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Abstract

This thesis considers mobile computation offloading where task completion times are sub-

ject to hard deadline constraints. Hard deadlines are difficult to meet in conventional com-

putation offloading due to the stochastic nature of the wireless channels involved. Rather

than using binary offload decisions, we permit concurrent remote and local job execution

when it is needed to ensure task completion deadlines. The thesis addresses this problem

for homogeneous Markovian wireless channels. Two online energy-optimal computation

offloading algorithms, OnOpt and MultiOpt, are proposed. OnOpt uploads the job to the

server continuously and MultiOpt uploads the job in separate parts, each of which requires

a separate offload initiation decision. The energy optimality of the algorithms is shown

by constructing a time-dilated absorbing Markov process and applying dynamic program-

ming. Closed form results are derived for general Markovian channels. The Gilbert-Elliott

channel model is used to show how a particular Markov chain structure can be exploited to

compute optimal offload initiation times more efficiently. The performance of the proposed

algorithms is compared to three others, namely, Immediate Offloading, Channel Threshold,

and Local Execution. Performance results show that the proposed algorithms can signifi-

cantly improve mobile device energy consumption compared to the other approaches while

guaranteeing hard task execution deadlines.
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Notations

tr release time of the job (time slots)

tD hard deadline of the job (time slots)

Sup upload data size (bits)

Sup1 upload data size of the first part (bits)

Sup2 upload data size of the second part (bits)

Sdown download data size (bits)

TL local execution time duration (time slots)

tL local execution start time duration (time slot)

TD job completion time duration deadline (time slots)

tD job completion time deadline (time slot)

Tup upload data time duration (time slots)

Tup1 upload data time duration for the first part (time slots)

Tup2 upload data time duration for the second part (time slots)

Texec remote execution time (time slots)

Tdown download data time duration (time slots)

Toff total offloading time duration (time slots)
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to start uploading time (time slot)

to1 start uploading time of the first part (time slot)

to2 start uploading time of the second part (time slot)

tf finish uploading time (time slot)

tf1 finish uploading time of the first part (time slot)

tf2 finish uploading time of the second part (time slot)

TW elapsed time between two uploads (time slots)

Bmin minimum bitrate

Bmax maximum bitrate
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Abbreviations

3G Third Generation

CSMC Channel State Markov Chain

GPRS General Packet Radio Services

IDC International Data Corporation

IP Integer Programming

IT Information Technology

IaaS Infrastructure as a Service

LAN Local Area Network

LTE Long Term Evolution

MCC Mobile Cloud Computing

MultiOpt Mutli-Decision online Optimum)

OnOpt Online Optimum

PaaS Platform as a Service

QoS Quality of Service
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SaaS Software as a Service

TDAMC Time-Dilated Absorbing Markov Chain

Wi-Fi Wireless Fidelity

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network
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Chapter 1

Introduction

In the past decade, the number of mobile devices such as phones and tablets has increased

significantly. An International Data Corporation (IDC) five-year forecast suggests that the

worldwide smartphone market will reach a total of 1.39 billion units shipped in 2019 and

will reach 1.54 billion units by 2023 (Scarsella and Stofega, 2019).

In addition to their traditional functionality, mobile devices are continuing to become

more pervasive as personal computing platforms. This trend is coinciding with significant

increases in mobile application features that benefit from tight interactions with fixed com-

putation infrastructure. According to a recent report, Cisco Inc. predicts that by the year

2021, monthly worldwide mobile data traffic will approach 28 exabytes (Cis, 2017).

Nowadays, mobile phones are often equipped with various sensors which help the

device capture environmental inputs and also provide benefits to users such as improved

healthcare. These developments are making them an essential part of humans’ lives. One

of the most essential features of mobile devices is their portability, which allows users do

computation tasks anywhere at anytime (Bahwaireth et al., 2015; Wei et al., 2013). This

includes computationally intensive tasks such as natural language translation (Balan et al.,
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2007; Flinn et al., 2002), speech recognition (Balan et al., 2007; Su and Flinn, 2005), op-

tical character recognition, image processing (Kristensen and Bouvin, 2008; Porras et al.,

2009), online gaming, and video processing (Chun and Maniatis, 2009; Shiraz et al., 2013).

However, mobile devices are inherently resource-constrained due to their small physical

size. This limits their ability to satisfy the processing and energy required for resource

intensive processing. Because of this, application developers are unable to provide many

mobile resource-intensive features such as artificial vision and object tracking. Smart-

phones suffer from short battery lifetimes, insufficient memory, low processing capability,

and constrained storage space. Among these, mobile battery lifetime is by far the most

common smartphone complaint (Paczkowski, 2009). This has motivated a wide variety of

recent research on mobile energy efficiency (Kumar and Lu, 2010).

In order to overcome the limited battery lifetime issue of mobile devices, reference

(Kumar and Lu, 2010) suggested four different approaches to reduce the energy consump-

tion. In the first approach, new semiconductor technologies can be used where transistors

are more energy efficient. The problem with this approach is that by decreasing transistor

size, a higher number of transistors may be needed to maintain a good level of perfor-

mance. Therefore, this action may eventually increase energy consumption. In the sec-

ond approach, we can sleep components of the mobile device that are not in use. In the

third approach, we can run the programs slowly by using the CPU at a lower clock speed,

which results in a reduction of consumed energy. However, this approach may reduce user

experience below a minimum satisfactory level. Finally, we can eliminate or reduce the

computations performed locally on the mobile device by offloading execution to a remote

cloud server. This approach is referred to as mobile cloud computing in the literature.

In this thesis, we focus on the fourth approach by considering the optimal offloading

2



M.A.Sc. Thesis - Arvin Hekmati McMaster - Electrical Engineering

times under random channel conditions so that mobile energy use is minimized. This is

done subject to satisfying hard task execution deadline constraints.

1.1 Mobile Cloud Computing

Nowadays, cloud computing is pervasive and provides excellent computing capabilities for

various applications. However, it does not have a specific meaning, and it has been defined

by various industry practitioners, academics, analyst firms, and Information Technology

(IT) companies. According to the Berkeley RAD Lab, cloud computing is the aggregation

of two different aspects. The first is the services and applications which are provided

to users over the internet, and the second is the components of the datacenters such as

hardware and systems software which provide the infrastructure for those applications and

services. We generally call the data center hardware and software the cloud, and Software

as a Service (SaaS) refers to the services provided to the end users. If the cloud is available

to the public as a utility, it is defined as a Public Cloud. On the other hand, a Private Cloud

refers to the internal utilities of a company which is not available to the public. Private

Clouds are not considered as a part of Cloud Computing (Armbrust et al., 2009).

As can be seen in Figure 1.1, the structure of Cloud Computing has three architectural

layers. The first layer is called Infrastructure as a Service (IaaS), which is essentially the

processing or storage services that are provided to the users. Examples of this are Amazon

Web Services with its Elastic Compute Cloud (EC2) for processing and Simple Storage

Service (S3) for storage. The second layer is called Platform as a Service (PaaS), which

provides platforms for the developers to write and run their code. In this layer, the de-

velopers are not concerned with the hardware infrastructure of the lower layer (Iaas). An

example of PaaS is the Google App Engine, which allows applications to run on Googles
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SaaS
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Software as a service
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Figure 1.1: The Three Layers of Cloud Computing
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platform. The third layer is called Software as a Service (SaaS) which provides on-demand

applications over the internet. This layer is the most visible part of cloud computing to the

users. Examples of SaaS offerings are Salesforce.com and Google Apps such as Google

Mail and Google Docs and Spreadsheets. The consumers of this layer are not concerned

with the underlying layers (Patidar et al., 2012).

Nowadays, mobile devices have the benefits of compact design, high-quality graph-

ics, customized user application support and multimodal connectivity features. Mobile

phones employ various wireless network technologies for accessing the internet; such as

3G connectivity, Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Ac-

cess (Wi-Max), and Long Term Evolution (LTE). The latest development in smartphones

has made people more intent to run heavy computational tasks on their devices, as is the

case with powerful stationary computers. Although lots of improvements have been made

in the software and hardware, mobile devices are still poor computing devices due to their

constrained resources such as limited CPU potential, memory capacity, and battery life-

time. In addition, they have other limitations because of their light weight, small size, and

restrictions due to the wireless medium and mobility (Shiraz et al., 2013).

Mobile Cloud Computing (MCC) has been introduced to help alleviate some of these

shortcomings, and to support the ever increasing computation and storage demands for mo-

bile devices (You et al., 2016; Chiang and Zhang, 2016). Cloud computing provides new

powerful resources for Information Technology (IT) services. Cloud-based services and ap-

plications are on-demand, scalable, device-independent and reliable. Therefore, the MCC

purpose is to use cloud computing techniques and resources for storage and processing of

data on mobile devices (Guan et al., 2011). Vast resources are available in the cloud servers

to help smartphones with computational functions. Therefore, cloud resources can be used

5
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to deliver elastic computing power and also storage to support resource-constrained end-

user devices. Its goal is to centralize the computation, storage, and network management

(Mao et al., 2017; Armbrust et al., 2009; Zhang et al., 2010).

It has been estimated that tens of billions of future cloud-based network edge devices

will be deployed to satisfy mobile demands. This will provide significant resources for per-

forming computationally intensive and latency-critical mobile-centric tasks (ETSI, 2014;

Mao et al., 2017). Mobile computation offloading has been proposed as a way of decreas-

ing mobile device energy use by dynamically offloading job execution to infrastructure

based cloud servers (Chun et al., 2011; Chun and Maniatis, 2009; Satyanarayanan et al.,

2009; Huerta-Canepa and Lee, 2010; Ba et al., 2013). It has been demonstrated that task

offloading can significantly improve battery lifetime compared to the non-offloading case

(Rudenko et al., 1998, 1999).

Some of the important applications which can be run on mobile devices by using

computation offloading are natural language processing, object/gesture recognition, and

image/video editing. In these heavy computational algorithms, we should consider task

precedence requirements to achieve the maximum energy reduction for the mobile devices.

Therefore, by partitioning large applications into several tasks and offloading the compu-

tationally heavy ones to the cloud, the requirements on the mobile CPU decrease, and as a

result, battery lifetime and also quality of service can increase. Therefore, smartphones can

run more sophisticated applications and achieve a better user experience (Lin et al., 2014).

6
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1.2 Motivation and Contribution

In this thesis we study mobile computation offloading where job completion times are

subjected to hard deadline constraints, i.e., deadline constraints that should never be vio-

lated, as opposed to deadline constraints that are satisfied with high probability, or incur a

penalty when violated, etc. This objective will become increasingly important as mobile

applications become more sophisticated and interact more closely with cloud job execu-

tion (Lagar-Cavilla et al., 2007). Hard deadlines, however, are often difficult to achieve in

mobile networks due to the randomness of the wireless channels used for the mobile/cloud

data interactions. In harsh wireless conditions, for example, complete channel outage can

even occur over extended time periods. In this work, we study the approach of permitting

concurrent local and cloud offload execution when a job completion deadline must be re-

spected. This is in contrast to the conventional computation offloading model where job

execution is either local or remote. As is the case in conventional computation offloading,

the objective is to reduce the mobile device energy needed for job execution.

The main contributions of this thesis are summarized, as follows.

1. To the best of our knowledge, this is the first work that uses computation offloading

to reduce mobile energy and provides a mechanism for guaranteeing that hard job

deadlines are always satisfied, even in the presence of full wireless channel outage

conditions.

2. Online offloading decision algorithms, i.e., OnOpt and MultiOpt, are introduced. It

is theoretically proven that the algorithms not only satisfy hard deadline constraints

of the applications with certainty, but also achieve the minimum mean mobile de-

vice energy possible for homogeneous Markovian wireless channels. The OnOpt
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algorithm makes the optimal decision for continuous offloading in a single piece.

MultiOpt uploads data in two pieces. This can sometimes decrease mobile device

energy consumption compared to OnOpt.

3. Two integer programs (IPs) are formulated that compute strict lower bounds on mo-

bile device energy for both single and multi-part offloading. These bounds are used

for comparisons in our performance results.

4. Closed form results are derived for obtaining job completion time probabilities for

the homogeneous Markovian wireless channel case.

5. Although the proposed OnOpt and MultiOpt algorithms satisfy hard deadlines and

are proven to be energy optimal, performance results are also presented that compare

them with the computation offloading heuristics: Immediate Offloading, Channel

Threshold and Local Execution. These algorithms also ensure that hard job deadlines

are preserved.

The rest of this thesis is organized as follows. Chapter 2 introduces the architectures

and challenges of the mobile cloud computing. In Chapter 3, we describe the system and

present a model for local and remote job execution that satisfies hard job execution deadline

constraints. Following this, we derive an offline lower bound on the energy consumption,

which is plotted in the results section and compared to various offloading algorithms. We

also discuss the Markovian channel model and how it is used to form a time-dilated ab-

sorbing Markov chain.This construction permits us to apply dynamic programming and

derive the energy optimum online algorithms (OnOpt and MultiOpt), proposed in Chapter

4. Then, in Chapter 5 the thesis focuses on the Gilbert-Elliot channel model, where it is

8
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shown that calculations can be performed efficiently, decreasing the complexity of algo-

rithm running time. In Chapter 6, performance results are presented that compare OnOpt

and MultiOpt with various other computation offloading algorithms that ensure that hard

job deadlines are preserved. Finally, we present our conclusions in Chapter 7.

9



Chapter 2

Literature Review

Figure 2.1 shows the basic architecture of mobile cloud computing. It consists of mobile

end-user devices, wireless internet communication facilities, and a computational cloud.

The mobile device sends data to the cloud for remote processing by using wireless transmis-

sion/reception and then receives back the results of the remote computation. This procedure

may help the device to save energy by reducing local execution at the mobile device (Shiraz

et al., 2013).

In order to fully describe the process of mobile cloud computing, reference (Guan et al.,

2011) has proposed a “concept model”, which has three layers, as shown in Figure 2.2.

Figure 2.1: Model of Mobile Cloud Computing

10
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Resource Scheduling

Context Management

Client Cloud

Figure 2.2: Concept Model of Mobile Cloud Computing

On the left, we have the client, and on the right, the cloud. These two components are

connected via transmission channels, which can include various wireless communication

protocols. The above layers are referred to as Context Management and Resource Schedul-

ing. This model assumes that the cloud delivers elastic, on-demand services and the client

is context-aware. In mobile cloud computing, we have computing resources and storage

resources, which are scheduled by the Resource Scheduling layer. Virtual machines are

commonly used in this layer to handle resource dispatching. The Context Management

layer can track context parameters of the mobile device in order to adapt to changes in

contextual conditions. One of the examples of the context parameters is the position of

the mobile device. Sharing the position of the mobile devices with the cloud helps them

to better discover the position of the computational resources available near them. This

information helps them to select the best resources for offloading with lowest transmission

delay.

Various architectures have been proposed for mobile computation offloading. Refer-

ence (Cuervo et al., 2010) originally proposed an architecture known as MAUI, which

controls computation offloading for runtime .NET applications by formulating the offload-

ing problem as a linear program. A similar architecture for Android applications has been

proposed in (Chun et al., 2011). Other popular architectures are MobiCloud, CloneCloud,

11
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Agent Agent Agent

Figure 2.3: Agent-Client Architecture

Cloudlet, and Hyrax, which supports a variety of different types of applications (Wei et al.,

2013). These various types of architectures can be divided into two main categories ac-

cording to the location where mobile users execute their applications and how the devices

and clouds are connected.

In an agent-client architecture, as shown in Figure 2.3, each mobile user is assigned an

agent from the cloud server, and the mobile device only communicates with this agent to

contact other entities. These agents help the mobile devices overcome their limitations in

processing power and storage capacity (Guan et al., 2011).

Reference (Satyanarayanan et al., 2009) presents an agent-client design. In this archi-

tecture, each mobile device is assigned resources to a virtual machine that is running on

the server and connects to it via a wireless LAN. Servers are decentralized and widely dis-

tributed over the Internet infrastructure. The practical implementation of this scheme is to

equip Wi-Fi access points with substantial processing, memory, and storage resources.

12
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Figure 2.4: Collaborated Architecture

Another example of an agent-client scheme is given in (Zhang et al., 2009). The au-

thors introduce elastic applications which consist of one or more tasks that function inde-

pendently. Each task can be run on the mobile device or be offloaded to the cloud. An

elastic application manager runs on the device, which assigns computation intensive tasks

to the cloud platforms and executes the other tasks locally.

As shown in Figure 2.4, in a collaborated architecture, each device is considered as

a part of the cloud. Therefore, the tasks of each mobile can be offloaded to other mobile

devices as well as the cloud servers (Guan et al., 2011).

Hyrax (Marinelli, 2009) is an example of a collaborated architecture which supports

cloud computing on Android phones. This platform enables mobile devices to run their

applications on the network of smartphones and servers. Reference (Black and Edgar,

2009) discusses the feasibility and benefits of a collaborated scheme by enabling mobile

devices within a computing platform grid and implements the client on an Apple iPhones.

Offloaded tasks are available at the server and can be downloaded and executed on the

iPhones via a virtual machine emulating an x86 processor. After execution, results will be

13
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uploaded to the server.

2.1 Network Latency and Limited Bandwidth

MCC often requires frequent communication between the cloud platform and the mobile

device. Unfortunately, transmission channels are often impaired by randomness associated

with resource contention and noise. As a result, they often suffer from high latency and

limited usable bandwidth. This issue becomes especially important for mobile applications

such as online games and augmented reality, which require high processing capacity along

with low latency. As a result, applications of this kind will often be executed locally on the

mobile device. One must be careful to offload only those applications that are compatible

with these effects. Reference (Galinina et al., 2013) ensures the required minimum quality

of service by maximizing the energy efficiency of a smartphone transmitting on several

wireless channels. In this solution, the optimal transmit power is obtained by solving an

optimization problem that is based on Shannon’s capacity result.

2.2 Application Models

Computation offloading helps the mobile devices by running heavy computational applica-

tions on a cloud platform. It is often important to design elastic mobile applications, i.e.,

those that can be decomposed into multiple tasks, each of which can be executed locally or

remotely. In this case, the mobile device can offload the computationally intensive tasks to

the cloud. Furthermore, elastic applications can help the device to decide whether to run

each task locally or remotely according to the users’ preference and utility.

14
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The first important challenge for elastic application models is how to partition the mo-

bile application. Reference (Giurgiu et al., 2009) introduced a two-step procedure for opti-

mal application partitioning. In the first step, a flow graph is constructed of the application

modules using the described behaviour. Then, in the next step, the algorithm finds the op-

timal partitioning of the job which minimizes energy consumption. Two different types of

partitioning are proposed in this paper. In the first algorithm, the best partitioning consid-

ers the various mobile devices and all possible network conditions to determine the optimal

partitioning. The second algorithm runs on-the-fly when the phone connects to the cloud.

In this case the partitioning algorithm only considers the current server and network re-

sources.

The second important issue with Elastic Application Models is how to choose the par-

titions to be offloaded to the cloud. Reference (Cuervo et al., 2010) presents MAUI, which

offloads fine-grained mobile code to the cloud for remote execution.

2.3 Mobile Access Mechanisms

Mobile devices can communicate to a cloud server over various radio access technologies

such as GPRS, 3G, LTE, WLAN or WiMax. MCC should choose the best available option

that satisfies its performance and minimizes the energy consumption of the mobile device.

Reference (Rahmati and Zhong, 2007) designed an online wireless network selection

mechanism. It finds the optimal solution for either offloading using the current Wi-Fi net-

work or to search for a better Wi-Fi connection. In (Gribaudo et al., 2013) the dynamics

of user traffic are monitored and radio network resources are allocated to mobile users to

minimize user energy consumption.
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2.4 Related Work

Many new mobile cloud computing issues and challenges have been addressed in the past

few years (Abolfazli et al., 2014; Rehman Khan et al., 2014; Liu et al., 2013; Guan et al.,

2011). A significant part of the literature has considered mobile computation offloading

issues under stochastic transmission channel and cloud server conditions. Reference (Ku-

mar and Lu, 2010), for example, presents an energy model to analyze offloading, mainly

considering mobile computation and communication energy components based on statisti-

cal inputs and with fixed wireless channel conditions. This work analyzed the offloading

policy assuming that network conditions remain static throughout the offloading/execution

process. Network prediction was used as inputs to the decision process. In (Zhang et al.,

2015) a method was proposed for energy-optimal mobile cloud computing under stochastic

wireless channels. The issue of job deadlines was considered from a statistical viewpoint,

rather than enforcing hard job execution deadlines. Dynamic programming was used in

(Liu and Lee, 2014) to optimize offloading decisions from an energy viewpoint, but the

issue of job execution time constraints was not considered. In Reference (Lagar-Cavilla

et al., 2007), job execution time constraints were flagged as a key issue for many interac-

tive applications. The difficulties of achieving this under random channel conditions were

highlighted. In (Zhang et al., 2013), a framework was proposed for executing jobs either

locally, by CPU frequency scheduling, or remotely, by offloading over a stochastic chan-

nel. In the latter case, mobile transmit power control is used to select bit rates to ensure that

job deadlines are met. In local execution, a violation parameter is defined that permits the

execution to probabilistically exceed the deadline, and, therefore, the latter is not “hard” in

our sense. As in this thesis, this work uses the well-known Gilbert-Elliot channel model

for its results.
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Chapter 3

System Model and Problem Formulation

We consider a statistical wireless communication channel which is modelled by a Markov

chain. The computation offloading is subject to a hard deadline, i.e., the execution of each

job should be finished by a specific time. In this chapter, we describe the details of our

system model, followed by an offline bound of the problem.

3.1 System Model

Continuous Offloading

We consider the execution of computational tasks (jobs) generated by a mobile device, ei-

ther locally (by the device itself), or by offloading them on a remote cloud server, through

a wireless transmission channel. Each job could be a sub-task associated with multiple

local/remote job execution components (You et al., 2016; Chiang and Zhang, 2016). We

focus on a single task whose characteristics are known at its release time. Note that time

is taken to be discrete, i.e., quantized into equal length time slots whose duration is nor-

malized to 1. Time values are therefore referred to by their time slot indices. Note that the
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time slot duration is defined to accommodate the channel propagation model discussed in

Section 3.2 and may contain multiple packet transmission times on the channel. Each job

to be executed is characterized by the following:

tr: Release time of the job, i.e., the time when the job is ready to start execution, either

locally or via offloading. For convenience, we will assume that tr = 1.

tD: Hard deadline of the job, i.e., the job execution results must be available at the mobile

device by time tD. TD = tD − tr + 1 is the maximum number of time slots available

for completing the job.

Sup: Number of bits transmitted through the uplink channel when uploading the job to the

cloud.

Sdown: Number of bits transmitted through the downlink channel when downloading job

results from the cloud.

Multi-Part Offloading

We also consider a generalization of the previous problem (multi-part offloading), where

each job can be split into two parts for offloading, each with a (known) number Sup1 , Sup2

of bits to be transmitted through the uplink channel, respectively, for a total of Sup = Sup1 +

Sup2 bits. Sdown bits are transmitted through the downlink channel when downloading job

results from the cloud.

We now discuss the timing and energy use associated with local and remote offloaded

job execution.
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3.1.1 Local Execution

It is assumed that the energy cost and time needed to execute a job locally is known at the

job release time, tr, and these are defined by EL and TL, respectively. While this may not

always be the case, this assumption is often true and has been made in many computational

offloading studies (Kumar and Lu, 2010; Chen, 2015; Cao and Cai, 2018).

If the computation offloading algorithm elects to execute the job locally without any

remote offloading, we must ensure that the job deadline is always satisfied. Therefore,

local execution must start no later than

tL = tD − TL + 1, (3.1)

unless remote offload/execution results are available at the mobile device before tL, i.e.,

local execution must start TL time slots prior to the job deadline, if remote execution results

have not arrived by then.

3.1.2 Remote Execution

Continuous Offloading

In the case of offloading a job, we will assume that, upon its release, the job is assigned an

execution time Texec by the cloud server, which is communicated to the mobile device (or is

prescribed by, say, the contractual agreement between the user of the device and the cloud

server operator). In addition, we assume that the user has been allocated capacity (such

as recurring time slots) until the offload has completed. These assumptions are commonly

invoked (Kumar and Lu, 2010; Chen, 2015; Cao and Cai, 2018). Therefore, if Tup and

Tdown are the time periods needed to, upload the job to the cloud server, and, download its
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results to the device, respectively, the total offloading time Toff is given by

Toff = Tup + Texec + Tdown. (3.2)

These components are shown in Figure 3.1, where we have defined to to be the remote of-

fload initiation time. It is assumed that the channel uses bit rate adaptation to accommodate

random variations in channel conditions. As a result, Tup is a random variable, dependent

on the evolution of the uplink channel state as a given upload occurs. In what follows, it

is assumed that the channel state can be modelled as a homogeneous discrete-time Markov

process; the same holds for Tdown.

In order to simplify our exposition, we will initially focus on the randomness induced

by the Markovian uplink channel. In the following development, we therefore temporarily

assume that all offloading deadlines, job sizes (in bits), and energy costs are related only to

job uploading, i.e., Toff ≡ Tup and S ≡ Sup, so that Texec = Tdown = 0.

Since the job’s hard deadline constraint must always be satisfied, we propose its simul-

taneous cloud server offloading (if possible and beneficial) and its local execution. Given

the stochastic nature of the transmission channel, deciding whether and when to offload

(i.e., to in Figure 3.1), depends on the estimation of offloading energy consumption and

offloading time, in order to both minimize energy costs for the mobile device, and satisfy

the job deadline constraint.1 Depending on these estimates, there are three possibilities

for offloading at time slot to: (i) it certainly finishes before starting the local execution of

the job, and, hence, local execution never starts, or, (ii) it finishes after starting the local

execution of the job, and, possibly, before deadline tD; then, the fraction of local execution

1Note that when offloading occurs, then tr ≤ to ≤ tD, and when to > tD, then there has been no
offloading, i.e., there is only local job execution.
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energy cost incurred is equal to the fraction of TL overlapping with the offloading (i.e.,

local execution is terminated if a remote offload response is received), or (iii) it certainly

finishes after deadline tD, so it does not even start, and the total energy cost is equal to

the local execution energy cost. Note that in the case of a deterministic channel, one can

calculate exactly in which of these three cases the job falls. In this work, we analyze the

problem of offloading with hard deadlines over a Markovian stochastic channel.

As in most of the related work references, we assume that the current state of the chan-

nel can be determined prior to making the decision to start an offload. This information can

be learned in a variety of ways, such as via a short handshake with the basestation at the

start of the time slot.

Figure 3.1 represents the case of continuous offloading. The job release time is tr and

its deadline is tD. The offload begins at to and execution is completed Tup + Texec + Tdown

time slots later. To enforce the job deadline, local execution must begin at tL if the mobile

is still awaiting a remote response. At time to + Tup + Texec + Tdown, local execution is

terminated provided that a remote offload response arrives before tD.

Note that starting the local job execution at time slot tL ensures the hard delay constraint

of the task, if a remote offloading response is not received in time. Although this may result

in both local and remote executions of the task, it will always satisfy the hard deadline, even

if there is channel contention or extended channel outages. However, with the objective of

minimizing the mean energy consumption of the mobile device, the proposed algorithm

will reduce the possibility of both local and remote executions.
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Figure 3.1: Job Computation Timing for Continuous Offloading.

Multi-Part Offloading

In multi-part offloading, the uploading data are split into two parts which are transmitted

to the server sequentially. Uploading the first and second part takes Tup1 and Tup2 time

slots respectively; TW is the elapsed time between the two uploads. Upon its release, the

job is assigned a server execution time Texec and a resulting downloading time Tdown (both

deterministic) by the cloud server; both are communicated to the mobile device (or are

prescribed by, say, the contractual agreement between the user of the device and the cloud

server operator), and their total time is Trest = Texec + Tdown. Hence, the total offloading

time is Toff = Tup1 + TW + Tup2 + Texec + Tdown, as shown in Figure 3.2 (note that

to1 , tf1 and to2 , tf2 are the starting and finishing times of the uploading of the two job parts,

respectively). It is assumed that the mobile device transmits a fixed power and uses bit rate

adaptation to accommodate random variations in the uplink channel conditions. As a result,

Tup1 and Tup2 are random variables, dependent on the evolution of the uplink channel state

as a given upload occurs. We generalize our problem further, by assuming that Tdown and

Texec are known and non-zero.
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Figure 3.2: Job Computation Timing for Multi-Part Offloading.

3.2 Markovian Channel and the Time-Dilated Absorbing

Markov Model

Continuous Offloading

In many studies, homogeneous Markov chains have been used to model random wireless

channel conditions and as is often assumed, the Markovian transition probabilities are taken

to be known, or have been learned dynamically (Gillbert, 1960; Elliott, 1963; Zhang et al.,

2015, 2013; Zafer and Modiano, 2007; Johnston and Krishnamurthy, 2006). Accordingly,

we assume that the computation offloading occurs over a finite state Markovian channel.

In this case, the OnOpt (Online Optimal) algorithm proposed in Chapter 4 is an online

computation offloading algorithm that attains the minimum expected execution energy for

continuous offloading. As is commonly assumed, the channel data rate is defined by the

Markovian channel state and the receive signal-to-noise ratio (SNR) is such that errors

due to random noise are negligible. When this is not the case, then the execution time

constraint will still be satisfied by the OnOpt algorithm (Zhang et al., 2015; Johnston and

Krishnamurthy, 2006).

In this section we use the conventional channel state Markov chain (CSMC) to form

a time-dilated absorbing Markov chain (TDAMC), which models the offloading over the
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channel. The resulting Markov process is used by OnOpt in order to compute its energy

and offloading time estimates, and by our analysis, in order to show its optimality. As

mentioned above, we focus on Tup, ignoring Texec and Tdown (cf. Figure 3.1); hence, Toff

and S below refer to Tup and Sup, respectively.

In the CSMC, and starting from the current time slot ts, the channel conditions will

evolve from one time slot to the next according to a homogeneous finite state Markov

chain. We denote the set of possible channel states byM, where M = |M| is the number

of states in the CSMC. As discussed previously, the radio transmit power is fixed and bit

rate adaptation is used to adjust to varying channel conditions. Therefore, each state in the

CSMC has an associated bit rate that gives the number of bits per time slot that can be up-

loaded when offloading occurs in that state. In a general Markov chain model, the CSMC

transition matrix is defined as P = [Pi,j], where Pij is the probability of transitioning to

channel state j in the next time slot, given that the channel is currently in state i. Unfor-

tunately, CSMC is memoryless as far as the state of offloading and channel conditions are

concerned; in order to incorporate them into our model, we form a new Markov chain,

referred to as a time-dilated absorbing Markov chain (TDAMC). We are again interested in

the evolution of the system starting at the current time slot ts, and running until the com-

putation has completed, either locally or via offloading. The state of the channel in each

TDAMC state at time t ≥ ts is represented by Xt where Xt ∈ M. However, unlike the

CSMC, the TDAMC incorporates t and other information into its structure.

The TDAMC models the job offloading progress if the latter is initiated at the current

time slot ts. It is a rooted tree, constructed as follows: The root state is the channel stateXts

at current time slot ts; since this is the current time slot, Xts is known. At each subsequent

time slot, the Markov chain tree branches forward, according to the transitions possible
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from the current state (Xts , initially) to other CSMC states. At each step along a given

tree branch, the number of job bits transmitted is determined by the bit rate associated with

the channel state in question. This construction continues along each branching tree path

until the number of bits offloaded reaches the job upload size, S = Sup. At that point, the

state reached in the TDAMC is defined as a Markov chain absorbing state, i.e., it has a

self-transition with probability 1. From this construction it can be seen that the TDAMC

includes all possible paths that lead to a successful job offload, and that all of the states are

either transient or absorbing. Eventually, all paths terminate in an absorbing state, and the

energy cost of that path is proportional to its length, i.e., the number of time slots needed.

An example of a TDAMC is shown in Figure 3.3, for ts = 1. It is constructed from a

two-state Gilbert-Elliot channel, which is modelled by a CSMC withM = {G,B} (i.e.,

with “Good” and “Bad” states, respectively), and transition probabilities matrix

PGG PGB

PBG PBB

 ,
i.e., P1,1 = PGG, P1,2 = PGB, P2,1 = PBG and P2,2 = PBB. In each time slot, the TDAMC

transitions to a new state in accordance with these transition probabilities. For clarity, each

channel state in the figure is subscripted with its level time and the index of the subtree it

belongs to. For example, G3,2 indicates that the channel state at level t = 3 and subtree 2 is

Good. The TDAMC shows that at t = 3, the channel can remain in the G state, i.e., G4,2 or

transition to the B state, i.e., B4,2 with the given CSMC transition probabilities. Each state

of the TDAMC defines the number of bits that can be offloaded during a time slot while in

that state. In the example of Figure 3.3, when the channel state is G, the number of payload

bits is defined by the number of bits that can be carried on the channel during a good (i.e.,
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Figure 3.3: Time Dilated Absorbing Markov Chain Example

high bit-rate) channel state. In the general case, when the channel is in state Xt at time t,

the number of child states at t + 1 is given by the number of non-zero values in the same

row of the original CSMC transition matrix. In Figure 3.3, each state continues to branch

downwards until the number of offloaded bits for a given branch reaches the total number

needed for the offload. At that point, the branch ends in a Markov chain absorbing state

discussed previously. In Figure 3.3, states G3,1, G4,1 and G4,2 are absorbing states.

The non-absorbing states in the TDAMC are clearly all transient states. We defineA to

be the number of absorbing states and T to be the number of transient states in the TDAMC.

For an absorbing Markov chain, by labeling the transient states first, the resulting transition

matrix can be written in the following form (Grinstead and Snell, 2006):

PTDAMC =

Q R

0 IA

 . (3.3)

In PTDAMC, the T × T sub-matrix Q contains the probabilities of transitioning between
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transient states before the job upload is completed. The T × A sub-matrix R contains the

probabilities of transitioning from a transient state to an absorbing state, indicating that

the job upload is finished. 0 is an A × T zero matrix and IA is an A × A identity (i.e.,

absorbing) matrix.

Q contains the entries of the original CSMC transition matrix that give the transition

probabilities of each state k when it transits to a state in {sk, sk + 1, · · · , fk}, and, for our

TDAMC, it has the following form:

Q =



0 P1,s1 · · · P1,f1 0 · · · 0 · · · 0

0 0 · · · 0 P2,s2 · · · P2,f2 · · · 0

...
...

...
...

...
...

0 0 · · · 0 0 · · · 0 · · · 0


.

It can be seen that Q is upper triangular, as expected, since all states are transient and can

be visited at most once. The (possibly) non-zero transition probabilities shown in row one,

for example, give the probability of transitioning to all possible t = 2 channel states and so

on.

With the above construction and using results from the theory of absorbing Markov

chains, various statistics can be computed by first forming the fundamental matrix

N = (I −Q)−1. (3.4)

For example, entry (i, j) of N gives the expected number of times that the TDAMC is in

transient state j if the system is started in transient state i.

Due to the structure of our TDAMC, the computation needed in Equation (3.4) can be
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greatly simplified. Note that N−1 is still an upper triangular matrix with all the diagonal

entries equal to one, and can be decomposed as follows:

N−1 = NTNT −1NT −2 · · ·N1,

where

Nk =



1 0 · · · 0 n1,k · · · 0

0 1 · · · 0 n2,k · · · 0

...
... . . . ...

... . . . ...

0 0 · · · 1 nk−1,k · · · 0

0 0 · · · 0 1 · · · 0

...
... . . . ...

... . . . ...

0 0 · · · 0 0 · · · 1



.

Nk is an atomic triangular matrix whose inverse is given by

N−1k =



1 0 · · · 0 −n1,k · · · 0

0 1 · · · 0 −n2,k · · · 0

...
... . . . ...

... . . . ...

0 0 · · · 1 −nk−1,k · · · 0

0 0 · · · 0 1 · · · 0

...
... . . . ...

... . . . ...

0 0 · · · 0 0 · · · 1


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Then

N = (NTNT −1NT −2 · · ·N1)
−1 = N−11 N−12 N−13 · · ·N−1T

Note that each column of the Q matrix has only one nonzero element. Therefore, N−1

will have only two nonzero elements in each column. Similarly, in Nk only one of the

n1,k, n2,k, . . . , nk−1,k is non-zero. Therefore, the multiplication can be done efficiently.

The absorption probabilities for all absorbing states can be obtained by

W = NR, (3.5)

whereW is a T ×Amatrix andW [i, j] gives the probability that a particular absorbing state

j will be reached if the system starts in transient state i. Using this procedure, we can thus

compute the various probabilities of absorption for each absorbing state, given knowledge

of the starting state. Therefore, we can obtain the probability of finishing the offload for

every possible offloading time Toff by summing all of the absorbing state probabilities that

have the same TDAMC path length. We define Pt(T, x) to be the probability of offloading

in exactly T time slots, when offloading starts at time t with the channel in state Xt = x.

Then

Pt(Toff , x) =
∑
j∈S

W [x, j] (3.6)

where S are all of the entries of the matrix where the offloading time is equal to Toff . Note

that Pt(T, x) = 0 when it is impossible to offload in a period of exactly T time slots when

offloading at t with the channel in state Xt = x, i.e, T is shorter (longer) than the shortest

(longest) time needed to offload, under the best (worst) channel conditions. Pt(T, x) is

critical for computing the expected cost of offloading used by the algorithm OnOpt (cf.
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Chapter 4).

The ability to compute the Pt(T, x) values allows for the computation of the energy

costs for both offloading and local execution. If offloading the job (of bit size S) starts at

time slot t, its expected transmission energy is calculated as follows, depending on whether

• offloading is certainly completed (1 ≤ t < tD − S
Bmin

+ 1), in which case the energy

spent is proportional to Toff .

• offloading may or may not be completed within the deadline (tD − S
Bmin

+ 1 ≤ t ≤

tD), in which case the energy cost is Toff or tD − t + 1, respectively (clearly the

deadline tD is the last time slot where offloading can be done).

Noting that Pt(Toff , x) = 0 when Toff < S
Bmax

or Toff > S
Bmin

,2 the expected offloading

energy cost when offloading starts at time slot t with the channel in state x, is given by

(3.7).

Recall that local execution is postponed until the very last moment, i.e., time slot tL =

tD − TL + 1, where TL is the number of time slots needed by the task to execute locally. A

central idea of this thesis is that, although local execution is always initiated (if offloading

has not completed earlier) at time tL, in order to guarantee completion within the deadline,

offloading will be decided in such a way so that it will (hopefully) terminate before tD,

thus saving us the energy cost of the remaining local execution. The overlap time (when

such exists) between offloading at time t and local execution is min{tD + 1, t+Toff}− tL.

By recalling that EL is the energy cost of complete local execution of the task, the local

execution energy cost will be 0 if there is no overlap, or a fraction min{tD+1,t+Toff}−tL
TL

of

EL if there is. Hence, we obtain that the expected local execution cost when offloading

2We will assume that S
Bmax

and S
Bmin

are integers, to avoid burdening our formulas with ceilings
⌈

S
Bmax

⌉
and

⌈
S

Bmin

⌉
.
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Eoff (t, x) =



Etr

S
Bmin∑

Toff=
S

Bmax

Pt(Toff , x)Toff , 1 ≤ t < tD − S
Bmin

+ 1

Etr

 tD−t∑
Toff=

S
Bmax

Pt(Toff , x)Toff+

S
Bmin∑

Toff=tD−t+1

Pt(Toff , x)(tD − t+ 1)

 ,

tD − S
Bmin

+ 1 ≤ t ≤ tD

0 t > tD

(3.7)

EL(t, x) =



S
Bmin∑

Toff=tL−t+1

Pt(Toff , x)
(

min{tD+1,t+Toff}−tL
TL

EL

)
, 1 ≤ t < tL

S
Bmin∑

Toff=
S

Bmax

Pt(Toff , x)
(

min{tD+1,t+Toff}−tL
TL

EL

)
, tL ≤ t ≤ tD

EL t > tD

(3.8)

starts at time t with the channel in state x, is given by (3.8). In the first case, there will

be overlap only for Toff ≥ tL − t + 1, while in the second there is always overlap, since

t− tL + Toff > 0.

Note that the above development was presented by taking into account only the ran-

dom job uploading process. These results are easily extended to include both the (de-

terministic) cloud execution, i.e., Texec and a Markovian random downlink channel, i.e.,

Toff = Tup + Texec + Tdown and S = Sup + Sdown. This is done as follows. The TDAMC

of Figure 3.3, which models the uploading of Sup bits, is extended by branching out from

each (previously) absorbing state for Texec transition steps. This is followed by branch-

ing out according to a process similar to the TDAMC of Figure 3.3, which then models
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the downloading of Sdown bits. The resulting Markov process therefore tracks the chan-

nel throughout all three offloading periods, i.e., upload, remote execution, and download,

shown in Figure 3.1.

Multi-Part Offloading

As is the case for continuous offloading, we assume that there is a known channel state

Markov chain (CSMC), i.e., the channel conditions evolve from one time slot to the next

according to a homogeneous finite state Markov chain. We consider the tree-like Markov

chain produced by following the evolution of the channel, starting from an initial state at

time t = 1, and branching out from each state according to the transition probabilities of

the CSMC. This new Markov chain is referred to as a time-dilated absorbing Markov chain

(TDAMC). We will denote by Xt a state in this Markov chain, reached after running the

channel for t time slots. We will consider subtrees of this TDAMC (such at TDAMC1 and

TDAMC2 below), endowed with energy costs and absorbing states.

The part of the TDAMC which models the offloading progress if the uploading of Sup1

is initiated at a time slot ts, will be denoted as TDAMC1. An example of TDAMC1 is

shown in Figure 3.4: It is constructed from a two-state Gilbert-Elliot channel, which is

modelled by a CSMC with two states {G,B} (i.e., a “Good” one with the higher bit rate,

and a “Bad” one, respectively), and with transition probabilities PGG, PGB, PBG, PBB. In

each time slot, TDAMC1 transitions to a new state in accordance with these transition

probabilities. For clarity, each state sat in the figure is subscripted by its time slot t, and

superscripted by a unique identifier a that distinguishes it from the other channel states

reachable after t time slots. Hence, the TDAMC1 of Figure 3.4 models the offloading

process initiated at time slot ts, when the channel state that has been reached at that time is
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Figure 3.4: TDAMC1 when offloading Sup1 starts at time ts.

s19ts . The bit rate at each state is also indicated.

In general, TDAMC1 is a rooted subtree of the TDAMC, constructed as follows: The

root state is the (known) channel state Xts at current time slot ts. At each subsequent time

slot, the Markov chain tree branches forward, according to the transitions possible from the

current state (Xts , initially) to other TDAMC states. At each state, the number of job bits

transmitted is determined by the bit rate associated with that state. The branching contin-

ues to create all possible paths of states needed to upload Sup1 bits, up to some state Xtf1

corresponding to upload finishing time tf1 for each path from the root. (such as s37ts+1, s
75
ts+2,

represented by squares in Figure 3.4). At time tf1 +1, the second part Sup2 is released. Con-

tinuing the branching of the TDAMC, and after a possible waiting period, the uploading of

Sup2 commences, followed by the job execution in the cloud in time Texec, and the down-

loading of the results in time Tdown, ending in an absorbing state (this part of the offloading

33



M.A.Sc. Thesis - Arvin Hekmati McMaster - Electrical Engineering

is depicted in Figure 3.4 as subtrees hanging from states s73ts+2, s
74
ts+2, s

149
ts+3, s

150
ts+3). The op-

timal waiting time for each path, i.e., the waiting times which optimize the total (over all

paths) expected energy cost for uploading Sup2 , is solved in Chapter 4. Then the energy

cost of each subtree is the optimal expected (over all paths) cost of completing offloading,

when uploading Sup1 finishes in time slot tf1 and state Xtf1
. In fact, TDAMC1 does not

need to extend all the way into these subtrees, but treats states Xtf1+1 as absorbing states,

each with cost equal to the energy cost of its subtree.

Similarly to continuous offloading, the probability of uploading Sup1 in Tup1 time slots,

starting at time slot to1 , and a state Xto1
, can be calculated by building TDAMC1, with a

set of absorbing states A, and a set of transient states T . Then, the transition matrix can be

written (Grinstead and Snell, 2006) as

P =

Q R

0 IA

 , (3.9)

where the |T | × |T | sub-matrix Q contains the probabilities of transitioning between tran-

sient states, the |T | × |A| sub-matrix R contains the probabilities of transitioning from a

transient state to an absorbing state, and IA is an |A| × |A| identity matrix.

The theory of absorbing Markov chains implies that various statistics can be computed

by forming the fundamental matrix N = (I − Q)−1, where N [i, j] gives the expected

number of times that TDAMC1 is in transient state j if the system is started in transient

state i. Given the structure of TDAMC1, N can be easily decomposed and calculated as

in continuous offloading, since the particular structure of matrices Q,N,N−1 is the same

simple one as in continuous offloading. The absorption probabilities matrix W1 for all
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absorbing states is given by

W1 = NR, (3.10)

where W1 is a |T | × |A| matrix, and W1[i, j] gives the probability that absorbing state j

will be reached when starting in transient state i. Therefore, the probability of uploading

the first part with size Sup1 in Tup1 time slots, starting at time to1 and state Xto1
, is

Pto1 (Sup1 , Tup1 , Xto1
) =

∑
j∈S1 W1[Xto1

, j], (3.11)

where S1 is the set of absorbing states in TDAMC1 reached by a path of length Tup1 + 1

from the root Xto1
.

Similarly to TDAMC1, and in order to calculate the expected cost once the uploading

of Sup2 commences at time slot to2 , we construct TDAMC2, which tracks the offloading

process from to2 and state Xto2
until offloading is completed. Just like above, the probabil-

ity of uploading Sup2 in Tup2 time slots, starting at time to2 and state Xto2
, is

Pto2 (Sup2 , Tup2 , Xto2
) =

∑
j∈S2 W2[Xto2

, j] (3.12)

where S2 is the set of absorbing states in TDAMC2 reached by a path of length Tup2 + 1

from the root Xto2
.

If the uploading of Sup1 starts at time slot to1 , and after noting that Pto1 (Sup1 , Tup1 , x) =

0 when Tup1 <
Sup1

Bmax
or Tup1 >

Sup1

Bmin
, the expected offloading energy cost when offloading

starts at time slot to1 in state Xto1
, is given by equation (3.13), and the expected local

execution cost is given by (3.14), where Etr is the transmission energy of the mobile device

during one time slot.
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Eoff1(Sup1 , Xto1
) =

Etr
∑ Sup1

Bmin

Tup1=
Sup1
Bmax

Pto1 (Sup1 , Tup1 , Xto1
)Tup1 , 1 ≤ to1 < tD −

Sup1

Bmin
+ 1

Etr

(∑tD−to1
Tup1=

Sup1
Bmax

Pto1 (Sup1 , Tup1 , Xto1
)Tup1+∑ Sup1

Bmin
Tup1=tD−to1+1 Pto1 (Sup1 , Tup1 , Xto1

)(tD − to1 + 1)

)
,

tD −
Sup1

Bmin
+ 1 ≤ to1 ≤ tD

(3.13)

EL1(Sup1 , Xto1
) =

∑ Sup1
Bmin
Tup1=tL−to1+1 Pto1 (Sup1 , Tup1 , Xto1

)
(

min{tD+1,to1+Tup1}−tL
TL

EL

)
, 1 ≤ to1 < tL∑ Sup1

Bmin

Tup1=
Sup1
Bmax

Pto1 (Sup1 , Tup1 , Xto1
)
(

min{tD+1,to1+Tup1}−tL
TL

EL

)
, tL ≤ to1 ≤ tD

(3.14)

The expected energy cost of uploading Sup2 in exactly Tup2 time slots, and downloading

the results in exactly Tdown time slots, starting at time to2 with the channel TDAMC in state

Xto2
, is given by equation (3.15), whereErc is the energy consumption of the mobile device

during one time slot when receiving from the server.
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Êoff2(Sup2 , Tup2 , to2) =

EtrTup2 + ErcTdown, tf1 < to2 ≤ tD − Tup2 − Trest

EtrTup2 + Erc{tD − (to2 + Tup2 + Texec) + 1}, tD − Trest < to2 + Tup2 ≤ tD − Texec

EtrTup2 , tD − Texec < to2 + Tup2 ≤ tD

Etr(tD − to2 + 1), tD < to2 + Tup2 ≤ tD + Tup2

(3.15)

Then the expected offloading energy cost is

Eoff2(Sup2 , Xto2
) =

Sup2
Bmin∑

Tup2=
Sup2
Bmax

Pto2 (Sup2 , Tup2 , Xto2
)Êoff2(Sup2 , Tup2 , to2). (3.16)

Given the finishing time tf1 of uploading Sup1 , the local execution energy cost corre-

sponding to the offloading portion, starting with the uploading of Sup2 at time to2 and state

Xto2
, taking exactly Tup2 time slots, and finishing with the downloading of the results, is

given in (3.17).
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ÊL2(Tup2 , tf1 , to2) =

0, tf1 < to2 < tL − Tup2 − Trest

to2+Tup2+Trest−tL
TL

EL, tf1 < tL ∧ tL − Tup2 − Trest ≤ to2 ≤ tD − Tup2 − Trest

EL, tf1 < tL ∧ tD − Tup2 − Trest < to2 ≤ tD

to2+Tup2+Trest−tf1
TL

EL, tf1 ≥ tL ∧ tf1 < to2 ≤ tD − Tup2 − Trest

tD−tf1
TL

EL, tf1 ≥ tL ∧ tD − Tup2 − Trest < to2 ≤ tD

(3.17)

Then the expected local execution energy cost is

EL2(Sup2 , tf1 , Xto2
) =

S
Bmin∑

Tup2=
S

Bmax

Pto2 (Sup2 , Tup2 , Xto2
)ÊL2(Tup2 , tf1 , to2) (3.18)

Note thatEoff1 = 0, EL1 = EL for to1 ≥ tD+1, andEoff2 = 0, EL2 = EL for to2 ≥ tD+1,

i.e., when the first or second part isn’t uploaded, respectively.

3.3 Offline Bound

In this section, an offline lower bound on mobile device energy is derived. This bound is

used in Chapter 6 for performance comparisons with various online computation offloading

algorithms. Since the bound is offline, we assume that the wireless channel states are known
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for all future time slots. When a job is released, the bound then chooses the job offload time

so that its deadline is met and the energy needed is minimized.

Continuous Offloading

Let to be the time to start offloading, given that we know the bit rate Bt (in bits per time

slot) at all times 1 ≤ t ≤ tD (recall that tr is taken to be 1). Let tf (to) be defined as the

offload finishing time when offloading starts at to. Then to can be found by solving the

following IP.

min
to

max(to, tL)− tL
TL

EL +

tf (to)∑
t=to

et (3.19)

s.t.
max(to, tL)− tL

TL
EL +

tf (to)∑
t=to

et ≤ EL (3.20)

1 ≤ to ≤ tD. (3.21)

Objective (3.19) consists of two terms. The first is the local execution energy cost incurred

before offloading starts. If to < tL, this term is zero, which means that there has been no

local execution to that point; otherwise, to−tL
TL

EL is the energy that has been expended by

local execution energy before to. The second term in (3.19) is the total energy consumption

after offloading starts where et is the energy expended in time slot t. When to < t < tL,

each et includes only the offloading energy; and when t ≥ tL, both offloading and local

execution are performed at time slot t. Therefore, et is given as

et =


Etr, t < tL

Etr + EL

TL
, t ≥ tL

(3.22)
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where Etr is the energy cost per time slot for transmitting on the channel. Constraint (3.20)

ensures that the energy used in offloading does not exceed that of executing the job locally.

Note that if the IP is infeasible, then there is no feasible offloading start time to, i.e., it is

best to execute locally without offloading.

Multi-Part Offloading

In this case case, we assumed that we split the uploading data into two parts. For this

scenario, we also assumed that the downloading time of the results Tdown > 0. Let to1 be

the time to start offloading, given that we know the bit rate Bt (in bits per time slot) at all

times 1 ≤ t ≤ tD (recall that tr is taken to be 1). Let tf1(to1) and tf2(to2) be defined as the

offload finishing time when offloading starts at to1 for the first part and to2 for the second

part, respectively. Etr is the energy cost per time slot for transmitting on the channel. to1

and to2 can be found by solving the following IP.

min
to1 ,to2

max(tf2(to2) + Trest, tL)− tL
TL

EL + (tf1(to1)− to1)Etr+

(tf2(to2)− to2)Etr + TdownErc (3.23)

s.t.
max(tf2(to2), tL) + Trest − tL

TL
EL + (tf1(to1)− to1)Etr+

(tf2(to2)− to2)Etr + TdownErc ≤ EL (3.24)

1 ≤ to1 ≤ tD (3.25)

tf1(to1) < to2 ≤ tD. (3.26)

Objective (3.23) consists of four terms. The first term is the local execution energy cost

incurred for the whole offloading of two parts. If tf2(to2) + Trest < tL, first term is zero,
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which means that there has been no local execution by the end of offloading the second

part; otherwise, tf2 (to2 )+Trest−tL
TL

EL is the energy that has been expended by local execution

energy. The second and third term in (3.23) are the energy cost of the transmission for

uploading the first and second part, respectively. The fourth term is the energy incurred

for downloading the results. Constraint (3.24) ensures that the energy used in offloading

does not exceed that of executing the job locally. Note that if the IP is infeasible, then there

are no feasible offloading start times to1 and to2 , i.e., it is best to execute locally without

offloading.
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Chapter 4

Optimal Offloading Starting Time

In this Chapter, we use the time-dilated absorbing Markov model construction of Section

3.2 and the theory of optimal stopping for Markov decision processes (Peskir and Shiryaev,

2006) to define the OnOpt and MultiOpt algorithms, and show that they achieve the optimal

expected energy consumption for offloading.

4.1 OnOpt (Online Optimal) Algorithm

A high-level description of the algorithm is as follows: At each time slot t (starting from the

job release time slot), the algorithm considers the TDAMC model for starting offloading

at current time ts = t. It computes (based on the TDAMC) the optimal offloading starting

time τ ∗tD ≥ t, by formulating the problem as a Markovian optimal stopping problem. If

τ ∗tD = t, then offloading is started immediately at time t. Otherwise, the algorithm waits

till time slot t+ 1, to repeat the above process.

Suppose that the current time slot is ts, and consider the corresponding TDAMC rooted

at state Xts . In order to compute the optimal time slot for starting offloading (if offloading
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turns out to be more beneficial, in expectation, than executing the task solely locally), we

need to compute the offloading starting time τ ∗tD that satisfies the following optimization

problem:

vtD(y) = min
t:ts≤t≤tD+1

E[gt(Xt)|Xts = y]

= min
t:ts≤t≤tD+1

∑
z∈M

Pr[Xt = z|Xts = y]gt(z), (4.1)

where Xts is the current channel state, and gt(x) is the expected total energy cost if of-

floading starts at time slot t with channel state Xt = x. The choice of t = tD + 1 in (4.1)

corresponds to no offloading, in which case (3.7) and (3.8) imply a total cost of EL. Then,

for ts ≤ t ≤ tD,

gt(x) = Eoff (t, x) + EL(t, x), (4.2)

where Eoff (t, x), EL(t, x) are the expected offloading and local execution costs, respec-

tively, as defined in (3.7) and (3.8), when offloading starts at time t with the channel in

state Xt = x.

The optimization problem (4.1) is inherently an off-line problem, while the algorithm

we would like to use is inherently an on-line one, in the sense that at every time slot it has

to decide whether to offload or not, given the history of channel states it has encountered

so far. Such an algorithm is defined by the following recursion, which can be solved using

Dynamic Programming (DP), i.e.,

Vt(x) =


EL, t ≥ tD

min{gt(x), E[Vt+1|Xt = x]}, t = ts, · · · , tD − 1

(4.3)
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Note that Vt(x) is the minimum between the expected total cost of offloading at the current

time slot t, and the expected cost of postponing that decision to time slot t + 1, given that

the channel state at time t is x, and E[Vt+1|Xt = x] is the expectation of Vt+1(Xt+1) over

all possible Xt+1, under the condition that Xt = x, i.e.,

E[Vt+1|Xt = x] =
∑
y∈M

Pr[Xt+1 = y|Xt = x]Vt+1(y).

Note that (4.3) implies a policy, that dictates whether at any time t and state Xt the algo-

rithm should start uploading (if the min is attained by gt), or should otherwise wait.

It is well known (e.g., Theorem 1.7 in (Peskir and Shiryaev, 2006)) that policy Vt in

(4.3) is optimal, i.e., it solves the original problem (4.1), since

vtD(y) = Vts(y), ∀y. (4.4)

Therefore, the following lemma holds:

Lemma 1. (Peskir and Shiryaev, 2006) The optimal offloading starting time for (4.1) is

τ ∗tD = arg mints≤t≤tD+1{Vt(x) = gt(x)}.

Lemma 3 implies that the on-line algorithm OnOpt, given in Algorithm 2, is optimal. Note

that this result is true for any Markovian channel. The algorithm is given the local ex-

ecution starting time tL, local execution energy EL, job deadline tD, and job size S. It

then arranges for the job to be executed either locally or by remote offloading (or both, if

needed). Initially, the remote offload is disabled by setting to to a value greater than tD in

Line 1. At each time slot ts with the channel at state Xts = x, we test if ts < to, i.e., no

offload has been initiated for the job. Then both gts(x) and E[Vts+1|Xts = x] are computed

(using (4.2) and using DP to solve (4.3), respectively). If gts(x) ≤ E[Vts+1|Xts = x], then
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the offload begins at time ts, i.e., to = ts, since in this case τ ∗tD = ts from Lemma 3. If of-

floading finishes before a local execution finishes, then local execution is terminated (Line

11). At Line 13 we check to see if local execution should start so that the job’s deadline

can be guaranteed. Similarly, Line 16 tests if the local job has completed. In that case, any

remote offload in progress will be terminated.

Algorithm 1 OnOpt (Online Optimal) Algorithm
Input: Local execution starting time tL, local execution energy EL, job deadline tD, and

job size S.

1: to :=∞ . Offloading initially disabled (to is offload start time)
2: for all ts ∈ {1, . . . , tD} do
3: if ts < to then
4: cts := gts(x) . Expected energy cost of offloading at ts.
5: cts+1 := E[Vts+1|Xts = x] .

Expected energy cost of waiting until ts + 1.
6: if cts ≤ cts+1 then
7: to := ts . Start offloading.
8: end if
9: else if offloading terminates at ts then

10: Abort local execution (if active). .
Remote offload response has been received.

11: return
12: end if
13: if ts = tD − TL + 1 then
14: Start local execution. . Ensure that the job deadline is satisfied.
15: end if
16: if ts = tD then
17: Abort remote offload (if active). .

Local execution has completed.
18: return
19: end if
20: end for
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4.2 Optimality Proof of OnOpt

Here we are going to proof the correctness of the equation (4.4)

vtD(x) = Vts(x)

where,

vtD(x) is the value function with the time horizon tD which is the deadline of the job (Wang,

2006).

Consider the process:

Zt =

t−1∑
j=ts

cj(Xj) + Vt(Xt) ; t = ts, ts + 1, . . . , tD (4.5)

Zt is the accumulated total expected cost we incur if we postpone our offloading decision

to time t. Note that cj(Xj) is cost of waiting which in our case is zero.

Here we proof that, the process {Zt : t = ts, ts + 1, . . . , tD} is a sub-martingle. Indeed,

1. E[Zt+1|Xt, Xt−1, . . . , Xts ] =

t∑
j=ts

cj(Xj) + E[Vt+1(Xt+1)|Xt = x] =

t−1∑
j=ts

cj(Xj) + ct(Xt) + E[Vt+1(Xt+1)|Xt = x]

2. Vt(Xt) = min{gt(Xt), ct(x) + E[Vt+1(Xt+1)|Xt = x]}

From 1 and 2, we have: E[Zt+1|Xt, Xt−1, . . . , Xts ] ≥
t−1∑
j=ts

cj(Xj) + Vt(Xt) = Zt
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Now, If we get expectation of the inequality of the result we will have:

E[Zt+1] ≥ E[Zt] ≥ E[Zt−1] ≥ · · · ≥ E[Zts ]

=⇒ E[Zτ ] ≥ E[Zts ] = Vts(x)

For any stopping times (τ ) taking values in {ts, ts + 1, . . . , tD}.

But By definition, we know that Vj(Xj) ≤ gj(Xj) for any j, thus:

Vts(x) ≤ E[Zτ ] ≤ E[

τ−1∑
j=ts

cj(Xj) + gτ (Xτ )]

We define:

Zτ∗tD∧t
= 1{τ∗tD≤t}

Zτ∗tD
+ 1{τ∗tD≥(t+1)}Zt

The definition of 1{condition} is:

1{condition} =


1, if condition is true

0, if condition is false

Actually, Zτ∗tD∧t is the total cost we incur at time equals to t, if we start offloading at

time equals to τ ∗tD .

For every t = ts, ts + 1, . . . , tD − 1, we have:
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Zτ∗tD∧(t+1) = 1{τ∗tD≤(t+1)}Zτ∗tD
+ 1{τ∗tD≥(t+2)}Zt+1 =

= 1{τ∗tD≤t}
Zτ∗tD

+ 1{τ∗tD=(t+1)}Zt+1 + 1{τ∗tD≥(t+2)}Zt+1

= 1{τ∗tD≤t}
Zτ∗tD

+ 1{τ∗tD≥(t+1)}Zt+1

If we get expectation of Zτ∗tD∧(t+1), we will have:

E[Zτ∗tD∧(t+1)|Xt, Xt−1, . . . , Xts ] =

= 1{τ∗tD≤t}
Zτ∗tD

+ 1{τ∗tD≥(t+1)}E[Zt+1|Xt, Xt−1, . . . , Xts ]

= 1{τ∗tD≤t}
Zτ∗tD

+ 1{τ∗tD≥(t+1)}


t∑

j=ts

cj(Xj) + E[Vt+1(Xt+1)|Xt = x]



= 1{τ∗tD≤t}
Zτ∗tD

+ 1{τ∗tD≥(t+1)}


t−1∑
j=ts

cj(Xj) + ct(Xt) + E[Vt+1(Xt+1)|Xt = x]



= 1{τ∗tD≤t}
Zτ∗tD

+ 1{τ∗tD≥(t+1)}


t−1∑
j=ts

cj(Xj) + Vt(Xt)


= 1{τ∗tD≤t}

Zτ∗tD
+ 1{τ∗tD≥(t+1)}Zt = Zτ∗tD∧t
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Therefore, we can get to following result by simply getting expectation of expectation,

E[Zτ∗tD∧ts
] = E[Zτ∗tD∧ts+1] = E[Zτ∗tD∧ts+2] = · · · = E[Zτ∗tD∧τ

∗
tD

] = E[Zτ∗tD∧tD
]

Moreover, we know:

E[Zτ∗tD∧ts
] = E[Zts ]

E[Zτ∗tD∧τ
∗
tD

] = E[Zτ∗tD
]

Therefore,

E[Zts ] = E[Zτ∗tD
] = E


τ∗tD−1∑
j=ts

cj(Xj) + Vτ∗tD
(Xτ∗tD

)

 = E


τ∗tD−1∑
j=ts

cj(Xj) + gτ∗tD
(Xτ∗tD

)


= vtD(x)

Moreover, we know:

Vts(x) = E[Zts ]

Therefore,

Vts(x) = vtD(x).

Here the proof ends.
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4.3 MultiOpt (Multi-Decision online Optimal) Algorithm

A high-level description of the algorithm is as follows: Starting from time slot t = 1

(the release time of the job), at each time slot t the algorithm considers TDAMC1 in

order to determine the expected cost of the whole offloading process if uploading Sup1

commences at the current time t. If that cost is less than the expected offloading cost

when the algorithm waits one more time slot, then t∗o1 = t (offloading Sup1 commences),

otherwise the algorithm postpones its decision to time slot t + 1. Once the uploading

of Sup1 finishes, the algorithm repeats the same decision process at every time slot (using

TDAMC2 to compute expected costs), to determine the time t∗o2 of starting uploading Sup2 .

MultiOpt will be optimal only if its first decision t∗o1 ≥ t, i.e., its starting time of

uploading Sup1 , coincides with the solution of the following minimization problem (where

the choice to1 = tD + 1 corresponds to no uploading):

v1(Xt) = min
t≤to1≤tD+1


∑

Xto1
∈S1

Pr[Xto1
|Xt]

(
Eoff1(Sup1 , Xto1

) + EL1(Sup1 , Xto1
)+

∑
Xtf1

+1∈S2

W1[Xto1
, Xtf1+1]v2(tf1 , Xtf1+1)

) (4.6)

where S1 is the set of states reachable after running the channel for to1 time slots, S2 is

the set of absorbing states of TDAMC1 rooted at Xto1
, and v2(tf1 , Xtf1+1) is the optimal

expected energy cost for the rest of the offloading, when Sup1 finished uploading at time tf1 ,

i.e., the cost of the absorbing stateXtf1+1 of TDAMC1 (or, equivalently, the corresponding

subtree of Figure 3.4). This optimal cost is the solution of the following optimization
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problem for t > tf1 , when we set Xt := Xf1+1:

v2(tf1 , Xt) = min
t≤to2≤tD+1

E[g2(Sup2 , tf1 , Xto2
)|Xt]

= min
t≤to2≤tD+1

∑
Xto2

∈T1

Pr[Xto2
|Xt]g2(Sup2 , tf1 , Xto2

), (4.7)

where T1 is the set of states reachable after running the channel for to1 time slots, and

g2(Sup2 , tf1 , Xto2
) is the expected energy cost of uploading Sup2 and downloading the re-

sults, if uploading of Sup1 finishes at tf1 and uploading Sup2 starts at time slot to2 and state

Xto2
, i.e.,

g2(Sup2 , tf1 , Xto2
) = Eoff2(Sup2 , Xto2

) + EL2(Sup2 , tf1 , Xto2
). (4.8)

For t > tD, v2(tf1 , Xt) = 0 (no uploading of the second part).

Given the first decision t∗o1 of MultiOpt, we show that its second decision t∗o2 solves

the optimization problem (4.7). For every time slot to2 > tf1 and state Xto2
, we define the

expected cost V2(tf1 , Xto2
) recursively as follows:

V2(tf1 , Xto2
) =



0, to2 > tf1 ≥ tD

EL −
max{tf1 ,tL}−tL

TL
EL, to2 ≥ tD > tf1

min{g2(Sup2 , tf1 , Xto2
), E[V2(tf1 , Xto2+1)|Xto2

]}, tD > to2 .

(4.9)

V2(tf1 , Xto2
) can be computed using Dynamic Programming (DP), and it is the minimum

between the expected total cost of starting uploading Sup2 at time slot to2 and state Xto2
,

51



M.A.Sc. Thesis - Arvin Hekmati McMaster - Electrical Engineering

and the expected cost of postponing that decision to time slot to2 + 1

E[V2(tf1 , Xto2+1)|Xto2
] =

∑
Xto2+1∈T2

Pr[Xto2+1|Xto2
]V2(tf1 , Xto2+1), (4.10)

where T2 is the set of states reachable after running the channel for to2 + 1 time slots. Note

that (4.9) implies a policy, that dictates whether at any time to2 and state Xt02
the algorithm

should start uploading (if the min is attained by g2), or should otherwise wait. It is well

known (e.g., Theorem 1.7 in (Peskir and Shiryaev, 2006)) that policy V2 is optimal, i.e.,

solves the original problem (4.7), since

v2(tf1 , Xt) = V2(tf1 , Xt), ∀t > tf1 , Xt. (4.11)

Hence the following holds:

Lemma 2. (Peskir and Shiryaev, 2006) The optimal time for starting uploading Sup2 is

t∗o2 = arg mintf1<to2≤tD{V2(tf1 , Xto2
) = g2(Sup2 , tf1 , Xto2

)}.

It remains to prove that the first decision t∗o1 of MultiOpt is also optimal. For any possi-

ble choice to1 for the first decision of MultiOpt, (4.11) can be applied, and the optimization

problem (4.6) becomes

v1(Xt) = min
t≤to1≤tD+1


∑

Xto1
∈S1

Pr[Xto1
|Xt]

(
Eoff1(Sup1 , Xto1

) + EL1(Sup1 , Xto1
)+

∑
Xtf1

+1∈S1

W1[Xto1
, Xtf1+1]V2(tf1 , Xtf1+1)

) (4.12)
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The expected energy cost of offloading when starting uploading Sup1 at time to1 and

state Xto1
is

g1(Sup1 , Xto1
) =Eoff1(Sup1 , Xto1

) + EL1(Sup1 , Xto1
)+∑

Xtf1
+1∈S1

W1[Xto1
, Xtf1+1]V2(tf1 , Xtf1+1). (4.13)

For every time slot to1 and state Xto1
, we define the expected cost V1(Xto1

) recursively as

follows:

V1(Xto1
) =


EL, to1 ≥ tD

min

{
g1(Sup1 , Xto1

), E[V1(Xto1+1)|Xto1
]

}
, to1 = 1, . . . , tD − 1

(4.14)

V1(Xto1
) can be computed using Dynamic Programming (DP), and it is the minimum be-

tween the expected total cost of starting uploading Sup1 at time slot to1 and state Xt01
, and

the expected cost of postponing that decision to time slot to1 + 1

E[V1(Xto1+1)|Xto1
] =

∑
Xto1+1∈S3

Pr[Xto1+1|Xto1
]V1(Xto1+1),

where S3 is the set of states reachable after running the channel for to1 + 1 time slots.

In exactly the same way as Lemma 2, one can show that policy V1 is also optimal, i.e.,

solves the original problem (4.6), since v1(Xt) = V1(Xt), ∀t,Xt. Hence the following

holds:

Lemma 3. (Peskir and Shiryaev, 2006) The optimal time for starting uploading Sup1 is

t∗o1 = arg min1≤to1≤tD{V1(Xto1
) = g1(Sup1 , Xto1

)}.

53



M.A.Sc. Thesis - Arvin Hekmati McMaster - Electrical Engineering

Lemmata 2 and 3 imply that the on-line algorithm MultiOpt, given in Algorithm 2, is

optimal. Note that this result is true for any Markovian channel.

Algorithm 2 MultiOpt (Multi-decision online Optimal)
Input: Local execution starting time tL, local execution energy EL, job deadline tD, and

job sizes Sup1 , Sup2 .

1: for all t = 1, . . . , tD do
2: Case 1: If uploading part 2 is finished then Break
3: Case 2: If still uploading at t then Continue
4: Case 3: If uploading part 1 not started then perform check (4.14); If min is g1 then

start uploading part 1.
5: Case 4: If part 1 has been uploaded but part 2 has not started uploading then perform

check (4.9); If min is g2 then start uploading part 2.
6: end for
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Chapter 5

A Case Study: The Gilbert-Elliot

Channel

In this chapter, we consider the well-known Gilbert-Elliot channel model (Gillbert, 1960;

Elliott, 1963), which has been used in many studies to model stochastic communication

channels, e.g., (Zhang et al., 2015, 2013; Zafer and Modiano, 2007; Johnston and Krish-

namurthy, 2006; Zed et al., 1995), and will be used in the results section of this thesis.

This channel model is typically used to characterize the effects of burst noise in wireless

channels, i.e., where the channel can abruptly transition from good to bad conditions (and

vice versa). This type of channels is a difficult one for computation offloading algorithms

to deal with, compared to one where there is much more correlation in the channel quality

as the offloading progresses. In this chapter, closed form results are derived for this channel

model that will be used to generate numerical results in Chapter 6.
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5.1 Deriving Formulas

With the two state channel model, we have Bmax = Bg and Bmin = Bb, where Bg and

Bb are the bit rates of the good and bad channel states, respectively (in bits per time slot).

In order to run Algorithm 2 with the specific energy costs of (3.7) and (3.8), we need to

calculate the probabilities Pt(Toff , Xt), which is the probability of an offload finishing in

Toff time slots, if it starts at time slot t with channel state Xt.

Let b be the number of bad state time slots during the Toff offloading time slots. Given

the data size S to be offloaded, b and Toff must satisfy S ≤ bBb + (Toff − b)Bg < S+Bg.

The upper bound is due to the fact that we transmit at most S+Bg bits (we assume that even

when the transmission of the useful S bits has been completed, paying the transmission cost

continues until the end of the last time slot). This implies that

(Toff − 1)Bg − S
Bg −Bb

< b ≤ ToffBg − S
Bg −Bb

(5.1)

Define B as a set of integers b satisfying (5.1). For any b ∈ B, the actual transmitted number

of bits, Ŝ, is given by

Ŝ = bBb + (Toff − b)Bg. (5.2)

Define P̂t(Toff , b,Xt) as the probability of an offloading, that starts at time slot t with

state Xt and takes Toff time slots (among which b time slots are in the bad states). We have

that

Pt(Toff , Xt) =
∑
b∈B

P̂t(Toff , b,Xt). (5.3)

Thus, Pt(Toff , Xt) can be obtained by summing over all of possible b’s in P̂t(Toff , b,Xt).

As a special case, we set P̂t(Toff , b,Xt) = 0 for all Toff and Xt when b < 0. In order to
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derive P̂t(Toff , b,Xt), we need the following lemma.

Lemma 4. If Ŝ − S ≥ Bb, then the final transmission state must be G.

Proof. Assume, for contradiction, that the final state is B. Then, the number of bits trans-

mitted in Toff − 1 time slots is ŜToff−1 ≥ ŜToff − Bb. Given the condition of the lemma,

this implies that ŜToff−1 − S ≥ 0, i.e., offloading finished within Toff − 1 time slots, a

contradiction.

Based on Lemma 4 andXt, four different cases are considered when calculating P̂t(Toff , b,Xt),

and are obtained from elementary counting:

• Xt = G and Ŝ − S ≥ Bb: See (5.4).

• Xt = G and Ŝ − S < Bb: See (5.5).

• Xt = B and Ŝ − S ≥ Bb: See (5.6).

• Xt = B and Ŝ − S < Bb: See (5.7).

P̂t(Toff , b,Xt) =
min(b−1,Toff−b−2)∑

k=0

(
b−1
k

)(
Toff−b−1

k+1

)
P k+1
GB P k+1

BG P
b−k−1
BB P

Toff−b−k−2
GG b > 0

P
Toff−1
GG b = 0

(5.4)
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P̂t(Toff , b,Xt) =

min(b−1,Toff−b−2)∑
k=0

(
b− 1

k

)(
Toff − b− 1

k + 1

)
P k+1
GB P k+1

BG P
b−k−1
BB P

Toff−b−k−2
GG

+

min(b−1,Toff−b−1)∑
k=0

(
b− 1

k

)(
Toff − b− 1

k

)
P k+1
GB P k

BGP
b−k−1
BB P

Toff−b−k−1
GG

b > 0

P
Toff−1
GG b = 0

(5.5)

P̂t(Toff , b,Xt) =

min(b−1,Toff−b−2)∑
k=0

(
b− 1

k

)(
Toff − b− 1

k

)
P k
GBP

k+1
BG P

b−k−1
BB P

Toff−b−k−1
GG

(5.6)

P̂t(Toff , b,Xt) =

min(b−1,Toff−b−1)∑
k=0

(
b− 1

k

)(
Toff − b− 1

k

)
P k
GBP

k+1
BG P

b−k−1
BB P

Toff−b−k−1
GG

+

min(b−1,Toff−b)∑
k=1

(
b− 1

k

)(
Toff − b− 1

k − 1

)
P k
GBP

k
BGP

b−k−1
BB P

Toff−b−k
GG

(5.7)

Although equations (5.4)-(5.7) can be used to calculate Pt(Toff , Xt) directly, we now

show how they can be computed recursively, which leads to a significant reduction in com-

putation time (albeit with the use of more memory). We show this for the case Ŝ−S ≥ Bb

and Xt is Good (the other cases are handled similarly). In that case, (5.4) applies. We
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assume b > 0 (case b = 0 is trivial). Then, (5.4) for b > 0 implies

P̂t(Toff , b, Good) =

min{b−1,Toff−b−2}∑
k=0

Z(k, Toff ) (5.8)

where

Z(k, Toff ) =

(
b− 1

k

)(
Toff − b− 1

k + 1

)
P k+1
GB P k+1

BG P b−k−1
BB P

Toff−b−k−2
GG (5.9)

and

Z(0, Toff ) = (Toff − b− 1)PGB PBG P
b−1
BB P

Toff−b−2
GG (5.10)

Then, it is easy to see that

Z(k + 1, Toff ) =
(b− k − 1)(Toff − b− k − 2)

(k + 1)(k + 2)

PGBPBG
PBBPGG

Z(k, Toff ) (5.11)

for all 0 ≤ k ≤ S
Bb

. By treating Bb and Bg as constant, precomputing Z(k, Toff ) for all

0 ≤ k ≤ S
Bb

and S
Bg
≤ Toff ≤ S

Bb
takes O(S2) operations when (5.10) and (5.11) are used.

Then, for any value of Toff , each P̂t(Toff , b, G) can be computed with O(S) operations

from (5.8); eventually, O(1) P̂t values are combined to compute each Pt(Toff , G) from

(5.3) (note that |B| = O(1), and that P̂t, Pt do not depend on t, except for defining Xt in

their arguments). Hence, we can precompute (and store) all possible Pt(Toff , Xt) using

O(S2) operations (and memory) overall. After that, (3.7) and (3.8) imply that we can

calculate Eoff (t, x) and EL(t, x) for each 1 ≤ t ≤ tD with O(S) arithmetic operations.

This implies that we can use (4.2) to precompute (and store) all gt(x)’s using O(STD)

operations (and memory) overall, and, therefore, all Vt(x)’s using O(STD) operations (and

memory), using the recursive definition (4.3). After this O(S2 + STD) preprocessing,
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Algorithm 2 can run in O(1) time per time slot. Although TD = Ω(S) in order for the

deadline to make sense, if TD >> S
Bb

then offloading immediately would be the practical

option. Therefore, we can assume that TD = Θ(S), and the time and memory complexity

of the algorithm is O(S2) in practice.

In this chapter we were able to derive better time and memory complexity than the one

implied in Section 3.2, by taking advantage of the specific Markovian process structure of

Gilbert-Elliot channels. In order to achieve similar gains for other Markovian channels,

one will need to tailor the Dynamic Programming approach above to the specific structure

of the channel Markov chain, if at all possible.
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Chapter 6

Performance Comparison of Optimal

and Heuristic Algorithms

In this chapter, computer simulation is used to study the performance of the proposed

OnOpt Algorithm. As discussed in Chapter 5, a Gilbert-Elliot channel is assumed when of-

floading. It should be emphasized that based on the described system model, the optimality

of the proposed OnOpt algorithm has been theoretically proved in terms of minimizing the

mean energy consumption. The Gilbert-Elliott channel model is commonly used to model

the effects of harsh channel conditions where burst noise can abruptly affect the data rate.

The simulation results based on this channel model are used to illustrate that, even with

its harsh channel conditions, there is significant gain in using the OnOpt algorithm over

other heuristics. We also assume that transmit power control is used on the downlink, and

therefore, Tdown (and Texec) are deterministic. Their effects can therefore be accounted for

by modifying the remote offload end-times used in the analysis.
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6.1 Continuous Offloading

There are three sets of simulations for Continuous Offloading, which span a wide range of

parameter values. This was done to assess the relative performance of the offloading algo-

rithms in widely varying situations. For comparison, we also plot the offline bound given

in Section 3.3, Local Execution and two other fast algorithms, referred to as Immediate

Offloading and Channel Threshold. The Local Execution algorithm executes the entire job

locally without doing any offloading. For the Immediate Offloading algorithm, offloading

starts at the job release time unless S/Bg > tD, i.e., if offloading cannot be completed

before the job deadline even with contiguous best wireless channel states, then the job is

only executed locally. For the Channel Threshold algorithm, offloading starts at the first

time slot when the channel condition is above a given threshold unless the remaining time

before the job completion deadline is less than S/Bg. For the Gilbert-Elliot channel used

in our results, any threshold between the good and bad states can be used, i.e., offloading

starts at the first good channel time slot provided that the remaining time before the job

completion deadline is no less than S/Bg. In both the Immediate Offloading and Channel

Threshold algorithms, local execution starts at time slot tL if offloading is not completed at

time slot tL − 1, i.e., they ensure that the job deadline is satisfied. The default parameters

used in the simulations are given as follows. Each time slot is taken to be 1 msec. The

data transmission rates are Bb = 1Mbps and Bg = 10Mbps, or Bb = 1kb per time slot

and Bg = 10kb per time slot. The transmit power is 1 W, which means that the transmis-

sion energy for each time slot is Etr = 1mJ. The local execution energy per CPU cycle

is vl = 2 × 10−6mJ and the local computation power fl = 1M CPU cycles per time slot

(Nir et al., 2014; Huang et al., 2012). We consider a job with S = 60Kb, D = 10M CPU

cycles, and tD = 60 time slots, where D is the number of local CPU cycles needed in order
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to execute the job. Therefore, the local execution time is TL = D/fl = 10 time slots, and

the local energy consumption EL = vlD = 20mJ. Based on Bg and Bg, a minimum of 6

time slots and a maximum of 60 time slots are needed in order to complete job offloading.

In all of the graphs, each value of average energy consumption is obtained after repeating

the simulation for 10,000 runs.

Scenario 1

Here we set PBB = 1 − PGG for the channel state transition probabilities. In this case,

PGB = PBB, PBG = PGG, and the equilibrium channel state probabilities are given by

Pg = PGG and Pb = PBB. PGG can therefore be used as a measure of the average channel

quality. In this set we present graphs by varying parameters such as TD, S, and good/bad

state residency times.

Figure 6.1 shows the average energy consumption versus TG, the asymptotic channel

residence time in the good state, where TG = 1
PGB

. The energy used by Local Execution

is obviously constant for all residence times. When the good state residence time is low,

the OnOpt algorithm does not offload because there is not enough time to complete the

offload, or, the expected energy is higher than EL. As the residence time increases, the

energy consumption for OnOpt decreases. The energy consumption for Channel Threshold

and Immediate Offloading decreases as the residence time in the good state increases. The

energy for these algorithms is above EL when the residence time is low.

Figure 6.2 shows the average energy consumption versus TB, the asymptotic mean

channel residence time in the bad state, where TB = 1
PBG

. Figure 6.2 shows that as the

bad state residence time increases, the energy consumption for all of the algorithms ini-

tially increases. When TB is above about 10 time slots, both the offline bound and the
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Figure 6.1: Average Energy Consumption Versus Channel Residence Time in Good State

OnOpt algorithm do not offload due to the long time needed, eventually resulting in the

same energy consumption as Local Execution. For the Channel Threshold algorithm, as

TB increases, offloading may still be possible either because the channel is in the good

state at the release time or the first good channel state appears not long afterwards. How-

ever, the probability that the offload can be completed before tD decreases as TB increases.

Therefore, the energy consumption increases with TB. As TB further increases, offloading
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Figure 6.2: Average Energy Consumption Versus Channel Residence Time in Bad State

is possible only if the channel is in the good state at the release time (the probability de-

creases as TB increases), and therefore, the energy consumption decreases. In Immediate

Offloading, the energy consumption increases with TB until TB is so large that the channel

is practically always in the bad state. The energy consumption, in this case, converges to

EL + EtrS/Bb = 80mJ.

Figure 6.10 shows the average energy consumption of the mobile device as the data size

S increases. When S is small, offloading can most likely meet the delay constraint without
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Figure 6.3: Average Energy Consumption Versus Data Size S: PGG = 0.2

local execution. The average energy consumption of the Channel Threshold and OnOpt

algorithms is the same, since the two algorithms offload at the same time slot, while the

Immediate Offloading algorithm consumes higher energy for the same reason as explained

previously. As S increases, a longer time is needed for wireless transmission, and both

the offline and OnOpt algorithms may decide not to offload, resulting in the same energy

consumption as Local Execution, while the Immediate Offloading and Channel Threshold

algorithms waste energy by offloading unnecessarily, which results in much higher energy

consumption.
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Figure 6.4: Average Energy Consumption Versus Local Execution Time TL: PGG = 0.5

Figure 6.4 shows the average energy consumption versus the local execution duration

time. Here, we change D from 2 to 15 CPU Mega-cycles. Deadline TD is set to 20 time

slots in order to make the deadline tighter and observe the effects of increasing TL. When

EL is small, the OnOpt algorithm does not offload because the expected cost is higher

than EL. When EL becomes large enough, the OnOpt algorithm starts offloading, thus

reducing its energy use. Increasing TL increases the chance that overlap occurs between

local execution and offloading. Therefore, the energy consumption for OnOpt starts to

increase. A similar situation happens for the other algorithms.

67



M.A.Sc. Thesis - Arvin Hekmati McMaster - Electrical Engineering

Scenario 2

In the second set, we set PBB = PGG, so that the equilibrium channel state probabilities are

equal, but by varying these parameters, we can observe the effects of mean channel state

residency time. The channel state transition probabilities are assumed to satisfy PBB =

PGG. In this case, the equilibrium channel state probabilities are equal, and therefore,

a larger PGG does not indicate better channel quality on average. Instead, it represents

how dynamically the channel state changes. When PGG (and PBB) is large for example,

once the channel enters a particular state, it is more likely to persist in that state, i.e., more

consecutive time slots in the same state are likely. The opposite is true when PGG (and PBB)

are made smaller. By varying PGG, the average energy consumption of all four algorithms

are given in Figure 6.11 for tD = 40 time slots and Figure 6.6 for tD = 20 time slots.

The offline solution can foresee future channel states, and a larger PGG makes it more

likely to choose consecutive time slots with good channel states. Therefore, the average en-

ergy consumption of the offline bound decreases as PGG increases. When PGG is very close

to zero, the channel state is likely to toggle in the next time slot. In this case, the Imme-

diate Offloading algorithm consumes about 0.5mJ extra energy, compared to the Channel

Threshold algorithm, i.e., 0.5mJ is 50% (which is the probability that the channel state at

the job release time is bad) times 1mJ (which is the transmission energy in the first time

slot). As PGG increases, it is increasingly likely to have consecutive time slots with the

same channel conditions. If the channel is in the good state when a job is released, the

Immediate Offloading and Channel Threshold algorithms are the same. However, if the

channel is in the bad state when a job is released, it is likely that the bad channel state

persists for a relatively long time, during which Immediate Offloading may waste energy.

Therefore, with higher PGG, the difference between Immediate Offloading and the Channel
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Figure 6.5: Average Energy Consumption Versus PGG: tD = 40 time slots

Threshold algorithm increases. The OnOpt and the Channel Threshold algorithms are very

close when tD = 80 time slots since the time constraint is loose enough for the OnOpt

algorithm to offload at the first time slot with good channel conditions. When tD = 35 time

slots, the difference between the two algorithms starts increasing as PGG becomes large.

This is because OnOpt has the flexibility to offload at a bad time slot while the Channel

Threshold algorithm does not. As a result, the OnOpt may finish offloading much sooner

than the Channel Threshold algorithm.

69



M.A.Sc. Thesis - Arvin Hekmati McMaster - Electrical Engineering

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
GG

12

14

16

18

20

22

24

26

A
ve

ra
ge

 E
ne

rg
y 

C
on

su
m

pt
io

n 
(m

J)

Local Execution
Channel Threshold
Immediate Offloading
Offline Bound
OnOpt

Figure 6.6: Average Energy Consumption Versus PGG: tD = 20 time slots
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Figure 6.7: Average Energy Consumption Versus Residency Time in Good State: tD = 40
time slots

Figure 6.7 shows the average energy consumption versus TG, which is the asymptotic

average channel residence time in the good state, where TG = 1/PGB = 1/(1−PGG). Note

that in this set of results, TB = TG since PGG = PBB. When TG is below about 10 time

slots (i.e., PGG is between 0.1 and 0.9), the observations are the same as seen in Figure 6.11.

Therefore, the discussion below is only for TG > 10 time slots. The Immediate Offloading

algorithm can consume much higher energy than the others, since it may have to transmit

for a long time if the channel is in the bad state at the job release time. The OpOpt and
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Channel Threshold algorithms are essentially the same, since both decide to offload at the

first time slot with the good channel state.

Scenario 3

In this set of results, we use the application parameters for x264 (H.264) encoding from

(Miettinen and Nurminen, 2010), and consider a job with S = 80Kb, D = 18M CPU

cycles, and tD = 80 time slots. The local execution energy per CPU cycle is vl =

1.5 × 10−6mJ and the local computation power is fl = 600 M CPU cycles per sec-

ond or fl = 0.6 M CPU cycles per time slot. Therefore, the local execution time is

TL = D/fl = 30 time slots, and the local energy consumption EL = vlD = 27mJ. Based

on Bg and Bg, a minimum of 8 time slots and a maximum of 80 time slots are needed in

order to complete job offloading. In addition to the results presented below, we have also

simulated the algorithms based on parameters given in (Sumi et al., 2014). This reference

does experiments of computation offloading for face recognition on mobile devices. Since

the qualitative observations and conclusions are the same as those presented below, these

results have not been included.

In this case we set PBB = 1 − PGG for the channel state transition probabilities. As

discussed previously, PGG is a measure of the average channel quality. Figure 6.8 shows the

average energy consumption of different algorithms as PGG is varied. The offline bound

is the same as the energy consumption of Local Execution only when PGG is close to 0

and it decreases as PGG increases. When PGG is very low, the offline optimal solution

chooses to process the job locally without offloading because of the long data transmission

time (and possibly a long overlap time between offloading and local execution). As a result,

there is a high probability that offloading cannot meet the delay constraint and/or consumes
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Figure 6.8: Average Energy Consumption Versus PGG

higher energy thanEL. As PGG becomes larger, the good channel state frequency increases,

and a shorter time is needed to complete the offloading. In this case, it is more likely

that offloading can meet the delay constraint and consume less energy. The Immediate

Offloading algorithm results in much higher energy consumption when PGG is small. Since

the channel is in the bad state in most time slots, it is less likely that offloading can meet

the deadline, and the deadline of the job is most likely met by performing local execution.

Therefore, energy is unnecessarily wasted by performing offloading. As PGG increases, the

possibility that offloading can meet the deadline increases, so that less local execution is
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performed, and the total energy consumption decreases. The Channel Threshold algorithm

consumes slightly lower energy than Immediate Offloading. By delaying the offloading

until the channel is in the good state, unnecessary transmissions are avoided. The difference

is more obvious when PGG is smaller, since the probability is higher that the channel is

found in the bad state. For the proposed OnOpt algorithm, it chooses to not offload when

PGG is low, and therefore, results in the same energy consumption as Local Execution.

When PGG is larger, channel conditions become better and a shorter time is needed to

offload. Given that the offloading decision is made using only the current channel state and

statistical channel information, if the decision is to offload at a time slot, it is most likely

the first time slot with a good channel state. Therefore, the OnOpt and Channel Threshold

algorithms consume almost the same energy when PGG is relatively large. The gap between

the OnOpt algorithm and the offline bound is due to the fact that the online algorithm can

only use statistical channel information, while the offline bound has knowledge of future

channel conditions.

Figure 6.9 shows the average energy consumption of the algorithms as the job deadline

tD changes. For the offline bound, a loose latency constraint helps it find a better offloading

time so that fewer time slots are needed to complete the required transmissions. Ideally, the

minimum energy consumption is achieved if eight consecutive time slots with good chan-

nel states appear before tL. The probability of this decreases as the deadline is tightened.

However, a larger tD increases the possibility of finding a shorter time interval to complete

the offloading, thus reducing the energy consumption. When tD is sufficiently large, it is

almost always possible to find consecutive time slots with good channel states, and there-

fore, increasing tD further cannot significantly decrease the average energy consumption.
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Figure 6.9: Average Energy Consumption Versus tD: PGG = 0.3

The Channel Threshold and OnOpt algorithms result in similar average energy consump-

tion, which is slightly lower than using Immediate Offloading and much lower than using

Local Execution, provided that tD is not too small. As tD increases, more time is available

to offload before triggering local execution, resulting in lower energy consumption. When

tD is sufficiently large, Channel Threshold and OnOpt all start offloading at the first time

slot with a good channel state, while Immediate Offloading may have to transmit over an
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initial bad channel, resulting in slightly higher energy consumption than the other two al-

gorithms. When tD is sufficiently large so that offloading can always be completed before

tL regardless of the initial channel state, further increasing tD does not help in reducing the

energy consumption. This is true for all three online algorithms.

6.2 Multi-Part Offloading

In this section, we set PBB := 1 − PGG, in order to use PGG as a measure of the average

channel quality, i.e., larger PGG indicates better channel conditions on average.

We compare the energy consumption of MultiOpt to an offline bound, the Local Exe-

cution of the job, and three other algorithms, namely OnOpt, Immediate Offloading, and

Channel Threshold. The Local Execution of the entire job is done locally at the mobile de-

vice, without doing any offloading. The Immediate Offloading algorithm offloads the job

immediately at its release time, unless Sup/Bg + Trest > TD, i.e., unless offloading cannot

be completed before the job deadline even under the best channel conditions, in which case

the job is executed locally without offloading. The Channel Threshold algorithm starts

the uploading of the first part at the first time slot when the channel condition becomes

Good, unless the remaining time before tD is less than Sup/Bg + Trest; when uploading

the first part is completed (if the decision is to offload), uploading the second part starts as

soon as the channel state becomes Good, unless the remaining time before tD is less than

Sup2/Bg+Trest. For both the Immediate Offloading and the Channel Threshold algorithms,

local execution starts at time slot tL if offloading is not completed at time slot tL − 1.

We will assume that the total amount of data to be offloaded is split into two equal

parts, i.e., Sup1 = Sup2 = Sup/2. The parameter settings used in the simulations are as

follows: Each time slot lasts for 1 ms. The data transmission rates are Bb = 1Mbps and
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Figure 6.10: Average Energy Consumption Versus Sup: PGG = 0.2

Bg = 10Mbps, or Bb = 1kb per time slot and Bg = 10kb per time slot. The transmission

and reception power of the mobile device is 1 W and 0.5 W, respectively, which means

that the transmission and reception energy per time slot is Etr = 1mJ and Erc = 0.5mJ,

respectively. The download time Tdown is 1 time slot. In the results below, the average

energy consumption is obtained after repeating the simulation for 10,000 runs.

We first consider a job with D = 10M CPU cycles and TD = 60 time slots. The lo-

cal execution energy per CPU cycle is vl = 2 × 10−6mJ and the local computation power

is fl = 1M CPU cycles per time slot (Nir et al., 2014; Huang et al., 2012). Therefore,
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the local execution time is TL = D/fl = 10 time slots, and the local energy consump-

tion EL = vlD = 20mJ. The remote execution time is Texec = 1 time slot. Figure 6.10

shows the average energy consumption of the mobile device as the data size Sup increases.

The energy used by Local Execution is constant for all Sup. When Sup is smaller, it is

more likely for offloading to meet the delay constraint due to shorter channel uploading

time. Therefore, the energy consumption of all offloading algorithms is smaller than that

of Local Execution. As Sup increases, the average energy consumption of the Immediate

Offloading and Channel Threshold algorithms keeps increasing, and can be much larger

than that of Local Execution, while the average energy consumption of the offline bound,

MultiOpt, and OnOpt algorithms increases first and then keeps the same as that of Local

Execution as Sup becomes large. The Immediate Offloading algorithm has the highest en-

ergy consumption among all the algorithms because it always offloads. By delaying the

offloading until the first Good channel state, the Channel Threshold algorithm consumes

slightly lower average energy than Immediate Offloading, but its average energy consump-

tion still keeps increasing with Sup. This is due to the fact that the offloading decision of

the Channel Threshold algorithm is most beneficial in case of a continuous Good channel

bit rate, which is not true during the actual uploading process, since it encounters more

Bad channel states as Sup increases. Note that the average energy consumption of the of-

fline bound is always the lowest, due to the future channel state information available to it.

Compared to OnOpt, the energy consumption of MultiOpt is lower, as expected. By split-

ting the total amount of data into two parts, the MultiOpt algorithm has more flexibility

that helps the mobile device to avoid uploading over long periods of bad channel states and

save energy. This extra degree of freedom is not available to OnOpt, which has to continue

uploading even over a bad channel once it has committed to offloading.
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Figure 6.11: Average Energy Consumption Versus PGG

Next, we use the application parameters for x264 (H.264) encoding from (Miettinen

and Nurminen, 2010), and consider a job with Sup = 80Kb, D = 18M CPU cycles, and

TD = 80 time slots. The local execution energy per CPU cycle is vl = 1.5 × 10−6mJ and

the local computation power is fl = 600 M CPU cycles per second or fl = 0.6 M CPU

cycles per time slot. Therefore, the local execution time is TL = D/fl = 30 time slots,

and the local energy consumption EL = vlD = 27mJ. The remote execution time Texec is

3 time slots. The results are shown in Figures 6.11 and 6.12.

Figure 6.11 shows the average energy consumption of different algorithms as PGG

varies. When PGG is small, channel condition is poor, the offline bound, MultiOpt, and
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OnOpt algorithms are more likely to decide to not offload, resulting in energy consump-

tion very close to that of Local Execution, while the Immediate Offloading and Channel

Threshold algorithms may consume much more energy than the latter by offloading. As

PGG increases, the average energy consumption of all the offloading algorithms decreases,

since a shorter time is needed to complete the uploading due to better channel conditions.

The energy consumption of the offline bound decreases with PGG much faster than that

of the other offloading algorithms due to available future information, and then becomes

almost constant when PGG is sufficiently large (e.g., exceeds 0.5 in Figure 6.11). Imme-

diate Offloading results in the highest energy consumption among all the algorithms. As

expected, the average energy consumption of the proposed MultiOpt algorithm is lower

than that of the OnOpt for all PGG values, and for the same reasons as above. When PGG

is close to 1, all offloading algorithms have about the same average energy consumption,

since the channel conditions are almost always Good, and all the algorithms make the same

offloading decisions.

Figure 6.12 shows the average energy consumption of the algorithms as the job dead-

line TD changes. In general, as TD increases, the average energy consumption of all the

offloading algorithms decreases, while that of the Local Execution is not affected. When

TD is small, offloading is less likely to meet the deadline requirement; therefore, the offline

bound, MultiOpt and OnOpt algorithms are more likely to decide not to offload, and, as a

result, the average energy consumption of these algorithms is the same as or close to the

energy consumption of Local Execution. When TD is sufficiently large, the MultiOpt al-

gorithm is almost the same as the Channel Threshold algorithm in terms of average energy

consumption, since both algorithms end up deciding to offload at the earliest Good state

for each part of the data.
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Figure 6.12: Average Energy Consumption Versus TD: PGG = 0.3

81



Chapter 7

Conclusions and Future Work

This thesis has considered mobile computation offloading where job completion times are

subject to hard deadline constraints. Instead of using conventional offload/no-offload deci-

sions, the thesis allows simultaneous remote offloading and local job execution, which is

used to ensure that job completion deadlines are met in the face of random channel con-

ditions. The thesis considered this problem when the wireless channels are modelled as

homogeneous Markovian processes. The OnOpt (Online Optimum) and MultiOpt (Multi-

Decision online Optimum) algorithms were proposed, and were shown to achieve the mini-

mum mean energy consumption possible. This was done by first constructing a time-dilated

absorbing Markov chain (TDAMC) from the underlying Markovian channel description.

Dynamic programming results were then used with the TDAMC to prove the optimality of

the algorithms.

The thesis then used the Gilbert-Elliott channel model and derived closed-form results

that are used to find optimal offload initiation times. The job completion time probabilities

were computed recursively, which leads to a large reduction in the computational complex-

ity. The performance of the proposed algorithms were compared to three others that also
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ensure that job deadlines are satisfied, i.e., Immediate Offloading, Channel Threshold, and

Local Execution. An offline lower bound on energy consumption was computed and used

in these comparisons. Performance results show that the proposed algorithms can signifi-

cantly improve mobile device energy consumption compared to the other approaches while

guaranteeing hard task execution deadlines.

When channel conditions are poor or the job execution time constraint is tight, the

proposed algorithms may decide to not offload, saving energy by not transmitting unnec-

essarily. When the channel conditions are good on average, the proposed algorithms can

choose the earliest transmission time, saving as much energy for local execution as possible

or by not triggering local execution at all. It has been shown that the MultiOpt algorithm

can reduce energy consumption compared to the OnOpt algorithm.

Partitioning the offloading data into any number of pieces will be the next step of this

thesis. The final goal in this direction is to derive the optimum offloading algorithm for

preemption which is the case that we minimize the energy consumption of the mobile

device by offloading in any time slot.
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