f

(
W

(2)
21 x1 +W

(2)
22 x2 + b

(2)
2

)
.

To compute the outputs of units in layer 3:

a
(3)
1 = f

(
W

(3)
11 a

(2)
1 +W

(3)
12 a

(2)
2 + b

(3)
1

)
a

(3)
2 = f

(
W

(3)
21 a

(2)
1 +W

(3)
22 a

(2)
2 + b

(3)
2

)
a

(3)
3 = f

(
W

(3)
31 a

(2)
1 +W

(3)
32 a

(2)
2 + b

(3)
3

)
.

To compute the outputs of units in layer 4, output layer:

ŷ1 = f
(
W

(4)
11 a

(3)
1 +W

(4)
12 a

(3)
2 +W

(4)
13 a

(3)
3 + b

(4)
1

)
ŷ2 = f

(
W

(4)
21 a

(3)
1 +W

(4)
22 a

(3)
2 +W

(4)
23 a

(3)
3 + b

(4)
2

)
.

In vector form:
a(2) = f

(
W (2)x+ b(2)

)
a(3) = f

(
W (3)a(2) + b(3)

)
ŷ = f

(
W (4)a(3) + b(4)

)
,

where W (2) ∈ R2×2; W (3) ∈ R3×2; W (4) ∈ R2×3; b(2) ∈ R2; b(3) ∈ R3; b(4) ∈ R2.

Then we compute the partial derivatives of the loss function L with respect to

W
(l)
ij and b(l)

i , ∂L
∂W

(l)
ij

and ∂L
∂b

(l)
i

(l = 2, 3, 4) by back propagation.

Denote

z(l) = W (l)a(l−1) + b(l), for l = 2, 3, ..., L

16

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

where a(1) = x for consistent notation; L is the number of layers.

Let

δ
(l)
i = ∂L

∂z
(l)
i

, for l = 2, 3, ..., L and i = 1, ..., Nl

This expression is important in the computation of ∂L
∂W

(l)
ij

and ∂L
∂b

(l)
i

.

Below, ◦ is the Hadamard product (element-wise multiplication).

The lemma from [26] gives

δ(L) = ∂L
∂ŷ
◦ f ′(z(L))

δ(l) =
(
W (l+1)

)T
δ(l+1) ◦ f ′(z(l)), for l = 2, ..., L− 1

∂L
∂b

(l)
i

= δ
(l)
i , for l = 2, ..., L (3.1)

∂L
∂W

(l)
ij

= δ
(l)
i a

(l−1)
j , for l = 2, ..., L, (3.2)

where δ(l) =
(
δ

(l)
i

)
∈ RNl .

We define
∂L
∂b(l) =

(
∂L
∂b

(l)
i

)
∈ RNl

∂L
∂W (l) =

 ∂L
∂W

(l)
ij

 ∈ RNl×Nl−1 ,

where l = 2, 3, 4.

With above definition, we rewrite equations 3.1 and 3.2 in vector and matrix

forms:
∂L
∂b(l) = δ(l), for l = 2, ..., L
∂L
∂W (l) = δ(l)

(
a(l−1)

)T
, for l = 2, ..., L,

These forms are useful in the implementation of back propagation of this example,

see [26] for the implementation code.

17

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Therefore, we compute ∂L
∂W (l) and ∂L

∂b(l) , l = 2, 3, 4 using above equations,

∂L
∂b(4) = δ(4) = ∂L

∂ŷ
◦ f ′(z(4))

∂L
∂W (4) = δ(4)

(
a(3)

)T
∂L
∂b(3) = δ(3) =

(
W

(4)
ij

)T
δ(4) ◦ f ′(z(3))

∂L
∂W (3) = δ(3)

(
a(2)

)T
∂L
∂b(2) = δ(2) =

(
W (3)

)T
δ(3) ◦ f ′(z(2))

∂L
∂W (2) = δ(2)xT .

The basic principles of CNNs are similar with this simple network, but the

architecture of a CNN is much more complex and suitable for image analysis

(such as classification, segmentation and localization). Generally speaking, a CNN

consists of convolution layers, pooling layers, batch normalization layers, etc. We

introduce how these layers work in the next section.

3.3 Layers in CNNs

In practice, the input data of convolution and pooling layers is regarded as a 3D

tensor [26]. The input data is stacked by D matrices of size H ×W , where H, W

and D refer to the width, height and depth (or the number of slices) of the input,

respectively. When D = 1, the input data is a matrix. An example of input data

X with H = 3, W = 3 and D = 2 is given as follows.

18

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

1 2 3
1 3 2
2 3 1

5 0 3
2 3 1
1 3 2

Figure 3.2: Input data of convolution and pooling layers

In Figure 3.2, the input data has two slices: the first slice is

5 0 3

2 3 1

1 3 2

 and the

second slice is

1 2 3

1 3 2

2 3 1

.

For convenience, we denote x[s]
ij as the (i, j) element of the sth slice of X. In

the example above, x[1]
11 = 5, x[1]

12 = 0, x[1]
13 = 3.

3.3.1 Convolution and pooling layers

The purpose of a convolution layer is to apply small filters (or kernels, where the

weights in the kernels are trainable) across all the input data. Here we illustrate

how a convolution layer works through a simple example.

Let the input data X with H = 3, W = 3 and D = 2 be

19

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

x
[2]
11 x

[2]
12 x

[2]
13

x
[2]
21 x

[2]
22 x

[2]
23

x
[2]
31 x

[2]
32 x

[2]
33

x
[1]
11 x

[1]
12 x

[1]
13

x
[1]
21 x

[1]
22 x

[1]
23

x
[1]
31 x

[1]
32 x

[1]
33

and consider a kernel K

K
[2]
11 K

[2]
12

K
[2]
21 K

[2]
22

K
[1]
11 K

[1]
12

K
[1]
21 K

[1]
22

Notice that the depth of filter must be equal to the depth of input data. In this

example, the depth of the input data is 2, so the depth of filter is also 2.

The kernel starts from the top-left corner of the input data, and we do pixel-

wise multiplication between the kernel and the part of the input data where the

filter covers; then we sum up these multiplications and add bias b,

y
[1]
11 = K

[1]
11x

[1]
11 +K

[1]
12x

[1]
12 +K

[1]
21x

[1]
21 +K

[1]
22x

[1]
22 +K

[2]
11x

[2]
11 +K

[2]
12x

[2]
12 +K

[2]
21x

[2]
21 +K

[2]
22x

[2]
22 + b,

where y[1]
11 is the top-left value of the first slice of the output.

We move the filter and repeat above procedure and obtain all values of the first

slice in the output.

y
[1]
12 = K

[1]
11x

[1]
12 +K

[1]
12x

[1]
13 +K

[1]
21x

[1]
22 +K

[1]
22x

[1]
23 +K

[2]
11x

[2]
12 +K

[2]
12x

[2]
13 +K

[2]
21x

[2]
22 +K

[2]
22x

[2]
23 + b

20

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

y
[1]
21 = K

[1]
11x

[1]
21 +K

[1]
12x

[1]
22 +K

[1]
21x

[1]
31 +K

[1]
22x

[1]
32 +K

[2]
11x

[2]
21 +K

[2]
12x

[2]
22 +K

[2]
21x

[2]
31 +K

[2]
22x

[2]
32 + b

y
[1]
22 = K

[1]
11x

[1]
22 +K

[1]
12x

[1]
23 +K

[1]
21x

[1]
32 +K

[1]
22x

[1]
33 +K

[2]
11x

[2]
22 +K

[2]
12x

[2]
23 +K

[2]
21x

[2]
32 +K

[2]
22x

[2]
33 + b

So far we obtain the first slice of the output data, y[1]. From the above equations,

we summarize the computation of y[1] as:

y
[1]
ij =

2∑
s=1

2∑
m=1

2∑
n=1

x
[s]
i+m−1 j+n−1K

[s]
mn + b.

Then we apply another kernel on the input data and obtain the second slice of

the output, y[2]. If we employ nf filters in a convolution layer, the output data has

nf slices.

Here are some important parameters in a convolution layer.

Filter (kernel) size: In a convolution layer, a filter K is also a 3D tensor. K ∈

RHf×Wf×Df , where Hf ×Wf ×Df is the filter size; Hf , Wf and Df refer to

the width, height and depth of the filter, respectively. Normally, Hf = Wf

and they are small integers such as 1, 2, 3. In above example, Hf = Wf = 2.

In addtion, Df = D.

Stride (SH , SW): SH and SW refer to the number of pixels we move a filter at

a time in vertical and horizontal directions, respectively. In the example

above, SH = SW = 1.

Number of filters nf : We sometimes apply multiple filters in one convolution

layer since we expect one convolution layer to extract various features of the

input data.

Padding p: p refers to the number of elements we pad around the input data.

Since a convolution without padding always reduces the width and the height

of the input data, we usually keep the width and the height of the output

21

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

data the same with the width and the height of input data by padding around

the input before a convolution operation.

The number of trainable parameters of a convolution layer is Hf ×Wf ×D ×

nf + nf = (HfWfD + 1)nf .

The relation between the size of the output and the size of the input of a

convolution layer is given as follow:

H ′ =
⌊
H + 2p−Hf

SH
+ 1

⌋

W ′ =
⌊
W + 2p−Wf

SW
+ 1

⌋

D′ = nf ,

where b·c is the floor function; H × W × D is the size of the input data and

H ′ ×W ′ ×D′ denotes the size of the output data.

Compared to a fully-connected (FC) layer, a convolution layer has its own

advantages.

First, the number of trainable parameters of a convolution layer is smaller than

the number of parameters in a FC layer. For example, assume that the input

size of a convolution layer and a FC layer is 128 × 128 × 1 and the output size

is 126 × 126 × 16. If we use a FC layer, the number of trainable parameters is

nFC = (128 × 128 × 1) × (126 × 126 × 16) + 126 × 126 × 16 ≈ 4.16 × 109. If we

employ a convolution layer with 16 filters of size 3 × 3, stride (1, 1) and no zero

padding, the number of trainable parameters is nconv = (3× 3× 1 + 1)× 16 = 160.

That is, nFC >> nconv.

In addition, every slice of the output data is obtained by the convolution of

different filters, that is, each filter is to extract specific feature of the input data.

22

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Since we usually employ multiple filters in a convolution layer, a convolution layer

may extract multiple features at the same time.

In general, a pooling layer follows a convolution layer. One of main purposes

of a pooling layer is to perform downsampling on the input, that is, to reduce H

and W of the input data. Here we illustrate how a pooling layer works by a simple

example.

Let the input data X be

x
[2]
11 x

[2]
12 x

[2]
13

x
[2]
21 x

[2]
22 x

[2]
23

x
[2]
31 x

[2]
32 x

[2]
33

x
[1]
11 x

[1]
12 x

[1]
13

x
[1]
21 x

[1]
22 x

[1]
23

x
[1]
31 x

[1]
32 x

[1]
33

and consider 2× 2 pooling.

The pooling layer operates independently on every depth of the input data.

First we do pooling on the first slice of the input data, x[1]. The kernel starts from

the top-left corner of x[1] and maps the region where the kernel covers to a single

number, that is,

y
[1]
11 = pool(x[1]

11 , x
[1]
12 , x

[1]
21 , x

[1]
22),

where the pool function is determined by the type of the pooling layer. If we

employ a max pooling layer, the pool function is to find the largest number among

x
[1]
11 , x

[1]
12 , x

[1]
21 and x[1]

22 .

We move the filter and repeat the above procedure, and then obtain the first

slice in the output, y[1]. Then we do pooling on the second slice of the input data

23

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

and obtain the second slice of the output, y[2]. We repeat the above procedure to

obtain the entire output data.

The size of the output of a pooling layer is:

H ′ =
⌊
H + 2p−Hp

SH
+ 1

⌋

W ′ =
⌊
W + 2p−Wp

SW
+ 1

⌋

D′ = D,

where Hp×Wp is the pooling size. In the example above, Hp = Wp = 2. The most

common setting of a pooling layer is Hp = Wp = 2, SH = SW = 2, p = 0. With

this setting, we have H ′ =
⌊
H
2

⌋
and W ′ =

⌊
W
2

⌋
.

Another purpose of a pooling layer is to extract position invariant features. In

the example above, when we do max pooling on x[1]
11 , x

[1]
12 , x

[1]
21 , x

[1]
22 and obtain y[1]

11 ,

pooling layer extracts the dominant feature y[1]
11 from x

[1]
11 , x

[1]
12 , x

[1]
21 , x

[1]
22 irrespective

of the position of x[1]
11 , x

[1]
12 , x

[1]
21 , x

[1]
22 . In addition, pooling layer is also used to reduce

the height and width of input data.

3.3.2 Batch normalization Layer

Batch normalization (BN) [29] is used to normalize and rescale the input data.

The computation of BN’s output is shown as follows.

24

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Assuming BN’s inputs are x1, x2, ..., xm,

µ = 1
m

m∑
i=1

xi

σ2 = 1
m

m∑
i=1

(xi − µ)2

xnorm
i = xi − µ√

σ2 + ε

xBN
i = γxnorm

i + β,

where γ and β are trainable parameters; ε is a small number (e.g. ε = 10−5) to

avoid the denominator to become zero; xBN
i is the output of a BN layer.

BNs are widely used in deep learning, but the underlying theory of BNs’ effec-

tiveness is still poorly understood [51]. Currently, a popular explanation is that

BNs can reduce the internal covariate shift (ICS), where ICS refers to the change

in the distribution of the input of internal layers (hidden layers) in a network.

This change is caused by the update of trainable parameters in the network. In

addition, reducing ICS is also the original purpose of BNs [29]. The experiment

results in [29] show that BNs reduce the ICS and improve accuracy. However,

Santurkar et al. [51] demonstrated that the effectiveness of BNs has little to do

with the reduction of ICS. Santurkar et al. proved that the BSs can make the

landscape of optimization smoother and gradients are more predictive (that is, the

l2 norms of gradients change in a smaller range) with BNs and thus we can use a

higher learning rate and speed up the convergence.

Some researchers applied BNs in their models and their experimental results

prove the effectiveness of BNs. Liu et al. [36] detected P300 signals from elec-

troencephalography using a CNN containing BNs. When BNs are removed, the

performance of CNN is reduced considerably. Wang et al. [64] add into the CNN

25

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

architecture of Zhang et al. [74] and the experimental results show that the per-

formance of CNN is improved.

3.4 Inception block

One drawback of a convolution layer is: a convolution layer can only adopt filters

with the same size, such as 1 × 1, 2 × 2 and 3 × 3. In practice, we do not know

which filter size is a good choice. One solution is to employ filters with different

sizes at the same time.

The purpose of an inception [57] block is to extract features of input data in

four branches with different filter sizes (e.g. 1× 1, 3× 3, ...) and then concatenate

the outputs of the four branches along the direction of depth to obtain the result

of an inception block.

The inception block in our research in given in Figure 3.3. Here conv(fs, nf)

denotes a 2D convolution layer with size fs× fs, stride 1, zero padding, and num-

ber of filters nf ; batch norm. is a batch normalization layer; avepool(fs) denotes

average pooling with pool size of fs × fs and zero padding; and concat. is a con-

catenation layer. In our inception block, we employ 1 × 1 and 3 × 3 convolution

layers with stride 1 and zero padding to ensure the output size the same as the

input size, and these convolution layers are followed by batch normalization layers

(except the 4th branch). Each convolution layer has the same number of filters,

denoted here by nf . We use ReLU as activation function.

In addition, the number of trainable parameters of the inception block in our

research is smaller than the double 3× 3 2D convolution layers in U-Net [45]. To

explain this, we assume the size of the input to an inception block to be H×W×D

and the size of the output to be H ′ ×W ′ ×D′.

26

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

input

conv(1, nf)
batch norm.

ReLU

conv(1, nf)
batch norm.

ReLU

conv(3, nf)
batch norm.

ReLU

conv(1, nf)
batch norm.

ReLU

avepool(3)

conv(3, nf)
conv(3, nf)
batch norm.

ReLU

conv(3, nf)
batch norm.

ReLU

concat.

output

Figure 3.3: Inception block structure. nf denotes number of
filters.

For the double 3 × 3 convolution layers in U-Net, the number of trainable

parameters is (3× 3×D+ 1)×D′ + (3× 3×D′ + 1)×D′ = 9DD′ + 9D′2 + 2D′.

For the inception block, since the depth of output is D′, nf = D′

4 . Since the

structure of inception is complex, we compute the number of trainable parameters

branch by branch.

The number of trainable parameters of the first branch is

(1× 1×D + 1)× D′

4 = 1
4DD

′ + D′

4 .

27

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

The number of trainable parameters of the second branch is

(1× 1×D + 1)× D′

4 + (3× 3× D′

4 + 1)× D′

4 = 1
4DD

′ + 9
16D

′2 + D′

2 .

The number of trainable parameters of the third branch is

(1×1×D+1)×D
′

4 +(3×3×D
′

4 +1)×D
′

4 +(3×3×D
′

4 +1)×D
′

4 = 1
4DD

′+9
8D

′2+3
4D

′.

The number of trainable parameters of the fourth branch is

(3× 3×D + 1)× D′

4 = 9
4DD

′ + D′

4 .

Therefore, the total number of trainable parameters of our inception block is

3DD′ + 27
16D

′2 + 7
4D

′.

Obviously, 9DD′ + 9D′2 + 2D′ > 3DD′ + 27
16D

′2 + 7
4D
′.

For the above reasons, we replace the double 3 × 3 2D convolution layers by

inception blocks to construct our models, see Chapter 4. However, the advantages

of the inception can not guarantee that it certainly achieves higher accuracy than

the convolution layer does.

3.5 Back propagation

In this chapter, we describe how back propagation performs on CNNs through a

small CNN example.

28

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

First, we introduce how back propagation works in a convolution layer. For

concreteness of our exposition, let the input data be

X =

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ,

let the filter be

K =

K11 K12

K21 K22

 ,
and denote the output by

Y =

y11 y12

y21 y22

 .
We compute

y11 = K11x11 +K12x12 +K21x21 +K22x22

y12 = K11x12 +K12x13 +K21x22 +K22x23

y21 = K11x21 +K12x22 +K21x31 +K22x32

y22 = K11x22 +K12x23 +K21x32 +K22x33.

Suppose we have computed the partial derivative of a cost function L with

respect to yij, ∂L
∂yij

. Applying the chain rule,

∂L
∂K11

= ∂L
∂y11

x11 + ∂L
∂y12

x12 + ∂L
∂y21

x21 + ∂L
∂y22

x22

∂L
∂K12

= ∂L
∂y11

x12 + ∂L
∂y12

x13 + ∂L
∂y21

x22 + ∂L
∂y22

x23

∂L
∂K21

= ∂L
∂y11

x21 + ∂L
∂y12

x22 + ∂L
∂y21

x31 + ∂L
∂y22

x32

∂L
∂K22

= ∂L
∂y11

x22 + ∂L
∂y12

x23 + ∂L
∂y21

x32 + ∂L
∂y22

x33.

29

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

In matrix form:

∂L
∂K

=

x11 x12 x13

x21 x22 x23

x31 x32 x33

 ∗
 ∂L

∂y11
∂L
∂y12

∂L
∂y21

∂L
∂y22

= X ∗ ∂L
∂Y

,

where ∗ refers to the convolution operator.

Next we introduce how back propagation works in a max pooling layer. For

concreteness of our exposition, let the input data be

X =

x11 x12 x13 x14

x21 x22 x23 x24

x31 x32 x33 x34

x41 x42 x43 x44

,

let Hf = Wf = 2 and SH = SW = 2, and denote the output by Y =

y11 y12

y21 y22

.
We have

y11 = max(x11, x12, x21, x22)

y12 = max(x13, x14, x23, x24)

y21 = max(x31, x32, x41, x42)

y22 = max(x33, x34, x43, x44).

For convenience, here we assume x11, x13, x31 and x33 are the maximums among

{x11, x12, x21, x22}, {x13, x14, x23, x24}, {x31, x32, x41, x42} and {x33, x34, x43, x44}, re-

spectively. We also have a logical matrix dM to record the positions of these

30

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

maximums, here

dM =

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

.

Since there is no trainable parameter in a max pooling layer, the purpose of

back propagation is to compute ∂L
∂X

based on ∂L
∂Y

.

Obviously, we have
y11 = x11

y12 = x13

y21 = x31

y22 = x33,

therefore,
∂L
∂x11

= ∂L
∂y11

∂L
∂x13

= ∂L
∂y12

∂L
∂x31

= ∂L
∂y21

∂L
∂x33

= ∂L
∂y22

.

In matrix form:
∂L
∂X

= repeat
(
∂L
∂Y

)
◦ dM,

31

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

where ◦ is the Hadamard product (element-wise multiplication); the repeat func-

tion maps each single number x in input data to

x x

x x

, e.g.

repeat
(x11 x12

x21 x22

) =

x11 x11 x12 x12

x11 x11 x12 x12

x21 x21 x22 x22

x21 x21 x22 x22

.

Now, we build a simple CNN and illustrate how to compute derivatives of all

trainable parameters. The architecture is shown in Figure 3.4, where conv(fs, nf)

is a 2D convolution layer with size fs×fs, stride (1, 1), no padding, and number of

filters nf ; maxpool(fs) denotes 2D max pooling with pool size fs × fs, no padding

and stride (fs, fs); the input data size is 6 × 6 × 1; the output is a scalar; the

reshape function converts a matrix to a vector row-wisely, for example,

reshape

x11 x12

x21 x22

 =

[
x11 x12 x21 x22

]T
.

The loss function is L = 1
2(ŷ − y)2, where ŷ is the prediction (output) of this

CNN, and y is the GT. Here ŷ, y ∈ R.

We perform forward propagation and compute ŷ, where x ∈ R6×6 is the in-

put data; K ∈ R3×3 is the kernel; σ is the sigmoid function; for a matrix X,

(ReLU(X))ij = ReLU(Xij); WFC refers to the weights matrix of fully-connected

32

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

input

conv(3, 1)
ReLU

maxpool(2)

reshape

fully-connected
sigmoid

output

6× 6× 1

4× 4× 1

2× 2× 1

4× 1

1× 1

Figure 3.4: A simple CNN architecture. The numbers represent
the output of each layer.

layer; ∗ refers to convolution operator; Li is the output of ith layer:

L1 = x ∗K

L2 = ReLU(L1)

L3 = maxpool(L2)

L4 = reshape(L3)

L5 = WFCL4

ŷ = σ(L5).

For this network, WFC and K are trainable parameters. Then we perform back

propagation to compute ∂L
∂K

and ∂L
∂WFC

, where reshape−1 is the inverse function of

reshape, that is,

reshape−1
([
x11 x12 x21 x22

]T
)

=

x11 x12

x21 x22

 ,

33

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

∂L
∂ŷ

= ŷ − y

∂L
∂L5

= ∂L
∂ŷ
◦ σ′(L5) = ∂L

∂ŷ

(
ŷ(1− ŷ)

)
∂L
∂WFC

= ∂L
∂L5

LT4

∂L
∂L4

= WT
FC

∂L
∂L5

.

So far we obtain ∂L
∂L4

. Since reshape function only transforms L3 to a vector L4

and does not change the value of L3, we only need to transform ∂L
∂L4

to a matrix

to compute ∂L
∂L3

,
∂L
∂L3

= reshape−1
(
∂L
∂L4

)
.

Then we compute ∂L
∂L2

by

∂L
∂L2

= repeat
(
∂L
∂L3

)
◦ dM.

The derivative of ReLU is [40]

ReLU′(x) =

 1 x > 0

0 otherwise,

although ReLU is non-differentiable at 0. Then we compute ∂L
∂L1

by

∂L
∂L1

= ReLU′(L1) ◦
∂L
∂L2

.

Finally, we compute ∂L
∂K

by

∂L
∂K

= x ∗ ∂L
∂L1

.

34

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

3.6 Optimization algorithm

In Section 3.2, we employ gradient descent to update trainable parameters. How-

ever, when the size of a training dataset is large, each iteration of training can be

time-consuming since it needs to compute the gradient for entire training dataset

before computing the partial derivatives of the cost function with respect to the

trainable parameters. In addition, the gradient descent also has high demand of

computer memory [47].

The mini-batch gradient descent [47] is a better choice where the cost function

J is computed by one mini batch (one mini-batch is a small subset of training

dataset) instead of the entire training dataset. The mini-batch gradient descent

approximates the gradient by taking a small subset of the entire training dataset.

Normally, the batch size is 4, 8, 16, 32, 64, 128. In mini-batch gradient descent,

when all mini-batches are fed to the network exactly once, the algorithm completes

one epoch. The mini-batch gradient descent works as shown in Algorithm 2.

Algorithm 2 Mini-batch gradient descent
Input:
w: initial trainable parameters
nepoch: number of epochs
niter: number of iterations for each epoch
batch size: m
α: learning rate
training dataset: {(x(1), y(1)), ..., (x(M), y(M))}
for each epoch

shuffle the training dataset
divide training set into mini-batches b1,...,bm
for i = 1 : m

choose mini-batch bi
do forward propagation and compute the cost function J
compute the gradient of all trainable parameters ∂J

∂wi
by back propagation,

where i = 1, ..., np; np is the number of trainable parameters.
update wi ← wi − α ∂J

∂wi
for i = 1, ..., np

35

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

In mini-batch gradient descent, the way to update trainable parameters is the

same with gradient descent. Some researchers proposed other approaches to up-

date trainable parameters in training neural networks. In this thesis, we use the

Adam [30] optimization algorithm to update all trainable parameters.

In Adam, there are two variables V and S to estimate the first and the second

moment of the gradients of the cost function with respect to the trainable param-

eter, wi (i = 1, ..., np). Denote by V {j} the estimate of the first moment of the

gradients and denote by S{j} the estimate of the second moment of the gradients.

The initial values of V and S are 0, that is, V {0} = S{0} = 0.

In the jth iteration, Adam computes

V {j} = β1V
{j−1} + (1− β1)

∂J

∂wi

S{j} = β2S
{j−1} + (1− β2)

(
∂J

∂wi

)2

,

where β1 and β2 are set before training. A common choice for β1 and β2 is β1 =

0.9 and β2 = 0.999. In fact, V {j} is the exponential weighted moving average

(EWMA) [65] of the past gradients and S{j} is the EWMA of the past squared

gradients.

Then we do bias correction on V {j} and S{j} since V {j} and S{j} are biased in

the first few iteration. That is,

V {1} = β1V
{0} + (1− β1)

∂J

∂wi
= (1− β1)

∂J

∂wi

S{1} = β2S
{0} + (1− β2)

(
∂J

∂wi

)2

= (1− β2)
(
∂J

∂wi

)2

,

In the first iteration, V {1} = (1− β1) ∂J∂wi
and S{1} = (1− β2)

(
∂J
∂wi

)2
, but V {1} and

S{1} should be ∂J
∂wi

and
(
∂J
∂wi

)2
due to the purpose of V {1} and S{1}. To achieve

36

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

this goal, Adam does bias correction by

V {j} ← V {j}

1− βj1

S{j} ← S{j}

1− βj2
.

Then Adam uses S{j} to scale the learning rate by

α̂ = α√
S{j} + ε

,

where α is the initial learning rate set before training; ε is a small number to avoid

the denominator to become zero. In fact, the method to scale the learning rate

in Adam is from [59]. The purpose of scaling the learning rate is to find a proper

learning rate for each trainable parameter based on its previous gradients. To be

concrete, when S{j} is large, α̂ is small; S{j} is small, α̂ is large.

Finally, Adam updates the trainable parameter by

wi ← wi − α̂V {j}.

In each update, Adam uses the estimation of first moment of the gradients, V {j}

instead of ∂J
∂wi

in gradient descent. This method may avoid getting stuck on local

minimum when we minimize the cost function and speed up training. For example,

if the previous gradients are positive but the gradient is negative in this iteration,

V {j} may still be positive.

To summarize Adam, we give

37

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Algorithm 3 Adam
Initialize V {0} = S{0} = 0
On jth iteration:

V {j} = β1V
{j−1} + (1− β1) ∂J∂wi

S{j} = β2S
{j−1} + (1− β2)

(
∂J
∂wi

)2

V {j} ← V {j}

1−βj
1

S{j} ← s{j}

1−βj
2

α̂ = α√
S{j}+ε

wi ← wi − α̂V {j}

38

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

Chapter 4

Segmentation networks

This chapter describes our segmentation networks which includes the architecture

of our models, how we train these models, how we use them to segment US images

and the post-processing techniques we apply. Section 4.1 introduces the autoen-

coder. Section 4.2 presents the CNN models in detail. Section 4.3 explains the

loss function, regularization and data preprocessing used in training our models.

Section 4.4 introduces the prediction methods. Finally, Section 4.5 presents the

post-processing methods used after prediction.

4.1 Autoencoder

An autoencoder neural network consists of an encoder network and a decoder net-

work. The encoder network reduces the dimension of the input data and extracts

important features from the input data. These features, that is, the output of the

encoder network, is the internal representation of an autoencoder. The decoder

tries to recover the input data from the internal representation. Our autoencoder

network architecture is shown in Figure 4.1, where upsample(a) denotes a× a up-

sampling layer; maxpool(fs) denotes 2D max pooling with pool size fs × fs, no

padding and stride fs.

39

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Normally, the size of the internal representation is smaller than the size of the

input (except in sparse autoencoders [37]). Here, the input size is 128 × 128 × 1,

and the size of the internal representation is 16× 16× 8.

An autoencoder neural network is also trained by the back propagation algo-

rithm, and the GT is equal to the input. That is, the output of a well-trained

autoencoder should be almost the same as the input. We train the autoencoder in

advance with the GT. During the training of the segmentation network, we use the

encoder part of a well-trained autoencoder to compute the internal representation

of the GT and the internal representation of the segmentation network’s output

to help training CNNs, see Section 4.3 for detail.

input output

conv(3, 16)
ReLU

maxpool(2)

conv(3, 8)
ReLU

maxpool(2)

conv(3, 8)
ReLU

maxpool(2)

conv(3, 8)
ReLU

upsample(2)

conv(3, 8)
ReLU

upsample(2)

conv(3, 16)
ReLU

upsample(2)

conv(3, 1)

sigmoid

128×128×1

64×64×16

32×32×8

16×16×8
32×32×8

64×64×8

128×128×16

128×128×1

Figure 4.1: Autoencoder architecture. The numbers represent
the output of each layer.

The autoencoder in our research is from [9], and this architecture uses 3 × 3

40

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

convolution layers, 2 × 2 max pooling layers and 2 × 2 upsampling layers. The

input size of our autoencoder is 128×128×1. In the encoder part (down sampling

path), there are three 2×2 max pooling layers, that is, the size of input is reduced

from 128× 128× 1 to 16× 16× 8.

4.2 Models

We experiment with the original U-Net [45] and three other models based on it.

U-Net is a symmetric encoder-decoder model with shortcuts between the encoder

and the decoder. The shortcuts are able to recover information that is lost at the

max pooling layers.

Starting with U-Net, we replace in it the double 3× 3 2D convolution layers by

inception blocks, and the 2× 2 up-convolution layers by 2D bilinear up-sampling

layers which do bilinear interpolation on the input data. In addition, we add batch

normalization layers to improve model’s performance. We refer to the resulting

model as an inception U-Net, or IU-Net.

To investigate whether an even smaller model exists and achieves better ac-

curacy for our segmentation problem, we derive two smaller versions of IU-Net,

small IU-Net, and even smaller, mini IU-Net. We describe these three models in

the next subsections.

4.2.1 IU-Net architecture

The architecture of IU-Net is similar to U-Net, where there are five inception

blocks and four 2 × 2 max pooling layers in the downsampling path, and there

are four inception blocks and four 2 × 2 bilinear upsampling layers (U-Net used

41

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

deconvolution layers) in the upsampling path. We also use shortcuts between

downsampling path and upsampling path to recover information that is lost in the

downsampling path, see Figure 4.2 for more details, where inception(nf) denotes a

inception block with nf filters in every convolution layer.

input

inception(8) batch norm. concat. inception(8) batch norm. conv(1, 1)

maxpool(2) upsample(2)

inception(16) batch norm. concat. inception(16)

maxpool(2) upsample(2)

inception(32) batch norm. concat. inception(32)

maxpool(2) upsample(2)

inception(64) batch norm. concat. inception(64)

maxpool(2) upsample(2)

inception(128)

sigmoid

output

Figure 4.2: IU-Net architecture.

4.2.2 Small IU-Net architecture

For the small IU-Net, we remove from IU-Net the 4th max pooling layer and the

5th inception block in the downsampling path, and also remove the 1st upsampling

layer and the 1st inception blocks in the upsampling path. Then we connect the

42

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

4th inception block in the downsampling path with 2nd upsampling layer in the

upsampling path. see Figure 4.3 for more details.

input

inception(8) batch norm. concat. inception(8) batch norm. conv(1, 1)

maxpool(2) upsample(2)

inception(16) batch norm. concat. inception(16)

maxpool(2) upsample(2)

inception(32) batch norm. concat. inception(32)

maxpool(2) upsample(2)

inception(64)

sigmoid

output

Figure 4.3: small IU-Net architecture.

4.2.3 Mini IU-Net architecture

For the mini IU-Net, we remove the 3rd max pooling layer and the 4th inception

block in the downsampling path of the small IU-Net, and also remove the 1st

upsampling layer and the 1st inception blocks in the upsampling path of the small

IU-Net. Then we connect the 3rd inception block in the downsampling path with

2nd upsampling layer in the upsampling path of small IU-Net. see Figure 4.4 for

more details.

43

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

input

inception(8) batch norm. concat. inception(8) batch norm. conv(1, 1)

maxpool(2) upsample(2)

inception(16) batch norm. concat. inception(16)

maxpool(2) upsample(2)

inception(32)

sigmoid

output

Figure 4.4: mini IU-Net architecture.

4.3 Training

In this section, we discuss the loss function, regularization, and data preprocessing

which are used in training our models. Section 4.3.1 presents the loss function.

Section 4.3.2 introduces a regularization term in the loss function. Section 4.3.3

presents the data preprocessing techniques.

4.3.1 Loss function

First we introduce how the Dice similarity coefficient (DSC) is defined between

two binary images. The binary image’s pixel value is either 0 or 1. For an image

X, denote by xi its ith pixel, in some predetermined order, which does not matter.

Let X and Y be images of the same size N × N . With slight abuse of notation,

consider also X and Y as vectors of size N2. We assume that Y is not the zero

vector.

44

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Assume xi, yi ∈ {0, 1}. Then we compute the DSC between binary images X

and Y by

D(X, Y) = 2
∑N2

i=1 xiyi∑N2
i=1(xi + yi)

= 2Y T ·X
1 · (X + Y) ,

(4.1)

where · is dot-product; 1 is a row vector of N ones. Obviously D(X, Y) ∈ [0, 1].

D(X, Y) = 0, if Y T ·X = 0. When X = Y , that is, xi = yi for all i, D(X, Y) = 1.

Then we discuss how to construct the loss function. In training a segmentation

neural network, we want to maximize DSC between the prediction ŷ (ŷi ∈ [0, 1])

and the ground truth (GT) y (yi ∈ {0, 1}), D(ŷ, y), that is, to minimize −D(ŷ, y),

so the loss function LDSC is defined as

LDSC(ŷ, y) = − 2∑N2

i=1 ŷiyi + s∑N2
i=1(ŷi + yi) + s

= − 2yT · ŷ + s

1 · (ŷ + y) + s
(4.2)

where s is smoothing factor which is widely used in training segmentation net-

works [16, 61], here we pick s = 1. When s = 0, LDSC(ŷ, y) = −D(ŷ, y).

4.3.2 Regularization

The DSC between two binary images X, Y , D(X, Y), measures the area of overlap

between X and Y . However, DSC is not a perfect metric. In some cases, D(X, Y)

is close to 1 but X and Y differ a lot. For instance, consider the two images X

and Y given in Figure 4.5.

From Figure 4.5, even though D(X, Y) = 0.992 ≈ 1, images X and Y differ

a lot due to the presence of the long needle-like area in Figure 4.5 (b). That is,

if we only employ LDSC as loss function, the prediction of the network may have

this needle-like area, even though the value of the LDSC is close to −1. We don’t

want this needle-like area (or other small area) appear in the segmentation results.

45

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) Y (b) X, D(X,Y) = 0.992

Figure 4.5: Limitation of DSC

Therefore, we propose a regularization term Lreg,

Lreg(ŷ, y) = ‖encoder(ŷ)− encoder(y)‖2, (4.3)

where encoder(·) denotes the result of the encoder, that is, the 16× 16× 8 output

in Figure 4.1; ‖ · ‖2 is the Euclidean norm and λ is a parameter to be set before

training. We use λ = 10−3; Lreg measures the similarity between the internal

representation of ŷ and y. The encoder(ŷ) and encoder(y) represent high-level fea-

tures (could be shape, area or more complex features combined by other features)

of ŷ and y, respectively. Hence we expect that Lreg helps remove these needle-like

areas (or other small area) by minimizing the distance between high-level features

of ŷ and y. In addition, we expect Lreg to improve the accuracy of our models.

Then we construct a new loss function Ltotal defined as

Ltotal(ŷ, y) = LDSC(ŷ, y) + λLreg(ŷ, y). (4.4)

46

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Experimental results of IU-Net trained with autoencoder and without autoen-

coder are given in Chapter 5.

4.3.3 Data preprocessing

The data we have are 3D US images. A 3D image comprises p slices, where each

slice is of size m × n, see Figure 4.6. Since the slices are typically of different m

and n, with typical values m = 199, 200, n = 215, 221, 226, and each 3D image has

different number of slices p, we resize all of them to N ×N images, where we set

N = 128. For each slice, we also resize their GT to N ×N images. Then we split

the 3D images into 2D images.

Figure 4.6: An example of 3D US image

Next we do data normalization to rescale the range of pixel values to make

CNNs easier to train [4].

47

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Denote the kth training image by Ik, k = 1, ...,M , where M is the number of

images in the training set, and its (i, j) pixel by Ik(i, j).

Let
µ =

∑M
k=1

∑N
i=1

∑N
j=1 Ik(i, j)

N2M

σ =

√∑M
k=1

∑N
i=1

∑N
j=1(Ik(i, j)− µ)2

N2M
.

Then we normalize by

Ik(i, j)←
Ik(i, j)− µ

σ
.

4.4 Prediction

Denote the predicted image by Î. Then we do thresholding on Î:

Î(i, j)←

 1 Î(i, j) ≥ threshold

0 otherwise,

where we set threshold = 0.5.

Figure 4.7: Prediction

48

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

We have experimented with producing segmentations by slicing the images in

the x and y directions. This has not led to improving the overall accuracy. Nev-

ertheless, we describe our approach. Since each 3D US image in our dataset has

different number of slices p (pmin = 17, pmax = 66) in z direction, we pad zero

matrices of size N × N to the top and bottom of each 3D image approximately

evenly so that each 3D image contains the same number of slices S. Since there is

only one sample with p > 64 (p = pmax = 66), we remove the first slice and the last

slice of this sample. Therefore we set S = 64 here. We construct new slices of the

resized images and corresponding GT in the x and y direction. In the x direction

this results in a set of N slices of size N × S, and similarly in the y direction, a

set of N slices of size N × S. For convenience, we denote images in z direction as

Dz, images in x direction as Dx and images in y direction as Dy.

We train with the dataset Dz and the constructed sliced images (Dx, Dy) sep-

arately, since the former and latter are of different size. We refer to the model

trained with Dz as Model 1; the input images are of size N × N . We refer to

the model trained with Dx and Dy as Model 2; the input images are of size of

N × S. That is, Model 1 is used to segment images with slices in the z direction,

and Model 2 is used to segment images with slices in both the x and y directions.

After the Model 1 and Model 2 are trained, we input images with slices in the

z direction to Model 1 and input images with slices in the x and y directions to

Model 2. Finally, we slice the prediction of Model 2 in the z direction. This results

in two image sets, each containing p slices of size N ×N . The above procedure is

shown in Figure 4.8.

We experiment with the following two approaches to combine the segmentation

results from the three directions, see results in Chapter 5. The first approach is

49

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Figure 4.8: Segmentation from three direction

equal voting. With equal voting, the final result Î(i, j) is computed by

Î(i, j) =

 1 if at least two of Îz(i, j), Îx(i, j), Îy(i, j) are 1

0 otherwise,

where Îz, Îx and Îy are segmentation results from z, x, y direction.

The second approach is weighted voting. Since segmentation from z direction

has the highest accuracy among three segmentation results, we give the z direction

the largest weight. Here we pick from our observation the weight 1
2 ,

1
4 ,

1
4 for the

segmentation in z, x, y direction, respectively. The final result I(i, j) is computed

by

Î(i, j) = Îz(i, j) ∨ (Îx(i, j) ∧ Îy(i, j)),

where ∨, ∧ refer to logic OR, logic AND operator respectively.

50

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

4.5 Post-processing

The post-processing is to improve the segmentation results, extract boundaries

and combine the boundary with original breast cancer US images. These can

provide better visualization of segmentation results. We discuss the following

post-processing techniques: largest connected component extraction, hole filling

and boundary extraction.

4.5.1 Largest connected component extraction

Largest connected component (LCC) extraction is to remove small region (com-

pared to the GT) whose pixel values are 1 in the binary image, see Figure 4.9.

These small areas may appear in the outputs of our models.

LCC extraction consists of two steps. The first step is connected component

labelling [52].

The purpose of connected component labelling is to label every pixel (except

background pixels whose pixel values are 0) with different integers (1, 2, 3, ...). The

pixels which belong to the same connected component have the same integer label.

Here we use the label function of the scikit-image package to perform con-

nected component labelling. This function returns the labelled image and the

number of connected components of the input image.

51

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

An example of connected component labelling is given as follows,

1 1 0 1 1

1 1 0 1 1

1 1 0 0 0

0 0 0 1 0

0 0 0 1 1

connected component labelling−−−−−−−−−−−−−−−−−→

1 1 0 2 2

1 1 0 2 2

1 1 0 0 0

0 0 0 3 0

0 0 0 3 3

.

The second step is to compute the area of each connected component and

extract the largest one. The pseudocode is given in Algorithm 4

Algorithm 4 LLC extraction
Input: Ilabel: labelled image, ncc: the number of connected component
Output: Illc: image only containing the largest connected component
initialize nmax = 0, smax = 0, (m,n) = size(Ilabel)
for i = 1 : ncc do

count the number of pixels of ith connected component, s
if s > smax then

smax = s, nmax = i

for i = 1 : m do
for j = 1 : n do

if Ilabel(i, j) 6= nmax then
Ilabel = 0

else
Ilabel = 1

Illc = Ilabel
return Illc;

4.5.2 Hole filling

Here a hole is a small region (compared to the area of GT) whose pixel values are

0 and appears in the segmented object whose pixel values are 1. In some cases,

52

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Figure 4.9: Largest connected component extraction

some small holes may occur in segmentation results, see Figure 4.10. We need to

fill these small holes for better visualization of the boundary.

A hole in the segmentation results is actually a small connected-component of

the complement of image I, where the compliment of I is computed by: for each

pixel I(i, j) of I, I(i, j) ← 1 − I(i, j). Therefore, all we have to do is to extract

the largest connected-component of the complement of image I so that we remove

the small holes.

The algorithm is shown in Algorithm 5, where compliment(I) denotes the com-

pliment of I.

Algorithm 5 Hole filling
Input: I: binary image;
Output: Ino hole: binary image without holes
Ino hole = compliment(I)
do connected component labelling on Ino hole
extract the LLC of Ino hole
Ino hole ← compliment(Ino hole)
return Ino hole;

53

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Figure 4.10: Hole filling

4.5.3 Boundary extraction

Boundary extraction is a good strategy to improve the visualization of segmenta-

tion results. In this research, we extract the boundary by deleting internal pixels.

The internal pixels satisfy the following conditions:

(a) its pixel value is equal to 1;

(b) all neighbor pixels’ values are equal to 1.

There are two kinds of neighbors, 4-connected neighbors and 8-connected neigh-

bors. 4-connected neighbors of pixel I(i, j) are I(i − 1, j), I(i + 1, j), I(i, j −

1), I(i, j+1). 8-connected neighbors of pixel I(i, j) are I(i−1, j−1), I(i−1, j), I(i−

1, j+1), I(i, j−1), I(i, j+1), I(i+1, j−1), , I(i+1, j), I(i+1, j+1), see Figure 4.11.

Here we use 8-connected neighbors to extract a boundary. In our research,

the visualizations of boundaries extracted with 4-connected neighbors and with

8-connected neighbors are almost the same, but a boundary extracted with 8-

connected neighbors is clearer, see Figure 4.12.

54

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Figure 4.11: 4-connected neighbors and 8-connected neighbors

The pseudo code of boundary extraction is shown in Algorithm 6.

Algorithm 6 Boundary extraction
Input: I: binary image;
Output: Î: binary image only containing the boundary of I;
initialize (m,n) = size(I), Î = I
for i = 1 : m do

for j = 1 : n do
if neighbors of I(i, j) are all 1s then

Î(i, j) = 0
return Î;

55

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Figure 4.12: Boundary extraction

56

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

Chapter 5

Experimental results

This chapter introduces how we do experiments and shows the experimental re-

sults. The structure of this chapter is as follows. Section 5.1 presents the pro-

gramming language and the packages used in this research. Section 5.2 introduces

our dataset and the data augmentation techniques we have applied. Section 5.3

presents training parameters setting and learning curves. Section 5.4 shows the

results of our segmentation.

5.1 Programming environment

The programming language we use is Python 3.6, and we employed the deep

learning framework Keras [12] with TensorFlow [42] as a backend. In addition,

we also used the NumPy scientific computing package and scikit-image for

image processing.

We train our CNN models on Sharcnet [1] Graham server with an NVIDIA

P100 Pascal GPU.

57

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

5.2 Dataset

This section introduces original US images data set and data augmentation we

applied. Section 5.2.1 presents the original data set. Section 5.2.2 introduces how

we do data augmentation to generate more US images.

5.2.1 Original data

The given data are breast cancer US images and manually segmented US images.

These data are provided by Dr. Jeffery Carson and his research group at Lawson

Health Research Institute, London, Ontario, Canada. The original dataset has

59 tissue specimen. After we remove some samples without manually segmented

results, we have 1912 2D images (slices) obtained from 52 breast tissue specimen.

A summary of this data set is given in Table 5.1.

attribute value
number of specimen 52
mean number of slices per specimen 37
number of 2D images 1912
mean image size 200× 222

Table 5.1: Statistics about the original dataset

For each image, we also have two manually segmented images, segmentation A

and segmentation B, see Figure 5.1. They are performed by two summer students

in Dr. Jeffery Carson’s research group independently. Before we start training our

models, we do thresholding on segmentation A and B to convert these images into

binary images.

S(i, j)←

 1 S(i, j) > 0

0 otherwise,

58

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

where S denotes manual segmentation result. Denote by Set A the training set with

segmentation A (after thresholding) and Set B the training set with segmentation

B (after thresholding).

(a) US image (b) segmentation A (c) segmentation B

Figure 5.1: US image with segmentation A and segmentation B

5.2.2 Data augmentation

Data augmentation is a common method to improve the robustness of a neural

network model, especially when the training dataset is not large. From the original

1912 images, we remove 358 images (10 specimens) for testing and apply data

augmentation on the remaining 1554 images. We performed the following data

augmentation techniques.

1. First we rotate each US image and its corresponding segmentation result by

30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦, 330◦, see Figure 5.2.

2. Then we perform image cropping on the original and the rotated images. We

crop US images and its segmentation result with (a, b, c, d), where a, b, c, d

refer to left, upper, right, and lower pixel coordinates, respectively. a, b are

chosen randomly from 0 to 20 and c, d are chosen randomly from 100 to 120,

see Figure 5.3.

59

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

We apply above data augmentation on Set A and Set B, then combine them

into a new training set. This dataset is used in training our models.

(a) US image (b) 60◦ rotation

Figure 5.2: Image rotation in data augmentation

(a) US image (b) Cropped image with
(16, 18, 102, 114)

Figure 5.3: Image crop in data augmentation

The number of augmented images for training is shown in Table 5.2

We also apply data augmentation on test images, the number of augmented

images for testing is shown in Table 5.3. Since we have a large dataset for testing

(we have 8234 images for testing after data augmentation), the accuracy of our

models on this dataset is acceptable and trustworthy.

60

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

augmentation # of augmented images
rotation 17, 094 (= 11× 1, 554)
cropping 18, 648 (= 1, 554 + 17, 094)
total 74, 448

Table 5.2: Number of augmented images for training. We start
with 1554 images

augmentation # of augmented images
rotation 3, 938 (= 11× 358)
cropping 4, 296 (= 358 + 3, 938)
total 8, 234

Table 5.3: Number of augmented images for testing. We start
with 358 images

We perform the above data augmentation techniques using the Pillow imaging

library [15].

5.3 Training hyperparameters

The parameters applied in training are given in Table 5.4.

parameter value
α 10−4

Adam β1 0.9
β2 0.999
ε 10−7

Batch size m 16
of epochs nepoch 100

Table 5.4: Training parameters

61

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

5.4 Results

We train U-Net, IU-Net, IU-Net with encoder, small IU-Net, small IU-Net with

encoder, mini IU-Net and mini IU-Net with encoder. For all the networks we

use the same hyperparameters setting listed in the previous section. The learning

curves of these models are given in Figures 5.4, 5.5, 5.6 and 5.7.

(a) λ = 0 (b) λ = 10−3

Figure 5.4: Learning curves of U-Net with λ = 0 and λ = 10−3

(a) λ = 0 (b) λ = 10−3

Figure 5.5: Learning curves of IU-Net with λ = 0 and λ = 10−3

62

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) λ = 0 (b) λ = 10−3

Figure 5.6: Learning curves of small IU-Net with λ = 0 and
λ = 10−3

(a) λ = 0 (b) λ = 10−3

Figure 5.7: Learning curves of mini IU-Net with λ = 0 and λ =
10−3

63

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Figures 5.4, 5.5, 5.6 and 5.7 show that the cost of training data decreases, which

confirms the training works, since the purpose of training is to minimize the cost

function. In addition, Figures 5.4, 5.5, 5.6 show that the cost of validation data

does not decrease after a certain number of epochs. That is, overfitting occurs in

training U-Net, IU-Net and small IU-Net. However, Keras can save the model

which has the lowest cost of validation data, so training with too many epochs will

not reduce the performance of our models.

In our test set we have 358 breast cancer US images. Since we have two manual

segmentation results (SA and SB) for each US image, we compute the DSC and

MSE of the prediction Î of our models by:

D
(
Îk, S

A
k , S

B
k

)
=
D
(
Îk, S

A
k

)
+D

(
Îk, S

B
k

)
2

MSE
(
Îk, S

A
k , S

B
k

)
=

MSE
(
Îk, S

A
k

)
+ MSE

(
Îk, S

B
k

)
2 ,

where Îk denotes the kth prediction, and SAk , SBk are its segmentation A and

segmentation B, respectively, k = 1, 2, ..., 358; D is the DSC which is defined in

Chapter 4; MSE is defined as

MSE
(
Î , S

)
= 1
N2

N∑
i=1

N∑
j=1

(
Î(i, j)− S(i, j)

)2
.

First we compute the mean and standard deviation (std) of D
(
Îk, S

A
k

)
and

MSE
(
Îk, S

A
k

)
, and we also calculate the mean and std ofD

(
Îk, S

B
k

)
and MSE

(
Îk, S

B
k

)
.

The results are given in Tables 5.5 and 5.6.

Then we calculate the mean and std of D and MSE on the test set, the results

are given in Table 5.7.

The training time for above models is given in Table 5.8.

64

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

model D
(
Îk, S

A
k

)
MSE

(
Îk, S

A
k

)
mean std mean std

U-Net 92.2% 0.13 1.75× 10−2 1.28× 10−2

U-Net+encoder 91.8% 0.14 1.82× 10−2 1.43× 10−2

IU-Net 92.8% 0.10 1.76× 10−2 1.16× 10−2

IU-Net+encoder 93.4% 0.08 1.71 × 10−2 1.06 × 10−2

small IU-Net 92.4% 0.12 1.81× 10−2 1.25× 10−2

small IU-Net+encoder 92.1% 0.13 1.83× 10−2 1.28× 10−3

mini IU-Net 90.9% 0.14 2.14× 10−2 1.57× 10−2

mini IU-Net+encoder 90.8% 0.15 2.03× 10−2 1.45× 10−2

Table 5.5: Accuracy (with segmentation A as GT)

model D
(
Îk, S

B
k

)
MSE

(
Îk, S

B
k

)
mean std mean std

U-Net 89.7% 0.18 2.30× 10−2 3.84 × 10−2

U-Net+encoder 89.5% 0.18 2.33× 10−2 3.89× 10−2

IU-Net 90.4% 0.16 2.31× 10−2 3.91× 10−2

IU-Net+encoder 90.5% 0.15 2.32× 10−2 3.86× 10−2

small IU-Net 90.1% 0.17 2.30 × 10−2 3.85× 10−2

small IU-Net+encoder 89.8% 0.17 2.32× 10−2 3.89× 10−2

mini IU-Net 88.4% 0.19 2.65× 10−2 4.01× 10−2

mini IU-Net+encoder 88.4% 0.19 2.55× 10−2 4.01× 10−2

Table 5.6: Accuracy (with segmentation B as GT)

model D MSE # of parameters
mean std mean std

U-Net 91.0% 0.15 2.02× 10−2 2.22× 10−2 7.76× 106

U-Net+encoder 90.6% 0.16 2.08× 10−2 2.29× 10−2 7.76× 106

IU-Net 91.5% 0.12 2.04× 10−2 2.22× 10−2 2.05× 106

IU-Net+encoder 92.0% 0.11 2.01 × 10−2 2.17 × 10−2 2.05× 106

small IU-Net 91.2% 0.14 2.06× 10−2 2.20× 10−2 5.10× 105

small IU-Net+encoder 90.9% 0.14 2.07× 10−2 2.25× 10−2 5.10× 105

mini IU-Net 89.7% 0.16 2.40× 10−2 2.43× 10−2 1.24 × 105

mini IU-Net+encoder 89.7% 0.17 2.29× 10−2 2.38× 10−2 1.24 × 105

Table 5.7: Accuracy and number of parameters

65

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

model training time (s/epoch)
U-Net 254

U-Net+encoder 256
IU-Net 574

IU-Net+encoder 578
small IU-Net 501

small IU-Net+encoder 503
mini IU-Net 420

mini IU-Net+encoder 437

Table 5.8: Training time

We summarize Tables 5.5, 5.6, 5.7 and 5.8:

1. All models achieves similar accuracies.

2. All models achieves higher accuracies when the GT is only segmentation A.

3. The encoder improves the accuracy of IU-Net and mini IU-Net, but reduces

the accuracy of U-Net and small IU-Net.

4. The encoder increases the training time a little.

5. The number of trainable parameters of U-Net is the largest among all models,

but the training time of U-Net is the shortest, since IU-Net, small IU-Net and

mini IU-Net have more layers than U-Net has, even though their trainable

parameters are fewer than U-Net. See Table 5.9 for the number of layers of

each model.

model number of layers
U-Net 32
IU-Net 208

small IU-Net 162
mini IU-Net 116

Table 5.9: Number of layers of models

(The number of layers in Table 5.9 is obtained from layers function in Keras.)

66

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

Although the encoder does not always improve the accuracy, its effect still

exists. We show some examples in Figures 5.8, 5.9, 5.10 and 5.11. The small area

in Figures 5.9 and 5.11 can be removed by largest connected component extraction.

However, the small area in Figures 5.8 and 5.10 can not be removed by largest

connected component extraction, since this small area is connected to the large

one.

(a) original image (b) manual segmentation A (c) manual segmentation B

(d) prediction, λ = 0, D =
35.4%

(e) prediction, λ = 10−3, D =
48.1%

Figure 5.8: Effect of encoder on U-Net

Then we illustrate some of the segmentation results in Figures 5.12, 5.13, 5.14,

5.15, 5.16, 5.17, 5.18 and 5.19, where the red boundary represents the segmentation

A; the yellow boundary denotes the segmentation B; the blue boundary is the

prediction.

67

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original image (b) manual segmentation A (c) manual segmentation B

(d) λ = 0, D = 92.9% (e) λ = 10−3, D = 94.0%

Figure 5.9: Effect of encoder on IU-Net

68

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original image (b) manual segmentation A (c) manual segmentation B

(d) λ = 0, D = 86.3% (e) λ = 10−3, D = 91.9%

Figure 5.10: Effect of encoder on small IU-Net

69

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original image (b) manual segmentation A (c) manual segmentation B

(d) λ = 0, D = 95.2% (e) λ = 10−3, D = 96.3%

Figure 5.11: Effect of encoder on mini IU-Net

70

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original (b) original (c) original

(d) segmentation A, B (e) segmentation A, B (f) segmentation A, B

(g) prediction 60.3 (h) prediction 95.9 (i) prediction 92.3

Figure 5.12: Segmented US images by U-Net and their achieved
DSC in percentages. The red boundary represents segmentation A;
the yellow boundary denotes segmentation B; the blue boundary is
the prediction

71

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original (b) original (c) original

(d) segmentation A, B (e) segmentation A, B (f) segmentation A, B

(g) prediction 95.6 (h) prediction 90.8 (i) prediction 7.5

Figure 5.13: Segmented US images by U-Net+encoder and their
achieved DSC in percentages. The red boundary represents seg-
mentation A; the yellow boundary denotes segmentation B; the
blue boundary is the prediction

72

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original (b) original (c) original

(d) segmentation A, B (e) segmentation A, B (f) segmentation A, B

(g) prediction 96.8 (h) prediction 94.1 (i) prediction 75.8

Figure 5.14: Segmented US images by IU-Net and their achieved
DSC in percentages. The red boundary represents segmentation A;
the yellow boundary denotes segmentation B; the blue boundary is
the prediction

73

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original (b) original (c) original

(d) segmentation A, B (e) segmentation A, B (f) segmentation A, B

(g) prediction 86.5 (h) prediction 41.6 (i) prediction 94.8

Figure 5.15: Segmented US images by IU-Net+encoder and their
achieved DSC in percentages. The red boundary represents seg-
mentation A; the yellow boundary denotes segmentation B; the
blue boundary is the prediction

74

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original (b) original (c) original

(d) segmentation A, B (e) segmentation A, B (f) segmentation A, B

(g) prediction 89.5 (h) prediction 96.1 (i) prediction 97.9

Figure 5.16: Segmented US images by small IU-Net and their
achieved DSC in percentages. The red boundary represents seg-
mentation A; the yellow boundary denotes segmentation B; the
blue boundary is the prediction

75

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original (b) original (c) original

(d) segmentation A, B (e) segmentation A, B (f) segmentation A, B

(g) prediction 95.4 (h) prediction 86.4 (i) prediction 0

Figure 5.17: Segmented US images by small IU-Net+encoder and
their achieved DSC in percentages. The red boundary represents
segmentation A; the yellow boundary denotes segmentation B; the
blue boundary is the prediction

76

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original (b) original (c) original

(d) segmentation A, B (e) segmentation A, B (f) segmentation A, B

(g) prediction 97.4 (h) prediction 93.5 (i) prediction 85.6

Figure 5.18: Segmented US images by mini IU-Net and their
achieved DSC in percentages. the red boundary represents seg-
mentation A; The yellow boundary denotes segmentation B; the
blue boundary is the prediction

77

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

(a) original (b) original (c) original

(d) segmentation A, B (e) segmentation A, B (f) segmentation A, B

(g) prediction 97.9 (h) prediction 95.1 (i) prediction 53.0

Figure 5.19: Segmented US images by mini IU-Net+encoder and
their achieved DSC in percentages. The red boundary represents
segmentation A; the yellow boundary denotes segmentation B; the
blue boundary is the prediction

78

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

From Figures 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18 and 5.19, we draw a con-

clusion that our models achieve low accuracies, when the tissue is small, see Fig-

ure 5.12 (a), (d), (g), Figure 5.13 (c), (f), (i), Figure 5.14 (c), (f), (i), Figure 5.15

(b), (e), (h), Figure 5.16 (a), (d), (g), Figure 5.17 (c), (f), (i), Figure 5.18 (c), (f),

(i), Figure 5.19 (c), (f), (i).

When the segmentation A and B are quite different (see Figure 5.14 (e) (h),

Figure 5.15 (d), (g)), it appears that the prediction of our models is more accurate

than the segmentation A and B.

In addition, we give the accuracy after post processing in Table 5.10.

model D MSE
mean std mean std

U-Net 91.0% 0.15 2.02× 10−2 2.22× 10−2

U-Net+encoder 90.6% 0.16 2.07× 10−2 2.29× 10−2

IU-Net 91.5% 0.12 2.03× 10−2 2.21× 10−2

IU-Net+encoder 92.0% 0.10 2.00 × 10−2 2.16 × 10−2

small IU-Net 91.3% 0.14 2.05× 10−2 2.19× 10−2

small IU-Net+encoder 91.0% 0.14 2.06× 10−2 2.25× 10−2

mini IU-Net 89.9% 0.16 2.30× 10−2 2.40× 10−2

mini IU-Net+encoder 89.9% 0.17 2.20× 10−2 2.35× 10−2

Table 5.10: Accuracy after post processing

From Tables 5.7 and 5.10, post processing improves the accuracy a little. For

example, DSC of mini IU-Net is improved from 89.7% to 89.9%; MSE of mini

IU-Net is improved from 2.40× 10−2 to 2.30× 10−2.

79

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

Chapter 6

Conclusion and improvement

We build a new CNN model IU-Net based on inception network and U-Net. We

experiment with IU-Net and other two smaller version, small and mini IU-Net. The

experimental results show that all models achieve the accuracy at the same level.

The highest DSC is achieved by IU-Net which trained with an encoder. In addition,

the number of trainable parameters in IU-Net is 3.8× smaller than the number of

trainable parameters in U-Net. The experimental results also shows that training

with an autoencoder can remove the small area, although autoencoder does not

improve the accuracy of all models. In addition, we propose a new segmentation

method which merges the segmentation results from three directions. However,

this method does not improve the accuracy so we do not report the experimental

results in this thesis.

Here are two future research directions:

1. The photoacoustic tomography (PAT) is another method to detect breast

lesion. We may combine PAT and US images as the input of the neural network

to improve the accuracy of segmentation. For example, we may build a neural

network with multiple input images. To achieve this goal, we require the GT of

PAT images to train a CNN. We can also employ the GT of US on the premise

80

M.Sc Thesis – Mingjie Jiang; McMaster University– School of Computational
Science and Engineering

that each slice of 3D US and PAT images are matched, that is, the GT of US and

PAT images are very similar.

2. In our research, we use a 2D CNN model to segment every slice of 3D US

images. We can do the segmentation by a 3D CNN model such as 3D U-Net [13]

and 3D fully convolutional network [60]. The problem is that a 3D CNN model is

normally large and hard to be trained. We can try to buid a small 3D CNN model

or propose a better training method. In addition, we may regard a 3D US image

as a time series and build a convolutional RNN [70] to segment 3D US images.

81

http://www.mcmaster.ca/
https://computational.mcmaster.ca/
https://computational.mcmaster.ca/

Bibliography

[1] SHARCNET (www.sharcnet.ca) is a consortium of 18 colleges, universities

and research institutes operating a network of high-performance computer

clusters across south western, central and northern Ontario.

[2] M. Alemán-Flores, L. Álvarez, and V. Caselles. Texture-oriented anisotropic

filtering and geodesic active contours in breast tumor ultrasound segmenta-

tion. Journal of Mathematical Imaging and Vision 28(1) (2007), 81–97.

[3] E. A. Ashton and K. J. Parker. Multiple resolution Bayesian segmentation

of ultrasound images. Ultrasonic imaging 17(4) (1995), 291–304.

[4] A. Badhe. Using Deep Learning Neural Networks To Find Best Performing

Audience Segments. International Journal of Scientific & Technology Re-

search 4(8) (2015), 30–31.

[5] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolu-

tional encoder-decoder architecture for image segmentation. arXiv preprint

arXiv:1511.00561 (2015).

[6] A. Berg, J. Deng, and L. Fei-Fei. Large scale visual recognition challenge

2010, 2010.URL http://www. image-net. org/challenges/LSVRC/2010/index

(2011).

[7] D. Boukerroui, O. Basset, N. Guerin, and A. Baskurt. Multiresolution tex-

ture based adaptive clustering algorithm for breast lesion segmentation. Eu-

ropean Journal of Ultrasound 8(2) (1998), 135–144.

82

BIBLIOGRAPHY

[8] Breast cancer statistics. http://www.cancer.ca/en/cancer-information/

cancer-type/breast/statistics/?region=on.

[9] Build a simple Image Retrieval System with an Autoencoder. https : / /

towardsdatascience.com/build-a-simple-image-retrieval-system-

with-an-autoencoder-673a262b7921.

[10] K. Chellapilla, S. Puri, and P. Simard. High performance convolutional neu-

ral networks for document processing. In: Tenth International Workshop on

Frontiers in Handwriting Recognition. Suvisoft. 2006.

[11] H.-H. Chiang, J.-Z. Cheng, P.-K. Hung, C.-Y. Liu, C.-H. Chung, and C.-M.

Chen. Cell-based graph cut for segmentation of 2D/3D sonographic breast

images. In: Biomedical Imaging: From Nano to Macro, 2010 IEEE Interna-

tional Symposium on. IEEE. 2010, 177–180.

[12] F. Chollet et al. Keras. 2015.

[13] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger. 3D

U-Net: learning dense volumetric segmentation from sparse annotation. In:

International conference on medical image computing and computer-assisted

intervention. Springer. 2016, 424–432.

[14] D. C. Cireşan, A. Giusti, L. M. Gambardella, and J. Schmidhuber. Mitosis

detection in breast cancer histology images with deep neural networks. In: In-

ternational Conference on Medical Image Computing and Computer-assisted

Intervention. Springer. 2013, 411–418.

[15] A. Clark. Pillow (PIL Fork) Documentation. 2015.

[16] Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation compe-

tition, using Keras. github repository https://github.com/jocicmarko/

ultrasound-nerve-segmentation.

83

http://www.cancer.ca/en/cancer-information/cancer-type/breast/statistics/?region=on
http://www.cancer.ca/en/cancer-information/cancer-type/breast/statistics/?region=on
https://towardsdatascience.com/build-a-simple-image-retrieval-system-with-an-autoencoder-673a262b7921
https://towardsdatascience.com/build-a-simple-image-retrieval-system-with-an-autoencoder-673a262b7921
https://towardsdatascience.com/build-a-simple-image-retrieval-system-with-an-autoencoder-673a262b7921
https://github.com/jocicmarko/ultrasound-nerve-segmentation
https://github.com/jocicmarko/ultrasound-nerve-segmentation

BIBLIOGRAPHY

[17] C. DeSantis, J. Ma, L. Bryan, and A. Jemal. Breast cancer statistics, 2013.

CA: a cancer journal for clinicians 64(1) (2014), 52–62.

[18] L. R. Dice. Measures of the amount of ecologic association between species.

Ecology 26(3) (1945), 297–302.

[19] H. Eggemann, T. Ignatov, S. D. Costa, and A. Ignatov. Accuracy of ultrasound-

guided breast-conserving surgery in the determination of adequate surgical

margins. Breast cancer research and treatment 145(1) (2014), 129–136.

[20] J. Fajdic, D. Djurovic, N. Gotovac, and Z. Hrgovic. Criteria and procedures

for breast conserving surgery. Acta Informatica Medica 21(1) (2013), 16.

[21] R. Fakoor, F. Ladhak, A. Nazi, and M. Huber. Using deep learning to en-

hance cancer diagnosis and classification. In: Proceedings of the International

Conference on Machine Learning. Vol. 28. 2013.

[22] I. S. Fentiman, A. Fourquet, and G. N. Hortobagyi. Male breast cancer. The

Lancet 367(9510) (2006), 595–604.

[23] R. C. Gonzalez, R. E. Woods, S. L. Eddins, et al. Digital image processing

using MATLAB. Vol. 624. Pearson-Prentice-Hall Upper Saddle River, New

Jersey, 2004.

[24] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S.

Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In: Advances

in neural information processing systems. 2014, 2672–2680.

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In: Proceedings of the IEEE conference on computer vision and

pattern recognition. 2016, 770–778.

[26] C. F. Higham and D. J. Higham. Deep learning: An introduction for applied

mathematicians. arXiv preprint arXiv:1801.05894 (2018).

84

BIBLIOGRAPHY

[27] Y.-L. Huang and D.-R. Chen. Watershed segmentation for breast tumor in

2-D sonography. Ultrasound in medicine & biology 30(5) (2004), 625–632.

[28] S.-F. Huang, Y.-C. Chen, and W. K. Moon. Neural network analysis applied

to tumor segmentation on 3D breast ultrasound images. In: 2008 5th IEEE

International Symposium on Biomedical Imaging: From Nano to Macro.

IEEE. 2008, 1303–1306.

[29] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167

(2015).

[30] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 (2014).

[31] N. M. Krekel, M. H. Haloua, A. M. L. Cardozo, R. H. de Wit, A. M. Bosch,

L. M. de Widt-Levert, S. Muller, H. van der Veen, E. Bergers, E. S. d. L. de

Klerk, et al. Intraoperative ultrasound guidance for palpable breast cancer

excision (COBALT trial): a multicentre, randomised controlled trial. The

lancet oncology 14(1) (2013), 48–54.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with

deep convolutional neural networks. In: Advances in neural information pro-

cessing systems. 2012, 1097–1105.

[33] R. LaLonde and U. Bagci. Capsules for Object Segmentation. arXiv preprint

arXiv:1804.04241 (2018).

[34] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning ap-

plied to document recognition. Proceedings of the IEEE 86(11) (1998), 2278–

2324.

85

BIBLIOGRAPHY

[35] B. Liu, H.-D. Cheng, J. Huang, J. Tian, X. Tang, and J. Liu. Fully automatic

and segmentation-robust classification of breast tumors based on local tex-

ture analysis of ultrasound images. Pattern Recognition 43(1) (2010), 280–

298.

[36] M. Liu, W. Wu, Z. Gu, Z. Yu, F. Qi, and Y. Li. Deep learning based on Batch

Normalization for P300 signal detection. Neurocomputing 275 (2018), 288–

297.

[37] Y. Liu, X. Hou, J. Chen, C. Yang, G. Su, and W. Dou. Facial expression

recognition and generation using sparse autoencoder. In: 2014 International

Conference on Smart Computing (SMARTCOMP). IEEE. 2014, 125–130.

[38] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for

semantic segmentation. In: Proceedings of the IEEE conference on computer

vision and pattern recognition. 2015, 3431–3440.

[39] P. Luc, C. Couprie, S. Chintala, and J. Verbeek. Semantic segmentation

using adversarial networks. arXiv preprint arXiv:1611.08408 (2016).

[40] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier nonlinearities improve

neural network acoustic models. In: Proc. icml. Vol. 30. 1. 2013, 3.

[41] A. Madabhushi and D. Metaxas. Automatic boundary extraction of ultra-

sonic breast lesions. In: Biomedical Imaging, 2002. Proceedings. 2002 IEEE

International Symposium on. IEEE. 2002, 601–604.

[42] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,

Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael

Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Lev-

enberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah,

86

BIBLIOGRAPHY

Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Tal-

war, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas,

Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on Het-

erogeneous Systems. Software available from tensorflow.org. 2015.

[43] O. Olsha, D. Shemesh, M. Carmon, O. Sibirsky, R. A. Dalo, L. Rivkin,

and I. Ashkenazi. Resection margins in ultrasound-guided breast-conserving

surgery. Annals of surgical oncology 18(2) (2011), 447–452.

[44] S. Pereira, A. Pinto, V. Alves, and C. A. Silva. Brain tumor segmentation

using convolutional neural networks in MRI images. IEEE transactions on

medical imaging 35(5) (2016), 1240–1251.

[45] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks

for biomedical image segmentation. In: International Conference on Medical

image computing and computer-assisted intervention. Springer. 2015, 234–

241.

[46] H. R. Roth, C. T. Lee, H.-C. Shin, A. Seff, L. Kim, J. Yao, L. Lu, and

R. M. Summers. Anatomy-specific classification of medical images using deep

convolutional nets. arXiv preprint arXiv:1504.04003 (2015).

[47] S. Ruder. An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747 (2016).

[48] D. E. Rumelhart, G. E. Hinton, R. J. Williams, et al. Learning representa-

tions by back-propagating errors. Cognitive modeling 5(3) (1988), 1.

[49] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing between capsules.

In: Advances in Neural Information Processing Systems. 2017, 3856–3866.

87

BIBLIOGRAPHY

[50] B. Sahiner, A. Ramachandran, H.-P. Chan, M. A. Roubidoux, L. M. Hadji-

iski, M. A. Helvie, N. Petrick, and C. Zhou. Three-dimensional active con-

tour model for characterization of solid breast masses on three-dimensional

ultrasound images. In: Medical Imaging 2003: Image Processing. Vol. 5032.

International Society for Optics and Photonics. 2003, 405–414.

[51] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry. How Does Batch Normal-

ization Help Optimization?(No, It Is Not About Internal Covariate Shift).

arXiv preprint arXiv:1805.11604 (2018).

[52] L. G. Shapiro and G. Linda. stockman, George C. Computer Vision, Prentice

hall. ISBN 0-13-030796-3 (2002).

[53] J. Shi and J. Malik. Normalized cuts and image segmentation. Departmental

Papers (CIS) (2000), 107.

[54] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[55] T. Sørensen. A method of establishing groups of equal amplitude in plant

sociology based on similarity of species and its application to analyses of the

vegetation on Danish commons. Biol. Skr. 5 (1948), 1–34.

[56] H. Su, F. Liu, Y. Xie, F. Xing, S. Meyyappan, and L. Yang. Region segmen-

tation in histopathological breast cancer images using deep convolutional

neural network. In: Biomedical Imaging (ISBI), 2015 IEEE 12th Interna-

tional Symposium on. IEEE. 2015, 55–58.

[57] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In: Pro-

ceedings of the IEEE conference on computer vision and pattern recognition.

2015, 1–9.

88

BIBLIOGRAPHY

[58] D. Terzopoulos. On matching deformable models to images. In: Topical Meet-

ing on Machine Vision Tech. Digest Series. Vol. 12. 1987, 160–167.

[59] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for

machine learning 4(2) (2012), 26–31.

[60] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning spa-

tiotemporal features with 3d convolutional networks. In: Proceedings of the

IEEE international conference on computer vision. 2015, 4489–4497.

[61] Ultrasound nerve segmentation using Keras (1.0.7). github repository https:

//github.com/EdwardTyantov/ultrasound-nerve-segmentation.

[62] A. Veit, M. J. Wilber, and S. Belongie. Residual networks behave like en-

sembles of relatively shallow networks. In: Advances in neural information

processing systems. 2016, 550–558.

[63] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville, and Y. Bengio.

Renet: A recurrent neural network based alternative to convolutional net-

works. arXiv preprint arXiv:1505.00393 (2015).

[64] S.-H. Wang, C. Tang, J. Sun, J. Yang, C. Huang, P. Phillips, and Y.-D.

Zhang. Multiple sclerosis identification by 14-layer convolutional neural net-

work with batch normalization, dropout, and stochastic pooling. Frontiers

in neuroscience 12 (2018).

[65] P. R. Winters. Forecasting sales by exponentially weighted moving averages.

Management science 6(3) (1960), 324–342.

[66] G. Wu, X. Shao, Z. Guo, Q. Chen, W. Yuan, X. Shi, Y. Xu, and R. Shibasaki.

Automatic building segmentation of aerial imagery using multi-constraint

fully convolutional networks. Remote Sensing 10(3) (2018), 407.

89

https://github.com/EdwardTyantov/ultrasound-nerve-segmentation
https://github.com/EdwardTyantov/ultrasound-nerve-segmentation

BIBLIOGRAPHY

[67] M. Xian, Y. Zhang, and H.-D. Cheng. Fully automatic segmentation of breast

ultrasound images based on breast characteristics in space and frequency

domains. Pattern Recognition 48(2) (2015), 485–497.

[68] M. Xian, Y. Zhang, H.-D. Cheng, F. Xu, B. Zhang, and J. Ding. Automatic

breast ultrasound image segmentation: A survey. Pattern Recognition 79

(2018), 340–355.

[69] G. Xiao, M. Brady, J. A. Noble, and Y. Zhang. Segmentation of ultrasound

B-mode images with intensity inhomogeneity correction. IEEE transactions

on medical imaging 21(1) (2002), 48–57.

[70] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo.

Convolutional LSTM network: A machine learning approach for precipi-

tation nowcasting. In: Advances in neural information processing systems.

2015, 802–810.

[71] Y. Xu, Y. Wang, J. Yuan, Q. Cheng, X. Wang, and P. L. Carson. Medical

breast ultrasound image segmentation by machine learning. Ultrasonics 91

(2019), 1–9.

[72] A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum. A geo-

metric snake model for segmentation of medical imagery. IEEE Transactions

on medical imaging 16(2) (1997), 199–209.

[73] R. Yu, X. Fu, H. Jiang, C. Wang, X. Li, M. Zhao, X. Ying, and H. Shen.

Remote Sensing Image Segmentation by Combining Feature Enhanced with

Fully Convolutional Network. In: International Conference on Neural Infor-

mation Processing. Springer. 2018, 406–415.

[74] Y.-D. Zhang, C. Pan, J. Sun, and C. Tang. Multiple sclerosis identification by

convolutional neural network with dropout and parametric ReLU. Journal

of computational science 28 (2018), 1–10.

90

	Abstract
	Acknowledgements
	Introduction
	Problem statement
	Summary of methodology
	Contribution
	Thesis outline

	Related work
	Background
	History of CNNs
	Fundamental knowledge
	Layers in CNNs
	Convolution and pooling layers
	Batch normalization Layer

	Inception block
	Back propagation
	Optimization algorithm

	Segmentation networks
	Autoencoder
	Models
	IU-Net architecture
	Small IU-Net architecture
	Mini IU-Net architecture

	Training
	Loss function
	Regularization
	Data preprocessing

	Prediction
	Post-processing
	Largest connected component extraction
	Hole filling
	Boundary extraction

	Experimental results
	Programming environment
	Dataset
	Original data
	Data augmentation

	Training hyperparameters
	Results

	Conclusion and improvement
	Bibliography

