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Abstract 


In this project we review the developments of several variations of the up-and-down design 

utilized in Phase I clinical trials to estimate the maximum tolerated dose (MTD) of a drug 

which corresponds to a fixed probability of response or the pre-specified toxicity rate in the 

target population. In these designs selection of dose levels is restricted to one level higher, 

one level lower or the same. Several methods of estimation of the MTD are investigated. 

Some comparison of the designs by Monte Carlo simulation are carried out by the quality of 

the estimator of the target dose using the isotonic estimator. The designs are investigated 

under the generalized logistic (for different values of the power) and the gamma distributions. 

The NR is found to perform best on the basis of the quality of estimator under these distribu­

tions. The BCD is found to perform best on the basis of the average proportion of toxicity for 

a pre-specified toxicity rate of 0.2 whereas the KROW performs best for a toxicity rate of 0.3. 

Key words: Phase I trial, up-and-down design, quantile targeting, toxicity. 
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Chapter 1 

Introduction 

One of the main objectives in a Phase I clinical trial, a study in which a new drug is ini­

tially given to humans to determine its maximum tolerated dose (MTD), e.g., an oncology 

or acute toxicity trial, is to estimate the dose level of a drug which will produce toxicity 

with a prescribed probability in the target population. Exceeding the MTD could be fatal 

to human lives. Often, in these studies low doses of more benign drugs are administered to 

healthy volunteers, typically, some of the investigators who developed the new drug, either 

some employees of a pharmaceutical company or some members of the research team at a 

university or patients who have no effective treatment available to them [13]. The doses are 

increased gradually until some biological activity is observed. Later, when the pharmaco­

logic and safety information are available the drug is introduced to the patient population, 

again with an emphasis on safety. Observations can then be made on efficacy of the drug in 

subsequent Phase II trials (trials on persons having a specific disease or medical condition, 

1 




2 CHAPTER 1. INTRODUCTION 

to determine whether the drug has some level of therapeutic effect). 

Phase II clinical trials are usually carried out with a treatment group, who receive the 

drug, and a matched control group, who receive a placebo. These clinical trials provide 

information on the efficacy of different dose levels, the schedule for administering the drug, 

and the short-term safety of the drug in patients [13] after the MTD has been carefully 

determined in a Phase I clinical trial. In the context of life-threatening illness, given the 

hoped-for benefit, we must aim for an 'acceptable' level of toxic response [16]. Due to ethical 

reasons, it is imperative that the estimation of the MTD is determined using as few subjects 

as possible while making sure that the estimate is accurate [19]. This is accomplished by 

using experimental designs. 

In these studies, an experimental design is a set of rules that assign subjects to different 

dose levels. Such designs are called dose-response designs. For practical considerations, the 

dose levels are usually fixed in advance. From a design point of view, one may note that 

very little is known about the appropriate dose range that will be efficacious with tolerable 

toxicity. Furthermore, simple random assignment of subjects to dose levels does not seem 

to be advisable because some subjects may receive low doses that will result in little or no 

efficacy and some of those who may receive high doses are likely to be exposed to severe, 

often fatal toxicity. 

In order to avoid such problems, the MTD should be determined using as few subjects 

as possible. This is best done through sequential designs. A sequential design in this context 
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is one in which the assignment of a dose to the next subject depends on the outcome(s) of 

the previous subject(s). The level the next subject(s) receive is never more than one level 

away from the prior level. The responses are assumed to be binary - toxic or non-toxic, 

simply success or failure. 

In dealing with such discrete levels and binary responses, Dixon and Mood [6] introduced 

a sequential design called the Up-and-Down (UD) method for obtaining and analyzing sen­

sitivity data. Anderson, McCarthy and Tukey [1] first brought the UD design into the 

statistical community. The objective of the design was to estimate the mean of a normal 

distribution and the maximum likelihood estimation procedure was used for this purpose. 

The UD method which was originally used for explosive trials has been of interest in Phase 

I clinical trials. We describe it below. 

Let the levels be ... , d_2 , d_ 1 , d0 , d1, d2 , .... The levels are equally spaced. Assign the first 

subject to level d0 . Suppose the mth trial is performed at the djh level. Then the next 

trial will be at the level dj-l or di+l according to whether there was a success or a failure 

respectively. The design is illustrated in Fig. 1.1 below where the x's represent successes 

and the o's represent failures. 
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d2 

d1 X X X 

do X 0 X X 0 0 X X 

d_1 0 X X 0 0 0 X X 

d_2 0 X 0 0 0 

d_3 0 

d_4 

Fig. 1.1: Representation of the UD method of a sample of twenty-five tests. 

The UD method automatically concentrates testing around the mean. Observe that the 

method uses only the outcome of the last trial in order to determine where the next trial is 

taken. Narayana in his thesis [15] introduced two alternative sequential designs in which the 

selection of the next level depends, not only on the outcome of the last trial, but also on all 

previous outcomes on the current level. These designs were meant to estimate the "median 

effective dose" (ED50) which happens to be the same as the mean in a normal population. 

Narayana [15] also considered the uniform distribution. The two rules are called the 1-rule 

and the 3-rule and these are explained below. 

The 1-rule 

As earlier, suppose the mth trial is performed at the djh level. Denote the total number 

of successes and failures on the level di by Xi and Yj, respectively. Set Ni = Xi + Yj. If 

Xi > Yj, then assign the next subject (i.e., at the (m + 1)th trial) to level di-I or di if the 

last trial was a success or a failure respectively. If Xi < Yj, then assign the next subject to 
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level dJ or dJ+l if the last trial was a success or a failure respectively. If Xj = Yj then we 

take a further observation on level dj. The rule is illustrated as in Fig. 1.2 below. 

d2 

d1 

do X 0 X OX OX X X X 

d_1 0 X X X 0 0 0 xo xo 0 

d_2 0 X 0 

d_3 

d_4 

Fig. 1.2: Representation of the 1-rule. 

Note that the condition XJ > Yj is equivalent to XJfNJ > 0.5. 

The 3-rule 

This rule uses information on three levels, dJ_ 1 , dj, dJ+1 and is defined as follows: 


If Xj_1 + Xj + XJ+l > 1J-1 + }j + YJH, then the next trial is taken at level dj_1or dj, 


according to whether the last observation was a success or a failure, respectively. 


If xj-1 + Xj + xj+1 < YJ-1 + Yj +YJH, then the next trial is taken at level dj+1 or dj if the 


last observation was a failure or a success. 


In the case where XJ_1 + XJ + XJ+1 = Yj_1 + }j + YJ+b the observations on the levels dJ-1, 


dj, dJ+1 give us no idea whether to move up, down or stay on the current level, dj. So we 


just consider the observations on the current level, XJ and }j, and follow the 1-rule. The 
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3-Rule is illustrated as in Fig. 1.3 below. 

d2 

dl X 

do X 0 X X X 

d_l 0 X X 0 X 0 0 X X X 

d_2 0 X 0 0 0 X 0 0 

d_3 0 

d_4 

Fig. 1.3: Representation of the 3-rule. 

Subsequently, the UD method has been the focus of dose-response studies. In contrast, 

neither Narayana's contribution in his thesis has been published nor any further study on 

it has been conducted. However, two designs namely the k-in-a-row (KROW) rule and the 

Continual Reassessment Method (CRM), have the same feature as Narayana's rule (NR) in 

the sense that the decision for selection of the next level takes into account earlier informa­

tion. These developments will be discussed in detail in chapter 2. Several estimators of the 

target dose in Phase I clinical trials have been proposed. For instance, Dixon and Mood 

[6] considered the maximum likelihood estimator (MLE). The other estimators include the 

weighted least squares (WLS) estimator, the empirical mean (EM), and the isotonic regres­

sion (IR) estimator. A detailed discussion of the estimators will be given in chapter 3. In 

chapter 4, some comparison of the designs by Monte Carlo simulation will be carried out 

and discussed. 



Chapter 2 

Designs 

Designs considered for use in Phase 1 clinical trials have largely been based on Dixon and 

Mood's UD method. In these designs, dj, j = 1, 2, ... , L, is a set of finite, ordered, fixed dose 

levels which are equally spaced on the logarithmic scale. For practical reasons, there should 

be only a finite number of levels on which to conduct the experiment. In this situation, if 

the rule suggests to go below d1 , then the next dose level will be d1 . Similarly, we stay on 

dL if the rule suggests to go above d£. Assume that we stop experimentation after the Mth 

trial. Let Y(m), m = 1, 2, ... , M, be 1 or 0, according to the resulting success or failure 

of the Mth trial. Also, let Q(d) = Pr{Y = 1\d} for dose d where Q(d) is assumed to be a 

non-decreasing function of the dose and thus, can be considered as a distribution function. 

For a given probability of toxicity r, our objective is to estimate the corresponding quantile 

p,, such that Q(p,) = r. Dixon and Mood [6]estimated p, for r = 0.5 when Q(d) is the distri­

bution function of the normal distribution. The estimation of p, for r =j:. 0.5, specifically for 

7 
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r < 0.5, is of practical importance. For example, in Phase 1 clinical trials in oncology, r is 

usually small, say 0.2. This is because we do not want to subject a high percentage of the 

target population to high toxic levels. 

To estimate any quantile which imposes no parametric assumptions on Q(d), a general 

scheme was suggested by Monro and Rob bins [ 17]. However, this scheme assumes that the 

possible experimental values of dose levels is on the real line, which may not necessarily 

coincide with the fixed dose levels and therefore of little use in our case. In the rest of the 

chapter, designs related to the UD method are described and for that purpose we assume 

that the last trial was on dose level dj. 

2.1 Variations of The Up-and-Down Design 

Derman [4] suggested a procedure for any given r. The design is described below. 

Let 0.5 :::; r :::; 1. At dose level di, if the outcome was a success, assign the next sub­

ject to dj-1 with a probability 2~ or to dH1 with a probability 1- 2~. On the other hand, if 

the outcome was a failure then assign the next subject to level di+1. Suppose 0 :::; r :::; 0.5. 

If the outcome was a success, then assign the next subject to dj_1 . If the outcome was a 

failure, assign the next subject to level di+1 with probability 2~ or to dj_1 with probability 

1 - 2~. Observe that when r = 0.5, the design becomes a UD design. Then based on a fixed 

number of observations, the estimate of p,, {l, is the most frequent value of d, if unique, or 
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the arithmetic average of the most frequent levels, if not unique. This design asymptotically 

results in a unimodal distribution of dose level assignments with mode as close to Jl as is 

possible given the discreteness of the dose levels permitted. 

A block UD method which involves taking a number of observations per trial at sequen­

tially determined levels has also been introduced by Tsutakawa [21]. This method was used 

to study the estimation of the median of an unknown continuous distribution function from 

quantal response (i.e. each outcome is classified merely as a response or non-response) data 

obtained sequentially in blocks of K 2:: 1 subject(s) per trial. 

Let the block size be, K 2:: 1 and s be a predetermined integer such that 0 ::; s < K - s 

and J(di) be the number of responses at the last trial. According to the rule, assign the 

next K subjects to di+l' di, di-l as determined by 0 ::; J(di) ::; s, s ::; J(di) ::; K- s, 

K- s ::; J(di) ::; K, respectively. Note that this design with K = 1 and s = 0 is the same 

as the Dixon and Mood's UD method. 

We also note that the use of K > 1 conveniently reduces the number of trials. For ex­

ample, for a sample size of, say, 15 and K = 3, there would be only 5 trials instead of 15 

trials for the other designs which assign one subject at a time. 

Durham and Flournoy [7] introduced two designs along the line of Derman, the Biased 

Coin Design (BCD) I and II, which were again based on the UD method. The two rules are 

as follows: 
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Biased Coin Design {BCD) I: 

For 0:::;; r:::;; 1, toss a coin with probability of heads equal to b = r /(1 +f), 0:::;; b:::;; 0.5. If 


the toss results in heads, assign the next subject to level dj+l· If it results in tails and the 


last outcome was a failure, assign the next subject to level dj, whereas if the outcome was a 


success, assign the subject to level dj_1 . 


Biased Coin Design {BCD) II: 


For 0 ~ r ~ 0.5, let the bias b = r /(1 -f), equal the odds at the target quantile. If the 


outcome was a failure and the toss of a biased coin results in heads, then assign the next 


subject to level dj+l; if the toss yielded tails, assign the next subject to dose level dj; if a 


success was observed, then assign the next subject to level dj_1 . Note that when r = 0.5, 


both designs are the same as the UD design. 


These two designs also asymptotically result in a unimodal distribution of dose level as­


signments with mode as close to J-l as is possible given the discreteness of the dose levels 


permitted. Giovagnoli and Pintacuda [10] showed that, for large samples sizes, the BCD is 


optimal within the class of random walk designs (designs that move to neighboring points 


with certain probabilities) that use randomization for targeting. The distribution of the dose 


levels is most peaked around the target dose 1-l· 


Storer [19], in determining an MTD that stops close to the 33rd percentile in a small­


sampling setting (as in Phase 1 clinical trials), suggested several simple alternatives below 


to the previously described designs as given below. 
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Design A: Groups of three subjects are assigned each time. Assign the next three subjects 

to level di+1 if no success is observed in all three; otherwise, an additional three patients are 

treated at the same dose level. If only one of six is a success, escalation again continues; 

otherwise, the trial stops. 

Design B: Single subjects are assigned to the dose levels. The next subject is assigned 

to level, di_ 1 or di+1 if a success or a failure is observed respectively. We note that this 

design is the same as the UD method given earlier. It is included here to define the two 

two-staged designs described in the next section. 

Design C: This design is similar to design B, except that two consecutive failures must 

be observed before the next subject is assigned to dj+1 , that is, if a failure is observed, the 

next subject is assigned to the current dose and if another failure is observed then the next 

subject is assigned to di+1 as said but to level di_ 1 if a success is observed. 

Design D: Groups of three subjects are assigned at a time. Assign the next group to 

di+l if no success is observed. If more than one success is observed assign the next group 

to di_ 1. If only one success is observed, assign the next group to di. This design could be 

considered a discretized version of the Robbins-Monro [17] procedure. 
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2.2 Designs Using Previous Observations 

Storer [19] also proposed two two-stage designs because the single-stage designs described 

above could not be expected to perform well in an arbitrary dose-response setting when 

employed with fixed sample sizes. The two-stage designs, denoted by BC and BD, combine 

single-stage designs. The first stage of a two-stage design, Bin BC or BD, starts with design 

B above (section 2.1) until a success is observed, then the next subject is assigned to dj_ 1 ; 

the second stage design, C or D, as explained above, is then implemented, again with fixed 

sample size. 

Korn et al [14] introduced what they called the 'Standard Method' (SM). In this design, 

three subjects are assigned to dose level dj. If there is no success among the three subjects, 

assign the next three to di+l· If one success is observed, assign an additional three subjects 

to the current dose level. If 1 out of 6 success is observed at the dose level, assign the next 

three to dj+l· If 2 out of 6 successes are observed, or ~ 2 out of 3 successes are observed in 

the initial subjects assigned at a dose level then the MTD has been exceeded. In some cases 

the previous dose level is chosen to be the MTD. A more common requirement, however, is 

to assign 3 more subjects to the previous level if there were only three already assigned. In 

this design the MTD is defined as the highest level in which six patients have been assigned 

with ::; 1 instances of toxicity. 

Gezmu [9] introduced the Geometric UD design which can be used to avoid highly toxic 

dose levels. The design is as follows when r = 1 - (0.5) 1/k: 
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The next subject is assigned to 

(i) dose level dJ_1 if the last observation was a success; 

(ii) dose level dJ+1 if the k most recent subjects all received dose level dJ and there were no 


successes, that is, Y(m) = Y(m- 1) = ... = Y(m- k + 1) = 0 


(iii) otherwise assign subject to dose level dJ. 


This rule has come to be called the k-in-a-row (KROW) rule. It targets any r = 1- (0.5) 1/k. 


The design is similar to the BCD design introduced by Durham and Fluornoy [7] in the sense 


that it centres the treatment distribution around J1 but it uses the information on previous 


observations instead of a biased coin. 


Another design that takes into consideration the information on all previous outcomes is 

the continual reassessment method (CRM), which was proposed by O'Quigley, Pepe and 

Fisher [16]. The CRM employs Bayes' theorem. The design uses a working model for the 

dose-response relationship, for example, the one-parameter model 

Pr {Y = 1\dr, a}= [(tanh dr + 1)/2]a (2.1) 

where dr, r = 1, 2, ... , S is a set of dose levels and the parameter a is to be estimated. Let 

the prior distribution for a be g(a) = exp(-a), which is updated using Bayes' theorem as 

data become available. The design estimates the MTD sequentially by estimating a. The 

first subject is assigned to the lowest dose level d1 . The mean posterior density of a after 

each subject is computed. For example, the estimate of a, am after the outcome of the mth 

subject is given by 
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where /(aiOm) = fooo~~:<~);(~)du is the posterior density of a, Lnm(a) is the likelihood func­

tion, and Om= {(x1 , Y(1)), ... , (xm, Y(m))} are the data accumulated up tom assignments. 

Assuming that m -1 subjects have been assigned so far, the next subject is assigned to dose 

level Xm such that IPr{Y = 1lxm, am}- rl is minimized. The next dose level is chosen from 

(dj-1, dj, dj+l), when Xm = dj. 

Ivanova, Montazer-Haghighi, Mohanty, and Durham [12] considered the NR, which is noth­

ing but a modified version of Narayana's 1-rule and compared it to the BCD, the KROW, 

the CRM and the Moving Average Up-and-Down (MAU) rule. We describe the MAU rule 

and the NR below. 

The MAU rule is as follows: 

Assign the next subject to dj_1 if there is at least one success among the k most recent 

observations on the current dose level; or to level di+1 if there are no successes observed 

among the k most recent observations on the current dose level. 

This design is similar to the KROW rule in the sense that it looks at the k most recent 

observations at the current dose level but it only moves up or down each time. It also tar­

gets dose levels with probability of toxicity, r = 1 - (0.5)1/k' where k = 1, 2, 3, .... 

The NR is modified to accommodate any r - 1 - (0.5)1/k, where k - 1, 2, ... , and is 

given as follows: 
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Recall that Xj and Nj are the number of toxic observations and the number of assignments 

to the dose level dj up to and including the mth subject, respectively. The ratio XjiNj gives 

the estimate of the probability of toxicity at dose dj if Nj is not zero. 

Suppose the mth subject was assigned to dose level dj, j = 1, 2, ... L. The next subject is 

assigned to: 

(i) dose level dj-l if Xj INj > r and if at least there is one success in the last k most recent 


observations on the current dose level; 


(ii) dose level dj+l if XjiNj <rand if there are no successes in the k most recent observa­

tions; 


(iii) otherwise assign subject to dose level dj. 


Note that the extra conditions are stipulated by the MAU rule. 


A clarification of the NR is in order. Consider the case where r = 0.29 for which k = 2. 

Suppose the mth subject in the trial was the first to receive dose dj, where dj E {d1 , ... , dL} 

and the assignments and observations for the subjects m, ... , m + 3 are (dj, dj, dJ+1 , dj) and 

(Y(m), Y(m + 1), Y(m + 2), Y(m + 3)) = (0, 0, 1, 0) respectively. The subject m + 4 will 

receive dose dj+l and subject m + 5 will receive dose dj no matter what the outcome of 

subject m + 4 is. This type of anomaly occurs when there is insufficient experience with the 

dose level thus making Xj INj a bad estimate of the probability of toxicity at a dose level. 
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2.3 Start-Up Rule 

Storer [19] suggested using a Start- Up rule where, starting at the lowest dose, subjects are 

assigned one per dose at increasing dose levels until a success is observed. The next subject 

is then entered at the next lower dose level and the primary design chosen for the study 

is then used to determine the subsequent assignments. The primary design here refers to, 

for example, the BCD, the NR, etc. Korn et al. [14] found Storer's scheme too aggressive 

and suggested assigning two subjects instead of one at a time at increasing dose levels until 

the first success is observed and then reverting to the primary design. We note here that 

the Start-Up rules suggested by Storer [19] and Korn et al [14] are the KROW rules for 

k = 1, r = 1 - (0.5) 1/k = 0.5 and for k = 2, r = 1 - (0.5)1/k = 0.3 respectively. The 

purpose of the Start- Up rule is to bring the starting point of the primary design closer to the 

target dose thereby conserving resources. Ivanova et al [12] suggested that for trials where 

severe toxicity events are expected, the Start-Up rule should depend on r, the probability 

of toxicity at a target dose and defined the Start- Up rule as follows: 

Starting at the lowest dose, for r = 1- (0.5) 1/k = 0.5, k = 1, so assign one subject per dose; 

for r = 1- (0.5) 1/k = 0.3, k = 2, so assign two per dose; and for, r = 1 - (0.5)1/k = 0.2, 

k = 3, therefore assign three subjects per dose. If no success is observed, go to the next 

higher dose. If a success is observed go to the next lower dose level and revert to the primary 

design. It is possible that the Start-Up rule will use up all subjects in the sample; in this 

case one cannot attribute the results to a particular design. 



Chapter 3 

Estimators 

Several estimators of fJ have been proposed. Examples include the maximum likelihood es­

timator (MLE), weighted least squares (WLS) estimator, the empirical mean (EM) and the 

isotonic regression (IR) estimator. Durham and Fluornoy [7] used the empirical mode of the 

treatment distribution as an estimate of fJ but the mode seems not to do well and so was not 

considered by Stylianou and Fluornoy. Stylianou and Fluornoy [20] considered Durham and 

Flournoy's BCD for the estimation of fJ by using the MLE, WLS, EM, IR and a modified IR 

using linear interpolation. A detailed presentation of the MLE, WLS, EM, and IR is given 

below. 

17 
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3.1 The Maximum Likelihood Estimator (MLE) 

Let the equally-spaced dose levels be d, the variate of the distribution under consideration 

with mean and variance, J-L and CJ2 respectively; also let q be a rough estimate of CJ. Then 

the distance between dose levels is taken to be q, i.e., the trials are conducted at 

di =do ±jq, j = -L, ... ,L 

where d0 is the initial dose level. Recall that the number of successes and failures are Xi 

and lj respectively at the mth level. Let X = 2: Xi and Y = 2: }j. The probability of 

obtaining such a sample is 

L 

P(X, Y\do) =a IT p:i (1- Pi)0 (3.1) 
i=-L 

where Pi = the probability of success at the mth level and a is not a function of J-L and CJ. 

In the case of the normal distribution, d is the normally distributed variate with mean 

and variance, J-L and CJ2 , respectively and Pi is given by 

1 lYj ( 1 (t- J-L)2)p· = -- exp -- dt = 1- (1- p·) (3.2)
J '2= 2 (72 JCJyL.Jr -oo 

We note that 

(3.3) 

Therefore either one of the sets (Xi) or (lj) contain practically all the information given by 

the sample. The smaller X = 2: Xi or Y = 2: lj is used for the analysis. Let us assume 

that X~ Y. Now Y- X is expected to be small according to the equation (3.3) above. In 

the case where the initial dose level, d0 , was poorly selected, a number of observations have 
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to be expended to get to the region of the mean and thus these observations contribute little 

to a precise location of the mean. We neglect this portion of the information and simply 

take the likelihood function to be maximized as 

P(Xj, 1-Jido, Y- X)= a'ITp:i(1- Pi-1)xi. (3.4) 
j 

If we apply the principle of maximum likelihood for the estimation of f-L and a-2 , the derivatives 

of log P with respect to J.L and a- are equated to zero to obtain the relation, 

~xj( zj-1 _zj)=o (3.5)
(1 - Pi-1) Pi ' 

(3.6) 


respectively where Xj is the standardized variable dj:;J.L and Zj is the ordinate of the distri­

bution of d at dj. For example, 

1 1 d·-J.L 
3Zj = a-...f2ir exp (- 2" ( O" )2) 

is the ordinate of the distribution of d at di if the distribution is N(J.L, a-2 ). 

Substituting the expected value of dj, E(dj), for dj, the left hand sides of equations (3.5) 

and (3.6) are readily found to be zero. If we let 

wo = 1 

and 

rrj-1 1-pt if j > 0;t=O Pt 

Wj = { 

rr:=-j 1~~t if j<O 
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then from the relation 

E(Xj) 
= 

it follows that 

The roots of equations (3.5) and (3.6) are the maximum likelihood estimates of J-L and CJ. A 

close approximations of the roots can be obtained when q ::::;; 2CJ. We consider the function 

z(x+q/CJ)a(J-L) = z(x) 
1- p(x) p(x + qjCJ) 

where J-L = x + qj2CJ. This expression is nearly linear in J-L when q ::::;; 2CJ; similarly 

f3(J-L) = xz(x) _ (x + qjCJ)z(x + qjCJ) 
1-p(x) p(x+q/CJ) 

is nearly quadratic in J-L. If we let 

(3.7) 

and 

(3.8) 

we have 

E(J-Lt) = J-L - q/2 

and 

The MLE of J-L is 
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where d' is the normalized level corresponding to the lowest level on which the less frequent 

event between successes and failures occurs. When analysis is based on failures, we use the 

plus sign whereas the negative sign is used when the analysis is based on successes. 

However, the sample sizes in oncology or acute toxicity trials are too small and the dis­

tribution is usually not normal. The MLE is also very unstable because it does not exist for 

small samples [17]. 

3.2 The Empirical Mean (EM) Estimator 

Brownlee, Hodges, and Rosenblatt [3] proposed the empirical mean estimator. According 

to them, the MLE proposed by Dixon and Mood for normal distribution is asymptotically 

equivalent to the empirical mean of all observations. The distribution of the dose assign­

ments tends to vary unimodally around the target quantile /1· Thus the empirical mean 

estimator is simply the average of all the doses that have been administered. 

Likewise, Stylianou and Fluornoy [20] presented a simple nonparametric estimator of 11 

which is the truncated simple average of all the doses that have been administered given by 

(3.9) 

where n = N- t + 2 and t = max{i: the first i subjects having the same response}. At 

the beginning of an UD design, a run may have all positive or all negative responses, i.e. 

all successes or all failures, which are usually ignored and truncated. The last dose of the 
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run is kept and the dose to be assigned after the last dose of the study is also recorded. 

Stylianou and Flournoy [20] found this estimator to be superior to the estimator of the dose 

level mean, particularly when the difference between the starting dose and the target dose 

is large. 

Several others who have studied the use of the empirical mean together with modifications, 

as the estimator of the 1-" when r = 0.50, include Dixon [5], Hsi [11] and Tsutakawa [20]. 

Narayana estimated the ED50 in a normal population (which is the same as the mean) for 

the target quantile. 

3.3 The Weighted Least Squares (WLS) Estimator 

Stylianou and Flournoy [20] estimated the target quantile using the WLS method. Recall 

that Xi and Ni are the number of successes and the number of assignments to the dose level di 

up to and including the mth subject, respectively; also j = 1, 2, ... L. Then, Q(di) = Xi/Ni. 

The theory of generalized linear models (GLM) is used to obtain the WLS estimator. The 

probability of the outcome of the mth subject is given by Q(di) = Pr{Y = 1jdj} and 

1- Q(di) for a success and a failure respectively. The logarithm of the odds of success verses 

failure 1 ~~~~j) is called the logit of the response function. Let zi =logit(Q(di)) and the dose 

levels, dj, j = 1, 2, ... , L, be the dependent and the explanatory (independent) variables 

respectively. Recall that Q(di) is an increasing function of di. Assuming the underlying 
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distribution Q for dose-toxicity to be logistic with two parameters a and {3, as given by 

exp(=£ + ld ·)
Q(d · a {3) - f3 f3 1 (3.10)

1 ' ' - 1 + exp(-f3a + ~dj) 

we find that the logit of the response function is a linear function of the dose, that is, 

logit (Q(d;)) ~ ln ( 1 ~~{~;)) ~ {3-1(d;- a} (3.11) 

For derivation see Appendix A.l. 

Define 

Z = (zl, ... ,Z£) 1, 

and 

e~ (:) 

Then 

z = De+t:, 
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where the expectation and the covariance of E are 0 and :E and a and f3 are the intercept and 

slope parameters of the dose-response curve, respectively. The covariance is a KxK matrix 

with the rth row and the lth column element 

Qr Qz ) ( Xr Xz )
E[r,l] = cov ( ln 1 _ Qr, ln 1 _ Qz = cov ln Yr _ Xr, ln Y! _ Xz 

for all r, l = 1, 2, ... , L. The WLS method requires that we minimize 

(3.12) 

It is noted that the observations from the design are not independent due to the way the 

subjects are sampled. The value of e that minimizes the above equation with :E replacing 

:E is 

We solve logit(r) = &+ ~f-L for f-L and insert the WLS estimator 0 = (&, ~)' to give the 

equation (3.13) below for the WLS estimator for f-L 

ln (_r_) - & 
A 1-r (3.13)/-L4 = 

f3 
A 

In Phase I trials the WLS has been suggested for use under the logistic distribution since 

the response in these trials is binary. 

3.4 The Isotonic Regression (IR) Estimator 

Stylianou and Flournoy [20] suggested the IR estimator which was then used by Ivanova et 

al. [12] to estimate f-L· Suppose h is the maximum index such that Nj > 0 where h ~ L. 
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Then estimate Q(di) by, Q(dj) = Xi/Ni for j = 1, 2, ... h. The problem with using this 

method for estimation is that {Q(dj), ... , Q(dh)} may not be non-decreasing with dose lev­

els. In cases like these the proportions Q(dj) have to be put in a non-decreasing order by 

isotonic regression procedure. The most widely used algorithm for computing the isotonic 

regression is the pool-adjacent-violators algorithm (PAVA) [2, 22]. The estimate of p, is then 

obtained by interpolating between dm and the next higher level, dm+l· The estimate of p, is 

then found by interpolation based on the assumed distribution. 

For instance, for the two-parameter logistic model as given in (3.10), for dose-toxicity, the 

estimate, {l4 , has the expression, 

, log[r/(1- r)] -log[Q*(dm)/(1- Q*(dm))] 

p,4 = dm + log[Q*(dm+l)/(1- Q*(dm+l))J -log[Q*(dm)/(1- Q*(dm))J (dm+l- dm) (3.14) 


where Q*'s are the isotonic regression estimates of the Q's and Q*(dm) < r:::; Q*(dm+l)· In 

the case where r is less than Q*(dl), fl4 = dl and if r is greater than Q*(dL), fl4 = d£. The 

derivation of (3.14) is done in Appendix A.2. 

Remark: In some instances where the denominator, Q*(dm), or Q*(dm+l) is zero, such data 

is excluded. 



Chapter 4 

Comparison Of Designs 

As noted above in Dixon and Mood's UD method, the level to which the next subject is as­

signed depends only on the observation just prior to it. That is, only the very last observation 

is used to determine where the next trial is taken and thus, the information contained in the 

observations from 1, ... , m- 1 does not play any role in assigning the (m + 1)th subject. By 

using all the information on previous observations on the current level, Narayana [15] states 

that we might conceivably concentrate assignments closer to the mean dose level and possibly 

get a better estimate of it. Thus, the NR is perceived to perform better than the UD method. 

Unlike the UD method, the CRM updates the notion of the dose-response relationship as 

the observations on severe toxicity become available thereby using more information than 

the UD method. It also has been found to perform better than the UD method. On the 

other hand, Korn et al. [14] found that the CRM takes longer to complete and also assigns 

26 
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more subjects to higher dose levels than the SM. 

Comparing BCD I and BCD II, Durham and Flournoy [7] found that both designs centre 

the stationary assignment distribution around the unknown targeted percentile (the proba­

bility of toxicity that corresponds to J.l) in the sense that the mode occurs as close to J.l as is 

possible given the distance between dose levels. 

Ivanova et al. [12] compared several improved UD designs which included the NR, the 

CRM, the BCD, the KROW and the MAU rule by the quality of the estimation of J.l using 

the isotonic estimator only for the logistic model given by 

l7
Q(d·, a, /3) = [ exp(a + f3di) (4.1)

3 1 + exp(a + f3di) 

where 1 = 1. The comparison was done by simulation. They observed that the NR and the 

KROW performed better than the BCD with the NR performing the best, especially in large 

sample sizes when the distribution was logistic. 

In this project, we use simulation by exactly following (12] and compare the KROW, BCD, 

and the NR, when the distribution function Q is the generalized logistic as in (4.1), specifi­

cally, for 1 = 1, 2, 3, and 6, and the gamma as given by 

(4.2) 

where x = di. The results are presented in Tables 4.2- 4.5. The purpose is to examine 

the performance of these designs when the unknown distribution is not logistic but a similar 

one. 
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4.1 Simulation Set-up 

In comparing the designs, we look at the quality of the estimator of p, using the isotonic 

estimator. We calculate the root mean square error (RMSE) for the isotonic estimator to see 

which one gives more precision in estimating the target dose; we also look at how tightly the 

dose assignments tend to concentrate around p, by calculating the average squared targeting 

error (ASTE), which is given by f.i l:!t(xi- p,)2 for each run where N is the sample size and 

t is the first dose in the primary design, and we report TE, the square root of the mean of the 

values of ASTE over 4000 replications. In addition, we calculate the targeting bias (TBIAS) 

which is the average difference between the mean dose and p,, and the average proportion 

of toxic responses observed in the trial (TOX). We do not investigate the CRM due to the 

fact that it assigns subjects to high, toxic dose levels. The results of the Start-Up rule are 

not counted in the calculation of the TE and TBIAS. As in [12], we use the following for the 

computer simulation (see Appendix C) study: 

1. 	 Sample size, N = 15, 25, 35, 100; 

2. 	 Two target probabilities, r = 0.2, 0.3; 

3. 	 Number of replications, 4000; and 

4. 	 The isotonic regression estimator, P,4 , based on the logistic model. 

5. 	 (a) The form of Q is (4.1), r = 1, 2, 3 and 6; 


The three scenarios to select (a, /3) for each 1 (see Tables 4.1 for values) : 
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• 	 Scenario I represents the case where the probability of toxicity at the first three 

doses is small and rapidly increases at subsequent doses, 

• 	 Scenario II represents the case where the probability of toxicity moderately in­

creases from dose to dose; this scenario would be the ideal case, 

• 	 Scenario III represents the case where the target doses (doses corresponding to 

r = 0.2, 0.3) are far away from the start than the first two scenarios. 

(b) The form of Q is Gamma (4. 2) with similar three scenarios. The dose-toxicity 

curves illustrating all possible cases are presented in Appendix B. 

Table 4.1: Values of a and f3 for scenarios I, II, III under the logistic and the Gamma 

distributions. 

I Distribution I Value of 'Y I Scenario I a I f3 

Logistic 1 I -6.0 1.0 

-3.0 0.5II 

0.5 

2 

III -4.0 

I -2.9 0.75 

II -1.3 0.40 

III -2.2 0.35 

3 I -1.99 0.70 

-0.66 0.38II 

III -1.3 0.32 

6 -0.79 0.65I 

II 0.29 0.36 

-0.20III 0.28 

Gamma I 4.0 1.0 

II 4.0 1.5 

III 2.5 6.0 
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4.2 Results 

The results obtained from the computer simulations are presented below. 

Table 4.2: Targeting Performance of the designs under the logistic model with'"'(= 1. 

N Design Scenario I Scenario II Scenario III 

RMSE TBIAS TOX TE RMSE TBIAS TOX TE RMSE TBIAS TOX TE 

r=0.2 

N=15 BCD 

KROW 

NR 

1.43 

1.15 

1.22 

-1.19 0.05 

-0.82 0.06 

-0.30 0.10 

3.02 

2.01 

1.94 

1.41 

1.42 

1.70 

-0.99 0.07 

-0.66 0.08 

0.10 0.12 

2.09 

1.50 

2.39 

2.26 

2.01 

1.82 

-2.08 0.07 

-1.77 0.07 

-0.86 0.11 

8.10 

6.31 

5.11 

N=25 BCD 

KROW 

NR 

1.35 

1.25 

1.39 

-0.63 0.07 

-0.32 0.08 

0.25 0.13 

1.80 

1.27 

1.61 

1.37 

1.36 

1.72 

-0.59 0.11 

-0.30 0.12 

0.47 0.17 

1.99 

1.57 

2.75 

1.77 

1.43 

1.73 

-1.62 0.04 

-1.17 0.05 

-0.07 0.09 

5.47 

3.74 

3.49 

N=35 BCD 

KROW 

NR 

1.17 

1.04 

1.52 

-0.52 0.10 

-0.29 0.12 

0.20 0.17 

1.64 

1.19 

1.32 

1.12 

1.20 

1.32 

-0.47 0.14 

-0.22 0.15 

0.45 0.20 

1.93 

1.58 

2.37 

1.49 

1.33 

1.57 

-1.30 0.08 

-0.85 0.09 

0.19 0.14 

4.67 

3.18 

3.24 

N=100 BCD 

KROW 

NR 

0.41 

0.37 

0.38 

-0.37 0.17 

-0.21 0.18 

0.06 0.21 

1.39 

1.07 

0.74 

0.74 

0.71 

0.70 

-0.25 0.18 

-0.11 0.19 

0.25 0.21 

1.83 

1.55 

1.46 

0.85 

0.75 

0.73 

-0.65 0.15 

-0.36 0.17 

0.12 0.20 

3.04 

2.22 

1.72 

r=0.3 

N=15 BCD 

KROW 

NR 

1.12 

1.26 

1.11 

-0.79 0.06 

-0.63 0.07 

-0.20 0.11 

2.06 

1.85 

1.58 

1.46 

1.79 

1.24 

-1.09 0.11 

-1.26 0.11 

-0.42 0.15 

3.16 

3.79 

2.72 

2.10 

2.11 

1.69 

-2.14 0.06 

-1.99 0.06 

-1.34 0.08 

7.89 

6.83 

5.02 

N=25 BCD 

KROW 

NR 

1.07 

1.09 

1.29 

-0.51 0.15 

-1.18 0.10 

-0.08 1.20 

1.69 

2.79 

1.31 

1.31 

1.57 

1.46 

-0.76 0.18 

-1.76 0.12 

-0.18 0.22 

2.79 

5.11 

2.43 

1.46 

2.03 

1.33 

-1.40 0.11 

-1.88 0.09 

-0.52 0.15 

5.33 

7.02 

3.56 

N=35 BCD 

KROW 

NR 

1.03 

0.98 

0.97 

-0.40 0.19 

-1.63 0.09 

-0.05 0.24 

1.55 

4.05 

1.10 

1.11 

1.55 

1.13 

-0.59 0.21 

-2.18 0.12 

-0.07 0.25 

2.60 

6.45 

0.09 

1.26 

2.00 

1.21 

-1.03 0.16 

-2.40 0.09 

-0.32 0.20 

4.22 

9.01 

0.97 

N=100 BCD 

KROW 

NR 

0.33 

0.95 

0.32 

-0.27 0.26 

-2.87 0.04 

-0.01 0.29 

1.35 

9.58 

0.67 

0.66 

1.52 

0.61 

-0.31 0.27 

-2.95 0.09 

-0.03 0.29 

2.27 

9.49 

1.25 

0.71 

1.99 

0.61 

-0.46 0.25 

-4.37 0.06 

-0.08 0.27 

2.89 

22.2 

1.53 

The smallest RMSE is indicated in bold. 
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Table 4.3: Targeting Performance of the designs under the logistic model with 1 = 2. 


N Design Scenario I Scenario II Scenario III 

RMSE TBIAS TOX TE RMSE TBIAS TOX TE RMSE TBIAS TOX TE 

f=0.2 

N=15 BCD 

KROW 

NR 

1.32 

1.37 

1.22 

-0.83 0.03 

-0.47 0.04 

0.06 0.09 

1.50 

0.99 

1.41 

1.31 

1.53 

1.72 

-0.59 0.08 

-0.28 0.09 

0.39 0.13 

1.28 

1.07 

0.23 

2.01 

1.75 

1.88 

-1.90 0.06 

-1.53 0.07 

-0.63 0.99 

6.65 

4.98 

4.25 

N=25 BCD 

KROW 

NR 

1.29 

1.39 

1.79 

-0.43 0.09 

-0.17 0.11 

0.34 0.16 

1.32 

1.02 

1.51 

1.27 

1.34 

1.80 

-0.30 0.12 

-0.10 0.14 

0.63 0.18 

1.44 

1.28 

2.62 

1.58 

1.34 

1.82 

-1.32 0.05 

-0.89 0.06 

0.12 0.10 

4.32 

2.93 

3.54 

N=35 BCD 

KROW 

NR 

1.02 

1.06 

1.59 

-0.37 0.12 

-0.17 0.14 

0.25 0.19 

1.30 

1.00 

1.27 

1.05 

1.13 

1.21 

-0.22 0.15 

-0.05 0.16 

0.55 0.20 

1.47 

1.26 

2.23 

1.45 

1.28 

1.56 

-1.02 0.08 

-0.62 0.10 

0.30 0.15 

3.77 

2.58 

3.20 

N=100 BCD 

KROW 

NR 

0.38 

0.35 

0.36 

-0.28 0.17 

-0.14 0.19 

0.09 0.21 

1.23 

0.98 

0.70 

0.64 

0.60 

0.60 

-0.08 0.19 

-0.01 0.20 

0.29 0.22 

1.48 

1.29 

1.29 

0.86 

0.75 

0.76 

-0.50 0.16 

-0.26 0.17 

0.23 0.20 

2.76 

2.07 

1.79 

f=0.3 

N=15 BCD 

KROW 

NR 

1.11 

1.29 

1.21 

-0.53 0.09 

-0.56 0.10 

-0.02 0.14 

1.55 

1.71 

1.49 

1.34 

1.54 

1.44 

-0.80 0.13 

-0.97 0.12 

-0.17 0.17 

2.37 

2.85 

2.30 

1.92 

1.52 

1.61 

-2.02 0.05 

-0.66 0.06 

-1.12 0.08 

6.82 

3.07 

4.28 

N=25 BCD 

KROW 

NR 

1.10 

0.96 

1.36 

-0.38 0.18 

-1.21 0.10 

0.02 0.22 

1.46 

2.70 

1.23 

1.29 

1.33 

1.51 

-0.51 0.19 

-1.53 0.13 

0.02 0.23 

2.21 

3.94 

2.14 

1.58 

1.67 

1.12 

-1.28 0.11 

-0.82 0.08 

-0.42 0.16 

5.13 

4.03 

3.47 

N=35 BCD 

KROW 

NR 

0.82 

0.91 

1.07 

-0.31 0.21 

-1.61 0.086 

-0.00 0.25 

1.41 

3.79 

1.04 

1.15 

1.29 

1.11 

-0.40 0.22 

-1.90 0.12 

0.04 0.26 

2.11 

4.90 

1.89 

1.25 

1.91 

1.38 

-0.91 0.16 

-2.41 0.09 

-0.24 0.20 

3.95 

8.79 

2.90 

N=100 BCD 

KROW 

NR 

0.34 

0.85 

0.32 

-0.21 0.27 

-2.52 0.04 

0.01 0.29 

1.32 

7.20 

0.66 

0.69 

1.28 

0.59 

-0.20 0.28 

-2.46 0.09 

0.06 0.29 

2.05 

6.60 

1.18 

0.79 

1.91 

0.69 

-0.37 0.25 

-4.20 0.06 

-0.02 0.28 

2.87 

20.3 

1.64 
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Table 4.4: Targeting Performance of the designs under the logistic model with 1 = 3. 

N Design Scenario I Scenario II Scenario III 

RMSE TBIAS TOX TE RMSE TBIAS TOX TE RMSE TBIAS TOX TE 

f=0.2 

N=15 BCD 

KROW 

NR 

1.31 

1.45 

1.22 

-0.73 0.04 

-0.37 0.05 

0.15 0.10 

1.31 

0.90 

1.35 

1.35 

1.54 

1.70 

-0.58 0.08 

-0.27 0.09 

0.41 0.13 

1.24 

1.01 

2.17 

1.88 

1.70 

1.64 

-1.72 0.06 

-1.35 0.06 

-0.52 0.09 

5.60 

4.11 

3.67 

N=25 BCD 

KROW 

NR 

1.21 

1.41 

1.81 

-0.38 0.10 

-0.15 0.11 

0.35 0.17 

1.23 

0.97 

1.47 

1.27 

1.38 

1.17 

-0.31 0.12 

-0.09 0.14 

0.59 0.19 

1.35 

1.21 

2.44 

1.50 

1.36 

1.79 

-1.12 0.06 

-0.71 0.07 

0.32 0.11 

2.54 

2.54 

3.40 

N=35 BCD 

KROW 

NR 

1.44 

1.11 

1.07 

-0.35 0.12 

-0.15 0.14 

0.28 0.19 

1.23 

0.96 

1.21 

1.38 

1.06 

0.99 

-0.22 0.15 

-0.06 0.16 

0.50 0.21 

1.39 

1.22 

1.07 

1.29 

1.26 

1.85 

-0.91 0.09 

-0.55 0.11 

0.42 0.16 

3.19 

2.32 

3.15 

N=lOO BCD 

KROW 

NR 

0.35 

0.33 

0.33 

-0.25 0.17 

-0.13 0.19 

0.10 0.21 

1.16 

0.95 

0.68 

0.59 

0.58 

0.57 

-0.10 0.19 

-0.01 0.20 

0.23 0.22 

1.42 

1.24 

1.17 

0.81 

0.76 

0.73 

-0.42 0.16 

-0.21 0.17 

0.25 0.20 

2.51 

1.97 

1.77 

f=0.3 

N=15 BCD 

KROW 

NR 

1.09 

1.21 

1.02 

-0.46 0.10 

-0.57 0.10 

0.03 0.15 

1.43 

1.63 

1.5 

1.29 

1.52 

1.41 

-0.77 0.13 

-0.96 0.12 

-0.09 0.17 

2.25 

2.76 

2.21 

1.76 

1.90 

1.60 

-1.75 0.06 

-1.63 0.06 

-0.97 0.09 

5.59 

5.07 

3.73 

N=25 BCD 

KROW 

NR 

1.05 

0.95 

1.21 

-0.33 0.18 

-1.16 0.10 

0.05 0.23 

1.40 

2.54 

1.20 

1.18 

1.29 

1.13 

-0.52 0.20 

-1.50 0.13 

0.01 0.24 

2.07 

3.76 

2.01 

1.44 

1.87 

1.22 

-1.14 0.13 

-1.80 0.10 

-0.33 0.17 

4.22 

6.26 

3.25 

N=35 BCD 

KROW 

NR 

0.90 

0.88 

1.16 

-0.26 0.21 

-1.54 0.09 

0.07 0.26 

1.31 

3.52 

1.03 

1.03 

1.25 

1.43 

-0.37 0.23 

-1.84 0.12 

0.03 0.26 

2.03 

4.62 

1.79 

1.28 

1.83 

1.39 

-0.85 0.17 

2.36 0.10 

-0.17 0.21 

3.70 

8.38 

2.70 

N=100 BCD 

KROW 

NR 

0.35 

0.82 

0.33 

-0.18 0.27 

-2.37 0.04 

0.02 0.29 

1.27 

6.32 

0.65 

0.62 

1.22 

0.58 

-0.19 0.28 

-2.38 0.09 

0.00 0.29 

1.94 

6.15 

1.14 

0.81 

1.81 

0.70 

-0.35 0.25 

-4.04 0.06 

0.00 0.28 

2.81 

18.6 

1.58 
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Table 4.5: Targeting Performance of the designs under the logistic model with 'Y = 6. 


N Design Scenario I Scenario II Scenario III 

RMSE TBIAS TOX TE RMSE TBIAS TOX TE RMSE TBIAS TOX TE 

r=0.2 

N=15 BCD 

KROW 

NR 

1.36 

1.69 

1.33 

-0.60 0.04 

-0.24 0.06 

0.26 0.11 

1.10 

0.80 

1.34 

1.39 

1.57 

1.73 

-0.44 0.08 

-0.14 0.09 

0.50 0.14 

1.06 

0.92 

2.16 

1.73 

2.21 

1.71 

-1.55 0.05 

-2.35 0.06 

-0.37 0.09 

4.67 

7.64 

3.37 

N=25 BCD 

KROW 

NR 

1.30 

1.34 

1.24 

-0.34 0.10 

-0.15 0.12 

0.32 0.17 

1.12 

0.91 

1.33 

1.27 

1.28 

1.23 

-0.19 0.13 

-0.01 0.14 

0.61 0.19 

1.24 

1.11 

2.32 

1.47 

1.74 

1.90 

-0.99 0.06 

-1.77 0.07 

0.44 0.12 

3.29 

5.14 

3.50 

N=35 BCD 

KROW 

NR 

1.04 

1.03 

1.36 

-0.31 0.13 

-0.15 0.15 

0.22 0.19 

1.11 

0.90 

1.08 

0.99 

1.10 

1.33 

-0.14 0.15 

0.02 0.16 

0.53 0.21 

1.26 

1.12 

1.99 

1.29 

1.51 

1.58 

-0.70 0.10 

-1.60 0.11 

0.51 0.16 

2.82 

4.47 

3.23 

N=100 BCD 

KROW 

NR 

0.33 

0.29 

0.30 

-0.25 0.18 

-0.14 0.19 

0.10 0.22 

1.08 

0.89 

0.65 

0.58 

0.54 

0.55 

-0.02 0.19 

0.05 0.20 

0.26 0.22 

1.32 

1.14 

1.15 

0.81 

1.30 

0.72 

-0.33 -0.16 

-1.33 0.17 

0.31 0.20 

2.43 

3.62 

1.75 

r=0.3 

N=15 BCD 

KROW 

NR 

1.10 

1.16 

1.24 

-0.35 0.12 

-0.46 0.11 

0.10 0.17 

1.29 

1.44 

1.37 

1.25 

1.42 

1.12 

-0.64 0.14 

-0.84 0.13 

-0.02 0.18 

1.93 

2.38 

2.13 

1.72 

1.87 

1.56 

-1.65 0.07 

-1.50 0.07 

-0.86 0.09 

5.19 

4.76 

3.53 

N=25 BCD 

KROW 

NR 

1.10 

0.86 

1.42 

-0.22 0.19 

-1.04 0.10 

0.12 0.23 

1.25 

2.18 

1.14 

1.20 

1.17 

1.52 

-0.38 0.20 

-1.37 0.13 

0.10 0.24 

1.91 

3.24 

1.91 

1.46 

1.83 

1.24 

-1.02 0.13 

-1.77 0.10 

-0.24 0.17 

3.87 

6.07 

3.20 

N=35 BCD 

KROW 

NR 

0.88 

0.82 

1.09 

-0.17 0.22 

-1.43 0.08 

0.12 0.26 

1.23 

3.06 

0.97 

1.21 

1.16 

1.03 

-0.29 0.23 

-1.70 0.12 

0.08 0.26 

1.86 

3.94 

1.67 

1.32 

1.77 

1.31 

-0.73 0.18 

-2.35 0.10 

-0.10 0.21 

3.45 

8.18 

2.75 

N=100 BCD 

KROW 

NR 

0.34 

0.76 

0.29 

-0.09 0.27 

-2.13 0.04 

0.08 0.29 

1.20 

5.07 

0.59 

0.61 

1.14 

0.57 

-0.14 0.28 

-2.15 0.09 

0.07 0.29 

1.84 

5.06 

1.07 

0.82 

1.72 

0.71 

-0.29 0.26 

-3.92 0.06 

0.05 0.28 

2.80 

17.5 

1.60 
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Table 4.6: Performance of the designs under the Gamma distributions. 

N Design Scenario I Scenario II Scenario III 

RMSE TBIAS TOX TE RMSE TBIAS TOX TE RMSE TBIAS TOX TE 

r=0.2 

N=15 BCD 

KROW 

NR 

1.49 

1.80 

1.97 

-0.27 0.07 

-0.02 0.09 

0.46 0.14 

0.78 

0.72 

1.46 

1.32 

1.43 

1.40 

-0.78 0.04 

-0.41 0.05 

0.16 0.08 

1.51 

1.01 

1.60 

2.42 

2.26 

2.14 

-2.22 0.08 

-1.82 0.08 

-0.92 0.11 

9.44 

7.44 

6.45 

N=25 BCD 

KROW 

NR 

1.35 

1.62 

2.12 

-0.20 0.12 

-0.04 0.14 

0.37 0.19 

0.87 

0.76 

1.21 

1.33 

1.33 

1.77 

-0.36 0.09 

-0.11 0.11 

0.54 0.15 

1.41 

1.15 

2.08 

2.04 

1.63 

2.09 

-1.96 0.04 

-1.46 0.04 

-0.30 0.07 

6.83 

4.71 

4.25 

N=35 BCD 

KROW 

NR 

1.00 

1.23 

1.63 

-0.16 0.15 

-0.05 0.16 

0.30 0.21 

0.86 

0.74 

0.98 

0.97 

1.09 

1.33 

-0.32 0.12 

-0.10 0.14 

0.44 0.19 

1.42 

1.12 

1.69 

1.75 

1.56 

2.03 

-1.54 0.07 

-1.02 0.08 

0.25 0.11 

5.78 

4.04 

4.48 

N=100 BCD 

KROW 

NR 

0.30 

0.28 

0.29 

-0.13 0.18 

-0.05 0.20 

0.15 0.22 

0.87 

0.74 

0.59 

0.48 

0.42 

0.42 

-0.19 0.17 

-0.05 0.18 

0.20 0.21 

1.35 

1.11 

0.91 

1.21 

1.24 

1.16 

-0.61 -0.15 

-0.25 0.16 

0.45 0.19 

4.01 

3.06 

2.97 

r=o.3 

N=15 BCD 

KROW 

NR 

1.13 

1.05 

1.19 

-0.16 0.15 

-0.43 0.12 

0.26 0.20 

1.05 

1.19 

1.32 

1.20 

1.32 

1.39 

-0.47 0.09 

-0.48 0.09 

0.13 0.13 

1.70 

1.84 

1.89 

3.15 

3.08 

1.65 

-3.29 0.06 

-3.10 0.06 

-2.46 0.07 

14.62 

13.07 

9.23 

N=25 BCD 

KROW 

NR 

1.19 

0.81 

1.49 

-0.08 0.21 

-0.93 0.10 

0.21 0.25 

1.07 

1.67 

1.05 

1.22 

1.06 

1.51 

-0.25 0.17 

-1.12 0.10 

0.19 0.22 

1.69 

2.77 

1.65 

2.12 

2.91 

1.98 

-2.45 0.08 

-2.85 0.08 

-1.40 0.12 

10.12 

12.65 

6.52 

N=35 BCD 

KROW 

NR 

0.90 

0.76 

1.16 

-0.04 0.23 

-1.18 0.08 

0.18 0.27 

1.07 

2.04 

0.90 

1.00 

0.97 

1.12 

-0.16 0.21 

-1.57 0.09 

0.18 0.25 

1.65 

3.87 

1.45 

1.68 

2.90 

1.49 

-1.92 0.01 

-3.37 0.09 

-0.98 0.16 

8.01 

15.72 

5.04 

N=100 BCD 

KROW 

NR 

0.33 

0.67 

0.35 

0.02 0.28 

-1.53 0.04 

0.12 0.29 

1.08 

2.60 

0.58 

0.48 

0.94 

0.44 

-0.04 0.27 

-2.51 0.04 

0.15 0.29 

1.60 

7.16 

0.90 

1.15 

2.88 

1.04 

-0.92 0.22 

-5.50 0.06 

-0.29 0.25 

4.51 

34.18 

2.65 
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4.3 Discussion 

The usual measure of precision is the standard error of the estimator. The results in Table 

4.2 are found to be close to those obtained by Ivanova et al. [12]. We, in addition, investi­

gate the designs under the generalized logistic distribution with higher powers and also the 

gamma distribution. 

In Tables 4.2 - 4.5, except in Table 4.3, smallest RMSE values are observed for NR 

most of the time with NR performing best for large sample sizes. In addition, TE is smallest 

in most cases for NR indicating that the dose assignments concentrate more around the 

target dose for the NR. This suggests that the targeting ability is more effective for NR than 

for the BCD and the KROW. This confirms that the additional information enhances the 

targeting ability of the design. We also observe that the values of TBIAS for the KROW 

and the NR are smaller than those of the BCD indicating that they perform better than the 

BCD. However, we observe that the values of TOX are smallest for the KROW but highest 

for the NR. That is, lower average proportion of toxic responses are observed in the KROW 

than in the NR and the BCD. 

Similar observations are noted under the Gamma distribution (see Table 4.6). This further 

confirms that the additional information enhances the targeting ability of the design. 
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4.4 Conclusion 

In general, the NR performs best on the basis of the quality of the estimator under both the 

generalized logistic and the gamma distribution but it results in higher average proportion 

of toxic responses. In addition, since the Gamma distribution is similar to the generalized 

logistic distribution and the results are similar we can say that the gamma is as good as the 

logistic distribution. 



Appendix A 

Derivations 

A .1 Derivation of the linear regression equation from the logistic distribution 

From the logistic distribution with Q as (3.10), 

(A-1) 

We have 

(A-2)---,--1--.- - __,..-(1---,--) + 1.
Q(di, a, {3) 

exp -; + ~di 

Therefore 
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(A-3) 

which implies 

(A-4) 

Taking ln of both sides, gives 

(A-5) 

In other words 

which is the desired linear relation (3.11). 
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A. 2 Derivation of P,4 

Assuming that r falls between Q*(dm) and Q*(dm+d with the corresponding dose levels dm 

and dm+l respectively, we have from (A-1) 

(B-1) 

and 

(B-2) 

It follows that 

Q*(dm) ) 1 )(-a( (B-3)log 1- Q*(dm) = {3 + j]dm 

and 

(B-4) 

From (B-3) and (B-4), ~ is given by 
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~ = 
{3 

1 [log ( Q*(dm+l) )
dm+l- dm 1- Q*(dm+1) 

-log ( Q*(dm) )]
1- Q*(dm) 

(B-5) 

Substituting (B-5) into (B-3) gives 

-a [ Q*(dm) ] dm/3 =log 1- Q*(dm) - dm+l- dm 
[ ( Q*(dm+l) )

log 1- Q*(dm+l) 
( Q*(dm) )]

-log 1- Q*(dm) (B-6) 

We obtain P4 by solving 

(B-7) 

which implies that 

(1-f)log -r­ = (-a 1 )- /3 + -gfl4 . (B-8) 

Substituting the values of ~ and -; in (B-5) and (B-6) respectively into (B-8) gives 

A _ d g (1-r) g (1-Q*(dm)) (d _ d )[ 
lo [-r-] ­ lo [ Q*(dm) ] l 

/14 - m + Q*(dm+l) Q*(dm) m+l m 
log[(l-Q*(dm+d)] -log[(l-Q*(dm))] 

(B-9) 

which is the same as (3.14). 
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Dose-toxicity curves 

I=Scenario 1: a~s. b=1 
Scenario II: a=·3, b=0.5 

·-·-·-· Scenario Ill: a=·4.5, b=0.5 
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Fig. B.l: Dose-toxicity Curves for Scenarios I, II, III, 1 = 1 
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Scenario 1: a=-2.9, b=0.75 

Scenario II: a=-1.3, b=0.4
I= I·-·-·-· Scenario Ill: a=-2.2. b=0.35 

2 4 6 

Dose Levels 

Fig. B.2: Dose-toxicity Curves for Scenarios I, II, III, 1 = 2 
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Fig. B.3: Dose-toxicity Curves for Scenarios I, II, III, 1 = 3 
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0"' 

~ 

Scenario 1: a=-0.8, b=0.65 

Scenario II: a=0.29, b=0.36 
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I= IScenario Ill: a=-0.20, b=0.28 

--0 --o-o .,.........o o........ o 

o~:.........o........ o...... .. 

o/o······· o·'·,·'· o·'·-·'· o 

j...o········ o'_.,.o·' 

::::::::::::::::::::::::::::.::::;;.:~~:::~:~.:~><~~:::::>::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

....o/ o·'·o::,..8 , .•.• o·--·­

o 
~~----~----~r------r------r------r------~ 

0 2 4 6 8 10 12 

Dose levels 

Fig. B.4: Dose-toxicity Curves for Scenarios I, II, III, 1 = 6 

Gamma Distribution Curve 

I= .......... 
Scenario 1: a=4, b=1 
Scenario II: a=4, b=1.5 
Scenario Ill: a=2.5, b=6 I 

0 2 4 6 

Dose levels 
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Fig. B.5: Dose-toxicity Curves for Scenarios I, II, III, under the Gamma Distribution 
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S-Plus functions' codes 

Function pava.q+ 

# # Function 'pava.q' # # function(Q, w = NULL, long.out = F) { 
##Function 'pava.q', performs isotonic regression for a simple 
#linear ordering using the ''pool adjacent violators 
#algorithm''(PAVA). If long.out = T then the result returned 
#consists of a list containing the fitted values and the final 
#weights. Otherwise only the fitted values are returned. 

nq <- length(Q) 

if (is .null (w)) 


w <- rep(!, nq) 

r <- rep(!, nq) 

repeat { 


stble <- T 

i <- 1 

while (i < nq) { 


if (Q [i] > Q[i + 1]) { 

stble <- F 

www <- w[i] + w[i + 1] 

ttt <- (w[i] * Q[i] + w[ 


i + 1] * Q[i + 
1] )/ww 

Q[i + 1] <- ttt 

*Thanks to Dr. Rolf Thrner at the University of New Brunswick for this function. 
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w[i 	+ 1] <- www 
Q <- Q [ - i] 
w <- w [ - i] 
r [i 	+ 1] <- r [i] + r [ 

i + 1] 
r <- r [ - i] 
nq <- nq - 1 

} 

i <- i 
} 

if(stble) 
break 

} 

Q <- rep(Q, r) 
w <- rep(w, r) 

+ 1 


tr <- rep(tapply(1:length(Q), rep(1:length(r), 

r), min), r) 


if(long.out) 

list(Q = Q, w = w, tr = tr) 


else Q 

} # 	 # # # # # Funtion 'compbcd' # function(gam, ss, mu) { 

# Complete program to run a BCD Design 
# 
# 
# Computes the dose to start the primary design. 
# 
tts <- 0 
kval <- 3:1 
gamval <- c(0.2, 0.3, 0.5) 
k <- sum(kval[gamval ==gam]) 
p <- c(O., 0.05, 0.14, 0.28, 0.43, 0.57, 0.69, 0.78, 0.85, 0.9, 0.93) 
stats.startup <- matrix(c(O), 11, 3) 
stats.startup[, 1] <- 1:length(p) 
for(i in 1:length(p)) { 

u <- runif(k, 0, 1) 

tots <- sum(u <= p[i]) 

stats.startup[i, (2:3)] <- c(tots, k) 

if(tots > 0) { 


dose <- max(i - 1, 1) 

tts <- max(i, 1) 

break 


} 

dose <- length(p) 

} 


count <- tts * k 
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rs <- ss - count 
if(rs == 0) { 

print( 11 results not due to a particular design 11 ) 

break 
} 


else results<- c(dose, p[dose], rs) 

# 
# 
# 
# Computes the successes/failures and dose levels in actual 
# primary design. 
# 
prob <- gam/(1 - gam) 

doseseq <- dose 

sf <- cO 

for(i in 1:(rs- 1)) { 


u1 <- runif(1, 0, 1) 
sf <- c(sf, (u1 <= p[dose])) 
if(u1 <= p[dose]) { 

dose <- max(dose - 1, 1) 
} 

else { 
u2 <- runif(1, 0, 1) 
if(u2 <= prob) { 

dose <- min(dose + 1, 11) 
} 

} 

doseseq <- c(doseseq, dose) 
} 


sf <- c(sf, (u1 <= p[dose])) 

res <- rbind(sf, doseseq) 

# 

# Computation of probability of success at each dose level. 

# 

stats.prim <- matrix(c(O), 11, 3) 

for(i in (1:11)) { 


a<- sum(sf[doseseq == i]) 
b <- sum(doseseq == i) 
stats.prim[i, ] <- c(i, a, b) 

} 

stats <- stats.startup 

stats[, (2:3)] <- stats.startup[, (2:3)] + stats.prim[, (2:3)] 

stats.prim <- stats.prim[stats.prim[, 3] > 0, ] 

if(is.matrix(stats.prim) == F) { 


stats.prim <- t(as.matrix(stats.prim)) 



APPENDIX C. S-PLUS FUNCTIONS' CODES 47 

} 

stats.prim <- cbind(stats.prim, stats.prim[, 2]/stats.prim[, 3]) 
tei <- sum((stats.prim[, 3] * ((stats.prim[, 1] - mu)A2))/sum(stats.prim[, 3])) 
Tbiasi <- (sum(stats.prim[, 1] * stats.prim[, 3])/sum(stats.prim[, 3])) - mu 
# 
# Computation of the estimate involving all the start-up 
# and primary results 
# 
stats <- stats[stats[, 3] > 0, ] 
if(is.matrix(stats) == F) { 

stats <- t(as.matrix(stats)) 
} 

stats <- cbind(stats, stats[, 2]/stats[, 3]) 

dose <- stats[, 1] 

Q <- stats [, 4] 

Q <- pava.q(Q) 

nq <- length(Q) 

if((gam > Q[1]) & (gam<= Q[nq])) { 


for(m in (1:(nq- 1))) { 
if((gam > Q[m]) & (gam<= Q[m + 1])) { 


a1 <- log(gam/(1 - gam)) 

a3 <- log(Q[m + 1]/(1 - Q[m + 1])) 

a4 <- dose[m + 1] - dose[m] 

a2 <- log(Q[m]/(1 - Q[m])) 

if(Q[m] == 0) { 


est1 <- dose[m] + ((a1/a3) * a4) 
} 

else { 

# 

# 

# Calculation of the estimate 

# 


est1 <- dose[m] + (((a1 - a2)/(a3 - a2)) * a4) 

# 

# 


} 


break 

} 


} 


} 


else { 

est1 <- ((gam<= Q[1]) * dose[1]) + ((gam> Q[nq]) * dose[nq]) 

} 


tox <- sum(sf)/ss 

c(est1, tox, tei, Tbiasi) 
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} # # # # # Function 'master' # function(gam, ss, n, mu) { 
# Simulates n estimates of mu and computes the RSME, TBIAS, TOX and TE 
# 
print(c(gam, ss, n, mu)) 
esti <- cO 
toxi <- cO 
tei <- c(O) 
Tbiasi <- c(O) 
for(i in 1:n) { 

est <- compbcd(gam, ss, mu) 

esti <- c(esti, est[!]) 

toxi <- c(toxi, est[2]) 

tei <- c(tei, est[3]) 

Tbiasi <- c(Tbiasi, est[4]) 

print( 11 i, est!, tox, te, Tbias: 11 ) 


print(c(i, est)) 

} 

ind <- (esti != 11 NA 11 ) & (esti != 11 -Inf 11 ) & (esti != 11 lnf 11 ) 


vest <- esti[ind] 

vtox <- toxi[ind] 

vte <- tei [ind] 

vTbias <- Tbiasi[ind] 

vrep <- length(vest) 

print( 11 Valid number of replications: 11 ) 


print(vrep) 

mse <- sum((vest - mu)~2)/vrep 


rmse <- mse~0.5 


print( 11 MSE,RMSE: 11 ) 


print(c(mse, rmse)) 

Tbias <- sum(vTbias)/vrep 

print( 11 TBIAS: 11 ) 


print(Tbias) 

toxave <- sum(vtox)/vrep 

print( 11 TDX: 11 ) 


print(toxave) 

TE <- sum(vte)/vrep 

print( 11 TE: 11 ) 


print(TE) 

} 
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