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ABSTRACT 

This project discusses some of the methodologies developed over the y~:ars 

to estimate attributable risk among exposed persons and the attributable 

risk in the entire population (also called Etiologic Fraction). It provides 

a general framework for estimating attributable r1sk among the exposed 

(denoted :>..e>. By making use of the recent observation that the two measures 

of attributable risk can be linked through the prevalence of the risk 

factor among the cases (denoted Vxl, an estimate of population attributable 

r·isk (denoted X) for matched case-centro! studies is determined. Using the 

methodology developed recently by Kuritz and Landis (1987), this project 

provides explicit formulas for estimating the attributable risk among the 

exposed and the population attributable risk, and their large sample variances. 

This has been done both in situations where exactly R controls have been 

matched to a case and for a variable number of controls per case. The 

methodologies are illustrated with data from some case-control studies 

reported in the literature. Asymptotic relative efficiencies of different 

matching designs computed in terms of the costs of gathering cases and 

controls, are presented, together with some recommendations on what design 

is considered optimal. 

( iii ) 



ACKNOWLEDGEMENTS

I wish to express my deepest gratitute to my supervisor. Prof. S. 

D. Walter, for suggesting this project and for his support, continued 

guidance and encouragement during the preparation of this project. I would 

also like to thank him for the many hours he spent with me, from helping

me understand the concepts involved, to digging out important references 

for me, and I am very grateful to him for helping to deepen my interest

in the field of Biostatistics.

I would also like to express my deepest appreciation to my parents, 

my brothers and sisters for their prayers, moral support and 

encouragement.

I would also like to thank my colleagues Paul, Florence, Rohan and 

David for their encouragement.

My special thanks to Joseph Torgbor for helping me with the typing 

of this project, for his encouragement and the many hours (including 

weekends) that he had to spend with me as a result.

Last, but not the least, I would like to thank McMaster University 

for their financial assistance and especially to Prof. C. W. Dunnett, for 

making my dream a reality.

( iv )



TABLE OF CONTENTS 

CHAPTER 1 

1, INTRQDUCTJ[)N t t 1 t 1 t t 1 t t r t 1 t 1 t 1 t t 1 1 t t t t 1 1 t 1 1 1 1 1 1 1 1 1 1 t 1 t 1 

CHAPTER 2 

STATISTICAL FRAMEWORK 

2.1. Unmatched Analysis ..................................... 6 

2.2. Matched Analysis .................. , . . . . . . . . . . . . . . . . . . . 12 

2.3. Large Sample Variance Estimation . . . . . . . . . • . . . . . • . . . . . . . . . 19 

CHAPTER 3 

HATRJX FORMULATION AND EXAMPLES 

3.1. Matrix formulation for variances of attributable 
risks. I I I I I I I I I I I I I t I I I I I I I I t I I I I I I I I I I I I I I t I I I ' I I I I I 23 

3.2. Examples I I •• I • I •• I I • I I • I I r I • I ' I I I •••• I • I I I I • I • I •• I • I I 31 

CHAPTER 4 

EFFICIENCY CONSIDERATIONS 

4.1. Introduction . , ... , ..... , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

4.2. Discussion of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 

4.3. Conclusion . ... , ...... , .. , ........ , ........... , . . . . . . . . 49 

( v ) 



APPENDIX

1. Appendix A ..........................   52

2. Appendix B....................................   54

BIBLIOGRAPHY.................................................................................................................... 60

( vi )



CHAPTERi

INTRODUCTION

Usually in the analysis of epidemiologic data it is useful to obtain 

an estimate of the proportion of some disease that is associated with 

exposure to a risk factor. This helps in order to meaningfully control 

diseases since a knowledge of the disease burden that could be prevented 

by modifying a given risk factor is necessary. Levin’s measure of 

attributable risk (Levin (1953)) was proposed to measure the proportion of 

disease burden attributable to a risk factor. Various strategies for 

estimating attributable risk proportion have received increasing attention 

in the literature (Cole and MacMahon (1971), Miettinen (1974), Walter (1976)). 

The extension of the technique of attributable risk estimation in the 

presence of confounding variables (Bruzzi et al (1985), Whittemore (1982))

has been done; and Park (1983) found an estimate for it for recurrent

events. Recently, an extension to matched-pair case-control data has been

carried out (Kuritz and Landis (1987a)).

A measure of the strength of an association between exposure and

a putative risk factor is the odds ratio (Cornfield (1951)). It is the ratio 

of the odds of a disease when the factor is present to the odds when

the factor is absent (see (2.1)). The odds of a disease are defined as the

probability of having the disease, divided by the probability of not having
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the disease. Another relevant measure usually used in epidemiology is the 

relative risk, which is the ratio of the incidence of a disease in persons

exposed to persons not exposed to a risk factor. However, these measures 

do not provide any information on the actual numbers of affected 

individuals in the target population. Hence, measures of attributable risk, 

which attempted to overcome this problem associated with relative risk 

and odds ratio have been suggested. Walter (1976) has noted that though 

the procedure for estimating attributable risk may be analogous to those 

used in the theory of estimation of relative risk, the interpretation of

these two risk measures are different. Attributable risk should therefore

in no way be regarded as a substitute for relative risk, but rather be 

regarded as an additional dimension of health hazard appraisal.

In estimating attributable risk, it becomes clear that we are 

interested in the disease producing role of an etiologic factor. Attributable 

risk (also called Etiologic Fraction) can be locked upon as the fraction

of the disease which would not have occurred had the factor of interest

been absent from the population <ie the proportion of the disease

attributable to the factor of interest). If we are interested in the fraction

of the disease prevented by a beneficial factor (eg an intervention 

program), the term 'Prevented Fraction’ has been suggested (Miettinen

(1974)).

Retrospective (or Case-Control) studies are commonly used in 

epidemiologic research because of the relative ease of gathering disease 

cases in a short space of time, although it seems to suffer from such 

biases as those related to the recall of previous exposure to a risk factor.
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The odds ratio (which provides an estimate of relative risk in case-control 

studies under a rare disease assumption (Chapter 2)) can be found for 

case-control data. It is possible to have a high relative :risk, but which 

may not be an important health problem because very few people are 

actually exposed to it. On the other hand, a low relative risk may be 

quite important if a large number of people are exposed to the factor;

hence the need of a measure of attributable risk.

Levin (1953) first introduced measures of attributable risk of a

specified disease associated with a selected risk factor when both are 

classified as absent or present. He proposed a measure for the proportion 

of disease cases associated with the risk factor among members of the 

target population exposed to that risk factor, denoted here by Xe <to 

mean attributable risk among exposed). He also proposed a measure of the 

proportion of disease cases associated with the risk factor among all 

members of the population, denoted by x (to mean population attributable 

risk). These measures have also been developed by MacMahon and Pugh (1970), 

Cole and MacMahon (1971), Miettinen (1974) and Walter(1976>. Alternative 

formulations as well as simplification have been produced by Levin and 

Bartel (1978), Leviton (1973) and Taylor (1977).

In Chapter 2, we shall show how these measures have been derived 

using case-control data. Methods of finding their large sample variances

and confidence intervals will be indicated.

Recently it has been shown that the two measures of attributable 

risk, Xe and x» can be linked through the prevalence of the risk factor 

among the cases denoted Vx. As noted by Miettinen (1974) and also by
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Kleinbaum, Kupper and Morgenstern (1982), it can be shown that

x = Vxxe (1.1)

The importance of the above expression is that both x^ and Vx, and 

consequently x, are usually estimable from both matched and unmatched 

case-control data alone. Kuritz and Landis (1987a), using this formulation, 

have proposed an estimator of attributable risk for matched-pair case- 

control data. Their work can therefore be extended to account for multiple 

matching, and to investigate in terms of cost efficiency the relative merits 

of multiple matching, if attributable risk estimation is the ultimate goal.

In Chapter 3, an alternative methodology leading to expressions for 

large sample variances of attributable risks will be shown. We also propose 

to indicate how these formulations work for some data given in the

literaure where hitherto attributable risk measures were not found or were

analysed as if matching had been ignored. Though no attempt will be made 

to discuss the relative merits of matching, it simply means that 

investigators can now find attributable risk measures for matched case-

control data. The decision to match or not to match has been discussed

by various authors including McEinlay (1977), Kupper et al (1981) and

Schlesselman (1982).

In Chapter 4, we propose to find the asymptotic relative efficiency 

of different matching designs, in terms of cost of gathering cases and 

controls. Based on these relative efficiencies, a table of optimal ratios

will be provided.
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We conclude by discussing computational results, given in the 

appendix and possible recommendations.

The computations were carried out on the VAX 8600 computer at 

McMaster University.



CHAPTER 2

STATISTICAL FRAMEWORK

2.1 UNMATCHED ANALYSIS

Consider a set of data from a case-control study where the sample 

of cases and controls have been randomly selected from a population of 

interest. This formulation does not take into account confounding factors 

by extraneous variables, thus it will be carried out as if all confounding 

factors are under control. Measures of estimating attributable risks in 

the presence of confounding variables have been dicussed by Whittemore 

(1982, 1983), Walter (1976), Miettinen (1974) and Bruzzi et al (1985).

The data for such a case-control study has been displayed in the

table below.

Table 1.1

Distribution of cases and controls with respect to risk factor status.

Case Control Total

Exposed a b m±
Risk
Status

Non-exposed c d m2

Total nx n2 N

As is appropriate for case-control studies, nx and n2 are considered fixed.

6
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The usual Mantel-Haenszel estimator of the odds ratio (Mantel and Haenszel

(1959)) would be given by:

= sd/bc (2.1)

If we make a further assumption that the disease rate is rare, then the 

risk of the disease and the odds of the disease are virtually identical 

(Fleiss (1982)). Thus the odds ratio can be used to approximate relative 

risk in case-control studies, since relative risk cannot be directly

estimated from case-control studies.

If we let Ie denote the incidence rate of a disease (proportion of 

new cases in a group of people who were initially free of the disease) 

in persons exposed to the risk factor, and Io the incidence rate of disease 

persons not exposed to the risk factor, then the relative risk, R, is given 

by:

R = Ie/Io (2.2)

Thus Ie - Io is the excess risk among persons which may be attributed 

to exposure. Several methods of estimating attributable risk have been 

suggested. Berkson (1951) proposed a simple difference between the two 

incidence rates, Ie - Io, as the measure. Sheps’ relative difference (Sheps

(1959))

(Ie - Io)/(1 - Io>

considered the component of the incidence among the exposed ascribed to 

the exposure. MacMahon and Pugh (1970) and Cole and MacMahon (1971) define 

attributable risk as the proportion of cases among persons exposed which 

are due to the exposure (denoted here by Xg) and proposed the measure
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xG = <Ie - Io>/Ie <2.3)

Expressed in terms of relative risk, R=IG/IO. the measure becomes

xG = (R - D/R <2.4)

The measure developed by Levin (1953) provides an index of 

attributable risk in the population as opposed to the above, which shows

such a measure in the exposed group. The population here refers to those

persons who form the common sources of cases and controls in the study.

Since controls should be representative of the unaffected (non-diseased)

persons in the population, then data available from them can be used to

estimate the proportion of the population exposed.

If we denote the proportion of population exposed to the risk by 

PG, then the proportion of all cases (in both exposed and non-exposed

groups) which are associated with exposure is given by x (Levin’s measure

of population attributable risk), where

X = Pe(R - D/Cl + PG(R - 1)1 (2.5)

The rare disease assumption makes it possible to estimate the proportion 

in the population exposed by the proportion in the control exposed. This 

means that if the prevalence of disease is sufficiently low, then prevalence 

of exposure among non-diseased persons is very close to the prevalence 

of exposure among the selected controls. This becomes a very reasonable 

assumption if there is no control selection bias.

From our data in Table i.i,

z\
Pe = b/n2$ = ad/bc and
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Thus,

Xg = (ad - bc)/ad (2.6)

and,

'x = 1 - cn2/dnx (2.7)

Using = 1 - x, Walter (1975) showed that £ has, asymptotically, a log­

normal distribution.

If the number of cases equals the number of controls (Taylor (1977)),

$. = 1 - c/d (2.8)

Using a different formulation proposed by MacMahon and Pugh (1970), where

Xz = (It - Io)/It

and It is the incidence rate in the total population and Io the incidence 

rate in the unexposed, Leviton (1973) showed that for It = PeIe + <i-Pe^oi

xz = x = Pe(R - 1)/(1 + Pe<R - 1»

Another simplified formulation has been given by Levin and Bartel (1978),

where

x = (az- bz)/(l - bz)

and az is the proportion of cases exposed and bz is the proportion of 

controls exposed.

Inherent in all these formulations is the fact that the factors are

associated with increased risk (ie R > 1 or 9 > 1). If the factors are 

associated with decreased risk (ç < 1), we can talk about the 'Prevented

Fraction’ as being the proportion of the potential disease experience

prevented by the factor (presumably a beneficial one). Walter (1976) has
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shown that such a prevented fraction of the risk denoted by xP, could 

be represented as

xP ~ <J/1 ~ ip)

where $ and <p can be estimated by $ = b/n2 and ,p = ad/bc respectively.

Thus

1 - xP = (1 - x)_1.

It is possible to construct confidence intervals for x and Xg. This 

is based on the assumption that the estimators or some transformations 

of them are approximately normally distributed.

Since y has been used to estimate R, we could find a confidence 

interval for Xg based on the logarithm of where

loggd - xe) = -loggq!

Thus

Vardoge(l - Xe» = Var(ioge^) (2.9)

where

Vardogg = i/a + i/b + 1/c + i/d (2.10)

We could derive their asymptotic variance by using methods shown by 

Kendall and Stuart (1969) and also by Bishop, Fienberg and Holland (1975), 

concerning the asymptotic distribution of a smooth function F of

multinomial proportions. Let n±,n2,.....,nK be the observed multinomial

frequencies, n = 2nx the total sample, pK = nK/n the kth observed 

proportion, and PK the expectation of pK. If F = F(p1,p2,...,pK) is a regular 

function of Pi,P2,...,pK» and if n is large, then F is asymptotically normal
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with mean F(Pi,P2,....,PK) and variance

Var(F) = (Epk^k2 “ ^Pk^x*2^"

where

dK =^F(pi,p2,...)pK>'/^PK

In fact, Fleiss (1982) has shown that if

P<Pi.P2#-»PK> = F(ni,n2,...,nK); or

F(cXi,cx2,...,cxK) = F(x1,x2,...,xK), (for all nonzero c), then the above variance

formula can be reduced to

Var(F) = £pKdK2>/n

since ^PKdK = 0 in this case. The odds ratio, attributable risk and smooth 

functions of them are all examples of such a function F (Fleiss (1982)).

It can then be shown that

Var(f) = (ad/bc)2(i/a + 1/b +l/c + 1/d) (2.11)

or Vardogg^) = (i/f)2Var($) (2.12)

Walter (1978) has shown that

Var(x) = (cn2/dn1)2(a/cn1 + b/dn2) (2.13)

We have indicated that the two measures of attributable risk, Xe 

and x, can be linked.

Using the case-control data from Table 1.1, we have

x = Pe(R-i>/(i+Pe<R-i» = ((R-i>/R>PeR/(i+Pe<R-l» = XePeR/<i+Pe<P-i»

Using the following estimates
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R = ad/bc and Pe = b/n2

we can show that

PeR/(l+Pe(R-l» = a/nx (2.14)

Since cases are assumed to be a random sample of disease cases from some 

population of interest, a/nx represents the sample exposure prevalence 

among the cases. Denoting a/nx by Vx, we have

X = Vxxe

where Vx and Xe are both estimable from the case-control data under

reasonable assumptions.

Confidence intervals could be found for Xe and x, (or their log- 

transformation). We note that $ is the maximum likelihood estimator of 

the odds ratio. Leung and Kupper (1981) have shown that when the actual 

attributable risk is between 0.21 and 0.79, the width of the log-

transformation based interval is less than that for the maximum likelihoood

based interval. Similar results were also obtained by Whittemore (1982).

2.2 MATCHED ANALYSIS

Kuritz and Landis (1987a) using the fact that x = VxXe, have given 

explicit formulas for estimating attributable risk among the exposed and 

the population attributable risk.

Consider data from a matched-pair case-control study given in the table

below.
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Table 2.2

Control

Exposed Non-exposed Total

Exposed a b a+b
Cases

Non-exposed c d c+d

Total a+c b+d n

Using the fact that attributable risk among exposed is a direct 

function of the odds ratio, and population attributable risk is also a direct 

function of odds ratio and exposure prevalence among the cases only, we

find these two measures of attributable risk.

The assumptions necessary in this regard are that:

(a) the prevalence of the disease among the population is rare;

(b) the cases constitute a random sample of cases in the population.

For a matched pair design, the estimator of odds ratio depends only 

on the exposure-discordant pairs. The odds ratio estimator has been given 

by Mantel and Haenszel (1959) as

Ç = b/c (2.15)

and its asymptotic variance has been shown by Ejigou and McHugh (197?)

to be

Var(f) = (*)£d/b + 1/c)2 (2.16)

or Var(loge ^,) = (i/^)£VarÇ)

In this case, 9 is both the maximum likelihood estimator and the Mantel-
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Haenszel estimator for the odds ratio. It follows from above that 

" " A.e = 1 - i/R = <b - c)/b <2.1 7) 

Since the n cases among the matched pairs is assumed to constitute a 

random sample of X cases from the target population, V x can be estimated 

by 

Vx = <a + b)/n <2.18) 

Hence an estimate of the population attributable risk is given by 

" ;:... = <a + bHb - c)/bn <2.19) 

Generalisation to multiple controls per case 

With the availability of an estimator for odds ratio in multiple 

matching <Mantel and Haenszel (1959>, Miettinen <1970> among others>, it is 

possible to extend the idea to take care of matching with multiple controls 

per case. 

Consider the situat.ic•n where two controls are matched to a case. 

Following the notation of Connett et al <1982>, we can represent the data 

as: 

Table 2.3 

Number of Controls exposed Total 

2 1 0 

Exposed(!) Z12 Z11 Z1o l:tZ1t 
Cases 

N on-exposed<O> Zo2 Zo1 Zoo l:tZot 

N 
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The Mantel-Haenszel estimator could be generalised as 

t = l:t<R - nz~ t I l:t TZot <2.20> 

where R is the number of controls matched to a case; 

T is the number of units from R matched to a selected unit; thus 0 ~ 

T ~ R. 

N is the total number of cases. 

ZiJ is the number of matched groups <in each <1 + R> tuple>. 

The basic design considered here is that of a case-control study 

with multiple matching (with fixed matching ratio) on a confounding 

variable of healthy control to diseased cases. 

For example 1 consider the following eight outcomes for a 2-to-1 

matching <Schlesselman <1 982))1 presented as: 

Case Control Frequency 

1 ., 
"" t of matched groups 

+ + + no 
+ + n:1. 
+ + n2 
+ n3 

+ + n'+ 
+ ns 

+ n6 
n7 

Table 2.4 

with dichotomous exposure <exposed +), <non-exposed ->. 

By regarding each triplet as a separate subgroup 1 the Mantel-Haenszel 

estimate of the odds ratio could be found. 

It is given by 
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f = (nx + n2 + 2n3)/(2nH + ns + ns)

or in the Connett et al (1982) notation

9 = (2Zic, + Zh)/(Zq.£ + (2.21)

Thus, by ignoring ordering of the two matched controls, we would only 

have six (6) possible 2x2 tables for each triplet.These could be put in 

a single table as the one already shown in the Table 2.3, where n0 =

ni + n2 = n3 = Zxo, n^ = Zox, ng + ng = Zq2 and n? = Zqq.

Miettinen (1970) obtained a conditional maximum likelihood estimator of this

estimate as

P - (4ZiQ~Zoi+Z3L^~4Zo2)/4(Zojt;+Zo2) + ^C[(4Z;io_Zq^+Zü_Zq2)/4(Zqx+Zq2)3'^

+ (Zio+Zii)/(Zoi+Zo2)}

Ejigou and McHugh (1981) also gave an unconditional estimate of the odds

ratio as

fe = CZoxZ iO^ii+Zo2) + Z11ZO2(ZiO+Zol)3/[ZOiZ<Zii+ZO2)/2 + 2ZO2z(ZiO+Zol)3

In a recent simulation study, Donner and Hauck (1986) found that 

the Mantel-Haenszel estimator of odds ratio, y, compares favourably to both 

the odds ratio estimator obtained by the maximum likelihood method and 

the conditional maximum likelihood method with respect to bias and 

precision over a wide range of fixed stratum designs likely to occur in 

practice. For example, when 9 5, they found that the relative efficiency

never falls below 0.93. We have therefore employed the 9 in the calculation 

of measures for attributable risk. Despite the fact that 9 may fare badly 

in certain situations against the other estimators (for example, when the 

odds ratio 9 is large (approaching 10) and Vx $ 0.3), 9 has proved useful 

in many situations as is evident by its wide usage over the years in
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the medical literature. The Mantel-Haenszel estimator is easy to use and

has been shown to be a reasonable and efficient estimate, and thus a

good alternative to the maximum likelihood estimator (MLE). The only 

problem with MLE is calculation, since it has to be obtained by iteration

(Breslow (1981).

Estimators for attributable risk measures, Xe and x, from data 

obtained through case-control studies where one or more controls have 

been matched to each case can now be obtained. According to Kuritz and 

Landis (1987b) , the sampling design for obtaining these matched data could 

be conceptualised as a simple random sample of cases being equivalent to 

a random sample of matched sets. Thus, by combining information across 

strata determined by the matched sets, this approach provides for the

attributable risk estimate all the benefits associated with the Mantel-

Haenszel procedure.

We can therefore obtain for the case of 2-to-i matching, an estimate of 

attributable risk among exposed persons as

Xe = <R - 1)/R = (2ZiO + Zlt - ZOi - 2ZO2)/(2ZiO + Zi;t) <R>1)

An estimate of exposure prevalence among cases only is given by:

V x = (Zjlo + + Z12)/»

Hence

X = Vxxe = (ZiQ+Zü+Z12)(2Z£o+Zii-Zoi-2Zo2)/N(2ZiO+Zü)

We can thus show that for R-to-i matching and with dichotomous exposure 

levels, the attributable risk measures generalise to:
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Xg = { £t(R - T)Zlt - 2tTZot 3/ Zt<R - T)Zlt (2.22)

X = < EtZit x Zt<R - T)Zlt - 2tTZot } / N£t(R - T)Zlt (2.23)

Generalisation to variable number of controls matched per case

By making use of Fleiss’ (1984) method of determining <p when 

matching a varying number of controls per case, we could still obtain 

estimates of Xe and X.

Let r denote the number of controls matched to a particular case, where 

r may vary from 1 (matched pair) to a high of R (R-to-i matching). The 

analysis begins with stratification of the cases according to a particular 

value of r. Thus for each value of r (1 $ r $ R), we look at the table 

as if there were only r controls per case, where r is fixed.

For a particular r, we could present the table as:

Table 2.5

No. of controls exposed

Status of case r r-1 1 0

Exposed (1) Zx^r) Zir4r) Zldfr' Zio^

Non-exposed(O) Zo/r^ Zor_^r' Zoi^ ZO£fr)

where Z^ 'refers to the number of matched sets with r controls in which 

both the case and exactly j of the controls are exposed;

and ZoJr> refers to the number of matched sets with case unexposed and 

exactly j controls exposed.
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Following Fleiss’ <1984) notation, if we define

A^ = £ <r-j)Ztjrî/<r+l)
J=°

and

B(r} = Z jZojr)/<r+l)

then

rsi

Hence, for a variable number of controls per case

Xe « < Z A<r>- Z B (r)î/ f A^, * > 1
M V:1

and

X = Vxle = Z Z zjr)< Z A Cr>- Z B(r),/N Z A<r>
r-d-o rxt rxt

where Vx = Z Z Zijr}N
fil j:o

(2.24)

<2.25)

<2.26)

2.3 Lâr'g'e Sample Vajnianoe Estimation

As already indicated in Section 2.1, attributable risk estimators for 

matched set case-control data could be regarded as regular functions of 

a set of multinomial proportions <Kuritz and Landis <1987b)). It is therefore 

possible to obtain direct expressions for their large sample variances by 

applying multivariate version of the delta method as described in Section 

14.6 of Bishop, Fienberg and Holland <1975).

In general, these asymptotic variances can be expressed as

Var<F) = < 2 Pjdi2 - < Z Pidp^/n

where F is a regular function of the multinomial proportions and
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di =àF(p1,p2,...,pK)/àPi

is the partial derivative of the function with respect to the i-th 

multinomial proportion.

Estimators for the Mantel-Haenszel odds ratio and attributable risks

are part of the wide class of functions where

ZPidi = 0

Then, as noted by Fleiss (1982), the estimated large sample variance for 

these functions simplifies to

Var(F) = ( 2 Pidi2)/n

For a fixed matching ratio (ie matching with exactly k controls to a 

case) with dichotomous exposure level, Connett et al (1982) have shown that

Vardoge ♦> = < Z (R - T)2Zlt + T2Zot 3/ { £ (R - T)Z±t }2 (2.27)

Breslow (1981) gave a similar expression. Consider a data set as being 

given as.-

Table 2.6

Exposed Non-exposed Total

Cases Aj Bi NXi
Controls Ci Di N2j

Total Mxi M2i Ni

Thus ♦ = Zux/Zvi»i = V,....,n; where

Ui = AiDj/Ni and V£ = BiCi/Ni.

When the number of tables is large in comparison with each of the 

individual table totals N i, then Breslow showed that an appropriate
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estimator of the variance of 9 is

Varüp = 2 (Uj - 9 V p2/ <£ Vp2

and

VarUoge ♦>= Z<Ui ~ »Vp2/ (£up2

For a R-to-i matching, Nü=i, N2j=R for i = i,2,..,n. There are Zot matched 

sets for which Ai=0, Cj=T and for each of these U j=0 and Vj=T/(R+i). 

Similarly, there are Zit matched sets for which Aj=l, Ci=T, Uj=(R-T)/(R+i) 

and V i=0. Substitution of these values in the above expression (2.28) gives 

the previous result (2.27).

Fleiss (1984) showed that for matched case-control data with a

variable number of controls per case, an estimator for the variance of 

the Mantel-Haenszel estimator of odds ratio is given by:

Vardoge 9) = Z C^r)/ <Z A(r))2 (2.29)

where

(2.24)

By noting that

loged-Xg) = -loge ♦ (2.30)

we have

Var(loge(i-Xe» = Var(loge 9) (2.31)

which gives

Var(^) = (i-^>2Var(loge ^) (2.32)
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As already indicated, the estimator for x is the product of two 

terms, Vx and xe. Since Vx is a binomial proportion , its variance is

given as:

Var(Vx) = Vx(i-Vx)/M (2.33)

Thus a large sample variance formula for the estimate of population 

attributable risk can be formed by writing x as a regular function of 

the multinomial proportions and using the delta method to obtain it. Kuritz

and Landis (1987b) have shown that

Var(X) = (Vx)2Var(Xe) + (Xe>2Var(Vx) + 2x(i - Xe>/N (2.34)

As a by-product it is useful to note that

Cov(Vx,xe) = (1 - xe)/N

recognising that the expression for Var(x) is in the usual form of a Taylor 

series expansion for the product of the two terms of the expression.

Since the delta method assumes that F (the function of multinomial

proportions) is asymptotically normally distributed, confidence intervals for 

these measures of attributable risk can readily be computed once their

standard errors have been found.

For instance, an approximate 95% confidence interval for Xe would be given 

by:

xe ± 1.96se(Xe)

and that for x

x ± i.96se(x)

We shall illustrate the methods described in this chapter with examples

from the literature in Section 3.2.



CHAPTER 3

MATRIX FORMULATION AND EXAMPLES

3.1 MATRIX FORMULATION FOR VARIANCES OF ATTRIBUTABLE RISKS

An alternative method for finding large sample variances for Xe

and A, based on matrix formulation when these measures of attributable

risk are expressed as compounded functions of sample multinomial 

proportions, can be found using the method for analysing multivariate 

categorical data outlined in the Appendix of Koch et al (19??). This method 

leads to explicit expressions for Var(Xe> and Var(A) after simplification, 

up to matching with two controls per case, but the algebra gets messy 

for more than two controls per case and for matching with variable 

numbers of control per case. However, a computer could be used in such

situations.

Consider a sample of multinomial frequencies arising from a case- 

control study with R controls to a case, where the data set could be

represented as.-

Table 3.1

No. of controls exposed

Status of case R R-l 1 0 Total

Exposed (1) ZiR Z1R_ i Z1O

Non-exposed(O) ZqR Zor—i Zoi Zqo St^ot

N

23
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The vector Zrs will be assumed to follow the multinomial distribution with 

parameters N and TTjj. A vector of multinomial proportions, p, for the 

data set above will be given by:

PZ = CZiR,.... ,Z±O,ZOR,...,ZOO3/N

where p is a 2(R+l)xl column vector and is the maximum likelihood estimator 

of IT and z denotes the matrix transpose.

As outlined in the appendix of Koch et al (1977), a consistent estimator 

for the covariance matrix of p, is given by a (2R+2)x(2R+2) covariance 

matrix Var(p), such that

Var(p) = (Df - ppz3/N (3.1)

where DF represents a diagonal matrix with the vector p on the main 

diagonal.

By taking F(p) as a compounded logarithmic—exponential—linear function 

of observed proportions leading to relationships of interest (Xe and x),

then an estimate of the variance of F could be found.

Consider a class of functions that can be expressed in terms of a sequence 

of the matrix operations:

(i) Linear transformation of the type

Fx(p) = Atp = a±

where Ax is a matrix of known constants.

(ii) Logarithmic transformation of the type

F2(p) = loge = a2

(iii)Exponential transformation of the type
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F3(p) = exp(p) = a3.

Thus a linearised Taylor-series based estimate of the variance of F <Koch 

et ai (19??)) is given by

Var(F) = HEVar(p)3Hz (3.2)

where H is the first derivative matrix for the corresponding compounded 

function and F is assumed to have a continuous partial derivative through 

order 2 with respect to p.

For example, let

ai = A±p a2 = expEAx(loge ajl

then a consistent estimate of the variance (3.2) is obtained by the 

application of the chain rule for matrix differentiation leading to

H ~ Sa2A2Da^ ^*A^

where Dax and Da2 are diagonal matrices with the vectors a2 and a2 

on their main diagonals respectively.

Consider a matched-pair case-control data where the data are

represented as:

Control

+

+ a b
Case

-cd

n

exposed (+), non-exposed (-).

where ‘a’ denotes the number of pairs in which both members are exposed, 

*b* the number of pairs where only the case is exposed, etc.
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In this case the attributable risk

attributable risk, x, could be expressed

among exposed, xe, and population 

as compounded functions of p, where

pz= [a,b,c,dl/n 

as

xe = exp(A2(loge ax))

and

X = exp{B2(loge b±)3

where

and

Ai

ai= AiP, A2= Ei,-13 , bi= Bxp,

"o 1 -1 o' ~i 1 0 0*

.° 1 0 Bi =

1

0

0

1 -1 0

1 0 0

B2= [1,1,-13

Thus, by using appropriate matrix products arising from multivariate 

Taylor-series methods, the large sample variances for these estimators are

obtained as

Var(xe) = <xe)£A2Da1-1AiVar<p)AizDa1~1A2z (3.3)

with H here being defined as H = xeA2Dai-iAi; and

Var(x) = ($d2B2Dbl'1BiVar(p)B±zDhl"1B2z (3.4)

where H = $JB2Dj>1”1B1 and DF is a diagonal matrix with the vector p 

on the main diagonal.

Thus for

xe = (b-c)/c and x = (a+b)(b-c)/bn 

we have equations (8) and (?) of Kuritz and Landis (1987a),

Var(xg) = (l/b)£[c(b+c)/b3 (3.5)
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Var(x) = (l/bn)2[a(b-c) + (bz+ac)/b + c(a+b)2 - (a+b)2(b-c)2/nl (3.6)

In the case of matching 2 controls to a case, if the data are 

represented as

Table 3.2

No. of controls exposed 
2 10

Exposed a b c
Case
Non-exposed d e f

Total n

It can be shown from (2.22) and (2.23) of Chapter 2 that,

Xe = (b+2c-2d-e)/(b+2c)

x = (a+b+c)(b+2c-2d-e)/(b+2c)n

and by simplifying (A.l) and (A.2) of Appendix A, we can show that

Var(Xe) = (i/(b+2c))H[(b+2c)z(e+4d) + (e+2d)z(b+4c)3 (3.7)

Var(x) = [l/(n(b+2c))3z{(a+b+c)(b+2c-2d-e)2 - (a+b+c)z(b+2c-2d-e)z/n 

+ (a+b+c)2(e+4d) + (a+b+c)z(2d+e)z(b+4c)/(b+2c)z

+ 2(a+b+c)(2d+e)(b+2c-2d-e)3 (3.8)

(See Appendix A)

As noted by Kuritz and Landis (1987a), further empirical work is necesary 

to investigate the small to moderate sample size behaviour of these 

estimators. We realise that these asymptotic formulas have a critical link 

to the magnitude of the frequency of exposure-discordant cells (ie b and 

c for the matched-pair situation, and b+2c and 2d+e for the 2 controls

per case.)

Based on the fact that these estimators are asymptotically normally
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distributed, approximate 95 % confidence intervals for these attributable

risk estimates can be found as:

Xg ± 1.96se(Xg)

x ± 1.96se(X)

It is again worthwhile to point out that these formulas were obtained 

on the assumption that the relative risk (or odds ratio in this case) was 

greater than unity. Otherwise, we would have to define a 'Prevented

Fraction’ for a relative risk less than 1. If we have reason to believe

that the actual relative risk is greater than 1, but very close to i, and 

sampling variation causes our estimate to be less than i, then we could

define the attributable risk estimate as zero.

The above formulation could be applied in the case where variable 

number of controls have been matched to the cases. Such a situation may 

arise out of the study protocol (Walter (1980)) eg. if all siblings are to 

be used as controls: or from practical difficulties (eg information on one 

of the controls is not available (refused interview, moved away etc).

As indicated in Chapter 2, let R be the maximum number of controls matched 

to a case. Let the vector of multinomial proportions be given by p such

that:

pz = tp?; p?’. (r) (i) (2)•» Pi » Po » Po »• Po*’ J/n for a particular

r, lSrëR; where

Pi^ ~ 3/n and Po^ = CZOjr' 3/n , j=i,2,....,r-t and n is the

total number of matched sets.

For example, consider a variable number of controls per case situation,
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where the maximum number of controls matched to a case is 3. The data

for such a situation could be represented as follows:

Table 3.3

Here PiZ = CZii{1? 7 fr) 7 (2)^iO t X12 t

and PoZ = IZO?Ï 7 (A) ? (2;~OO t ^02 t

where z
p = r z Î[px :po 3.

Define

7 .(2)"il i

^Oi t

7 «7 (3) «7 (3) rj (3;
"10 1 ^i3 t z'i2 t £il ♦

7 (2j 7 7 fë) (3)^OO # ^*03 > *02 1 "O± #

Zlo(3Vn

Zoo^/n

ai ~ Atp, where Cx-C0
Ax =

ci

and Cx = [Mx; 03 with Mx having elements <r-j)/(r+l) for each r, r=l,2,...,R, 

and j=O,l,...,r. Also, Co = CO- Mo3 with Ho having elements r/(r+l) for each 

r, r=l,2,...,R, and j=0,l,2,...,r.

Here the row vectors 0, Mo and have the same number of columns 

as both pxz and poz. 0 is a row vector where each element is zero.

We thus realise that Ctp is the numerator of the odds ratio as defined 

by Fleiss (1984), and Cop is the denominator.

From the example above,
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Ci = CO, 1/2, 0, i/3, £/3, 0, %, %, 3/h, 0, 0, 0, 0, 0, 0, 0, 0, 03

Co = CO, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, 0, 2/3, 1/3, 0, 3/h, 2/4, 1/H, 03

We can therefore write attributable risk among cases as a compounded

function

Xg = expCA2loge (Axp)3

Similarly, the estimator for population attributable risk, x, could be found 

by defining:
- C2 1 

Bi = Ci-C0

_ Ci

bt = BiP; C2 = CI ; 03; and B2 = Cl, 1, -13. Both 0 and i

have the same number of columns as ptz and poz.

Thus, the compounded function of population attributable risk is given 

by:

X - axpCB2loge (Bxp)3

We also realise from the above expression that Vx = C2p

Asymptotic large sample variances can now be obtained by using 

appropriate matrix products arising from multivariate Taylor series method. 

As already indicated, the large sample variance estimators are given by:

Var(Xg) = H1Var(p)Hiz

Var(x) = H2Var(p)H2z

where in this case

H = and H = ÎB Dv -*B 2 X2 bi 1
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and Df is a diagonal matrix with the vector p on the main diagonal.

3.2 EXAMPLES

We shall illustrate the methodolgy developed in both Chapter 2 and 

Section 3.1 with examples from the literature.

1. Using Matched-pair Case-Control Data

Consider the data in Table 3.4 which were obtained from a matched-

pair case-control study on the exposure to oral conjugated estrogens among

cases of endometrial cancer and their matched controls (on the basis of

sex, race, date of admission, and hospital of admission) reported by Autunes 

et al (1979) and used by Schlesselman (1982) as an example.

Table 3.4

Frequency of Exposure among cases and their matched controls.

Control
+ Total

Cases
+ 12 43 55

- 7 121 128

Total 19 164 183

C exposed (+), non-exposed (->3.

Using the methodology described in Chapter 2, an estimate of the 

odds ratio (which in this case happens to be the estimate of the relative 

risk) is given by (2.15):

♦ = 6.143

The estimate of attributable risk among exposed is given by (2.17):
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>-e = 0.837 

The estimate of the exposure prevalence among cases only is given by <2.18): 

" Vx = 0.3005 

and thus the estimate of population attributable risk would be: 

"' = " A. VxA.e " = 0.252 

Estimates of their large sample variances could be obtained by using the 

formulas indicated in Chapter 2. 

From <2.16) Var<loge .) = 0.1666666. 

From <2.32) Var<~> = 0.0044021. 

Using <2.33) and <2.34>, Var()J = 0.0016505. 

To compare with the method developed from using the matrix method, we 

have from <3.5) Var<>-e> = 0.0044021 

"' and from (3.6) Var<A> = 0.0016505. 

The two methods yield the same estimates for Var<Ae> and VarCA). 

It is, however, interesting to compare the results of the data above 

to the case when it was analysed as if matching had been ignored as 

reported by Schlesselman <1982> in an illustrative example. 

Table 3.5 

Use of oral conjugated estrogens <OCE> for cases 

of endometrial cancer and controls. 

Cases Controls Total 

Yes 55 19 74 
OCE 

No 128 164 292 

183 183 366 



33

The following results are obtained:

Î = 3.709 from (2.1)

Xe = 0-730 from (2.4)

X = 0.220 from (2.5)

Var(f) = 1.165492 from (2.11)

Var(Xe) = 0.0061591 from (2.32)

Var(x) = 0.0018160 from (2.13)

Vardoge = 0.0847235 from(2.10)

We realise that the odds ratio in the unmatched case is about half that

obtained in the matched case, which highlights the importance of matched 

analysis in this case. Estimates of attributable risk were also 

underestimated in the unmatched analysis. For example, we would conclude 

that the sample attributable risk estimate of 0.83? (matched analysis) among 

exposed suggests that among women who took oral conjugated estrogens 

(OCE), 83.7 % of endometrial cancer were associated with such risk. We

would however conclude that 73 % of the cancer were associated with the

risk of using OCE in the unmatched analysis. This is due to the sizable 

reduction of the exposure-disease association (as measured by the odds 

ratio) when we do not take matching into account.
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2. The case of matching 2 controls to a case.

Consider the data below which were obtained from a matched case-

control study of the smoking habits (exposure) of some bladder cancer

patients and their matched controls (each case matched to 2 controls on 

the basis of sex and age within 10 years) reported by Miller et al (1978). 

Writing the data to conform to our formulation in Table 2.3, we have :

Table 3.6

Smoking Habit 
in cases

Both controls 
20+ a day

One of 2 controls 
$ 20 a day

Both controls 
5 20 a day Total

20+ per day 31 42 1? 90
(exposed)
$ 20 per day 11 23 12 46
(not/less exposed)

136

From (2.21), an estimate of the Mantel-Haenszel odds ratio for this data 

set is given by

$ = 1.689

and from (2.22) xe = 0.408

and from (2.23) x = 0.270

where an estimate of the exposure prevalence among cases only from (2.26) 

is Vx — 0.662.

We shall now find their asymptotic large sample variances using the 

methodology previously described. Using the formula given by Connett et 

al (1982), we have from (2.27) that



3255 -1302 

-1302 3948 

1 -524 -714 

Var(p) = -324 -462 

<136> 3 -714 -966 

-372 -504 

-527 

-714 

2023 

-187 

-391 

-204 

-341 -713 -372 

-462 -966 -504 

-187 -391 -204 

1375 -253 -132 

-253 2599 -276 

-132 -276 1488 

35 

"' Var<loge •> = 0.05213074 

,..... . 
Var<>-.e> 0.01827645 = It follows from <2.31> that 

""' Var<Vx> = 0.00164582 From <2.33) 

and it follows from <2.34) that Var&J 0.01062808 = 

We could also obtain estimates of the large sample variance using the 

multivariate Taylor series methods described by Koch et al <1977), 

We could write the vector of multinomial proportions, p , as 

p" = [31, 42, 17, 11, 23, 12)/136 

Then a consistent estimator of covariance of p is given 

.1' 
Var<p> = 1/NCDp - pp J 

which could be writ ten as 

Here 

Aj. =G 
1 2 -2 -1 

1 2 0 0 

[~ 
1 1 0 0 

~] B1. = 1 2 -2 -1 

1 2 0 0 

Thus a1. = A1.P = (31, 76J" and b1. = B1.P = £90
.1' 

1 31, 76J 

We can thus express both Ae and A as compounded functions such that 

:] A2 = ( 1, -1 J 

B2 = [ 1, 1, -1 J 
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xe = exp(A2(loge a2)} and x = exp{B2(loge bt)}

We have seen that their variances turn out to be given by 

Var(Xe) = (xe)2A2Dai-1AiVar(p)A1zDa1-1A2z

and Var(x) = (>b2B2Di>i";1BiVar(p)BtzDbl‘1B2Z

where in this example:

1 31 0 1 ’90 0 0
Ba = 1 Dhi = — 0 31 0

136 ! 0 76
—

136 0 0 L_ 76

By multiplying the matrix products using a computer, we obtain

Var(Xe)=0.01827645 Var(x)= 0.01062808

Alternatively, we could simply use the algebraic expressions obtained in 

(3.7) and (3.8). As is expected, the results are

Var(Xe) = 0.01827645 Var(x) = 0.01062808

Again, the two methods lead to the same estimates of the variances.

3 The case of variable number of controls per case

Consider the example of a case-control of the association between 

Hodgkins disease and tonsillectomy used by Walter (1980). The 104 cases 

considered below are part of the 153 cases reported by Walter. For 

illustrative purposes, only the data on completely observed triples (ie cases 

with 2 controls observed) and cases with only one control observed are 

used. The controls (up to 2 per case) were sampled from other patients 

at the same hospital and were matched on age, admission date, sex and 

race. Tonsillectomy status (exposure) was determined when possible, only



Table 3.7 

Previous tonsillectomy status for Hodgkins disease cases 

and matched controls. 

Cases Controls Number of matched groups 

~ ... i i 4 

i 1 0 8 

1 0 0 17 

0 1 1 9 

0 1 0 21 

0 0 0 18 

1 1 3 

1 0 5 

0 1 6 

0 0 13 

i=Pr·evious tonsillectomy O=no previous tonsillectomy =missing 

observation. 

To conform to our formulation in Table 3.3, we shall represent the data 

as: 

37 

medical record ·of each patient. The table below shows the data. 

Table 3.8 

1 control observed " controls observed ,;;. 

No. exposed No. exposed 
Case Status 1 0 ') 1 0 <. Total 

Exposed 3 5 4 8 17 37 

Non-exposed 6 13 9 21 18 67 

104 

Then from <2.24>, an estimate of Mantel-Haenszel odds ratio <Fleiss <1984)) 
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would be obtained as:

£ = 1.03125

and an estimate of attributable risk among exposed from (2.25) would be: 

Xe = 0.0303

Exposure prevalence among the exposed only would be Vx=0.3558

and thus the estimate of population attributable risk is given by

X = VxXe = 0.0108

From Fleiss (1984), we can find variance of loge <p given in equation (2.29). 

Using the data, we obtain

Var(loge = 0.0662075? and thus

Var(Xe) = (i-3^e)2Var(loge ¥> = 0.0622558

Using Var(Vx) = 0.00220382 we find from (2.34) that

Var(x) = 0.0080828

Alternatively, we could use the multivariate Taylor series (matrix products) 

method already discussed in Section 3.1.

Here, the vector of multinomial proportions, p , could be written as 

pz = C3, 5, 4, 8, 17, 6, 13, 9, 21, 183/104

Thus Ci = CO, 1/2, 0, i/3, 2/3, 0, 0, 0, 0, 03 

and C2 = CO, 0, 0, 0, 0, 1/2, 0, 2/3, x/3, 03 

Here, we have

Ai
0

0

x/2 0 -2/3 -1/3 0 

0 0 0 0 0

from which we can show that C2p = (5/2 + S/3 + 3**/3)/104 = 16.5

and Cop = (s/2 + 18/3 + 2i/3)/104 = 16, the ratio of which gives

the odds ratio.
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We can thus express the measures of attributable risk as compounded

functions of these matrices such that

xe = exp(A2loge (Aip)> and X = exp{B2loge (B±p)3

where A2 = t 1, -13, b2 = C 1, 1, -1 3

1 1 1 1 1 0 0 0 0 0

Bi = 0 % 0 X/3 £/3 0 -£/3 0
0 x/2 o x/3 % 0 0 0 0 0

The consistent estimate of the covariance of p, would thus be given by

Var(p) = i/NlDF - pp'l

From our example,

~303 -15 -12 -24 -51 -18 -39 -2? -63 -54_

-15 495 -20 -40 -85 -30 -65 -45 -105 -90

-12 -20 400 -32 -68 -24 -52 -36 -84 -72

1 -24 -40 -32 768 -136 -40 -104 -72 -168 -144

Var(p) = ------- -51 -85 -68 -136 1479 -102 -221 -153 -357 -306
(104)3 -18 -30 -24 -40 -102 588 -78 -54 -126 -108

-39 -65 -52 -104 -221 -78 1183 -117 -273 -234

-27 -45 -36 -72 -153 -54 -117 855 -189 -162

-63 -105 -84 -168 -357 -126 -273 -189 1743 -378

-54 -90 -72 -144 -306 -108 -234 -162 -378 1548

As already indicated, the large sample variance formulas are given as in 

(3.3) and (3.4), where by multiplying the appropriate matrices we obtain

Var(xe) = 0.0622558 and VarOO = 0.0080816

We realise that the two methods yield the almost the same estimates of 

the variances and the difference is only due to rounding error.



CHAPTER 4

EFFICIENCY CONSIDERATIONS

4.1 INTRODUCTION

The use of case-control studies with multiple controls per case is 

widespread in epidemiologic research. Frequently, one has only a limited 

number of cases available or they are expensive to obtain, whereas the

controls are readily available. However, situations do exist where the 

controls are just as hard to obtain as are the cases, and under these 

circumstances it might be unwise to take a large number of controls per

case.

.... Many authors have looked at what they consider to be a good choice 

for the number of controls when there is a single dichotomous exposure 

variable. Ury (1975) considered the asymptotic relative efficiency of two 

designs with a different number of controls per case. He used the number 

of cases required for a given power in order to compare the efficiencies 

of alternative matching ratios. He showed that the efficiency of a design 

with Rx controls relative to a design with R2 controls is given by

Rj/Rs+D/RaCRi+i)

Miettinen (1969) performed a cost analysis. He looked at the cost 

of choosing R controls per case for n cases, where c± is the cost per 

case and c2 is the cost per control, making the total cost n(Ci+Rc2). For

in
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fixed R, he found the sample size that gives a certain power against a 

local alternative, and then by minimising the total cost with respect to

R, he showed that the best choice of R is Gail et al (1973) reported

similar results and calls it the 'square root rule’.

Taylor (1986) looked at a simple example of a matched case-control 

study, where there is a single binary exposure variable. By looking at 

the power of the usual test against a specific alternative he showed that 

there is a rapidly diminishing return with an increase in the number of 

controls per case. He thus recommended that, with equal difficulty in 

obtaining cases and controls, it appears that R = 1 is the best choice 

and that rarely is it worth having more than 3 controls per case.

Walter (1980) considered the case where a variable number of controls

may be matched to a case, in the situation where the design results from

censoring or an interim analysis. Suppose that censoring of cases and

controls occurs independently but with possibly different probabilities

and n2, and for simplicity the cost of enrolling a case is unity and that

of a control is c. He showed that the asymptotic relative efficiency of

a design using R± controls per case as compared to R2 controls per case

for a binary response is given by

Ri(CR2+i)CR2^_tT2^+l+ff2^
REi>(Ri,R2) = -------------------- ■---------- ■----------

R2(CRi+l)CR1(i-Tt2)+i+«23

He showed that the optimal ratio (maximising efficiency) is

R0Pt = 7{(i+n2)/CC(l-«2»}

which reduces to i/JC (square root rule) when „2=0-
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(l]e shall look at cost-efficiency considerations when attributable risk 

estimation is the ultimate goal of the analysis. Consider the total cost 

of chc•osing R controls per case for N cases, where Ci. is the cost per 

case <assumed io be the same for· all cases> and C2 is the cost per control 

<also assumed to be the same for each control>, thus making the total 

cost N<Ci.+RC 2>. If in addition, it is assumed that it costs k times the 

cost of obtaining one control to obtain a case <ie Ci. = kC 2>, then ~he 

total cost is NC 2<k+R>. We note that the actual total cost would include 

an overhead cost but this is ignored in this formulation. We can therefore 

determine the total number of matched sets corresponding to any matched 

design at a fixed total cost, and consequently determine which matched 

design results in the smallest variance of the attributable risk. Since the 

variance depends on the relative risk <which in case-control studies is 

the odds ratio t > and the exposure prevalence among cases, Vx ( as is 

appropriate for a matched design>, we shall specify some values of t and 

Vx. 

For example, for a fixed total cost 300C2 <ie N<k+R>=300>, we would 

have the following number of matched sets, N, corresponding to the number 

of controls, R, matched to each case, where cj, = c2. 

N R Cost 

150 1 300C2 

100 2 300C2 

75 3 300C2 

60 4 300C2 

50 5 300C2 

For various values of Vx, we could determine the 'cell frequencies• ' and 

corresponding to each matched design, for any N, and hence obtain an 
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estimate of the attributable risk and its large sample variance. In this 

case the expected cell frequencies are those expected from random sampling.

As is appropriate for a multinomial table, we could determine the 

probability that a matched set falls in any cell.

Let Po = P(exposure/control), and Px = P(exposure/case).

Consider a matched-pair case-control data represented as:

Control
i 0 Total

i Z1± Z10
Case

0 Zqj Zqq

N

Let Pjj be the probability that a matched set falls in the (ij>th cell, 

i = 0,1 and j = 0,1. Thus

Pu = PiPo PiO ~ Pi/i-?©)

POi = (I-PPP© Poo = <1-Pi)<l-Po)

Then the expected cell frequencies are given by E(Zjj) = NPjj.

Generally, for R controls per case represented as

No. of controls exposed 
R ... 2 1 0 Total

1 ziR ... z12 ZXi ZiO
Case

0 ZqR ... Zq2 Zoi Zoo

N

The probablity that a matched set falls in the (ij)th cell, Pij, i=0,l and 

3=0,1,2,..., R will be given by:

R !
Pu = -------------  PiPoT<i - Po>R-T> J = 0,1,2,..., R

JKR-J1!
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R !
OJ (i-Pi)Pc,T(i-Po)R’J J = 0,1,2,..., R

JKR-JH

where the expected cell frequencies are given by E(Zij) = NPij.

We have already indicated that for matched case-control data, 

provided the case represents a random sample of cases from the target 

population, an estimate of exposure prevalence among cases, Vx , could 

be found. This estimate is what is being referred to as Px, here. We could 

also determine Po (proportion of matched controls who are exposed) by 

using the equation

P0=Pi/[P1+q»(i-P1)] = Vx/[Vx+<p(i-Vx)3

where $ (odds ratio) is an estimate of the relative risk. The above equation

is obtained from the fact that

Pi = Po*/<i+Po<4’-i» <cf 2.14)

Thus by specifying values for N, q», and Vx, we can find the expected 

cell frequencies, and consequently find x and Xe, and their asymptotic 

variances using methods already outlined in Chapters 2 and 3.

Using the variances (determined at fixed cost) for various matching designs, 

we can find for example, the asymptotic relative efficiency of multiple 

controls relative to matched pairs, defined here as

RE(Rr,Ri) = Var(Xi)/Var(Xr)

where Var(xx) refers to the variance of the population attributable risk 

when 1 control is matched per case; and Var(xr) refers to variance of

the population attributable risk when r controls are matched to a case.
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Similarly, we could determine

RE(Ej*,E^_> - Var(Xei)/Var(Xer)

where Var(xei) and Var(Xer) refer to the variances of attributable risk 

among exposed when i and r controls, respectively, are matched to a case.

We could therefore determine relative efficiency of one matching 

design to another (up to matching with 5 controls per case) at different 

costs of obtaining a control when it costs k times to obtain a case.

By means of a simple computer program, we found relative efficiency under

these instances:

(i) ranges from i.5 to 10.

(ii) Vx ranges from 0.05 to 0.95.

(iii) matching R = i, 2, 3, 4, 5 controls per case.

(iv) for some total cost (arbitrarily chosen) depending on k = i, 2,

or 5;

(for example, total cost 300C2 for k = i, 420C2 for k = 2 and 2520C2 

for k = 5).The total cost chosen does not make any difference in the 

relative efficiency obtained, as it only determines the value of N (the 

total number of matched sets) to be used in the large-sample variance

calculation.

Some important results are presented in Tables B.i, B.2 and B.3 of 

Appendix B.
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4.2 DISCUSSION OF RESULTS 

Table B.i of Appendix B gives the asympto~ic relative efficiency for 

various of q, <the odds ratio used here to estimate relative risk) and Vx 

<the exposure p~evalence among the cases> when C:1 = C2 <equal cost for 

cases and controls>. We realise that R = 1 <matched pair) is the best choice 

in such a situation for estimating population attributable risk (>J in the 

sense that it has the smallest variance of A. In the case of estimating 

attributable risk among the exposed <"e>, we realise that for some 

situations <q, < 2.5>, R = 1 is the best choice, though for· large q, <q, ~ 

3) and small Vx <Vx < 0.5) 1 matching with 2 controls per case <R = 2) 

might seem more appropriate. 

For example, consider a chemical plant where the relative risk of 

some disease <eg. carcinoma of the lung> is very high <• ~ 10) among workers 

exposed to certain chemicals, compared to those not exposed, but only a 

small fraction of cases of the disease reported are exposed to the 

particular industrial chemical <eg. Vx ~ 0.1). In such a situation, it might 

be more appropriate to match 3 controls to a case. To help in deciding 

what is the optimal matching ratio, we have provided a table of optimal 

R's in Table 4.1. formed from Table B.1. 
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Table 4.1

Optimal R (Cx = C2)

For Xe For x

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

*
1.5 1 1 1 1 1 1 1 1 1 1

2.0 1 1 1 4 1 1 1 1 1 1

2.5 2 1 1 1 1 1 1 1 1 1

3.0 2 ? 1 1 1 1 1 1 1 1

5.0 n r) 2 1 1 1 1 1 1 1

10.0 3 3 njL 2 1 1 1 1 1 1

This table becomes particularly useful, when estimates of and Vx 

are available from other sources. If these estimates are not already 

available as might be the case before most studies, R = 1 (the matched- 

pair design) offers the best choice, and rarely do we need to consider 

R > 3. This is similar to the conclusion reached by Taylor (1986).

Table B.2 looks at the situation where it costs 2 times to obtain

a case. We realise from Table B.2 and also the table of optimal matching 

ratios obtained from it (Table 4.2) that R = i would be the best design 

if only population attributable risk were to be determined. However, the 

estimate of population attributable risk (x) depends on both the exposure 

prevalence among the cases (Vx) and the attributable risk among the 

exposed (Xg), so we need to consider the optimal matching ratio for Xg
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as well. We see that for most designs likely to occur in practice, R = 

2 is the best choice, except for situations with very high Vx (Vx > 0.7) 

or very high > 5) where other designs with a higher R would seem

appropriate.

Table 4.2

Optimal R (C± = 2X C2)

For xe For x

Vx 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

*
1.5 9 2 2 1 1 1 1 1 1 1

2.0 9 n 9 1 1 1 1 1 1 1

2.5 2 2 2 -> 1 1 1 1 1 1

3.0 2 9 9 2 1 1 1 1 1 1

5.0 o 3 9 2 1 1 1 1 1 i

10.0 4 4 3 3 9 1 1 1 1 1

Table B.3 considers the situation where it costs much more (5 times)

to obtain a case. For population attributable risk (x), R = 2 is better 

for 9 < 3, but R = i is more appropriate if 9 £ 5. However, for attributable 

risk among exposed (Xg), R = 3 is the optimal matching ratio (Table 4.3) 

when 9 < 3 and Vx < 0.5, but for large Vx (Vx > 0.5) R = 2 seems a 

better choice. It also has the interesting feature that for significantly 

high relative risks > 5) and low to moderate exposure prevalence among

cases <VX < 0.5), the number of controls to match to a case that has
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the potential of increasing efficiency increases ( R = 4 or even 5 in some 

cases). Table 4.3 provides the optimal matching ratios under some of these 

circumstances. Since it is very likely that values of Vx and '41 may not 

be available before a study, we suggest. that R = 3 be taken as the optimal 

matching ratio when it costs 5 times to obtain a case. 

Table 4.3 

Optimal R < C1 = 5X C2 > 

For Xe For A. 

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 

' 1.5 3 3 2 , .. 2 2 , 
L 

, .. , ... , ... 

2.0 3 3 3 2 2 
,., 
.:. 2 2 2 

., .. 
2.5 3 3 3 2 2 .... 

" 2 ... 
" 2 .. , .. 

3.0 4 3 3 2 2 1 i ") 
.:.. 2 ') 

'-

1\ ,., 
..,,Ll 5 4 4 3 ... 

" 1 1 1 i A 
~ 

10.0 5 5 5 4 .. " 1 1 1 1 1 

4.3 CONCLUSION 

We have looked at the various methodologies for estimating 

attributable risks in case-control studies, and for matched case-control 

studies in particular. Until recently, such estimators, their large-sample 

standard errors as well as their interval estimates have not been available. 

Kuritz and Landis U987a) have provided explicit expressions for estimating 

attributable risks and their large-sample variances <given in equations <3.5) 
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and (3.6) of the last chapter) for matched-pair case-control data, and we 

have also derived simple algebraic expressions for the large-sample variance 

of attributable risks (both Xe and X) when exactly 2 controls are matched 

to a case (given in equations (3.7) and (3.8)). Since the algebra gets very 

messy when working with data obtained from a case-control study with 

more than 2 controls matched to a case, the alternative expressions given 

by Kuritz and Landis (1987b) should be used (given in equations (2.32) and 

(2.34)). Our examples indicate that these alternative expressions are as good 

as those obtained through the matrix approach. Both sets of results are 

asymptotic. These expressions mean that researchers can make use of simple 

algebraic formulas to find attributable risks for matched case-control data, 

their asymptotic standard errors and interval estimates using only a pocket

calculator.

Kleinbaum et al (1982) noted that the selection of more controls than

cases helps to insure that there will be controls for cases at all relevant 

levels of the confounding variables, so that adequate comparisons could 

be made. On the other hand, if the cost of obtaining the study information 

is high, the greatest efficiency could be obtained by having equal number 

of cases and controls, where in this case matching will assure comparable 

distribution with respect to confounding variables. The cost benefit of 

matching in terms of efficiency and validity of study depends on the degree 

of confounding, and matching on an unrelated factor could result in over­

matching, and hence loss in efficiency.

We considered relative efficiency under different matching designs 

(on the assumption that matching was on relevant confounding variables)
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and with different costs of obtaining cases and controls when attributable 

risk is the ultimate goal. Our results led to tables of optimal matching

ratios (Tables 4.1, 4.2 and 4.3). These results have led us to believe that 

when it costs more to obtain a case for a matched study, more controls 

should taken, but rarely do we need to take more than 3 controls, except 

when ancillary information suggests that the risk of disease is much higher 

(<P > 10) among the exposed persons as compared to those not exposed. 

The table of optimal matching ratios could be used whenever possible to 

help us make decisions about how many controls to match per case.

As noted by Kuritz and Landis (1987a), further empirical work is 

necessary to investigate the small to moderate sample size behaviour of 

these estimators. We have not particularly considered cases where the 

factors are associated with decreased risk (ie when f < 1) and further 

work could be carried in such situations. The ideas presented here could 

also be extended to situations with multiple exposure levels ( not exposed, 

mildly exposed, severely exposed, etc.).



APPENDIX A

The sample multinomial proportions arising from Table 3.1.1 can be

formed as

pz = [ a, b, c, d, e, f ]/n

with the estimated covariance matrix being 

Var(p) = (DP - ppz)/n

where Dp is a diagonal matrix with vector p on the main diagonal. If

we let

Ai

Bi =

“0 1 2 -2 -1 Cf

.0 1 2 0 0 0.

1110 0 0 

0 1 2-2-1 0 

0 1 2 0 0 0

then ax = Axp and b4 = B^jp are the linear functions of p necessary 

to give the required numerators and denominators.

The attributable risk estimates can be expressed as compounded functions 

of p by writing

Xg = exp{A2 (loge ai) >

x = exp£B2 (ioge b±) 3-

where A2 = [ 1, -1 3 and B2 = [ 1» 1, -1 1

Thus, by appropriate matrix products arising from multivariate Taylor 

series methods [Kuritz and Landis (1987a)3, the large-sample variance

52
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estimators for these functions are given by

Var(xe) = (xe)2A2Da1"1A1Var(p)Ai,Da1“iA2z

Var(x) = (x^BaDbi^BiVaHpiBx'Dn^B/

(A.i)

(A.2)
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Table B.i 

Relative Efficiency for- var·ious values of • and V x· <C1 = C ) 2

under- differ-ent matching designs. 

Vx 0.1 0.3 

RE<E 2 ,E:1) 

0.5 0.7 0.9 0.1 

RE<R2 ,R1 ) 

0.3 0.5 0.7 0.9 

' 1.5 0.943 0.923 0.901 0.876 0.848 0.835 0.836 0.838 0.838 0.836 

2.0 0.987 0.958 0.923 0.881 0.830 0.802 0.807 0.811 0.812 0.808 

2.5 1.023 0.989 0.947 0.893 0.822 0.781 0.788 0.794 0.798 0.792 

3.0 1.052 1.016 0.970 0.908 0.821 0.765 0.773 0.782 0.788 0.782 

5.0 1.129 1.093 1.043 0.967 0.836 0.731 0.739 0.751 0.763 0.765 

10.0 1.212 1.186 1.144 1.070 0.902 0.701 0.708 0.718 0.734 0.754 

Vx 0.1 0.3 

RE<E ,E3

0.5 

2 ) 

0.7 0.9 0.1 

RE<R ,R3

0.3 0.5 

2) 

0.7 0.9 

• 
1.5 0.870 0.860 0.849 0.838 0.825 0.819 0.820 0.820 0.820 0.819 

2.0 0.893 0.878 0.860 0.840 0.817 0.805 0.807 0.809 0.809 0.807 

2.5 0.912 0.894 0.872 0.846 0.813 0.795 0.798 0.801 0.803 0.800 

3.0 0.929 0.909 0.884 0.853 0.812 0.789 0.779 0.783 0.798 0.796 

5.0 0.975 0.954 0.924 0.883 0.819 0.775 0.779 0.783 0.788 0.789 

10.0 1.031 1.013 0.985 0.939 0.850 0.773 0.766 0.770 0.776 0.784 

54 
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Table B.I (continued)

Relative Efficiency for various values of y and Vx <CA = C2)

î? H/ C £ if f £ 5 ) RE(Rh>R3)

Vx 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

♦
1.5 0.870 0.863 0.857 0.850 0.842 0.838 0.839 0.839 0.839 0.839

2.0 0.884 0.874 0.863 0.851 0.837 0.830 0.831 0.832 0.833 0.832

2.5 0.897 0.885 0.871 0.855 0.835 0.825 0.827 0.828 0.829 0.828

3.0 0.908 0.895 0.878 0.859 0.835 0.821 0.823 0.825 0.826 0.825

5.0 0.941 0.926 0.905 0.877 0.839 0.813 0.816 0.818 0.821 0.821

10.0 0.985 0.970 0.949 0.916 0.857 0.807 0.808 0.811 0.814 0.819

RE<ES>EH)__________ __________ RE(Rs,Rh)

Vx 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

*
1.5 0.879 0.875 0.870 0.866 0.861 0.858 0.858 0.859 0.859 0.858

2.0 0.890 0.883 0.875 0.867 0.857 0.852 0.853 0.854 0.854 0.854
2.5 0.899 0.890 0.880 0.869 0.856 0.849 0.850 0.851 0.852 0.851

3.0 0.907 0.897 0.885 0.872 0.856 0.847 0.848 0.849 0.850 0.849

5.0 0.932 0.920 0.904 0.885 0.858 0.842 0.843 0.845 0.847 0.847

10.0 0.967 0.955 0.938 0.913 0.870 0.838 0.839 0.840 0.842 0.845
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Table B.2 

Relative Efficiency for various values of ' and Vx <C1. = 2X C~) 

under different matching designs. 

Vx 0.1 0.3 

RE<E 2 ,E:s> 

0.5 0.7 0.9 n ~ ...... 

RE<R2 ,R;~,> 

0.3 0.5 0.7 0.9 

' 1.5 1.061 1.038 1.013 0.986 0.954 0.939 0.941 0.943 0.943 0.940 

2.0 1.110 1.078 1.038 0.992 0.934 0.903 0.909 0.913 0.915 0.909 

2.5 1.150 1.112 1.065 1.005 0.925 0.879 0.886 0.894 0.897 0.891 

3.0 1.183 1.143 1.091 1.021 0.923 0.861 0.870 0.879 0.886 0.879 

5.0 1.270 1.230 1.174 1.088 0.940 0.822 0.832 0.845 0.859 0.861 

10.0 1.364 1.333 1.287 1.203 1.015 0.789 0.796 0.808 0.826 0.848 

Vx 

' 

0.1 0.3 

RE<E 3 ,E2> 

0.5 0.7 0.9 0.1 

RE<R;a,Rz> 

0.3 0.5 0.7 0.9 

1.5 0.928 0.918 0.906 0.894 0.880 0.873 0.875 0.875 0.875 0.874 

2.0 0.953 0.936 0.918 0.896 0.871 0.858 0.861 0.862 0.863 0.861 

2.5 0.973 0.954 0.930 0.902 0.868 0.849 0.852 0.854 0.856 0.853 

3.0 0.991 0.969 0.943 0.910 0.867 0.842 0.845 0.849 0.851 0.849 

5.0 1.040 1.017 0.986 0.942 0.874 0.826 0.830 0.835 0.841 0.842 

10.0 1.100 1.081 1.051 1.003 0.907 0.814 0.817 0.821 0.828 0.836 
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Table B.2 (continued)

Relative efficiency for various values of 9 and Vx (C-l = 2X C2)

RE(EHfE3) RE(Rm,R3>

Vx O.i 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

♦
1.5 0.906 0.899 0.893 0.885 0.877 0.874 0.874 0.874 0.874 0.874

2.0 0.921 0.911 0.899 0.887 0.872 0.865 0.866 0.867 0.868 0.866

2.5 0.934 0.922 0.907 0.890 0.870 0.859 0.861 0.863 0.864 0.862

3.0 0.946 0.932 0.914 0.895 0.870 0.856 0.857 0.859 0.861 0.860

5.0 0.981 0.964 0.943 0.914 0.874 0.847 0.849 0.852 0.855 0.855

10.0 1.026 1.010 0.988 0.954 0.893 0.841 0.842 0.845 0.848 0.852

R£(Es>Eh)____________ _________ RE(Rg,RH)

Vx 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

*
1.5 0.904 0.900 0.895 0.890 0.885 0.882 0.883 0.883 0.883 0.883

2.0 0.915 0.908 0.900 0.891 0.882 0.877 0.878 0.879 0.879 0.878
2.5 0.924 0.915 0.905 0.894 0.880 0.874 0.874 0.876 0.876 0.875

3.0 0.933 0.923 0.911 0.897 0.880 0.871 0.872 0.874 0.875 0.874
5.0 0.959 0.946 0.930 0.910 0.883 0.866 0.867 0.869 0.871 0.871

10.0 0.995 0.982 0.965 0.938 0.895 0.862 0.863 0.864 0.866 0.869
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Table B.3 

Relative Efficiency for various values of • and V x <C1. = 5X C~) 

under different matching designs. 

Vx 

RE<E 21 E1 ) RE<R 21 R1> 

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 

., 
1.5 1.213 1.187 1.158 1.127 1.091 1.073 1.076 1.078 1.078 1.075 

2.0 1.269 1.231 1.187 1.133 1.067 1.031 1.035 1.043 1.045 1.039 

2.5 1.315 1.271 1.217 1.149 1.058 1.006 1.012 1.021 1.026 1.018 

3.0 1.352 1.306 1.247 1.167 1.055 0.984 0.994 1.005 1.012 1.005 

5.0 1.451 1.406 1.341 1.243 1.075 (1, 941 0.952 0.966 0.982 0.984 

10.0 1.559 :1..524 1.469 1.376 1.159 0.903 0.911 0.923 0.943 0.969 

RE<E 3 ,E2 > RE<R3 ,R 2) 

Vx 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 

., 
1.5 1.015 1.004 0.991 0.978 0.962 0.955 0.956 0.957 0.957 0.956 

2.0 1.042 1.024 1.004 0.980 0.953 0.938 0.941 0.944 0.944 0.941 

2.5 1.064 1.043 1.018 0.987 0.949 0.927 0.931 0.934 0.936 0.933 

3.0 1.084 1.060 1.031 0.995 0.948 0.921 0.924 0.928 0.931 0.928 

5.0 1.138 1.113 1.078 1.030 0.955 0.903 0.908 0.913 0.919 0.920 

10.0 1.203 1.182 1.149 1.095 0.991 0.888 0.893 0.897 0.905 0.915 
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Table B.3 (continued) 

Relative Efficiency for var·ious values of • and V x <C1 = 5X C~) 

RE<E .. ,E3 > RE<R .. ,R3 > 

Vx 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 Q.7 0.9 

... 
1.5 0.966 0.959 0.952 0.944 0.936 0.933 0.932 0.933 0.933 0.932 

2.0 0.983 0.972 0.959 0.946 0.930 0.923 0.924 0.925 0.925 0.924 

2.5 0.997 0.983 0.968 0.949 0.928 0.917 0.919 0.920 0.921 0.919 

3.0 1.009 0.994 0.976 0.954 0.927 0.912 0.915 0.917 0.918 0.917 

5.0 1.046 1.028 1.005 0.975 0.932 0.904 0.905 0.909 0.912 0.912 

10.0 1.094 1.077 1.056 1.017 0.952 0.896 0.898 0.901 0.905 0.909 

RE<E 5 ,E .. > RE<Rc:,R .. > 

Vx 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 

... 
1.5 0.950 0.945 0.940 0.935 0.929 0.925 0.926 0.927 0.927 0.927 

2.0 0.961 0.953 0.945 0.936 0.926 0.920 0.921 0.923 0.923 0.922 

2.5 0.979 0.961 0.951 0.939 0.924 0.915 0.919 0.919 0.920 0.919 

3.0 0.979 0.969 0.956 0.941 0.924 0.915 0.916 0.917 0.918 0.917 

5.0 1.007 0.994 0.977 0.955 0.927 0.910 0.911 0.913 0.914 0.915 

10.0 1.045 1.031 1.013 0.987 0.927 0.906 0.906 0.907 0.910 0.913 



----------- --------- -

BIBLIOGRAPHY 

1. Autunes, C.M.F., Stolley, P.D., Rosenshein, N.B., Davis, J.L., Tonascia, 

J.A., Brown, C., Burnett, L., Rutledge, A., Pokempner, M. and Garcia, 

R. <1979). Endometrial cancer and estrogen use:report of a large 

case-control study. }1, Eng. cl. !led. 300,9-13. 

2. Berkson, J. <1958). Smoking and Lung Cancer: Some observations on 

2 recent reports cl. Amer. Statist. Assoc. 53, 28-38. 

3. Bishop, Y. 1 Fienberg, S.E. and Holland, P.W. <1975). Discrete:· 

1/ultiva·riate Anal-:;,>sis. Cambridge. Mass. M.I.T. Press. 

4. Breslow, N. <1981>. Odds ratio when data is sparse. Biometrika 68, 

73-84. 

5. Bruzzi, P., Green, S.B., Byar, D.P., Brinton, L.A. and Schairer, C. 

<1985). Estimating the population attributable risk for multiple risk 

factors using case-control data. Amer. cl. Epid. 122, 904-914. 

6. Cole, P. and MacMahon, B. <1971). Attributable risk percent in case­

control studies. E'rit. cl. Prev. Soc. !led. 25, 242-244. 

7. Connett, J., Ejigou, A., McHugh, R. and Breslow, N. <1982). Precision 

of the Mantel-Haenszel Estimator in Case-Control Studies with 

multiple matching. Amer. cl. Epid. 116, 875-877. 

B. Cornfield, J. <1951). A method of estimating comparative rates from 

clinical data. Applications to cancer of the lung, breast and cervix. 

60 



61

J. Nat, Cancer Cnst. 11,1269-1275.

9. Danner, A. and Hauck, W.W. (1986). The large-sample relative 

efficiency of the Mantel-Haenszel estimator in the fixed-strata case.

Biometrics 42, 537-545.

10. Ejigou, A. and McHugh, R. (1977). Estimation of relative risk from 

matched pairs in epidemiologic research. Biometrics 33, 552-556.

11. -----------------------------------------------------(1981). Relative risk estimation under-

multiple matching. Biometrika 68, 85-91.

12. Fleiss, J.L. (1981). Statistical Methods ior Bates and Proportions, 

Second Edition, Wiley, New York.

13. -----------------------------(1982). Simplification of the classic large-sample

standard error of a function of multinomial proportions. Amer, 

Statist. 36, 377-378.

14. -----------------------------(1984). Mantel-Haenszel Estimator in Case-Control

Studies with varying number of controls matched to each case. Amer. 

J. Epid. 120, 1-3.

15. Gail, M., William, R., Byar, D.P. and Brown, C. (1976). ’How many 

controls’. J, Chron. Bis. 29, 723-731.

16. Kendall, M.G. and Stuart, A. (1969). The Advanced Theory of

Statistics. Third Edition. Griffin. London.

17. Kleinbaum, D.G., Kupper, L.L. and Morgenstein, H. (1982). Epidemiologic 

Besearch: Principles and Quantitative Methods. Boston.



62

18. Koch, G.G., Landis, J.R., Freeman, J.L., Freeman, D.H. and Lehnen,

R.G. (1977). A general methodology for the analysis of experiments 

with repeated measurement of categorical data. Biometrics 33,

133-158.

19. Kupper, L.L., Karon, J.M., Kleinbaum, D.G., Morgenstein, H. and Lewis, 

D.K. (1981). Matching in Epidemiologic Studies: Validity and 

Efficiency Considerations. Biometrics 37, 271-279.

20. Kuritz, S.J. and Landis, J.R. (1987a). Attributable risk ratio

estimation from matched-pair case-control data. Amer. J. Epid. 127

324-328.

21. -----------------------------------------------------------(1987b). Attributable risk ratio

estimation from matched set case-control data. Submitted to

Biometrics

22. Leung, H.M. and Kupper, L.L. (1981). Comparison of confidence 

intervals for attributable risk. Biometrics 37, 293-302.

23. Levin, M.L. (1953). The occurance of lung cancer in man. Ada Unio 

/nt. Cancer 19, 531-541.

24. Levin, M.L. and Bartel, R. (1978). Re: Simple estimation of population 

attributable risk from case-control studies. Amer. J. Epid. 108,

78-79.

25. Leviton, A. (1973). Definations of attributable risk. Amer. J. Epid. 

98, 231.

26. MacMahon, B. and Pugh, T.P. (1970). Epidemiology, Principles, and

Methods. Little Brown and Co.



63

27. Mantel, N. and Haenszel, W. (1959). Statistical aspects of the analysis

of data from retrospective studies of disease, c-7. Nat. Cancer Ihst.

22, 719-748.

28. McKinley, S.M. <1977). Pair-matching - a reappraisal of a popular 

technique. Biometrics 33, 725-735.

29. Miettinen, O.S, (1969). Individual matching with multiple controls in 

the case of all-or-none responses. Biometrics 25, 339-355.

30. --------------------- (1970). Estimation of relative risk from individually

matched series. Biometrics 26, 75-86.

31. --------------------- (1974), Proportion of diseases caused or prevented by

a given exposure, trait or intervention. Amer. d. Epid. 99, 325-332.

32. Miller, C.T., Neutel, C.I., Nair, R.C., Marrett, L.D., Last, J.M. and 

Collins, W.E. (1978). Relative importance of risk factors in bladder 

carcinogenesis, d. Chron. Bis, 31, 51-56.

33. Park, C.B. (1981). Attributable risk for recurrent events: An 

extension of Levin’s measure. Amer. d, Epid. 113, 491-493.

34. Schlesselman, J.J. (1982). Case-Control Studies. New York. Oxford U.

Press.

35. Shep, M.C. (1959). An extension of some methods of comparing several 

rates or proportions. Biometrics 15, 87-97.

36. Taylor, J.W. (1977). Simple estimation of population attributable risk 

from case-control studies. Amer. d. Epid. 106, 260.



64

37. Taylor, J.M.G. (1986). Choosing the number of controls in a matched 

case-control study, some sample size, power and efficiency 

considerations. Stat. Med. 5, 29-36.

38. Ury, H.K. (1975). Efficiency of case-control studies with multiple 

controls per case: continuous or dichotomous data. Biometrics 31,

643-649.

39. Walter, S.D. (1975). The distribution of Levin’s measure of

attributable risk. Biometrika 62, 371-374.

40. ------------------------------ (1976). The estimation and interpretation of

attributable risk in health research. Biometrics 32, 829-849.

41. ----------------------------(1978). Calculation of attributable risks from

epidemiologic data. I nt. J. Epid. 7, 175-185.

42. -------------------------- (1980). Matched case-control studies with a variable

number of controls per case. J. Bo$. Statist. Soc. Ser. C 29, 172-179.

43. Whittemore, A.S. (1982). Statistical methods for estimating

attributable risk from retrospective data. Stat. Med. 1, 229-243.

44. ------------------------------------- (1983). Estimating attributable risk from case-

control studies. Amer, J. Epid. 117, 76-83.




