
Fault-Tolerant Supervisory Control

FAULT-TOLERANT SUPERVISORY CONTROL

BY

AOS MULAHUWAISH, B.Sc., M.Sc.

a thesis

submitted to the department of computing and software

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy (Ph.D.)

c© Copyright by Aos Mulahuwaish, May 2019

All Rights Reserved

Ph.D. of Computer Science (2019) McMaster University

(Computer Science) Hamilton, Ontario, Canada

TITLE: Fault-Tolerant Supervisory Control

AUTHOR: Aos Mulahuwaish

B.Sc., M.Sc. (Computer Science)

SUPERVISOR: Dr. Ryan Leduc

NUMBER OF PAGES: xviii, 247

ii

To my father and mother

Abstract

In this thesis, we investigate the problem of fault tolerance in the framework of

discrete-event systems (DES). We introduce our setting, and then provide a set of

fault-tolerant definitions designed to capture different types of fault scenarios and

to ensure that our system remains controllable and nonblocking in each scenario.

This is a passive approach that relies upon inherent redundancy in the system being

controlled, and focuses on the intermittent occurrence of faults.

Our approach provides an easy method for users to add fault events to a system

model and is based on user designed supervisors and verification. As synthesis al-

gorithms have higher complexity than verification algorithms, our approach should

be applicable to larger systems than existing active fault-recovery methods that are

synthesis based. Also, modular supervisors are typically easier to understand and

implement than the results of synthesis.

Finally, our approach does not require expensive (in terms of algorithm complexity)

fault diagnosers to work. Diagnosers are, however, required by existing methods to

know when to switch to a recovery supervisor. As a result, the response time of

diagnosers is not an issue for us. Our supervisors are designed to handle the original

and the faulted system.

In this thesis, we next present algorithms to verify these properties followed by

iv

complexity analyses and correctness proofs of the algorithms. Finally, examples are

provided to illustrate our approach.

In the above framework, permanent faults can be modelled, but the current method

was onerous. To address this, we then introduce a new modeling approach for per-

manent faults that is easy to use, as well as a set of new permanent fault-tolerant

definitions. These definitions are designed to capture several types of permanent

fault scenarios and to ensure that our system remains controllable and nonblocking

in each scenario. New definitions and scenarios were required as the previous ones

were incompatible with the new permanent fault modeling approach.

We then present algorithms to verify these properties followed by complexity analy-

ses and correctness proofs of the algorithms. An example is then provided to illustrate

our approach.

Finally, we extend the above intermittent and permanent fault-tolerant approach

to the timed DES setting. As before, we introduced new fault-tolerant properties

and algorithms. We then provide complexity analyses and correctness proofs for the

algorithms. An example is then provided to illustrate our approach.

v

Acknowledgements

First, I would like to express my sincere gratitude to my advisor, Dr. Ryan Leduc,

for the continuous support of my Ph.D study and related research, for his patience,

motivation, and immense knowledge. His guidance helped me during the time of

researching and writing of this thesis. I could not have imagined having a better

advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee, Dr. Mark

Lawford, and Dr. Sanzheng Qiao, for their insightful comments and encouragement.

Very importantly, I should thank the scholarship providers: my supervisor, the School

of Graduate Studies and the Department of Computing and Software at McMaster

University which provide the basis of my living during my Ph.D. study.

vi

Contents

Abstract iv

Acknowledgements vi

Contents xiv

List of Tables xv

List of Figures xvi

1 Introduction 1

1.1 Introduction . 1

1.2 Related Work . 3

1.2.1 Untimed DES Setting . 3

1.2.2 Timed DES Setting . 6

1.2.3 Illustrative Example . 8

1.3 Thesis Structure . 13

2 Preliminaries 15

2.1 Languages . 15

vii

2.1.1 Natural Projection and Inverse Projection 16

2.2 DES . 17

2.2.1 Synchronous Product . 19

2.2.2 Supervisory Control . 21

2.3 Timed DES . 23

3 Fault-Tolerant Setting 25

3.1 Fault Events . 25

3.2 Fault-Tolerant Consistency . 28

3.3 Fault Scenarios . 29

3.3.1 Intermittent Fault Scenarios 30

4 Fault-Tolerant Controllability and Nonblocking 33

4.1 Fault-Tolerant Controllability and Nonblocking 33

4.2 N-Fault-Tolerant Controllability and Nonblocking 35

4.3 Non-repeatable N-Fault-Tolerant Controllability and Nonblocking . . 37

4.4 Resettable Fault-Tolerant Controllability and Nonblocking 38

5 Fault-Tolerant Algorithms 40

5.1 Algorithms . 40

5.1.1 Fault-Tolerant Controllability and Nonblocking Algorithms . . 41

5.1.2 N-Fault Tolerant Controllability and Nonblocking Algorithms 44

5.1.3 Non-repeatable N-Faults Tolerant Controllability and Nonblock-

ing Algorithms . 46

5.1.4 Resettable Faults Tolerant Controllability and Nonblocking Al-

gorithms . 49

viii

5.2 Algorithm Complexity Analysis . 52

5.2.1 FT Controllability Algorithm 53

5.2.2 N-FT Controllability Algorithm 53

5.2.3 Non-repeatable N-FT Controllability Algorithm 54

5.2.4 Resettable FT Controllability Algorithm 54

6 Fault-Tolerant Algorithm Correctness 55

6.1 Fault-Tolerant Controllable Propositions 55

6.1.1 FT Controllable Proposition 56

6.1.2 N-Fault-Tolerant Controllable Proposition 58

6.1.3 Non-repeatable N-Fault-Tolerant Controllable Proposition . . 60

6.1.4 Resettable Fault-Tolerant Controllable Proposition 62

6.2 Fault-Tolerant Controllable Theorems 65

6.2.1 Fault-Tolerant Controllable Theorem 66

6.2.2 N-Fault-Tolerant Controllable Theorem 68

6.2.3 Non-repeatable N-Fault-Tolerant Controllable Theorem 70

6.2.4 Resettable Fault-Tolerant Controllable Theorem 73

6.3 Fault-Tolerant Nonblocking Theorems 76

6.3.1 Fault-Tolerant Nonblocking Theorem 76

6.3.2 N-Fault-Tolerant Nonblocking Theorem 79

6.3.3 Non-repeatable N-Fault-Tolerant Nonblocking Theorem 82

6.3.4 Resettable Fault-Tolerant Nonblocking Theorem 86

7 Fault-Tolerant Manufacturing Example 90

7.1 Setting Introduction . 90

ix

7.1.1 Single Loop Example . 91

7.1.2 Sensor Interdependencies . 92

7.1.3 Relationship Between Sensors and Trains Models 93

7.2 Modular Supervisors . 93

7.2.1 Collision Protection Supervisors 94

7.2.2 Collision Protection Fault-Tolerant Supervisors 95

7.3 Complete System Example . 97

8 Permanent Fault-Tolerant Controllability and Nonblocking 99

8.1 Permanent Fault-Tolerant Consistency 99

8.2 Permanent Fault Scenarios . 100

8.3 Fault-Tolerant Controllability and Nonblocking 104

8.4 One-repeatable Fault-Tolerant Controllability and Nonblocking 104

8.5 m-one-repeatable Fault-Tolerant Controllability and Nonblocking . . 106

8.6 Non-repeatable Permanent Fault-Tolerant Controllability and Nonblock-

ing . 107

8.7 Resettable Permanent Fault-Tolerant Controllability and Nonblocking 109

9 Permanent Fault-Tolerant Algorithms 112

9.1 Fault-Tolerant Controllability and Nonblocking Algorithm 112

9.2 One-repeatable Fault-Tolerant Controllability and Nonblocking Algo-

rithm . 113

9.3 m-one-repeatable Faults-Tolerant Controllability and Nonblocking Al-

gorithm . 116

x

9.4 Non-repeatable Permanent Faults-Tolerant Controllability and Non-

blocking Algorithm . 119

9.5 Resettable Permanent Faults-Tolerant Controllability and Nonblocking

Algorithm . 122

9.6 Algorithm Complexity Analysis . 126

9.6.1 One-repeatable FT Controllability Algorithm 127

9.6.2 m-one-repeatable FT Controllability Algorithm 128

9.6.3 Non-repeatable PFT Controllability Algorithm 128

9.6.4 Resettable PFT Controllability Algorithm 129

10 Permanent Fault-Tolerant Algorithm Correctness 130

10.1 Permanent Fault-Tolerant Propositions 130

10.1.1 One-repeatable Fault-tolerant Controllable Proposition 131

10.1.2 m-one-repeatable Controllable Fault-tolerant Proposition . . . 132

10.1.3 Non-repeatable Permanent Fault-tolerant Controllable Propo-

sition . 135

10.1.4 Resettable Permanent Fault-tolerant Controllable Proposition 140

10.2 Permanent Fault-Tolerant Controllable Theorems 145

10.2.1 Fault-tolerant Controllable Theorem 145

10.2.2 One-repeatable Fault-tolerant Controllable Theorem 146

10.2.3 m-one-repeatable Fault-tolerant Controllable Theorem 147

10.2.4 Non-repeatable Permanent Fault-tolerant Controllable Theorem 149

10.2.5 Resettable Permanent Fault-tolerant Controllable Theorem . . 152

10.3 Permanent Fault-Tolerant Nonblocking Theorems 156

10.3.1 Fault-Tolerant Nonblocking Theorem 156

xi

10.3.2 One-repeatable Fault-tolerant Nonblocking Theorem 156

10.3.3 m-one-repeatable Fault-tolerant Nonblocking Theorem 157

10.3.4 Non-repeatable Permanent Fault-tolerant Nonblocking Theorem 160

10.3.5 Resettable Permanent Fault-tolerant Nonblocking Theorem . . 164

11 Permanent Fault-Tolerant Manufacturing Example 168

11.1 Adding a Permanent Fault . 168

11.2 Discussion of Results . 169

12 Timed Permanent Fault-Tolerant Controllability 171

12.1 Timed Permanent Fault-Tolerant Setting 171

12.2 Timed Permanent Fault-Tolerant Consistency 172

12.3 Timed Permanent Fault Scenarios . 173

12.4 Timed Fault-Tolerant Controllability 174

12.5 Timed One-repeatable Fault-Tolerant Controllability 175

12.6 Timed m-one-repeatable Fault-Tolerant Controllability 176

12.7 Timed Non-repeatable Permanent Fault-Tolerant Controllability . . . 177

12.8 Timed Resettable Permanent Fault-Tolerant Controllability 178

13 Timed Permanent Fault-Tolerant Algorithms 180

13.1 Algorithms . 180

13.1.1 Timed Fault-Tolerant Controllability Algorithm 181

13.1.2 Timed One-repeatable Fault-Tolerant Controllability Algorithm 183

13.1.3 Timed m-one-repeatable Faults-Tolerant Controllability Algo-

rithm . 184

xii

13.1.4 Timed Non-repeatable Permanent Fault-Tolerant Controllabil-

ity Algorithm . 186

13.1.5 Timed Resettable Permanent Fault-Tolerant Controllability Al-

gorithm . 189

13.2 Algorithm Complexity Analysis . 191

13.2.1 Timed FT Controllability Algorithm 192

13.2.2 Timed one-repeatable FT Controllability Algorithm 193

13.2.3 Timed m-one-repeatable FT Controllability Algorithm 193

13.2.4 Timed Non-repeatable PFT Controllability Algorithm 194

13.2.5 Timed Resettable PFT Controllability Algorithm 194

14 Timed Permanent Fault-Tolerant Algorithm Correctness 195

14.1 Timed Permanent Fault-Tolerant Propositions 195

14.1.1 Timed One-repeatable Fault-Tolerant Controllable Proposition 196

14.1.2 Timed m-one-repeatable Fault-Tolerant Controllable Proposition197

14.1.3 Timed Non-repeatable Permanent Fault-Tolerant Controllable

Proposition . 198

14.1.4 Timed Resettable Permanent Fault-Tolerant Controllable Propo-

sition . 199

14.2 Timed Permanent Fault-Tolerant Controllable Theorems 200

14.2.1 Timed Fault-tolerant Controllable Theorem 200

14.2.2 Timed One-repeatable Fault-tolerant Controllable Theorem . . 201

14.2.3 Timed m-one-repeatable Fault-tolerant Controllable Theorem 207

14.2.4 Timed Non-repeatable Permanent Fault-tolerant Controllable

Theorem . 213

xiii

14.2.5 Timed Resettable Permanent Fault-tolerant Controllable The-

orem . 220

15 Timed Permanent Fault-Tolerant Manufacturing Example 229

15.1 Setting Introduction . 229

15.2 Single Loop Example . 230

15.2.1 Sensor Models . 230

15.2.2 Adding Permanent Fault . 231

15.2.3 Sensor Interdependencies . 232

15.2.4 Train Models . 233

15.2.5 Relationship Between Sensors and Trains Models 233

15.2.6 Adding Forcing . 234

15.3 Modular Supervisors . 235

15.3.1 Collision Protection Supervisors 236

15.3.2 Collision Protection Fault-Tolerant Supervisors 236

16 Conclusions and Future Work 239

16.1 Conclusions . 239

16.2 Future Work . 241

Bibliography 241

xiv

List of Tables

7.1 Verification Times for Full System . 98

11.2 Non-BDD Example Results . 170

11.3 BDD Example Results . 170

xv

List of Figures

1.1 Sensors in the Testbed . 9

1.2 Single Train Loop . 9

1.3 Original Sensor Model . 9

1.4 Sensors 9, 10, and 16 with Faults . 9

1.5 Sensor Interdependencies For Train 1 9

1.6 Sensor Interdependencies For Train 2 9

1.7 Sensor 9 with Permanent Faults . 12

1.8 Sensor 9 and Train 1 with Permanent Faults 12

1.9 Sensors 9 and Train 2 with Permanent Faults 12

5.10 Excluded Faults Plant G∆F . 42

5.11 N-Fault Plant GNF, N = 3 . 45

5.12 Non-Repeatable N-Fault Plant GF,i 47

5.13 Resettable Fault Plant GTF,i . 50

7.14 Sensor Interdependencies for Train 1 92

7.15 Sensor Interdependencies for Train 2 92

7.16 Train K Model . 93

7.17 Sensors and Train K . 93

7.18 Sensors and Train K with Faults . 93

xvi

7.19 CPS-11-13 Supervisor . 95

7.20 CPS-15-16 Supervisor . 95

7.21 CPS-12-14 Supervisor . 95

7.22 CPS-9-10 Supervisor . 95

7.23 CPS-11-13FT Supervisor . 96

7.24 CPS-12-14FT Supervisor . 96

7.25 CPS-9-10FT Supervisor . 96

9.26 One-Repeatable Fault Plant G1RF,ΣF = {σ1, . . . , σ3} 113

9.27 m-One-Repeatable Fault Plant G1RF,i,ΣFi
= {σ1, . . . , σ3} 116

9.28 Non-Repeatable Permanent Fault Plant GNRPF,i,ΣPi
= {σ1, . . . , σ3} . 120

9.29 Resettable Permanent Fault Plant GTPF,i,ΣPi
= {σ1, . . . , σ3} 123

11.30Sensor 9 and Train 1 with Permanent Faults 169

11.31Sensors 9 and Train 2 with Permanent Faults 169

13.32Timed Excluded Faults Plant Gt∆F 182

13.33Timed One-Repeatable Fault Plant Gt1RF,ΣF = {σ1, . . . , σ3} 184

13.34Timed m-One-Repeatable Fault Plant Gt1RF,i,ΣFi
= {σ1, . . . , σ3} . . 185

13.35Timed Non-Repeatable Permanent Fault PlantGtNRPF,i,ΣPi
= {σ1, . . . , σ3}188

13.36Timed Resettable Permanent Fault Plant GtTPF,i,ΣPi
= {σ1, . . . , σ3} 189

15.37Sensor J = 11, . . . , 15 with tick Events 231

15.38Sensors J = 9, 10, 16 with Faults and tick Events 231

15.39Sensor 9 and Train 1 with Permanent Faults 232

15.40Sensors 9 and Train 2 with Permanent Faults 232

15.41Sensor Interdependencies for Train 1 232

15.42Sensor Interdependencies for Train 2 232

xvii

15.43Train K (K = 1, 2) with Tick Events 233

15.44Sensors and Train K (K = 1, 2) with Fault and Tick Events 233

15.45Add forceT1 Event . 234

15.46Add forceT2 Event . 234

15.47Force en train1 for Train 1 . 235

15.48Force en train2 for Train 2 . 235

15.49CPS9-10 Supervisor . 237

15.50CPS-11-13 Supervisor . 237

15.51CPS12-14 Supervisor . 237

15.52CPS15-16 Supervisor . 237

15.53CPS-9-10FT Supervisor . 238

15.54CPS-11-13FT Supervisor . 238

15.55CPS-12-14FT Supervisor . 238

xviii

Chapter 1

Introduction

1.1 Introduction

Supervisory control theory, introduced by Ramadge and Wonham [RW87, Won14,

WR87], provides a formal framework for analysing discrete-event systems (DES).

In this theory, automata are used to model the system to be controlled and the

specification for the desired system behaviour. The theory provides methods and

algorithms to obtain a supervisor that ensures the system will produce the desired

behaviour.

However, the base theory typically assumes that the system behaviour does not

contain faults that would cause the actual system to deviate from the theoretical

model. An example is a sensor that detects the presence of an approaching train. If

the supervisor relies on this sensor to determine when the train should be stopped in

order to prevent a collision, it could fail to enforce its control law if the sensor failed.

In this thesis, we will initially consider only intermittent faults, and then we will

1

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

extend our results to also handle permanent faults. An intermittent fault is a mal-

function of a device or system that occurs at intervals, usually irregular, in a device

or system that functions normally at other times. A loose connection is an example

of this kind of fault. Another example is the intermittent failure of a sensor.

A permanent fault is a type of failure that is persistent; it continues to exist until

the faulty component is repaired or replaced. Examples of this type of fault are disk

head crashes, a failed sensor, a binary output stuck at a single value, and a burnt-out

power supply.

We will also extend the permanent fault results to the timed setting, specifically the

timed DES setting (TDES) [BW92, Bra93, BW94]. This will be a useful extension

as TDES adds to untimed DES the ability to express when an event is possible,

when it must occur by, and the ability to force certain events (forcible events) to

occur in a specified time frame. We note that here we will be building upon the

work of Alsuwaidan [Als16]. Alsuwaidan adapted our intermittent fault results from

[MRD+15] (an early version of the work we present in this thesis) to the TDES setting.

Our goal in this thesis is to present our approach for introducing uncontrollable fault

events to the system’s plant model and to categorize some common fault scenarios.

By scenarios, we refer to several common fault situations that we would want our

supervisors to be able to handle. The scenarios range from simple situations that are

easy to verify (for example, at most N ≥ 0 faults are allowed to occur), to ones that

are more flexible in the occurrence of faults, but more expensive to verify.

We will then develop some properties that will allow us to determine if a supervisor

will still be controllable and nonblocking in these scenarios. For example, if we add

fault events to our plant model but restrict fault events from occurring more that N =

2

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

1 times in any given string, will the resulting system be controllable and nonblocking?

What if we allowed at most N = 2 fault events per string?

1.2 Related Work

Currently in the DES literature, the most common approach when a fault is de-

tected is to switch to a new supervisor to handle the system in its degraded mode.

Such an approach focuses on fault recovery as opposed to fault-tolerance. This re-

quires the construction of a second supervisor, and requires that there be a means to

detect the occurrence of the fault in order to initiate the switch.

In our approach, we use a single supervisor that will behave correctly for the

original system without faults, and for the system with added fault events that are

restricted to the fault scenarios that we are addressing. This is a passive approach

that relies on the inherent redundancy in the system being controlled. Our method

has the advantage that we only need to design a single supervisor for our system, and

that we do not need to detect that a fault has occurred for our approach to work.

We will now discuss some relevant, related work.

1.2.1 Untimed DES Setting

Two closely related topics to fault-tolerance and fault recovery are robust and adap-

tive supervisory control as discussed by [BLW05, Lin93, SZ05]. In both approaches,

the system G of interest is not specified exactly, but either belongs to a set of possible

plants, or we are given a set of “lower” and “upper” bounds. For robust control, the

goal is to construct a supervisor that will achieve a desired behavior for all of the

3

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

possible plants. This is analogous to our passive approach to fault-tolerance.

Adaptive control, on the other hand, monitors system behavior and uses the in-

formation to resolve or reduce the uncertainty in the system’s behavior in order to

improve the performance of the system. This is analogous to active fault recov-

ery methods. It is worth noting that both methods involve synthesis, where our

approach is based on user designed supervisors and verification. As synthesis algo-

rithms have higher complexity than verification algorithms [Rud88a], our approach

should be applicable to larger systems. Also, modular supervisors are typically easier

to understand and implement than the results of synthesis.

An additional drawback with active fault recovery methods is that they require that

a fault be detected, and possibly identified if there are multiple faults, before the fault

recovery response can be applied. Constructing a fault diagnoser can be expensive

[SSL+96], and has the additional concern that it may not detect the fault in time to

respond appropriately. As our approach is passive and can handle the original and

faulted system, response time is not a concern for us. However, the tradeoff is that

our approach may result in an overly cautious supervisor.

While adaptive and robust control are related, neither has a concept of fault events

and thus cannot be used directly for fault-tolerance or recovery as their supervisors

could be designed to take action on the occurrence of a fault event which should be

unobservable to supervisors. However, methods such as Saboori et al. [SZ05], which

make use of partial observations, could perhaps be adapted by setting fault events to

be unobservable, and using a model without faults, and a post-fault model.

This of course raises the question of how the post-fault model would be obtained?

Simply adding fault events to an existing model often results in a system with strings

4

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

that contain so many faults in them that no controllable and nonblocking supervisor

would exist. Where it is true they could make use of the models generated by our

approach, but then robust/adaptive control would be unnecessary as synthesis could

just be done directly on the resulting model as there would be no uncertainty left.

Finally, it might be possible to use robust/adaptive control on the original plant

model without fault events, and new post-fault models without fault events. However

if the system contains multiple faults, generating separate models for each possible

post-fault system (i.e. system behavior after a specific sequence of faults have oc-

curred) could be tedious, error prone, and time consuming. Our approach on the

other hand, uses a single system model with all faults already added. We provide

a simple approach and methodology for adding faults to an existing system model,

that could be easily automated.

Qin Wen et al. [WKHL08] introduces a framework for fault-tolerant supervisory

control of discrete-event systems. In this framework, plants contain both normal

behavior and behavior with faults, as well as a submodel that contains only the normal

behavior. The goal of fault-tolerant supervisory control is to enforce a specification

for the normal behavior of the plant and to enforce another specification for the

overall plant behavior. This includes ensuring that the plant recovers from any fault

within a bounded delay so that after the recovery, the system state is equivalent to

a state in the normal plant behavior. They formulate this notion of fault-tolerant

supervisory control and provide a necessary and sufficient condition for the existence

of such a supervisor. The condition involves notions of controllability, observability

and relative-closure together with the notion of stability.

In Paoli et al. [PSL11], they propose to detect faults and switch to a different

5

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

supervisor before the nominal system behaviour is violated. The controller is updated

based on the information provided by online diagnostics. The supervisor needs to

detect the malfunctioning component in the system in order to achieve the desired

specification. The authors propose the idea of safe diagnosability as a step to achieve

fault-tolerant control.

In Park et al. [PL99], they present necessary and sufficient conditions for fault-

tolerant robust supervisory control of discrete-event systems that belong to a set of

models. When these conditions are satisfied, fault-tolerance can be achieved based on

the identification of tolerable fault sequences. In the paper, the results were applied

to the design, modelling, and control of a workcell consisting of arc welding (GMAW)

robots, a sensor, and a conveyor.

As we will see in the following section, our approach is quite different to the

preceding methods. Rather than focus on synthesis approaches, ours is based on

verification. We assume that the designer has used their understanding of the given

system and its possible faults to attempt to design a supervisor that is controllable

and nonblocking for the system both without faults, and when faults occur according

to our specified scenarios. Our goal is to provide a method to verify if they have

achieved this.

1.2.2 Timed DES Setting

Brandin et al. [BW92, Bra93, BW94] added a new dimension to the basic DES

theory by introducing timed discrete-event systems (TDES). They introduced the

concept of a global clock and tick event. Also, they introduced the ability to specify

when certain events must occur.

6

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Research has been conducted to discuss faults in the TDES setting. However, this

research focused on fault recovery and fault detection, as opposed to fault tolerance.

In [AA10], the main goal of Allahham et al. was to detect system faults as early

as possible. Their proposed idea was to construct a TDES with two clocks: one

clock would reflect the task state and and the other clock would measure the elapsed

time since the task had been started. They assumed that each task had normal

behavior with no faults, and acceptable behavior with intermittent faults within a

bounded delay. Their approach was to give each task a time interval. Then, they

would check if the task had finished in the defined time interval or before it, which

means the system had no faults or it had intermittent faults that the system can

tolerant. They monitored the TDES with stopwatch automaton that modeled the

acceptable behavior for a specific task. The stopwatch had three locations: initial,

normal execution, and interruption, to specify the task status.

In [MZ05], Moosaei et al. introduced fault recovery to TDES. Their system consists

of the plant and a diagnosis system, both modeled using activity transition graphs

(ATG). The plant model describes its behavior in both normal and faulty conditions.

The diagnosis system was assumed to be available to detect and isolate faults when-

ever they occurred. They have introduced three modes for their system: normal

when no faults occur, transient when a fault occurs, and recovery when the fault was

detected and isolated. Their design consists of a normal-transient supervisor, and

multiple recovery supervisors for each failure mode.

7

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

1.2.3 Illustrative Example

We now introduce an example to illustrate our method. We will briefly introduce

the example here, and then use it to explain the various aspects of our approach

as we introduce them. After we have fully introduced our method, we will provide

the remaining portions of the example in Chapter 7, and then discuss the results of

applying our approach to the example.

Example Setting

Our example is based on the manufacturing testbed from Leduc [Led96]. The

testbed was designed to simulate a manufacturing workcell using model train equip-

ment, in particular problems of routing and collision. Figure 1.1 shows conceptually

the structure of the full testbed and sensors.

We will initially focus on only a single track loop, shown in Figure 1.2. The loop

contains eight sensors and two trains (train 1, train 2). Train 1 starts between sensors

9 and 10, while train 2 starts between sensors 15 and 16. Both trains can only traverse

the tracks in a counter clockwise direction.

The sensor models, shown in Figure 1.3, indicate when a given train is present, and

when no trains are present. Also, they state that only one train can activate a given

sensor at a time. The figure shows the original sensor model, one for each sensor

J ∈ {9, . . . , 16}, before fault events were added to the plant model.

Figures 1.5 and 1.6 show the sensor’s interdependencies with respect to a given

train. With respect to the starting position of a particular train (represented by the

initial state), sensors can only be reached in a particular order, dictated by their

physical location on the track. Both DES already show the added fault events.

8

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

S1A

S
2

7
A

S
1
1

A

S
1

2
A

S
1

4
A

S
1

3
A

S
8

A

S
2

1
A

S
2

4
A

S
2

7
B

S
1
1

B

S
1

2
B

S
1

4
B

S
1

3
B

S
8

B

S
2

1
B

S
2

2
A

S
2

2
B

S
2

3
A

S
2

3
B

S
2

4
B

S19A S20A

S26AS25AS15A S16A

S19B S20B

S26BS25BS15B S16B S17B

S18B

S6B S7B

S9B S10B

S17A

S18A

S6A S7A

S9A S10A

S0A

S
2

A

S
3

A
S

5
A

S
4

A

S1B

S0B

S
2

B

S
3

B
S

5
B

S
4

B

Figure 1.1: Sensors in the Testbed

S9 S10

S15 S16

S11

S13

S12

S14

Figure 1.2: Single Train
Loop

_������

_������

_������
	 �

Figure 1.3: Original Sensor
Model

!t1_atJ
!t2_atJ
!t1F_atJ
!t2F_atJ

!nt_atJ
10

Figure 1.4: Sensors 9, 10,
and 16 with Faults

_�������

_�������

_������

_�������

_��������

_������	

_������

_�������

_�������

_������

_�������

	 �

�

��

��

Figure 1.5: Sensor Interdependencies For
Train 1

_������

_�������

_������	

_�������	

_������

_�������

_�������

���������������

_������

_�������

��� �

�

�

�

Figure 1.6: Sensor Interdependencies For
Train 2

9

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We note that in the DES diagrams, circles represent unmarked states, while filled

circles represent marked states. Two concentric, unfilled circles represent the initial

state. If the initial state is also marked, the inner circle is filled. Uncontrollable events

are indicated by an “!” preceding the event’s name, such as “!t1 atJ”.

Adding Intermittent Faults

To add faults to the model, we assumed that sensors 9, 10, and 16 could have

an intermittent fault; sometimes the sensor would detect the presence of a train,

sometimes it would fail to do so. We modelled this by adding to all the plant models

a new event t1F atJ, J ∈ {9, 10, 16}, for each t1 atJ event. For each t1 atJ transition

in a plant model, we added an identical t1F atJ transition. The idea is we can now get

the original detection event or the new fault one instead. We made similar changes

for train 2. Figure 1.4 shows the new sensor models with the added fault events. We

note that the fault events must be uncontrollable events as it would be unrealistic if

a supervisor could simply disable a fault event and prevent the fault from occurring.

Now consider the problem of preventing a second train from entering the track

segment bounded by sensors 11 and 13, when this section is already occupied by the

first train. Ideally, we would monitor sensor 10 for the arrival of the second train,

and halt that train until the first train has left the protected track segment. How

ever, if sensor 10 faulted, the train would not stop and we would have a collision. We

could make our controller more redundant by monitoring both sensors 9 and 10, and

we could then safely stop the train as long as both sensors did not fail. In such a

situation, we could tolerate a single fault, but not two in a row.

We further note that we can not allow our supervisor to make decisions based

10

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

on the occurrence of the sensor fault events as we can not realistically expect such

faults to be observable. The supervisor must only change its control actions based on

observing non fault events.

Adding Permanent Faults

It is possible to model permanent faults to work with the intermittent fault results

that we present in Chapter 4, but this is quite onerous for the designer. For example,

to add a permanent fault at sensor 9, we would need to model the system with a

single fault event transition for sensor 9 that takes our plant model from our non-

fault behaviour, to the systems behaviour after the permanent fault has occurred.

Figure 1.7 shows what this would like for the sensor’s interdependencies with

respect to a train 1. If we added a permanent fault at sensor 10, we would have

to quadruple the plant model to keep track of the four possible plant fault states,

and the corresponding plant behaviour for each. It’s easy to see that with a large

number of permanent faults and a large number of plant components, modelling such

behaviour quickly becomes confusing and tedious.

A much more tractable way to model permanent faults is to model the system for

intermittent faults (i.e. we have a choice between the fault and normal sensor event

such as in Figures 1.5 and 1.6) as above, and then for each fault event that we wish

to make permanent, we add a new plant DES such as in Figure 1.8 for fault event

t1F at9. The automata states that once the fault event occurs, it can continue to

occur but the original non-fault event is no longer possible. Figure 1.9 is similar, but

for fault event t2F at9.

The resulting plant model will be similar to Figure 1.7 in size and structure, but

11

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

!t1_at10!t1_at9

!t1_at11

!t1_at13

!t1_at15 !t1_at16

!t1_at14

!t1_at12

!t1F_at9

!t1_at12

!t1_at10

!t1_at11

!t1_at13

!t1_at15 !t1_at16

!t1_at14

345

6

7 11 1

2

3
5

6

7 11 1

2

Figure 1.7: Sensor 9 with Permanent Faults

!t1F_at9

!t1_at9 !t1F_at9

0 1

Figure 1.8: Sensor 9 and Train 1 with Per-
manent Faults

!t2F_at9!t2_at9

!t2F_at9

0 1

Figure 1.9: Sensors 9 and Train 2 with Per-
manent Faults

12

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

the construction will be handled automatically by the synchronous product opera-

tor, instead of manually by the designer. This should increase the accuracy of the

modelling process, while simultaneously decrease the difficulty for the designer.

Although this approach makes modelling permanent faults quite easy, it makes it

incompatible with most of the intermittent fault-tolerant properties that we will intro-

duce. To see this, consider the N = 1 fault-tolerant nonblocking property from Chap-

ter 4. It essentially states that if we only consider strings in the system’s behaviour

that contain at most one fault event, the resulting system must be nonblocking.

Consider Figures 1.5 and 1.8. To get from states 4 to 5 in Figure 1.5, either the

fault or the non-fault event must occur. After the first occurrence of the fault event,

Figure 1.8 states that only the fault event will be possible. However, N = 1 fault-

tolerant nonblocking property only allows a single fault transition, causing Figure 1.5

to deadlock at state 4. The typical result of adding permanent faults in this manner

is to cause the intermittent fault-tolerant nonblocking properties to block.

To make this approach to modelling permanent faults workable, we will need intro-

duce new fault scenarios and fault-tolerant controllability and nonblocking properties

(Chapter 8) that will be designed to work specifically with this new methodology.

1.3 Thesis Structure

The reminder of this thesis is organized as follow: Chapter 2 presents the required

DES background including languages, automata, controllability and nonblocking def-

initions, while Chapter 3 discusses fault events, fault-tolerant (FT) consistency, and

fault scenarios. Chapter 4 introduces fault-tolerant controllability and nonblocking

13

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

properties, while Chapter 5 presents algorithms to verify these properties, and pro-

vides a complexity analysis for the algorithms. Finally, Chapter 6 provides proposi-

tions and theorems to verify the correctness of the FT controllability algorithms from

Chapter 5, while Chapter 7 presents an example to illustrate our approach.

Chapter 8 introduces permanent fault-tolerant (PFT) controllability and non-

blocking properties, while Chapter 9 presents algorithms to verify these properties

and provides a complexity analysis for the algorithms. Finally, Chapter 10 provides

propositions and theorems and proofs to verify the correctness of the PFT controlla-

bility algorithms from Chapter 9, while Chapter 11 presents an example to illustrate

our PFT approach.

Chapter 12 introduces timed permanent fault-tolerant (TPFT) controllability

properties, while Chapter 13 presents algorithms to verify these properties and

provides a complexity analysis for the algorithms. Finally, Chapter 14 provides

propositions and theorems and proofs to verify the correctness of these algorithms,

while Chapter 15 presents an example to illustrate our TPFT approach.

Chapter 16 provides conclusions and suggestions for future work.

14

Chapter 2

Preliminaries

In this chapter, we introduce a summary of the DES terminology that we use

throughout the thesis. Please see [Won14, CL09a] and [BW92, Bra93, BW94].

2.1 Languages

Typically, a DES is represented as an automaton defined over an event set. We can

think of the event set as an alphabet. A sequence of events taken from this alphabet

is called a string, and a set of strings is called a language. Languages are used to

represent system behavior.

Now, let Σ be a finite set of distinct symbols (i.e. α, β, γ). We refer to Σ as an

alphabet. Let Σ+ denote the set of all finite, non-empty sequences σ1σ2 . . . σk, where

σi ∈ Σ and k ≥ 1. Let Σ∗ be the set of all finite sequences including ǫ, the empty

string. We thus have Σ∗:= Σ+∪{ǫ}. Let Pwr(Σ) denote the set of all possible subsets

of (Σ). A language L ⊆ Σ∗ is any subset of Σ∗. For s ∈ Σ∗, |s| equals the length

15

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

(number of events) of the string.

The prefix closure of a language L is often relevant to control problems, because

it shows the history of the strings in L. For s ∈ Σ∗, we say t ∈ Σ∗ is a prefix of s and

write t ≤ s if: (∃u ∈ Σ∗)s = tu. For L ⊆ Σ∗, the prefix closure of L is L defined as:

L := {t ∈ Σ∗|t ≤ s for some s ∈ L}. A language L is closed if L = L.

Finally, we provide some language definitions we use in the thesis. We start with

the language Lk. This is the set of strings constructed from any k strings in L.

Definition 2.1.1. Let L⊆Σ∗ and k ∈ {1, 2, 3, . . .}. We define the language Lk to be:

Lk := {s ∈ Σ∗|s = s1s2 . . . sk for some s1, s2, . . . , sk ∈ L}

We next define the notation for the language constructed from all possible ways

to concatenate a string from the first language, followed by an event from the event

set, and a string from the second language.

Definition 2.1.2. Let L1, L2⊆Σ
∗ and Σ′⊆Σ. We define the language L1.Σ

′.L2 to be:

L1.Σ
′.L2 := {s ∈ Σ∗|s = s1σs2 for some s1 ∈ L1, s2 ∈ L2, σ ∈ Σ′}

2.1.1 Natural Projection and Inverse Projection

The natural projection operator takes a string formed from a larger event set, i.e.

Σ, and erases events in it that do not belong to the smaller event set, i.e. Σi ⊆ Σ

. Natural projection plays an important role in the study of DES [CL09b]. Let

Σ = Σ1 ∪ Σ2, L1 ⊆ Σ∗

1, and L2 ⊆ Σ∗

2. For i = 1, 2, s ∈ Σ∗, and σ ∈ Σ, we define the

16

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

natural projection Pi : Σ
∗ → Σ∗

i according to:

Pi(ǫ) = ǫ

Pi(σ) =











ǫ if σ 6∈ Σi

σ if σ ∈ Σi

Pi(sσ) = Pi(s)Pi(σ)

The map P−1
i : Pwr(Σ∗

i) → Pwr(Σ∗) is the inverse image of Pi such that for

L⊆Σ∗

i , P
−1
i (L):= {s ∈ Σ∗|Pi(s) ∈ L}.

2.2 DES

A DES G is a generator, and formally defined as a five tuple

G := (Q,Σ, δ, q0, Qm),

where Q is the state set; Σ = Σc∪̇Σu, where Σc is the set of controllable events, and Σu

is the set of uncontrollable events; δ : Q×Σ→ Q is the (partial) transition function;

q0 is the initial state, and Qm ⊆ Q is the set of marker states. We will always assume

Q and Σ are finite.

Let q ∈ Q, σ ∈ Σ. We use δ(q, σ)! to mean that δ(q, σ) is defined.

The transition function δ can be extended to δ : Q× Σ∗ → Q according to

δ(q, ǫ) = q

δ(q, sσ) = δ(δ(q, s), σ)

provided q′ := δ(q, s)! and δ(q′, σ)!. Note that δ(q, ǫ) is always defined.

17

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Definition 2.2.1. For DES G, the language generated by G, referred to as the closed

behavior of G, is denoted by L(G), and is defined to be:

L(G) := {s ∈ Σ∗| δ(yo, s)!}

The language L(G) represents all the defined paths in the state transition diagram.

String s is thus in L(G) if and only if it starts from the initial state and has an

admissible path in the state transition diagram.

Definition 2.2.2. The marked behavior of G is defined as:

Lm(G) := {s ∈ L(G)| δ(yo, s) ∈ Ym}

Clearly, Lm ⊆ L(G). String s is in Lm(G) if and only if its path starts from the

initial state and ends in a marked state.

Definition 2.2.3. The reachable state subset of DES G, denoted Yr, is

Yr := {y ∈ Y | (∃s ∈ Σ∗) δ(yo, s) = y}

We say G is reachable if all of its states are reachable, i. e. Yr = Y .

Definition 2.2.4. We say a state y ∈ Y is coreachable if there is a string s ∈ Σ∗

such that δ(y, s)! and δ(y, s) ∈ Ym.

We say G is coreachable if all of its states are coreachable. A DES could reach a

deadlock state where no further events can be executed, or a livelock state where there

is a set of unmarked states that are strongly connected without transitions going out

of the set. In the case of system deadlock or livelock, we say the system is blocking.

18

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Definition 2.2.5. We say G is nonblocking if every reachable state is coreachable.

This is equivalent to saying:

L(G) = Lm(G)

We will use the following equivalent definition for nonblocking in our fault-tolerant

setting.

Definition 2.2.6. A DES G is said to be nonblocking if:

(∀s ∈ L(G))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G)

Definition 2.2.7. A DES G is deterministic if it has a single initial state, and at

every state there is at most a single transition leaving that state for each σ ∈ Σ.

In this thesis we assume that a DES is reachable, has a finite state and event set,

and is deterministic.

Definition 2.2.8. For language L ⊆ Σ∗, the eligibility operator, EligL : Σ∗ →

Pwr(Σ), is given, for s ∈ Σ∗, by:

EligL(s) := {σ ∈ Σ |sσ ∈ L}

2.2.1 Synchronous Product

Synchronous Product on Languages

Let Σ1,Σ2 be two alphabets, Σ = Σ1 ∪ Σ2.

Let L1 ⊆ Σ∗

1, L2 ⊆ Σ∗

2. The synchronous product L1 ‖ L2 ⊆ Σ∗ is defined as

19

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

L1||L2 := P−1
1 (L1) ∩ P−1

2 (L2).

Selfloop

LetG1 = (Q1,Σ1, δ1, q10 , Q1m) be a DES defined on alphabet Σ1, and Σ2 be another

alphabet with Σ1 ∩ Σ2 = ∅. The selfloop operation on G1 is used to generate a new

DES G by selflooping each event in Σ2 on each state of G1. Formally,

G = selfloop(G1,Σ2) = (Q1,Σ1 ∪ Σ2, δ2, q10 , Q1m),

where δ2 : Q1 × (Σ1 ∪ Σ2)→ Q1 is a partial function and defined as

δ2(q, σ) :=































δ1(q, σ), σ ∈ Σ1, δ1(q, σ)!

q, σ ∈ Σ2

undefined, otherwise

Let P1 : (Σ1 ∪ Σ2)
∗ → Σ∗

1 be a natural projection, then we have

L(selfloop(G1,Σ2)) = P−1
1 (L(G1))

Lm(selfloop(G1,Σ2)) = P−1
1 (Lm(G1))

Synchronous Product on DES

Let G1 = (Q1,Σ1, δ1, q10 , Q1m), G2 = (Q2,Σ2, δ2, q20 , Q2m) be two DES. The

synchronous product of G1 and G2 is defined as

Definition 2.2.9. For Gi = (Qi,Σi, δi, qo,i, Qm,i) (i = 1, 2), we define the syn-

chronous product G = G1||G2 of the two DES as:

G := (Q1 ×Q2,Σ1 ∪ Σ2, δ, (qo,1, qo,2), Qm,1 ×Qm,2),

20

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

where δ((q1, q2), σ) is only defined and equals:

(q′1, q
′

2) if σ ∈ (Σ1 ∩ Σ2), δ1(q1, σ) = q′1, δ2(q2, σ) = q′2 or

(q′1, q2) if σ ∈ Σ1 − Σ2, δ1(q1, σ) = q′1or

(q1, q
′

2) if σ ∈ Σ2 − Σ1, δ2(q2, σ) = q′2.

It follows that L(G) = P−1
1 L(G1) ∩ P−1

2 L(G2) and Lm(G) = P−1
1 Lm(G1) ∩

P−1
2 Lm(G2). We note that if Σ1 = Σ2, we get L(G) = L(G1)∩L(G2) and Lm(G) =

Lm(G1) ∩ Lm(G2).

For the definitions given in this thesis, we assume that our plant G and supervisor

S are always combined with the synchronize product operator, thus our closed-loop

system is G||S. To simplify our definitions, we will assume that S and G are both

defined over the same alphabet, Σ. If this is not the case, we can construct G′ and

S′ by adding selfloops to each DES to extend them over the combined alphabet Σ,

and then use G′ and S′ instead.

2.2.2 Supervisory Control

In DES theory, the unrestricted system behavior is modelled as a plant DES.

The desired behavior of the system is then modelled as a supervisor DES. The goal

is for the supervisor to monitor the plant behavior, and then through valid control

actions, ensure the system behavior stays within the desired behavior. Let DES

G = (Y,Σ, δ, yo, Ym) be a our plant, and let DES S = (Y,Σ, ξ, yo, Ym) be our supervi-

sor.

For example, if we have a system with two robots, we might need to control their

21

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

behavior by specifying that only one robot can perform a task at a time. When the

first robot finishes its task, the second robot can perform its task. Such actions do

not create new system behavior, they only restrict the behavior.

Our next step is to define our control technology. We do this by partitioning our

alphabet into two disjoint subsets as follows:

Σ = Σc ∪̇ Σu

Controllable events (Σc) are events that can be enabled or disabled by an external

agent (i.e. our supervisor). They can only occur if they have been enabled.Uncontrollable

events (Σu) are events that can not be disabled by an external agent. Once the plant

reaches a state where these events can occur, there is no way that the supervisor can

stop them from occurring.

We now introduce the concept of controllability. It basically checks to make sure

the plant behavior can not leave the desired behavior, specified by K, due to an

uncontrollable event.

Definition 2.2.10. We say a language K ⊆ Σ∗ is controllable with respect to G if

(∀s ∈ K)(∀σ ∈ Σu)sσ ∈ L(G)⇒ sσ ∈ K

The following definition restates controllability in terms of a supervisor.

Definition 2.2.11. A supervisor S = (X,Σ, ξ, xo, Xm) is controllable for plant G =

22

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

(Y,Σ, δ, yo, Ym) if:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)sσ ∈ L(G)⇒ sσ ∈ L(S)

2.3 Timed DES

Timed DES (TDES) [BW92, Bra93, BW94] extends untimed DES theory by adding

a new tick (τ) event, corresponding to the tick of a global clock. The event set of a

TDES contains the tick event as well as other non-tick events called activity events,

Σact.

A TDES is represented as a 5-tuple G = (Q,Σ, δ, qo, Qm) where Q is the state set;

Σ = Σact∪̇{τ}; δ : Q × Σ → Q is the (partial) transition function; q0 is the initial

state, and Qm ⊆ Q is the set of marker states. We will always assume Q and Σ are

finite. We extend δ to δ : Q× Σ∗ → Q in the natural way.

For TDES, we introduce two new event types. Prohibitible events (Σhib) are events

that can be disabled by a supervisor. Forcible events (Σfor) are events that can pre-

empt a tick of the clock i.e. they can be forced to occur before the next tick of the

clock. If G is in a state where the tick event is possible and a forcible event is possible,

then the supervisor can disable the tick event, knowing that the forcible event will

occur if needed to prevent the clock from stopping.

For the TDES setting, we provide alternative version of several untimed definitions.

First, we define uncontrollable events as follows:

Σu := Σact − Σhib

23

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We define controllable events as:

Σc := Σ− Σu = Σhib ∪ {τ}

Definition 2.3.1. Supervisor S is timed controllable with respect to G if

(∀s ∈ L(S) ∩ L(G)),

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

We note that if it is clear that we are referring to TDES, we will drop the ”timed”

part, and just says is controllable for G.

For TDES, we have the addition properties of activity loop free and proper timed

behavior. The first definition ensures that the clock tick can not be delayed indefi-

nitely, while the second ensures that either a tick or an untimed event (which can not

be disabled) is always possible in the plant. We note that the set Qr ⊆ Q is the set

of reachable states for G

Definition 2.3.2. TDES G = (Q,Σ, δ, qo, Qm) is activity-loop-free (ALF) if

(∀q ∈ Qr)(∀s ∈ Σ∗

act)δ(q, s) 6= q

Definition 2.3.3. A plant TDES G has proper time behavior if:

(∀q ∈ Qr)(∃σ ∈ Σu ∪ τ)δ(q, σ)!

24

Chapter 3

Fault-Tolerant Setting

In this chapter, we will introduce our concept of fault events, a consistency property

that our systems must satisfy, and the fault scenarios that we want our supervisors

to be able to handle. Our eventual goal will be to be able to determine if our super-

visor will be controllable for our plant, and our system nonblocking for a given fault

scenario. In the following section, we will assume that all DES are deterministic, and

that we are given plant G = (Y,Σ, δ, yo, Ym) and supervisor S = (X,Σ, ξ, xo, Xm).

3.1 Fault Events

In this thesis, our approach will be to add a set of uncontrollable events to our plant

model to represent the possible faults in the system. For example, if we had a sensor

to detect when a train passes, its plant model might originally contain an event such

as trn sen0 indicating a train is present. We could add a new uncontrollable event,

trnF sen0, that will occur instead if the sensor fails to detect the train. This will

allow us to model how the system will behave after the occurrence of the fault. Our

25

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

goal will be to design supervisors that will still behave correctly (i.e. stay controllable

and nonblocking) even if a fault event occurs, even though they can’t detect the fault

event directly.

We start by defining a group of m ≥ 0 mutually exclusive sets of fault events.

ΣFi
⊆ Σu, i = 1, . . . ,m

The idea here is to group related faults into sets such that faults of a given set

represent a common fault situation, while faults of a different set represent a different

fault situation. Consider our illustrative example from Section 1.2.3, specifically the

track loop shown in Figure 1.2. It would make sense to group the fault events for

sensors 9 and 10 as they could both be used to detect a train before it enters the next

track segment. However, a fault event for sensor 16 would not be relevant for this

task so we would put it into a different fault set.

Definition 3.1.1. We refer to faults in ΣFi
, i = 1, . . . ,m, collectively as standard

fault events:

ΣF :=
˙⋃

i=1,...,m

ΣFi

We note that for m = 0, ΣF = ∅.

The standard fault events are the faults that will be used to define the various fault

scenarios that our supervisors will need to be able to handle. However, there are two

additional types of faults that we need to define in order to handle two special cases.

The first type is called unrestricted fault events, denoted ΣΩF ⊆ Σu. These are faults

that a supervisor can always handle and thus are allowed to occur unrestricted. For

26

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

our example in Section 1.2.3, this might be a fault associated with a sensor that is

not used at all by the system’s supervisor and could thus be safely ignored. Faults in

ΣΩF are allowed to occur unrestricted in our fault scenarios.

The second type is called excluded fault events, denoted Σ∆F ⊆ Σu. These are faults

that can not be handled at all and thus are essentially removed in our scenarios. The

idea is that this would allow us to still design a fault-tolerant supervisor for the

remaining faults.

From our example in Section 7.1, consider sensor 13 from Figure 1.2. If we wished

to stop a train at this sensor so it could be loaded by a crane, we would be unable to

do so if the sensor failed as there is not a second sensor located close enough to stop

the train at the correct location. If we modelled a fault at this sensor, we would have

to make it an excluded fault or the system would fail all fault-tolerant tests. This is

an example of a fault that could not be handled by a supervisor, and would need to

be addressed by adding an additional backup sensor to the system.

For each fault set, ΣFi
, i = 1, . . . ,m, we also need to define a matching set of reset

events, denoted ΣTi
⊆ Σ. These events will be explained in Section 3.3, when we

describe the resettable fault scenario.

To define our permanent fault properties, we need to be able to distinguish be-

tween permanent faults and intermittent faults. To this end, we define the following

permanent fault subsets.

Definition 3.1.2. We refer to faults in ΣPi
⊆ ΣFi

, i = 1, . . . ,m, collectively as

permanent fault events:

ΣP :=
˙⋃

i=1,...,m

ΣPi

27

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We note that for m = 0, ΣP = ∅.

3.2 Fault-Tolerant Consistency

We now present a consistency requirement that our systems must satisfy when

dealing with intermittent faults. This is essentially a set of common sense require-

ments such as fault events being uncontrollable, different sets being disjoint, and that

supervisors can’t make control decisions based on the fault events themselves.

Definition 3.2.1. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault and reset sets ΣFi
,ΣTi

(i = 1, . . . ,m),Σ∆F , and ΣΩF , is fault

tolerant (FT) consistent if:

1. Σ∆F ∪ ΣΩF ∪ ΣF ⊆ Σu

2. Σ∆F ,ΣΩF ,ΣFi
(i = 1, . . . ,m), are pair-wise disjoint.

3. (∀i ∈ {1, . . . ,m})ΣFi
6= ∅

4. (∀i ∈ {1, . . . ,m})ΣFi
∩ ΣTi

= ∅

5. Supervisor S is deterministic.

6. (∀x ∈ X)(∀σ ∈ (ΣΩF ∪ Σ∆F ∪ ΣF))ξ(x, σ) = x

Point (1) says that fault events are uncontrollable since allowing a supervisor to

disable fault events would be unrealistic. Point (2) requires that the indicated sets

of faults be disjoint since they must each be handled differently. Point (3) says that

fault sets ΣFi
are non-empty. Point (4) says a fault set must be disjoint from its

corresponding set of reset events so we can distinguish them.

28

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Points (5) and (6) say that S is deterministic and that at every state in S, there is

a selfloop for each fault event in the system. This means a supervisor cannot change

state (and thus change enablement information) based on a fault event. This is a

key concept as it effectively makes fault events unobservable to supervisors. If S is

defined over a subset Σ′ ⊂ Σ instead, we could equivalently require that Σ′ contain

no fault events.

We note that the above definition implies that we do not need to make use of

the observability property [LW88], saving us the cost of verifying it. Essentially,

the observability property is used to check if a partial observation supervisor (one

that can only see a subset of the available events) exists that will provide the same

closed-loop behavior as an exisiting supervisor, who can observe all events. As our

approach is a verification method that assumes we are given a supervisor that is

already forced by the fault-tolerant consistency definition to treat fault events as

effectively unobservable (it can’t change state based on them), there is no need to

verify the observability property as our exisiting supervisor is already sufficient for

our needs.

3.3 Fault Scenarios

When faults are added to a plant model, we typically can have strings contain-

ing so many faults in a row that any controllability or nonblocking test would fail.

However, we are typically only interested in knowing if a system will be controllable

and nonblocking if only a certain pattern of faults have occurred. For example, we

might only want to know if at most one fault occurs, will our system be controllable

and nonblocking? Our fault scenarios are an attempt to characterize common fault

29

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

situations that we would want our supervisors to handle.

3.3.1 Intermittent Fault Scenarios

In this section, we will consider four intermittent fault scenarios. The scenarios

range from simple situations easy to verify, to ones that are more flexible in terms

of how faults can occur and how often, but more expensive to verify. They are by

no means exhaustive, but we felt that they represented a good characterization of

situations that would likely be of interest.

Default Fault Scenario

The first is the default fault scenario where the supervisor must be able to handle

any non-excluded fault event that occurs. In other words, our supervisor must be

able to handle all non-excluded fault events whenever they occur, without restriction.

This would of course, be the ideal situation.

N-Fault Scenario

The second scenario is the N ≥ 0 fault scenario where the supervisor is only

required to handle at most N , non-excluded fault events and all unrestricted fault

events. Consider our illustrative example from Section 1.2.3, specifically the track

loop shown in Figure 1.2. If we wished to prevent a collision in the track segment

bounded by sensors 11 and 13, we could stop the train at sensors 9 or 10. We could

handle N = 1 faults (i.e. sensor 9 or 10 failed but not both), but we could not handle

N = 2 faults (both sensors failed at the same time).

30

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Non-repeatable N-Fault Scenario

The next scenario is the non-repeatable N ≥ 0 fault scenario where the supervisor

is only required to handle at most N , non-excluded fault events and all unrestricted

fault events, but no more than one fault event from any given ΣFi
(i = 1, . . . ,m) fault

set. This definition allows the designer to group faults together in fault sets such that

a fault occurring from one set does not affect a supervisors ability to handle a fault

from a different set. Particularly for a situation where a supervisor could handle only

one fault per fault set, this would allow m faults to occur instead of only one using

the previous scenario.

If we continue the above example, we would put the faults for sensors 9 and 10 in

one fault set, and the fault for sensor 16 in another set. We would then expect that

we could handle N = 2 faults (i.e. a fault at sensors 10 and 16), as long as they were

not from the same fault set (i.e. can’t handle a fault at both sensors 9 and 10).

Resettable Fault Scenario

The last scenario we consider is the resettable fault scenario. This is designed to

capture the situation where at most one fault event from each ΣFi
(i = 1, . . . ,m)

fault set can be handled by the supervisor during each pass through a part of the

system, but this ability resets for the next pass. For this to work, we need to be able

to detect when the current pass has completed and it is safe for another fault event

from the same fault set to occur. We use the fault set’s corresponding set of reset

events to achieve this. The idea is that once a reset event has occurred, the current

pass can be considered over and it is safe for another fault event to occur.

If we continue the above example, we could have sensors 9 and 10 in one fault

31

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

set, and set the corresponding reset event set to only contain the detection event for

sensor 11. If we get a fault event from sensor 9 and 10 in a row, we would be unable to

stop the train. However, if we got a fault from sensor 10 only and then the detection

event for sensor 11, we would know we could now safely get a second fault event from

sensor 9 or 10 (but not both) and still be able to stop the train. Such a supervisor

could handle an infinite number of faults from sensors 9 and 10, as long as they don’t

happen more than once per pass.

32

Chapter 4

Fault-Tolerant Controllability and

Nonblocking

In this chapter we will develop some properties that will allow us to determine if

a supervisor will be controllable and nonblocking in the intermittent fault scenarios

that we introduced in the previous chapter. In essence, these definitions characterize

strings that belong to the desired fault scenario, and only require supervisors to satisfy

the controllability and nonblocking definitions for these strings.

4.1 Fault-Tolerant Controllability and Nonblock-

ing

The first fault-tolerant controllability property that we introduce is designed to

handle the default fault scenario. First, we need to define the language of excluded

faults. This is the set of all strings that include at least one fault from Σ∆F .

33

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Definition 4.1.1. We define the language of excluded faults as:

L∆F = Σ∗.Σ∆F .Σ
∗

Definition 4.1.2. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is fault tolerant (FT) controllable

if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)

(sσ ∈ L(G)) ∧ (s /∈ L∆F)⇒ sσ ∈ L(S)

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is fault-tolerant controllable for G.

The above definition is essentially the standard controllability definition but ignores

strings that include excluded fault events. As the language L(S) ∩ L(G) is prefix

closed, prefixes of these strings that do not contain excluded faults must be checked.

This definition is equivalent to blocking all excluded fault events from occurring in

the system behavior and then checking the standard controllability definition. This

is the most powerful of the fault-tolerant definitions as the supervisor must be able

to handle a potentially unlimited number of faults that can occur in any order. We

note that if Σ∆F = ∅, then Definition 4.1.2 reduces to the standard controllability

definition as L∆F reduces to L∆F = ∅.

Typically, the set of excluded faults for a given system is empty. When a system is

FT controllable and Σ∆F 6= ∅, we say that it is FT controllable with excluded faults to

emphasize that it is less fault-tolerant than if it passed the definition with Σ∆F = ∅.

We will use a similar expression with the other fault-tolerant definitions.

34

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

In a similar manner, we introduced the following FT nonblocking property to

handle the default fault scenario.

Definition 4.1.3. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is fault tolerant (FT) nonblocking

if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))

(s /∈ L∆F)⇒ (∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F)

We note that if Σ∆F = ∅, then Definition 4.1.3 reduces to the standard nonblocking

definition.

4.2 N-Fault-Tolerant Controllability and Nonblock-

ing

The next fault-tolerant controllability property that we introduce is designed to

handle the N ≥ 0 fault scenario. First, we need to define the language of N-fault

events. This is the set of all strings that include at most N faults from ΣF , including

those that contain no such faults.

Definition 4.2.1. We define the language of N-fault events as:

LNF = (Σ− ΣF)
∗ ∪

N
⋃

k=1

((Σ− ΣF)
∗.ΣF .(Σ− ΣF)

∗)k

Definition 4.2.2. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is N-fault tolerant (N-FT) con-

trollable if it is FT consistent and:

35

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)

(sσ ∈ L(G)) ∧ (s /∈ L∆F) ∧ (s ∈ LNF)⇒ sσ ∈ L(S)

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is N-fault fault-tolerant controllable for G.

The above definition is essentially the standard controllability definition but ignores

strings that include excluded fault events or more than N faults from fault sets ΣFi

(i = 0, . . . ,m). This definition is essentially weaker than the previous one since if we

take N = ∞ we get the FT controllability definition back. If we set N = 0, we get

the controllability definition with all fault events from ΣF excluded as well since LNF

will simplify to LNF = (Σ− ΣF)
∗. We also note that if m = 0, we get ΣF = ∅. This

means LNF will simplify to LNF = Σ∗ which means Definition 4.2.2 will simplify to

the FT controllable definition.

Typically, the set of unrestricted faults for a given system is empty. When a system

is N-FT controllable and ΣΩF 6= ∅, we say that it is N-FT controllable with unrestricted

faults to emphasize that it is more fault-tolerant than if it passed the definition with

ΣΩF = ∅. We will use a similar expression with the other fault-tolerant definitions.

In a similar manner, we introduced the following FT nonblocking property to

handle the N-fault scenario.

Definition 4.2.3. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is N-fault tolerant (N-FT) non-

blocking if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F) ∧ (s ∈ LNF)⇒

(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F) ∧ (ss′ ∈ LNF)

We note that if m = 0, Definition 4.2.3 simplifies to the FT nonblocking definition.

36

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

4.3 Non-repeatable N-Fault-Tolerant Controllabil-

ity and Nonblocking

The next fault-tolerant controllability property that we introduce is designed to

handle the non-repeatable N ≥ 0 fault scenario. First, we need to define the language

of repeated fault events. This is the set of all strings that include two or more faults

from a single fault set ΣFi
(i = 1, . . . ,m).

Definition 4.3.1. We define the language of repeated fault events as:

LNRF =
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)

Definition 4.3.2. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is non-repeatable N-fault toler-

ant (NR-FT) controllable, if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)

(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LNRF) ∧ (s ∈ LNF)⇒ sσ ∈ L(S)

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is non-repeatable N-fault tolerant controllable for G.

The above definition is essentially the standard controllability definition, but we

add the condition (s /∈ L∆F ∪ LNRF) ∧ (s ∈ LNF) to ignore strings that include ex-

cluded fault events, more than N faults from fault sets ΣFi
(i = 1, . . . ,m), or strings

that include two or more faults from a single fault set. We note that if m = 0, we get

ΣF = ∅. This means LNF simplifies to LNF = Σ∗ and LNRF simplifies to LNRF = ∅

37

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

which means which means Definition 4.3.2 will simplify to the FT controllable defi-

nition.

In a similar manner, we introduced the following FT nonblocking property to

handle the non-repeatable n-fault scenario.

Definition 4.3.3. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is non-repeatable N-fault toler-

ant (NR-FT) nonblocking, if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LNRF) ∧ (s ∈ LNF)⇒

(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LNRF) ∧ (ss′ ∈ LNF)

We note that if m = 0, Definition 4.3.3 simplifies to the FT nonblocking

definition.

4.4 Resettable Fault-Tolerant Controllability and

Nonblocking

The next fault-tolerant controllability property that we introduce is designed to

handle the resettable fault scenario. First, we need to define the language of non-reset

fault events. This is the set of all strings where two faults from the same fault set

ΣFi
occur in a row without an event from the corresponding set of reset events in

between.

Definition 4.4.1. We define the language of non-reset fault events as:

LTF =
m
⋃

i=1

(Σ∗.ΣFi
.(Σ− ΣTi

)∗.ΣFi
.Σ∗)

38

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Definition 4.4.2. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
, ΣTi

(i = 1, . . . ,m) and Σ∆F , is resettable fault tolerant

(T-FT) controllable if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)

(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LTF)⇒ sσ ∈ L(S)

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is resettable fault tolerant controllable for G.

The above definition is essentially the standard controllability definition, but we

add the condition (s /∈ L∆F ∪LTF) to ignore strings that include excluded fault events

and strings where we get two fault events from the same fault set in a row without an

event from the corresponding set of reset events in between. We note that if m = 0,

we get ΣF = ∅. This means LTF simplifies to LTF = ∅ which means which means

Definition 4.4.2 will simplify to the FT controllable definition.

In a similar manner, we introduced the following FT nonblocking property to

handle the resettable fault scenario.

Definition 4.4.3. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
, ΣTi

(i = 1, . . . ,m) and Σ∆F , is resettable fault tolerant

(T-FT) nonblocking if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G)) (s /∈ L∆F ∪ LTF)⇒

(∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈ L∆F ∪ LTF)

We note that if m = 0, Definition 4.4.3 simplifies to the FT nonblocking definition.

39

Chapter 5

Fault-Tolerant Algorithms

In this chapter, we will present algorithms to construct and verify the fault-tolerant

controllability and nonblocking properties that we defined in Chapter 4. We will not

present an algorithm for the FT consistency property as its individual points can

easily be checked by adapting various standard algorithms.

5.1 Algorithms

In this chapter, we assume that our system consists of a plant G = (Y,Σ, δ, yo, Ym),

supervisor S = (X,Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣTi

(i = 0, . . . ,m), Σ∆F ,

and ΣΩF .

Our approach in this thesis will be to construct plant components to synchronize

with our plantG such that the new DES will restrict the occurrence of faults to match

the given fault-tolerant controllability and nonblocking definitions. We can then syn-

chronize the plant components together and then use a standard controllability or

40

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

nonblocking algorithm to check the property. This approach allows us to automat-

ically take advantage of existing scalability methods such as incremental [BMM04]

and binary decision diagram-based (BDD) algorithms [Bry92, Ma04, Son06, VLF05,

Wan09, Zha01].

As the controllability, nonblocking, and synchronous product algorithms have al-

ready been studied in the literature [Rud88b, CL09b], we will assume that they

are given to us. We will use the standard || symbol to indicate the synchronous

product operation, vCont(Plant,Sup) to indicate controllability verification, and

vNonb(System) to indicate nonblocking verification. Functions vCont and vNonb

return true or false to indicate whether the verification passed or failed, and the

result will be stored in the Boolean variable pass. We note that, when we define

transition functions such as δ, we will define them as a subset of Y × Σ × Y for

convenience. For example, (yo, σ, y1) ∈ δ implies δ(yo, σ) = y1.

In the sections that follow, we will first present algorithms to construct the new

plant components that will be shared by the fault-tolerant controllability and non-

blocking algorithms. We then present the individual fault-tolerant controllable and

nonblocking algorithms.

5.1.1 Fault-Tolerant Controllability and Nonblocking Algo-

rithms

For the fault-tolerant controllability and nonblocking definitions, we need to re-

move all the excluded fault transitions from the system behavior, and then apply the

standard controllability and nonblocking algorithms, as appropriate. To achieve this,

three algorithms have been introduced. First, Algorithm 1 constructs G∆F for fault

41

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

set Σ∆F . The algorithm constructs a new DES with event set Σ∆F , but no transitions.

It also contains only its initial state, which is marked. This will have the effect of

removing any Σ∆F transitions from any DES it is synchronized with.

Algorithm 1 construct-G∆F(Σ∆F)

1: Y1 ← {y0}

2: Ym,1 ← Y1

3: δ1 ← ∅

4: return (Y1,Σ∆F , δ1, yo, Ym,1)

Figure 5.10 shows an example excluded fault plant, G∆F automata. In the DES di-

agrams, circles represent unmarked states, while filled circles represent marked states.

Two concentric, unfilled circles represent the initial state. If the initial state is also

marked, the inner circle is filled. Note that if a transition is labeled by an event set

such as in Figure 5.11, this is a shorthand for a transition for each event in the event

set.

We note that all of the constructed DES in these algorithms have every state

marked since their goal is to modify the closed behavior by restricting the occurrence

of fault events as needed; not to modify the marked behavior of the system directly.

0

Figure 5.10: Excluded Faults Plant G∆F

Algorithm 2 shows how to verify fault-tolerant controllability for G and S. Line

1 constructs the excluded fault plant, G∆F, using Algorithm 1. Line 2 constructs

the new plant G′. Line 3 checks that supervisor S is controllable for plant G′. As

G∆F is defined over event set Σ∆F and contains only a marked initial state and no

42

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

transitions, synchronizing it with G creates the original behavior with all excluded

fault events removed. Checking that S is controllable for the resulting behavior will

have the effect of verifying fault-tolerant controllability.

Algorithm 2 Verify fault-tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F)

2: G′ ← G||G∆F

3: pass ← vCont(G′,S)

4: return pass

Algorithm 3 shows how to verify fault-tolerant nonblocking for G and S. This

algorithm is essentially the same as Algorithm 2, except at Line 2 we calculate the

closed loop system G′, and then at Line 3 we verify that it is nonblocking.

Algorithm 3 Verify fault-tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F)

2: G′ ← G||G∆F||S

3: pass ← vNonb(G′)

4: return pass

We note that if Σ∆F = ∅, Algorithm 2 and Algorithm 3 will still produce the correct

result. However, it would be more efficient to just check that S is controllable for G

and G||S is nonblocking directly.

43

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

5.1.2 N-Fault Tolerant Controllability and Nonblocking Al-

gorithms

For the N-Fault tolerant controllability and nonblocking definitions, we only allow

at most N fault events from ΣF to occur and remove all the excluded fault transitions.

We then apply the standard controllability and nonblocking algorithms. To achieve

this, we introduce three algorithms, as appropriate.

First, Algorithm 4 constructs GNF for max N faults, and standard fault set ΣF .

The algorithm constructs a new DES with event set ΣF and N + 1 states, each state

marked. It then creates a transition for each fault event in ΣF from state yi to state

yi+1 (i = 0, . . . , N−1). As there are no transitions at state yN , synchronizing with this

DES will allow at most N faults to occur, and then remove any additional standard

fault transitions. Figure 5.11 shows an example N-fault plant automaton, GNF, for

N = 3.

Algorithm 4 construct-GNF(N,ΣF)

1: Y1 ← {y0, y1, . . . , yN}

2: Ym,1 ← Y1

3: δ1 ← ∅

4: for i = 0, . . . , N − 1

5: for σ ∈ ΣF

6: δ1 ← δ1 ∪ {(yi, σ, yi+1)}

7: end for

8: end for

9: return (Y1,ΣF , δ1, yo, Ym,1)

44

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

∑F∑F ∑F ∑F

0 1 2 3

Figure 5.11: N-Fault Plant GNF, N = 3

We note that if m = 0, then ΣF = ∅. This means that GNF will contain no events

and have unreachable states for N ≥ 1. As a result, synchronizing with GNF will

have no effect on the closed and marked language of the system. This means that

Algorithms 5, 6, 8 and 9 will still work correctly.

We next note that ifN = 0,GNF will contain a single state, but no transitions. This

will have the desired effect of removing any ΣF transitions from any DES synchronized

with GNF.

Algorithm 5 shows how to verify N-fault-tolerant controllability for G, and S. Line

1 constructs the excluded fault plant, G∆F. Line 2 constructs the N-fault plant, GNF,

using Algorithm 4. Line 3 constructs the new plant G′. Line 4 checks that supervisor

S is controllable for plant G′. As G∆F removes any excluded fault transitions and

GNF prevents strings from containing more than N fault events, checking that S is

controllable for the resulting behavior will have the effect of verifying N-fault-tolerant

controllability.

Algorithm 5 Verify N-fault-tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F)

2: GNF ← construct-GNF(N,ΣF)

3: G′ ← G||G∆F||GNF

4: pass ← vCont(G′,S)

5: return pass

Algorithm 6 shows how to verify N-fault-tolerant nonblocking for G, and S. This

45

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

algorithm is essentially the same as Algorithm 5, except at Line 3 we calculate the

closed loop system G′, and then at Line 4 we verify that it is nonblocking.

Algorithm 6 Verify N-fault-tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F)

2: GNF ← construct-GNF(N,ΣF)

3: G′ ← G||G∆F||GNF||S

4: pass ← vNonb(G′)

5: return pass

We note that if m = 0, we have ΣF = ∅ and that synchronizing with GNF will

have no effect. We will still get the correct result but it would be more efficient to

run Algorithm 2 for FT controllability or Algorithm 3 for FT nonblocking directly

instead.

5.1.3 Non-repeatable N-Faults Tolerant Controllability and

Nonblocking Algorithms

For the non-repeatable N-Fault tolerant controllability and nonblocking definitions,

we allow at most N faults from ΣF to occur, at most one fault event from each fault

set ΣFi
(i = 1, . . . ,m), and remove all the excluded fault transitions. We then apply

the standard controllability and nonblocking algorithms, as appropriate.

To achieve this, we introduce three algorithms. First, Algorithm 7 constructs GF,i

for (i ∈ {1, . . . ,m}) and fault set ΣFi
. The algorithm constructs a new DES with

event set ΣFi
and two states, both states marked. It then creates a transition for

each fault event in ΣFi
from the initial state to state y1. As there are no transitions

46

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

at state y1, synchronizing with this DES will allow at most 1 fault event from the

fault set to occur and then remove any additional fault transitions from the fault set.

Figure 5.12 shows an example Non-repeatable N-fault plant automaton, GF,i.

Algorithm 7 construct-GF,i(ΣFi
, i)

1: Yi ← {y0, y1}

2: Ym,i ← Yi

3: δi ← ∅

4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}

6: end for

7: return (Yi,ΣFi
, δi, yo, Ym,i)

∑Fi

00 1

Figure 5.12: Non-Repeatable N-Fault Plant GF,i

Algorithm 8 shows how to verify non-repeatable N-fault-tolerant controllability

for G and S. Line 1 constructs the excluded fault plant, G∆F. Line 2 constructs

the N-fault plant, GNF. For i ∈ {1, . . . ,m}, Line 4 constructs the non-repeatable

N-fault plant, GF,i, using Algorithm 7. Line 6 constructs the new plant G′. Line 7

checks that supervisor S is controllable for plant G′. As G∆F removes any excluded

fault transitions, GNF prevents strings from containing more than N fault events, and

each GF,i allows at most one fault from their fault set to occur, checking that S is

controllable for the resulting behavior will have the effect of verifying non-repeatable

N-fault-tolerant controllability.

47

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 8 Verify non-repeatable N-fault-tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F)

2: GNF ← construct-GNF(N,ΣF)

3: for i = 1, . . . ,m

4: GF,i ← construct-GF,i(ΣFi
, i)

5: end for

6: G′ ← G||G∆F||GNF||GF,1|| . . . ||GF,m

7: pass ← vCont(G′,S)

8: return pass

Algorithm 9 shows how to verify non-repeatable N-fault-tolerant nonblocking for

G and S. This algorithm is essentially the same as Algorithm 8, except at Line

6 we calculate the closed loop system G′, and then at Line 7 we verify that it is

nonblocking.

Algorithm 9 Verify non-repeatable N-fault-tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F)

2: GNF ← construct-GNF(N,ΣF)

3: for i = 1, . . . ,m

4: GF,i ← construct-GF,i(ΣFi
, i)

5: end for

6: G′ ← G||G∆F||GNF||GF,1|| . . . ||GF,m||S

7: pass ← vNonb(G′)

8: return pass

We note that if m = 0, we have ΣF = ∅, that no GF,i will be constructed, and

48

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

that synchronizing with GNF will have no effect. This means G′ will simplify to

G′ = G||G∆F and we can just evaluate Algorithm 2 for FT controllability instead

or it will simplify to G′ = G||G∆F||S and we can just evaluate Algorithm 3 for FT

nonblocking instead.

We also note that if N ≥ m, the GF,i will ensure that no more than m events

occur. We thus do not need to add GNF to G′, which should make the verification

more efficient.

5.1.4 Resettable Faults Tolerant Controllability and Non-

blocking Algorithms

For the resettable fault-tolerant controllability and nonblocking definitions, we

allow at most one fault event from each fault set ΣFi
(i = 1, . . . ,m), during each pass

through a portion of the system’s behavior. We then remove all the excluded fault

transitions. We then apply the controllability and nonblocking standard algorithms,

as appropriate.

To achieve this, we introduce three algorithms. First, Algorithm 10 constructs

GTF,i for i ∈ {1, . . . ,m}, fault set ΣFi
, and reset set ΣTi

. The algorithm constructs

a new DES with event set ΣFi
∪ ΣTi

and two states, both states marked. It then

creates a transition for each fault event in ΣFi
from the initial state to state y1. Next,

it creates a transition for each reset event in ΣTi
from state y1 to the initial state,

as well as a selfloop at the initial state for the event. Figure 5.13 shows an example

resettable fault plant automaton, GTF,i.

Essentially, reset events can occur unrestricted, but once a fault event occurs from

49

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

ΣFi
, a second event from the set is blocked until a reset event from ΣTi

occurs. Syn-

chronizing with this DES will have the effect of restricting the plant’s fault behavior

to that which the supervisor is required to handle.

Algorithm 10 construct-GTF,i(ΣFi
,ΣTi

, i)

1: Yi ← {y0, y1}

2: Ym,i ← Yi

3: δi ← ∅

4: for σ ∈ ΣFi

5: δi ← δi ∪ {(y0, σ, y1)}

6: end for

7: for σ ∈ ΣTi

8: δi ← δi ∪ {(y0, σ, y0), (y1, σ, y0)}

9: end for

10: return (Yi,ΣFi
∪ ΣTi

, δi, yo, Ym,i)

∑Fi

∑Ti

∑Ti

0 1

Figure 5.13: Resettable Fault Plant GTF,i

Algorithm 11 shows how to verify resettable fault-tolerant controllability for G

and S. Line 1 constructs the excluded fault plant, G∆F. For i ∈ {1, . . . ,m}, Line 3

constructs the resettable fault plant GTF,i, using Algorithm 10. Line 5 constructs the

new plant G′. Line 6 checks that supervisor S is controllable for plant G′. As G∆F

removes any excluded fault transitions, and each GTF,i only allows strings where fault

50

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

events from ΣFi
are always separated by at least one event from the corresponding

set of reset events, ΣTi
, checking that S is controllable for the resulting behavior will

have the effect of verifying resettable fault-tolerant controllability.

Algorithm 11 Verify resettable fault-tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F)

2: for i = 1, . . . ,m

3: GTF,i ← construct-GTF,i(ΣFi
,ΣTi

, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m

6: pass ← vCont(G′,S)

7: return pass

Algorithm 12 shows how to verify resettable fault-tolerant nonblocking forG and S.

This algorithm is essentially the same as Algorithm 11, except at Line 5 we calculate

the closed loop system G′, and then at Line 6 we verify that it is nonblocking.

Algorithm 12 Verify resettable fault-tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F)

2: for i = 1, . . . ,m

3: GTF,i ← construct-GTF,i(ΣFi
,ΣTi

, i)

4: end for

5: G
′

← G||G∆F||GTF,1|| . . . ||GTF,m||S

6: pass ← vNonb(G′)

7: return pass

We note that if m = 0, we have ΣF = ∅ and that no GTF,i will be constructed.

51

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

This means G′ will simplify to G′ = G||G∆F and and we can just evaluate Algorithm

2 for FT controllability instead or it will simplify to G′ = G||G∆F||S and we can just

evaluate Algorithm 3 for FT nonblocking instead.

5.2 Algorithm Complexity Analysis

In this section, we provide a complexity analysis for the fault-tolerant controllability

and nonblocking algorithms. In the following subsections, we assume that our system

consists of a plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ, xo, Xm), and fault

and reset sets ΣFi
, ΣTi

(i = 1, . . . ,m), Σ∆F , and ΣΩF .

In this thesis, we will base our analysis on the complexity analysis from Cassandras

et al. [CL09b] that states that both the controllability and nonblocking algorithms

have a complexity of O(|Σ||Y ||X|), where |Σ| is the size of the system event set, |Y |

is the size of the plant state set, and |X| is the size of the supervisor state set. In

the analysis that follows, |Y∆F | is the size of the state set for G∆F (constructed by

Algorithm 1), and |YNF | is the size of the state set forGNF (constructed by Algorithm

4).

We note in this thesis, that each FT algorithm first constructs and adds some

additional plant components to the system, and then it runs a standard controllability

or nonblocking algorithm on the resulting system. Our approach will be to take the

standard algorithm’s complexity, and replace the value for the state size of the plant

with the worst case state size of G synchronized with the new plant components. As

all fault and reset events already belong to the system event set, this means the size

of the system event set does not increase.

52

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

In the following analysis, we will ignore the cost of constructing the new plant com-

ponents as they will be constructed in serial with the controllability or nonblocking

verification and should be negligible in comparison. We next note that as the base con-

trollability and nonblocking algorithms have the same complexity, the corresponding

fault-tolerant versions will also have the same complexity (i.e. the FT controllability

algorithm will have the same complexity as the FT nonblocking algorithm). As such,

we will only present analysis for the FT controllability algorithms.

5.2.1 FT Controllability Algorithm

For Algorithm 2, we replace our plant DES by G′ = G||G∆F. This gives us a

worst case state space of |Y ||Y∆F | for G
′. Substituting this into our base algorithm’s

complexity for the size of our plant’s state set gives O(|Σ||Y ||Y∆F ||X|). As |Y∆F | = 1

by Algorithm 1, it follows that our complexity is O(|Σ||Y ||X|) which is the same as

our base algorithm.

5.2.2 N-FT Controllability Algorithm

For Algorithm 5, we replace our plant DES by G′ = G||G∆F||GNF. This gives

us a worst case state space of |Y ||Y∆F ||YNF | for G
′. Substituting this into our base

algorithm’s complexity gives O(|Σ||Y ||Y∆F ||YNF ||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YNF | = N + 1 by Algorithm

4. Substituting in for these values gives O((N + 1)|Σ||Y ||X|). It thus follows that

verifying N-FT controllability increases the complexity of verifying controllability by

a factor of (N + 1).

53

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

5.2.3 Non-repeatable N-FT Controllability Algorithm

For Algorithm 8, we replace our plant DES by G′ = G||G∆F||GNF||GF,1|| . . . ||

GF,m. This gives us a worst case state space of |Y ||Y∆F ||YNF ||YF1
| . . . |YFm

| for

G′, where |YFi
| is the size of the state set for GF,i (i = 1, . . . ,m), which is con-

structed by Algorithm 7. Substituting this into our base algorithm’s complexity

gives O(|Σ||Y ||Y∆F ||YNF ||YF1
| . . . |YFm

||X|).

We note that |Y∆F | = 1 by Algorithm 1, |YNF | = N + 1 by Algorithm 4, and

|YFi
| = 2 (i = 1, . . . ,m) by Algorithm 7. Substituting in for these values gives

O(2m(N + 1)|Σ||Y ||X|). It thus follows that verifying non-repeatable N-FT control-

lability increases the complexity of verifying controllability by a factor of 2m(N + 1).

We next note that if N ≥ m, which we believe will often be the case, it is not

necessary to add GNF to G′. The complexity then reduces to O(2m|Σ||Y ||X|).

5.2.4 Resettable FT Controllability Algorithm

For Algorithm 11, we replace our plant DES by G′ = G||G∆F||GTF,1|| . . . ||GTF,m.

This gives us a worst case state space of |Y ||Y∆F ||YTF1
| . . . |YTFm

| forG′, where |YTFi
| is

the size of the state set forGTF,i (i = 1, . . . ,m), which is constructed by Algorithm 10.

Substituting this into our base algorithm’s complexity gives O(|Σ||Y ||Y∆F ||YTF1
| . . .

|YTFm
||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YTFi
| = 2 (i = 1, . . . ,m) by Algorithm

10. Substituting in for these values gives O(2m|Σ||Y ||X|). It thus follows that verify-

ing resettable FT controllability increases the complexity of verifying controllability

by a factor of 2m.

54

Chapter 6

Fault-Tolerant Algorithm

Correctness

In this chapter, we introduce several propositions and theorems that show that the

algorithms introduced in Chapter 5 correctly verify that a fault-tolerant consistent

system satisfies the specified fault-tolerant controllability and nonblocking properties

defined in Chapter 4.

6.1 Fault-Tolerant Controllable Propositions

The propositions in this section will be used to support the fault-tolerant con-

trollability theorems in Section 6.2 and 6.3. Fault tolerant controllability definitions

are essentially controllability definitions with added restriction that a string s is only

tested if it is satisfies the appropriate fault-tolerant property.

The verification algorithms are intended to replace the original plant with a new

plant G′, such that G′ is restricted to strings with the desired property. Propositions

55

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

1− 4 essentially assert that string s belongs to the closed behaviour of G′, if and

only if s satisfies properties of fault-tolerant controllable, N-FT controllable, non-

repeatable N-FT controllable, and resettable FT controllable, respectively.

We note that the fault-tolerant controllability properties are essentially controlla-

bility properties that only test that a supervisor will behave correctly for strings s

that satisfy the scenario the property is designed to capture. The required property

is expressed as a logical conjunction of string s belonging or not belonging to various

languages.

The propositions in this chapter, as well as Chapters 10 and 14, essentially prove

that the new plant components constructed by the indicated algorithms represent

the desired languages. The proofs are similar in approach, but vary based on the

languages specified and the structure of the constructed automata.

6.1.1 FT Controllable Proposition

The first proposition asserts that string s belongs to the closed behaviour of G′,

if and only if s satisfies the needed pre-requisite for the fault-tolerant controllable

property.

Proposition 6.1.1. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Algorithm 2.

Then:

(∀s ∈ L(G))s /∈ L∆F ⇐⇒ s ∈ L(G′)

Proof. Assume initial conditions for proposition.

Let P∆F : Σ
∗ → Σ∗

∆F be a natural projection.

Let s ∈ L(G). (P1.1)

56

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Must show implies s /∈ L∆F ⇐⇒ s ∈ L(G′).

Sufficient to show (A) s /∈ L∆F ⇒ s ∈ L(G′) and (B) s ∈ L(G′)⇒ s /∈ L∆F

First we note that by Algorithm 2, we have G′ = G||G∆F.

We thus have L(G′) = L(G) ∩ P−1
∆FL(G∆F) as Σ∆F ⊆ Σ, and G∆F is defined over

Σ∆F by Algorithm 1. (P1.2)

We next note that by Algorithm 1, G∆F contains an initial state but no transitions.

We thus have: L(G∆F) = {ǫ} (P1.3)

Part A) Show s /∈ L∆F ⇒ s ∈ L(G′)

Assume s /∈ L∆F = Σ∗.Σ∆F .Σ
∗.

Must show implies: s ∈ L(G′) = L(G) ∩ P−1
∆FL(G∆F)

As s ∈ L(G) from (P1.1), sufficient to show s ∈ P−1
∆FL(G∆F).

As s /∈ Σ∗.Σ∆F .Σ
∗, it follows that P∆F (s) = ǫ.

⇒ P∆F (s) ∈ L(G∆F), by (P1.3)

⇒ s ∈ P−1
∆FL(G∆F), as required.

Part B) Show s ∈ L(G′)⇒ s /∈ L∆F

Assume s ∈ L(G′).

Must show implies: s /∈ L∆F

We note that s ∈ L(G′) implies s ∈ P−1
∆FL(G∆F), by (P1.2).

⇒ P∆F (s) ∈ L(G∆F)

⇒ P∆F (s) = ǫ, by (P1.3)

This implies s does not contain any σ ∈ Σ∆F .

⇒ s /∈ Σ∗.Σ∆F .Σ
∗, as required.

By parts (A) and (B), we have: s /∈ L∆F ⇐⇒ s ∈ L(G′)

57

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

6.1.2 N-Fault-Tolerant Controllable Proposition

The next proposition asserts that string s belongs to the closed behaviour of G′,

if and only if s satisfies the needed pre-requisite for the N-fault-tolerant controllable

property.

Proposition 6.1.2. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G

= (Y,Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the plant constructed in

Algorithm 5. Then:

(∀s ∈ L(G))(s /∈ L∆F) ∧ (s ∈ LNF) ⇐⇒ s ∈ L(G′)

Proof. Assume initial conditions for proposition.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof of

Proposition 6.1.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural projections.

We next note that by Algorithm 5, we have G′ = G||G∆F||GNF.

As G is defined over Σ, G∆F over Σ∆F (by Algorithm 1), and GNF over ΣF (by

Algorithm 4), we have: L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) (P2.1)

Let G1 be the plant constructed by Algorithm 2. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆FL(G∆F)

⇒ L(G′) ⊆ L(G1) (P2.2)

Let s ∈ L(G) (P2.3)

Must show implies: s /∈ L∆F ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∧ s ∈ LNF ⇒ s ∈ L(G′)

58

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Assume s /∈ L∆F and s ∈ LNF . (P2.4)

Must show: s ∈ L(G′) = L(G) ∩ P−1
∆FL(G∆F)∩P

−1
F L(GNF)

By (P2.3), (P2.4), and Proposition 6.1.1, we have: s ∈ L(G1) = L(G) ∩ P−1
∆FL(G∆F)

(P2.5)

All the remains is to show s ∈ P−1
F L(GNF).

As s ∈ LNF = (Σ− ΣF)
∗ ∪

N
⋃

k=1

((Σ− ΣF)
∗.ΣF .(Σ− ΣF)

∗)k, there exists 0 ≤ j ≤ N ,

such that |PF (s)| = j.

We note that as GNF contains an initial state, we have ǫ ∈ L(GNF).

If j = 0, we immediately have PF (s) = ǫ ∈ L(GNF).

For j ≥ 1, we can conclude: (∃σ0, . . . , σj−1 ∈ ΣF)PF (s) = σ0 . . . σj−1

As j ≤ N , it is easy to see from Algorithm 4, that for i = 0, . . . , j − 1, we have:

δ1(yi, σi, yi+1)!, where δ1 is the transition function for GNF.

⇒ δ1(y0, σ0 . . . σj−1)!

⇒ δ1(y0, PF (s))!

⇒ PF (s) ∈ L(GNF)

⇒ s ∈ P−1
F L(GNF)

Combining with (P2.5), we have: s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) = L(G′)

Part B) Show s ∈ L(G′)⇒ s /∈ L∆F ∧ s ∈ LNF

Assume s ∈ L(G′). Must show implies s /∈ L∆F and s ∈ LNF .

As s ∈ L(G′), we have s ∈ L(G1), by (P2.2).

We thus have by Proposition 6.1.1 that s /∈ L∆F . (P2.6)

We now need to show s ∈ LNF .

As L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) by (P2.1), we have s ∈ P−1
F L(GNF).

⇒ PF (s) ∈ L(GNF)

59

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Let j = |PF (s)|. If j = 0, we have PF (s) = ǫ, thus s ∈ (Σ− ΣF)
∗ ⊆ LNF .

We thus consider j ≥ 1.

⇒ (∃σ0, . . . , σj−1 ∈ ΣF)PF (s) = σ0 . . . σj−1

As PF (s) ∈ L(GNF), Algorithm 4 implies that for i = 0, . . . , j − 1, we have: δ1(yi, σi, yi+1)!,

where δ1 is the transition function for GNF.

⇒ δ1(y0, PF (s)) = yj

As GNF contains no loops and transitions occur in a strictly increasing order in terms

of state labels, we have j ≤ N .

As we have that s contains at most N events from ΣF , it is thus clear that:

s ∈ (Σ− ΣF)
∗ ∪

N
⋃

k=1

((Σ− ΣF)
∗.ΣF .(Σ− ΣF)

∗)k = LNF

Combining with (P2.6), we have s /∈ L∆F and s ∈ LNF , as required.

By parts (A) and (B), we thus conclude: s /∈ L∆F ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

6.1.3 Non-repeatable N-Fault-Tolerant Controllable Propo-

sition

Proposition 6.1.3 asserts that string s belongs to the closed behaviour of G′, if

and only if s satisfies the needed pre-requisite for the non-repeatable N-fault-tolerant

controllable property.

Proposition 6.1.3. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G

= (Y,Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the plant constructed in

Algorithm 8. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LNRF) ∧ (s ∈ LNF)⇐⇒ s ∈ L(G′)

60

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Proof. Assume initial conditions for proposition.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof of

Proposition 6.1.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . ,m, be natural

projections.

We next note that by Algorithm 8, we have: G′ = G||G∆F||GNF||GF,1|| . . . ||GF,m

As G is defined over Σ, G∆F over Σ∆F by Algorithm 1, GNF over ΣF by Algorithm

4, and GF,i over ΣFi
(i = 1, . . . ,m) by Algorithm 7, we have:

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF)∩P
−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m) (P3.1)

Let G1 be the plant constructed by Algorithm 5. We thus have: G1 = G||G∆F||GNF

⇒ L(G1) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF)

⇒ L(G′) ⊆ L(G1) (P3.2)

Let s ∈ L(G). (P3.3)

Must show implies: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LNRF and s ∈ LNF . (P3.4)

Must show s ∈ L(G′).

By (P3.3), (P3.4), and Proposition 6.1.2, we have: s ∈ L(G1)

All the remains is to show s ∈ P−1
Fi

L(GF,i), i = 1, . . . ,m.

Let i ∈ {1, . . . ,m}.

As s /∈ LNRF =
m
⋃

j=1

(Σ∗.ΣFj
.Σ∗.ΣFj

.Σ∗), it follows that |PFi
(s)| ≤ 1.

As GF,i has an initial state (by Algorithm 7), we have ǫ ∈ L(GF,i).

By Algorithm 7, we have that for all σ ∈ ΣFi
, δi(y0, σ, y1)! and thus σ ∈ L(GF,i).

61

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

⇒ PFi
(s) ∈ L(GF,i)

⇒ s ∈ P−1
Fi

L(GF,i), as required.

Part B) Show s ∈ L(G′)⇒ s /∈ L∆F ∪ LNRF ∧ s ∈ LNF

Assume s ∈ L(G′).

Must show implies s /∈ L∆F ∪ LNRF and s ∈ LNF .

As s ∈ L(G′), we have s ∈ L(G1), by (P3.2).

We can thus conclude by Proposition 6.1.2 that: s /∈ L∆F and s ∈ LNF . (P3.5)

We now only need to show s /∈ LNRF .

As s ∈ L(G′), we have by (P3.1): s ∈ P−1
Fi

L(GF,i), i = 1, . . . ,m.

⇒ PFi
(s) ∈ L(GF,i), i = 1, . . . ,m.

⇒ PFi
(s) = σ ∈ ΣFi

or PFi
(s) = ǫ (i = 1, . . . ,m), by Algorithm 7.

⇒ s /∈ LNRF =
m
⋃

i=1

(Σ∗.ΣFi
.Σ∗.ΣFi

.Σ∗)

Combining with (P3.5), we have s /∈ L∆F ∪ LNRF and s ∈ LNF , as required.

By parts (A) and (B), we thus conclude: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇐⇒ s ∈ L(G′)

6.1.4 Resettable Fault-Tolerant Controllable Proposition

Proposition 6.1.4 asserts that string s belongs to the closed behaviour of G′, if and

only if s satisfies the needed pre-requisite for the resettable fault-tolerant controllable

property.

Proposition 6.1.4. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G

= (Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Algorithm

11. Then:

62

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

(∀s ∈ L(G))(s /∈ L∆F ∪ LTF) ⇐⇒ s ∈ L(G′)

Proof. Assume initial conditions for proposition.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof of

Proposition 6.1.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . ,m, be natural projec-

tions.

We next note that by Algorithm 11, we have: G′ = G||G∆F||GTF,1|| . . . ||GTF,m

As G is defined over Σ, G∆F over Σ∆F by Algorithm 1, and GTF,i over ΣFi
∪ ΣTi

(i = 1, . . . ,m) by Algorithm 10, we have:

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1)∩ . . . ∩ P−1

TFm
L(GTF,m) (P4.1)

Let G1 be the plant constructed by Algorithm 2. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆FL(G∆F)

⇒ L(G′) ⊆ L(G1) (P4.2)

Let s ∈ L(G). (P4.3)

Must show implies: s /∈ L∆F ∪ LTF ⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LTF ⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LTF . (P4.4)

Must show s ∈ L(G′) = L(G) ∩ P−1
∆FL(G∆F)∩P

−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m).

By (P4.3), (P4.4) and Proposition 6.1.1, we have: s ∈ L(G1) = L(G) ∩ P−1
∆FL(G∆F)

All that remains is to show s ∈ P−1
TFi

L(GTF,i), i = 1, . . . ,m.

As s /∈ LTF =
m
⋃

i=1

(Σ∗.ΣFi
.(Σ− ΣTi

)∗.ΣFi
.Σ∗), it follows that:

(∀i ∈ {1, . . . ,m}) s /∈ Σ∗.ΣFi
.(Σ− ΣTi

)∗.ΣFi
.Σ∗

63

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Let i ∈ {1, . . . ,m}.

We will use proof by contrapositive.

Sufficient to show: PTFi
(s) /∈ L(GTF,i)⇒ s ∈ Σ∗.ΣFi

.(Σ− ΣTi
)∗.ΣFi

.Σ∗

Assume PTFi
(s) /∈ L(GTF,i).

We note that by Algorithm 10 that ǫ ∈ L(GTF,i), as GTF,i has an initial state.

⇒ (∃s′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ ∈ ΣFi
∪ ΣTi

)s′σ ≤ PTFi
(s)∧s′ ∈ L(GTFi

) ∧ s′σ /∈ L(GTFi
)

From Algorithm 10, it is clear that all σ′ ∈ ΣFi
∪ ΣTi

are defined at state y0, all

σ′ ∈ ΣTi
are defined at state y1, and no σ′ ∈ ΣFi

are defined at state y1.

⇒ δi(y0, s
′) = y1, and σ ∈ ΣFi

Also, as the only way to reach state y1 is from state y0 via σ′ ∈ ΣFi
(by Algorithm

10), it follows that string s′ ends in an event from ΣFi
.

⇒ (∃s′′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ′ ∈ ΣFi
) s′′σ′σ = s′σ ≤ PTFi

(s)

⇒ s ∈ Σ∗.ΣFi
.(Σ− ΣTi

)∗.ΣFi
.Σ∗, as required.

Part B) Show s ∈ L(G′)⇒ s /∈ L∆F ∪ LTF

Assume s ∈ L(G′). Must show implies s /∈ L∆F ∪ LTF .

As s ∈ L(G′), we have s ∈ L(G1), by (P4.2).

We can thus conclude by Proposition 6.1.1 that: s /∈ L∆F (P4.5)

We now need to show s /∈ LTF .

As s ∈ L(G′), we have by (P4.1): s ∈ P−1
TFi

L(GTF,i), i = 1, . . . ,m

⇒ (∀i ∈ {1, . . . ,m})PTFi
(s) ∈ L(GTF,i)

We proceed by proof by contradiction.

Assume s ∈ LTF .

⇒ (∃i ∈ {1, . . . ,m})s ∈ Σ∗.ΣFi
.(Σ− ΣTi

)∗.ΣFi
.Σ∗

Let i ∈ {1, . . . ,m} be the above index.

64

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

This implies string PTFi
(s) contains two events from ΣFi

in a row, without a σ ∈ ΣTi

in between.

As it is clear from Algorithm 10 that GTF,i would never allow two σ ∈ ΣFi
to occur

in a row, this contradicts PTFi
(s) ∈ L(GTF,i).

We thus conclude s /∈ LTF .

Combining with (P4.5) we have s /∈ L∆F ∪ LTF , as required.

By parts (A) and (B), we thus conclude: s /∈ L∆F ∪ LTF ⇐⇒ s ∈ L(G′)

6.2 Fault-Tolerant Controllable Theorems

In this section we present theorems that show that the fault-tolerant controllable

algorithms in Chapter 5 will return true if and only if the fault-tolerant consistent

system satisfies the corresponding fault-tolerant controllability property.

The theorems in this chapter, as well as Chapters 10 and 14, have generally the

same structure, but differ based on the languages specified and the structure of the

constructed automata. The forward direction of the iff proof is usually handled easily

using the propositions we constructed earlier in the chapter. They prove that the

new plant components constructed by the algorithms correctly represent the desired

language membership.

The reverse direction of the proof uses these propositions to show that s ∈ L(S)∩

L(G) belongs to L(G′), but then needs to use the structure of the constructed plant

components to show that sσ ∈ L(G′), where σ ∈ Σu. The rest follows easily. The

FT nonblocking theorems that follow later also have a similar structure.

65

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

6.2.1 Fault-Tolerant Controllable Theorem

Theorem 6.2.1 states that verifying that our system is fault-tolerant controllable is

equivalent to verifying that our supervisor is controllable for the plant G′ constructed

by Algorithm 2. Essentially, plant G′ is our original plant synchronized with newly

constructed plant components designed to restrict the behavior of our plant to only

include strings that satisfy the default fault scenario.

Theorem 6.2.1. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Algorithm 2.

Then S is fault-tolerant controllable for G iff S is controllable for G′.

Proof. Assume initial conditions for theorem.

Must show S is fault-tolerant controllable for G ⇐⇒ S is controllable for G′.

From Algorithm 2, we have: G′ = G||G∆F

From Algorithm 1, we know that G∆F is defined over Σ∆F .

Let P∆F : Σ∗ → Σ∗

∆F be a natural projection.

As G is defined over Σ, we have: L(G′) = L(G) ∩ P−1
∆FL(G∆F) (T1.1)

Part A) Show (⇒)

Assume S is fault-tolerant controllable for G. (T1.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′)⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′) and σ ∈ Σu. (T1.3)

Assume sσ ∈ L(G′). (T1.4)

Must show implies sσ ∈ L(S).

To apply (T1.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F .

We first note that (T1.1), (T1.3) and (T1.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

66

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

As s ∈ L(G′) by (T1.3), we conclude by Proposition 6.1.1 that s /∈ L∆F .

We can now conclude by (T1.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is controllable for G′. (T1.5)

Must show implies S and G are FT consistent (follows automatically from initial

assumptions) and that: (∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ⇒ sσ ∈

L(S)

Let s ∈ L(S) ∩ L(G) and σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F . (T1.6)

Must show implies sσ ∈ L(S).

We have two cases: (1) σ ∈ Σ∆F , and (2) σ /∈ Σ∆F

Case 1) σ ∈ Σ∆F

As the system is FT consistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T1.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F

To apply (T1.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We first note that by (T1.6) and Proposition 6.1.1, we can conclude: s ∈ L(G′) (T1.7)

⇒ s ∈ P−1
∆FL(G∆F), by (T1.1)

⇒ P∆F (s) ∈ L(G∆F)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ sσ ∈ P−1
∆FL(G∆F)

Combining with (T1.6), (T1.7), and (T1.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and

sσ ∈ L(G′)

We can thus conclude by (T1.5) that sσ ∈ L(S), as required.

67

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We thus conclude by cases (1) and (2), that sσ ∈ L(S).

We can now conclude by parts (A) and (B) that S is fault-tolerant controllable for G

iff S is controllable for G′.

6.2.2 N-Fault-Tolerant Controllable Theorem

Theorem 6.2.2 states that verifying that our system is N-fault-tolerant controllable

is equivalent to verifying that our supervisor is controllable for the plant G′ con-

structed by Algorithm 5. Essentially, plant G′ is our original plant synchronized with

newly constructed plant components designed to restrict the behavior of our plant to

only include strings that satisfy the N ≥ 0 fault scenario.

Theorem 6.2.2. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the plant constructed in

Algorithm 5. Then S is N-fault-tolerant controllable for G iff S is controllable for

G′.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 6.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is N-fault-tolerant controllable for G ⇐⇒ S is controllable for G′.

From Algorithm 5, we have G′ = G||G∆F||GNF.

From Algorithm 1, we know that G∆F is defined over Σ∆F , and from Algorithm 4,

we know that GNF is defined over ΣF .

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural projections.

68

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

As G is defined over Σ, we have: L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) (T2.1)

Part A) Show (⇒)

Assume S is N-fault-tolerant controllable for G. (T2.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′)⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T2.3)

Assume sσ ∈ L(G′). (T2.4)

Must show implies sσ ∈ L(S).

To apply (T2.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF .

We first note that (T2.1), (T2.3) and (T2.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T2.3), Proposition 6.1.2 implies that: s /∈ L∆F ∧ s ∈ LNF

We can now conclude by (T2.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is controllable for G′. (T2.5)

Must show implies S and G are FT consistent, (follows automatically from initial

assumptions) and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ∧ s ∈ LNF ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ LNF . (T2.6)

Must show implies sσ ∈ L(S).

We have two cases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT consistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T2.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T2.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

69

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We first note that by (T2.6) and Proposition 6.1.2, we can conclude: s ∈ L(G′).

(T2.7)

⇒ s ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF), by (T2.1)

⇒ P∆F (s) ∈ L(G∆F) and PF (s) ∈ L(GNF)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ. As σ /∈ ΣF , we have PF (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ PF (sσ) = PF (s)PF (σ) = PF (s) ∈ L(GNF)

⇒ sσ ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF)

Combining with (T2.6), (T2.7), and (T2.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and

sσ ∈ L(G′).

We can thus conclude by (T2.5) that sσ ∈ L(S), as required.

We thus conclude by cases (1) and (2), that sσ ∈ L(S).

We can now conclude by parts (A) and (B), that S is N-fault-tolerant controllable for

G iff S is controllable for G′.

6.2.3 Non-repeatable N-Fault-Tolerant Controllable Theorem

Theorem 6.2.3 states that verifying that our system is non-repeatable N-fault-

tolerant controllable is equivalent to verifying that our supervisor is controllable for

the plant G′ constructed by Algorithm 8. Essentially, plant G′ is our original plant

synchronized with newly constructed plant components designed to restrict the be-

havior of our plant to only include strings that satisfy the non-repeatable N ≥ 0 fault

scenario.

Theorem 6.2.3. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the plant constructed in

70

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 8. Then S is non-repeatable N-fault-tolerant controllable for G iff S is

controllable for G′.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 6.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is non-repeatable N-fault-tolerant controllable for G ⇐⇒ S is control-

lable for G′.

From Algorithm 8, we have: G′ = G||G∆F||GNF||GF,1|| . . . ||GF,m

From Algorithm 1, we know that G∆F is defined over Σ∆F . From Algorithm 4, we

know that GNF is defined over ΣF , and from Algorithm 7, we know that GF,i is

defined over ΣFi
, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . ,m, be natural

projections.

As G is defined over Σ, we have that:

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

(T3.1)

Part A) Show (⇒)

Assume S is non-repeatable N-fault-tolerant controllable for G. (T3.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu)sσ ∈ L(G′)⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T3.3)

Assume sσ ∈ L(G′). (T3.4)

Must show implies sσ ∈ L(S).

To apply (T3.2), we need to show that s ∈ L(S)∩L(G), sσ ∈ L(G), s /∈ L∆F ∪LNRF

71

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

and s ∈ LNF .

We first note that (T3.1), (T3.3) and (T3.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T3.3), we conclude by Proposition 6.1.3 that: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF

We can now conclude by (T3.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is controllable for G′. (T3.5)

Must show implies S and G are FT consistent (follows automatically from initial

assumptions) and that:

(∀s ∈ L(S)∩L(G))(∀σ ∈ Σu) sσ ∈ L(G)∧s /∈ L∆F ∪LNRF ∧s ∈ LNF ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G), and s /∈ L∆F ∪ LNRF ∧ s ∈ LNF .

(T3.6)

Must show implies sσ ∈ L(S).

We have two cases: (1) σ ∈ Σ∆F ∪ ΣFi
, and (2) σ /∈ Σ∆F ∪ ΣFi

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT consistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T3.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T3.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We first note that by (T3.6), and Proposition 6.1.3, we can conclude: s ∈ L(G′)

(T3.7)

⇒ s ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . .∩ P−1
Fm

L(GF,m), by (T3.1)

⇒ P∆F (s) ∈ L(G∆F), PF (s) ∈ L(GNF) and PFi
(s) ∈ L(GF,i), i = 1, . . . ,m

As σ /∈ Σ∆F ∪ ΣF , we have P∆F (σ) = ǫ, PF (σ) = ǫ, and PFi
(σ) = ǫ, i = 1, . . . ,m.

This implies P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F), and PF (sσ) = PF (s)PF (σ)

72

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

= PF (s) ∈ L(GNF), and PFi
(sσ) = PFi

(s)PFi
(σ) = PFi

(s) ∈ L(GF,i), i = 1, . . . ,m.

⇒ sσ ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . .∩ P−1
Fm

L(GF,m)

Combining with (T3.6), (T3.7), and (T3.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and

sσ ∈ L(G′)

We can thus conclude by (T3.5) that sσ ∈ L(S), as required.

We thus conclude by cases (1) and (2), that sσ ∈ L(S).

We can now conclude by parts (A) and (B), that S is non repeatable N-fault-tolerant

controllable for G iff S is controllable for G′.

6.2.4 Resettable Fault-Tolerant Controllable Theorem

Theorem 6.2.4 states that verifying that our system is resettable fault-tolerant

controllable is equivalent to verifying that our supervisor is controllable for the plant

G′ constructed by Algorithm 11. Essentially, plant G′ is our original plant synchro-

nized with newly constructed plant components designed to restrict the behavior of

our plant to only include strings that satisfy the resettable fault scenario.

Theorem 6.2.4. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Algorithm

11. Then S is resettable fault-tolerant controllable for G iff S is controllable for G′.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 6.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is resettable fault-tolerant controllable for G ⇐⇒ S is controllable for

G′.

73

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

From Algorithm 11, we have: G′ = G||G∆F||GTF,1|| . . . ||GTF,m

From Algorithm 1, we know that G∆F is defined over Σ∆F , and from Algorithm 10,

we know that GTF,i is defined over ΣFi
∪ ΣTi

, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . ,m, be natural projec-

tions.

As G is defined over Σ, we have that:

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩ P−1

TFm
L(GTF,m) (T4.1)

Part A) Show (⇒)

Assume S is resettable fault-tolerant controllable for G. (T4.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′)⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T4.3)

Assume sσ ∈ L(G′). (T4.4)

Must show implies sσ ∈ L(S).

To apply (T4.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F ∪ LTF .

We first note that (T4.1), (T4.3) and (T4.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T4.3), we conclude by Proposition 6.1.4 that: s /∈ L∆F ∪ LTF

We can now conclude by (T4.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is controllable for G′. (T4.5)

Must show implies S and G are FT consistent, (follows automatically from initial

assumptions) and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F∪ LTF ⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LTF . (T4.6)

Must show implies sσ ∈ L(S).

74

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We have two cases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT consistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T4.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T4.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We first note that by (T4.6) and Proposition 6.1.4, we can conclude: s ∈ L(G′) (T4.7)

⇒ s ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩ P−1

TFm
L(GTF,m), by (T4.1)

⇒ P∆F (s) ∈ L(G∆F) and PTFi
(s) ∈ L(GTF,i), i = 1, . . . ,m (T4.8)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ sσ ∈ P−1
∆FL(G∆F) (T4.9)

We now have two cases to consider: (a) σ /∈
m
⋃

i=1

ΣTi
, and (b) σ ∈

m
⋃

i=1

ΣTi

Case a) σ /∈
m
⋃

i=1

ΣTi

As σ /∈ ΣF ∪
m
⋃

i=1

ΣTi
, we have PTFi

(σ) = ǫ, i = 1, . . . ,m.

⇒ PTFi
(sσ) = PTFi

(s)PTFi
(σ) = PTFi

(s) ∈ L(GTF,i), i = 1, . . . ,m

⇒ sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

Case b) σ ∈
m
⋃

i=1

ΣTi

We note that Algorithm 10 states that all σ′ ∈ ΣTi
are defined at every state in GTF,i,

i = 1, . . . ,m.

Let j ∈ {1, . . . ,m}.

If σ ∈ ΣTj
, we have PTFj

(σ) = σ. We thus have PTFj
(sσ) = PTFj

(s)σ ∈ L(GTF,j) as

PTFj
(s) ∈ L(GTF,j) by (T4.8).

75

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Otherwise, σ /∈ ΣTj
. As we also have σ /∈ ΣF , it follows that PTFj

(σ) = ǫ. We thus

have PTFj
(sσ) = PTFj

(s)PTFj
(σ) = PTFj

(s) ∈ L(GTF,j), by (T4.8).

⇒ sσ ∈ P−1
TFj

L(GTF,j) for both cases.

⇒ sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

By cases (a) and (b), we can conclude: sσ ∈ P−1
TF1

L(GTF,1) ∩ . . . ∩ P−1
TFm

L(GTF,m)

Combining with (T4.9), we have:

sσ ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩ P−1

TFm
L(GTF,m)

Combining with (T4.6), (T4.7), and (T4.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and

sσ ∈ L(G′).

We can thus conclude by (T4.5) that sσ ∈ L(S), as required.

We thus conclude by cases (1) and (2), that sσ ∈ L(S).

We can now conclude by parts (A) and (B), that S is resettable fault-tolerant con-

trollable for G iff S is controllable for G′.

6.3 Fault-Tolerant Nonblocking Theorems

In this section we present theorems that show that the fault-tolerant nonblocking

algorithms in Chapter 5 will return true if and only if the fault-tolerant consistent

system satisfies the corresponding fault-tolerant nonblocking property.

6.3.1 Fault-Tolerant Nonblocking Theorem

Theorem 6.3.1 states that verifying that our system is fault-tolerant nonblocking

is equivalent to verifying that the DES G′ constructed by Algorithm 3 is nonblock-

ing. Essentially, G′ is our original plant and supervisor synchronized with newly

76

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

constructed plant components designed to restrict the behavior of our system to only

include strings that satisfy the default fault scenario.

Theorem 6.3.1. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the system constructed in Algorithm

3. Then S and G are fault-tolerant nonblocking iff G′ is nonblocking.

Proof. Assume initial conditions for theorem.

Must show S and G are fault-tolerant nonblocking ⇐⇒ G′ is nonblocking.

From Algorithm 3, we have: G′ = G||G∆F||S

From Algorithm 1, we know that G∆F is defined over Σ∆F .

Let P∆F : Σ∗ → Σ∗

∆F be a natural projection.

As G and S are defined over Σ, we have that: L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F)

and Lm(G
′) = Lm(S) ∩ Lm(G) ∩ P−1

∆FLm(G∆F). (T1.1)

Part A) Show (⇒)

Assume S and G are fault-tolerant nonblocking. (T1.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) (T1.3)

⇒ s ∈ L(G) ∩ P−1
∆FL(G∆F)

⇒ s ∈ L(G||G∆F)

We can thus apply Proposition 6.1.1 and conclude that s /∈ L∆F .

As we have s ∈ L(S) ∩ L(G) from (T1.3), we can apply (T1.2) and conclude that:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F (T1.4)

We now need to show that ss′ ∈ Lm(G
′).

Sufficient to show: ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F)

77

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

From (T1.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show ss′ ∈ P−1
∆FLm(G∆F).

We note from Algorithm 1 that since all states in G∆F are marked, we have L(G∆F)

= Lm(G∆F).

It is thus sufficient to show: ss′ ∈ P−1
∆FL(G∆F)

As ss′ ∈ Lm(G) by (T1.4), we have ss′ ∈ L(G), since Lm(G) ⊆ L(G).

From (T1.4), we have: ss′ /∈ L∆F

Applying Proposition 6.1.1, we can conclude that: ss′ ∈ L(G||G∆F) = L(G) ∩ P−1
∆FL(G∆F)

⇒ ss′ ∈ P−1
∆FL(G∆F)

We thus have that G′ is nonblocking, as required.

Part B) Show (⇐)

Assume G′ is nonblocking. (T1.5)

Must show implies S and G are FT consistent (follows from initial assumptions) and

that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ⇒ (∃s′ ∈ Σ∗) ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F

Let s ∈ L(S) ∩ L(G). (T1.6)

Assume s /∈ L∆F . (T1.7)

To apply (T1.5), we need to show: s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F)

As we have s ∈ L(S) ∩ L(G) from (T1.6), we only still need to show s ∈ P−1
∆FL(G∆F).

By (T1.6) and (T1.7), we can apply Proposition 6.1.1 and conclude:

s ∈ L(G||G∆F) = L(G) ∩ P−1
∆FL(G∆F)

We thus have s ∈ L(G′). AsG′ is nonblocking, we can conclude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F), by (T1.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G), and only need to show that ss′ /∈ L∆F .

We first note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

78

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We next note that ss′ ∈ P−1
∆FLm(G∆F) implies ss′ ∈ P−1

∆FL(G∆F) as every state is

marked in G∆F, by Algorithm 1.

⇒ ss′ ∈ L(G) ∩ P−1
∆FL(G∆F) = L(G||G∆F)

We can now conclude by Proposition 6.1.1 that ss′ /∈ L∆F .

We thus conclude that S and G are fault-tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are fault-tolerant non-

blocking iff G′ is nonblocking.

6.3.2 N-Fault-Tolerant Nonblocking Theorem

Theorem 6.3.2 states that verifying that our system is N-fault-tolerant nonblocking

is equivalent to verifying that the DES G′ constructed by Algorithm 6 is nonblock-

ing. Essentially, G′ is our original plant and supervisor synchronized with newly

constructed plant components designed to restrict the behavior of our system to only

include strings that satisfy the N ≥ 0 fault scenario.

Theorem 6.3.2. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the system constructed in

Algorithm 6. Then S and G are N-fault-tolerant nonblocking iff G′ is nonblocking.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 6.3.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S and G are N-fault-tolerant nonblocking ⇐⇒ G′ is nonblocking.

From Algorithm 6, we have: G′ = G||G∆F||GNF||S

79

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

From Algorithm 1, we know that G∆F is defined over Σ∆F , and from Algorithm 4,

we know that GNF is defined over ΣF .

Let P∆F : Σ∗ → Σ∗

∆F and PF : Σ∗ → Σ∗

F be natural projections.

As G and S are defined over Σ, we have L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩

P−1
F L(GNF) and Lm(G

′) = Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F)∩ P−1

F Lm(GNF). (T2.1)

PartA) Show (⇒)

Assume S and G are N-fault-tolerant nonblocking. (T2.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) (T2.3)

⇒ s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF)

⇒ s ∈ L(G||G∆F||GNF)

We can thus apply Proposition 6.1.2 and conclude: s /∈ L∆F ∧ s ∈ LNF .

As we have s ∈ L(S) ∩ L(G) from (T2.3), we can apply (T2.2) and conclude that:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ LNF (T2.4)

We now need to show that ss′ ∈ Lm(G
′).

Sufficient to show: ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F)∩P

−1
F Lm(GNF).

From (T2.4), we have ss′ ∈ Lm(S)∩Lm(G), so only need to show ss′ ∈ P−1
∆FLm(G∆F)∩

P−1
F Lm(GNF).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F)

= Lm(G∆F). From Algorithm 4, we have that all states in GNF are marked, thus

L(GNF) = Lm(GNF).

It is thus sufficient to show that: ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF)

As ss′ ∈ Lm(G) by (T2.4), we have ss′ ∈ L(G), since Lm(G) ⊆ L(G).

80

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

From (T2.4), we have: ss′ /∈ L∆F ∧ ss′ ∈ LNF

Applying Proposition 6.1.2, we can conclude that:

ss′ ∈ L(G||G∆F||GNF) = L(G) ∩ P−1
∆FL(G∆F)∩ P−1

F L(GNF)

⇒ ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF)

We thus have that G′ is nonblocking, as required.

Part B) Show (⇐)

Assume G′ is nonblocking. (T2.5)

Must show implies S and G are FT consistent (follows from initial assumptions) and

that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∧ s ∈ LNF ⇒

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ LNF

Let s ∈ L(S) ∩ L(G). (T2.6)

Assume s /∈ L∆F ∧ s ∈ LNF . (T2.7)

To apply (T2.5), we need to show: s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩

P−1
F L(GNF)

As we have s ∈ L(S) ∩ L(G) from (T2.6), we only still need to show:

s ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF)

By (T2.6) and (T2.7), we can apply Proposition 6.1.2, and conclude:

s ∈ L(G||G∆F||GNF) = L(G) ∩ P−1
∆FL(G∆F)∩ P−1

F L(GNF)

We thus have s ∈ L(G′). AsG′ is nonblocking, we can conclude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F) ∩ P−1

F L(GNF), by (T2.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G), and only need to show that ss′ /∈ L∆F∧ss
′ ∈

LNF .

We first note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

81

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We next note that ss′ ∈ P−1
∆FLm(G∆F) implies ss′ ∈ P−1

∆FL(G∆F) as every state is

marked in G∆F, by Algorithm 1.

We also note that ss′ ∈ P−1
F Lm(GNF) implies ss′ ∈ P−1

F L(GNF) as every state is

marked in GNF, by Algorithm 4.

⇒ ss′ ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) =L(G||G∆F||GNF)

We can now conclude by Proposition 6.1.2 that ss′ /∈ L∆F and that ss′ ∈ LNF .

We thus conclude that S and G are N-fault-tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are N-fault-tolerant

nonblocking iff G′ is nonblocking.

6.3.3 Non-repeatable N-Fault-Tolerant Nonblocking Theorem

Theorem 6.3.3 states that verifying that our system is non-repeatable N-fault-

tolerant nonblocking is equivalent to verifying that the DES G′ constructed by Al-

gorithm 9 is nonblocking. Essentially, G′ is our original plant and supervisor syn-

chronized with newly constructed plant components designed to restrict the behavior

of our system to only include strings that satisfy the non-repeatable N ≥ 0 fault

scenario.

Theorem 6.3.3. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, N ≥ 0, and let G′ be the system constructed in

Algorithm 9. Then S and G are non-repeatable N- fault-tolerant nonblocking iff G′

is nonblocking.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

82

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

of Theorem 6.3.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S and G are non-repeatable N-fault-tolerant nonblocking ⇐⇒ G′ is

nonblocking.

From Algorithm 9, we have: G′ = G||G∆F||GNF||GF,1|| . . . ||GF,m||S

From Algorithm 1, we know that G∆F is defined over Σ∆F . From Algorithm 4, we

know that GNF is defined over ΣF , and from Algorithm 7, we know that GF,i is

defined over ΣFi
, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F , PF : Σ∗ → Σ∗

F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . ,m, be natural

projections.

As G and S are defined over Σ, we have that L(G′) = L(S)∩L(G)∩ P−1
∆FL(G∆F)∩

P−1
F L(GNF)∩P

−1
F1

L(GF,1)∩ . . .∩P
−1
Fm

L(GF,m) and Lm(G
′) = Lm(S)∩Lm(G)∩P−1

∆F

Lm(G∆F) ∩ P−1
F Lm(GNF) ∩ P−1

F1
Lm(GF,1) ∩ . . . ∩ P−1

Fm
Lm(GF,m). (T3.1)

Part A) Show (⇒)

Assume S and G are non-repeatable N-fault-tolerant nonblocking. (T3.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩ P

−1
F L(GNF) ∩ P

−1
F1

L(GF,1) ∩ . . . ∩ P
−1
Fm

L(GF,m)

(T3.3)

⇒ s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

⇒ s ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

We can thus apply Proposition 6.1.3 and conclude that: s /∈ L∆F ∪ LNRF ∧ s ∈ LNF .

As we have s ∈ L(S) ∩ L(G) from (T3.3), we can apply (T3.2) and conclude that:

(∃s′ ∈ Σ∗) ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LNRF ∧ ss′ ∈ LNF (T3.4)

83

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We now need to show that ss′ ∈ Lm(G
′).

Sufficient to show:

ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F) ∩ P−1

F Lm(GNF) ∩ P−1
F1

Lm(GF,1) ∩ . . . ∩

P−1
Fm

Lm(GF,m).

From (T3.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show:

ss′ ∈ P−1
∆FLm(G∆F) ∩ P−1

F Lm(GNF) ∩ P−1
F1

Lm(GF,1) ∩ . . . ∩ P−1
Fm

Lm(GF,m)

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F)

= Lm(G∆F). From Algorithm 4, we have that all states in GNF are marked, thus

L(GNF) = Lm(GNF). From Algorithm 7, we have that all states in GF,i are marked,

thus L(GF,i) = Lm(GF,i), i = 1, . . . ,m.

It is thus sufficient to show:

ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ · · · ∩ P−1
Fm

L(GF,m)

As ss′ ∈ Lm(G) by (T3.4), we have ss′ ∈ L(G), since Lm(G) ⊆ L(G).

From (T3.4), we have: ss′ /∈ L∆F ∪ LNRF∧ss
′ ∈ LNF

Applying Proposition 6.1.3, we can conclude that: ss′ ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

⇒ ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

We thus have that G′ is nonblocking, as required.

Part B) Show (⇐)

Assume G′ is nonblocking. (T3.5)

Must show implies S and G are FT consistent (follows from initial assumptions) and

that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∪ LNRF ∧ s ∈ LNF ⇒

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LNRF ∧ ss′ ∈ LNF

Let s ∈ L(S) ∩ L(G). (T3.6)

84

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Assume s /∈ L∆F ∪ LNRF∧s ∈ LNF . (T3.7)

To apply (T3.5), we need to show:

s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩

P−1
Fm

L(GF,m)

As we have s ∈ L(S) ∩ L(G) from (T3.6), we only still need to show:

s ∈ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m).

By (T3.6) and (T3.7), we can apply Proposition 6.1.3 and conclude:

s ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

⇒ s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

We thus have s ∈ L(G′). AsG′ is nonblocking, we can conclude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

⇒ ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆FLm(G∆F)∩P

−1
F L(GNF)∩P

−1
F1

L(GF,1)∩. . .∩P
−1
Fm

L(GF,m),

by (T3.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LNRF

and ss′ ∈ LNF .

We first note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆FLm(G∆F) implies ss′ ∈ P−1

∆FL(G∆F) as every state is

marked in G∆F, by Algorithm 1.

We note that ss′ ∈ P−1
F Lm(GNF) implies ss′ ∈ P−1L(GNF) as every state is marked

in GNF, by Algorithm 4.

Also, we note that ss′ ∈ P−1
Fi

Lm(GF,i) implies ss′ ∈ P−1
Fi

L(GF,i) as every state is

marked in GF,i, i = 1, . . . ,m, by Algorithm 7.

⇒ ss′ ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F L(GNF) ∩ P−1
F1

L(GF,1) ∩ . . . ∩ P−1
Fm

L(GF,m)

⇒ ss′ ∈ L(G||G∆F||GNF||GF,1|| . . . ||GF,m)

We can now conclude by Proposition 6.1.3 that: ss′ /∈ L∆F ∪ LNRF , and ss′ ∈ LNF

85

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We thus conclude that S and G are non-repeatable N-fault-tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are non-repeatable N-

fault-tolerant nonblocking iff G′ is nonblocking.

6.3.4 Resettable Fault-Tolerant Nonblocking Theorem

Theorem 6.3.4 states that verifying that our system is resettable fault-tolerant

nonblocking is equivalent to verifying that the DES G′ constructed by Algorithm 12

is nonblocking. Essentially, G′ is our original plant and supervisor synchronized with

newly constructed plant components designed to restrict the behavior of our system

to only include strings that satisfy the resettable fault scenario.

Theorem 6.3.4. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the system constructed in Algorithm

12. Then S and G are resettable fault-tolerant nonblocking iff G′ is nonblocking.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 6.3.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S andG are resettable fault-tolerant nonblocking ⇐⇒ G′ is nonblocking.

From Algorithm 12, we have: G′ = G||G∆F||GTF,1|| . . . ||GTF,m||S

From Algorithm 1, we know that G∆F is defined over Σ∆F . From Algorithm 10, we

know that GTF,i is defined over ΣFi
∪ ΣTi

, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . ,m, be natural

projections.

86

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

AsG is defined over Σ, we have that L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F)∩P

−1
TF1

L(GTF,1)

∩ . . .∩P−1
TFm

L(GTF,m) and Lm(G
′) = Lm(S)∩Lm(G)∩P−1

∆FLm(G∆F)∩P
−1
TF1

Lm(GTF,1)∩

. . . ∩ P−1
TFm

Lm(GTF,m). (T4.1)

Part A) Show (⇒)

Assume S and G are resettable fault-tolerant nonblocking. (T4.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m) (T4.3)

⇒ s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩

P−1
TFm

L(GTF,m)

⇒ s ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

We can thus apply Proposition 6.1.4 and conclude:

s /∈ L∆F ∪ LTF

As we have s ∈ L(S) ∩ L(G) from (T4.3), we can apply (T4.2) and conclude:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LTF (T4.4)

We now need to show that ss′ ∈ Lm(G
′).

Sufficient to show:

ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F) ∩ P−1

TF1
Lm(GTF,1) ∩ . . . ∩ P−1

TFm
Lm(GTF,m)

From (T4.4), we have ss′ ∈ Lm(S)∩Lm(G), so only need to show ss′ ∈ P−1
∆FLm(G∆F)∩

P−1
TF1

Lm(GTF,1) ∩ . . . ∩ P−1
TFm

Lm(GTF,m).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F)

= Lm(G∆F). From Algorithm 10, we have that all states in GTF,i are marked,

i = 1, . . . ,m, thus L(GTF,i) = Lm(GTF,i).

It is thus sufficient to show:

87

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

As ss′ ∈ Lm(G) by (T4.4), we have ss′ ∈ L(G), since Lm(G) ⊆ L(G).

Also from (T4.4), we have: ss′ /∈ L∆F ∪ LTF

Applying Proposition 6.1.4, we can conclude that: ss′ ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

⇒ ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m)

We thus have that G′ is nonblocking, as required.

Part B) Show (⇐)

Assume G′ is nonblocking. (T4.5)

Must show implies S and G are FT consistent (follows from initial assumptions) and

that:

(∀s ∈ L(S) ∩ L(G))s /∈ L∆F ∪ LTF ⇒ (∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈

L∆F ∪ LTF

Let s ∈ L(S) ∩ L(G). (T4.6)

Assume s /∈ L∆F ∪ LTF . (T4.7)

To apply (T4.5), we need to show:

s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

As we have s ∈ L(S) ∩ L(G) from (T4.6), we only still need to show:

s ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m)

By (T4.6) and (T4.7), we can conclude by Proposition 6.1.4:

s ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

⇒ s ∈ P−1
∆FL(G∆F) ∩P−1

TF1
L(GTF,1) ∩ . . . ∩P−1

TFm
L(GTF,m)

We thus have s ∈ L(G′). AsG′ is nonblocking, we can conclude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . . ∩ P−1

TFm
L(GTF,m), by

(T4.1)

88

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LTF .

We first note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆FLm(G∆F) implies ss′ ∈ P−1

∆FL(G∆F) as every state is

marked in G∆F, by Algorithm 1.

Also, we note that ss′ ∈ P−1
TFi

Lm(GTF,i) implies ss′ ∈ P−1
TFi

L(GTF,i) as every state is

marked in GTF,i, by Algorithm 10, for i = 1, . . . ,m.

⇒ ss′ ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTF,1) ∩ . . .∩P−1

TFm
L(GTF,m)

⇒ ss′ ∈ L(G||G∆F||GTF,1|| . . . ||GTF,m)

We can now conclude by Proposition 6.1.4 that: ss′ /∈ L∆F ∪ LTF

We thus conclude that S and G are resettable fault-tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are resettable fault-tolerant

nonblocking iff G′ is nonblocking.

89

Chapter 7

Fault-Tolerant Manufacturing

Example

In this chapter we introduce an example to illustrate our approach for fault-tolerant

system.

7.1 Setting Introduction

This example is based on the manufacturing testbed from Leduc [Led96]. The

testbed was designed to simulate a manufacturing workcell using model train equip-

ment, in particular problems of routing and collision. We will first discuss a single-loop

version of the example, and then in Section 7.3, we will report experimental results

of applying the method to the full testbed model.

This example builds upon the illustrative example that we introduced in Section

1.2.3, providing the remaining plant models for the example, as well as the details of

how we applied our fault tolerant approach to the example. We recommend that you

90

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

reread Section 1.2.3 to refresh your memory of the details presented there, as they

will not be repeated below.

7.1.1 Single Loop Example

In this section, we introduce a single-loop version of the example from Leduc

[Led96], as shown in Figure 1.2. This example consists of eight sensors and two trains

(train 1, train 2). Train 1 starts between sensors 9 and 10, while train 2 starts between

sensors 15 and 16. Both trains can only traverse the tracks in a counter-clockwise

direction.

The plant models, for the portion of the testbed we are currently considering,

consists of the following basic elements: sensors, trains and the relationship between

sensors and trains.

Sensor Models

In Section 1.2.3, we introduced the eight DES plant models for our eight sensors.

We first presented the original sensor models (without fault events added) in Figure

1.3. We then presented new models, for sensors J ∈ {9, 10, 16}, with the added fault

events. For this example, we will use the original models for sensors J ∈ {11, . . . , 15},

and the new models for sensors J ∈ {9, 10, 16} as we are assuming that only these

sensors have faults. This restriction is done to simplify the example and make it

easier to illustrate our approach.

We now need to define our fault and reset event sets for the example. We set

Σ∆F = ΣΩF = ∅ as our example does not require any fault events of this type. We also

set m = 4, ΣF1
= {t1F at9, t1F at10}, ΣF2

= {t1F at16}, ΣF3
= {t2F at9, t2F at10},

91

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

ΣF4
= {t2F at16}. We group our fault events in this manner as sensors 9 and 10

are both relevant to preventing a train from entering the track segment delineated by

sensors 11 and 13, while sensor 16 is not. Also, the faults in detecting one train, are

not relevant to the faults in detecting the other train, for our example.

Finally, we define our corresponding reset event sets as follows: ΣT1
= {t1 at11},

ΣT2
= {t1 at14}, ΣT3

= {t2 at11}, and ΣT4
= {t2 at14}.

7.1.2 Sensor Interdependencies

This series of models show the sensor’s interdependencies with respect to a given

train. With respect to the starting position of a particular train (represented by the

initial state), sensors can only be reached in a particular order, dictated by their

physical location on the track. This is shown in Figures 7.14 and 7.15. Both DES

already show the added fault events.

_�������

_�������

_������

_�������

_��������

_������	

_������

_�������

_�������

_������

_�������

	 �

�

��

��

Figure 7.14: Sensor Interdependencies for
Train 1

_������

_�������

_������	

_�������	

_������

_�������

_�������

���������������

_������

_�������

��� �

�

�

�

Figure 7.15: Sensor Interdependencies for
Train 2

Train Models

The train models are shown in Figure 7.16 for train K (K = 1, 2) are for each train.

Train K can only move when its enablement event en trainK occurs, and then it can

92

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

move at most a single unit of distance (event umv trainK), before another en trainK

must occur. This allows a supervisor to precisely control the movement of the train

by enabling and disabling event en trainK as needed.

���������

t
���������

 �

Figure 7.16: Train K
Model

���������

t
���������

t�����65

t������

t�����66

t�����6�

t�����6�

t�����6�

t�����6�

t�����6�

t
���������

�5 6

Figure 7.17: Sensors and
Train K

!tKF_at9
!tKF_at16
!tKF_10
!tK_at10
!tK_at9
!tK_at11
!tK_at12
!tK_at13
!tK_at14
!tK_at15
!tK_at16

en_K

!umv_K

!umv_K

0 1 2

Figure 7.18: Sensors and
Train K with Faults

7.1.3 Relationship Between Sensors and Trains Models

Figure 7.17 shows the relationship between train K’s (K = 1, 2) movement, and

sensors detecting the train. It captures the idea that a train can reach at most one

sensor during a unit movement, and no sensors if it is disabled. Figure 7.18 shows

the replacement model with fault events added. We now see that our plant model

contains 14 DES in total.

7.2 Modular Supervisors

After the plant models were developed, four supervisors were designed to prevent

collisions in the track sections defined by sensors 11-13, 15-16, 12-14, and 9-10. The

idea is to ensure that only one train uses this track section at a time. We will first

introduce the original collision protection supervisors that were designed with the

93

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

assumption of no faults, and then we will introduce new fault-tolerant versions with

added redundancy.

7.2.1 Collision Protection Supervisors

Figure 7.19 shows the collision protection supervisor (CPS-11-13) for the track

section containing sensors 11 and 13. Once a train has reached sensor 11, the other

train is stopped at sensor 10 until the first train reaches sensor 15, which indicates it

has left the protected area. The stopped train is then allowed to continue. Figures

7.20, 7.21, and 7.22 show similar supervisors for the remaining track sections. Super-

visors CPS-15-16 and CPS-9-10 have nonstandard initial states in order to reflect

the starting locations of the two trains.

It’s easy to see that supervisor CPS-11-13 will not be fault-tolerant as it relies

solely on sensor 10 to detect when a second train arrives. If sensor 10 fails, the train

continues and could collide with the first train. Supervisors CPS-9-10 and CPS-

12-14 will also not be fault-tolerant because of sensor 10. A failure at sensor 10

could cause supervisor CPS-9-10 to miss a train entering the protected zone, and

could cause supervisor CPS-12-14 to miss a train leaving the protected zone. Using

the DES research software tool, DESpot [DES13], we verified that the system passes

N = 0 FT controllability and nonblocking (i.e. if all faults are ignored) and fails all

eight fault-tolerant controllability and nonblocking properties (N ≥ 1).

94

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

!t1_at11en_train1
!t1_at10
!t1_at15
!t2_at15
!t2_at10
en_train2

!t2_at11

!t1_at15
en_train1
en_train2

!t2_at10

!t2_at15

!t1_at10

en_train1
en_train2

!t1_at15

en_train1

!t2_at15

en_train2

0

2

1

3

4

Figure 7.19: CPS-11-13 Supervisor

en_train2

!t2_at14

!t2_at11

en_train1
en_train2!t1_at14

en_train1

!t1_at14

en_train1
en_train2

!t1_at11

!t2_at14

!t2_at14
!t1_at14
!t1_at11
!t2_at11
en_train1
en_train2

!t2_at15

!t1_at15

0

2

1

3

4

Figure 7.20: CPS-15-16 Supervisor

en_train2
en_train1

!t1_at15

!t2_at10

en_train2

!t2_at10

en_train1

!t1_at10

en_train2
en_train1

!t2_at15

!t1_at10

!t2_at15
!t1_at15
!t2_at10
en_train2
!t1_at10
en_train1

!t2_at14

!t1_at14

0

2

1

3

4

Figure 7.21: CPS-12-14 Supervisor

!t1_at14

en_train1
en_train2

!t2_at11

!t2_at11

en_train2

!t2_at14
en_train1
!t1_at14
en_train2
!t1_at11
!t2_at11

!t2_at10

!t1_at10

en_train1

!t1_at11

!t2_at14

en_train1
en_train2!t1_at11

0

2

1

3

4

Figure 7.22: CPS-9-10 Supervisor

7.2.2 Collision Protection Fault-Tolerant Supervisors

We next modified supervisor CPS-11-13 to make it more fault-tolerant. The

result is shown in Figure 7.23. We have added at states 1 and 4 a check for either

sensor 9 or sensor 10. That way if sensor 10 fails but sensor 9 doesn’t, we can still stop

the train at sensor 9 and avoid the collision. We made similar changes to supervisors

CPS-12-14, and CPS-9-10, as shown in Figures 7.24, and 7.25. Supervisor CPS-

15-16 did not require any changes as it did not rely on any of the sensors that had

faults.

95

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

en_train1

!t1_at15

en_train2

!t2_at15

en_train2
en_train1

!t2_at9
!t2_at10

!t1_at15

!t1_at9
!t1_at15
!t2_at9
en_train2
!t1_at10
!t2_at15
!t2_at10
en_train1 !t2_at11

!t1_at11

en_train2
en_train1

!t1_at9
!t1_at10

!t2_at15

0

2

1

3

4

Figure 7.23: CPS-11-13FT Supervisor

en_train1

!t1_at9
!t1_at10

!t2_at10
!t2_at9

en_train2

en_train1
en_train2
!t2_at9!t1_at9

!t1_at10

!t2_at15

!t1_at15

!t1_at9
en_train1
en_train2

!t2_at10
!t2_at9

!t1_at9
en_train1
en_train2
!t1_at10
!t2_at10
!t1_at15
!t2_at9
!t2_at15

!t1_at14

!t2_at14

0

2

1

3

4

Figure 7.24: CPS-12-14FT Supervisor

!t2_at9
en_train2
en_train1

!t1_at14

!t2_at11

en_train1
!t1_at9

!t1_at11

en_train2
!t1_at14
en_train1
!t2_at11
!t2_at14
!t1_at11

!t2_at10
!t2_at9

!t1_at10
!t1_at9

!t2_at11

!t2_at9
en_train2

en_train2
en_train1
!t1_at9

!t2_at14

!t1_at11
0

2

1

3

4

Figure 7.25: CPS-9-10FT Supervisor

Using DESpot, we can verify that the supervisor is not FT controllable or FT

nonblocking for the plant. The reason is that if both sensors 9 and 10 fail, the

train will not be detected. However, the system can be show to be N-fault tolerant

controllable for N = 1 (i.e. sensor 10 fails but not sensor 9), non-repeatable N-fault-

tolerant controllable for N = 4, and resettable fault-tolerant controllable (as long as

both sensors 9 and 10 don’t fail in a given pass, all is well). The system also passes

the corresponding FT nonblocking properties. It can also be shown that the system

fails N-fault tolerant controllable and nonblocking for N = 2.

96

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

7.3 Complete System Example

We next considered the full plant model for the testbed, as described in Leduc

[Led96]. This model includes all three loops shown in Figure 1.1, including all of the

sensors shown, as well as six switches for routing, and three cranes, located at sensors

2, 13, and 21, for loading the trains. The full model includes collision protection

supervisors for all track sections as well as supervisors for routing trains and stopping

each train for loading when they reach a crane. The original system contains 29

supervisors, 110 plant components and has a state space of 7.33× 109 states.

For this system, we used a similar approach to the one described earlier to add

fault events to sensors, and to add fault-tolerance to the supervisors. See Dierikx

[Die15] for complete details. For this version of the example, we have ΣΩF = ∅ and

Σ∆F = ∪K=1,2(∪j∈I∆{tKF atj}), where I∆ = {2, 8, 13, 21, 27}. The excluded faults

are for key portions of the track where a decision (such as stopping a train in front

of a given crane) needs to be made but there does not exist a second physical sensor

appropriately located that can be used as a backup. To deal with faults from these

sensors, we believe we would need to add additional sensors.

For fault and reset sets, we have m = 16. For train 1, we have fault sets

ΣFn
= ∪j∈IFn

{t1F atj}, n = 1, . . . , 8, where IF1 = {0, 1, 4}, IF2 = {3, 5, 6, 7},

IF3 = {9, 10, 11}, IF4 = {12, 14}, IF5 = {15, 16}, IF6 = {19, 20, 22}, IF7 = {23, 24},

and IF8 = {25, 26}. Sets ΣF9
− ΣF16

are analogous, except that they are for train 2.

For train 1, we have reset sets ΣTn
= ∪j∈IRn

{t1 atj}, n = 1, . . . , 8, where IR1 =

{6, 7, 27}, IR2 = {0, 1, 19, 20}, IR3 = {15, 16}, IR4 = {8, 9, 10}, IR5 = {12, 14},

IR6 = {23, 24}, IR7 = {25, 26}, and IR8 = {12, 14}. Sets ΣT9
− ΣT16

are analogous,

except that they are for train 2.

97

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Using our software research tool, DESpot [DES13], we were able to determine that

the system is N-FT controllable and nonblocking (N = 1), non-repeatable N-FT con-

trollable and nonblocking (N = 16), and resettable FT controllable and nonblocking.

We ran an FT controllable check on the system but after 33 hours and 1.908 × 109

states and counting, we stopped the computation. See Table 7.1 for verification times

and project state sizes (includes added FT plant components).

We also ran N-FT controllability and nonblocking checks for N = 2. The system

passed for controllability and failed for nonblocking. The reason that it passed N-

FT controllability is that a switch failed to change state due to a sensor fault and a

train derailed taking it to a noncoreachable state before an illegal event could occur.

This suggests that the routing supervisors could be made more expressive by adding

the uncontrollable train derailing events to their event sets, but without matching

transitions.

Table 7.1: Verification Times for Full System

Verification Time (seconds)

Property State Size Controllability Nonblocking

fault-tolerant 1.908× 109+ - -

N-fault-tolerant (N = 1) 368,548 654 P 3178 P

N-fault-tolerant (N = 2) 1.961× 106 13,916 P 26,249 F

nonrepeatable N-fault-tolerant 1.275× 1010 4,230 P 10,956 P

resettable fault-tolerant 594,448 2,007 P 7,645 P

98

Chapter 8

Permanent Fault-Tolerant

Controllability and Nonblocking

In this chapter we will develop some properties that will allow us to determine if a

supervisor will be controllable in the five permanent fault scenarios that we introduced

in Section 8.2. In essence, these definitions characterize strings that belong to the

desired fault scenario, and only require supervisors to satisfy the controllability and

nonblocking definitions for these strings.

8.1 Permanent Fault-Tolerant Consistency

We now extend the FT consistency Definition 3.2 to handle permanent faults.

The permanent fault-tolerant (PFT) consistency extension is identical except it adds

Point 2 which says that the permanent fault events in ΣPi
are a subset of the standard

fault events in ΣFi
. As a result, if a system is PFT consistent, this implies that the

system is also FT consistent.

99

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Definition 8.1.1. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault and reset sets ΣFi
,ΣPi

,ΣTi
(i = 1, . . . ,m),Σ∆F , and ΣΩF , is per-

manent fault tolerant (PFT) consistent if:

1. Σ∆F ∪ ΣΩF ∪ ΣF ⊆ Σu

2. (∀i ∈ {1, . . . ,m})ΣPi
⊆ ΣFi

3. Σ∆F ,ΣΩF ,ΣFi
(i = 1, . . . ,m), are pair-wise disjoint.

4. (∀i ∈ {1, . . . ,m})ΣFi
6= ∅

5. (∀i ∈ {1, . . . ,m})ΣFi
∩ ΣTi

= ∅

6. Supervisor S is deterministic.

7. (∀x ∈ X)(∀σ ∈ (ΣΩF ∪ Σ∆F ∪ ΣF))ξ(x, σ) = x

8.2 Permanent Fault Scenarios

In this section, we introduce new scenarios designed to work with permannt faults.

As discussed in Section 1.2.3, the intermittent fault scenarios (excluding the default

fault scenario) do not work well with permanent faults. The reason is that the in-

termittent fault scenarios and modelling approach assume that if a fault event can’t

occur, the original event can occur. However, the modelling approach we use for per-

manent faults blocks the original event from occurring once the fault event occurs for

the first time, and then only the fault event can continue to occur. As we discussed in

Section 1.2.3, it is easy to see how scenarios such as the N -fault scenario and permant

faults would typically lead to blocking.

100

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

As a result, we will introduce four new permanent fault scenarios designed to limit

which faults occurred, as opposed to how many times a fault occurred. For example,

the one-repeatable fault scenario allows any one fault to occur an unlimited number

of times, but once a given fault occurs, no others are allowed to occur after it.

Default Fault Scenario

The first is the default fault scenario where the supervisor must be able to handle

any non-excluded fault event that occurs. This is the same scenario used for inter-

mittent faults, and is included here for completeness, and to provide a baseline for

the other scenarios.

One-repeatable Fault Scenario

The second scenario is the one-repeatable fault scenario where the supervisor is

only required to handle at most one non-excluded fault event and all unrestricted

fault events. This is similar to the N fault scenario with N = 1, except that once a

given fault has occurred, it can continue to occur, but no other standard fault events

may occur. The N fault scenario allowed at most N fault event transitions, whereas

the one-repeatable fault scenario allows at most one unique fault event to occur, but

that fault event can occur multiple times.

For example, it would allow a fault to occur at sensor 10 (see Figure 1.2 in Section

1.2.3), but once that occurs we could no longer have faults at sensors 9 and 16, but

could continue to have faults at sensor 10. Rather than focusing on how many fault

events occurred, the one-repeatable fault scenario is saying at most one component

in the system can have a fault, but doesn’t restrict how often it fails, not does it

101

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

distinguish between intermittent or permanent faults.

m-one-repeatable Fault Scenario

The next scenario is the m-one-repeatable fault scenario where the supervisor is

required to handle all unrestricted fault events, but no more than one fault event from

any given ΣFi
(i = 1, . . . ,m) fault set, but those events can occur multiple times. This

definition allows the designer to group faults together in fault sets such that a fault

occurring from one set does not affect a supervisor’s ability to handle a fault from

a different set. This scenario extends the one-repeatable fault scenario to allow at

most one component to fail per system area associated with a given fault set. If we

assume the fault sets from the example in Section 3.1, then this scenario would allow

multiple faults to occur at sensors 10 and 16 as they are from separate fault sets, but

once a fault occurs at sensor 10, we could no longer get faults at sensor 9 as it is from

the same fault set.

Non-repeatable Permanent Fault Scenario

The next scenario is the non-repeatable permanent fault scenario where the super-

visor is required to handle all unrestricted fault events, but no more than one fault

event from any given ΣFi
(i = 1, . . . ,m) fault set. If the event that occurs is a perma-

nent fault, it can occur multiple times, otherwise only once. This property is similar

to the non-repeatable N = m fault scenario except that it recognizes permanent faults

and allows them to occur multiple times.

Continuing the above example and assuming only sensor 9 has a permanent fault,

then this scenario would allow faults to occur at sensors 9 and 16 as they are from

102

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

separate fault sets, but would allow only one fault at sensor 16 but multiple faults at

sensor 9 as it is the only permanent fault event. Also, once a fault occurs at sensor

9, we could no longer get faults at sensor 10 as it is from the same fault set.

Resettable Permanent Fault Scenario

The last scenario we consider is the resettable permanent fault scenario. This is

designed to capture the situation where at most one non-permanent fault event from

each ΣFi
(i = 1, . . . ,m) fault set can be handled by the supervisor during each pass

through a part of the system, but this ability resets for the next pass. However,

once a permanent fault in a given fault set occurs, the fault can continue to occur

unrestricted, but all other faults in the same fault set can no longer occur. For this

to work, we need to be able to detect when the current pass has completed and it is

safe for another fault event from the same fault set ΣFi
(i = 1, . . . ,m), to occur. We

use the fault set’s corresponding set of reset events ΣTi
, to achieve this. This scenario

is similar to the resettable fault scenario with the addition it recognizes that once a

permanent fault occurs for a given fault set, it is the only fault allowed to occur or

you are guaranteed to get multiple faults per pass.

If we continue the above example, we could have sensors 9 and 10 in one fault

set, and set the corresponding reset event set to only contain the detection event for

sensor 11. If we get a fault event from sensor 9 and 10 in a row, we would be unable to

stop the train. However, if we got a fault from sensor 10 only and then the detection

event for sensor 11, we would know we could now safely get a second fault event from

sensor 9 or 10 (but not both) and still be able to stop the train. Such a supervisor

could handle an infinite number of faults from sensors 9 and 10, as long as they don’t

103

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

happen more than once per pass. However, once we get a fault from sensor 9 (our

only permanent fault), we could no longer get faults from sensor 10 in the same pass

as we would always have a fault from sensor 9 each pass.

8.3 Fault-Tolerant Controllability and Nonblock-

ing

The first two fault-tolerant properties we present are definitions 4.1.2 and 4.1.3 from

Section 4.1, and they are designed to handle the default fault scenario. We include

them here as the other properties in this section will reduce to it where m = 0.

8.4 One-repeatable Fault-Tolerant Controllability

and Nonblocking

The next fault-tolerant properties that we introduce are designed to handle the

one-repeatable fault scenario. First, we need to define the language of one-repeatable

fault events. This is the set of strings that contain at most one fault event from ΣF ,

but that event can occur multiple times in the string. We also note that we will be

using the language of excluded faults that was defined in Section 4.1.

Definition 8.4.1. We define the language of one-repeatable fault events as:

L1RF = (Σ− ΣF)
∗ ∪

⋃

σ∈ΣF

((Σ− ΣF)
∗.σ.(Σ− (ΣF − {σ}))

∗)

104

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Definition 8.4.2. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is one-repeatable fault tolerant

(1-R-FT) controllable, if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)

(sσ ∈ L(G)) ∧ (s /∈ L∆F) ∧ (s ∈ L1RF)⇒ sσ ∈ L(S)

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is one-repeatable fault-tolerant controllable for G.

The above definition is essentially the standard controllability definition, but ig-

nores strings that include excluded fault events, and strings that contain more than

two unique fault events from ΣF .

We note that if m = 0, we get ΣF = ∅, and L1RF simplifies to L1RF = Σ∗. This

means Definition 8.4.2 simplifies to the FT controllable definition.

In a similar manner, we introduced the following FT nonblocking property to

handle the one-repeatable fault scenario.

Definition 8.4.3. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is one-repeatable fault tolerant

(1-R-FT) nonblocking, if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))

(s /∈ L∆F)∧ (s ∈ L1RF)⇒ (∃s′ ∈ Σ∗)(ss′ ∈ Lm(S)∩Lm(G))∧ (ss′ /∈ L∆F)∧ (ss
′ ∈

L1RF)

We note that if m = 0 then Definitions 8.4.3, 8.5.3, 8.6.3, and 8.7.4 all simplify to

the FT nonblocking definition.

105

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

8.5 m-one-repeatable Fault-Tolerant Controllabil-

ity and Nonblocking

The next fault-tolerant properties that we introduce are designed to handle the

m-one-repeatable fault scenario. First, we need to define the language of m-one-

repeatable fault events. This is the set of all strings that contain at most one fault

event from a given fault set ΣFi
(i = 1, . . . ,m), but that event can occur multiple

times in the string. We note that a string in L1RFm
could potentially contain a unique

event from each different fault set, but no two unique events from the same fault set.

Definition 8.5.1. We define the language of m-one-repeatable fault events as:

L1RFm
=

m
⋂

i=1

((Σ− ΣFi
)∗ ∪

⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗)

Definition 8.5.2. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is m-one-repeatable fault-tolerant

(m-1-R-FT) controllable, if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)

(sσ ∈ L(G)) ∧ (s /∈ L∆F) ∧ (s ∈ L1RFm
)⇒ sσ ∈ L(S)

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is m-one-repeatable fault-tolerant controllable for G.

The above definition is essentially the standard controllability definition, but ig-

nores strings that include excluded fault events, and strings that contain more than

two unique fault event from the same fault set.

We note that if m = 1, then this property simplifies to the one-repeatable fault

106

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

tolerant controllable property. We also note that if m = 0, we get ΣF = ∅, and L1RFm

simplifies to L1RFm
= Σ∗. This means Definition 8.5.2 simplifies to the FT controllable

definition.

In a similar manner, we introduced the following FT nonblocking property to

handle the m-one-repeatable fault scenario.

Definition 8.5.3. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is m-one-repeatable fault tolerant

(m-1-R-FT) nonblocking, if it is FT consistent and:

(∀s ∈ L(S) ∩ L(G))

(s /∈ L∆F)∧(s ∈ L1RFm
)⇒ (∃s′ ∈ Σ∗)(ss′ ∈ Lm(S)∩Lm(G))∧(ss′ /∈ L∆F)∧(ss

′ ∈

L1RFm
)

8.6 Non-repeatable Permanent Fault-Tolerant Con-

trollability and Nonblocking

The next fault-tolerant properties that we introduce are designed to handle the

non-repeatable permanent fault scenario. For Definition 8.6.2, we use the language of

m-one-repeatable fault events from Section 8.5. Next, we need to define the language

of repeated intermittent fault events. This is the set of all strings that include two or

more non-permanent faults from a single fault set ΣFi
(i = 1, . . . ,m).

Definition 8.6.1. We define the language of repeated intermittent fault events as:

LRFp
=

m
⋃

i=1

(Σ∗.(ΣFi
− ΣPi

).Σ∗.(ΣFi
− ΣPi

).Σ∗)

107

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Definition 8.6.2. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
, ΣPi

(i = 1, . . . ,m) and Σ∆F , is non-repeatable permanent

fault tolerant (NR-PFT) controllable, if it is PFT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)

(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LRFp
) ∧ (s ∈ L1RFm

)⇒ sσ ∈ L(S)

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is non-repeatable permanent fault-tolerant controllable

for G.

The above definition is essentially the standard controllability definition, but ig-

nores strings that include excluded fault events, two or more non-permanent faults

from a single fault set ΣFi
(i = 1, . . . ,m), or strings that contain more than one

unique permanent fault event from a given fault set.

We note that since LRFp
only restricts non-permanent faults, the combination of a

string excluded from LRFp
and included in L1RFm

means that the string can contain

at most one fault event from a given fault set, but if the fault is a permanent fault,

it can occur multiple times while intermittent faults may only occur once.

We note that if m = 0, we get ΣF = ∅, LRFp
simplifies to LRFp

= ∅ and L1RFm

simplifies to L1RFm
= Σ∗. This means Definition 8.6.2 simplifies to the FT controllable

definition.

In a similar manner, we introduced the following FT nonblocking property to

handle the non-repeatable permanent fault scenario.

Definition 8.6.3. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault sets ΣFi
, ΣPi

(i = 1, . . . ,m) and Σ∆F , is non-repeatable permanent

fault tolerant (NR-PFT) nonblocking, if it is PFT consistent and:

108

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

(∀s ∈ L(S) ∩ L(G))

(s /∈ L∆F ∪ LRFp
) ∧ (s ∈ L1RFm

) ⇒ (∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈

L∆F ∪ LRFp
) ∧ (ss′ ∈ L1RFm

)

8.7 Resettable Permanent Fault-Tolerant Control-

lability and Nonblocking

The next fault-tolerant properties that we introduce are designed to handle the

resettable permanent fault scenario. First, we need to define the language of perma-

nent non-reset fault events. This is the set of all strings where two faults events (the

first event a non-permanent fault) from the same fault set ΣFi
(i ∈ {1, . . . ,m}), occur

in a row without an event from the corresponding set of reset events, ΣTi
, occurring

in between.

Definition 8.7.1. We define the language of permanent non-reset fault events as:

LTFp
=

m
⋃

i=1

(Σ∗.(ΣFi
− ΣPi

).(Σ− ΣTi
)∗.ΣFi

.Σ∗)

Second, we need to define the language of one-repeatable permanent fault events.

This is the set of all strings such that once a fault event from a given permanent fault

set ΣPi
(i = 1, . . . ,m) has occured, no other event from the corresponding fault set

(ΣFi
) can occur except that permanent fault event.

Definition 8.7.2. We define the language of one-repeatable permanent fault events

as:

109

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

L1RFp
=

m
⋂

i=1

((Σ− ΣPi
)∗ ∪

⋃

σ∈ΣPi

(Σ− ΣPi
)∗.σ.(Σ− (ΣFi

− {σ}))∗)

Definition 8.7.3. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

xo, Xm), and fault and reset sets ΣFi
, ΣPi

, ΣTi
(i = 1, . . . ,m) and Σ∆F , is resettable

permanent fault tolerant (T-PFT) controllable if it is PFT consistent and:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu)

(sσ ∈ L(G)) ∧ (s /∈ L∆F ∪ LTFp
) ∧ (s ∈ L1RFp

)⇒ sσ ∈ L(S)

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is resettable permanent fault-tolerant controllable for

G.

The above definition is essentially the standard controllability definition, but ig-

nores strings that include excluded fault events, strings where two fault events (the

first event a non-permanent fault) from the same fault set ΣFi
(i ∈ 1, . . . ,m) occur

in a row without an event from the corresponding set of reset events ΣTi
in be-

tween, and strings such that once a fault event from a given permanent fault set ΣPi

(i = 1, . . . ,m) occurs, another event from the corresponding fault set (ΣFi
) occurs

other than that permanent fault event.

We note that if m = 0, we get ΣF = ∅, LTFp
simplifies to LTFp

= ∅, and L1RFp

simplifies to L1RFp
= Σ∗. This means Definition 8.7.3 simplifies to the FT controllable

definition.

In a similar manner, we introduced the following FT nonblocking property to

handle the resettable permanent fault scenario.

Definition 8.7.4. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ,

110

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

xo, Xm), and fault sets ΣFi
, ΣPi

, ΣTi
(i = 1, . . . ,m) and Σ∆F , is resettable permanent

fault tolerant (T-PFT) nonblocking if it is PFT consistent and:

(∀s ∈ L(S) ∩ L(G))

(s /∈ L∆F ∪ LTFp
) ∧ (s ∈ L1RFp

) ⇒ (∃s′ ∈ Σ∗)(ss′ ∈ Lm(S) ∩ Lm(G)) ∧ (ss′ /∈

L∆F ∪ LTFp
) ∧ (ss′ ∈ L1RFp

)

111

Chapter 9

Permanent Fault-Tolerant

Algorithms

In this chapter, we will present algorithms to construct and verify the permanent

fault-tolerant controllability and nonblocking properties that we defined in Chapter

8. We will then present complexity analysis for theses algorithms.

9.1 Fault-Tolerant Controllability and Nonblock-

ing Algorithm

The first algorithms are the same as the Algorithms in Section 5.1.1. They consist

of Algorithm 1 to construct an excluded faults plant (G∆F) and Algorithms 2 and 3

to verify FT controllability and nonblocking.

112

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

9.2 One-repeatable Fault-Tolerant Controllability

and Nonblocking Algorithm

For the one-repeatable fault-tolerant controllability and nonblocking definitions,

we only allow at most one unique fault event from ΣF to occur, but that event can

occur multiple times. We also remove all the excluded fault transitions. We then

apply the standard controllability and nonblocking algorithms.

To achieve this, we introduce three new algorithms. First, Algorithm 13 con-

structs G1RF for standard fault set ΣF . The algorithm constructs a new DES with

every state marked, and event set ΣF , and k + 1 states, where k is the size of ΣF .

For each fault event in ΣF , the algorithm creates a transition from the initial state

to a new state unique to that fault event. It also adds a selflooped transition at that

state for the event. Synchronizing with this DES will allow at most one unique fault

event from ΣF to occur, but that event can occur multiple times. Figure 9.26 shows

an example of one-repeatable fault plant, G1RF, automaton.

0 1

2

3

σ1
σ1

σ2

σ2

σ3

σ3

Figure 9.26: One-Repeatable Fault Plant G1RF,ΣF = {σ1, . . . , σ3}

113

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 13 construct-G1RF(ΣF)

1: k ← |ΣF |

2: Y1 ← {y0, . . . , yk}

3: Ym,1 ← Y1

4: δ1 ← ∅

5: j ← 1

6: for σ ∈ ΣF

7: δ1 ← δ1 ∪ {(y0, σ, yj), (yj , σ, yj)}

8: j ← j + 1

9: end for

10: return (Y1,ΣF , δ1, yo, Ym,1)

Algorithm 14 shows how to verify one-repeatable fault-tolerant controllability

for G and S. Line 1 constructs the excluded fault plant, G∆F, using Algorithm 1.

Line 2 constructs the one-repeatable fault plant, G1RF, using Algorithm 13. Line 3

constructs the new plant G′. Line 4 checks that supervisor S is controllable for plant

G′. As G∆F removes any excluded fault transitions, and G1RF prevents strings from

containing more than one unique fault event from ΣF , checking that S is controllable

for the resulting behavior will have the effect of verifying one-repeatable fault-tolerant

controllability.

114

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 14 Verify one-repeatable fault-tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F)

2: G1RF ← construct-G1RF(ΣF)

3: G′ ← G||G∆F||G1RF

4: pass ← vCont(G′,S)

5: return pass

Algorithm 15 shows how to verify one-repeatable fault-tolerant nonblocking for

G and S. This algorithm is essentially the same as Algorithm 14, except at line

3 we calculate the closed loop system G′, and then at line 4 we verify that it is

nonblocking.

Algorithm 15 Verify one-repeatable fault-tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F)

2: G1RF ← construct-G1RF(ΣF)

3: G′ ← G||G∆F||G1RF||S

4: pass ← vNonb(G′)

5: return pass

We note that if m = 0, we have ΣF = ∅, and that synchronizing with G1RF will

have no effect. This means G′ will simplify to G′ = G||G∆F or G′ = G||G∆F||S and

we can run the FT controllability Algorithm or FT nonblocking Algorithm instead.

115

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

9.3 m-one-repeatable Faults-Tolerant Controllabil-

ity and Nonblocking Algorithm

For the m-one-repeatable fault-tolerant controllability and nonblocking definitions,

we only allow at most one unique fault event from ΣFi
(i = 1, . . . ,m) to occur but

that event can occur multiple times. We also remove all the excluded fault transitions.

We then apply the standard controllability and nonblocking algorithms.

To achieve this, we introduce three new algorithms. First, Algorithm 16 con-

structs for G1RF,i for i ∈ {1, . . . ,m}, and fault set ΣFi
. The algorithm constructs

a new DES with each state marked, event set ΣFi
, and k + 1 states, where k is the

size of ΣFi
. It then creates a transition from the initial state to a new state unique

to that fault event. It also adds a selflooped transition at that state for the event.

Synchronizing with this DES will allow at most one unique fault event from each ΣFi

to occur, but that event can occur multiple times. Figure 9.27 shows an example

m-one-repeatable fault plant, G1RF,i, automaton.

0 1

2

3

σ1
σ1

σ2

σ2

σ3

σ3

Figure 9.27: m-One-Repeatable Fault Plant G1RF,i,ΣFi
= {σ1, . . . , σ3}

116

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 16 construct-G1RF,i(ΣFi
, i)

1: k ← |ΣFi
|

2: Yi ← {y0, . . . , yk}

3: Ym,i ← Yi

4: δi ← ∅

5: j ← 1

6: for σ ∈ ΣFi

7: δ1 ← δ1 ∪ {(y0, σ, yj), (yj , σ, yj)}

8: j ← j + 1

9: end for

10: return (Yi,ΣFi
, δi, yo, Ym,i)

Algorithm 17 shows how to verify m-one-repeatable fault-tolerant controllability

for G and S. Line 1 constructs the excluded fault plant, G∆F. For i = 1, . . . ,m, Line

3 constructs the m-one-repeatable fault plant, G1RF,i, using Algorithm 16. Line

5 constructs the new plant G′. Line 6 checks that supervisor S is controllable for

plant G′. As G∆F removes any excluded fault transitions, and each G1RF,i allows

at most one unique fault event from ΣFi
to occur, checking that S is controllable for

the resulting behavior will have the effect of verifying m-one-repeatable fault-tolerant

controllability.

117

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 17 Verify m-one-repeatable fault-tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F)

2: for i = 1, . . . ,m

3: G1RF,i ← construct-G1RF,i(ΣFi
, i)

4: end for

5: G′ ← G||G∆F||G1RF,1|| . . . ||G1RF,m

6: pass ← vCont(G′,S)

7: return pass

Algorithm 18 shows how to verify m-one-repeatable fault-tolerant nonblocking

for G and S. This algorithm is essentially the same as Algorithm 17, except at

line 5 we calculate the closed loop system G′, and then at line 6 we verify that it is

nonblocking.

Algorithm 18 Verify m-one-repeatable fault-tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F)

2: for i = 1, . . . ,m

3: G1RF,i ← construct-G1RF,i(ΣFi
, i)

4: end for

5: G′ ← G||G∆F||G1RF,1|| . . . ||G1RF,m||S

6: pass ← vNonb(G′)

7: return pass

We note that if m = 0, then no G1RF,i will be constructed. This means G′ will

simplify to G′ = G||G∆F or G′ = G||G∆F||S and we can run the FT controllability

Algorithm or FT nonblocking Algorithm instead.

118

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

9.4 Non-repeatable Permanent Faults-Tolerant Con-

trollability and Nonblocking Algorithm

For the non-repeatable permanent fault-tolerant controllability and nonblocking

definitions, we only allow at most one unique fault event from ΣFi
(i = 1, . . . ,m) to

occur, but only permanent fault events are allowed to occur multiple times. We then

apply the standard controllability and nonblocking algorithms.

To achieve this, we introduce three new algorithms, as appropriate. First, Algo-

rithm 19 constructs GNRPF,i for i ∈ {1, . . . ,m} and fault sets ΣFi
and ΣPi

. The

algorithm constructs a new DES with each state marked, event set ΣFi
and k + 2

states, where k is the size of ΣPi
. It then creates a transition for each fault event

in ΣFi
− ΣPi

from the initial state to state y1. Next, it creates a transition for each

permanent fault event in ΣPi
from the initial state to a new state unique to that fault

event. It also adds a selflooped transition at that state for the event. Synchronizing

with this DES will allow at most one unique fault event from ΣFi
to occur, but only

permanent fault events are allowed to occur multiple times. All other fault ΣFi
event

will then be removed. Figure 9.28 shows an example non-repeatable permanent faults

plant, GNRPF,i, automaton.

119

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 19 construct-GNRPF,i(ΣFi
,ΣPi

, i)

1: k ← |ΣPi
|

2: Yi ← {y0, . . . , yk+1}

3: Ym,i ← Yi

4: δi ← ∅

5: for σ ∈ (ΣFi
− ΣPi

)

6: δi ← δi ∪ {(y0, σ, y1)}

7: end for

8: j ← 2

9: for σ ∈ ΣPi

10: δi ← δi ∪ {(y0, σ, yj), (yj , σ, yj)}

11: j ← j + 1

12: end for

13: return (Yi,ΣFi
, δi, yo, Ym,i)

0 1

4 3

2
σ3

σ2

σ1

σ3

σ2

σ1

Σ ΣFi - Pi

Figure 9.28: Non-Repeatable Permanent Fault Plant GNRPF,i,ΣPi
= {σ1, . . . , σ3}

120

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 20 shows how to verify non-repeatable permanent fault-tolerant con-

trollability for G and S. Line 1 constructs the excluded fault plant, G∆F. For

i = 1, . . . ,m, Line 3 constructs the non-repeatable permanent fault plant, GNRPF,i,

using Algorithm 19. Line 5 constructs the new plant G′. Line 6 checks that super-

visor S is controllable for plant G′. We first note that G∆F, removes any excluded

fault transitions, and each GNRPF,i, allows at most one unique event from each fault

set to occur, but only permanent fault events can occur multiple times. The result is

that checking that S is controllable for the resulting behavior will have the effect of

verifying non-repeatable permanent fault-tolerant controllability.

Algorithm 20 Verify non-repeatable permanent fault-tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F)

2: for i = 1, . . . ,m

3: GNRPF,i ← construct-GNRPF,i(ΣFi
,ΣPi

, i)

4: end for

5: G′ ← G||G∆F||GNRPF,1|| . . . ||GNRPF,m

6: pass ← vCont(G′,S)

7: return pass

Algorithm 21 shows how to verify non-repeatable permanent fault-tolerant non-

blocking for G and S. This algorithm is essentially the same as Algorithm 20,

except at line 5 we calculate the closed loop system G′, and then at line 6 we verify

that it is nonblocking.

121

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 21 Verify non-repeatable permanent fault-tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F)

2: for i = 1, . . . ,m

3: GNRPF,i ← construct-GNRPF,i(ΣFi
,ΣPi

, i)

4: end for

5: G′ ← G||G∆F||GNRPF,1|| . . . ||GNRPF,m||S

6: pass ← vNonb(G′)

7: return pass

We note that if m = 0, then no GNRPF,i will be constructed. This means G′ will

simplify to G′ = G||G∆F or G′ = G||G∆F||S and we can run the FT controllability

Algorithm or FT nonblocking Algorithm instead.

9.5 Resettable Permanent Faults-Tolerant Control-

lability and Nonblocking Algorithm

For the resettable permanent fault-tolerant controllability and nonblocking defini-

tions, we only allow strings that match the resettable permanent faults scenario. We

then apply the standard controllability and nonblocking algorithms.

To achieve this, we introduce three new algorithms. First, Algorithm 22 con-

structs GTPF,i for i ∈ {1, . . . ,m} and fault sets ΣFi
, ΣPi

, and the set of reset events,

ΣTi
. The algorithm constructs a new DES with each state marked, event set ΣFi

∪ ΣTi
,

and k+2 states, where k is the size of ΣPi
. It then creates a transition for each fault

event in ΣFi
− ΣPi

from the initial state to state y1. Next, it creates a transition for

each permanent fault event in ΣPi
from the initial state to a new state unique to that

122

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

fault event. It also adds a selflooped transition at that state for the event. Next,

it creates a transition for reach reset event in ΣTi
from state y1 to the initial state.

Finally it adds a selflooped for each reset event at every state reached by a permanent

fault event. Synchronizing with this DES will have the effect of restricting the plant’s

fault behavior to that which the supervisor is required to handle for a resettable per-

manent fault-tolerant algorithm. Figure 9.29 shows an example resettable permanent

faults plant, GTPF,i, automaton.

0

1

2

3

4

σ1

σ1

σ2 σ2

σ3

σ3

ΣTi

ΣTi Σ ΣFi - Pi

ΣTi

ΣTi

ΣTi

Figure 9.29: Resettable Permanent Fault Plant GTPF,i,ΣPi
= {σ1, . . . , σ3}

123

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 22 construct-GTPF,i(ΣFi
,ΣPi

,ΣTi
, i)

1: k ← |ΣPi
|

2: Yi ← {y0, . . . , yk+1}

3: Ym,i ← Yi

4: δi ← ∅

5: for σ ∈ (ΣFi
− ΣPi

)

6: δi ← δi ∪ {(y0, σ, y1)}

7: end for

8: j ← 2

9: for σ ∈ ΣPi

10: δi ← δi ∪ {(y0, σ, yj), (yj , σ, yj)}

11: j ← j + 1

12: end for

13: for σ ∈ ΣTi

14: δi ← δi ∪ {(y0, σ, y0), (y1, σ, y0)}

15: for j = 2, . . . , k + 1

16: δi ← δi ∪ {(yj, σ, yj)}

17: end for

18: end for

19: return (Yi,ΣFi
∪ ΣTi

, δi, yo, Ym,i)

Algorithm 23 shows how to verify resettable permanent fault-tolerant controllabil-

ity for G and S. Line 1 constructs the excluded fault plant, G∆F. For i ∈ {1, . . . ,m},

Line 3 constructs the resettable permanent fault plant GTPF,i, using Algorithm 22.

Line 5 constructs the new plant G′. Line 6 checks that supervisor S is controllable

124

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

for plant G′.

We next note that G∆F removes any excluded fault transitions, and each GTPF,i

removes strings where two fault events (the first event a non-permanent fault) from

the same fault set ΣFi
(i ∈ 1, . . . ,m) occur in a row without an event from the

corresponding set of reset events ΣTi
in between, and strings such that once a fault

event from a given permanent fault set ΣPi
(i = 1, . . . ,m) occurs, another event from

the corresponding fault set (ΣFi
) occurs other than that permanent fault event. The

result is that checking that S is controllable for the resulting behaviour will have the

effect of verifying resettable permanent fault-tolerant controllability.

Algorithm 23 Verify resettable permanent fault-tolerant controllability

1: G∆F ← construct-G∆F(Σ∆F)

2: for i = 1,. . . ,m

3: GTPF,i ← construct-GTPF,i(ΣFi
,ΣPi

,ΣTi
, i)

4: end for

5: G
′

← G||G∆F||GTPF,1|| . . . ||GTPF,m

6: pass ← vCont(G′,S)

7: return pass

Algorithm 24 shows how to verify resettable permanent fault-tolerant nonblocking

for G and S. This algorithm is essentially the same as Algorithm 23, except at line

5 we calculate the closed loop system G′, and then at line 6 we verify that it is

nonblocking.

125

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 24 Verify resettable permanent fault-tolerant nonblocking

1: G∆F ← construct-G∆F(Σ∆F)

2: for i = 1,. . . ,m

3: GTPF,i ← construct-GTPF,i(ΣFi
,ΣPi

,ΣTi
, i)

4: end for

5: G
′

← G||G∆F||GTPF,1|| . . . ||GTPF,m||S

6: pass ← vNonb(G′)

7: return pass

We note that if m = 0, then no GTPF,i will be constructed. This means G′ will

simplify to G′ = G||G∆F or G′ = G||G∆F||S and we can run the FT controllability

Algorithm or FT nonblocking Algorithm instead.

9.6 Algorithm Complexity Analysis

In this section, we provide a complexity analysis for the permanent fault-tolerant

controllability and nonblocking algorithms. In the following subsections, we as-

sume that our system consists of a plant G = (Y,Σ, δ, yo, Ym), supervisor S =

(X,Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣPi

, ΣTi
(i = 1, . . . ,m), Σ∆F , and

ΣΩF .

In this thesis, we will base our analysis on the complexity analysis from Cassandras

et al.[CL09a] that states that both the controllability and nonblocking algorithms

have a complexity of O(|Σ||Y ||X|), where |Σ| is the size of the system event set, |Y |

is the size of the plant state set, and |X| is the size of the supervisor state set. In

the analysis that follows, |Y∆F | is the size of the state set for G∆F (constructed by

126

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 1).

We note that each PFT algorithm first constructs and adds some additional plant

components to the system, and then it runs a standard controllability or nonblock-

ing algorithm on the resulting system. Our approach will be to take the standard

algorithm’s complexity, and replace the value for the state size of the plant with the

worst case state size of G synchronized with the new plant components. As all fault

and reset events already belong to the system event set, this means the size of the

system event set does not increase.

In the following analysis, we will ignore the cost of constructing the new plant

components as they will be constructed in serial with the controllability or nonblock-

ing verification and should be negligible in comparison. We next note that as the

base controllability and nonblocking algorithms have the same complexity, the corre-

sponding permanent fault-tolerant versions will also have the same complexity (i.e.

the FT controllability algorithm will have the same complexity as the FT nonblock-

ing algorithm). As such, we will only present analysis for the PFT controllability

algorithms.

9.6.1 One-repeatable FT Controllability Algorithm

For Algorithm 14, we replace our plant DES by G′ = G||G∆F||G1RF. This gives

us a worst case state space of |Y ||Y∆F ||Y1RF | for G
′, where |Y1RF | is the size of the

state set for G1RF which is constructed by Algorithm 13. Substituting this into our

base algorithm’s complexity gives O(|Σ||Y ||Y∆F ||Y1RF ||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |Y1RF | = |ΣF | + 1 by Algorithm

13. Substituting in for these values gives O((|ΣF |+ 1)|Σ||Y ||X|). It thus follows that

127

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

verifying one-repeatable 1-R-FT controllability increases the complexity of verifying

controllability by a factor of |ΣF |+ 1. We note that this is comparable to the N-FT

controllability algorithm from Chapter 5 which increased by a factor of (N+1), where

N is the maximum number of faults per string that the fault scenario allowed.

9.6.2 m-one-repeatable FT Controllability Algorithm

For Algorithm 17, we replace our plant DES byG′ = G||G∆F||G1RF,1|| . . . ||G1RF,m.

This gives us a worst case state space of |Y ||Y∆F ||Y1RF,1| . . . |Y1RF,m| for G′, where

|Y1RF,i| is the size of the state set forG1RF,i (i = 1, . . . ,m), which is constructed by Al-

gorithm 16. Substituting this into our base algorithm’s complexity givesO(|Σ||Y ||Y∆F ||

Y1RF,1| . . . |Y1RF,m||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |Y1RF,i| = |ΣFi
|+1 (i = 1, . . . ,m) by Al-

gorithm 16. Substituting in for these values givesO((|ΣF1
|+ 1) . . . (|ΣFm

|+ 1)|Σ||Y ||X|).

If we take NF as an upper bound of all |ΣFi
|, we get O((NF + 1)m|Σ||Y ||X|). It thus

follows that verifying m-one-repeatable FT controllability increases the complexity of

verifying controllability by a factor of (NF + 1)m. We note that this is comparable

to the resettable FT controllability algorithm from Chapter 5 which increased by a

factor of 2m.

9.6.3 Non-repeatable PFT Controllability Algorithm

For Algorithm 20, we replace our plant DES by G′ = G||G∆F||GNRPF,1|| . . . ||

GNRPF,m. This gives us a worst case state space of |Y ||Y∆F ||YNRPF1
| . . . |YNRPFm

| for

G′, where |YNRPFi
| is the size of the state set for GNRPF,i (i = 1, . . . ,m), which is

constructed by Algorithm 19. Substituting this into our base algorithm’s complexity

128

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

gives O(|Σ||Y ||Y∆F ||YNRPF1
| . . . |YNRPFm

||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YNRPFi
| = |ΣPi

|+2 (i = 1, . . . ,m) by

Algorithm 19. Substituting in for these values gives O((|ΣP1
|+2) . . . (|ΣPm

|+2)|Σ||Y ||

X|). If we take NP as an upper bound of all |ΣPi
|, we get O((NP + 2)m|Σ||Y ||X|).

It thus follows that verifying non-repeatable permanent NR-PFT controllability in-

creases the complexity of verifying controllability by a factor of (NP + 2)m.

9.6.4 Resettable PFT Controllability Algorithm

For Algorithm 23, we replace our plant DES byG′ = G||G∆F||GTPF,1|| . . . ||GTPF,m.

This gives us a worst case state space of |Y ||Y∆F ||YTPF1
| . . . |YTPFm

| for G′, where

|YTPFi
| is the size of the state set forGTPF,i (i = 1, . . . ,m), which is constructed by Al-

gorithm 22. Substituting this into our base algorithm’s complexity givesO(|Σ||Y ||Y∆F |

|YTPF1
| . . . |YTPFm

||X|).

We note that |Y∆F | = 1 by Algorithm 1, and |YTPFi
| = |ΣPi

| + 2 (i = 1, . . . ,m)

by Algorithm 22. Substituting in for these values gives O((|ΣP1
| + 2) . . . (|ΣPm

| +

2)|Σ||Y ||X|). If we takeNP as an upper bound of all |ΣPi
|, we getO((NP + 2)m|Σ||Y ||X|).

It thus follows that verifying resettable permanent T-PFT controllability increases the

complexity of verifying controllability by a factor of (NP + 2)m.

129

Chapter 10

Permanent Fault-Tolerant

Algorithm Correctness

In this chapter, we introduce several propositions and theorems that show that the

algorithms introduced in Chapter 9 correctly verify that a permanent fault-tolerant

consistent system satisfies the specified permanent fault-tolerant controllability and

nonblocking properties defined in Chaper 8.

10.1 Permanent Fault-Tolerant Propositions

The propositions in this section will be used to support the permanent fault-tolerant

controllability theorems in Section 10.2. Permanent fault-tolerant controllability def-

initions are essentially controllability definitions with added restrictions that a string

s is only tested if it is satisfies the appropriate permanent fault-tolerant property.

The algorithms are intended to replace the original plant with a new plant G′,

130

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

such that G′ is restricted to strings with the desired property. Propositions Proposi-

tions 10.1.1 - 10.1.4 essentially assert that string s belongs to the closed behaviour of

G′, if and only if s satisfies the properties of one-repeatable fault-tolerant controllable,

m-one-repeatable fault-tolerant controllable, non-repeatable permanent fault-tolerant

controllable, and resettable permanent fault-tolerant controllable, respectively. These

propositions will also be used in the permanent fault-tolerant nonblocking theorems

in Section 10.3.

10.1.1 One-repeatable Fault-tolerant Controllable Proposi-

tion

The first proposition asserts that string s belongs to the closed behaviour of G′,

if and only if s satisfies the needed pre-requisite for the one-repeatable fault-tolerant

controllable property.

Proposition 10.1.1. Let system with supervisor S = (X,Σ, η, xo, Xm) and plant G

= (Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Algorithm

14. Then:

(∀s ∈ L(G))(s /∈ L∆F) ∧ (s ∈ L1RF) ⇐⇒ s ∈ L(G′)

Proof. We first note that if m = 0, we have ΣF = ∅ and the proof is identical to

the proof of Proposition 6.1.1. We can thus assume m ≥ 1 for the rest of the proof

without any loss of generality.

We next note that if we copy our current system but set m = 1, and ΣF1
to the ΣF

of our original system, then for this new system, its L1RFm
would equal L1RF of our

original system, and its G1RF1
would equal to G1RF of our original system.

131

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

It thus follow that the G′ constructed by Algorithm 17 for the new system is equal

to the G′ created by Algorithm 14 for the original system.

The result then follows from Proposition 10.1.2.

10.1.2 m-one-repeatable Controllable Fault-tolerant Propo-

sition

Proposition 10.1.2 asserts that string s belongs to the closed behaviour of G′, if

and only if s satisfies the needed pre-requisite for the m-one-repeatable fault-tolerant

controllable property.

Proposition 10.1.2. Let system with supervisor S = (X,Σ, η, xo, Xm) and plant G

= (Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Algorithm

17. Then:

(∀s ∈ L(G))(s /∈ L∆F) ∧ (s ∈ L1RFm
) ⇐⇒ s ∈ L(G′)

Proof. Assume initial conditions for proposition.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof of

Proposition 6.1.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . ,m, be natural projections.

We next note that by Algorithm 17, we have: G′ = G||G∆F||G1RF,1|| . . . ||G1RF,m

As G is defined over Σ, G∆F over Σ∆F by Algorithm 1, and G1RF,i over ΣFi

(i = 1, . . . ,m) by Algorithm 16, we have:

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m) (P3.1)

132

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Let G1 be the plant constructed by Algorithm 2. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆FL(G∆F)

⇒ L(G′) ⊆ L(G1) (P3.2)

Let s ∈ L(G). (P3.3)

Must show implies: s /∈ L∆F ∧ s ∈ L1RFi
⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∧ s ∈ L1RFi
⇒ s ∈ L(G′)

Assume s /∈ L∆F and s ∈ L1RFm
. (P3.4)

Must show s ∈ L(G′).

By (P3.3), (P3.4), and Proposition 6.1.1, we have: s ∈ L(G1) (P3.5)

All the remains is to show s ∈ P−1
Fi

L(G1RF,i), i = 1, . . . ,m.

Let i ∈ {1, . . . ,m}.

As s ∈ L1RFm
=

m
⋂

j=1

((Σ− ΣFj
)∗ ∪

⋃

σ∈ΣFj

(Σ− ΣFj
)∗.σ.(Σ− (ΣFj

− {σ}))∗), we have:

s ∈ (Σ− ΣFi
)∗ ∪

⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

We thus have two cases: (1) s ∈ (Σ− ΣFi
)∗ or (2) s ∈

⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

Case 1) s ∈ (Σ− ΣFi
)∗

⇒ PFi
(s) = ǫ

As G1RF,i contains an initial state (Algorithm 16), we have ǫ ∈ L(G1RF,i) and thus

PFi
(s) ∈ L(G1RF,i)

⇒ s ∈ P−1
Fi

L(G1RF,i), as required.

Case 2) s ∈
⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

⇒ (∃σ ∈ ΣFi
)PFi

(s) ∈ {σ}+

From Algorithm 16, it easy to see that for k = |ΣFi
|, we have (∃j ∈ {1, . . . , k})

δi(y0, σ) = yj ∧ δi(yj, σ) = yj, where δi is the transition function for G1RF,i.

Let n = |PFi
(s)|.

133

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

⇒ (∃σ1, . . . , σn ∈ ΣFi
)PFi

(s) = σ1 . . . σn, and σ1 = σ2 = σ1 . . . σn = σ

⇒ δi(y0, PFi
(s))! and δi(y0, PFi

(s)) = yj

⇒ PFi
(s) ∈ L(G1RF,i)

⇒ s ∈ P−1
Fi

L(G1RF,i), as required.

By cases (1) and (2), we have (∀j ∈ {1, . . . ,m})s ∈ P−1
Fj

L(G1RF,j)

Combining with (P3.5), we have:

s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m)

Part B) Show s ∈ L(G′)⇒ s /∈ L∆F ∧ s ∈ L1RFm

Assume s ∈ L(G′).

Must show implies s /∈ L∆F and s ∈ L1RFm
.

As s ∈ L(G′), we have s ∈ L(G1), by (P3.2).

We can thus conclude by Proposition 6.1.1 that: s /∈ L∆F . (P3.6)

We now only need to show that:

s ∈ L1RFm
=

m
⋂

j=1

((Σ− ΣFj
)∗ ∪

⋃

σ∈ΣFj

(Σ− ΣFj
)∗.σ.(Σ− (ΣFj

− {σ}))∗)

Sufficient to show:

(∀i ∈ {1, . . . ,m})s ∈ ((Σ− ΣFi
)∗ ∪

⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗)

Let i ∈ {1, . . . ,m} will now show this implies:

s ∈ ((Σ− ΣFi
)∗ ∪

⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗)

As s ∈ L(G′) by assumption, we have by (P3.1) that s ∈ P−1
Fi

L(G1RF,i)

⇒ PFi
(s) ∈ L(G1RF,i)

Examining Algorithm 16, we seeG1RF,i contains an initial state, and thus ǫ ∈ L(G1RF,i).

We also note that for k = |ΣFi
|,G1RF,i contains states y0, y1, . . . , yk, and no other

states.

We next note that for each σ ∈ ΣFi
, (∃j ∈ {1, . . . , k}), δi(y0, σ) = yj and δi(yj, σ) = yj

134

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

where δi is the next state transition function for G1RF,i.

We now note that for σ, σ′ ∈ ΣFi
, that: σ 6= σ′ ⇒ δi(y0, σ) 6= δi(y0, σ

′)

Finally, we note that G1RF,i contains no other transitions.

It thus follows that either PFi
(s) = ǫ, or (∃σ ∈ ΣFi

)PFi
(s) ∈ {σ}+

⇒ s ∈ (Σ− ΣFi
)∗ ∪

⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

We thus have s ∈ L1RFi
, as required.

Combining with (P3.6), we have s /∈ L∆F and s ∈ L1RFm
, as required.

By parts (A) and (B), we thus conclude: s /∈ L∆F ∧ s ∈ L1RFm
⇐⇒ s ∈ L(G′)

10.1.3 Non-repeatable Permanent Fault-tolerant Controllable

Proposition

Proposition 10.1.3 asserts that string s belongs to the closed behaviour of G′,

if and only if s satisfies the needed pre-requisite for the non-repeatable permanent

fault-tolerant controllable property.

Proposition 10.1.3. Let system with supervisor S = (X,Σ, η, xo, Xm) and plant G

= (Y,Σ, δ, yo, Ym) be PFT consistent, and let G′ be the plant constructed in Algorithm

20. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LRFP
) ∧ (s ∈ L1RFm

) ⇐⇒ s ∈ L(G′)

Proof. Assume initial conditions for proposition.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof of

Proposition 6.1.1. We can thus assume m ≥ 1 for the rest of the proof without any

135

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F , PFi
: Σ∗ → ΣFi

and PFnPi
: Σ∗ → (ΣFi

− ΣPi
)∗, i = 1, . . . ,m,

be natural projections.

We next note that by Algorithm 20, we have: G′ = G||G∆F||GNRPF,1|| . . . ||GNRPF,m

As G is defined over Σ, G∆F over Σ∆F by Algorithm 1, and GNRPF,i over ΣFi

(i = 1, . . . ,m) by Algorithm 19, we have:

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . . ∩ P−1

Fm
L(GNRPF,m) (P4.1)

Let G1 be the plant constructed by Algorithm 2. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆FL(G∆F)

⇒ L(G′) ⊆ L(G1) (P4.2)

Let s ∈ L(G). (P4.3)

Must show implies: s /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LRFp
and s ∈ L1RFm

. (P4.4)

Must show: s ∈ L(G′).

By (P4.3), (P4.4) and Proposition 6.1.1, we have: s ∈ L(G1) (P4.5)

All that remains is to show s ∈ P−1
Fi

L(GNRPF,i), i = 1, . . . ,m.

Let i ∈ {1, . . . ,m}.

As s /∈ LRFp
=

⋃m

j=1(Σ
∗.(ΣFj

− ΣPj
).Σ∗.(ΣFj

− ΣPj
).Σ∗), it follows that:

(∀j ∈ {1, . . . ,m})s /∈ Σ∗.(ΣFj
− ΣPj

).Σ∗.(ΣFj
− ΣPj

).Σ∗

We thus have: s /∈ Σ∗.(ΣFi
− ΣPi

).Σ∗.(ΣFi
− ΣPi

).Σ∗

⇒ |PFnPi
(s)| ≤ 1 (P4.6)

As s ∈ L1RFm
=

m
⋂

j=1

((Σ− ΣFj
)∗ ∪

⋃

σ∈ΣFj

(Σ− ΣFj
)∗.σ.(Σ− (ΣFj

− {σ}))∗), we have:

s ∈ (Σ− ΣFi
)∗ ∪

⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

136

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We first note that if s ∈ (Σ− ΣFi
)∗, we have that PFi

(s) = ǫ.

As GNRPF,i contains an initial state (Algorithm 19), we have ǫ ∈ L(GNRPF,i), thus

PFi
(s) ∈ L(GNRPF,i)

⇒ s ∈ P−1
Fi

L(GNRPF,i)

We can thus assume s ∈
⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗, without loss of gener-

ality.

⇒ (∃σ ∈ ΣFi
)PFi

(s) ∈ {σ}+ (P4.7)

We now consider two cases: (1) σ /∈ ΣPi
or (2) σ ∈ ΣPi

Case 1) σ /∈ ΣPi

As σ ∈ ΣFi
by (P4.7), we thus have: σ ∈ (ΣFi

− ΣPi
)

By (P4.6) and (P4.7), we can conclude PFi
(s) = σ

By examining Algorithm 19, it is clear that δi(y0, σ)!, where δi is the transition func-

tion for GNRPF,i and y0 is its initial state.

⇒ PFi
(s) ∈ L(GNRPF,i)

⇒ s ∈ P−1
Fi

L(GNRPF,i), as required

Case 2) σ ∈ ΣPi

⇒ σ /∈ (ΣFi
− ΣPi

)

It thus follows by (P4.7) that s /∈ LRFp
does not restrict string s. We thus only have

the PFi
(s) ∈ {σ}+ constraint (i. e. PFi

(s) can have more than one occurrence of event

σ).

From Algorithm 19, it is easy to see that for k = |ΣPi
| we have (∃j ∈ {2, . . . , (k+1)})

δi(y0, σ) = yj ∧ (yj, σ) = yj, where δi is the transition function for GNRPF,i.

Let n = |PFi
(s)|.

⇒ (∃σ1, . . . , σn ∈ ΣFi
)PFi

(s) = σ1 . . . σn, and σ1 = σ2 = σ1 . . . σn = σ

137

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

⇒ δi(y0, PFi
(s))! and δi(y0, PFi

(s)) = yj

⇒ PFi
(s) ∈ L(GNRPF,i)

⇒ s ∈ P−1
Fi

L(GNRPF,i), as required.

By cases (1) and (2), we have: (∀i ∈ {1, . . . ,m})s ∈ P−1
Fi

L(GNRPF,i)

Combining with (P4.5), we have:

s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . . ∩ P−1

Fm
L(GNRPF,m)

Part B) Show s ∈ L(G′)⇒ s /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

Assume s ∈ L(G′).

Must show implies s /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

.

As s ∈ L(G′), we have s ∈ L(G1), by (P4.2).

We can thus conclude by Proposition 6.1.1 that: s /∈ L∆F (P4.8)

We now need to show s /∈ LRFp
and s ∈ L1RFm

This means showing s /∈ LRFp
=

⋃m

j=1(Σ
∗.(ΣFj

− ΣPj
).Σ∗.(ΣFj

− ΣPj
).Σ∗)

and s ∈ L1RFm
=

m
⋂

j=1

((Σ− ΣFj
)∗ ∪

⋃

σ∈ΣFj

(Σ− ΣFj
)∗.σ.(Σ− (ΣFj

− {σ}))∗)

Sufficient to show: ∀i ∈ {1, . . . ,m}

A) s /∈ Σ∗.(ΣFi
− ΣPi

).Σ∗.(ΣFi
− ΣPi

).Σ∗, and

B) s ∈ (Σ− ΣFi
)∗ ∪

⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

Let i ∈ {1, . . . ,m}.

As s ∈ L(G′) by assumption, we have by (P4.1) that s ∈ P−1
Fi

L(GNRPF,i)

Examining Algorithm 19, we seeGNRPF,i contains an initial state, and thus ǫ ∈ L(GNRPF,i).

We also note that for k = |ΣPi
|,GNRPF,i contains states y0, y1, . . . , yk+1, and no other

states.

We next note that for each σ ∈ ΣFi
− ΣPi

, δi(y0, σ) = y1 where δi is the next state

transition function for GNRPF,i.

138

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We next note that for each σ ∈ ΣPi
:

(∃j ∈ {2, . . . , k + 1})δi(y0, σ) = yj and δi(yj, σ) = yj

We now note that for σ, σ′ ∈ ΣPi
, that σ 6= σ′ ⇒ δi(y0, σ) 6= δi(y0, σ

′)

Finally, we note that G1RF,i contains no other transitions.

It thus follows that either PFi
(s) = ǫ, or (∃σ ∈ ΣFi

)PFi
(s) ∈ {σ}+

If PFi
(s) = ǫ, then clearly: (P.4.9)

i) s /∈ Σ∗.(ΣFi
− ΣPi

).Σ∗.(ΣFi
− ΣPi

).Σ∗, and

ii) s ∈ (Σ− ΣFi
)∗

We now consider PFi
(s) ∈ {σ}+ for some σ ∈ ΣFi

.

We have two cases: (1) σ /∈ ΣPi
or (2) σ ∈ ΣPi

Case 1) σ /∈ ΣPi

⇒ σ ∈ ΣFi
− ΣPi

From above discussion, it thus follow that δi(y0, PFi
(s)) = y1 and PFi

(s) = σ

We immediately have:

i) s /∈ Σ∗.(ΣFi
− ΣPi

).Σ∗.(ΣFi
− ΣPi

).Σ∗, and

ii) s ∈ (Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

Case 2) σ ∈ ΣPi

As PFi
(s) ∈ {σ}+, we immediately have:

i) s /∈ Σ∗.(ΣFi
− ΣPi

).Σ∗.(ΣFi
− ΣPi

).Σ∗, and

ii) s ∈ (Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

Combining (P4.9) and cases (1) and (2), we conclude: ∀i ∈ {1, . . . ,m}

A) s /∈ Σ∗.(ΣFi
− ΣPi

).Σ∗.(ΣFi
− ΣPi

).Σ∗, and

B) s /∈ (Σ− ΣFi
)∗ ∪

⋃

σ∈ΣFi

(Σ− ΣFi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

⇒ s /∈ LRFp
and s ∈ L1RFm

, as required.

139

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Combining with (P4.8) we have s /∈ L∆F ∪ LRFp
∧ L1RFm

, as required.

By parts (A) and (B), we thus conclude: s /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

⇐⇒ s ∈ L(G′)

10.1.4 Resettable Permanent Fault-tolerant Controllable Propo-

sition

Proposition 10.1.4 asserts that string s belongs to the closed behaviour of G′, if and

only if s satisfies the needed pre-requisite for the resettable permanent fault-tolerant

controllable property.

Proposition 10.1.4. Let system with supervisor S = (X,Σ, η, xo, Xm) and plant G

= (Y,Σ, δ, yo, Ym) be PFT consistent, and let G′ be the plant constructed in Algorithm

23. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LTFp
) ∧ (s ∈ L1RFp

) ⇐⇒ s ∈ L(G′)

Proof. Assume initial conditions for proposition.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof of

Proposition 6.1.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Let P∆F : Σ∗ → Σ∗

∆F , PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗ and PPi

: Σ∗ → Σ∗

Pi
, i = 1, . . . ,m, be

natural projections.

We next note that by Algorithm 23, we have: G′ = G||G∆F||GTPF,1|| . . . ||GTPF,m

As G is defined over Σ, G∆F over Σ∆F by Algorithm 1, and GTPF,i over ΣFi
∪ ΣTi

by Algorithm 22, we have:

140

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TPF1
L(GTPF,1)∩ . . . ∩ P−1

TPFm
L(GTPF,m) (P5.1)

Let G1 be the plant constructed by Algorithm 2. We thus have: G1 = G||G∆F

⇒ L(G1) = L(G) ∩ P−1
∆FL(G∆F)

⇒ L(G′) ⊆ L(G1) (P5.2)

Let s ∈ L(G). (P5.3)

Must show implies: s /∈ L∆F ∪ LTFP
∧ s ∈ L1RFP

⇐⇒ s ∈ L(G′)

Part A) Show s /∈ L∆F ∪ LTFP
∧ s ∈ L1RFP

⇒ s ∈ L(G′)

Assume s /∈ L∆F ∪ LTFP
∧ s ∈ L1RFP

. (P5.4)

Must show

s ∈ L(G′) = L(G) ∩ P−1
∆FL(G∆F)∩P

−1
TF1

L(GTPF,1) ∩ . . . ∩ P−1
TFm

L(GTPF,m).

By (P5.3), (P5.4) and Proposition 6.1.1, we have: s ∈ L(G1) (P5.5)

All that remains is to show s ∈ P−1
TFi

L(GTPF,i), i = 1, . . . ,m.

Let i = {1, . . . ,m}.

As s /∈ LTFp
=

m
⋃

i=j

(Σ∗.(ΣFj
− ΣPj

).(Σ− ΣTj
)∗.ΣFj

.Σ∗), it follows that:

(∀j ∈ {1, . . . ,m}) s /∈ (Σ∗.(ΣFj
− ΣPj

).(Σ− ΣTj
)∗.ΣFj

.Σ∗).

As s ∈ L1RFp
=

m
⋂

j=1

((Σ− ΣPj
)∗ ∪

⋃

σ∈ΣPj

(Σ− ΣPj
)∗.σ.(Σ− (ΣFj

− {σ}))∗), it follows that:

(∀j ∈ {1, . . . ,m}) s ∈ (Σ− ΣPj
)∗ ∪

⋃

σ∈ΣPj

(Σ− ΣPj
)∗.σ.(Σ− (ΣFj

− {σ}))∗).

We thus have:

A1) s /∈ Σ∗.(ΣFi
− ΣPi

).(Σ− ΣTi
)∗.ΣFi

.Σ∗, and

B1) s ∈ (Σ− ΣPi
)∗ ∪

⋃

σ∈ΣPi

(Σ− ΣPi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

We will now show this implies s ∈ P−1
TFi

L(GTPF,i).

We will use proof by contrapositive.

Sufficient to show: PTF (s) /∈ L(GTPF,i)⇒

A2) s ∈ Σ∗.(ΣFi
− ΣPi

).(Σ− ΣTi
)∗.ΣFi

.Σ∗, or

141

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

B2) s /∈ (Σ− ΣPi
)∗ ∪

⋃

σ∈ΣPi

(Σ− ΣPi
)∗.σ.(Σ− (ΣFi

− {σ}))∗

Assume PTF (s) /∈ L(GTPF,i)

Examining Algorithm 22, we see that ǫ ∈ L(GTPF,i) as GTPF,i has an initial state.

⇒ PTFi
(s) 6= ǫ

We thus have:

(∃s′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ ∈ ΣFi
∪ ΣTi

)

(s′σ ≤ PTFi
(s)) ∧ L(GTPF,i)) ∧ (s′σ /∈ L(GTPF,i)) (P5.6)

From Algorithm 22, we see that all σ′ ∈ ΣFi
∪ ΣTi

are defined at state y0, and all

σ′ ∈ ΣTi
are defined at every state. At state y1, all σ

′ ∈ ΣFi
are not defined. (P5.7)

For k = |ΣPi
|, GTPF,i has states y0, y1, . . . , yk+1 only. For states y2, . . . , yk+1, no

σ′ ∈ ΣFi
− ΣPi

are defined, and for each state exactly one σ′ ∈ ΣPi
is defined at that

state. It is also true that this σ′ is the only one to reach the state from y0, and that

GTPF,i is deterministic. (P5.8)

From (P5.6) and the above, this implies δi(y0, s
′) takes us to states y1, y2, . . . , or yk+1,

and that σ is not defined at that state. We note that δi is transition function for

GTPF,i (P5.9)

We have two cases (1) δi(y0, s
′) = y1 or (2) δi(y0, s

′) 6= y1

Case 1) δi(y0, s
′) = y1

It thus follows from (P5.6) and (P5.7) that σ ∈ ΣFi
.

As the only way to reach y1 is from a ΣFi
−ΣPi

transition from y0 (by Algorithm 22),

it thus follows that string s′ reach in an event from ΣFi
− ΣPi

.

⇒ (∃s′′ ∈ (ΣFi
∪ ΣTi

)∗)(∃σ′ ∈ ΣFi
− ΣPi

) s′′σ′σ = s′σ ≤ PTFi
(s)

⇒ s ∈ Σ∗.(ΣFi
− ΣPi

).(Σ− ΣTi
)∗.ΣFi

.Σ∗, as required.

Case 2) δi(y0, s
′) 6= y1

142

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

From (P5.9), we thus have: δi(y0, s
′) ∈ {y2, y3, . . . , yk+1}

Let y′ = δi(y0, s
′).

By (P5.8), it follows that:

(∃σ′ ∈ ΣPi
)(∃s′′ ∈ (ΣFi

∪ ΣTi
)∗)s′′σ′σ = s′σ ≤ PTFi

(s) ∧ δi(y
′, σ′)!

It also follows that: (∀σ′′ ∈ (ΣFi
− {σ′}))¬δi(y

′, σ′′)!

We can thus conclude that σ ∈ (ΣFi
− {σ′}).

⇒ σ 6= σ′

⇒ s ∈ Σ∗.σ′.Σ∗.σ.Σ∗

Further examining Algorithm 22, it’s clear that when an event from ΣPi
, first occur-

ring inGTPF,i, it must occur at at the initial state y0, and y0 to state in {y2, y3, . . . , yk+1}.

Also once it reaches this state, it can not leave this state. It thus follows that

Ppi(s) ∈ {σ
′}+

⇒ (∀σ′′′ ∈ ΣPi
)s /∈ (Σ− ΣPi

)∗ ∧ s /∈ (Σ− ΣPi
).σ′′′.(Σ− (ΣFi

− {σ′′′}))

⇒ s /∈ (Σ− ΣPi
)∗

⋃

σ′′′∈ΣPi

(Σ− ΣPi
)∗.σ′′′.(Σ− (ΣFi

− {σ′′′}))∗, as required.

By cases (1) and (2), we have shown that PTFi
(s) /∈ L(GTPF,i) implies that either

point (A2) or (B2) is true.

We can thus conclude by proof by contrapositive that PTFi
(s) ∈ L(GTPF,i).

⇒ s ∈ P−1
TFi

L(GTPF,i), as required.

Part B) Show s ∈ L(G′)⇒ s /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

Assume s ∈ L(G′). Must show implies s /∈ L∆F ∪ LTFP
∧ s ∈ L1RFP

.

As s ∈ L(G′), we have s ∈ L(G1), by (P5.2).

We can thus conclude by Proposition 6.1.1 that: s /∈ L∆F (P5.10)

We now need to show s /∈ LTFP
∧ s ∈ L1RFP

.

As s ∈ L(G′), we have by (P5.1): s ∈ P−1
TFi

L(GTPF,i), i = 1, . . . ,m

143

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

⇒ (∀i ∈ {1, . . . ,m})PTFi
(s) ∈ L(GTPF,i) (P5.11)

We proceed by proof by contradiction.

We assume: ¬(s /∈ LTFp
∧ s ∈ L1RFp

)

⇒ s ∈ LTFp
or s /∈ L1RFp

s ∈ LTFp
⇒ (∃j ∈ {1, . . . ,m})s ∈ Σ∗.(ΣFj

− ΣPj
).(Σ− ΣTj

)∗.ΣFj
.Σ∗ (P5.12)

s /∈ L1RFp
⇒ (∃j ∈ {1, . . . ,m})s /∈ (Σ− ΣPj

)∗ ∪
⋃

σ∈ΣPj

(Σ− ΣPj
)∗.σ.(Σ− (ΣFj

− {σ}))∗

(P5.13)

We will now show that both (P5.12) and (P5.13) contradict (P5.11).

If (P5.12) is true, then for the indicated j ∈ {1, . . . ,m}, GTPF,j would have to allow

a σ ∈ ΣFj
− ΣPj

to be followed by a σ′ ∈ ΣFj
.

Examining Algorithm 22, this would require a σ′ ∈ ΣFj
− ΣPj

transition from state

y0 to y1 followed by a σ′ ∈ ΣFj
transition from state y1. Clearly GTPF,j would not

allow this.

We thus have (P5.12) contradicts PTFj
(s) ∈ L(GTPF,j) and thus (P5.11). (P5.14)

We now examine (P5.13). Let j ∈ {1, . . . ,m} be the indicated index.

s /∈ (Σ− ΣPj
)∗ ∪

⋃

σ∈ΣPj

(Σ− ΣPj
)∗.σ.(Σ− (ΣFj

− {σ}))∗ ⇒ s /∈ (Σ− ΣPj
)∗ and

(∀σ ∈ ΣPj
)s /∈ (Σ− ΣPj

)∗.σ.(Σ− (ΣFj
− {σ}))∗ (P5.15)

We first note that: s /∈ (Σ− ΣPj
)∗ ⇒ (∃σ ∈ ΣPj

)s ∈ Σ∗.σ.Σ∗

We next note that we can assume that σ is the first event from ΣPj
to occur in s,

without loss of generality.

Combining with the second part of (P5.15), we have:

s /∈ (Σ− ΣPj
)∗.σ.(Σ− (ΣFj

− {σ}))∗

⇒ (∃σ′ ∈ (Σ− (ΣFj
− {σ})))s ∈ (Σ− ΣPj

)∗.σ.Σ∗.σ′.Σ∗

⇒ σ′ 6= σ

144

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Examining Algorithm 22 this would require a transition from y0 to a state other than

y1 in GTPF,j. This would then require a σ′ transition at this state. As σ 6= σ′, it easy

to see from Algorithm 22 that GTPF,j would not allow the σ′ transition.

We thus have (P5.13) contradicts PTF,j(s) ∈ L(GTPF,j), and thus (P5.11).

Combining with (P5.14), we can thus conclude by proof by contradiction that s /∈

LTFp
∧ s ∈ L1RFp

.

Combining with (P5.10), we have s /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

, as required.

By parts (A) and (B), we thus conclude: s /∈ L∆F ∪ LTFP
∧ s ∈ L1RFP

⇐⇒ s ∈ L(G′)

10.2 Permanent Fault-Tolerant Controllable The-

orems

In this section we present theorems that show that the permanent fault-tolerant

controllable algorithms in Chapter 9 will return true if and only if the PFT consistent

system satisfies the corresponding permanent fault-tolerant controllability property.

10.2.1 Fault-tolerant Controllable Theorem

Theorem 10.2.1. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Algorithm 2.

Then S is fault tolerant controllable for G iff S is controllable for G′.

Proof. The proof of Theorem 10.2.1 is the same as the proof of Theorem 6.2.1 in

Section 6.2. The theorem is repeated here for completeness.

145

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

10.2.2 One-repeatable Fault-tolerant Controllable Theorem

Theorem 10.2.2 states that verifying that our system is one-repeatable fault toler-

ant controllable is equivalent to verifying that our supervisor is controllable for the

plant G′ constructed by Algorithm 14. Essentially, plant G′ is our original plant syn-

chronized with newly constructed plant components designed to restrict the behavior

of our plant to only include strings that satisfy the one-repeatable fault scenario.

Theorem 10.2.2. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Algorithm

14. Then S is one-repeatable fault tolerant controllable for G iff S is controllable for

G′.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 10.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

We next note that if we copy our current system but set m = 1, and ΣF1
to the ΣF

of our original system, then for this new system, its L1RFm
would equal L1RF of our

original system, and its G1RF1
would equal to G1RF of our original system.

It thus follow that the G′ constructed by Algorithm 17 for the new system is equal

to the G′ created by Algorithm 14 for the original system.

The result then follows from Theorem 10.2.3.

146

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

10.2.3 m-one-repeatable Fault-tolerant Controllable Theorem

Theorem 10.2.3 states that verifying that our system is m-one-repeatable fault tol-

erant controllable is equivalent to verifying that our supervisor is controllable for the

plant G′ constructed by Algorithm 17. Essentially, plant G′ is our original plant syn-

chronized with newly constructed plant components designed to restrict the behavior

of our plant to only include strings that satisfy the m-one-repeatable fault scenario.

Theorem 10.2.3. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the plant constructed in Algorithm

17. Then S is m-one-repeatable fault tolerant controllable for G iff S is controllable

for G′.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 10.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is m-one-repeatable fault tolerant controllable for G ⇐⇒ S is control-

lable for G′.

From Algorithm 17, we have: G′ = G||G∆F||G1RF,1|| . . . ||G1RF,m

From Algorithm 1, we know that G∆F is defined over Σ∆F , and from Algorithm 16,

we know that G1RF,i is defined over ΣFi
, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . ,m, be natural projections.

As G is defined over Σ, we have that:

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m) (T3.1)

Part A) Show (⇒)

147

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Assume S is m-one-repeatable fault tolerant controllable for G. (T3.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu)sσ ∈ L(G′)⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T3.3)

Assume sσ ∈ L(G′). (T3.4)

Must show implies sσ ∈ L(S).

To apply (T3.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G), s /∈ L∆F and

s ∈ L1RFm
.

We first note that (T3.1), (T3.3) and (T3.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T3.3), we conclude by Proposition 10.1.2 that: s /∈ L∆F ∧ s ∈ L1RFm

We can now conclude by (T3.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is controllable for G′. (T3.5)

Must show implies S and G are FT consistent (follows automatically from initial

assumptions) and that:

(∀s ∈ L(S) ∩ L(G))(∀σ ∈ Σu) sσ ∈ L(G) ∧ s /∈ L∆F ∧ s ∈ L1RFm
⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G), and s /∈ L∆F ∧ s ∈ L1RFm
. (T3.6)

Must show implies sσ ∈ L(S).

We have two cases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is FT consistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T3.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T3.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We first note that by (T3.6), and Proposition 10.1.2, we can conclude: s ∈ L(G′)

148

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

(T3.7)

⇒ s ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . .∩ P−1

Fm
L(G1RF,m), by (T3.1)

⇒ P∆F (s) ∈ L(G∆F), and PFi
(s) ∈ L(G1RF,i), i = 1, . . . ,m

As σ /∈ Σ∆F ∪ ΣF , we have P∆F (σ) = ǫ, and PFi
(σ) = ǫ, i = 1, . . . ,m.

This implies P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F), and PFi
(sσ) = PFi

(s)PFi
(σ) =

PFi
(s) ∈ L(GF,i), i = 1, . . . ,m.

⇒ sσ ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . .∩ P−1

Fm
L(G1RF,m)

Combining with (T3.6), (T3.7), and (T3.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and

sσ ∈ L(G′)

We can thus conclude by (T3.5) that sσ ∈ L(S), as required.

We thus conclude by cases (1) and (2), that sσ ∈ L(S).

We can now conclude by parts (A) and (B), that S is m-one-repeatable fault tolerant

controllable for G iff S is controllable for G′.

10.2.4 Non-repeatable Permanent Fault-tolerant Controllable

Theorem

Theorem 10.2.4 states that verifying that our system is non-repeatable permanent

fault tolerant controllable is equivalent to verifying that our supervisor is controllable

for the plant G′ constructed by Algorithm 20. Essentially, plant G′ is our original

plant synchronized with newly constructed plant components designed to restrict the

behavior of our plant to only include strings that satisfy the non-repeatable permanent

fault scenario.

Theorem 10.2.4. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

149

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

(Y,Σ, δ, yo, Ym) be PFT consistent, and let G′ be the plant constructed in Algorithm

20. Then S is non-repeatable permanent fault tolerant controllable for G iff S is

controllable for G′.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 10.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is non-repeatable permanent fault tolerant controllable for G ⇐⇒ S

is controllable for G′.

From Algorithm 20, we have: G′ = G||G∆F||GNRPF,1|| . . . ||GNRPF,m

From Algorithm 1, we know that G∆F is defined over Σ∆F , and from Algorithm 19,

we know that GNRPF,i is defined over ΣFi
, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F , PFi
: Σ∗ → ΣFi

and PFnPi
: Σ∗ → (ΣFi

− ΣPi
)∗, i = 1, . . . ,m,

be natural projections.

As G is defined over Σ, we have that:

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . .∩ P−1

Fm
L(GNRPF,m) (T4.1)

Part A) Show (⇒)

Assume S is non-repeatable permanent fault tolerant controllable for G. (T4.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′)⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T4.3)

Assume sσ ∈ L(G′). (T4.4)

Must show implies sσ ∈ L(S).

To apply (T4.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F∪

LRFp
∧ s ∈ L1RFm

.

150

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We first note that (T4.1), (T4.3) and (T4.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T4.3), we conclude by Proposition 10.1.3 that: s /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

We can now conclude by (T4.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is controllable for G′. (T4.5)

Must show implies S and G are PFT consistent, (follows automatically from initial

assumptions) and that:

(∀s ∈ L(S)∩L(G))(∀σ ∈ Σu) sσ ∈ L(G)∧s /∈ L∆F∪ LRFp
∧ s ∈ L1RFm

⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

.

(T4.6)

Must show implies sσ ∈ L(S).

We have two cases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is PFT consistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T4.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T4.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We first note that by (T4.6) and Proposition 10.1.3, we can conclude: s ∈ L(G′)

(T4.7)

⇒ s ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . .∩ P−1

Fm
L(GNRPF,m), by (T4.1)

⇒ P∆F (s) ∈ L(G∆F), and PFi
(s) ∈ L(GNRPF,i), i = 1, . . . ,m

As σ /∈ Σ∆F ∪ ΣF , we have P∆F (σ) = ǫ, and PFi
(σ) = ǫ, i = 1, . . . ,m.

This implies P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F), and PFi
(sσ) = PFi

(s)PFi
(σ) =

PFi
(s) ∈ L(GNRPF,i), i = 1, . . . ,m.

151

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

⇒ sσ ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . .∩ P−1

Fm
L(GNRPF,m)

Combining with (T4.6), (T4.7), and (T4.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and

sσ ∈ L(G′)

We can thus conclude by (T4.5) that sσ ∈ L(S), as required.

We thus conclude by cases (1) and (2), that sσ ∈ L(S).

We can now conclude by parts (A) and (B), that S is non-repeatable permanent fault

tolerant controllable for G iff S is controllable for G′.

10.2.5 Resettable Permanent Fault-tolerant Controllable The-

orem

Theorem 10.2.5 states that verifying that our system is resettable permanent

fault tolerant controllable is equivalent to verifying that our supervisor is controllable

for the plant G′ constructed by Algorithm 23. Essentially, plant G′ is our original

plant synchronized with newly constructed plant components designed to restrict the

behavior of our plant to only include strings that satisfy the resettable permanent

fault scenario.

Theorem 10.2.5. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be PFT consistent, and let G′ be the plant constructed in Algorithm

23. Then S is resettable permanent fault tolerant controllable for G iff S is controllable

for G′.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 10.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

152

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

loss of generality.

Must show S is resettable permanent fault tolerant controllable for G ⇐⇒ S is

controllable for G′.

From Algorithm 23, we have: G′ = G||G∆F||GTPF,1|| . . . ||GTPF,m

From Algorithm 1, we know that G∆F is defined over Σ∆F , and from Algorithm 22,

we know that GTPF,i is defined over ΣFi
∪ ΣTi

, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F and PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗, i = 1, . . . ,m, be natural projec-

tions.

As G is defined over Σ, we have that:

L(G′) = L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . .∩ P−1

TFm
L(GTPF,m) (T5.1)

Part A) Show (⇒)

Assume S is resettable permanent fault tolerant controllable for G. (T5.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))(∀σ ∈ Σu) sσ ∈ L(G′)⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G′), and σ ∈ Σu. (T5.3)

Assume sσ ∈ L(G′). (T5.4)

Must show implies sσ ∈ L(S).

To apply (T5.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G) and s /∈ L∆F∪

LTFp
∧ s ∈ L1RFp

.

We first note that (T5.1), (T5.3) and (T5.4) imply s ∈ L(S), s ∈ L(G), and sσ ∈ L(G).

As s ∈ L(G′) by (T5.3), we conclude by 10.1.4 that: s /∈ L∆F ∪ LTFP
∧ s ∈ L1RFp

We can now conclude by (T5.2) that sσ ∈ L(S), as required.

Part B) Show (⇐)

Assume S is controllable for G′. (T5.5)

Must show implies S and G are PFT consistent, (follows automatically from initial

153

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

assumptions) and that:

(∀s ∈ L(S)∩L(G))(∀σ ∈ Σu) sσ ∈ L(G)∧s /∈ L∆F∪ LTFp
∧ s ∈ L1RFp

⇒ sσ ∈ L(S)

Let s ∈ L(S) ∩ L(G), σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

.

(T5.6)

Must show implies sσ ∈ L(S).

We have two cases: (1) σ ∈ Σ∆F ∪ ΣF , and (2) σ /∈ Σ∆F ∪ ΣF

Case 1) σ ∈ Σ∆F ∪ ΣF

As the system is PFT consistent, it follows that σ is self-looped at every state in S.

As s ∈ L(S) by (T5.6), it thus follows that sσ ∈ L(S), as required.

Case 2) σ /∈ Σ∆F ∪ ΣF

To apply (T5.5), we still need to show s ∈ L(S) ∩ L(G′), and sσ ∈ L(G′).

We first note that by (T5.6) and Proposition 10.1.4, we can conclude: s ∈ L(G′)

(T5.7)

⇒ s ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . .∩ P−1

TFm
L(GTPF,m), by (T5.1)

⇒ P∆F (s) ∈ L(G∆F) and PTFi
(s) ∈ L(GTPF,i), i = 1, . . . ,m (T5.8)

As σ /∈ Σ∆F , we have P∆F (σ) = ǫ.

⇒ P∆F (sσ) = P∆F (s)P∆F (σ) = P∆F (s) ∈ L(G∆F)

⇒ sσ ∈ P−1
∆FL(G∆F) (T5.9)

We now need to show: (∀i ∈ {1, . . . ,m}), sσ ∈ PTFi
L(GTFi

)

Let i ∈ {1, . . . ,m}.

Must show implies sσ ∈ PTFi
L(GTFi

)

We now have two cases to consider: (a) σ /∈
m
⋃

i=1

ΣTi
, and (b) σ ∈

m
⋃

i=1

ΣTi

Case a) σ /∈
m
⋃

i=1

ΣTi

154

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

As σ /∈ ΣF

m
⋃

i=1

ΣTi
, we have PTFi

(σ) = ǫ, i = 1, . . . ,m.

⇒ PTFi
(sσ) = PTFi

(s)PTFi
(σ) = PTFi

(s) ∈ L(GTPF,i), i = 1, . . . ,m

⇒ sσ ∈ P−1
TF1

L(GTPF,1) ∩ . . . ∩ P−1
TFm

L(GTPF,m)

Case b) σ ∈
m
⋃

i=1

ΣTi

We note that Algorithm 22 states that all σ′ ∈ ΣTi
are defined at every state in

GTPF,i, i = 1, . . . ,m by (T5.8).

Let j ∈ {1, . . . ,m}.

If σ ∈ ΣTj
, we have PTFj

(σ) = σ. We thus have PTFj
(sσ) = PTFj

(s)σ ∈ L(GTPF,j) as

PTFj
(s) ∈ L(GTPF,j) by (T5.8).

Otherwise, σ /∈ ΣTj
. As we also have σ /∈ ΣF , it follows that PTFj

(σ) = ǫ. We thus

have PTFj
(sσ) = PTFj

(s)PTFj
(σ) = PTFj

(s) ∈ L(GTPF,j), by (T5.8).

⇒ sσ ∈ P−1
TFj

L(GTPF,j) for both cases.

⇒ sσ ∈ P−1
TF1

L(GTPF,1) ∩ . . . ∩ P−1
TFm

L(GTPF,m)

By cases (a) and (b), we can conclude: sσ ∈ P−1
TF1

L(GTPF,1)∩ . . .∩ P
−1
TFm

L(GTPF,m)

Combining with (T5.9), we have:

sσ ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . .∩ P−1

TFm
L(GTPF,m)

Combining with (T5.6), (T5.7), and (T5.1), we have: s ∈ L(S) ∩ L(G′), σ ∈ Σu, and

sσ ∈ L(G′).

We can thus conclude by (T5.5) that sσ ∈ L(S), as required.

We thus conclude by cases (1) and (2), that sσ ∈ L(S).

We can now conclude by parts (A) and (B), that S is resettable permanent fault

tolerant controllable for G iff S is controllable for G′.

155

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

10.3 Permanent Fault-Tolerant Nonblocking The-

orems

In this section we present theorems that show the permanent fault-tolerant non-

blocking algorithms in Chapter 9 will return true if and only if the PFT consistent

system satisfies the corresponding permanent fault-tolerant nonblocking property.

10.3.1 Fault-Tolerant Nonblocking Theorem

Theorem 10.3.1. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the system constructed in Algorithm

3. Then S and G are fault tolerant nonblocking iff G′ is nonblocking.

Proof. The proof of Theorem 10.3.1 is the same as the proof of Theorem 6.3.1 in

Section 6.3. The theorem is repeated here for completeness.

10.3.2 One-repeatable Fault-tolerant Nonblocking Theorem

Theorem 10.3.2 states that verifying that our system is one-repeatable fault tolerant

nonblocking is equivalent to verifying that the DES G′ constructed by Algorithm 15

is nonblocking. Essentially, G′ is our original plant and supervisor synchronized with

newly constructed plant components designed to restrict the behavior of our system

to only include strings that satisfy the one-repeatable fault scenario.

Theorem 10.3.2. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the system constructed in Algorithm

15. Then S and G are one-repeatable fault tolerant nonblocking iff G′ is nonblocking.

156

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 10.3.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

We next note that if we copy our current system but set m = 1, and ΣF1
to the ΣF

of our original system, then for this new system, its L1RFm
would equal L1RF of our

original system, and its G1RF1
would equal to G1RF of our original system.

It thus follow that the G′ constructed by Algorithm 18 for the new system is equal

to the G′ created by Algorithm 15 for the original system.

The result then follows from Theorem 10.3.3.

10.3.3 m-one-repeatable Fault-tolerant Nonblocking Theorem

Theorem 10.3.3 states that verifying that our system is m-one-repeatable fault toler-

ant nonblocking is equivalent to verifying that the DES G′ constructed by Algorithm

18 is nonblocking. Essentially, G′ is our original plant and supervisor synchronized

with newly constructed plant components designed to restrict the behavior of our

system to only include strings that satisfy the m-one-repeatable fault scenario.

Theorem 10.3.3. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be FT consistent, and let G′ be the system constructed in Algorithm

18. Then S and G are m-one-repeatable fault tolerant nonblocking iff G′ is nonblock-

ing.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

157

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

of Theorem 10.3.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S and G are m-one-repeatable fault tolerant nonblocking ⇐⇒ G′ is

nonblocking.

From Algorithm 18, we have: G′ = G||G∆F||G1RF,1|| . . . ||G1RF,m||S

From Algorithm 1, we know that G∆F is defined over Σ∆F . From Algorithm 16, we

know that G1RF,i is defined over ΣFi
, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F , and PFi
: Σ∗ → Σ∗

Fi
, i = 1, . . . ,m, be natural projections.

As G and S are defined over Σ, we have that L(G′) = L(S)∩L(G)∩ P−1
∆FL(G∆F)∩

P−1
F1

L(G1RF,1)∩. . .∩P
−1
Fm

L(G1RF,m) and Lm(G
′) = Lm(S)∩Lm(G)∩P−1

∆F Lm(G∆F)∩

P−1
F1

Lm(G1RF,1) ∩ . . . ∩ P−1
Fm

Lm(G1RF,m). (T3.1)

Part A) Show (⇒)

Assume S and G are m-one-repeatable fault tolerant nonblocking. (T3.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m) (T3.3)

⇒ s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m)

⇒ s ∈ L(G||G∆F||G1RF,1|| . . . ||G1RF,m)

We can thus apply Proposition 10.1.2 and conclude that: s /∈ L∆F ∧ s ∈ L1RFm
.

As we have s ∈ L(S) ∩ L(G) from (T3.3), we can apply (T3.2) and conclude that:

(∃s′ ∈ Σ∗) ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ L1RFm
(T3.4)

We now need to show that ss′ ∈ Lm(G
′).

Sufficient to show:

ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F) ∩ P−1

F1
Lm(G1RF,1) ∩ . . . ∩ P−1

Fm
Lm(G1RF,m).

158

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

From (T3.4), we have ss′ ∈ Lm(S) ∩ Lm(G), so only need to show:

ss′ ∈ P−1
∆FLm(G∆F) ∩ P−1

F1
Lm(G1RF,1) ∩ . . . ∩ P−1

Fm
Lm(G1RF,m)

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F) =

Lm(G∆F). From Algorithm 16 , we have that all states in G1RF,i are marked, thus

L(G1RF,i) = Lm(G1RF,i), i = 1, . . . ,m.

It is thus sufficient to show:

ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ · · · ∩ P−1

Fm
L(G1RF,m)

As ss′ ∈ Lm(G) by (T3.4), we have ss′ ∈ L(G), since Lm(G) ⊆ L(G).

From (T3.4), we have: ss′ /∈ L∆F∧ss
′ ∈ L1RFm

Applying Proposition 10.1.2, we can conclude that: ss′ ∈ L(G||G∆F||G1RF,1|| . . . ||G1RF,m)

⇒ ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m)

We thus have that G′ is nonblocking, as required.

Part B) Show (⇐)

Assume G′ is nonblocking. (T3.5)

Must show implies S and G are FT consistent (follows from initial assumptions) and

that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∧ s ∈ L1RFm
⇒

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∧ ss′ ∈ L1RFm

Let s ∈ L(S) ∩ L(G). (T3.6)

Assume s /∈ L∆F∧s ∈ L1RFm
. (T3.7)

To apply (T3.5), we need to show:

s ∈ L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m)

As we have s ∈ L(S) ∩ L(G) from (T3.6), we only still need to show:

s ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m).

159

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

By (T3.6) and (T3.7), we can apply Proposition 10.1.2 and conclude:

s ∈ L(G||G∆F||G1RF,1|| . . . ||G1RF,m)

⇒ s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m)

We thus have s ∈ L(G′). AsG′ is nonblocking, we can conclude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

⇒ ss′ ∈ Lm(S)∩Lm(G)∩ P−1
∆FLm(G∆F)∩ P

−1
F1

L(G1RF,1)∩ . . .∩ P
−1
Fm

L(G1RF,m), by

(T3.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F and

ss′ ∈ L1RFm
.

We first note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆FLm(G∆F) implies ss′ ∈ P−1

∆FL(G∆F) as every state is

marked in G∆F, by Algorithm 1.

Also, we note that ss′ ∈ P−1
Fi

Lm(G1RF,i) implies ss′ ∈ P−1
Fi

L(G1RF,i) as every state is

marked in G1RF,i, i = 1, . . . ,m, by Algorithm 16.

⇒ ss′ ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(G1RF,1) ∩ . . . ∩ P−1

Fm
L(G1RF,m)

⇒ ss′ ∈ L(G||G∆F||G1RF,1|| . . . ||G1RF,m)

We can now conclude by Proposition 10.1.2 that: ss′ /∈ L∆F , and ss′ ∈ L1RFm

We thus conclude that S and G are m-one-repeatable fault tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are m-one-repeatable fault

tolerant nonblocking iff G′ is nonblocking.

10.3.4 Non-repeatable Permanent Fault-tolerant Nonblock-

ing Theorem

Theorem 10.3.4 states that verifying that our system is non-repeatable permanent

fault tolerant nonblocking is equivalent to verifying that the DES G′ constructed by

160

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 21 is nonblocking. Essentially, G′ is our original plant and supervisor syn-

chronized with newly constructed plant components designed to restrict the behavior

of our system to only include strings that satisfy the non-repeatable permanent fault

scenario.

Theorem 10.3.4. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be PFT consistent, and let G′ be the system constructed in Algorithm

21. Then S and G are non-repeatable permanent fault tolerant nonblocking iff G′ is

nonblocking.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 10.3.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S and G are non-repeatable permanent fault tolerant nonblocking ⇐⇒

G′ is nonblocking.

From Algorithm 21, we have: G′ = G||G∆F||GNRPF,1|| . . . ||GNRPF,m||S

From Algorithm 1, we know that G∆F is defined over Σ∆F . From Algorithm 19, we

know that GNRPF,i is defined over ΣFi
, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F , PFi
: Σ∗ → ΣFi

and PFnPi
: Σ∗ → (ΣFi

− ΣPi
)∗, i = 1, . . . ,m,

be natural projections.

AsG is defined over Σ, we have that L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F)∩P

−1
F1

L(GNRPF,1)

∩ . . .∩P−1
Fm

L(GNRPF,m) and Lm(G
′) = Lm(S) ∩ Lm(G) ∩ P−1

∆FLm(G∆F)∩

P−1
F1

Lm(GNRPF,1) ∩ . . . ∩ P−1
Fm

Lm(GNRPF,m). (T4.1)

Part A) Show (⇒)

Assume S and G are non-repeatable permanent fault tolerant nonblocking. (T4.2)

161

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . .∩P−1

Fm
L(GNRPF,m) (T4.3)

⇒ s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . .∩P−1

Fm
L(GNRPF,m)

⇒ s ∈ L(G||G∆F||GNRPF,1|| . . . ||GNRPF,m)

We can thus apply Proposition 10.1.3 and conclude:

s /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

As we have s ∈ L(S) ∩ L(G) from (T4.3), we can apply (T4.2) and conclude:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

(T4.4)

We now need to show that ss′ ∈ Lm(G
′).

Sufficient to show:

ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F) ∩ P−1

F1
Lm(GPF,1) ∩ . . . ∩ P−1

Fm
Lm(GNRPF,m)

From (T4.4), we have ss′ ∈ Lm(S)∩Lm(G), so only need to show ss′ ∈ P−1
∆FLm(G∆F)∩

P−1
F1

Lm(GNRPF,1) ∩ . . . ∩ P−1
Fm

Lm(GNRPF,m).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F)

= Lm(G∆F). From Algorithm 19, we have that all states in GNRPF,i are marked,

i = 1, . . . ,m, thus L(GNRPF,i) = Lm(GNRPF,i).

It is thus sufficient to show:

ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . . ∩ P−1

Fm
L(GNRPF,m)

As ss′ ∈ Lm(G) by (T4.4), we have ss′ ∈ L(G), since Lm(G) ⊆ L(G).

Also from (T4.4), we have: ss′ /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

Applying Proposition 10.1.3, we can conclude that: ss′ ∈ L(G||G∆F||GNRPF,1|| . . . ||GNRPF,m)

⇒ ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . .∩P−1

Fm
L(GNRPF,m)

We thus have that G′ is nonblocking, as required.

162

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Part B) Show (⇐)

Assume G′ is nonblocking. (T4.5)

Must show implies S and G are PFT consistent (follows from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))s /∈ L∆F ∪ LTF ⇒ (∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈

L∆F ∪ LRFp
∧ s ∈ L1RFm

Let s ∈ L(S) ∩ L(G). (T4.6)

Assume s /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

. (T4.7)

To apply (T4.5), we need to show:

s ∈ L(G′) = L(S)∩L(G)∩P−1
∆FL(G∆F)∩P

−1
F1

L(GNRPF,1)∩ . . .∩P
−1
Fm

L(GNRPF,m)

As we have s ∈ L(S) ∩ L(G) from (T4.6), we only still need to show:

s ∈ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . . ∩ P−1

Fm
L(GNRPF,m)

By (T4.6) and (T4.7), we can conclude by Proposition 10.1.3: s ∈ L(G||G∆F||GNRPF,1|| . . . ||

GNRPF,m)

⇒ s ∈ P−1
∆FL(G∆F) ∩P−1

F1
L(GNRPF,1) ∩ . . . ∩P−1

Fm
L(GNRPF,m)

We thus have s ∈ L(G′). AsG′ is nonblocking, we can conclude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

⇒ ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆FLm(G∆F)∩P

−1
F1

L(GNRPF,1)∩ . . .∩P
−1
Fm

L(GNRPF,m),

by (T4.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

.

We first note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆FLm(G∆F) implies ss′ ∈ P−1

∆FL(G∆F) as every state is

marked in G∆F, by Algorithm 1.

Also, we note that ss′ ∈ P−1
Fi

Lm(GNRPF,i) implies ss′ ∈ P−1
Fi

L(GNRPF,i) as every

state is marked in GNRPF,i, by Algorithm 19, for i = 1, . . . ,m.

163

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

⇒ ss′ ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

F1
L(GNRPF,1) ∩ . . .∩P−1

Fm
L(GNRPF,m)

⇒ ss′ ∈ L(G||G∆F||GNRPF,1|| . . . ||GNRPF,m)

We can now conclude by Proposition 10.1.3 that: ss′ /∈ L∆F ∪ LRFp
∧ s ∈ L1RFm

We thus conclude that S and G are non-repeatable permanent fault tolerant non-

blocking.

We can thus conclude by parts (A) and (B), that S and G are non-repeatable per-

manent fault tolerant nonblocking iff G′ is nonblocking.

10.3.5 Resettable Permanent Fault-tolerant Nonblocking The-

orem

Theorem 10.3.5 states that verifying that our system is resettable permanent

fault tolerant nonblocking is equivalent to verifying that the DES G′ constructed

by Algorithm 24 is nonblocking. Essentially, G′ is our original plant and supervi-

sor synchronized with newly constructed plant components designed to restrict the

behavior of our system to only include strings that satisfy the resettable permanent

fault scenario.

Theorem 10.3.5. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be PFT consistent, and let G′ be the system constructed in Algo-

rithm 24. Then S and G are resettable permanent fault tolerant nonblocking iff G′ is

nonblocking.

Proof. Assume initial conditions for theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 10.3.1. We can thus assume m ≥ 1 for the rest of the proof without any

164

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

loss of generality.

Must show S and G are resettable permanent fault tolerant nonblocking ⇐⇒ G′ is

nonblocking.

From Algorithm 24, we have: G′ = G||G∆F||GTPF,1|| . . . ||GTPF,m||S

From Algorithm 1, we know that G∆F is defined over Σ∆F . From Algorithm 22, we

know that GTPF,i is defined over ΣFi
∪ ΣTi

, i = 1, . . . ,m.

Let P∆F : Σ∗ → Σ∗

∆F , PTFi
: Σ∗ → (ΣFi

∪ ΣTi
)∗ and PPi

: Σ∗ → Σ∗

Pi
, i = 1, . . . ,m, be

natural projections.

AsG is defined over Σ, we have that L(G′) = L(S) ∩ L(G) ∩ P−1
∆FL(G∆F)∩P

−1
TF1

L(GTPF,1)

∩ . . .∩P−1
TFm

L(GTPF,m) and Lm(G
′) = Lm(S)∩Lm(G)∩P−1

∆FLm(G∆F)∩P
−1
TF1

Lm(GTPF,1)∩

. . . ∩ P−1
TFm

Lm(GTPF,m). (T5.1)

Part A) Show (⇒)

Assume S and G are resettable permanent fault tolerant nonblocking. (T5.2)

Must show implies: (∀s ∈ L(G′))(∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

Let s ∈ L(G′).

⇒ s ∈ L(S) ∩ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . .∩P−1

TFm
L(GTPF,m) (T5.3)

⇒ s ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . .∩P−1

TFm
L(GTPF,m)

⇒ s ∈ L(G||G∆F||GTPF,1|| . . . ||GTPF,m)

We can thus apply Proposition 10.1.4 and conclude:

s /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

As we have s ∈ L(S) ∩ L(G) from (T5.3), we can apply (T5.2) and conclude:

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

(T5.4)

We now need to show that ss′ ∈ Lm(G
′).

Sufficient to show:

165

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

ss′ ∈ Lm(S)∩Lm(G)∩P−1
∆FLm(G∆F)∩P

−1
TF1

Lm(GTPF,1)∩ . . .∩P
−1
TFm

Lm(GTPF,m)

From (T5.4), we have ss′ ∈ Lm(S)∩Lm(G), so only need to show ss′ ∈ P−1
∆FLm(G∆F)∩

P−1
TF1

Lm(GTPF,1) ∩ . . . ∩ P−1
TFm

Lm(GTPF,m).

We note from Algorithm 1 that as all states in G∆F are marked, we have L(G∆F)

= Lm(G∆F). From Algorithm 22, we have that all states in GTF,i are marked,

i = 1, . . . ,m, thus L(GTPF,i) = Lm(GTPF,i).

It is thus sufficient to show:

ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . . ∩ P−1

TFm
L(GTPF,m)

As ss′ ∈ Lm(G) by (T5.4), we have ss′ ∈ L(G), since Lm(G) ⊆ L(G).

Also from (T5.4), we have: ss′ /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

Applying Proposition 10.1.4, we can conclude that: ss′ ∈ L(G||G∆F||GTPF,1|| . . . ||GTPF,m)

⇒ ss′ ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . .∩P−1

TFm
L(GTPF,m)

We thus have that G′ is nonblocking, as required.

Part B) Show (⇐)

Assume G′ is nonblocking. (T5.5)

Must show implies S and G are PFT consistent (follows from initial assumptions)

and that:

(∀s ∈ L(S) ∩ L(G))s /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

⇒

(∃s′ ∈ Σ∗)ss′ ∈ Lm(S) ∩ Lm(G) ∧ ss′ /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

Let s ∈ L(S) ∩ L(G). (T5.6)

Assume s /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

. (T5.7)

To apply (T5.5), we need to show:

s ∈ L(G′) = L(S)∩L(G)∩P−1
∆FL(G∆F)∩P

−1
TF1

L(GTPF,1)∩ . . .∩P
−1
TFm

L(GTPF,m)

As we have s ∈ L(S) ∩ L(G) from (T5.6), we only still need to show:

166

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

s ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . . ∩ P−1

TFm
L(GTPF,m)

By (T5.6) and (T5.7), we can conclude by Proposition 10.1.4: s ∈ L(G||G∆F||GTPF,1|| . . . ||

GTPF,m)

⇒ s ∈ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . . ∩ P−1

TFm
L(GTPF,m)

We thus have s ∈ L(G′). AsG′ is nonblocking, we can conclude: (∃s′ ∈ Σ∗)ss′ ∈ Lm(G
′)

⇒ ss′ ∈ Lm(S) ∩ Lm(G) ∩ P−1
∆FLm(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . . ∩ P−1

TFm
L(GTPF,m),

by (T5.1)

We thus have ss′ ∈ Lm(S) ∩ Lm(G) and only need to show that ss′ /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

.

We first note that we have ss′ ∈ L(G), as Lm(G) ⊆ L(G).

We next note that ss′ ∈ P−1
∆FLm(G∆F) implies ss′ ∈ P−1

∆FL(G∆F) as every state is

marked in G∆F, by Algorithm 1.

Also, we note that ss′ ∈ P−1
TFi

Lm(GTPF,i) implies ss′ ∈ P−1
TFi

L(GTPF,i) as every state

is marked in GTPF,i, by Algorithm 22, for i = 1, . . . ,m.

⇒ ss′ ∈ L(G) ∩ P−1
∆FL(G∆F) ∩ P−1

TF1
L(GTPF,1) ∩ . . .∩P−1

TFm
L(GTPF,m)

⇒ ss′ ∈ L(G||G∆F||GTPF,1|| . . . ||GTPF,m)

We can now conclude by Proposition 10.1.4 that: ss′ /∈ L∆F ∪ LTFp
∧ s ∈ L1RFp

We thus conclude that S and G are resettable permanent fault tolerant nonblocking.

We can thus conclude by parts (A) and (B), that S and G are resettable permanent

fault tolerant nonblocking iff G′ is nonblocking.

167

Chapter 11

Permanent Fault-Tolerant

Manufacturing Example

In this chapter we introduce a small example to illustrate our approach for per-

manent fault-tolerant systems. This example is identical to the example presented in

Chapter 7, except we have added a permanent fault to the plant model.

11.1 Adding a Permanent Fault

To modify the example in Chapter 7, the only change we made was the intermittent

fault at sensor 9. To convert the fault at sensor 9 from an intermittent to a permanent

fault, we did not have to change a single plant or supervisor from Chapter 7. To

make the conversion all we have to do is add the two new plant components shown

in Figures 11.30 and 11.31. Before, these were intermittent faults. Now once the

fault event occurs, the original non-fault sensor event is no longer possible; only the

fault event can now occur. No additional changes are required to the plant model to

168

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

convert these events to permanent faults. We can now define our permanent fault

sets as follows: ΣP1
= {t1F at9}, ΣP2

= ∅, ΣP3
= {t2F at9}, ΣP4

= ∅}.

!t1F_at9

!t1_at9 !t1F_at9

0 1

Figure 11.30: Sensor 9 and Train 1 with
Permanent Faults

!t2F_at9!t2_at9

!t2F_at9

0 1

Figure 11.31: Sensors 9 and Train 2 with
Permanent Faults

11.2 Discussion of Results

Using our software research tool, DESpot [DES13], we first determined that our

system passes the N-FT controllable (N = 1), the non-repeatable N-FT controllable

(N = 4), and the resettable FT controllable properties from Chapter 5, but failed the

three corresponding FT nonblocking properties. This is not surprising as once the

permanent fault event at sensor nine occurs, the original sensor event can’t occur so

when the FT nonblocking property blocked sensor nine’s fault event, the result was

that neither could occur and we get deadlock.

We then used DESpot to determine that the system is one-repeatable FT con-

trollable and nonblocking, m-one-repeatable FT controllable and nonblocking, non-

repeatable PFT controllable and nonblocking, and resettable PFT controllable and

nonblocking. We also note that the system failed the FT controllable1 and nonblock-

ing properties as expected, since they would allow the fault events to occur unre-

stricted. Table 11.2 and 11.3 show the test results, system state sizes, and runtime

1We note that DESpot’s controllability algorithm stops at the first failed state which is why the

runtime is so small for this property.

169

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

for these tests. The first table shows data from using our standard verification algo-

rithms, and the second data from our BDD-based algorithms [Bry92, Ma04, Son06,

VLF05, Wan09, Zha01].

Table 11.2: Non-BDD Example Results

Verification Time (seconds)

Property State Size Controllability Nonblocking

fault-tolerant 61440 1 P 1 P

one-repeatable fault-tolerant 448512 6 P 3 P

m-one repeatable fault-tolerant 2.43302e+ 06 6 P 3 p

non-repeatable permanent fault-tolerant 2.43302e+ 06 38 P 19 P

resettable permanent fault-tolerant 365568 6 P 3 P

Table 11.3: BDD Example Results

Verification Time (seconds)

Property State Size Controllability Nonblocking

fault-tolerant 61440 0 P 0 P

one-repeatable fault-tolerant 448512 0 P 1 P

m-one repeatable fault-tolerant 2.43302e+ 06 0 P 0 p

non-repeatable permanent fault-tolerant 2.43302e+ 06 0 P 0 P

resettable permanent fault-tolerant 365568 0 P 0 P

170

Chapter 12

Timed Permanent Fault-Tolerant

Controllability

In this chapter, we introduce timed permanent fault-tolerant controllability which

builds upon the work of Alsuwaidan [Als16] to extend the untimed permanent fault-

tolerant properties of Chapter 8 to the timed DES setting (TDES) [BW92, Bra93,

BW94].

12.1 Timed Permanent Fault-Tolerant Setting

In [Als16], Alsuwaidan extended the untimed fault-tolerant work that we presented

in Chapters 3 to 6, to the TDES setting. This was a useful extension as TDES adds to

untimed DES the ability to express when an event is possible, when it must occur by

(possibly infinite time limit), and the ability to force certain events (forcible events)

to occur in a specified time frame (before the next clock tick). As TDES is much more

expressive, both in modelling and enforcement, extending fault-tolerant supervisors

171

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

to the TDES setting clearly will be useful.

In her thesis, Alsuwaidan first extended the fault-tolerant consistent definition,

from Chapter 3, to the timed setting. She used the same intermittent fault-tolerant

scenarios from Chapter 3, but extended the fault-tolerant controllability definitions

of Chapter 4 to the timed setting. It was not necessary to extend the fault-tolerant

nonblocking definitions as the nonblocking property is the same in both the untimed

and timed DES setting.

Alsuwaidan then extended the Chapter 5 fault-tolerant controllability algorithms,

including the plant construction algorithms, to the TDES setting. She then proved

that the algorithms correctly verified the new timed fault-tolerant controllability def-

initions.

In the sections to follow, we will extend Alsuwaidan’s timed fault-tolerant consistent

definition to include permanent faults which is discussed in Section 12.2, and then take

a similar approach to extend the permanent fault-tolerant controllability definitions

from Chapter 8 to the timed setting.

12.2 Timed Permanent Fault-Tolerant Consistency

We now extend the PFT consistency Definition from Section 8.1 to the TDES

sitting. The timed permanent fault-tolerant (TPFT) consistency extension is identical

except it adds Point 8 which says that there are no common events between fault

events and forcible events (i.e. there are no forcible, fault events). This was added as

it would be unrealistic to able to make a fault event occur on command.

We further note that the TPFT consistency property is essentially a combination

of the PFT consistency property and the timed fault-tolerant (TFT) consistency

172

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

property from Alsuwaidan [Als16], which in turn was based upon our FT consistency

property. We note that as the tick event is by definition controllable, it can not be a

fault event.

Definition 12.2.1. A system, with a plant G = (Y,Σ, δ, yo, Ym), a supervisor S =

(X,Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣPi

, ΣTi
(i = 1, . . . ,m), Σ∆F , and

ΣΩF , is timed permanent fault tolerant (TPFT) consistent if:

1. Σ∆F ∪ ΣΩF ∪ ΣF ⊆ Σu

2. (∀i ∈ {1, ..,m})ΣPi
⊆ ΣFi

3. Σ∆F ,ΣΩF ,ΣFi
(i = 1, ..,m), are pair-wise disjoint.

4. (∀i ∈ {1, ..,m})ΣFi
6= ∅

5. (∀i ∈ {1, ..,m})ΣFi
∩ ΣTi

= ∅

6. Supervisor S is deterministic.

7. (∀x ∈ X)(∀σ ∈ (ΣΩF ∪ Σ∆F ∪ ΣF)) ξ(x, σ) = x

8. (Σ∆F ∪ ΣΩF ∪ ΣF) ∩ Σfor = ∅

12.3 Timed Permanent Fault Scenarios

For the timed permanent fault setting, we do not need to introduce any new

scenarios; we can simply re-use the permanent fault scenarios from Section 8.2. The

settings are unchanged; the only difference is that we now apply them to the TDES

setting. The scenarios are the default fault scenario, one-repeatable fault Scenario,

173

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

m-one-repeatable fault scenario, non-repeatable permanent fault scenario, and the

resettable permanent fault scenario.

In the sections that follow, we will present the timed permanent fault-tolerant con-

trollability definitions.

12.4 Timed Fault-Tolerant Controllability

The first fault-tolerant controllability property is designed to handle the default

fault scenario. It is unchanged from the intermittent fault version presented in Al-

suwaidan [Als16]. We include it here as the other properties in this section will reduce

to it when m = 0. For this property, we need to use the language of excluded faults

from Section 4.1.

Definition 12.4.1. A system, with a plant G = (Y,Σ, δ, yo, Ym), a supervisor S =

(X,Σ, ξ, xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is timed fault tolerant

(TFT) controllable if it is TPFT consistent and:

(∀s ∈ L(S) ∩ L(G))(s /∈ L∆F)⇒

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is timed fault tolerant controllable for G.

The above definition is essentially the standard timed controllability definition,

except that we add the condition (s /∈ L∆F) to the timed controllability definition so

that we ignore all strings that include at least one fault events from Σ∆F . We note

174

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

that if Σ∆F = ∅, then Definition 12.4.1 reduces to the standard timed controllability

definition as L∆F reduces to L∆F = ∅.

12.5 Timed One-repeatable Fault-Tolerant Control-

lability

The next fault-tolerant property that we introduce is designed to handle the one-

repeatable fault scenario. We use the language of excluded faults, and the language

of one-repeatable fault events from Sections 4.1 and 8.4.

Definition 12.5.1. A system, with a plant G = (Y,Σ, δ, yo, Ym), a supervisor S =

(X,Σ, ξ, xo, Xm), and fault sets ΣFi
(i = 1, ..,m) and Σ∆F , is timed one repeatable

fault tolerant (T-1-R-FT) controllable if it is TPFT consistent and:

(∀s ∈ L(S) ∩ L(G))(s /∈ L∆F) ∧ (s ∈ L1RF)⇒

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is timed one-repeatable fault tolerant controllable for

G.

The above definition is essentially the standard timed controllability definition,

but ignores strings that include excluded fault events, and strings that contain more

than two unique fault events from ΣF .

We note that if m = 0, we get ΣF = ∅ and L1RF simplifies to L1RF = Σ∗. This

means Definition 12.5.1 simplifies to the TFT controllable definition.

175

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

12.6 Timed m-one-repeatable Fault-Tolerant Con-

trollability

The next fault-tolerant property that we introduce is designed to handle the m-

one-repeatable fault scenario.We use the language of excluded faults, and the language

of m-one-repeatable fault events from Sections 4.1 and 8.5.

Definition 12.6.1. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S =

(X,Σ, ξ, xo, Xm), and fault sets ΣFi
(i = 1, . . . ,m) and Σ∆F , is timed m-one-repeatable

fault tolerant (T-m-1-R-FT) controllable, if it is TPFT consistent and: (∀s ∈ L(S)∩

L(G))(s /∈ L∆F) ∧ (s ∈ L1RFm
)⇒

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is timed m-one-repeatable fault tolerant controllable for

G.

The above definition is essentially the standard timed controllability definition,

but ignores strings that include excluded fault events, and strings that contain more

than two unique fault event from the same fault set.

We note that if m = 1, then this property simplifies to the timed m-one-repeatable

fault tolerant controllable property. We also note that if m = 0, we get ΣF = ∅, and

L1RFm
simplifies to L1RFm

= Σ∗. This means Definition 12.6.1 simplifies to the TFT

controllable definition.

176

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

12.7 Timed Non-repeatable Permanent Fault-Tolerant

Controllability

The next fault-tolerant property that we introduce is designed to handle the non-

repeatable permanent fault scenario. We use the language of excluded faults, the

language of repeated intermittent fault events, and the language of m-one-repeatable

fault events from Sections 4.1, 8.5 and 8.6.

Definition 12.7.1. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S =

(X,Σ, ξ, xo, Xm), and fault sets ΣFi
, ΣPi

(i = 1, . . . ,m) and Σ∆F , is timed non-

repeatable permanent fault tolerant (T-NR-PFT) controllable, if it is TPFT consis-

tent and:

(∀s ∈ L(S) ∩ L(G))(s /∈ L∆F ∪ LRFP
) ∧ (s ∈ L1RFm

)⇒

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

For brevity, when it is clear to which fault sets we are referring, we can state

this property more concisely as S is timed non-repeatable permanent fault tolerant

controllable for G.

The above definition is essentially the standard timed controllability definition,

but ignores strings that include excluded fault events, two or more non-permanent

faults from a single fault set ΣFi
(i = 1, . . . ,m), or strings that contain more than

one unique permanent fault event from a given fault set.

We note that since LRFp
only restricts non-permanent faults, the combination of a

string excluded from LRFp
and included in L1RFm

means that the string can contain

177

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

at most one fault event from a given fault set, but if the fault is a permanent fault,

it can occur multiple times while intermittent faults may only occur once.

We note that if m = 0, we get ΣF = ∅, LRFp
simplifies to LRFp

= ∅ and L1RFm
sim-

plifies to L1RFm
= Σ∗. This means Definition 12.7.1 simplifies to the TFT controllable

definition.

12.8 Timed Resettable Permanent Fault-Tolerant

Controllability

The next permanent fault-tolerant property that we introduce is designed to handle

the resettable permanent fault scenario. We use the language of excluded faults,

the language of permanent non-reset fault events, and the language of one-repeatable

permanent fault events from Sections 4.1 and 8.7.

Definition 12.8.1. A system, with plant G = (Y,Σ, δ, yo, Ym), supervisor S =

(X,Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣPi

, ΣTi
(i = 1, . . . ,m) and Σ∆F ,

is timed resettable permanent fault tolerant (T-T-PFT) controllable if it is TPFT

consistent and:

(∀s ∈ L(S) ∩ L(G))(s /∈ L∆F ∪ LTFP
) ∧ (s ∈ L1RFP

)⇒

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

For brevity, when it is clear to which fault sets we are referring, we can state this

property more concisely as S is timed resettable permanent fault tolerant controllable

for G.

178

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

The above definition is essentially the standard timed controllability definition,

but ignores strings that include excluded fault events, strings where two fault events

(the first event a non-permanent fault) from the same fault set ΣFi
(i ∈ 1, . . . ,m)

occur in a row without an event from the corresponding set of reset events ΣTi
in

between, and strings such that once a fault event from a given permanent fault set

ΣPi
(i = 1, . . . ,m) occurs, another event from the corresponding fault set (ΣFi

) occurs

other than that permanent fault event.

We note that if m = 0, we get ΣF = ∅, LTFp
simplifies to LTFp

= ∅ and L1RFp
sim-

plifies to L1RFp
= Σ∗. This means Definition 12.8.1 simplifies to the TFT controllable

definition.

179

Chapter 13

Timed Permanent Fault-Tolerant

Algorithms

In this chapter, we will present algorithms to construct and verify the timed

permanent fault-tolerant controllability properties that we defined in Chapter 12.

13.1 Algorithms

In this section, we present timed permanent fault-tolerant controllability algorithms

for TDES. We will not present an algorithm for the TPFT consistency property as

its individual points can easily be checked by adapting various standard algorithms.

Our goal is to verify the timed permanent fault-tolerant controllability definitions

presented in Chapter 12.

We assume that the our TDES system consists of a plant G = (Y,Σ, δ, yo, Ym), a

supervisor S = (X,Σ, ξ, xo, Xm), and fault and reset sets ΣFi
, ΣPi

, ΣTi
(i = 1, . . . ,m),

180

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Σ∆F , and ΣΩF . We also assume that the timed controllability and synchronous prod-

uct algorithms are given. We use vTCont (Plant, Sup) to indicate timed control-

lability verification, and || to indicate the synchronous product operation. Function

vTCont returns true or false to indicate whether the verification passed or failed, and

the result will be stored in the Boolean variable pass.

Similar to the untimed fault tolerant algorithms in Chapter 5, our approach in

this thesis will be to construct plant components to synchronize with our plant G

such that the new DES will restrict the occurrence of faults to match the given fault-

tolerant controllability definitions. We can then synchronize the plant components

together and then use a standard controllability algorithm to check the property.

Since every TDES must contain the tick event, we add a tick event selflooped at

every state in the plants we construct. Moreover, all the constructed plants have all of

their states marked so that we do not directly change the system’s marked behavior.

Our constructed plants will be identical to the ones in Chapter 9 except we add

tick self-loops at each states. The property evaluations will be identical as well except

we will instead evaluate the timed controllability property. As such, we will provide

minimal description and instead refer the reader to Chapter 9.

13.1.1 Timed Fault-Tolerant Controllability Algorithm

In the timed fault-tolerant controllability definition, we need to remove all the

excluded fault transitions from the system behavior, and then apply the standard

timed controllability algorithm, as appropriate. To achieve this, two algorithms have

been introduced. First, Algorithm 25 constructs a new plant Gt∆F, with event set

Σ∆F ∪{τ}, one selflooped transition for tick , and a marked initial state. Figure 13.32

181

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

shows an example of the constructed plant, Gt∆F automata. We note that Gt∆F was

introduced in Alsuwaidan [Als16], as was Algorithms 25 and 26. They are repeated

here for completeness.

Algorithm 25 construct-Gt∆F(Σ∆F)

1: Y1 ← {y0}

2: Ym,1 ← Y1

3: δ1 ← δ1 ∪ {(y0, τ, y0)}

4: return (Y1,Σ∆F ∪ {τ}, δ1, yo, Ym,1)

In the TDES diagrams, circles represent unmarked states, while filled circles rep-

resent marked states. Two concentric, unfilled circles represent the initial state. If

the initial state is also marked, the inner circle is filled.

tick

0

Figure 13.32: Timed Excluded Faults Plant Gt∆F

Algorithm 26 shows how to verify timed fault-tolerant controllability for G and

S.

Algorithm 26 Verify timed fault-tolerant controllability

1: Gt∆F ← construct-Gt∆F(Σ∆F)

2: G′ ← G||Gt∆F

3: pass ← vTCont(G′,S)

4: return pass

We note that if Σ∆F = ∅. Algorithm 26 will still produce the correct result.

182

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

However, it would be more efficient to just check that S is controllable for G directly.

13.1.2 Timed One-repeatable Fault-Tolerant Controllability

Algorithm

To verify the timed one-repeatable fault tolerant definition, we need to construct

TDES Gt1RF, which is identical to DES G1RF (see Section 9.2) except we add tick

event selfloops at every state. Algorithm 27 shows how to constructGt1RF and Figure

13.33 shows an example Gt1RF automata.

Algorithm 27 construct-Gt1RF(ΣF)

1: k ← |ΣF |

2: Y1 ← {y0, . . . , yk}

3: Ym,1 ← Y1

4: δ1 ← ∅

5: j ← 1

6: δ1 ← δ1 ∪ {(y0, τ, y0)}

7: for σ ∈ ΣF

8: δ1 ← δ1 ∪ {(y0, σ, yj), (yj , σ, yj), (yj, τ, yj)}

9: j ← j + 1

10: end for

11: return (Y1,ΣF ∪ {τ}, δ1, yo, Ym,1)

Algorithm 28 shows how to verify timed one-repeatable fault-tolerant controlla-

bility for G and S. This Algorithm is identical to Algorithm 14 in Section 9.2, except

we verify timed controllability instead.

183

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

σ1

σ1

tick
tick

tick

tick

σ2

σ2

σ3

σ3

0 1

2

3

Figure 13.33: Timed One-Repeatable Fault Plant Gt1RF,ΣF = {σ1, . . . , σ3}

Algorithm 28 Verify timed one-repeatable fault-tolerant controllability

1: Gt∆F ← construct-Gt∆F(Σ∆F)

2: Gt1RF ← construct-Gt1RF(ΣF)

3: G′ ← G||Gt∆F||Gt1RF

4: pass ← vTCont(G′,S)

5: return pass

We note that if m = 0, we have ΣF = ∅ and that synchronizing with Gt1RF will

have no effect. This means G′ will simplify to G′ = G||Gt∆F and we can run the

TFT controllability Algorithm instead.

13.1.3 Timed m-one-repeatable Faults-Tolerant Controllabil-

ity Algorithm

To verify the timed m-one-repeatable fault tolerant definition, we need to construct

TDES Gt1RFi
, which is identical to DES G1RF,i (see Section 9.3) except we add tick

event selfloops at every state. Algorithm 29 shows how to construct Gt1RF,i and

184

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Figure 13.34 shows an example Gt1RF,i automata.

Algorithm 29 construct-Gt1RF,i(ΣFi
, i)

1: k ← |ΣFi
|

2: Y1 ← {y0, . . . , yk}

3: Ym,1 ← Y1

4: δ1 ← ∅

5: j ← 1

6: δ1 ← δ1 ∪ {(y0, τ, y0)}

7: for σ ∈ ΣFi

8: δ1 ← δ1 ∪ {(y0, σ, yj), (yj , σ, yj), (yj, τ, yj)}

9: j ← j + 1

10: end for

11: return (Y1,ΣFi
∪ {τ}, δ1, yo, Ym,1)

σ1

σ1

tick
tick

tick

tick

σ2

σ2

σ3

σ3

0 1

2

3

Figure 13.34: Timed m-One-Repeatable Fault Plant Gt1RF,i,ΣFi
= {σ1, . . . , σ3}

Algorithm 30 shows how to verify timed m-one-repeatable fault-tolerant con-

trollability for G and S. This Algorithm is identical to Algorithm 17 in Section 9.3,

except we verify timed controllability instead.

185

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 30 Verify timed m-one-repeatable fault-tolerant controllability

1: Gt∆F ← construct-Gt∆F(Σ∆F)

2: for i = 1, . . . ,m

3: Gt1RF,i ← construct-Gt1RF,i(ΣFi
, i)

4: end for

5: G′ ← G||Gt∆F||Gt1RF,1|| . . . ||Gt1RF,m

6: pass ← vTCont(G′,S)

7: return pass

We note that if m = 0, then no Gt1RF,i will be constructed. This means G′ will

simplify to G′ = G||Gt∆F and we can run the TFT controllability Algorithm instead.

13.1.4 Timed Non-repeatable Permanent Fault-Tolerant Con-

trollability Algorithm

To verify the timed non-repeatable permanent fault tolerant definition, we need

to construct TDES GtNRPF,i, which is identical to DES GNRPF,i (see Section 9.4)

except we add tick event selfloops at every state. Algorithm 31 shows how to construct

GtNRPF,i and Figure 13.35 shows an example GtNRPF,i automata.

186

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 31 construct-GtNRPF,i(ΣFi
,ΣPi

, i)

1: k ← |ΣPi
|

2: Yi ← {y0, . . . , yk+1}

3: Ym,i ← Yi

4: δi ← ∅

5: δi ← δi ∪ {(y0, τ, y0)}

6: for σ ∈ (ΣFi
− ΣPi

)

7: δi ← δi ∪ {(y0, σ, y1)}

8: end for

9: j ← 2

10: for σ ∈ ΣPi

11: δi ← δi ∪ {(y0, σ, yj), (yj , σ, yj), (yj, τ, yj)}

12: j ← j + 1

13: end for

14: return (Yi,ΣFi
∪ {τ}, δi, yo, Ym,i)

Algorithm 32 shows how to verify timed non-repeatable permanent fault-tolerant

controllability for G and S. This Algorithm is identical to Algorithm 20 in Section

9.4, except we verify timed controllability instead.

187

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

tick tick

Σ ΣFi Pi-

σ1

σ2
σ3

σ1

σ2

σ3

tick

tick

tick

0 1

2

34

Figure 13.35: Timed Non-Repeatable Permanent Fault Plant
GtNRPF,i,ΣPi

= {σ1, . . . , σ3}

Algorithm 32 Verify timed non-repeatable permanent fault-tolerant controllability

1: Gt∆F ← construct-Gt∆F(Σ∆F)

2: for i = 1, . . . ,m

3: GtNRPF,i ← construct-GtNRPF,i(ΣFi
,ΣPi

, i)

4: end for

5: G′ ← G||Gt∆F||GtNRPF,1|| . . . ||GtNRPF,m

6: pass ← vTCont(G′,S)

7: return pass

We note that if m = 0, then no GtNRPF,i will be constructed. This means G′ will

simplify to G′ = G||Gt∆F and we can run the TFT controllability Algorithm instead.

188

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

13.1.5 Timed Resettable Permanent Fault-Tolerant Control-

lability Algorithm

To verify the timed resettable permanent fault tolerant definition, we need to

construct TDES GtTPF,i, which is identical to DES GTPF,i (see Section 9.5) except

we add tick event selfloops at every state. Algorithm 33 shows how to construct

GtTPF,i and Figure 13.36 shows an example GtTPF,i automata.

Algorithm 34 shows how to verify timed resettable permanent fault-tolerant

controllability for G and S. This Algorithm is identical to Algorithm 23 in Section

9.5, except we verify timed controllability instead.

i

tick

ΣTi
σ1

σ2

σ3

tick

ΣTi

σ1

tick

ΣTi

σ2

tick

ΣTi

σ3
ΣTi

tick

Σ ΣFi - Pi

0

1

2

3

4

Figure 13.36: Timed Resettable Permanent Fault Plant GtTPF,i,ΣPi
= {σ1, . . . , σ3}

189

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 33 construct-GtTPF,i(ΣFi
,ΣPi

,ΣTi
, i)

1: k ← |ΣPi
|

2: Yi ← {y0, . . . , yk+1}

3: Ym,i ← Yi

4: δi ← ∅

5: δi ← δi ∪ {(y0, τ, y0), (y1, τ, y1)}

6: for σ ∈ (ΣFi
− ΣPi

)

7: δi ← δi ∪ {(y0, σ, y1)}

8: end for

9: j ← 2

10: for σ ∈ ΣPi

11: δi ← δi ∪ {(y0, σ, yj), (yj , σ, yj), (yj, τ, yj)}

12: j ← j + 1

13: end for

14: for σ ∈ ΣTi

15: δi ← δi ∪ {(y0, σ, y0), (y1, σ, y0)}

16: for j = 2, . . . , k + 1

17: δi ← δi ∪ {(yj, σ, yj)}

18: end for

19: end for

20: return (Yi,ΣFi
∪ ΣTi

∪ {τ}, δi, yo, Ym,i)

190

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Algorithm 34 Verify timed resettable permanent fault-tolerant controllability

1: Gt∆F ← construct-Gt∆F(Σ∆F)

2: for i = 1,. . . ,m

3: GtTPF,i ← construct-GtTPF,i(ΣFi
,ΣPi

,ΣTi
, i)

4: end for

5: G
′

← G||Gt∆F||GtTPF,1|| . . . ||GtTPF,m

6: pass ← vTCont(G′,S)

7: return pass

We note that if m = 0, then no GtTPF,i will be constructed . This means G′ will

simplify to G′ = G||Gt∆F and we can run the TFT controllability Algorithm instead.

13.2 Algorithm Complexity Analysis

In this section, we provide a complexity analysis for the timed permanent fault-

tolerant controllability algorithms. In the following subsections, we assume that our

system consists of a plant G = (Y,Σ, δ, yo, Ym), supervisor S = (X,Σ, ξ, xo, Xm), and

fault and reset sets ΣFi
, ΣPi

ΣTi
(i = 1, . . . ,m), Σ∆F , and ΣΩF .

In this thesis, we will base our analysis on the complexity analysis from Cassandras

et al.[CL09a] that states that the untimed controllability algorithm has a complexity

of O(|Σ||Y ||X|), where |Σ| is the size of the system event set, |Y | is the size of the

plant state set, and |X| is the size of the supervisor state set. In the analysis that

follows, |Y∆F | is the size of the state set for Gt∆F (constructed by Algorithm 25).

In the untimed controllability algorithm, we visit every state of the synchronous

product of the plant and supervisor, and perform maximum a constant number of

191

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

operations per defined transition leaving the state. For timed controllability, we

perform these same steps, plus an additional (max a constant) number of operations

per departing transition to check that if the supervisor disables a tick transition, there

is also a forced event transition departing that state. As such, timed controllability

also has complexity O(|Σ||Y ||X|).

We note that each TPFT algorithm first constructs and adds some additional plant

components to the system, and then it runs a standard timed controllability algorithm

on the resulting system. Our approach will be to take the standard algorithm’s

complexity, and replace the value for the state size of the plant with the worst case

state size of G synchronized with the new plant components. As all fault and reset

events already belong to the system event set, this means the size of the system event

set does not increase.

In the following analysis, we will ignore the cost of constructing the new plant

components as they will be constructed in serial with the controllability verification

and should be negligible in comparison.

13.2.1 Timed FT Controllability Algorithm

For Algorithm 26, we replace our plant TDES by G′ = G||Gt∆F. This gives us a

worst case state space of |Y ||Y∆F | for G
′. Substituting this into our base algorithm’s

complexity for the size of our plant’s state set gives O(|Σ||Y ||Y∆F ||X|). As |Y∆F | = 1

by Algorithm 25, it follows that our complexity is O(|Σ||Y ||X|) which is the same as

our base algorithm.

192

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

13.2.2 Timed one-repeatable FT Controllability Algorithm

For Algorithm 28, we replace our plant TDES by G′ = G||Gt∆F||Gt1RF. This

gives us a worst case state space of |Y ||Y∆F ||Y1RF | for G
′, where |Y1RF | is the size of

the state set for Gt1RF which is constructed by Algorithm 27. Substituting this into

our base algorithm’s complexity gives O(|Σ||Y ||Y∆F ||Y1RF ||X|).

We note that |Y∆F | = 1 by Algorithm 25, and |Y1RF | = |ΣF | + 1 by Algorithm

27. Substituting in for these values gives O((|ΣF |+ 1)|Σ||Y ||X|). It thus follows that

verifying timed one-repeatable T-1-R-FT controllability increases the complexity of

verifying controllability by a factor of |ΣF |+ 1.

13.2.3 Timed m-one-repeatable FT Controllability Algorithm

For Algorithm 30, we replace our plant TDES by G′ = G||tG∆F||Gt1RF,1|| . . . ||

Gt1RF,m. This gives us a worst case state space of |Y ||Y∆F ||Y1RF,1| . . . |Y1RF,m| for

G′, where |Y1RF,i| is the size of the state set for Gt1RF,i (i = 1, . . . ,m), which is

constructed by Algorithm 29. Substituting this into our base algorithm’s complexity

gives O(|Σ||Y ||Y∆F ||Y1RF,1| . . . |Y1RF,m||X|).

We note that |Y∆F | = 1 by Algorithm 25, and |Y1RF,i| = |ΣFi
|+1 (i = 1, . . . ,m) by

Algorithm 29. Substituting in for these values givesO((|ΣF1
|+ 1) . . . (|ΣFm

|+ 1)|Σ||Y ||

X|). If we take NF as an upper bound of all |ΣFi
|, we get O((NF + 1)m|Σ||Y ||X|).

It thus follows that verifying timed m-one-repeatable T-m-1-R FT controllability in-

creases the complexity of verifying controllability by a factor of (NF + 1)m.

193

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

13.2.4 Timed Non-repeatable PFT Controllability Algorithm

For Algorithm 32, we replace our plant TDES by G′ = G||Gt∆F||GtNRPF,1|| . . . ||

GtNRPF,m. This gives us a worst case state space of |Y ||Y∆F ||YNRPF1
| . . . |YNRPFm

|

for G′, where |YNRPFi
| is the size of the state set for GtNRPF,i (i = 1, . . . ,m), which is

constructed by Algorithm 31. Substituting this into our base algorithm’s complexity

gives O(|Σ||Y ||Y∆F ||YNRPF1
| . . . |YNRPFm

||X|).

We note that |Y∆F | = 1 by Algorithm 25, and |YNRPFi
| = |ΣPi

|+ 2 (i = 1, . . . ,m)

by Algorithm 31. Substituting in for these values gives O((|ΣP1
| + 2) . . . (|ΣPm

| +

2)|Σ||Y ||X|). If we take NP as an upper bound of all |ΣPi
|, we get O((NP +2)m|Σ||Y ||

X|). It thus follows that verifying timed non-repeatable permanent T-NR-PFT

controllability increases the complexity of verifying controllability by a factor of

(NP + 2)m.

13.2.5 Timed Resettable PFT Controllability Algorithm

For Algorithm 34, we replace our plant TDES by G′ = G||Gt∆F||GtTPF,1|| . . . ||

GtTPF,m. This gives us a worst case state space of |Y ||Y∆F ||YTPF1
| . . . |YTPFm

| for

G′, where |YTPFi
| is the size of the state set for GtTPF,i (i = 0, . . . ,m), which is

constructed by Algorithm 33. Substituting this into our base algorithm’s complexity

gives O(|Σ||Y ||Y∆F ||YTPF1
| . . . |YTPFm

||X|).

We note that |Y∆F | = 1 by Algorithm 25, and |YTPFi
| = |ΣPi

| + 2 (i = 1, . . . ,m)

by Algorithm 33. Substituting in for these values gives O((|ΣP1
| + 2) . . . (|ΣPm

| +

2)|Σ||Y ||X|). If we take NP as an upper bound of all |ΣPi
|, we get O((NP +2)m|Σ||Y ||

X|). It thus follows that verifying timed resettable permanent T-T-PFT controllabil-

ity increases the complexity of verifying controllability by a factor of (NP + 2)m.

194

Chapter 14

Timed Permanent Fault-Tolerant

Algorithm Correctness

In this chapter, we introduce several propositions and theorems that show that

the algorithms introduced in Chapter 13 correctly verify that a timed permanent

fault-tolerant consistent system satisfies the specified timed permanent fault-tolerant

controllability properties defined in Chapter 12.

14.1 Timed Permanent Fault-Tolerant Propositions

The propositions in this section will be used to support the timed permanent fault-

tolerant controllability theorems in Section 14.2. Timed permanent fault-tolerant

controllability definitions are essentially timed controllability definitions with added

restriction that a string s is only tested if it is satisfies the appropriate timed per-

manent fault-tolerant property. The algorithms are intended to replace the original

195

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

plant with a new plant G′, such that G′ is restricted to strings with the desired prop-

erty. Propositions 14.1.1 - 14.1.4 essentially assert that string s belongs to the closed

behaviour of G′, if and only if s satisfies the properties of timed fault-tolerant control-

lable, timed one-repeatable fault-tolerant controllable, timed m-one-repeatable fault-

tolerant controllable, timed non-repeatable permanent fault-tolerant controllable, and

timed resettable permanent fault-tolerant controllable, respectively.

14.1.1 Timed One-repeatable Fault-Tolerant Controllable Propo-

sition

The next proposition asserts that string s belongs to the closed behaviour of G′,

if and only if s satisfies the needed pre-requisite for the timed one-repeatable fault-

tolerant controllable property.

Proposition 14.1.1. Let system with supervisor S = (X,Σ, η, xo, Xm) and plant G

= (Y,Σ, δ, yo, Ym) be TFT consistent, and let G′ be the plant constructed in Algorithm

28. Then:

(∀s ∈ L(G))(s /∈ L∆F) ∧ (s ∈ L1RF) ⇐⇒ s ∈ L(G′)

Proof. Let Gt∆F and Gt1RF be the TDES constructed in Algorithm 25 and 27.

Let G∆F and G1RF be the DES constructed from Algorithms 1 and 13.

We note that each pair is identical except that Gt∆F and Gt1RF add tick to their

event sets, and tick is selflooped at every state.

Let G′ = G||Gt∆F||Gt1RF as per Algorithm 28.

Let G′′ = G||G∆F||G1RF as per Algorithm 14

196

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

As the event set of G already contains tick , and tick is selflooped at every state of

Gt∆F and Gt1RF, it follows that L(G
′) = L(G′′).

The result then follows from Proposition 10.1.1, which states:

(∀s ∈ L(G))(s /∈ L∆F) ∧ (s ∈ L1RF) ⇐⇒ s ∈ L(G′′)

14.1.2 Timed m-one-repeatable Fault-Tolerant Controllable

Proposition

The next proposition asserts that string s belongs to the closed behaviour of G′, if

and only if s satisfies the needed pre-requisite for the timed m-one-repeatable fault-

tolerant controllable property.

Proposition 14.1.2. Let system with supervisor S = (X,Σ, η, xo, Xm) and plant G

= (Y,Σ, δ, yo, Ym) be TFT consistent, and let G′ be the plant constructed in Algorithm

30. Then:

(∀s ∈ L(G))(s /∈ L∆F) ∧ (s ∈ L1RFm
) ⇐⇒ s ∈ L(G′)

Proof. Let Gt∆F and Gt1RF1
, . . . ,Gt1RFm

be the TDES constructed in Algorithm 25

and 29.

Let G∆F and G1RF1
, . . . ,G1RFm

be the DES constructed from Algorithms 1 and 16.

We note that each pair is identical except that Gt∆F and Gt1RF1
, . . . ,Gt1RFm

add

tick to their event sets, and tick is selflooped at every state.

Let G′ = G||Gt∆F||Gt1RF1
|| . . . ||Gt1RFm

as per Algorithm 30.

Let G′′ = G||G∆F||G1RF1
|| . . . ||G1RFm

as per Algorithm 17.

As the event set of G already contains tick , and tick is selflooped at every state of

197

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Gt∆F and Gt1RF1
, . . . ,Gt1RFm

, it follows that L(G′) = L(G′′).

The result then follows from Proposition 10.1.2, which states:

(∀s ∈ L(G)(s /∈ L∆F) ∧ (s ∈ L1RFm
) ⇐⇒ s ∈ L(G′′))

14.1.3 Timed Non-repeatable Permanent Fault-Tolerant Con-

trollable Proposition

The next proposition asserts that string s belongs to the closed behaviour of G′, if

and only if s satisfies the needed pre-requisite for the timed non-repeatable permanent

fault-tolerant controllable property.

Proposition 14.1.3. Let system with supervisor S = (X,Σ, η, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be TPFT consistent, and let G′ be the plant constructed in Algorithm

32. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LRFP
) ∧ (s ∈ L1RFm

) ⇐⇒ s ∈ L(G′)

Proof. Let Gt∆F, and GtNRPF,1, . . . ,GtNRPF,m be the TDES constructed in Algo-

rithm 25, and 31.

Let G∆F, and GNRPF,1, . . . ,GNRPF,m be the DES constructed from Algorithms 1

and 19.

We note that each pair is identical except that Gt∆F, and GtNRPF,1, . . . ,GtNRPF,m

add tick to their event set, and tick is selflooped at every state.

Let G′ = G||Gt∆F||GtNRPF,1|| . . . ||GtNRPF,m as per Algorithm 32.

Let G′′ = G||G∆F||GNRPF,1|| . . . ||GNRPF,m as per Algorithm 20.

198

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

As the event set of G already contains tick , and tick is selflooped at every state of

Gt∆F, and GtNRPF,1, . . . ,GtNRPF,m, it follows that L(G′) = L(G′′).

The result then follows from Proposition 10.1.3, which states:

(∀s ∈ L(G)(s /∈ L∆F ∪ LRFP
) ∧ (s ∈ L1RFm

) ⇐⇒ s ∈ L(G′′))

14.1.4 Timed Resettable Permanent Fault-Tolerant Control-

lable Proposition

The next proposition asserts that string s belongs to the closed behaviour of G′,

if and only if s satisfies the needed pre-requisite for the timed resettable permanent

fault-tolerant controllable property.

Proposition 14.1.4. Let system with supervisor S = (X,Σ, η, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be TPFT consistent, and let G′ be the plant constructed in Algorithm

34. Then:

(∀s ∈ L(G))(s /∈ L∆F ∪ LTFp
) ∧ (s ∈ L1RFp

) ⇐⇒ s ∈ L(G′)

Proof. Let Gt∆F, and GtTPF,1, . . . ,GtTPF,m be the TDES constructed in Algorithm

25 and 33.

Let G∆F, and GTF,1, . . . ,GTF,m be the DES constructed from Algorithms 1 and 22.

We note that each pair is identical except that Gt∆F, and GtTPF,1, . . . ,GtTPF,m add

tick to their event sets, and tick is selflooped at every state.

Let G′ = G||Gt∆F||GtTPF,1|| . . . ||GtTPF,m as per Algorithm 34.

Let G′′ = G||G∆F||GTPF,1|| . . . ||GTPF,m as per Algorithm 23.

199

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

As the event set of G already contains tick , and tick is selflooped at every state of

Gt∆F, and GtTPF,1, . . . ,GTPF,m, it follows that L(G′) = L(G′′).

The result then follows from Proposition 10.1.4, which states:

(∀s ∈ L(G)(s /∈ L∆F ∪ LTFP
) ∧ (s ∈ L1RFP

) ⇐⇒ s ∈ L(G′′))

14.2 Timed Permanent Fault-Tolerant Controllable

Theorems

In this section we present theorems that show the timed permanent fault-tolerant

controllable algorithms in Chapter 13 will return true if and only if the TPFT consis-

tent system satisfies the corresponding timed permanent fault-tolerant controllability

property.

14.2.1 Timed Fault-tolerant Controllable Theorem

This theorem is the same as Theorem 5.2.1 from [Als16]. The theorem is repeated

here for completeness.

Theorem 14.2.1 ([Als16]). Let system with supervisor S = (X,Σ, ξ, xo, Xm) and

plant G = (Y,Σ, δ, yo, Ym) be TFT consistent, and let G′ be the plant constructed in

Algorithm 26. Then S is timed fault-tolerant controllable for G iff S is controllable

for G′.

200

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

14.2.2 Timed One-repeatable Fault-tolerant Controllable The-

orem

Theorem 14.2.2 states that verifying that our system is timed one-repeatable fault-

tolerant controllable is equivalent to verifying that our supervisor is controllable for

the plant G′ constructed by Algorithm 28. Essentially, plant G′ is our original plant

synchronized with newly constructed plant components designed to restrict the behav-

ior of our plant to only include strings that satisfy the one-repeatable fault scenario.

Theorem 14.2.2. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be TFT consistent, and let G′ be the plant constructed in Algorithm

28. Then S is timed one-repeatable fault-tolerant controllable for G iff S is control-

lable for G′.

Proof. Assume initial conditions for the theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 14.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is timed one-repeatable fault-tolerant controllable for G⇐⇒ S is con-

trollable for G′.

From Algorithm 28, we have G′ = G||Gt∆F||Gt1RF.

From Algorithm 25, we know thatGt∆F is defined over Σ∆F∪{τ}, and from Algorithm

27, we know that Gt1RF is defined over ΣF ∪ {τ}.

Let Pt∆F : Σ∗ → (Σ∆F ∪ {τ})
∗ and PtF : Σ∗ → (ΣF ∪ {τ})

∗ be natural projections.

As G is defined over event set Σ, it follows that:

201

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

L(G′) = L(G) ∩ P−1
t∆FL(Gt∆F) ∩ P−1

tF L(Gt1RF). (T2.1)

Part A) Show (⇒).

Assume S is timed one-repeatable fault-tolerant controllable for G. (T2.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

Let s ∈ L(S) ∩ L(G′). (T2.3)

We have two cases: (A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅, and (A.2) EligL(S)∩L(G′)(s) ∩

Σfor 6= ∅.

Case A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G′). (T2.4)

Must show implies sσ ∈ L(S).

To apply (T2.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G), s /∈ L∆F ∧ s ∈

L1RF , and EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We first note that (T2.1), (T2.3) and (T2.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T2.3), we conclude by Proposition 14.1.1 that: s /∈ L∆F ∧ s ∈ L1RF

We will now show that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

It is sufficient to show:

(∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G)

Let σ′ ∈ Σfor. Must show implies sσ′ /∈ L(S) ∩ L(G).

202

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We note that, by assumption, EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

This implies: (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G′)

It thus follows that sσ′ /∈ L(S) ∩ L(G′).

⇒ sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆FL(Gt∆F) ∩ P−1

tF L(Gt1RF), by (T2.1)

To show sσ′ /∈ L(S)∩L(G), it is sufficient to show sσ′ ∈ P−1
t∆FL(Gt∆F)∩P

−1
tF L(Gt1RF).

As S and G are timed fault-tolerant consistent and Σfor ⊆ Σact, it follows that

Σfor ∩ (Σ∆F ∪ ΣF ∪ {τ}) = ∅.

⇒ Pt∆F (sσ
′) = Pt∆F (s)Pt∆F (σ

′) = Pt∆F (s) and PtF (sσ
′) = PtF (s)PtF (σ

′) = PtF (s)

As s ∈ L(G′) by (T2.3), we have s ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF L(Gt1RF) by (T2.1).

⇒ Pt∆F (s) ∈ L(Gt∆F) and PtF (s) ∈ L(Gt1RF)

⇒ Pt∆F (sσ
′) ∈ L(Gt∆F) and PtF (sσ

′) ∈ L(Gt1RF)

⇒ sσ′ ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF L(Gt1RF)

We thus conclude that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We can now conclude by (T2.2) that sσ ∈ L(S), as required.

Case A.2) EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G′).

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (A.1) except without the need to show EligL(S)∩L(G)(s)∩

Σfor = ∅.

Part B) Show (⇐).

Assume S is controllable for G′. (T2.5)

203

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Must show implies S and G are timed fault-tolerant consistent (follows automatically

from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∧ s ∈ L1RF ⇒

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

Let s ∈ L(S) ∩ L(G). (T2.6)

We have two cases: (B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅, and (B.2) EligL(S)∩L(G)(s) ∩

Σfor 6= ∅.

Case B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ L1RF . (T2.7)

Must show implies sσ ∈ L(S).

We have two cases: (B 1.1) σ ∈ Σ∆F ∪ ΣF , and (B 1.2) σ /∈ Σ∆F ∪ ΣF .

Case B 1.1) σ ∈ Σ∆F ∪ ΣF

As the system is timed fault-tolerant consistent, it follows that σ is self-looped at

every state in S.

As s ∈ L(S) by (T2.6), it thus follows that sσ ∈ L(S), as required.

Case B 1.2) σ /∈ Σ∆F ∪ ΣF

To apply (T2.5) , we need to show s ∈ L(S)∩L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s)∩

Σfor = ∅.

By (T2.6), (T2.7) and Proposition 14.1.1, we conclude: s ∈ L(G′) (T2.8)

We will next show that sσ ∈ L(G′).

204

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

As s ∈ L(G′), we have by (T2.1) that s ∈ P−1
t∆FL(G∆F) ∩ P−1

tF L(Gt1RF).

⇒ Pt∆F (s) ∈ L(Gt∆F) and PtF (s) ∈ L(Gt1RF) (T2.9)

We have two cases: (B 1.2.1) σ 6= τ , and (B 1.2.2) σ = τ .

Case B 1.2.1) σ 6= τ

As σ /∈ Σ∆F ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by (T2.9)

⇒ sσ ∈ P−1
t∆FL(Gt∆F)

As σ /∈ ΣF ∪ {τ}, we have PtF (σ) = ǫ.

⇒ PtF (sσ) = PtF (s)PtF (σ) = PtF (s)

⇒ PtF (sσ) ∈ L(Gt1RF), by (T2.9)

⇒ sσ ∈ P−1
tF L(Gt1RF)

Case B 1.2.2) σ = τ

By Algorithm 25, we know that τ is selflooped at every state in Gt∆F.

⇒ Pt∆F (s)σ ∈ L(Gt∆F), by (T2.9)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by definition of Pt∆F

⇒ sσ ∈ P−1
t∆FL(Gt∆F)

By Algorithm 27, we know that τ is selflooped at every state in Gt1RF.

⇒ PtF (s)σ ∈ L(Gt1RF), by (T2.9)

⇒ PtF (sσ) ∈ L(Gt1RF), by definition of PtF

⇒ sσ ∈ P−1
tF L(Gt1RF)

205

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

By Cases (B 1.2.1) and (B 1.2.2), we can conclude that sσ ∈ P−1
t∆FL(Gt∆F) ∩

P−1
tF L(GtF).

Combining with (T2.1) and (T2.7), we have sσ ∈ L(G′). (T2.10)

We will now show EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

It is sufficient to show: (∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G′)

Let σ′ ∈ Σfor. We will now show this implies sσ′ /∈ L(S) ∩ L(G′).

We note that by assumption, we have EligL(S)∩L(G)(s) ∩ Σfor = ∅.

⇒ (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G)

⇒ sσ′ /∈ L(S) ∩ L(G)

This implies sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆FL(Gt∆F) ∩ P−1

tF L(Gt1RF) as L(S) ∩ L(G) ∩

P−1
t∆FL(Gt∆F) ∩ P−1

tF L(Gt1RF) ⊆ L(S) ∩ L(G).

⇒ sσ′ /∈ L(S) ∩ L(G′), by (T2.1)

We thus conclude EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

Combining with (T2.6), (T2.8), and (T2.10), we have:

s ∈ L(S) ∩ L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

We can now conclude by (T2.5) that sσ ∈ L(S), as required.

We thus conclude by Cases (B 1.1) and (B 1.2) that sσ ∈ L(S).

Case B.2) EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ L1RF .

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (B.1) except without the need to show EligL(S)∩L(G′)(s)

206

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

∩Σfor = ∅.

We now conclude by Parts (A) and (B) that S is timed one-repeatable fault-tolerant

controllable for G iff S is controllable for G′.

14.2.3 Timed m-one-repeatable Fault-tolerant Controllable

Theorem

Theorem 14.2.3 states that verifying that our system is timed m-one-repeatable

fault-tolerant controllable is equivalent to verifying that our supervisor is controllable

for the plant G′ constructed by Algorithm 30. Essentially, plant G′ is our original

plant synchronized with newly constructed plant components designed to restrict the

behavior of our plant to only include strings that satisfy the m-one-repeatable fault

scenario.

Theorem 14.2.3. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be TFT consistent, and let G′ be the plant constructed in Algorithm

30. Then S is timed m-one repeatable fault-tolerant controllable for G iff S is

controllable for G′.

Proof. Assume initial conditions for the theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 14.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is timed m-one-repeatable fault-tolerant controllable for G ⇐⇒ S is

controllable for G′.

207

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

From Algorithm 30 we have G′ = G||Gt∆F||Gt1RF,1|| . . . ||Gt1RF,m.

From Algorithm 25, we know thatGt∆F is defined over Σ∆F∪{τ}, and from Algorithm

29, we know that Gt1RF,i is defined over ΣFi
∪ {τ}, i = 1, . . . ,m.

Let Pt∆F : Σ∗ → (Σ∆F ∪{τ})
∗, and PtFi

: Σ∗ → (ΣFi
∪{τ})∗, i = 1, . . . ,m, be natural

projections.

AsG is defined over Σ, we have that L(G′) = L(G)∩P−1
t∆FL(Gt∆F)∩P

−1
tF1

L(Gt1RF,1)∩

. . . ∩ P−1
tFm

L(Gt1RF,m) . (T3.1)

Part A) Show (⇒).

Assume S is timed m-one repeatable fault-tolerant controllable for G. (T3.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

Let s ∈ L(S) ∩ L(G′). (T3.3)

We have two cases: (A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅, and (A.2) EligL(S)∩L(G′)(s) ∩

Σfor 6= ∅.

Case A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G′). (T3.4)

Must show implies sσ ∈ L(S).

To apply (T3.2), we need to show that s ∈ L(S) ∩ L(G), sσ ∈ L(G), s /∈ L∆F , and

s ∈ L1RFm
, and EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We first note that (T3.1), (T3.3) and (T3.4) imply:

208

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T3.3), we conclude by Proposition 14.1.2 that: s /∈ L∆F , and

s ∈ L1RFm
.

We will now show that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

It is sufficient to show:

(∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G)

Let σ′ ∈ Σfor. Must show implies sσ′ /∈ L(S) ∩ L(G).

We note that, by assumption, EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

This implies: (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G′)

It thus follows that sσ′ /∈ L(S) ∩ L(G′).

⇒ sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(Gt1RF,1) ∩ · · · ∩ P−1

tFm
L(Gt1RF,m), by

(T3.1)

To show sσ′ /∈ L(S)∩L(G), it is sufficient to show sσ′ ∈ P−1
t∆FL(Gt∆F)∩P

−1
tF1

L(Gt1RF,1)∩

· · · ∩ P−1
tFm

L(Gt1RF,m).

As S and G are timed permanent fault-tolerant consistent and Σfor ⊆ Σact, it follows

that Σfor ∩ (Σ∆F ∪ ΣF ∪ {τ}) = ∅.

⇒ Pt∆F (sσ
′) = Pt∆F (s)Pt∆F (σ

′) = Pt∆F (s)

Similarly, we have PtFi
(sσ′) = PtFi

(s), i = 1, . . . ,m.

As s ∈ L(G′) by (T3.3), we have s ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(Gt1RF,1) ∩ . . . ∩

P−1
tFm

L(Gt1RF,m) by (T3.1).

⇒ Pt∆F (s) ∈ L(Gt∆F), and PtFi
(s) ∈ L(Gt1RF,i), i = 1, . . . ,m

⇒ Pt∆F (sσ
′) ∈ L(Gt∆F), and PtFi

(sσ′) ∈ L(Gt1RF,i), i = 1, . . . ,m

209

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

⇒ sσ′ ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(Gt1RF,1) ∩ . . . ∩ P−1

tFm
L(Gt1RF,m)

We thus conclude that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We can now conclude by (T3.2) that sσ ∈ L(S), as required.

Case A.2) EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G′).

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (A.1) except without the need to show EligL(S)∩L(G)(s)

∩Σfor = ∅.

Part B) Show (⇐).

Assume S is controllable for G′. (T3.5)

Must show implies S and G are timed fault-tolerant consistent (follows automatically

from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∧ s ∈ L1RFm
⇒

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

Let s ∈ L(S) ∩ L(G). (T3.6)

We have two cases: (B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅, and (B.2) EligL(S)∩L(G)(s) ∩

Σfor 6= ∅.

Case B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ L1RFm
. (T3.7)

210

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Must show implies sσ ∈ L(S).

We have two cases: (B 1.1) σ ∈ Σ∆F ∪ ΣF , and (B 1.2) σ /∈ Σ∆F ∪ ΣF .

Case B 1.1) σ ∈ Σ∆F ∪ ΣF

As the system is timed fault-tolerant consistent, it follows that σ is self-looped at

every state in S.

As s ∈ L(S) by (T3.6), it thus follows that sσ ∈ L(S), as required.

Case B 1.2) σ /∈ Σ∆F ∪ ΣF

To apply (T3.5), we need to show s ∈ L(S)∩L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s)∩

Σfor = ∅.

By (T3.6), (T3.7) and Proposition 14.1.2, we conclude: s ∈ L(G′) (T3.8)

We will next show that sσ ∈ L(G′).

As s ∈ L(G′), we have by (T3.1) that s ∈ P−1
t∆FL(G∆F) ∩ P−1

tF1
L(Gt1RF,1) ∩ · · · ∩

P−1
tFm

L(Gt1RF,m).

It thus follows that Pt∆F (s) ∈ L(Gt∆F), and PtFi
(s) ∈ L(Gt1RF,i), i = 1, . . . ,m.

(T3.9)

We have two cases: (B 1.2.1) σ 6= τ , and (B 1.2.2) σ = τ .

Case B 1.2.1) σ 6= τ

As σ /∈ Σ∆F ∪ ΣF ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)

Similarly, we have PtFi
(sσ) = PtFi

(s), i = 1, . . . ,m.

⇒ Pt∆F (sσ) ∈ L(Gt∆F), and PtFi
(sσ) ∈ L(Gt1RF,i), i = 1, . . . ,m, by (T3.9)

⇒ sσ ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(Gt1RF,1) ∩ · · · ∩ P−1

tFm
L(Gt1RF,m)

211

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Case B 1.2.2) σ = τ

By Algorithms 25, and 29, we know that τ is selflooped at every state in Gt∆F, and

Gt1RF,i, i = 1, . . . ,m.

⇒ Pt∆F (s)σ ∈ L(Gt∆F), and PtFi
(s)σ ∈ L(Gt1RF,i), i = 1, . . . ,m, by (T3.9)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), and PtFi
(sσ) ∈ L(Gt1RF,i), by definitions of Pt∆F , and PtFi

,

i = 1, . . . ,m

⇒ sσ ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(Gt1RF,1) ∩ · · · ∩ P−1

tFm
L(Gt1RF,m)

By Cases (B 1.2.1) and (B 1.2.2), we can conclude that sσ ∈ P−1
t∆FL(Gt∆F) ∩

P−1
tF1

L(Gt1RF,1) ∩ · · · ∩ P−1
tFm

L(Gt1RF,m).

Combining with (T3.1) and (T3.7), we have sσ ∈ L(G′). (T3.10)

We will now show EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

It is sufficient to show: (∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G′)

Let σ′ ∈ Σfor. We will now show this implies sσ′ /∈ L(S) ∩ L(G′).

We note that by assumption, we have EligL(S)∩L(G)(s) ∩ Σfor = ∅.

⇒ (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G)

⇒ sσ′ /∈ L(S) ∩ L(G)

This implies sσ′ /∈ L(S)∩L(G)∩P−1
t∆FL(Gt∆F)∩P

−1
tF1

L(Gt1RF,1)∩· · ·∩P
−1
tFm

L(Gt1RF,m)

as L(S)∩L(G)∩ P−1
t∆FL(Gt∆F)∩ P

−1
tF1

L(Gt1RF,1)∩ · · · ∩ P
−1
tFm

L(Gt1RF,m)) ⊆ L(S)∩

L(G).

⇒ sσ′ /∈ L(S) ∩ L(G′), by (T3.1)

We thus conclude EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

Combining with (T3.6), (T3.8), and (T3.10), we have:

212

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

s ∈ L(S) ∩ L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

We can now conclude by (T3.5) that sσ ∈ L(S), as required.

We thus conclude by Cases (B 1.1) and (B 1.2) that sσ ∈ L(S).

Case B.2) EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∧ s ∈ L1RFm
.

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (B.1) except without the need to show EligL(S)∩L(G′)(s)

∩Σfor = ∅.

We now conclude by Parts (A) and (B) that S is timed m-one-repeatable fault-tolerant

controllable for G iff S is controllable for G′.

14.2.4 Timed Non-repeatable Permanent Fault-tolerant Con-

trollable Theorem

Theorem 14.2.4 states that verifying that our system is timed non-repeatable

permanent fault-tolerant controllable is equivalent to verifying that our supervisor is

controllable for the plant G′ constructed by Algorithm 32. Essentially, plant G′ is

our original plant synchronized with newly constructed plant components designed

to restrict the behavior of our plant to only include strings that satisfy the non-

repeatable permanent fault scenario.

Theorem 14.2.4. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be TPFT consistent, and let G′ be the plant constructed in Algorithm

213

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

32. Then S is timed non-repeatable permanent fault-tolerant controllable for G iff

S is controllable for G′.

Proof. Assume initial conditions for the theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 14.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is timed non-repeatable permanent fault-tolerant controllable forG⇐⇒

S is controllable for G′.

From Algorithm 32 we have G′ = G||Gt∆F||GtNRPF,1|| . . . ||GtNRPF,m.

From Algorithm 25, we know thatGt∆F is defined over Σ∆F∪{τ}, and from Algorithm

31, we know that GtNRPF,i is defined over ΣFi
∪ {τ}, i = 1, . . . ,m.

Let Pt∆F : Σ∗ → (Σ∆F ∪{τ})
∗, and PtFi

: Σ∗ → (ΣFi
∪{τ})∗, i = 1, . . . ,m, be natural

projections.

AsG is defined over Σ, we have that L(G′) = L(G)∩P−1
t∆FL(Gt∆F)∩P

−1
tF1

L(GtNRPF,1)∩

. . . ∩ P−1
tFm

L(GtNRPF,m) . (T4.1)

Part A) Show (⇒).

Assume S is timed non-repeatable permanent fault-tolerant controllable forG. (T4.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

Let s ∈ L(S) ∩ L(G′). (T4.3)

214

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We have two cases: (A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅, and (A.2) EligL(S)∩L(G′)(s) ∩

Σfor 6= ∅.

Case A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G′). (T4.4)

Must show implies sσ ∈ L(S).

To apply (T4.2), we need to show that s ∈ L(S)∩L(G), sσ ∈ L(G), s /∈ L∆F ∪LRFP
,

and s ∈ L1RFm
, and EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We first note that (T4.1), (T4.3) and (T4.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T4.3), we conclude by Proposition 14.1.3 that: s /∈ L∆F ∪ LRFP
,

and s ∈ L1RFm
.

We will now show that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

It is sufficient to show:

(∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G)

Let σ′ ∈ Σfor. Must show implies sσ′ /∈ L(S) ∩ L(G).

We note that, by assumption, EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

This implies: (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G′)

It thus follows that sσ′ /∈ L(S) ∩ L(G′).

⇒ sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(GtNRPF,1) ∩ · · · ∩ P−1

tFm
L(GtNRPF,m),

by (T4.1)

To show sσ′ /∈ L(S)∩L(G), it is sufficient to show sσ′ ∈ P−1
t∆FL(Gt∆F)∩P

−1
tF1

L(GtNRPF,1)∩

· · · ∩ P−1
tFm

L(GtNRPF,m).

215

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

As S and G are timed permanent fault-tolerant consistent and Σfor ⊆ Σact, it follows

that Σfor ∩ (Σ∆F ∪ ΣF ∪ {τ}) = ∅.

⇒ Pt∆F (sσ
′) = Pt∆F (s)Pt∆F (σ

′) = Pt∆F (s)

Similarly, we have PtFi
(sσ′) = PtFi

(s), i = 1, . . . ,m.

As s ∈ L(G′) by (T4.3), we have s ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(GtNRPF,1) ∩ . . . ∩

P−1
tFm

L(GtNRPF,m) by (T4.1).

⇒ Pt∆F (s) ∈ L(Gt∆F), and PtFi
(s) ∈ L(GtNRPF,i), i = 1, . . . ,m

⇒ Pt∆F (sσ
′) ∈ L(Gt∆F), and PtFi

(sσ′) ∈ L(GtNRPF,i), i = 1, . . . ,m

⇒ sσ′ ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(GtNRPF,1) ∩ . . . ∩ P−1

tFm
L(GtNRPF,m)

We thus conclude that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We can now conclude by (T4.2) that sσ ∈ L(S), as required.

Case A.2) EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G′).

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (A.1) except without the need to show EligL(S)∩L(G)(s)

∩Σfor = ∅.

Part B) Show (⇐).

Assume S is controllable for G′. (T4.5)

Must show implies S and G are timed fault-tolerant consistent (follows automatically

from initial assumptions) and that:

216

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∪ LRFP
∧ s ∈ L1RFm

⇒

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

Let s ∈ L(S) ∩ L(G). (T4.6)

We have two cases: (B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅, and (B.2) EligL(S)∩L(G)(s) ∩

Σfor 6= ∅.

Case B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LRFP
∧ s ∈ L1RFm

. (T4.7)

Must show implies sσ ∈ L(S).

We have two cases: (B 1.1) σ ∈ Σ∆F ∪ ΣF , and (B 1.2) σ /∈ Σ∆F ∪ ΣF .

Case B 1.1) σ ∈ Σ∆F ∪ ΣF

As the system is timed fault-tolerant consistent, it follows that σ is self-looped at

every state in S.

As s ∈ L(S) by (T4.6), it thus follows that sσ ∈ L(S), as required.

Case B 1.2) σ /∈ Σ∆F ∪ ΣF

To apply (T4.5), we need to show s ∈ L(S)∩L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s)∩

Σfor = ∅.

By (T4.6), (T4.7) and Proposition 14.1.3, we conclude: s ∈ L(G′) (T4.8)

We will next show that sσ ∈ L(G′).

As s ∈ L(G′), we have by (T4.1) that s ∈ P−1
t∆FL(G∆F) ∩ P−1

tF1
L(GtNRPF,1) ∩ · · · ∩

P−1
tFm

L(GtNRPF,m).

217

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

It thus follows that Pt∆F (s) ∈ L(Gt∆F), and PtFi
(s) ∈ L(GtNRPF,i), i = 1, . . . ,m.

(T4.9)

We have two cases: (B 1.2.1) σ 6= τ , and (B 1.2.2) σ = τ .

Case B 1.2.1) σ 6= τ

As σ /∈ Σ∆F ∪ ΣF ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)

Similarly, we have PtFi
(sσ) = PtFi

(s), i = 1, . . . ,m.

⇒ Pt∆F (sσ) ∈ L(Gt∆F), and PtFi
(sσ) ∈ L(GtNRPF,i), i = 1, . . . ,m, by (T4.9)

⇒ sσ ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(GtNRPF,1) ∩ · · · ∩ P−1

tFm
L(GtNRPF,m)

Case B 1.2.2) σ = τ

By Algorithms 25, and 31, we know that τ is selflooped at every state in Gt∆F, and

GtNRPF,i, i = 1, . . . ,m.

⇒ Pt∆F (s)σ ∈ L(Gt∆F), and PtFi
(s)σ ∈ L(GtNRPF,i), i = 1, . . . ,m, by (T4.9)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), and PtFi
(sσ) ∈ L(GtNRPF,i), by definitions of Pt∆F , and

PtFi
, i = 1, . . . ,m

⇒ sσ ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(GtNRPF,1) ∩ · · · ∩ P−1

tFm
L(GtNRPF,m)

By Cases (B 1.2.1) and (B 1.2.2), we can conclude that sσ ∈ P−1
t∆FL(Gt∆F) ∩

P−1
tF1

L(GtNRPF,1) ∩ · · · ∩ P−1
tFm

L(GtNRPF,m).

Combining with (T4.1) and (T4.7), we have sσ ∈ L(G′). (T4.10)

We will now show EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

It is sufficient to show: (∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G′)

218

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Let σ′ ∈ Σfor. We will now show this implies sσ′ /∈ L(S) ∩ L(G′).

We note that by assumption, we have EligL(S)∩L(G)(s) ∩ Σfor = ∅.

⇒ (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G)

⇒ sσ′ /∈ L(S) ∩ L(G)

This implies sσ′ /∈ L(S)∩L(G)∩P−1
t∆FL(Gt∆F)∩P

−1
tF1

L(GtNRPF,1)∩· · ·∩P
−1
tFm

L(GtNRPF,m)

as L(S) ∩ L(G) ∩ P−1
t∆FL(Gt∆F) ∩ P−1

tF1
L(GtNRPF,1) ∩ · · · ∩ P−1

tFm
L(GtNRPF,m)) ⊆

L(S) ∩ L(G).

⇒ sσ′ /∈ L(S) ∩ L(G′), by (T4.1)

We thus conclude EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

Combining with (T4.6), (T4.8), and (T4.10), we have:

s ∈ L(S) ∩ L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

We can now conclude by (T4.5) that sσ ∈ L(S), as required.

We thus conclude by Cases (B 1.1) and (B 1.2) that sσ ∈ L(S).

Case B.2) EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LRFP
∧ s ∈ L1RFm

.

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (B.1) except without the need to show EligL(S)∩L(G′)(s)

∩Σfor = ∅.

We now conclude by Parts (A) and (B) that S is timed non-repeatable permanent

fault-tolerant controllable for G iff S is controllable for G′.

219

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

14.2.5 Timed Resettable Permanent Fault-tolerant Control-

lable Theorem

Theorem 14.2.5 states that verifying that our system is timed resettable permanent

fault-tolerant controllable is equivalent to verifying that our supervisor is controllable

for the plant G′ constructed by Algorithm 34. Essentially, plant G′ is our original

plant synchronized with newly constructed plant components designed to restrict the

behavior of our plant to only include strings that satisfy the resettable permanent

fault scenario.

Theorem 14.2.5. Let system with supervisor S = (X,Σ, ξ, xo, Xm) and plant G =

(Y,Σ, δ, yo, Ym) be TPFT consistent, and let G′ be the plant constructed in Algorithm

34. Then S is timed resettable permanent fault-tolerant controllable for G iff S is

controllable for G′.

Proof. Assume initial conditions for the theorem.

We first note that if m = 0, we have ΣF = ∅ and the proof is identical to the proof

of Theorem 14.2.1. We can thus assume m ≥ 1 for the rest of the proof without any

loss of generality.

Must show S is timed resettable permanent fault-tolerant controllable for G ⇐⇒ S

is controllable for G′.

From Algorithm 34, we have G′ = G||Gt∆F||GtTPF,1|| . . . ||GtTPF,m.

From Algorithm 25, we know thatGt∆F is defined over Σ∆F∪{τ}, and from Algorithm

33, we know that GtTPF,i is defined over ΣFi
∪ ΣTi

∪ {τ}, i = 1, . . . ,m.

Let Pt∆F : Σ∗ → (Σ∆F ∪ {τ})
∗, and PtTFi

: Σ∗ → (ΣFi
∪ΣTi

∪ {τ})∗, i = 1, . . . ,m, be

natural projections.

220

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

AsG is defined over Σ, we have that L(G′) = L(G)∩P−1
t∆FL(Gt∆F)∩P

−1
tTF1

L(GtTPF,1)∩

. . . ∩ P−1
tTFm

L(GtTPF,m). (T5.1)

Part A) Show (⇒).

Assume S is timed resettable permanent fault-tolerant controllable for G. (T5.2)

Must show implies: (∀s ∈ L(S) ∩ L(G′))

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

Let s ∈ L(S) ∩ L(G′). (T5.3)

We have two cases: (A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅, and (A.2) EligL(S)∩L(G′)(s) ∩

Σfor 6= ∅.

Case A.1) EligL(S)∩L(G′)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G′). (T5.4)

Must show implies sσ ∈ L(S).

To apply (T5.2), we need to show that s ∈ L(S)∩L(G), sσ ∈ L(G), s /∈ L∆F ∪LTFP
,

and s ∈ L1RFP
, and EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We first note that (T5.1), (T5.3) and (T5.4) imply:

s ∈ L(S), s ∈ L(G), and sσ ∈ L(G)

As s ∈ L(G′) by (T5.3), we conclude by Proposition 14.1.4 that: s /∈ L∆F ∪LTFP
∧s ∈

L1RFP

We will now show that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

It is sufficient to show:

221

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

(∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G)

Let σ′ ∈ Σfor. Must show implies sσ′ /∈ L(S) ∩ L(G).

We note that, by assumption, EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

This implies: (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G′)

It thus follows that sσ′ /∈ L(S) ∩ L(G′).

⇒ sσ′ /∈ L(S) ∩ L(G) ∩ P−1
t∆FL(Gt∆F) ∩ P−1

tTF1
L(GtTPF,1) ∩ . . . ∩ P−1

tTFm
L(GtTPF,m),

by (T5.1)

To show sσ′ /∈ L(S)∩L(G), it is sufficient to show sσ′ ∈ P−1
t∆FL(Gt∆F)∩P

−1
tTF1

L(GtTPF,1)∩

. . . ∩ P−1
tTFm

L(GtTPF,m).

As s ∈ L(G′) by (T5.3), we have s ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tTF1
L(GtTPF,1) ∩ · · · ∩

P−1
tTFm

L(GtTPF,m) by (T5.1).

⇒ Pt∆F (s) ∈ L(Gt∆F) and PtTFi
(s) ∈ L(GtTPF,i), i = 1, . . . ,m (T5.5)

As S and G are timed permanent fault-tolerant consistent and Σfor ⊆ Σact, it follows

that Σfor ∩ (Σ∆F ∪ ΣF ∪ ΣT ∪ {τ}) = ∅.

⇒ Pt∆F (sσ
′) = Pt∆F (s)Pt∆F (σ

′) = Pt∆F (s)

⇒ Pt∆F (sσ
′) ∈ L(Gt∆F), by (T5.5)

⇒ sσ′ ∈ P−1
t∆FL(Gt∆F) (T5.6)

We now have two cases to consider: (A 1.1) σ′ /∈
m
⋃

i=1

ΣTi
, and (A 1.1) σ′ ∈

m
⋃

i=1

ΣTi

Case A 1.1) σ′ /∈
m
⋃

i=1

ΣTi

As σ′ /∈ ΣF ∪
m
⋃

i=1

ΣTi
∪ {τ}, we have PtTFi

(σ′) = ǫ, i = 1, . . . ,m.

⇒ PtTFi
(sσ′) = PtTFi

(s)PtTFi
(σ′) = PtTFi

(s), i = 1, . . . ,m

222

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

⇒ PtTFi
(sσ′) ∈ L(GtTF,i), i = 1, . . . ,m, by (T5.5)

⇒ sσ′ ∈ P−1
tTF1

L(GtTPF,1) ∩ . . . ∩ P−1
tTFm

L(GtTPF,m)

Case A 1.2) σ′ ∈
m
⋃

i=1

ΣTi

We note that Algorithm 33 states that all σ′′′ ∈ ΣTi
are defined at every state in

GtTPF,i, i = 1, . . . ,m.

Let j ∈ {1, . . . ,m}.

If σ′ ∈ ΣTj
, we have PtTFj

(σ′) = σ′ and PtTFj
(s)σ′ ∈ L(GtTPF,j) (by (T5.5)).

⇒ PtTFj
(sσ′) ∈ L(GtTPF,j), by definition of PtTFj

Otherwise, σ′ /∈ ΣTj
. As we also have σ′ /∈ ΣF ∪ {τ}, it follows that PtTFj

(σ′) = ǫ.

⇒ PtTFj
(sσ′) = PtTFj

(s)PtTFj
(σ′) = PtTFj

(s)

⇒ PtTFj
(sσ′) ∈ L(GtTPF,j), by (T5.5).

We thus have sσ′ ∈ P−1
tTFj

L(GtTPF,j) for both situations.

⇒ sσ′ ∈ P−1
tTF1

L(GtTPF,1) ∩ . . . ∩ P−1
tTFm

L(GtTPF,m)

By Cases (A 1.1) and (A 1.2), we can conclude: sσ′ ∈ P−1
tTF1

L(GtTPF,1) ∩ . . . ∩

P−1
tTFm

L(GtTPF,m)

Combining with (T5.6), we have:

sσ′ ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tTF1
L(GtTPF,1) ∩ . . .∩ P−1

tTFm
L(GtTPF,m)

We thus conclude that EligL(S)∩L(G)(s) ∩ Σfor = ∅.

We can now conclude by (T5.2) that sσ ∈ L(S), as required.

Case A.2) EligL(S)∩L(G′)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G′).

223

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (A.1) except without the need to show EligL(S)∩L(G)(s)

∩Σfor = ∅.

Part B) Show (⇐).

Assume S is controllable for G′. (T5.7)

Must show implies S and G are timed permanent fault-tolerant consistent (follows

automatically from initial assumptions) and that:

(∀s ∈ L(S) ∩ L(G)) s /∈ L∆F ∪ LTFP
∧ s ∈ L1RFP

⇒

EligL(S)(s)⊇

{

EligL(G)(s)∩(Σu∪{τ}) if EligL(S)∩L(G)(s)∩ Σfor=∅

EligL(G)(s) ∩ Σu if EligL(S)∩L(G)(s)∩ Σfor 6=∅

Let s ∈ L(S) ∩ L(G). (T5.8)

We have two cases: (B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅, and (B.2) EligL(S)∩L(G)(s) ∩

Σfor 6= ∅.

Case B.1) EligL(S)∩L(G)(s) ∩ Σfor = ∅

Let σ ∈ Σu ∪ {τ}. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LTFP
∧ s ∈ L1RFP

. (T5.9)

Must show implies sσ ∈ L(S).

We have two cases: (B 1.1) σ ∈ Σ∆F ∪ ΣF , and (B 1.2) σ /∈ Σ∆F ∪ ΣF .

Case B 1.1) σ ∈ Σ∆F ∪ ΣF

As the system is timed permanent fault-tolerant consistent, it follows that σ is self-

looped at every state in S.

As s ∈ L(S) by (T5.8), it thus follows that sσ ∈ L(S), as required.

224

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Case B 1.2) σ /∈ Σ∆F ∪ ΣF

To apply (T5.7), we need to show s ∈ L(S)∩L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s)∩

Σfor = ∅.

By (T5.8), (T5.9) and Proposition 14.1.4, we conclude: s ∈ L(G′) (T5.10)

We will next show that sσ ∈ L(G′).

As s ∈ L(G′), we have by (T5.1) that s ∈ P−1
t∆FL(Gt∆F) ∩ P−1

tTF1
L(GtTPF,1) ∩ . . . ∩

P−1
tTFm

L(GtTPF,m)).

⇒ Pt∆F (s) ∈ L(Gt∆F) and PtTF,i(s) ∈ L(GtTPF,i), i = 1, . . . ,m (T5.11)

We have three possible cases: (B 1.2.1) (σ 6= τ) ∧ (σ /∈
m
⋃

i=1

ΣTi
), (B 1.2.2) σ = τ , and

(B 1.2.3) (σ 6= τ) ∧ (σ ∈
m
⋃

i=1

ΣTi
).

Case B 1.2.1) σ 6= τ and σ /∈
m
⋃

i=1

ΣTi

As σ /∈ ΣF ∪
m
⋃

i=1

ΣTi
∪ {τ}, we have PtTFi

(σ) = ǫ, i = 1, . . . ,m.

⇒ PtTFi
(sσ) = PtTFi

(s)PtTFi
(σ) = PtTFi

(s), i = 1, . . . ,m

⇒ PtTFi
(sσ) ∈ L(GtTF,i), i = 1, . . . ,m, by (T5.11)

⇒ sσ ∈ P−1
tTF1

L(GtTPF,1) ∩ . . . ∩ P−1
tTFm

L(GtTPF,m) (T5.12)

As σ /∈ Σ∆F ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by (T5.11)

⇒ sσ ∈ P−1
t∆FL(Gt∆F)

Combining with (T5.12), we have sσ ∈ P−1
t∆FL(Gt∆F)∩P

−1
tTF1

L(GtTPF,1)∩ . . .∩P
−1
tTFm

L(GtTPF,m)).

225

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Case B 1.2.2) σ = τ

By Algorithm 25, we know that τ is selflooped at every state in Gt∆F.

⇒ Pt∆F (s)σ ∈ L(Gt∆F), by (T5.11)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by definition of Pt∆F

⇒ sσ ∈ P−1
t∆FL(Gt∆F) (T5.13)

By Algorithm 33, we know that τ is selflooped at every state in GtTPF,i, i = 1, . . . ,m.

⇒ PtTFi
(s)σ ∈ L(GtTPF,i), i = 1, . . . ,m, by (T5.11)

⇒ PtTFi
(sσ) ∈ L(GtTPF,i), by definition of PtTFi

, i = 1, . . . ,m

⇒ sσ ∈ P−1
tTFi

L(GtTPF,i), i = 1, . . . ,m

Combining with (T5.13), we have sσ ∈ P−1
t∆FL(Gt∆F)∩P

−1
tTF1

L(GtTPF,1)∩ . . .∩P
−1
tTFm

L(GtTPF,m)).

Case B 1.2.3) σ 6= τ and σ ∈
m
⋃

i=1

ΣTi

As σ /∈ Σ∆F ∪ {τ}, we have Pt∆F (σ) = ǫ.

⇒ Pt∆F (sσ) = Pt∆F (s)Pt∆F (σ) = Pt∆F (s)

⇒ Pt∆F (sσ) ∈ L(Gt∆F), by (T5.11)

⇒ sσ ∈ P−1
t∆FL(Gt∆F) (T5.14)

We now note that Algorithm 33 states that all σ′ ∈ ΣTi
are defined at every state in

GtTPF,i, i = 1, . . . ,m.

Let j ∈ {1, . . . ,m}.

If σ ∈ ΣTj
, we have PtTFj

(σ) = σ and PtTFj
(s)σ ∈ L(GtTPF,j) (by (T5.11)).

⇒ PtTFj
(sσ) ∈ L(GtTPF,j), by definition of PtTFj

Otherwise, σ /∈ ΣTj
. As we also have σ /∈ ΣF ∪ {τ}, it follows that PtTFj

(σ) = ǫ.

226

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

⇒ PtTFj
(sσ) = PtTFj

(s)PtTFj
(σ) = PtTFj

(s)

⇒ PtTFj
(sσ) ∈ L(GtTPF,j), by (T5.11).

We thus have sσ ∈ P−1
tTFj

L(GtTPF,j) for both situations.

⇒ sσ ∈ P−1
tTF1

L(GtTPF,1) ∩ . . . ∩ P−1
tTFm

L(GtTPF,m)

Combining with (T5.14), we have sσ ∈ P−1
t∆FL(Gt∆F)∩P

−1
tTF1

L(GtTPF,1)∩ . . .∩P
−1
tTFm

L(GtTPF,m)).

By Cases (B 1.2.1), (B 1.2.2), and (B 1.2.3), we can conclude that sσ ∈ P−1
t∆FL(Gt∆F)∩

P−1
tTF1

L(GtTPF,1) ∩ . . . ∩ P−1
tTFm

L(GtTPF,m).

Combining with (T5.1) and (T5.9), we have sσ ∈ L(G′). (T5.15)

We will now show EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

It is sufficient to show: (∀σ′ ∈ Σfor)sσ
′ /∈ L(S) ∩ L(G′)

Let σ′ ∈ Σfor. We will now show this implies sσ′ /∈ L(S) ∩ L(G′).

We note that by assumption, we have EligL(S)∩L(G)(s) ∩ Σfor = ∅.

⇒ (∀σ′′ ∈ Σfor)sσ
′′ /∈ L(S) ∩ L(G)

⇒ sσ′ /∈ L(S) ∩ L(G)

This implies sσ′ /∈ L(S)∩L(G)∩P−1
t∆FL(Gt∆F)∩P

−1
tTF1

L(GtTPF,1)∩. . .∩P
−1
tTFm

L(GtTPF,m)

as L(S)∩L(G)∩P−1
t∆FL(Gt∆F)∩P

−1
tTF1

L(GtTPF,1)∩ . . .∩P
−1
tTFm

L(GtTPF,m) ⊆ L(S)∩

L(G).

⇒ sσ′ /∈ L(S) ∩ L(G′), by (T 5.1)

We thus conclude EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

Combining with (T5.8), (T5.10), and (T5.15), we have:

s ∈ L(S) ∩ L(G′), sσ ∈ L(G′), and EligL(S)∩L(G′)(s) ∩ Σfor = ∅.

227

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

We can now conclude by (T5.7) that sσ ∈ L(S), as required.

We thus conclude by Cases (B 1.1) and (B 1.2) that sσ ∈ L(S).

Case B.2) EligL(S)∩L(G)(s) ∩ Σfor 6= ∅

Let σ ∈ Σu. Assume sσ ∈ L(G) and s /∈ L∆F ∪ LTFP
∧ s ∈ L1RFP

.

Must show implies sσ ∈ L(S).

Proof is identical to proof of Case (B.1) except without the need to show EligL(S)∩L(G′)(s)

∩Σfor = ∅.

We now conclude by Parts (A) and (B) that S is timed resettable permanent fault-

tolerant controllable for G iff S is controllable for G′.

228

Chapter 15

Timed Permanent Fault-Tolerant

Manufacturing Example

In this chapter we introduce a small example to illustrate our approach for timed

permanent fault-tolerant systems.

15.1 Setting Introduction

In the sections to follow, we present an extended version of the timed fault tolerant

manufacturing example from Alsuwaidan [Als16]. Alsuwaidan’s version is identical

to the example presented in Chapter 7, except they added tick selfloops to the plant

model and supervisors. In this section, we will add forcing of the en trainK events

(K = 1, 2), as well as extend fault events t1F at9 and t2F at9 to permanent faults.

229

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

15.2 Single Loop Example

15.2.1 Sensor Models

In Section 1.2.3, we introduced the eight DES plant models for our eight sensors. We

first present the new sensor models with added tick transitions, shown in Figure 15.37.

We then present new models, for sensors J ∈ {9, 10, 16}, with added fault events and

tick transitions, shown in Figure 15.38. For this example, we will use the original

models for sensors J ∈ {11, . . . , 15}, and the new models for sensors J ∈ {9, 10, 16}

as we are assuming that only these sensors have faults. This restriction is done to

simplify the example and make it easier to illustrate our approach.

We now need to define our fault and reset event sets for the example. We set

Σ∆F = ΣΩF = ∅ as our example does not require any fault events of this type. We also

set m = 4, ΣF1
= {t1F at9, t1F at10}, ΣF2

= {t1F at16}, ΣF3
= {t2F at9, t2F at10},

ΣF4
= {t2F at16}. We group our fault events in this manner as sensors 9 and 10

are both relevant to preventing a train from entering the track segment delineated by

sensors 11 and 13, while sensor 16 is not. Also, the faults in detecting one train, are

not relevant to the faults in detecting the other train, for our example.

Finally, we define our corresponding reset event sets as follows: ΣT1
= {t1 at11},

ΣT2
= {t1 at14}, ΣT3

= {t2 at11}, and ΣT4
= {t2 at14}.

For the single track loop considered here, there are no excluded fault events. If

we considered the full example shown in Figure 1.1, we would also have a number

of switches used for routing the trains. If one of them failed to change position, we

would be unable to detect this with the current sensors. Such a fault would have to

be an excluded fault as it would take adding additional sensors to the physical system

230

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

in order to be able to handle such faults

tick

!nt_atJ

tick

tick

!t1_atJ

!t2_atJ

tick

0 1 2

3

Figure 15.37: Sensor J = 11, . . . , 15 with tick Events

����

k�����	

����

����

k�	����

k������

k�	
����

k��
����

����

	

�

�

Figure 15.38: Sensors J = 9, 10, 16 with Faults and tick Events

15.2.2 Adding Permanent Fault

To modify Alsuwaidan’s example, the only change we made was to the intermittent

fault at sensor 9. To convert the fault at sensor 9 from an intermittent to a permanent

fault, we did not have to change a single plant or supervisor from the original example.

To make the conversion, all we had to do is add the two new plant components shown

in Figures 15.39 and 15.40. Before, these were intermittent faults. Now once the

fault event occurs, the original non-fault sensor event is no longer possible; only the

231

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

fault event can now occur. No additional changes are required to the plant model to

convert these events to permanent faults. We can now define our permanent fault

sets as follows: ΣP1
= {t1F at9}, ΣP2

= ∅, ΣP3
= {t2F at9}, and ΣP4

= ∅.

!t1F_at9

tick

!t1_at9

tick

!t1F_at9

0 1

Figure 15.39: Sensor 9 and Train 1 with
Permanent Faults

!t2F_at9

tick

!t2_at9

tick

!t2F_at9

0 1

Figure 15.40: Sensors 9 and Train 2 with
Permanent Faults

15.2.3 Sensor Interdependencies

This series of models show the sensor’s interdependencies with respect to a given

train. With respect to the starting position of a particular train (represented by the

initial state), sensors can only be reached in a particular order, dictated by their

physical location on the track. This is shown in Figures 15.41 and 15.42. Both TDES

already show the added fault events.

����

k�����	

k��
���	

k�������

k�������

k��
�����

k�������

k������

k�������

k��
�����k�������

k�������

���� ����

��������

���� ���� ����

��
�

�

� �

�

�

Figure 15.41: Sensor Interdepen-
dencies for Train 1

����

k�����	

k��
���	

k�������

k��
�����

k������

k�������

k�������

k��
�����k�������

k�������

k�������

���� ����

����

���� ���� ����

����

��
� �

�

�

�

�

Figure 15.42: Sensor Interdepen-
dencies for Train 2

232

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

15.2.4 Train Models

The train models are shown in Figure 15.43 for train K (K = 1, 2). Train K can

only move when its enablement event en trainK occurs, and then it can move at most

a single unit of distance (event umv trainK), before another en trainK must occur.

This allows a supervisor to precisely control the movement of the train by enabling

and disabling event en trainK as needed.

tick

!umv_trainK

tick

en_trainK

tick

tick

0
1

23

Figure 15.43: Train K (K = 1, 2)
with Tick Events

_�c����

_�c���c�

_�c���cn

_�c���cc

_�c���ce

_�c���c

_�c���ck

_�c���c�

_�c
����

_�c
���cn

_�c
���c�

_���������c

����

����

��������c

����

����

����

_���������c

n �

c k

e

Figure 15.44: Sensors and Train
K (K = 1, 2) with Fault and Tick
Events

15.2.5 Relationship Between Sensors and Trains Models

Figure 15.44 shows the relationship between train K’s (K = 1, 2) movement, and

a sensor detecting the train. It captures the idea that a train can reach at most one

sensor during a unit movement, and no sensors if it is disabled. We note that Figure

15.44 shows the new model, one for each train, with fault events added. We now seen

that our plant model contains 16 DES in total.

233

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

15.2.6 Adding Forcing

To extend Alsuwaidan’s example, we have added forcing for events en trainK

(K = 1, 2). However, this is not straightforward to do in a modular way as these

events are not always possible in the plant. Also, multiple supervisors will need to

enable and force these events. If a supervisor tries to force the event when either

it isn’t possible in the plant or disabled by another supervisor, the result could be

uncontrollable.

To handle this problem, we have introduced two new controllable events forceT1 and

forceT2, shown in Figures 15.45 and 15.46. Now, the collision protection supervisors

in Section 15.3 will disable these events instead of en trainK events, to signal when

the train is allowed to move or not. We note that as these events are added as part

of the supervisors implementation, they are assumed to occur very quickly after they

are enabled.

�������

�	�

��

Figure 15.45: Add forceT1 Event

�������

�	�

��

Figure 15.46: Add forceT2 Event

We now need to add supervisors to force the en trainK events to occur right away,

as long as they are eligible and not disabled. This is accomplished by the doForceTK

supervisors, shown in Figures 15.47 and 15.48. These supervisors handle the forcing

by first waiting until the en trainK event is possible in the plant, and then waiting

for the forceTK to occur. Once the forceTK occurs, the tick event is disabled until

the en trainK event has occured, forcing the event. The forceTK event is required to

234

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

coordinate with the collision protection supervisors so that doForceTk doesn’t try to

force the en trainK event when it has been disabled, which would have caused the

supervisor to be uncontrollable.

������2

�	�

�����
	�2

�	�

�	�

�	�

c������
	�2

��

�3�2 �5

��

Figure 15.47: Force en train1 for Train 1

��������4

��	

��	

���	�
4

t���������4

��	

��	

�5�4�1

��

��

Figure 15.48: Force en train2 for Train 2

15.3 Modular Supervisors

After the plant models were developed, four supervisors were designed to prevent

collisions in the track sections with sensors 11-13, 15-16, 12-14, and 9-10. The idea

is to ensure that only one train uses this track section at a time.

Below we present two versions of the collision protection supervisors. The first

version is based upon the original collision protection supervisors from Leduc [Led96]

which were designed with the assumption that the system did not contain faults. The

second version is a new fault tolerant version with added redundancy.

235

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

15.3.1 Collision Protection Supervisors

Figure 15.50 shows the collision protection supervisor CPS-11-13 for the track

section containing sensors 11 and 13. Once a train has reached sensor 11, the other

train is stopped at sensor 10 until the first train reaches sensor 15. Reaching sensor

15 indicates that the first has left the protected area. The stopped train is then

allowed to continue. Figures 15.49, 15.51, and 15.52 show similar supervisors for the

remaining track sections. Please note the nonstandard initial states of supervisors

CPS-9-10 and CPS-15-16. This is to take account the starting locations of each

train.

It is obvious that the supervisor CPS-11-13 is not timed fault tolerant. This is

because it relies on sensor 10 to prevent collisions. Using the software tool DESpot

that we implemented our algorithms in, we verified that the system failed all eight

timed fault tolerant controllability properties (N ≥ 1).

15.3.2 Collision Protection Fault-Tolerant Supervisors

The supervisors were modified to make them fault tolerant. For supervisor CPS-

11-13, a transition was added at states 1 and 4, to check if a train was at either

sensor 9 or sensor 10. If sensor 10 fails but sensor 9 does not, we can still stop the

train at sensor 9 and avoid a collision. Figure 15.54 shows the modified CPS-11-13.

Similar changes were made to supervisors CPS-12-14, and CPS-9-10, as shown in

Figures 15.55, and 15.53. Supervisor CPS-15-16 did not require any changes as it

did not rely on any of the sensors that had faults. Using the software tool DESpot

that we implemented our algorithms in, we verified that the system passes all four

236

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

timed fault tolerant controllability properties.

����

�����	

k�
�
���

k���
���

����

�����	

�����	�

k�
�
���

k�
�
���

k���
���

k�
�
���

����

�����	

�����	�
k���
���

k���
���

����

k�
�
���

k�
�
���

k���
���

k���
���

�����	

�����	�

����

�����	�

��

�

�

Figure 15.49: CPS9-10 Supervisor

_�������

��	
���

�

�

_�������

_�������

_�������

��	
���

�

�

_�������

_�������

_�������

_�������

��	
���

_�������

��	
���

�

�

��	
���

_�������

_�������

�

�

��	
���

_�������

��	
���

�

�

��	
���

�

�

�

�

�

Figure 15.50: CPS-11-13 Supervisor
�������

�	�

c���
���

c���
���

c���
���

�������

�	�

c���
��� �������

�������

�	�

�������

�������

�	�

c���
���

c���
���

c���
���

c���
���

c���
���

c���
���

c���
���

�������

�������

�	�

c���
���

�

�

�

�

�

Figure 15.51: CPS12-14 Supervisor

�������

�������

	
��

c	�
�	��

c	�
�	��

�������

�������

c	�
�	��

c	�
�	��

c	�
�	��

c	�
�	��

	
��

c	�
�	��

c	�
�	��

�������

	
��

c	�
�	��

�������

�������

	
��

c	�
�	��

c	�
�	��

�������

	
��

c	�
�	��

�

�

�

�

�

Figure 15.52: CPS15-16 Supervisor

237

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

�������

�������

c
���

���

c
���
��

c
���
��

�������

�������

c
���
��

c
���
��

c
���
��

c
���
��

���

c
���
��

c
���

c
���
��

c
���

�������

c
���

���

c
���
��

�������

c
���

���

c
���
��

�������

�������

c
���

���

c
���
��

c
���
��

��

�

�

�

Figure 15.53: CPS-9-10FT Supervisor

_������

_������

�	
��
�

�	
��
�

_������4

_������4

_�������

_�������

����

_�������

_�������

�	
��
�

����

_�������
_������

_������4

�	
��
�

�	
��
�

����_�������

�	
��
�

����

_�������

_������

_������4

�	
��
�

�	
��
�

����

_�������

4

�

�

�

�

Figure 15.54: CPS-11-13FT Supervi-
sor

�������

�������

c
���
�

c
���
�

c
���
�3

c
���
�3

c
���
�

c
���
�

���

c
���
��

c
���
��

�������

���

c
���
�3

c
���
�

�������

�������

c
���
�

���

c
���
�

c
���
�3

c
���
�

�������

���

c
���
�3

c
���
�

�������

�������

c
���
�

���

c
���
�

c
���
�3

c
���
�

3

�

�

�

�

Figure 15.55: CPS-12-14FT Supervi-
sor

238

Chapter 16

Conclusions and Future Work

In this chapter, we present our conclusions and suggestions for future work.

16.1 Conclusions

In this thesis we investigate the problem of fault tolerance (FT) in the framework

of discrete-event systems.

We introduce a set of fault-tolerant, permanent fault-tolerant, and timed permanent

fault-tolerant controllability and nonblocking definitions designed to capture different

types of fault scenarios and to ensure that our system remains controllable and non-

blocking in each scenario, we then extended the existing fault tolerant supervisory

control result to include timing information.

This approach is different from the typical fault tolerant methodology as the

approach does not rely on detecting faults and switching to a new supervisor; it

requires a supervisor to work correctly under normal and fault conditions. This is a

passive approach that relies upon inherent redundancy in the system being controlled.

239

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Our approach provides an easy method for users to add fault events to a system

model and is based on user designed supervisors and verification. As synthesis al-

gorithms have higher complexity than verification algorithms, our approach should

be applicable to larger systems than existing active fault-recovery methods that are

synthesis based. Also, modular supervisors are typically easier to understand and

implement than the results of synthesis.

Finally, our approach does not require expensive (in terms of algorithm complexity)

fault diagnosers to work. Diagnosers are, however, required by existing methods to

know when to switch to a recovery supervisor. As a result, the response time of

diagnosers is not an issue for us. Our supervisors are designed to handle the original

and the faulted system. However, the tradeoff is that our approach may result in an

overly cautious supervisor.

We next presented a set of algorithms to verify the fault tolerant, permanent fault

tolerant, and timed permanent fault tolerant properties. As these algorithms involve

adding new plant components and then checking standard controllability and non-

blocking properties, they can instantly take advantage of existing controllability and

nonblocking software, as well as scalability approaches such as incremental verification

and binary decision diagrams (BDD).

For each algorithm, we provide a complexity analysis and then prove that the

algorithm correctly verifies the correseponding property. These algorithms increase

the complexity of the base controllability and nonblocking algorithms by a factor

of (N + 1) for the N-FT property, to 2m for the resettable FT property. For the

permanent fault algorithms, we see an increase of a factor of (|ΣF | + 1) for the one-

repeatable FT property, to (NF + 1)m for the m-one-repeatable FT property, where

240

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

NF is an upper bound for the size of all ΣFi
.

As the one-repeatable FT property represents the system being able to handle at

most one unique fault event occuring (although an unrestricted number of times), we

feel an increase by a factor of (|ΣF |+ 1) is a quite reasonable cost in order to handle

such a standard fault scenario.

We provide a small manufacturing example to illustrate how the theory can be

applied, and then we report on applying our approach to a much larger example. We

then present this example to the permanent fault setting and the timed setting.

16.2 Future Work

For future work, we would like to extend our approach to the sampled-data setting

[LWA14] in order to address concurrency and implementation issues.

We would also like to extend the approach to the hierarchical interface-based su-

pervisory control (HISC) [LBLW05, LLW05, LLD06, Led09]. The information hiding

and encapsulation properties of HISC should allow us to scale our approach up to

handle much larger systems.

241

Bibliography

[AA10] A. Allahham and H. Alla. Monitoring of timed discrete events systems

with interrupts. automation science and engineering. IEEE Transactions

on, pages 7(1):146–150, Jan 2010.

[Als16] Amal Alsuwaidan. Timed fault tolerant supervisory control. Master’s

thesis, Dept. of Computing and Software, McMaster University, April

2016.

[BLW05] S.E. Bourdon, M. Lawford, and W.M. Wonham. Robust nonblocking

supervisory control of discrete-event systems. IEEE Transactions on Au-

tomatic Control, Volume: 50 , Issue: 12, Dec. 2005.

[BMM04] Bertil A. Brandin, Robi Malik, and Petra Malik. Incremental verification

and synthesis of discrete-event systems guided by counter-examples. IEEE

Trans. on Control Systems Technology, 12(3):387–401, May 2004.

[Bra93] B. A. Brandin. Real-Time Supervisory Control of Automated Manufactur-

ing Systems. PhD thesis, Department of Electrical Engineering, University

242

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

of Toronto, 1993. Also appears as Systems Control Group technical re-

port # 9302, Department of Electrical Engineering, University of Toronto,

February 1993.

[Bry92] Al E. Bryant. Symbolic boolean manipulation with ordered binary-

decision diagrams. ACM Computing Surveys, 24:293–318, 1992.

[BW92] B.A. Brandin and W.M. Wonham. The supervisory control of timed

discrete-event systems. in decision and control. In Proceedings of the 31st

IEEE Conference on, pages 3357- 3362 vol.4,, 1992.

[BW94] Bertil Brandin and W. Murray Wonham. Supervisory control of timed

discrete-event systems. IEEE Trans. on Automatic Control, 39(2):329–

342, Feb 1994.

[CL09a] C.G. Cassandras and S. Lafortune. Introduction to Discrete Event Sys-

tems. 2nd ed. Springer, 2009.

[CL09b] C.G. Cassandras and S. Lafortune. Introduction to discrete event systems.

2nd ed. Springer, 2009.

[DES13] DESpot. www.cas.mcmaster.ca/~ leduc/DESpot.html. The official web-

site for the DESpot project, 2013.

[Die15] Oriane Dierikx. Fault-tolerance of a des supervisor for a manufactur-

ing testbed. Technical report, Technical University of Eindhoven, The

Netherlands, 2015.

[LBLW05] Ryan J. Leduc, Bertil A. Brandin, Mark Lawford, and W. M. Wonham.

243

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

Hierarchical interface-based supervisory control, part I: Serial case. IEEE

Trans. Automatic Control, 50(9):1322–1335, Sept. 2005.

[Led96] Ryan Leduc. PLC implementation of a DES supervisor for a manufac-

turing testbed: An implementation perspective. Master’s thesis, Dept. of

Elec and Comp Eng, University of Toronto, Toronto, Ont, 1996.

[Led09] Ryan J. Leduc. Hierarchical interface-based supervisory control with data

events. International Journal of Control, 82(5):783–800, May 2009.

[Lin93] Feng Lin. Robust and adaptive supervisory control of discrete event sys-

tems. IEEE Trans. Automatic Control, 38(12):1848–1852, Dec. 1993.

[LLD06] Ryan J. Leduc, Mark Lawford, and Pengcheng Dai. Hierarchical interface-

based supervisory control of a flexible manufacturing system. IEEE Trans.

on Control Systems Technology, 14(4):654–668, July 2006.

[LLW05] Ryan J. Leduc, Mark Lawford, and W. M. Wonham. Hierarchical

interface-based supervisory control, part II: Parallel case. IEEE Trans.

Automatic Control, 50(9):1336–1348, Sept. 2005.

[LW88] F. Lin and W.M. Wonham. On observability of discete-event systems.

Inform. Sci., 40:173–198, 1988.

[LWA14] Ryan J. Leduc, Yu Wang, and Fahim Ahmed. Sampled-data supervisory

control. Discrete Event Dynamic Systems, 24(4):541–579, 2014.

[Ma04] Chuan Ma. Nonblocking supervisory control of state tree structures. PhD

thesis, Department of Electrical and Computer Engineering, University

of Toronto, 2004.

244

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

[MRD+15] A. Mulahuwaish, S. Radel, O. Dierikx, A. Alsuwaidan, and R. J. Leduc.

Fault tolerant controllability and nonblocking. Technical report, CAS-15-

12-RL. Department of Computing and Software, McMaster University,

December 2015.

[MZ05] M. Moosaei and S.H. Zad. Modular fault recovery in timed discrete-event

systems: application to a manufacturing cell. In Proceedings of 2005 IEEE

Conference on Control Applications, pages 928–933, Aug 2005.

[PL99] Seong-Jin Park and Jong-Tae Lim. Fault-tolerant robust supervisor for

discrete event systems with model uncertainty and its application to a

workcell. IEEE Transactions on Robotics and Automation, 15(2):386–

391, 1999.

[PSL11] Andrea Paoli, Matteo Sartini, and Stephane Lafortune. Active fault toler-

ant control of discrete event systems using online diagnostics. Automatica,

47(4):639–649, 2011.

[Rud88a] K. Rudie. Software for the control of discrete-event systems: A complexity

study. Master’s thesis, Dept. of Electrical and Computer Engineering,

University of Toronto, Toronto, Ont, 1988.

[Rud88b] K. Rudie. Software for the control of discrete-event systems: A complexity

study. Master’s thesis, Dept. of Electrical and Computer Engineering,

University of Toronto, Toronto, Ont, 1988.

[RW87] P. Ramadge and W. Murray Wonham. Supervisory control of a class of

discrete-event processes. SIAM J. Control Optim, 25(1):206–230, 1987.

245

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

[Son06] Raoguang Song. Symbolic synthesis and verification of hierarchical

interface-based supervisory control. Master’s thesis, Dept. of Comput.

and Softw., McMaster University, Hamilton, Ont, 2006.

[SSL+96] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and

D. Teneketzis. Failure diagnosis using discrete-event models. IEEE Trans.

Control Systems Technology, 4(2):105–124, 1996.

[SZ05] A. Saboori and S. Hashtrudi Zad. Robust nonblocking supervisory control

of discrete-event systems under partial observation. In ICSC Congress on

Computational Intelligence Methods and Applications, Dec. 2005.

[VLF05] Arash Vahidi, Bengt Lennartson, and Martin Fabian. Efficient analysis

of large discrete-event systems with binary decision diagrams. In Proc.

of the 44th IEEE Conf. Decision Contr. and and 2005 European Contr.

Conf., pages 2751–2756, Seville, Spain, 2005.

[Wan09] Yu Wang. Sampled-data supervisory control. Master’s thesis, Dept. of

Computing and Software, McMaster University, Hamilton, Ont, 2009.

[WKHL08] Qin Wen, R. Kumar, Jing Huang, and Haifeng Liu. A framework for fault-

tolerant control of discrete event systems. IEEE Trans. on Automatic

Control, 53:1839–1849, 2008.

[Won14] W. M. Wonham. Supervisory Control of Discrete-Event Systems. De-

partment of Electrical and Computer Engineering, University of Toronto,

July 2014. Monograph and TCT software can be downloaded at

http://www.control.toronto.edu/DES/.

246

Ph.D. Thesis - Aos Mulahuwaish McMaster - Computer Science

[WR87] W. M. Wonham and P. Ramadge. On the supremal controllable sublan-

guage of a given language. SIAM J. Control Optim, 25(3):637–659, May

1987.

[Zha01] Z.H. Zhang. Smart TCT: an efficient algorithm for supervisory control

design. Master’s thesis, Dept. of Electrical and Computer Engineering,

University of Toronto, Toronto, Ont, 2001.

247

	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Introduction
	Related Work
	Untimed DES Setting
	Timed DES Setting
	Illustrative Example

	Thesis Structure

	 Preliminaries
	Languages
	Natural Projection and Inverse Projection

	DES
	Synchronous Product
	Supervisory Control

	Timed DES

	Fault-Tolerant Setting
	Fault Events
	Fault-Tolerant Consistency
	Fault Scenarios
	Intermittent Fault Scenarios

	Fault-Tolerant Controllability and Nonblocking
	Fault-Tolerant Controllability and Nonblocking
	N-Fault-Tolerant Controllability and Nonblocking
	Non-repeatable N-Fault-Tolerant Controllability and Nonblocking
	Resettable Fault-Tolerant Controllability and Nonblocking

	Fault-Tolerant Algorithms
	Algorithms
	Fault-Tolerant Controllability and Nonblocking Algorithms
	N-Fault Tolerant Controllability and Nonblocking Algorithms
	Non-repeatable N-Faults Tolerant Controllability and Nonblocking Algorithms
	Resettable Faults Tolerant Controllability and Nonblocking Algorithms

	Algorithm Complexity Analysis
	FT Controllability Algorithm
	N-FT Controllability Algorithm
	Non-repeatable N-FT Controllability Algorithm
	Resettable FT Controllability Algorithm

	Fault-Tolerant Algorithm Correctness
	Fault-Tolerant Controllable Propositions
	FT Controllable Proposition
	N-Fault-Tolerant Controllable Proposition
	Non-repeatable N-Fault-Tolerant Controllable Proposition
	Resettable Fault-Tolerant Controllable Proposition

	Fault-Tolerant Controllable Theorems
	Fault-Tolerant Controllable Theorem
	N-Fault-Tolerant Controllable Theorem
	Non-repeatable N-Fault-Tolerant Controllable Theorem
	Resettable Fault-Tolerant Controllable Theorem

	Fault-Tolerant Nonblocking Theorems
	Fault-Tolerant Nonblocking Theorem
	N-Fault-Tolerant Nonblocking Theorem
	Non-repeatable N-Fault-Tolerant Nonblocking Theorem
	Resettable Fault-Tolerant Nonblocking Theorem

	Fault-Tolerant Manufacturing Example
	Setting Introduction
	Single Loop Example
	Sensor Interdependencies
	Relationship Between Sensors and Trains Models

	Modular Supervisors
	Collision Protection Supervisors
	Collision Protection Fault-Tolerant Supervisors

	Complete System Example

	Permanent Fault-Tolerant Controllability and Nonblocking
	Permanent Fault-Tolerant Consistency
	Permanent Fault Scenarios
	Fault-Tolerant Controllability and Nonblocking
	One-repeatable Fault-Tolerant Controllability and Nonblocking
	m-one-repeatable Fault-Tolerant Controllability and Nonblocking
	Non-repeatable Permanent Fault-Tolerant Controllability and Nonblocking
	Resettable Permanent Fault-Tolerant Controllability and Nonblocking

	Permanent Fault-Tolerant Algorithms
	Fault-Tolerant Controllability and Nonblocking Algorithm
	One-repeatable Fault-Tolerant Controllability and Nonblocking Algorithm
	m-one-repeatable Faults-Tolerant Controllability and Nonblocking Algorithm
	Non-repeatable Permanent Faults-Tolerant Controllability and Nonblocking Algorithm
	Resettable Permanent Faults-Tolerant Controllability and Nonblocking Algorithm
	Algorithm Complexity Analysis
	One-repeatable FT Controllability Algorithm
	m-one-repeatable FT Controllability Algorithm
	Non-repeatable PFT Controllability Algorithm
	Resettable PFT Controllability Algorithm

	Permanent Fault-Tolerant Algorithm Correctness
	Permanent Fault-Tolerant Propositions
	One-repeatable Fault-tolerant Controllable Proposition
	m-one-repeatable Controllable Fault-tolerant Proposition
	Non-repeatable Permanent Fault-tolerant Controllable Proposition
	Resettable Permanent Fault-tolerant Controllable Proposition

	Permanent Fault-Tolerant Controllable Theorems
	Fault-tolerant Controllable Theorem
	One-repeatable Fault-tolerant Controllable Theorem
	m-one-repeatable Fault-tolerant Controllable Theorem
	Non-repeatable Permanent Fault-tolerant Controllable Theorem
	Resettable Permanent Fault-tolerant Controllable Theorem

	Permanent Fault-Tolerant Nonblocking Theorems
	Fault-Tolerant Nonblocking Theorem
	One-repeatable Fault-tolerant Nonblocking Theorem
	m-one-repeatable Fault-tolerant Nonblocking Theorem
	Non-repeatable Permanent Fault-tolerant Nonblocking Theorem
	Resettable Permanent Fault-tolerant Nonblocking Theorem

	Permanent Fault-Tolerant Manufacturing Example
	Adding a Permanent Fault
	Discussion of Results

	Timed Permanent Fault-Tolerant Controllability
	Timed Permanent Fault-Tolerant Setting
	Timed Permanent Fault-Tolerant Consistency
	Timed Permanent Fault Scenarios
	Timed Fault-Tolerant Controllability
	Timed One-repeatable Fault-Tolerant Controllability
	Timed m-one-repeatable Fault-Tolerant Controllability
	Timed Non-repeatable Permanent Fault-Tolerant Controllability
	Timed Resettable Permanent Fault-Tolerant Controllability

	Timed Permanent Fault-Tolerant Algorithms
	Algorithms
	Timed Fault-Tolerant Controllability Algorithm
	Timed One-repeatable Fault-Tolerant Controllability Algorithm
	Timed m-one-repeatable Faults-Tolerant Controllability Algorithm
	Timed Non-repeatable Permanent Fault-Tolerant Controllability Algorithm
	Timed Resettable Permanent Fault-Tolerant Controllability Algorithm

	Algorithm Complexity Analysis
	Timed FT Controllability Algorithm
	Timed one-repeatable FT Controllability Algorithm
	Timed m-one-repeatable FT Controllability Algorithm
	Timed Non-repeatable PFT Controllability Algorithm
	Timed Resettable PFT Controllability Algorithm

	Timed Permanent Fault-Tolerant Algorithm Correctness
	Timed Permanent Fault-Tolerant Propositions
	Timed One-repeatable Fault-Tolerant Controllable Proposition
	Timed m-one-repeatable Fault-Tolerant Controllable Proposition
	Timed Non-repeatable Permanent Fault-Tolerant Controllable Proposition
	Timed Resettable Permanent Fault-Tolerant Controllable Proposition

	Timed Permanent Fault-Tolerant Controllable Theorems
	Timed Fault-tolerant Controllable Theorem
	Timed One-repeatable Fault-tolerant Controllable Theorem
	Timed m-one-repeatable Fault-tolerant Controllable Theorem
	Timed Non-repeatable Permanent Fault-tolerant Controllable Theorem
	Timed Resettable Permanent Fault-tolerant Controllable Theorem

	Timed Permanent Fault-Tolerant Manufacturing Example
	Setting Introduction
	Single Loop Example
	Sensor Models
	Adding Permanent Fault
	Sensor Interdependencies
	Train Models
	Relationship Between Sensors and Trains Models
	Adding Forcing

	Modular Supervisors
	Collision Protection Supervisors
	Collision Protection Fault-Tolerant Supervisors

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

