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ABSTRACT

This project discusses some of the methodologies developed over the years
1o estimate attributable risk among exposed persons and the attritutiable
risk in the entire population {also called Eticlogic Fraction). I provides
a general framework for estimating attributable risk among the exposed
{denoted Zg). By making use of the recent observation that the twe measures
of atiributable risk can be linked through the prevalence of the risk
factor among the cases (denoted V), an estimate of population attributable
risk (denoted ) for matched case-ccntrol studies is deiermined. Using the
methodology developed recently by Kurit:z and Landis (1987), ihis project
provides explicit formulas for estimating the attributable risk among the
exposed and the population atiributable risk, and their large sample variances.
This has been done both in situations where exactly R controls have been
matched to a case and for a variable number of controls per case. The
methedologies are illustrated with dsta from some case-control studies
reported in the literature. Asymptotic relative efficiencies of different
matching designs computed in terms of the costs of gathering cases and
controls, are presented, together with some recommendations on whatl design

is considered optimal,
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CHAFPTER 1

INTRODUCTION

Usually in the analysis of epidemioclogic data it is useful to obtain
an estimate of the proportion of some disease that is associated with
exposure to a risk factor. This helps in order to meaningfully control
diseases since & knowledge of the disease burden that could be prevented
by modifying & given risk factor is necessary. Levin’s measure of
atiributable risk (Levin (1953)) was proposed to measure the proportion of
disease burden atiributable to a risk factor. Various sirategies for
estimating attributable risk proportion have received increasing attention
in the literature (Cole and MacMahon (1971), Miettinen (1574}, Walter (1376)).
The extension of the technique of attributable risk estimation in the
presence of confounding variables (Bruzzi et al (1985), Whittemore (1982))
has been done; and Park (i983) found an estimate for it for recurrent
events. Recently, an extension to matched-pair case-control data has been

carried out (Kuritz and Landis (1987a).

A measure of the strength of an association between exposure and
a putative risk factor is the odds ratio (Cornfield (19540, It is the ratio
of the odds of a disease when the factor is present to the odds when
the factor is absent (see (2.1)). The odds of a disease are defined as the

probability of having the disease, divided by the probability of not having



(3]

the disease. Another relevant measure usually used in epidemiology is theg
relative risk, which is the ratio of the incidence of a disease in persons
exposed to persons not exposed to & risk factor. However, these measures -
do not provide any information on the actual numbers of affected
individuals in the target population. Hence, measures of atiributable risk,
which attempted to overcome this problem associated with relative risk
and odds ratio have been suggested. Walter (1976) has noted that though
the procedure for estimating attributable risk may be analogous to those
used in the theory of estimation of relative risk, the interpretation of
these two risk measures are different. Attributable risk should therefore
in no way be regarded as a substitute for relative risk, but rather be

regarded as an additiconal dimension of health hazard appraisal.

In estimating attributable risk, it becomes clear that we are
interested in the disease producing role of an etiologic factor. Attributable
risk (also called Eticlocgic Fraction) can be lococked upon as the fraction
of the disease which would not have occurred had the factor of interest
been absent from the population (ie the proportion of the disease
attributable to the factor of interest). If we are interested in the fraction
of the disease prevented by a beneficial factor (eg an intervention
program), the term ‘Prevented Fraction® has been suggested (Miettinen

(1974),

Retrospective (or Case-Conirol) studies are commonly used in
epidemiologic research because of the relative ease of gathering disease
cases in a short space of time, although it seems to suffer from such

biases as those related to the recall of previous exposure to a risk factor.



The odds ratio (which praviaes an estimaﬁe of relative risk in case-control
studies under a rare disease assumption (Chapter 2)) can be found for
case-control data. It is possible to have a high relative frisk, but which
may not be an important health problem because very few people are
actually exposed to it. On the other hand, a low relative risk may be
quite impertant if a large number of people are exposed to the factor;

hence the need of a meaczure of attributable risk.

Levin (1953) first introduced measures of attributable risk of a
specified disease associated with a selected risk factor when both are
classified as absent or present, He proposed a measure for the proportion
of disease cases associated with the risk factor among members of the
target population exposed to that risk factor, dencted here by », (10
mean atiributable risk among exposed). He also proposed a measure of the
proportion of disease cases associated with the risk factor among all
members of the population, denoled by x (to mean population stiributable
risk). These measures have alsoc been developed by MacMahon and Pugh ¢1970),
Cole and MacMahon (1974), Miettinen (1974) and Walter(1974). Alternative
foermulations as well as simplification have bheen produced by Levin and

Bartel (1978), Leviton (1973) and Taylor (4977

In Chapter 2, we shall show how these measures have been derived
using case-control data, Methods of finding their large sample variances

and confidence intervals will be indicated.

Recently it has been shown that the two measures of atiributable

risk, »ng and », can be linked through the prevalence of the risk factor

among the cases denoted Vy As noted by Miettinen (1974) and also by



Kleinbaum, Kupper and Morgenstern (1982), it can be shown that
N = Vire 1.1

The importance of the above expression is that'both »e and Vg, and
consequently », are usually estimable from both matched z2nd unmatched
case-control data alone. Xuritz and Landis (1987a), using this formulation,
have proposed an estimator of attributakble risk for matched-pair case-
control data. Their work can therefore be extended to account for multiple
matching, and tc investigate in terms of cost efficiency the relative merits

of multiple matching, if attributable risk estimation is the ultimate goal.

In Chapter 3, an alternative methodology leading to expressions for
large sample variances of attributable risks will be shown., We alsc propose
to indicate how these formulations work for some data given in the
literaure where hitherto attributable risk measures were not found or were
analysed as if matching had been ignored. Though no attempt will be made
to discuss the relative merits of matching, it simply means that
investigators can now find attributable risk measures for matched case-
control data. The decision to match or not to match has been discussed
by various authors including McKinlay (1977), Kupper et al (1981) and

Schlesselman (1982).

In Chapter 4, we propose to find the asymptotic relative efficiency
of different matching designs, in terms of cost of gathering cases and
controls. Based on these relative efficiencies, a table of optimal ratics

will be provided.



We conclude by discussing computational results, given in'the

appendix and possible recommendations,

The computations were carried out on the VAX 8600 computer at

McMaster University.



CRHAPTER 2

STATISTICAL FRAMEWORK

24 UNMATCHED ANALYSIS

Consider a set of data from a case-control study where the sample
of cases and controls have been randomly selected from a population of
interest. This formulation does not take into account confounding factors
by extraneous variables, thus it will be carried out as if all confounding
factors are under control. Measures of estimating attributable risks in
the presence of confounding variables have been dicussed by Whittemore

(1982, 1983), Walter (1974), Miettinen (1974) and Bruzzi et al (1985).

The data for such a case-control study has been displayed in the
table helow.

Table 1.4

Distribution of cases and controls with respect to risk factor status.

Case Control Total

Exposed a b My
Risk
Status
Non-exposed ¢ d Mma
Total nyg Nz N

As is appropriate for case-control studies, ny and n, are considered fixed.



The usual Mantel-Haenszel estimator of the odds ratio (Mantel and Haenszel

(1959)) would be given by:

¢ = sd/be (2.9

If we make 2 further assumption that the disease rate is rare, then the
risk of the disease and the odds of the disease are virtually identicai
(Fleiss (1982)), Thus the odds ratioc can be used to approximate relative
risk in case-conirol studies, since relative risk cannot be directly

estimated from case-control studies.

If we let lg denote the incidence rate of a disease (proportion of
new cases in a group of people who were initially free of the disease)
in persons exposed to the risk factor, and I, the incidence rate of disease
persons not exposed to the risk factor, then the relative risk, R, is given
by:

R = Ia/l, 2.2)

Thus Ig - Ig is the excess risk among persons which may be attributed
te exposure. Several methods of estimating attributable risk have Leen
suggested. Berkson (1951) proposed a simple difference between the two
incidence rates, Ig - Iy, as the measure. Sheps’ relative difference (Sheps

(19591

considered the component of the incidence among the exposed ascribed to
the exposure. MacMahon and Pugh (19700 and Cole and MacMahon (1971) define
attributable risk as the proportion of cases among persons exposed which

are due to the exposure (denoted here by »g) and proposed the measure






Thus,

~

e = (ad - bc)/ad (2.8)
and,

“ =1 - cng/dny @7

Using g= 1 - > Walter (1975) showed that E has, asymptotically, a log-
normal distribution.

If the number of cases equals the number of controls (Taylor (1977,
N=1-c/d (2.8)
Using a different formulation proposed by MacMahon and Pugh (1970), where
2 = Iy - 1)1

and Iy is the incidence rate in the total population and Ig the incidence
rate in the unexposed, Leviton (1973) showed that for Iy = Pgalg + (1-Pgallg,

A = x = Pa(R - 1)/(4 + Pe(R - 1))

Another simplified formulation has been given by Levin and Bartel (1778),

where
X = @%- b/ - b9

and a’ is the proportion of cases exposed and b’ is the proportion of
controls exposed.

Inherent in all these formulations is the fact that the factors are
associated with increased risk ¢ie R > 1 or ¢ = 1), If the facters are
associated with decreased risk (g < 1), we can talk about the *Prevented
Fraction®’ as being the proportion of the potential disease experience

prevented by the factor (presumably a beneficial one). Walter (1976) has



10

shown that such a prevented fraction of the risk denoted by »p, could

be represented as
S-S L
where ¢ and ¢ can be estimated by $= b/ny and g = ad/bc respectively.

Thus

1 -2 = - w1,

It is possible to construct confidence intervals for » and »e. This
is based on the assumption that the estimators or some transformations

of them are approximately normally distributed.

Since ¢ has been used to estimate R, we could find a confidence

interval for xe based on the logarithm of ¢, where
logall - ne) = -l0ge?
Thus
Var(ogel - Re)! = Var(loged) 2.9
where
Var(loge ¢ = 1/a + 1/b + 1/c + 1/d (2,40

We could derive their asymptotic variance by using methods shown by
Kendall and Stuart (1969) and also by Bishop, Fienberg and Holland (1975),
concerning the asymptotic distribution of a smooth function F of
multinomial proportions. Let ng,ng....,ny be the cbserved multinomial
frequencies, n = 2nyg the total sample, py = ny/n the kth observed
proportion, and Py the expectation of py If F = F(py,psyqgpy) is & regular

function of pygp2.. Py and if n is large, then F is asymptotically normal



i1

with mean F(P4,P2,...Py) and variance
Var(F) = Gpydy® - CSped®/n
where

dy =3F(py,Pz,mPx)/dPx

In fact, Fleiss (1982) has shown that if
F(py,pzsPy) = Flngngp,ny; or
F(eX4,CX240CXg) = FX4,X240,Xg), (for all nonzero c), then the above variance

formula can be reduced to
Var(F) = (Cpyde®)/n

since Jpydy = 0 in this case. The odds r‘atio, attributable risk and smooth
functions of them are all examples of such a function F (Fleiss (1982).

It can then be shown that

Var(y) = (ad/bo)¥i/a + 1/b +1/c + 1/d) (249

or Var(oged = (1/92Var(y) (2.42)

Walter (1978) has shown that
VarGJ = (cnp/dng)2(a/cny + b/dny) (2.43)
We have indicated that the two measures of attributable risk, xe

and », can be linked.

Using the case-control data from Table 1.4, we have
A = Pa(R-1)/(1+Pa(R-1)) = ((R-1}/RIPgR/(1+Pa(R-1)) = »gPgR/(1+Pa(R-1))

Using the following estimates



"~

R = ad/bc and Pe = b/n,
we can show that
PeR/(14Pe(R-1)) = a/ng ' (2.14)

Since cases are assumed to be a3 random sample of disease cases from some
population of interest, a/ny represents the sample exposure prevalence

among the cases. Dencling a/ny by Vg, we have
-~
A= kae

where Vy and »g are both zstimable from the case-control data under

reasonable assumptions.

Confidence intervals could be found for »e and x, (or their log-
transformation). We note that ¢ is the maximum likelihood estimator of
the odds ratio. Leung and Kupper (1981) have shown that when the actual
attributable risk is between 0.24 and 0.79, the width of the log-
iransformaticn based interval is less than that for the maximum likelihoood

based interval. Similar results were alzo obtained by Whittemore (1982)

2.2 MATCHED ANALYSIS

Kuritz and Landis (1987a) using the fact that A = Vyxe, have given
explicit formulas for estimating attributable risk among the exposed and
the population attributable risk.

Consider data from a matched-pair case-control study given in the table

below.
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Table 2.2
Control

Exposed Non-exposed Total

xposed a b a+h

Cases
Non-exposed c d c+d
Total atc b+d n

Using the fact that attributable risk among exposed is a direct
functien of the odds ratio, and pqpulation attributable risk is also a direct
function of odds ratio and exposure prevalence among the cases only, we
find these two measures of attributable risk.

The assumptions necessary in this regard are that:
(a) the prevalence of the disease among the population is rare;

(b) the cases constitute a random sample of cases in the population.

For a matched pair design, the estimatzr of odds ratio depends anly
on the exposure-discordant pairs. The odds ratio estimator has been given

by Mantel and Haenszel (1959) as
9 = b/c (2.45)

and its asymplotic variance has been shown by EJjigou and McHugh (1977

to be
Var(y) = (@24/b + 1/0)2 (2.16)
or Var(log, ) = (1/9)2Var()

In this case, ¢ is both the maximum likelihood estimator and the Mantel-
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Haenszel esiimator for the odds ratioc. It follows from above that

~

e =1 - 1/R = (b - ci/b 247

Since the n cases among the matched pairs is assumed to constitute a
random sampie of X cases from the target population, Vyx can be estimated

by
Vy = (@ + b)/n (2,48

Hence an estimate of the population attributable risk is given by

%= (a + bXb - c)/bn (2,49

Generalisation to multiple controls per case

With the availability of an estimator for odds ratio in multiple
matching (Mantel and Haenszel (1959, Miettinen (1970) among others), it is
possible to extend the idea to take care of matching with multiple controls

per case.

Consider the situaticn where two controls are matched to a case.
Following the notation of Connett et al (1982), we can represent the data
as:

Table 2.3

Number of Controls exposed Total

2 i g
ExpOSEd(i) 212 Zii 210 ztzit
Cases
Non-exposed(®) Zgz Zox Zoo Telot
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The Mantel-Haenszel estimator could be generalised as

Y= TR - DIge / TeTloe (2.20)
where R is the number of contrecls matched to a case;
T is the number of units from R maiched to a selected unit; thus 0 £
TER
N is the total number of cases.

Zj3 is the number of matched groups (in each (1 + K) tuple).

The basic design considered here is that of a case-control study
with multiple matching (with fixed matching ratio) on a confounding

variable of healthy control to diseased cases.

For example, consider the following eight outcomes for a 2-to-{

matching (Schlesselman (1982)), presented as:

Table 2.4
Case Control Frequency
i 2 % of matched groups
+ + + Ng
+ + - n1
+ - + Nz
+ - - N3
- + + Ty
- + - ns
- - + ns

with dichotomous exposure (exposed +), (non-exposed -)
By regarding each triplet as a separate subgroup, the Mantel-Haens:zel
estimate of the odds ratio could be found.

1t is given by
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; =(ng + ny +.2n3)/(2n., + ng + ngl
or in the Connett et al (1982) notation
v = (leg + L3/ Tos *+ 2Zgp) 2.21)

Thus, by ignoring ordering of the two matched controls, we would only
have six (6) possible 2x2 tables for each triplet.These could be put in
a single table as the one slready shown in the Table 2.3, where ng =
I32) Ny * nz = 133, N3 = Ly Ny = Zogy Ng * Ng = gz and ny = Ige.
Miettinen (1970) obtained a conditional maximum likelihood estimator of this
estimate as
P = (8730201424542 8 Lag+lg) + J{[(‘tzio-zm+Zu-202)/4(201+202)32

+ (Z30%244)/(Lga+lo2)}
Ejigou and McHugh (19B1) alsc gave an unconditional estimate of the odds
ratio as

ve = (2012302534202 *+ Z33202(210+201)1/ 201 %(Ly1+202)/2 + 202" (L10+Z0s)]

In a recent simulation study, Donner and Hauck (1986) found that
the Mantel-Haenszel estimator of odds ratio, ¢, compares favourably toc both
the odds ratio estimator obtained by the maximum likelihood method and
the conditional maximum likelihood method with respect to bias and
precision over a wide range of fixed stratum designs likely to occur in
practice. For example, when ¢ £ 5, they found that the relative efficiency
never falls below 0.93, We have therefore employed the: ¢ in the calculaticn
of measures for attributable risk, Despite the fact that ¢ may fare badly
in certain situations against the other estimators (for example, when the
odds ratio ¢ is large (approaching 10) and V4 £ 0.3), ¢ has proved useful

in many situations as is evident by its wide usage over the years in
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‘the' medical literéture. The Mantel-Haens:zel estimator is easy to use and
has been shown toc be a reascnable and efficient estimate, and thus a
goad alternative to the maximum likelihood estimator (MLE). The only
problem with MLE is calculation, since 1t has to be obtained by iteration

(Breslow (1981).

Estimators for attributable risk measures, g and », from data
obtained through case-control studies where one or more controls have
been matched to each case can now be obtained. According tc Kuritz and
Landis (1987b) , the sampling design for obtaining these matched data could
be conceptualised as a simple random sample of cases being equivalent to
a random sample of matched sets. Thus, by combining information across
strata determined by the matched sets, this approach provides for the
attributabie risk estimate all the benefits associated with the Mantel-
Haenszel procedure,

We can therefore cbtain for the case of 2-to-i matching, en estimate of

attributable risk among exposed persons as
= ® - /R = Qg+ Ly - Loy - 2202/ QLgg + 24y (R>4)
An estimate of exposure prevalence among cases only is given by:
Uy = (Zyo + Zyq + ZpV/N
Hence
Nz Vsne = (Z30+L31+232)02L10+211-Zo1-2L02)/N(2Tgo+Ls4)

We can thus show that for R-to-i matching and with dichotomous exposure

levels, the attributable risk measures generalise to:
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e = {SeR = Ty - SeTZoe 3/ SeR - TV, (2.22)

2= {0 TeZae 3 SR - TZge ~ SeTZot + / NSLR — Ty, (2.23)

Generalisation to variable number of controls matched per case

By making use of Fleiss® (1984) method of determining ¢ when
matching a varying number of controls per case, we could still obtain
estimates of Ag and X
Let r denote the number of contrels matched to a particular case, where
r may vary from 1 (matched pair) toc a high of R (R-to-1 matching). The
analysis begins with stratification of the cases according to a particular
value of r. Thus for sach value of r ({ £ r £ R), we look at the table
as if there were only r controls per case, where r is fixed,

For a particular r, we could present the table as:
Table 2.5

No. of controls exposed

Status of case r r-1 i a
EprSEd (1) Zir(\r) zir..x(_r) Zifr) Zio(rl>
Non-exposed(0) Zor(r> Zor_i(r) 201(1") Zoo(r)

where Zlfr) refers to the number of matched sets with r controls in which
both the case and exactly j of the controls are exposed;

\)
and zo§r/ refers to the number of matched sets with case unexposed and

exactly Jj controls exposed.
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Following Fleiss’ (1984) notation, if we ciefine
a®= § (i1 et
b 2
and
B¥'= ,i iZo§T) /tr+ 1)

then

R R
v=5am,sp® 226
Hence, for a variable number of controls per case
A R R R ¢
e = (Sa®_spDy, sl L5y (2.25)
1 ¢y vl

and

~n~ R & ‘
N=0e=S% 24 S A(‘”>-r_§13“‘?)m $a®

ey Jzo

2.3 Large Sample Variance Estimation

As already indicated in Section 2.4, atiributable risk estimators for
matched set case-control! data could be regarded as regular functicns of
a set of multinomial proportions (Kuritz and Landis (1987b)). It is therefore
possible to obtain direct expressions for their large sample variances by
applying multivariate version of the delta method as described in Section

14,6 of Bishop, Fienberg and Holland (1975).
In general, these asymptotic variances can be expressed as
Var(F) = ( § p;d;% - (T p;d;)2)/n

where F is a regular function of the multinomial proportions and



d; =3F(Py,P2yP/3Pi

iz the partial derivative of the function with respect to the i-th

multinomial proportion.

Estimators for the Mantel-Haenszel odds ratic and attributable risks

are part of the wide class of functions where

Zpid; = 0

Then, as noted by Fleiss (1982), the estimated large sample variance for
these functions simplifies to

Var(F) = ( $ p;id;/n
For a fixed matching ratio (ie matching with exactly k controls to a

case) with dichotomous exposure level, Connett et al (1982) have shown that

Varoge @ = { T (R - TV¥2 ¢ + 53 T%g¢ 3/ { S (R = Tilge 32 2,27

Breslow (1981} gave a similar expression. Consider a data set as being
given as:
Table 2.6

Exposed Non-exposed Total

Cases Aj B; Ngi
Controls Cj D; Nzi
Total My Mz N;

Thus ¢ = 2 Ui/ 2 Vi, 1= 1,2,..,n; where
U; = £;D3/N; and V; = B;C;/N;j.
When the number of tables is large in comparison with each of the

individual table totals N;, then Breslow showed that an appropriate



estimator of the varéiance of ¢ is
Gang A a2 2
Var(g) = 3 (U; - ¢V § V)
and
~ N .
Var(loge ¢)= (U; - V27 SUpE (2.28)

For a R-to-{ matching, N4;i=1, Nzi=R for i=1,2,.,n, There are I1g. matched
sets for which A;=0, C;=T and for each of these U;=0 and Vi=T/(R+1).
Similarly, there are Z44 matched sets for which Aj=1, C;=T, U;=(R-TV/(R+1)
and Vi=0. Substitution of these values in the above expression (2.28) gives

the previcus result (2.27).

Fleiss (1984) showed that for matched case-control data with a
variable number of controls per case, an estimator for the variance of

the Mantel~Haenszel estimator of odds ratio is given by:
Var(loge 9 = 3 ¢/ S a®)2 (2,29

where

c 2 (/r+ B Sr-DE2 S+ §55527,89 1 and A(Y)as defined in

By noting that
loge(i-ne) = -l0ge ¢ (2.30)
we have
Var(loge(-me)) = Var(loge § (2.30)
which gives

~ ~ Val
Var(xe) = (i-M)ZVar(loge ’) (232



As already indicated, the estimator for A is the product of two
terms, Vg and »e. Since Vi is a binomial proportion , its variance is

given as:
Var(Vy) = Vy(1-Vy)/N (2.33)

Thus a large sample variance formula for the estimate of population
attributable risk can be formed by writing » as a regular function of
the multinomial proportions and using the delta method tec obtain it. Kuritz

and Landis (1987b) have shown that
Var() = (V)2Varta) + (\a)2Var(Vy) + 22U - xa)/N (2.34)
As a by-product it is useful to note that
CovVena) = (4 - 2g)/N
recognising that the expression for Var(w is in the usual form of a Tayler
series expansion for the product of the two terms of the expression.

Since the delta method assumes that F (the function of multinomial
proportions) is asymptotically normally distributed, confidence intervals for
these measures of attributable risk can readily be computed once their
standard errors have been found,

For instance, an approximate 95% confidence interval for aeg would be given

by:

I+

e t 1.96seCha)
and that for

1.965e(0

i+

~
We shall illustrate the methods described in this chapter with examples

from the literature in Section 3.2.



CHAPFPTER 3

MATRIX FORMULATION AND EXAMPLES

3.1 MATRIX FORMULATION FOR VARIANCES OF ATTRIBUTABLE RISKS

An alternative method for finding large sample variances for xg
and x, based on matrix formulation when these measures of attributable
risk are expressed as compounded functions of sample multinomial
proportions, can be found using the method for analysing multivariate
categorical data outlined in the Appendix of Koch et al (1977 This method
leads to explicit expressions for Var(ig) and Var(»y after simplification,
up to matching with two controls per case, but the algebra gets messy
for more than two controls per case and for matching with variable
numbers of control per case. However, a computer could be used in such

situations.

Consider a sample of multinomial frequenc‘ies arising from s case-
control study with R controls to a case, where the data set could be
represented as:

Table 3.4

No. of contrcls exposed

Status of case R R-1 i 0 Total

Exposed (1) Z4r  Igg-g Z3s  Zso0 Zel1e

NOH’EXDOSQd(D) ZOR ZOR—i 201 ZOO thOt
N



The vector Zyg will be assumed to follow the multinomial distribution with
parameters N and TI;j. A vector of multinomial prob‘or‘tions, p, for the

data set above will be given by:

p° = [Zgpnliorlorinuloal/N

where p is a 2(R+1)xi column vector and is the maximum likelihood estimator
of T and ‘7 denotes the matrix transpose.

Acs outlined in the appendix of Koch et al (1977, a consistent estimator
for the covariance matrix of p, is given by a (2R+2)x(2R+2) covariance

matrix Var(p), such that
Var(p) = [Dp - pp“¥/N (3.1)

where Dg represents a diagonal matrix with the vector p on the main
diagonal.

By taking F(p) as a compounded logarithmic—exponential—linear function
of observed proportions leading to relationships of interest (O and »,
then an estimate of the variance of F could be found.

Consider a class of functions that can be expressed in terms of a ssquence
of the matrix operations:

(1) Linear transformation of the type
Fa(p) = Ayp = a4

where Ag is a matrix of known constants.

(11) Logarithmic transformation of the type
Fz(p) . 10ge (p) = ag

(iii)Exponential transformation of the type



Fa(p) = exp(p) = a,.

Thus a linearized Taylor-series based estimate of the variance of F (Koch

et al (19770 is given by
Var(F) = HIVar(p)lH’ (3.2

where H is the first derivative matrix for the corresponding compounded
function and F is assumed to have a continucus partial derivative through
order 2 with respect to p.
For example, let

ay; = Agp ap, = explAglloge ayhs

then a consistent estimate of the variance (3.2) is obtained by the

application of the chain rule for matrix differentiation leading to
H = Da,A Da; *A,

where Day and Daz are diagonal matrices with the vectors ay and az

on their main diagonals respectively.

Consider a matched-pair case-control data where the data are

represented as:

Control
+ -
+ a b
Case
- c d
n

exposed (+); non-exposed (-),
where ‘a’ denotes the number of pairs in which both members are exposed,

‘b the number of pairs where only the case i1s exposed, etc.



In this case the fattributable risk among exposed, xg, and population

attributable risk, », could be expressed as compounded functions of p, where

p’= {a,b,e,dl/n

as
3\9 = exp{Azlloge aq)’
anad
~
= EXP{BQ(IOge bi)}
where as= Aqp, Ax= [4,-13, bv1= Byp, By= [1,1,-1]
and
b 1+ -1 0 1 4+ 00
Ai =
6 1 0O By =10 1-4 0
0 ¢+ 00

Thus, by using appropriate matrix products arising from multivariate
Taylor-series methods, the large sample variances for these estimators are

obtained as
Var(hg) = (hna)%A,Day A, Var(plA,“Da, 1A,” (3.3)
with H here being defined as H = RaAzDay; YAy; and
Var() = (V2ByDys " By Var(p)B, Dy, 1B,” (3.4)
where H = 'iBzDM'iB,_ and Dy is a diagonal matrix with the vector p
on the main diagonal,
Thus for

Re = (b-c)/c and X = (a+b)b-c)/bn

we have equations (8) and (%) of Kuritz and Landis (1987a),

Var(ag) = (1/b)2[ctb+c)/b) (3.5



Var(o = (1/br)2lalb-c) + (bZ+ac)/b + cla+bh)® - (a+b)E(b-c)2/n] (3.6)

In the case of matching 2 controls to a case, if the data are

represented as

Table 3.2

No. of controls exposed
2 i g
Exposed a b c
Case
Non-exposed d e f
Total n

It can be shown from (2.22) and (2.23) of Chapter 2 that,
*e = (b+2c-2d-e)/(b+2Zc)
X = (a+b+c)Mb+Ic-2d-e)/(b+2c)n

and by simplifying (A.1) and (A.2) of Appendix A, we can show that
Var(ne) = (1/(b+2eN (b+20)2(e+4d) + (e+2d)2(b+40)] (3.7

Var( = [(4/(n(b+2c))%{(a+b+eNb+2c-2d-e)2 - (a+b+o)2(b+2c-2d-e)2/n
+ (a+b+0)¥(e+dd) + (a+b+c)Z(2d+e)B(b+4c)/(b+2c)?
+ 2(a+b+c)(2d+eXb+2c-2d-e)} (3.8
(See Appendix A)

As noted by Kuritz and Landis (1987a), further empirical work is necesary
to investigate the small to moderate sample size behaviour of these
estimators. We realise that these asymptotic formulas have a critical link
to the magnitude of the frequency of exposure-discaordant cells (ie b and
¢ for the matched-pair situation, and b+2c and 2d+e for the 2 controls

per case.)

Based on the fact that these estimators are asymptotically normally



distributed, approximate 95 % confidence intervals for these attributéble

risk estimates can be found as:

~

*e t 1.96se(ng)

I+

1.965e(0)

i+

-~
>N

It is again worthwhile to point out that these formulas were obtained
on the assumption that the relative risk (or odds ratio in this case) was
greater than unity. Otherwise, we would have to define a ‘Prevented
Fraction’ for a relative risk less than 1. If we have reason to believe
that the actual relative risk is greater than 1, but very close to {, and
sampling variation causes our estimate to be less than {, then we could

define the attributable risk estimate as zero.

The above formulation could be applied in the case where variable
number of controls have bheen matched to the cases. Such a situation may
arise out of the study protocol (Walter (1980)) eg. if all siblings are to
be used as controls; or from practical difficulties (eg information on one
of the controls is not available (refused interview, moved away etc).

As indicated in Chapter 2, let R be the maximum number of controls matched
to a case. Let the vector of multinomial proportions be given by p such
that:

(2) ¢9) 1) . (&)

’ * s Pao e, po(r) ¥n for a particular

p° = lpg , P17y Pty Po
r, 1€r<R; where

PP = 12,8 1/n and pdP = (2o /0, §=1,2,uu,r; and n is the
total number of matched sets.

For example, consider a variable number of controls per case situation,



where the maximum number of controls matched to a case is 3. The data

for such a situation could be represented as follows:

Table 3.2

i control observed 2 controls observed 3 controls cbserved

No. exposed No. exposed No. exposed
i 0 2 i g 3 2 i 0
1] 246 294 | 2447 2448 2,49 1.4 1. 144 1,67
Case € 1) (2 (2) (= (2) 3 (= (2)
0] Zos®) 2o 2022 164® 258% | 204? 1683 201 Zod
Here  py” = (244%) 2,dY) 212‘22 2348 2448 283 1,483 2443 7,Fn
. \ )
and po’ = LZOZL(il Zodt} Zoas) Zo:L ) Zooz) Zo3>) 1023) ZO:.(3) Zoo *1/n
where p'= [pi'gpo’].
Define

41 = Agp, where Cs-Co
A1 =
Cs

and Cy = [M,j 0) with M4 having elements (r-j)/(r+i) for each r, r=4,2,.,R,

and j=0,1,..,r. Also, Cqo = (il Mol with Mg having elements r/(r+1) for each

ry r=4,2,..,

R, and j=0,4,2,..,r.

Here the row vectors 0, Mg and My have the same number of columns

V4 s’ . .
as both py” and pg . 0 is 3 row vector where each element is zero,

We thus realise that Cyp is the numerator of the odds ratio as defined

by Fleiss (1984), and Cqp is the denominator,

From the example above,
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Cy =06, M3, 0, M3 /3, 0, My, ®/y, 714, 0,0,0,0,0000,0

Co =10,0,0,0, 00000, a, 0, Zra, Y3, 0, Ty, By, Y4, 01

We can therefore write attributable risk among cases as a‘compounded

functien
:"\\e = explAalogs (A4p)]

Similarly, the estimator for population attributable risk, », could be found

by defining:

by = Bip; Cz = [1?0]; and Bz = [4, 1, -1, Both 0 and 1
have the same number of columns as pi' and po'.
Thus, the compounded function of population sttributable risk is given
by:
N = expiBzloge (Byip))

We also realise from the above expression that Vg = Czp

Asymptotic large sample variances can now be obtained by using
appropriate matrix products aricsing from multivariate Taylor series method.

As already indicated, the large sample variance estimators are given by:

Var(;\e) = HyVar(p)Hy”

Var(a = HZVar(p)Hzl
where in this case

H1 = ;eA,_ADai"-lA1 and H2 = ;\anbi-lBi
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‘and Dy is a diagonal matrix with the véctor p on the main diagonal.

.2 EXXAMPLES

We shall illustrate the methodolgy developed in both Chapter 2 and

Section 3.4 with examples from the literature,

1. Using Matched-pair Case-Control Data

Consider the data in Table 3.4 which were obtained from a matched-
pair case-control study on the exposure to oral conjugated estrogens among
cases of endometrial cancer and their matched controls (on the basis of
sex, race, date of admission, and hospital of admission) reported by Autunes

et al (1979 and used by Schlesselman (1982) as an example.

Table 3.4

Frequency of Exposure among cases and their matched controis.

Control
+ - Total
+ 12 43 55
Cases
- 7 124 128
Total i9 144 183

[ exposed (+), non-exposed (-3,

Using the methodology described in Chapter 2, an estimate of the
odds ratio (which in this case happens toc be the estimate of the relative

risk) is given by (2,18):
v = 6443

‘The estimate of attributable risk among exposed is given by (2.17):



w
rJ

Xe = 0.837

The estimate of the exposure prevalence among cases only is given by (2.18);_»
Uy = 0.3005

and thus the estimate of population attributable risk would be:

o -
A= Vx)\e = 0.252

Estimates of their large sample variances could be obtained by using the

formulas indicated in Chapter 2.

From (2.16) Vartloge ¢} = 0.1666666.
From (2.32) Var(ag) = 0.0044021.
Using (2.33) and (2.34), Var( = 0.0016505.

To compare with the method developed from using the matrix method, we
have from (3.5) Var(ae) = 0.0044021 ;
and  from (3.6) Var(™ = 0,0016505.

The Lwo methods yield the same estimates for VarGy) and Var(n,

it is, however, interesting to compare the results of the data above
to the case when it was analysed as if matching had been ignored as

reported by Schiesselman (1982) in an illustrative example,

Table 3.5

Use of oral conjugated estrogens (OCE) for cases

of endometrial cancer and controls.

Cases Controls Total
Yes L1 19 14
OCE
No 128 164 292

183 183 366
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The following results are obtained:

v = 3.709 from (2.1)

~

e = 730 from (2.4)

Pl

» = 0,220 from (2.5)
Var(y) = 1.165492 from (2.4
Var(hg! = 0.0061591 from (2.32)
Var(y) = 0.0018160 from (2.43)

Vartloge ¢ = 0.0847235 from(z.10)

We realise that the odds ratioc in the unmatched case is about half that
obtained in the matched case, which highlights the impcrtance of matched
analysis in this case. Estimates of attributable risk were also
underestimated in the unmatched analysis. For example, we would conclude
that the sample attributable risk estimate of 0.837 (matched analysis) among
exposed suggests that among women who took oral conjugated estrogens
(OCE), 83.7 % of endometrial cancer were associated with such risk. We
would however conclude that 73 % of the cancer were associated with the
risk of using OCE in the unmatched analysis. This is due to the sizable
reduction of the exposure-disease association (as measured by the odds

ratio) when we do not take matching into account.
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2,_The case of matching 2 conirols io 3 case.

Consider the data below which were obtained from a matched case-
control study of the smoking habits (exposure) of some bladder cancer
patients and their matched controls (each case matched to 2 controls on

the basis of sex and age within {0 years) reported by Miller et al (1978).

Writing the data to conform toc our formulation in Table 2.3, we have :

Table 3.6
Smoking Habit Both controls One of 2 controls Both controls
in cases 20+ a day T 20 a day £ 20 a day Total
20+ per day 31 42 17 90
(exposed)
£ 20 per day 14 23 iz 46

{not/less exposed)

136

From (2.21), an sstimate of the Mantel-Haenszel odds ratio for this data

set is given by

9 = 1.689
and from (2.22) /;\e = 0.408
and from (2.23) = 0.270

where an estimate of the exposure prevalence among cases only from (2.26)

is Vy = 0.662.

We shall now find their asymptotic large sample variances using the
methodology previously described. Using the formula given by Connett et

al (1982), we have from (2.27) that
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Var(loge ¢) = 0.05213074

It follows from (2.31) that Var'(;(e) = 0.01827645
From (2.33) Var(Vy) = 0.00164582
and it follows from (2.34) that - var®) = 0.01062808

We could also obtain estimates of the large sample variance using the
mult‘ivariate Taylor series methods described by Koch et al (1977,
We could write the vector of multinomial proporticns, p , as

p’ = (34, 42, 17, 14, 23, 121/136

Then a consistent estimator of covariance of p is given
Var(p) = {/NI[Dp - pp”]

which could be written as

3255  -1302 -527 -344 -M3 -372]
-1302 3948 -744 442 -946 -504
{ -524  -744 2023 -487 -394 -204
Var(p) = -324  -462 -187 1375 -253 -13%
(136)* | -744  -966 -394 -253 2599 -27%
__-372 -504  -204  -132 -276 1488
Here
A1=_”912-2—1 GJ Ag = [ 4, -1
00t 2000
111000
By = (01 2-2-140 Bo=1014,1,-113
0+ 2000
Thus ay = Aqp = [31, 7617 and by = Byp = [90, 31, 7617

We can thus express both xg and » as compounded functions such that



Re = 2xpi{As(loge a4l and X = exp{Balloge byl
We have seen that their variances turn out to be given by
Var(hg) = Ga)ZAzDas 1A Var(p)A,“Da, 14,7
and Var®) = (;\)2B2D1,1'181Var(p)Bi’Dbi"182'

where in this example:

b 3t 0 i 0 0O 0O
Dai = —_— Dbi = - 031 0
136 0 76 136 o0 07

By multiplying the matrix products using a computer, we obtain
Var(Re)=0.01827445 Var(= 0.01062808

Alternatively, we could simply use the algebraic expressions obtained in

3.7 and 3.8). As is expected, the results are
Var(;\e) = 001827645 Var() = 0.01062808

Again, the two methods lead to the same estimates of the variances.

3 The case of variable number of controls per case

Consider the example of a case-control of the association between
Hodgkins disease and tonsillectomy used by Walter (1980). The 104 cases
considered below are part of the 453 cases reported by Walter. For
illustrative purposes, only the data on compietely observed triples (ie cases
with 2 controls observed) and cases with only one control observed are
used. The controls (up to 2 per case) were sampled from other patients
at the same hospital and were matched on age, admission date, sex and

race. Tonsillectomy status (exposure) was determined when possible, only



medical record of each patient. The table below shows the data.

i=Previous tonsillectomy ;

Table 3.7
Previgus tonsillectomy status for Hodgkins disease cases

and matched controls.

Cases Controls Number of matched groups
1 1 i 4
b ! 0 8
1 0 ] 17
0 1 i 9
] i g 21
0 0 o i8
i i - 3
i 0 - 5
0 i - ]
a g - 13

cbservation.

37

O0=no previous tonsillectomy ; — =missing

To conform to our formulation in Table 3.3, we shall represent iths data

as:
Table 3.8
i control observed 2 controls observed
No. exposed No. exposed
Case Status | 1] 2 i a Total
Exposed 3 5 4 8 17 27
Non-exposed 6 13 9 24 i8 67

104

Then from (2.24), an estimate of Mantel-Haenszel odds ratic (Fleiss (1984))
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would be obtained as:
v = 1.03125
and an estimate of attributable risk among exposed f‘r‘vc}m (2,.25) would be:
e = 0.0303
Exposure prevalence among the exposed only would be ?/x=0.3558

and thus the estimate of population attributable risk is given by
~ N oA
A = Ve = 0,0108

From Fleiss (1984), we can find variance of loge ¢ given in equation (2.29).
Using the data, we obtain

Var(loge 9 = 0.06620757 and thus

Varte) = (1-3e)2Varlloge §) = 0.0622558

Using Var(Gx) 0.00220382 we find from (2.34) that
Var(y = 0.0080828
Alternatively, we could use the multivariate Taylor series (matrix products)
method already discussed in Section 3.1.
Here, the vecior of multinomial proportions, p , could ;xe written as
p’ = (3, 5, 4, 8, 17, &, 13, 9, 21, 18)/104
Thus €4 = [0, Y74, 0, Y/, 875, 0, 0, 0, 0, 0
and C; = [0, 0,0, 0,0, /5 0, %/3, Y/3, 03
Here, we have
0 *, 0 Y5 %5 Y00 ‘-2/3 /50
Ay =
0 Y, 0 Y15 %3 0 0 0 0 O
from which we can show that C4p = (5/2 + $/3 + 3"/3)/104 = 16,8

and Cob = (87, + 18/ 4+ 21/.)/104 = 14, the ratio of which gives

the odds ratio.
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We can thus express the measures of attributable risk as compounded

functions of these matrices such that

';\e = explAzloge (Ayp) and N = exp{Ezloge (Byp)}
where Az = [ 4, -1 1, B>=10114,1, -11
1 i | i 0 0 0 o 0
Bi . ] 1/2 4] 1/3 /3 ‘1/2 0 ‘2/3 ‘1/3 0

The consistent estimate of the covariance of p, would thus be given by
Var(p) = 1/N[Dp - pp’]

From our example,

o —

3063 -4 -12 -24 -54¢ -48B -39 -27 -63 -54
-45 498 -20 -40 -85 -30 -65 -45 -105 -90
-1 -20 400 -3 -68 -24 -B2 -36 -84 -72
i -24 -40 -32 748 -~136 -40 -104 -72 -168 -144
-84 -BS -4B -i26 1479 -402 221 -453 -387 -30¢
dosH* | -8  -30 -24 -40 -402 588 -78 ~-54 -126 -108
-39 -4 -B2 -4G4 -324 -8 1483 -417 -273 -234
-27 -45 -36 -72 -153 -54 {47 855 -1B9 -142
-63 =106 -84 -i68 -357 -126 -273 -189 4743 -378
-84 =90 -72 -144 -306 -108 -234 -162 -378 154§J

Var(p) =

L

As already indicated, the large sample variance formulas are given as in

(3.3) and (3.4), where by multiplying the appropriate matrices we obtain
Var(";\\e) = 0.0622558 and Var(;o = 0.0080816

We realise that the two methods yield the almost the same estimates of

the variances and the difference is only due to rounding error.



CHAPTER 4
EFFICIENCY CONSIDERATIONS

4.4 INTRODUCTION

The use of case-control studies with multiple controls per case is
widespread in epidemiologic research. Frequently, one has only a limited
number of cases available or they are expensive to obtain, whereas the
controls are readily available, However, situations do exist where the
controls are just as hard to obtain as are the cases, and under these
circumstances it might be unwise to take a large number of controls per

case,

.. Many authors have looked at what they consider to be a good choice
for the number of controls when there is a2 single dichotomous exposure
variable, Ury (1975) considered the asymptotic relative efficiency of two
designs with a different number of contireols per case. He used the number
of cases required for a given power in order to compare the efficiencies
of alternative matching ratios. He showed that the efficiency of a design

with Ry controls relative to a design with R, controls is given by
R4(Rz+1)/Rz(Ry+1)
Miettinen (1969) performed a cost analysis. He looked at the cost

of choosing R controls per case for n cases, where c4y is the cost per

case and cp is the cost per control, making the total cost n(cgy+Recj). For

a0
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fixed R, he found the sample size that gives a certain power against a
ldcal alternative, and then by minimising the total cos{. with respect to
R, he showed that the best choice of R is J(cy/cp). Gail et al (1973) reported

similar results and calls it the "square root rule’.

Tayior (19864) looked at a simple example of a matched case-control
study, where there is a single binary exposure variable. By looking at
the power of the usual test against a specific alternative he showed that
there is a rapidly diminishing return with an increase in the number of
controls per case. He thus recommended that, with equal difficulty in
obtaining cases and controls, it appears that R = 1 is the best choice

and that rarely is it worth having more than 3 controls per case.

Walter (1980) considered the case where a variable number of controls
may be matched to a case, in the situation where the design results from
censoring or an interim analysis. Suppose that censoring of cases and
cocntrols occurs independently but with possibly different probabilities my
and wz, and for simplicity the cost of enrolling a case is unity and that
of & control is c. He showed that the asymptotic relative efficiency of
a design using Ry controls per case as compared to Rz controls per case
for a binary response is given by

Ri(CRz*‘ 1)[R2(1’ﬂ2)*1+ ﬂz}
REp(R4,Rp) =

RQ(CRI"’ i)[Ri(i‘ﬂ2)+i+ﬁ23

He showed that the optimal ratic (maximising efficiency) is
Rape = Jill+ap)/ICU-15)2}

which reduces to 1/JC (square root rule) when z=0.



We shall look at cost-efficiency considerations when attributable risk
estimgtion is the ultimate goal of the analysis. Consider the total cost
of ch'oosing R controls per case for N cases, where C4 is the cost per
case (assumed to pe the same for all cases) and C; is the cost per control
(2lso assumed to be the same for each control), thus making the total
cost N(Cs+RCp). If in addition, it is assumed that it costs k times the
cost of obtaining oné control to obtain a case (ie C4 = kCz), then the
total cost is NCz(k+R). We note that the actual total cost would include
an overhead cost but this is ignored in this formulation., We can therefore
determine the total number of matched sets corresponding to any matched
design at a fixed total cost, and consequently determine which matched
design results in the smallest variance of the attributable risk. Since the
variance depends on the relative risk (which in case-conirol studies is
the odds ratio ¢ ) and the exposure prevalence among cases, Vx ( as is
appropriate for 3 matched design), we shall specify some values of ¢ and

Vo

For example, for a fixed total cost 300C; (ie N(k+R)=300), we would
have the following number of matched sets, N, corresponding to the number

of controls, R, matched to each case, where Cyq = Ca.

N R Cost

150 i 300C,

100 2 300C2
15 2 300C2
60 4 300C;
50 5 300C,

For various values of ¢ and Vy, we could determine the ‘cell frequencies’

corresponding to each matched design, for any N, and hence obtain an
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estimate of the attributable risk and its large sample variance. In this

case the expected cell frequencies are those expected from random sampling.

As is appropriate for a multinomial table, we could determine the
probability that a matched set falls in any cell.
Let Po = P(exposure/contrell, and P4 = P(exposure/case).

Consider a matched-pair case-control data represented as:

Contrcl
i 0 Total
1 Z44 Zi0
Case
0 Zgg Zoo

N
Let Pjy; be the probability that a matched set falls in the (ij)th cell,
i =04 and § = 0,1, Thus

P11 = Pipo PiO = Pi(i‘Po)

POi (1“?1)?0 POO = (1'?1)(1"?0)

Then the expected cell frequencies are given by E(Z;y) = NP;,.

Generally, for R controls per case represented as

No. of controls exposed

R .2 i ] Total
1 Zggr w232 Z33 Ig0
Case
0 Zogr w202z Zoi Zoo
N

The probablity that a matched set falls in the (ij)th cell, P;; i=0,4 and
J=0,1,2,..., R will be given by:
R !

Pyy = ———— P4Po°U - F)¥7, T=0,1,2,., F
JUR-JN
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R!
Poy = ————— (1=-P)P7U4-PQ* 7T =0,4,2,.., R
JUR-I)!

where the expected cell frequencies are given by E(Z;4) = NP

We have already indicated that for matched case-control data,
provided the case represents a random sample of cases from the target
population; an estimate of exposure prevalence among cases, Vy , could
be found. This estimate is what is being referred to as P4, here. We could
also determine Pg (proportion of matched conirols who are exposed) by

using the equation
Po=Py/[P+¢(1-P4)] = V/ IV tp(1-Vy2]

where ¢ (odds ratio) is an estimate of the relative risk. The above equation

is obtained from the fact that
Py = Poo/(i+4Po(p-10 (of 2.44)

Thus by specifying values for N, ¢, and Vx, we can find the expected
cell frequencies, and consequently find » and »g, and their asymptotic
variances using methods already outlined in Chapters 2 and 3.

Using the variances (determined at fixed cost) for various matching designs,
we can find for example, the asymptotic relative efficiency of multiple

coniirols relative to matched pairs, defined here as
RE(Ry,Rq4) = Var(xg¥3/Vary)

where Var(xg4) refers to the variance of the population attributable risk
when { control is matched per case; and Var(x,) refers to variance of

the population attributable risk when r controls are matched to a case.
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Similarly, we could determine
RE(Er,21) = Val"(?s.ei)/va!‘()\er)

where Var(xnegy} and Var{xgy) refer to the variances of attributable risk

among exposed when i and r controls, respectively, are matched to a case,

We could therefore determine relative efficiency of one matching
design to another (up tc matching with 5 controls per case) at different
costs of obtaining a control when it costs k times to obtain a case.

By means of a simple computer program, we found relative efficiency under
these instances:

(1) ¢ ranges from 1.5 tc 10

(i1) V¢ ranges from 0.05 to 0.95.

(1ii) matching R = 1, 2, 3, 4, 5 controls per case.

(iv) for some total cost (arbitrarily chosen) depending on k = {, 2,
or &
(for example, total cost 300C; for k = 1, 420C; for k = 2 and 2820C,
for k = 5).The total cost chosen does not make any difference in the
relative efficiency obtained, as it only determines the value of N (the

total number of matched sets) to be used in the large-sample variance

calculation.

Some important results are presented in Tables B.i, B.2 and B.3 of

Appendix B.
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4.2 DISCUSSION OF RESULTS

Table B.1 of Appendix B givés the asymptotic relative efficiency for
.various of ¢ (the %odds ratio used here to est,im.at,e relative risk) and Vy
(the exposure prevalence among the cases) when Cy = C, (equal cost for
cases and controls). We realise that R = 1 (matched pair) is the best choice
in such a situation for estimating population attributable risk (N in the
sense that it has the smallest variance of X In the case of estimating
attributable risk among the exposed (»g), we realise that for some
situations (¢ < 2.5), R = 1 is the best choice, though for large ¢ (¢ =

3) and small Vy (V4 < 0.5), matching with 2 controls per case (R = 2)

might seem more appropriate.

For example, consider a chemical plant where the relative risk of
some disease (eg. carcinoma of the lung) is very high (¢ Z 10) among workers
exposed to certzin chemicals, compared to those not exposed, but only a
small fraction of cases of the disease reported are exposed to the
particuiar industrial chemical (eg. Vx € 0.1), In such a situation, it might
be more appropriate to match 3 controls to a case. To help in deciding
what is the optimal matching ratio, we have provided a table of optimal

R’s in Table 4.1. formed from Table B.1i.
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Table 4.1

Optimal R (C4 = Cg)

For »e For »

V¢ 04 03 05 07 09 04 03 05 07 09
¥
1.5 1 1 i i i i i i 1 1
2.0 1 1 1 b 1 1 1 1 1 1
2.5 2 1 1 1 i 1 1 i 1 i
3.0 2 2 1 1 1 1 1 i 1 i
5.0 2 2 Z 1 1 1 i i 1 1
10.0 3 3 2 2 i i 1 i i 1

This table becomes particularly useful, when estimates of ¢ and Vy
are available from other sources. If these estimates are not already
available as might be the case before most studies, R = { (the matched-
pair design) offers the hest choice, and rarely do we need to consider

R > 3. This is similar to the conclusion reached by Taylor (1986).

Table B.2 looks at the situation where it costs 2 times to obtain
a case. We realise from Table B.2 and also the table of optimal matching
ratios obtained from it (Table 4.2) that R = 1 would be the best design
if only population attributable risk were to be determined. However, the
estimate of population attributable risk (A depends on both the exposure
prevalence among the cases (Vy) and the attributable risk among the

exposed (hg), so we need to consider the optimal matching ratioc for »g



48

as well. We see that for most designs likely toe occur in practice, R =
2 is the best choice, except for situaticns with very high Vg (Vx > 0.7

or very high ¢ (¢ > 5) where other designs with a higher R would seem

appropriate.
Table 4.2
Optimal R (C4y = 2X Cp)
For »e For X

V¢ 0.4 0.3 0.5 0.7 0.9 0.4 0.3 0.5 0.7 0.9
¥
1.5 2 2 2 i 1 i i i i i
2.0 2 2 2 i i i i 1 i i
25 2 2 2 2 p! i i i i i
3.0 2 2 2 2 i i i i i i
5.0 2 3 2 2 b 1 1 i i 1
10.0 4 4 3 3 2 1 1 1 i |

Table B.3 considers the situation where it costs much more (5 times)
to obtain a case. For population attributable risk (), R = 2 is better
for ¢ < 3, but R = 1 is more appropriate if ¢ # 5. However, for attributable
risk among exposed (ng), R = 3 is the optimal matching ratic (Table 4.3)
when ¢ < 3 and Vyx < 0.5, but for large Vg (V4 > 0.5) R = Z seems a
better choice, It also has the interesting feature that for significantly

high relative risks (p > 5 and low to moderate exposure prevalence among

cases (Vx < 0.5), the number of controls to match to a case: that has
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the potential of increasing efficiency increases ( R = 4 or even § in some
cases). Table 4.3 provides the optimal matching ratios under some of these
circumstances. Since it is very likely that values of Vy and ¢ may not
be available before a study, we suggest that R = 3 be taken as the optimal
matiching ratio when it costs § times to obtain & case.

Table 4.3

Optlmal R ( Ci = §X Ce )

For »e For &

Vyx 04 063 0.5 0.7 0.9 0.4 0.3 0.5 0.7 Q9
L 4
1.8 3 3 2 2 2 2 2 2 2 2
2.0 3 3 3 2 2 Z 2 2 2 2
.5 3 3 3 2 2 2 2 Z 2 2
3.0 4 3 3 2 2 1 p 2 2 2
8.0 5 4 4 3 Z 1 i 1 i H
10.6 5 5 5 4 2 i 1 1 i 1

4.3 CONCLUSION

We have looked at the variocous methodologies for estimating
attributable risks in case-control studies, and for matched case-conirol
studies in particular. Until recently, such estimators, their large-sample
standard errors as well as their interval estimates have not been available.
Kuritz and Landis (1987a) have provided explicit expressions for estimating

attributable riske and their large-sample variances (given in equations (3.5)
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and (3.6} of the last chapter}) for matched-pair case-control data, and we
have also derived simple algebraic expressions for the large-sample vgriance
of attributable risks (both »e and » when exactly 2 controls are matched
to a case (given in equations (3.7) and (3.8)). Since the algebra gets very
messy when working with dats obtained from & case-control study with
more than 2 controls matched to a case, the alternative expressions given
by Kuritz and Landis (1987b) should be used (given in equations (2.32) and
(2.34)). Our examples indicate that these alternative expressions are as good
as those obtained through the matrix approach, Both sets of results are
asymptotic. These expressions mean that researchers can make use of simple
algebraic formulas to find atiributable risks for matched case-control dats,
their asymptotic standard errors and interval estimates using only a pocket

calculator.

Kleinbaum et =zl (1982) noted that the selection of more controls than
cases helps to insure that there will be controls for cases at all relevant
levels of the c-onf‘ounding variakles, so that adequate comparisons could
be made. On the other hand, if the cost of obtaining the study information
is high, the greatest efficiency could be obiained by having equal number
of cases and controls, where in this case matching will assure comparable
distribution with respect to confounding variables. The cost benefit of
matching in terms of efficiency and validity of study depends on the degree
of confounding, and matching on an unrelated factor could result in over-

matching, and hence loss in efficiency.

We considered relative efficiency under different matching designs

(on the assumption that matching was on relevant confounding variables)
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and with different costs of obtéaining cases and controls when attributable
risk is the ultimate goal. Our resulis led to ftables of optimal matching
ratios (Tables 4.1, 4.2 and 4.3). These results ’have led us to believe that
when it costs more to cobtain ‘a case for a matched study, more controls
should taken, but rarely do \v)e need to take more than 3 controls, except
when ancillary information suggests that the risk of disease is much higher
(¢ > 10) among the exposed persons as compared to those not exposed.
The table of optimal matching ratios could be usea whenever paossible to

help us make decisions about how. many controls to match per case.

As noted by Kuritz and Landis (4987a), further empirical work is
necessary to investigate the small to moderate sample size behaviour of
these estimators, We have not particularly considered cases where the
factors are associated with decreased risk (ie when ¢ < 1) and further
work could be carried in such situations. The ideas presented here could
also be extended to situations with multiple exposure levels ( not exposed,

nildly exposed, severely exposed, etc.).



APPENDIX A

The sample multinomial proportions arising from Table 3.i.{ can be
formed as
4 3
p ={a b cd e fl/n
with the estimated covariance matrix being
Var(p) = (Dp - pp ¥/n

where Dy is a diagonal matrix with vector p on the main diagonal. If

we let
o ¢+ 2 -2 -1 40
Ay =
g &£ 2 06 0 @
1 1 o o 0
By = 6 ¢+ 2 -2 -1 0
o0 + 2 6 0 ¢
then a; = Aqp and by = Byp are the linear functions of p necessary

to give the required numerators and denominators.
The attributable risk estimates can be expressed as compounded functions

of p by writing
?\e = expl{A; (loge ay) ?
A= expiB; (loge by) *
where 4; = [ §, -1 1 and B, =1[141,-11

Thus, by appropriate matrix products arising from multivariate Taylor

series methods [Kuritz and Landis (1987a)], the large-sample variance
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estimators for these functions are given by

Var(he) = (Re)2ApDa; *A,Var(plA, Da; 1A," (A1)

Var() = 0ZBzDpy 1By Var(p)By‘Dp 1B,” (A.2)



APPENDIX B

Table B4

Relative Efficiency for various values of ¢ and V. (Cy = Cj)

under different matching designs.

RE(Eg,Eq) RE(R,,Ry)
Ve 04 02 05 07 09 0.4 03 05 07 09
¥
1.5 0.943 0923 0.901 0.876 0.848  0.835 0.836 0.838 0.838 0.836
2. 0.987 0.958 0923 0.881 0.830  0.802 0.807 0.841 0.812 0.808
2. 1.023 0.989 0.947 0.893 0.822  0.784 0788 0.794 0.798 0,792
3.0 1,052 1016 0.970 0908 0.82¢ 0765 0.773 0.782 0.788 0.782
5.0 1129 1093 1043 0967 0.836 0731 0.739 0.751 0.763 0.765
10,0 1212 1486 4444 1070 0502 0701 0.708 0.748 0.734 0.754
RE(E,E,) RE(R,,R,)
Ve 04 03 05 07 09 0.4 03 05 067 09
¢
1.5 0.870 0.860 0.849 0.838 0.825  0.819 0.820 0.820 0.820 0.89
2.0 0.893 0.878 0.860 0.840 0.817  0.805 0.807 0.809 0.809 0.807
2.5 0.942 0.894 0.872 0.846 0843 0795 0798 0.801 0.803 0.800
3.0 0.929 0909 0.884 0.53 0.842 0789 0779 0783 0.798 0.79
5.0 0.975 0.954 0.92¢ 0.883 0.1 0775 0779 0783 0.788 0.789
10.0 1031 1013 0.985 0.939 0.850  0.773 0.766 0770 0.776 0.784
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Table B.1 (continued)

Relative Efficiency for various values of ¢ and Vy, (Cy = Cj)

RE(E4,E=) RE(Ry,F=)
Ve 04 03 05 07 09 64 03 05 07 09
¢
1.5 0.870 0.863 0.857 0.850 (0.842  (.838 0.839 0.839 0.839 0.839
2.0 0.884 0.874 0.843 0.854 0.837  0.830 0.831 0.832 0.833 0.832
2.5 0.897 0.885 0.674 0.855 0.835  0.825 0.827 0.828 0.829 0.828
3.0 0.908 0.895 0.878 0.859 0.835  0.821¢ 0.823 0.825 0.826 0.825
5.0 0.941 0.926 0905 0.877 0.839 0843 0.846 0.818 0.824 0.821
10.0  0.985 0.970 0.94% 0.944 0.857  0.807 0.808 0.811 0.844 0819
RE(E,E,) RE(R.,R,,)
Vx 04 03 05 0?09 64 03 05 07 09
¥
L5 0.879 0.875 (0.870 0.866 C(.861  0.858 0.858 0.859 0.859 0.858
2.0 0.890 0.883 0.875 0.867 0.857  0.852 0.853 0.854 0.854 0.854
2.5 0.899 0.890 0.880 0.869 0.856¢  0.849 0.850 0.851 0.852 0.851
3.0 0.907 0.897 0.885 (0.872 0.856  0.847 0.848 0.849 0.850 0.849
5.0 0.932 0.920 0.904 0.885 0.858  (.842 0.843 0.845 0.847 0.847
10.0  0.967 0.955 0.938 0.913 0.870  0.838 0.839 0.840 0.842 0.845
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Table B.2
Relative Efficiency for varicus values of ¢ and V, (C4 = 2X Cp)
under different matching designs.
RE(E,,Ey) KE(R;,Ry)
Vx 04 0.2 0.5 a1 0.9 04 0.3 0.5 0.7 0.9

A\
1.5 1.064 1.038 4,043 0.986 0.954 0.93%9 0.941 0.943 0.943 0.940
2.0 1410 4.078 1.038 0.992 0.934 0.903 0.909 0.943 0915 0.909
2.5 1450 1.442 1065 1.005 0.925 0.879 0.886 0.94 0.897 0.891
3.0 1,183 {1.143 1094 1.024 0.923 D.8é4 0.870 0.879 0.886 0.879
5.0 1270 1,230 4.474 1.088 0.940 0.2z 0.83z 0.845 0.859 0.864
10.0 1.364 1333 41287 1,203 1.015 0.789 0.796 0.808 0.8B26 0.848

RE(E,,E.) RE(R,,R))

Vg G4 0.3 0.5 0.7 0.9 0.4 0.3 0.5 0.7 0.9

¥
1.5 0.928 0948 0.906 0.894 0.880 0.873 0.875 0.875 (.87 0.874
2.0 0.953 0.93¢ 0.9i8 0.896 0.874 0.858 0.8614 0.862 0.863 0.Bé4
2.5 0.972 0.954 0.930 0.902 0.848 0.8B49 0.852 0.B54 0.856 0.853
3.0 0.991 0.969 0.943 0910 0.867 0.842 0.845 0.849 0851 0.849
5.0 1.040 1047 0.986 0.942 0.874 0.826 0.830 0.835 0.844 0.842
10.0 1,100 1.084 1.05¢ 1,003 0.907 0.844 0.817 0.824 0.828 0.836




Relative efficiency for various values of ¢ and Vy (Cy = 2X Cp)

Table B.2 (continued)

RE(Ey,E5) RE(Ry,R5)
Ve 04 03 05 07 09 04 03 05 07 09
v
4.5 0.906 0.899 0.893 (0.885 0.877  0.874 0.874 0.874 0.874 0.674
2.0 0.924 0911 0.899 0.887 0.872  0.865 0.866 0.867 0.868 0.866
2.5 0.934¢ 0.922 0907 0.890 0.870  0.859 0.861 0.863 0.864 0.862
3.0 0.946 0.932 0944 0.895 0.870  0.856 0.857 O0.859 0.861 0.860
5.0 0.981 0.964 0.943 0.944 0.874 0847 0.849 0.852 0.855 0.855
100 1.026 1010 0.988 0.954 0.893  0.841 0.842 0.845 0.848 0.852
RE(Eg,E,) RE(R,R,)
Vy 04 03 05 07 09 04 03 05 07 09
¥
1.5 0.904 0.00 0.895 0,890 0.885  0.882 (0.883 0.883 (.883 0.863
2.0 0.945 0908 0.900 0.891 0.882  0.877 0.878 0.879 0.879 0.878
2.5 0.924 0915 0505 0.894 0.880  0.874 0.874 0.876 0.876 0.875
3.0 0.933 0.923 0.941 0897 0.880  0.87¢ 0.872 0.874 0.875 0.874
5.0 0.959 0.946 0.930 0.910 0.883  0.866 0.867 0.869 0.871 0.871
10.0 0995 0.982 0.965 0.938 0.895  0.862 0.863 0.864 0.866 0.849



Table B.3

Relative Efficiency for various values of ¢ and V4 (Cy = §5X Cp)

under different matching designs.
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RE(E,,E,) RE(R,,R,)
Vy 04 03 05 07 0.9 04 03 05 07 09
v
1.5 1,213 1487 4458 4427 1094 14073 1.076 4.078 4.078 1.075
2.0 1,269 1231 4487 4433 1067 1031 1,035 1.043 1.045 1.039
2.5 1315 1274 4247 1449 4058 4006 4.042 1.02¢ 41026 4.048
3.0 1,352 4,306 4.247 4467 41.055  0.984 0994 4005 1042 1.005
5.0 1,451 1,406 4.344 1,243 4,075  0.941 0,952 0.966 0,987 0.984
100 1559 4.524 1.469 1.37¢ 4459  0.903 0.91¢ 0.923 0.943 0.969
RE(E.,E,) RE(R.,R,)
Ve 04 03 05 07 09 04 03 05 07 0.9
v
1.5 1,045 1004 0991 0978 0962  0.955 0.956 0.957 0.957 0.95¢
2.0 1.042 1,024 4004 0.980 0.953  0.938 0.941 0.944 0.944 0.944
2.5 1.064 1.043 1048 0987 0.949  0.927 0.931 0.934 0935 0.933
3.0 1.084 1060 4.031 0.995 0948 0921 0.924 0928 0931 0.928
5.0 1438 1443 4078 1.030 0955  0.903 0.908 O0.943 0919 0.920
10.0 4203 1482 {.449 4,095 0.994  0.888 0.893 0.897 0.905 0.915




Table B.2 (continued)
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Relative Efficiency for various values of ¢ and V, (C; = 5X Cj)
RE(Ey,E3) RE(R4,R2)
Ve 04 0.3 0.5 0.7 0.9 0.4 0.3 0.5 0.7 0.9
¥
1.5 0.966 0,959 0.952 0.944 0.936 0,933 0.932 0933 0.933 0.932
2.0 0.983 0972 0.959 0.946 0.930 0.923 0.924 0925 0925 0.924
2.5 0.997 0.983 (.968 0.949 0.928 0.947 0.949 0920 0.924 0919
3.0 1,009 0.994 097 0.954 0.927 0.9412 0.915 0.917 0.918 0.917
5.0 1.046 1,028 4.005 0975 0,932 0.904 0.905 0.909 0912 0.912
10.0 1.094 4077 4.056 4.047 0.952 0.8%6 0.898 0904 0908 0.909
RE(Ec,E,) RE(Rz,Ry)
Vx 04 0.3 0.5 0.7 0.9 0.4 0.3 0.5 0.7 0.9
Y
1.5 0.950 0.945 0.940 0.935 0.929 0.9258 0926 0.927 0927 0.927
2.0 0.9614 0.953 0.945 0.936 0.926 0.920 0.9214 0923 0.923 0922
2.5 0.979 0.964 0951 0.939 0.924 0.945 0.949 0.919 0920 0.919
3.0 0.979 0.969 0.956 0.944 0.924 0.915 0.916 0.947 0.918 0.917
5.0 1.007 0.994 0977 0955 0927 0.910 0.911 0913 0944 0.945
10.0 1.045 1.031 41.043 0.987 0.927 0.906 0.906 0.907 0940 0.943
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