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PREFACE

Integr2l ecuations of the second kind have been studied
extensively end several general methods of solution have been
described by such authors as Hilbert, Fredholm, Schmidt, and
Volterra.

No general method of solution is known for equations of
the first kind. However, many such ecustions can be solved by
employing special procedures, these being largely dependent on
the type of the ecuation.

In thieg thesis I propose to give an nccount of several
methods which can be epplied to solve some integral ecuations
of the first kind.

The first chapter will deal with the application of
orthogonal systems to the solution of integral ecuations of the
first kind.

Two methods to invert the convolution tremsform will be
described in the second chapler. These ere the Hirschmenn-Widder
eoperator and the Fourder transfomn.

In the third chapter it will be shown how the theory of
functions, in suitable cases, cen be arplied to the solution of
integral ecustions of the first kind,
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CHAPTER I
PLETE ONAL_SYSTEMS
1. Introduction
An ecuation of the form
d
ay(s) + | K(s,t)y(t)at = £(s)
(4
where y(t) is unknown and K(s,t) and f(s) given real or complex functions,
is called & linear integral equation. It is said to be of the first kind
if 2 = 0 and of the second kind if & #0.

In the following sections we discuss a method which requires
the use of orthogonal systems to reduce an integral equation of the
first kind

b
(1.1) K(s,t)y(t)at = £(s) c<ecd
a
to an infinite system of linear equations with infinitely many unknowns.
An ovthogonal system is a system of complex functions

g (8), gz(s),.... a/s8zb
with gn( s)é—La(a,b) for all n,and satisfying the comdition

6

g ()& (8) ds =0 (05 m5 nym =1,2,004)



The system is said to be normalized or orthonormal if
b

j)gh(s)( zds =l (n =1,25.4)

a
Any orthogonal system
(4) g1(s), gz(s),...
can be normalized by forming the integrals
b

f[gn(S)j Zas (n =1,2,...)

a

and considering instead of (A) the functmons

x (s)
gn(s) = gn z %— (n :1,2,.--)0
[ ‘;\gn( s)|'as )
(74

In the subsequent work we shall always assume that the ortho-
gonal systems are normalized.

We see immediately thet orthogonal systems are always linearly
independent. For consider the equation

clgl(s)+c2g2(_s)+....+cngn( 8) = O.
Multiplying by the complex conjugate g (s) and integrating

we obtain

for all m.

' 2
Let f(s) be & complex function in L (a,b), then the constants



b
fn:ff(s)'g;(s)ds B =3Rees)
2
exist and are celled expansion coefficients of f(s) with respect to
the orthogonal system (g,(s) ):: &
For eny f(s) éLZ(a, b) we have the inequelity [4,p.16]
‘ 6

2
ft‘(s)g‘(s)ds} f/(f(s)(zds.

“a

o " b
Z lf r Z Z
nz( | B Wz

2
Since the integral on the right exists we see that f(s)éL (a,b) implies

is convergent.
The above lnequality is known as Bessel's inequality. If for

o ]
any f£(8)€L (a,b) we have the equality

5 e h

o 2
hsz,/[f(s)é;(s)ds/ -‘,‘szlfn/2 =jf(s)lzds

oe
we say that the orthogonal system (gn( S))a is complete or, ecuivalently,
=t
the Lf"(a, b) space is complete.
The above ecuality is known as Parseval's equation.
Equivalent definitions of completeness are
" 2
Definition 1 Given an orthogonal system (gn(s))h in L"(a,b) =nd
" =¢
2
a function f(e)é L (a,b), then the orthogonal system is complete if

given any £2 0 there exists an N such that



b
A 2
ﬂf(s)- Stag (s)] as <€
hz)
a
whenever m>N.

We say thet f(s) is the limit in the mean of the series
oz
2 g (s

hze 0 n
and write this as

f(8) = lei.m. ang (s)
hz, n

or
)
#(s) Néfngn(s).
The function f(s) is uniocue except for a set of Lebesgue measure
zero.
Definition 2 Givéen an orthogonal system (gn( 8) ): /in Lz(a,b), then
the orthogonal system is complete if given f(s) éLz(a,b) and
b
/f(s);;(s)ds= m=l,8000)
a

implies f(8) = O excepl for a set of measure zero.
2
Given two functioms f(s), h(s)e L fa,b), then Parseval's equa~
tion can be written in the more generelized form

i 4 é

g[f(s)gn(s)ds' Rs)gn(s)ds =/f(e)l¥s)ds
a a

a



This follows essgily if we apply Parseval's ecuation on the functions
f(s)#h(s) and £(s)-h(s),[4,p.20].

If we are given & complete orthogonal system (gn( 8) ):: , in Lg{a,b),
then any f£( s)é_L?'( a,b) determines its expansion coefficients fn with res-
pect to (gn(a)),:{ and the aez:es

b
£ R
is convergent. The converse is elso true and is known as the
Riesz-Fischer T)_;gq(rm:;[d,p. 25],

Given a complete orthogonel system (gn( s)):l in Lz(a,b) and a
systen of complex numbers (ym):“ such that ?:} ]ya[” is convergent,
then there exists & function y(s) éLZ(a,b) which hes v, e its expension
coefficients and such that

y(8) = l.i.m.é'ymgm(s).

The function y(s) is unicue almost everywhere i.e. except on a
get of Lebesgue mea:sure ZOY0.

After these preliminaries we return to (1.1).

We show first that the problem of solving (1.1l) is equivalent
to the problem of solving an infinite system of linear ecuastions, end
then give a method for constructing the orthogonel sgstem so that the
problem of solving the infinite system is simplified,

This method 18, in theory, applicsble to all integral equations
of the first kind in which the given functions X(s,t) and f(s) satisfy
the following conditions:

. M s)€L2



d 6

2. x(s)éL‘?‘ - jx(s,t)x(a )ds €L?
c

b

5. y(t)éLt = fK(s,t)y(t)dt € 1*
a

4, for any y(t), x(s) € L? the ecuation

d b b d
/x(a)ds /K(s,t)y(t)dt: /y(t)dt f&(a,t)x(s)ds
e a s ¢

ig satiefied,
Whenever K(s,t) satisfies conditions £ to 4 we shall say K(s,t)

satisfies condition A.

7« Reduction to &n g finite sxzt_g, of

" linesar ecustions
To reduce (1,1) to an infinite system we consider eny complete
orthogonal systems (gn(s));:l on the interval (c¢,d) and (hm(t)):L on
the interval (e,b).

Multiply (1,1) by :in( s) and integrate w.r.t. & to obtain

a b é
i /'?g’n(a)és/x(s,t)y(t)dt=/En(s)f(s)da =f (n=1,2,3...)
c & C

where fn is the expansion coefficient of f(s) and EA( g) is the complex
conjugate of g (s).
If y(tz)GL2 and K(s,t) satisfies condition A
b d

{ra1) jy(t)dt f&(s,t)zn(s)ds A (n=1,2...)

& c
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. -o (=)
Since (gn(a))ml and (}\n(t))wl aere complete we can use Parseval's

ecuation, viz.
b AT b
fh(t)at)dt = fﬂ h(t) T ( £) dt f}(t)hﬂ(t)dt.
m:
a a a

Letting h(t) = y(t) snd

@
()= f K(8,%) g, (&) ds
[+
then (2.1) becomes
a0 P b 4
(2.2) Eljy(t)"ﬁ;(t)dt j (K(n,t)'én(sms h (t)at o @ (n=1,2.44)
a a‘e

The first integral in (2.2) is y,, the expaneion coefficient
of y(t) with respect to (h (1)) .
o =1

Let the second integrel be denoted by & i.e.

b sd
24 8) S :f fx(s,t)'gn(s)da b, (t)dt
8 ¢
then (2.2) becomes
(2.4) Zymanm: fn (n=1,2...)

m=
Thie is an infinite system of linesr ecustions with y_ (m=1,2..)
unknown.
For (1.1) 10 heve a solution in L% it is necessary thet (2.2)

oo
have & solution (yl,ya,...) with Z lyml " convergent,
m=l



This is slso sufficient, for if a solution (yl,yg,...) of (2.4)
[
with > )ymlz convergent ie¢ given, then by the Riesz-Fischer Theorem
mz
there exists an Lz function y(t) whose expeansion coefficients with res-

pect to (hm(t)) are precisely A For this function y(t) we have then

e B brod
%ya il 2’ () (t)dt. K(s,t) g, (s)ds|h (t)dt
me, m Dm mz/ én %
¢ A o .
s A
= /y(t)dt/&(a,t)zn(a)ds
a c
Fi ¢
:/En(s)da{i((a,t)y(t)dt
c x

but
i g
Z Yo%mm = fn :/f(s)-é;‘(a)ds
L g (
thus f(8) and
b
jK(s,t)y(t)dt

8
have the same expansion coefficients with respect to (gn( 8) ):.That ie
b
£(s)= / K(s,t)y(t)dt,
a

0
where — means "equal almost everywhere".

8



¥We sum up our result in
Theorem 2. If
f£(s) ¢ 12
K(s,t) satisfies condition A

then (1.1) has a solution y(t.)éL:a if and only if the system

ms‘:lanmym & fn (n & 1,2,0.0)

has a solution vector ¥ :’(yl,yg,...) with mﬁ {ym)2 convergent.
The sclution is then given by
oo
MOlag2 A NOP
ark: The question now arises ae to when K(s,t) saetisfies condi-

tion A. It can be shown that [ 4,pp. 44-47],
Theorem 2.2 K(e,t) satisfies condition A if end only if there
exist two complete orthogonal systems (g,(s) ):: and (hm(t) '): such that

a) gn( s), hm(t) setisfy condition A for all n,m

b) the coefficient matrix (a,;) defined by (2.4)
is boundedji.e. there exists a constant M independent of r such that
for any ennuples (xl,xa,...xn) and (yl,yz,...,yn) the inequality

r v sl ¥
/n%;:lamxnym / £ W x| IE, [ 3

is satisfied.




5. Exomple

10

Jeing the method deseribed in the previous section has two

disadvantages; one is that it leaves the solution in the form of a

gseries, the second is the difficulty of solving the system (2.4).

However, it msy hapren that with & fortunate cholce of the orthogonsl

systems the metrix in (2.4) is of the form

&ll 0 Ouses

‘0 u‘?«; 0.0.
(3.1) (“nﬂ) = o 0 Bze

IR R R R EESE R RN

if so, then (2.4) is essily solved, for Y (m=1,2,5...) are then

given by

As sn exsmple congider

"

(3.2) ; %/Ms = e}
0
for the orthogonsl systems (gn( £)), (h (t)) we choose
gls) = Ve g,(8) = (2/r) eos ns
hh(t) = (&/1)“ein mt

and find

mst-eoms

(n:l,?..-)

(a -:l;guno)

(rl,?...)

n
8 7—/(2/4) cos ns de @lgg (?/;r)fain mt dt (n=1,2...)
Q

T

m
om :} (1/7) ;%‘éda/(l/x) g,;g (E/r)‘zin mt dt (m=1,2...)

t - cos s
0



For the inner intsgral we have

st—coas cos t -~ cos 8

(2/,,-)/ sin t gin mt dt = ‘“/7() / cos(p-1)t ~ cos(mel)t dt .

But
A
;‘ CO8 ntv dat = &E !!s (n 31,2,000)0
7)) cos t - cos 8 8in s
L4
Therefore
(2/,,) _8in t sin pt ét = 1("/ﬁ—) gin(m-1)$ - sin(mel)s
Ccos t - COB © gin s
& -(2/;()%03 ms,
Thus
8, = - (n, :1’2,000)
(8.5) nm énn
&om = @ (B:l,e,ooo)o

The matrix (&,,) is bounded. Also the orthogonsl systems
(gn(s)) and (hm(t)) satisfy condition A, By Thecrem 2.2, K(s,t)
satisfies condition A, Thus we cen apply Theorem 2.1.

Therefore the problem of sgolving (5.2) is ecuivelent to

sodving
20y = £ (n =0,1,2,...)

(%14

This system is easily solved since the coefficient matrix

is of & simple form. ¥e obtain
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e =£
o
-yn = fn (n=l,2,5aoo)

Thus an L? golution exists only if

—_—

1

fofﬁ(s)da =0

0
o
and S /yn) * %o convergent.
n-1

However we know f& LR, and this implies using Bessel's

oo
inecuality, thet Z)fn( ? is convergent. Therefore
no

Bt - B B

is slso convergent.
%e sum ur our rvresult in

Theoren 5,1 The ecuetion

T

l/x/ sint ___ v(t)at = £(s) (£(s) (—Lg)

cog t - cog 8
0

hag an L2 solution given by

oD
v(8) ~ =(2/r)¢ ? £, sin nt
n=1

only if T

/f(e)da = 0.

: _ i
In the above example the metrix was of & simle type because

of the fortunate choice of the orthogonal system. Such & choice is not

alwavs noesidle. In that cese the orthogonsl systems heve to be con-



1z
structed by a somewhat laborious process.
For the construction we begin with the homogeneous ecuation
b
(4.1) jK(s,t)y(t)dt = 0.
a
We sssume K(s,t) satisfies condition A. By Theorem 2.1,

the equation (4.]) is ecuivalent to the system

oo

(4.2) 2 ¥y = O (n =1,2,...).
Since K(s,t) satisfies condition A this implies (Thm 2.2)

that (am) is bounded, From matrix theory we quote the following

o em 4. Every systen

(4.3) Z{ %ym = 0 (n - 1’2’000)

where the matrix (&) ie bounded, can be r@placed by a system

(4.4) "2 By 7 O (n =1,2,..4)
with (bm)an orthogonal metrix,

The system (4.4) has either the single solution Y=0 where
Y = (¥15¥pssee) and O is the zero vector or there exist finite (6r
countably) many solution vectors ?i which, together with the vectors
En = (by1sbpgsese)s form a complete orthogonsl system of vectors.

Every solution of (4.3) cen then be given by & lineer form
{4.5) Y = cl_f1+c2Y2+...
in which ?}01/1 is convergent.

Conversely, every such form (4.5) with 2‘ )ci(z convergent is

H
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a solution of (4.3).
Returning to the homogeneous erumation (4.1) we obtein, using
Theorenm (4.1), the following result.
Theorem (4.2 The ecuation
b
(4.1) /K(B,t)y(t)dt =0
&
has either the solution y(t) =0 only, or there existe en orthogonal
systen (hm(t))*f=1 with N finite or infinite, such that every L%
solution y(t) of (4.1 can be given by an ecuivalence
]
(4.6) y(t) ~ 2 eyhy;(t) (N finite or
i=1l infinite)
in which % /°1[2 is convergent.
Cci;;z']r‘eryely, every ecuivelence (4.8) with O /ei) . convergent
is & solution of (4.1).
e ary l A similar theorem helds for the homogeneous equation
d
(4.7) j!((a,t)x( 8)ds =0
e
with solutions x(g) = 0 only, or (E;i(s)) ib——% with N; finite or infinite.
Corpllsry 2 Without loss of gemerality, the orthogonal systems (h ;(t))

and (Eo J(s)) can be assumed to be normaliszed,
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The orthogonal systema (hoi.“‘)) and (Eﬁ(‘)) mentioned in Theoren
4.7 snd Bor. 1 are not complete., For assune (Eo j(s)) complete, Thie
implies that any x(s)¢€ L? is & solution of (4.7, in particuler

{1 céalesén,g‘- d
x(8) =
0  otherwise
is &« solution, Thet is
B
/ X(s,t)ds = 0
"
which implies that ¥(s,t) =0, 2 contradiction.

Thuse (hai) and (Eﬂ) are not complete. Ve coeflam these ortho-
gonal systems and then use the completed systems to solve (1.1).

To complete (E;g(a)) we tske anmy function gl(a) orthoponal
to all Fog® g1(e) exists since with (EﬁJ} the system {g”) is not
complete, Without loss of generality we can take gl( #) to be normal-
ized, lefine a function hl(t) by

d
(542) / K(8,t) 5y (e)ds = myBy (¥)
( ¢
By # 0 by cefinition of 7 (s), furthersore hy(t) is orthogonsl to
every member of (hy3(t)). For let ha(t) be one such member then
b b d
jnc(e)zl(t) dt = 1,1’::1/%(@) dt/x(g,h)gl(,)@,

& n ¢



d b
=g 1;’nlj§l( 8)ds | hy(t)K(s, t)dt
e &
= 0.
Next we define go(s) by
b
(5.2) ]K(s,t)hl(t)&t - ngls) = ®, g5(8)
a
Here two cases m=0, n17{-€} huve to be considered, In the firet cuse
go(s) is not yet defined by (5,2) end we can take for 32(59 any
function orthogonsl to (g, (s)) end g, (sd. If however, the system
{ (g, gi(0) §
is complete nothing remains to be done,

In the second case (5.2) defines go 8) which we can assume
to be normslized. ‘gein we claim thet go(s) is orthogonel to all
goi(s) end gy(s). To show thie we multiply (51) by hy(t), (5.2) by
'51(8) integrate end subtract one ecustion from the other to get

il
jnlsg(s)&(e)éa =0
e

4 similar srgument shows that
d
jgg( 8)gpy(e)ds = 0
¢

for sny member of (gyy(s)).

16
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We then define ho(t) by
d
(5:3) j K(2yt) g (s)de - m By (8) = n,B(t)
¢
The coefficient n,7 0, since n,=0 implies, using (5.1), that
m 7 (8) = n gp(e)
is a solution of (5.1). This however contradicts the orthogonality
of g snd gp to the systen (goi).
i85 before we can easily see that hz(t) ie orthogonal to (hgi(t))
and hy(t).
We proceed with this conetruction by defining in general

]

(5.4) jK(l,t)/;*H(t) dat - ni__lgiﬂ = my_318(s)
L

(5.5) JK(I,t);i(a)da -m b (8 = aB(t)
c

until the system
{(Kai(a))s 31(5)i gz(s)s"' }

is complete, :

¥hen the sbove system iz complete then

L g, m(), my(0), oo §

ie elso complete. For by (5.5) it follows that for any function h( t)-,&'o
orthogonal to all h,; end hj

d b
fzi(a)dajms,t)h(t)dt: 0
(]

a
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in particular for gi(s) o goi( 8) e
This implies that
b
jx(s,t)h(t)dt =0
&
Thus h(t) is a member of {hoi(t)j. This contradicts the
definition of h(t).

It may happen that after countably many steps the system
(5.6) {(goi(s)), gr(s), 82(3);---S
ie not complete. In this case we take any function orthogonal to all
members of (5.8) and proceed as before.

Since any complete orthogonal systems have only countably
infinite many members, the construction process must end after at most
countably infinite meany steps,

We use the two complete orthogonal systems to solve (1l.1).

From (5.4) and (5.5) it follows that

a ¢
841 = / g (e)ds /K(s,t)hi_l(t)dt = my
c L4
4 ¢
8y = /Z(s)dsﬁ(s,t)hi(t)dt = ny
¢ 4

a 1k = 0 otherwise.

Thus the matrix (ai j) has the form
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0 O O cevecses
0 n 0 vovnvone
(aij)= 0 m ng, 0 eues
e O m, Ng 0 .
esesscscssssenee
wheré we have as meny zere rows ag members of (goi(e)) and as many
zero columne &s members of (hoj(t))'
The system (2.4) with the above matrix can be solved more
easily.
Remerk: Under some conditions the above matrix reduces to & diagonal
meteix. It can be shown [4,;:.159/],&:& 1f K(8,t) €L° end K(s,t) satis-
fies condition A then two orthogonal systems cen be constructed such
that the matrix is & diagonal matrix.
Obviously, this construction method is not very practical,so
that most integra). ecuations of the first kind ere sclved by special
methode which are.best suited for the particular eguation involved.

The next chapters are devoted to some of these special methods.

8. The Fo urier trggsf_qm

The well-known Fourlier transform

ist

(8.1) 1 : y(t)e
(et )

is, from a different point of view, an integral equation of the first

dat = £(s) (£(s) €19

kind. For this ecuation & fortunate choice of orthogonal systems can

be made.



Using the Hermitian functions

§2
f (s) = eg’ & (n =0,1,2,000)
2nn! 57 < dsn

we have ZB,p.Bl],

.J;‘, iSt!;(t)dt = inf%kﬂ) (n=0,1,25004)
(2K)

and we obtain for the matrix of the system (2.4)
5 gl
(anm) = (1 é;m)‘
This matrix is bounded., Also the functions @; (8) satify
condition A so that by Theorems 2.1 and 2.2 the ecuation (6.1) is

equivalent to the system

Z—.y iné (n= 0,1,2,000)

and the solution ig

y(t) ~ f(-l)“f f(t)

if E;k-l)nf ‘ is convergent, which is true since feI,.
hoo

Now the expression

w0

1 f(s)e‘igtdt
(Err)é/
ol

has the same expansion coefficients as y(t). Thus

o0

y(t) = _;__ f(s)e’istdt
(2m*

~0



gives the solution in & closed form.

Besides the Plancherel Theorem for which Titchmarsh gives
several proofs)jB,p.éSQ], there is another method which makes use of an
inversion operator, This method is due to Rooney. [9].

Here we consider the slightly more general Fourier transform
oo
(6.2) F(x) = 4, (210'%/ ((e2XV-1) /Ty) £(y) ay
dx o
and the operator
o) = (-ik/t)k*lmrﬁf (x-15/9) "D 8 ax
] /

where k —=1,2,...,+. Rooney shows that,
If feLP(-w,%), 14p<£2 and F is defined by (6.2) then
&) lim 7/ (F) = f(t) at every point t# 0 in the Lebesgue
4o kyt

set of f.

oo
Y
b 1lim F F) - f(t r at =0
—d0
where the Lebespgue set of f(x) is the set of values of x for which
4
ﬁf(x&t) - #(x)[at = o(n) (h—0).

Q

The proof is similar to those of the Laplace transforms
and the Widder-Post inversion operator. In fact Rooney derives the
operator Fk,t by changing the Fourier transform into the Laplace

transform and then eapplying the Widder-Post inversion operator.



CRAPTER II

s I._ntugml emations

o

(7.1) /l(c—t)y(t)dt = £(s) - 0L gL o®
where the Xevnel in of the form K(s-t) are called comvolution trans-
forms., It 42 s mall exeggeration to say that nearly all the integrsl
transforme are elther in this form or csn be put inte it by a change of
variable. v

4 very useful method for inverting the Wﬂﬂcm teansform
is the operationsl caloulus. The technisue consiets in treating the
operational symbol D (for differentiation) as 47 it were & mumbder
throughout some celculation and fimally in restoring to it its ori-
ginel operational mesning.

Ae sn illustretion let us deduce a mesning for the operation

o*P, Tresting D as & npumber we have formally

.lD: S o
k-0 ki

Orerating on f{x) we obtain

SVp(x)= = akpke(x)
0= 2 el

= 52 g". L(,_k.__)vis).. = f(xes)

ko ki

27
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Ye define
(7.2) Vf(x) = f(xwa)
even if f{x) is not differentisble.
e apply thie operetionsl procedure to obtain en inversion

formule for the convolution transfom.[ﬁ]

8, The inversion overstor

Conslder the ecustion

(8.1) /K(s«t)y(t)dt = #(s)
Let
(8.2) 1/8(s) = / r.tx)e’” dx
~©

be the bilateral Leaplace transform of K(u). We then have formally

o0

(8.%) (/5(0)(e) = / R(x)e " dx y(s)

— 0

- j K(x)e“xny(a) dx

— o

= / E(x) y(8-x)dx

——

- j“ K(s-x) y(x) dx

e

(

)

23
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Thus
(8.4) [e0)] 3() = #(s)

Operating on (8.4) by E(D) we obtain formally
(8.5) y(s) = E(D)£(s)

our desired inversion formula. Thus the solution of (8.1) would be known
if we could interpret the operator E(D). An effective interpretation of
E(D) cen always be made if E(s) defined by (8.2) is an entire function.
E(D) in thie case is & differentiation operator$see}[5f],[14J,Zi5].

In (6] ena [ 7] D.B. Sumner dissussed convolution trensforms
which edmitted an inversion function E(s) which was meromorphic i.e.
of the form G(s)/F(s) with G,F entire. G was interpreted as a differ-
entator, F as an integrator. Thus E(s) consisted of an integrator and
a differentiator factor.

In the next section & convolution transform will be discusseéd
which admitts a meromorphic inversion function E(s) where the inte-

gretor factor and the differentiator factor can be represented in one

step.
operator of integro-differential type
Consider
oo
(92.1) /log{co’ch _Jg_-__t,_[y(t)dt = f(x)
2
e

The bilateral Laplace transform of K(u) is
oo

(9.2) log}coth Je"”tdt =1/8(s).

]
2

~ob




¥y
-
o

o0 [
st 2
/ log|eoth t/2 / e dt = et ;gg",}@t
Lo ) leo™t

set e~ - and integrate by parte. Then (9.%) becomes

)
1/8(e) = / legl %&ijs“ldx
A -X
= lug}%fg(x“/s {g - 2/a/x7(1-x2)&x
O

The firet temm tends to zero if ~l/ 8240, the second becomes

-1/ a[ ﬁz’/ (lex)dx + ﬁ’/ (Lex) dx] N
4]

0
Using the well-known integrsls [m,p.los],

=
£t oax = _T 0Za<1
A Llax sin a
Ead
5;‘;1 dx = 7T eo¥fax) 0Zacl
lex

e obtain

1/8(e) ~ 7T/s ten xa/¢ wlz8c0



Thus the inversion operstor E(D) becomes
(D)= (Bﬁ(} cot DI/%2
& mevomorphic function.

To interpret the operator B(D) we mske use of the well-known

integrall 10, 0. 26],

o0
sinh (les) b7 dt o -»% cot 78
sinh ¢t ' B g
(4
After a chenge of variable Tt =2 we obtain
L=
9 [ wg =852 z
E(s)= s/1r cot sr/2 s/n” /a z@ o ol
ginh 2z
0
aD

¥%e now make use of the definition of ¢ to get

(9.2a) E(ﬁ?) f(x) < L“/n—z/gﬂwfg ¥-7) - g?i(ggz) dz

ginh 2
0

Pl
e -5
- l/ﬁ-‘g_‘ 2 f‘ !;-!) dz.
dx| sinh 8

— -0

¥e claim thet

&

(9.%) H0= Vx o [e faa) ds = B(D)£(x)
ax ginh 2

—

To prove thie we substitute the expression (obteined from (9.1))

coth z:s.-ﬁs{y(t)r}t
A

"ol

fx-2) = /lng

—

26



in the left side of (9.%) and obtain

1 >~
1/;(2 4. _g::__ dz [log|coth L—*_Q)y(t)at
éx /sinh 2 4
Z L

— 2

Haking use of the Tonelli-Hobson Theorem we can invert the
order of integration to obtain

(9.4) : 1/7( /y(t)dt/ log coth x-g_: {
dx inh 2

To obtain the inner integral I in (9.4) we set x-t -w. Then

log coth w- /d:
/ sinh 4 -?&

-2
R vy log dz

=

=2

;4 - . 1
/"En"”? ogg:_}’ldu

0' -'\1' u.l

\ .' 2
where we hove made the substitution e=-vand e =v/u

Then

7 o
= ¥ e $0E leuldu  « “f L log usl du

In the first integrasl set

leu =
i1 '’

27
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in the second set

]

,l:‘ .
. i
Then
)
(9.5) 1= .% (a'-Lte® . at
o (ebs1) (v ( atl»l) é-( et—-l) g)
"i"4/’(et )t.at 0%
5 (1) (v (e%1) % (e%e1) %)

Since both integrands are even functions we have

Pl

R = ?/{ ‘ ‘.(‘aﬁs—mt LR
/Lt (v (eta1) 2-(et-1) D)
, ll.gt_ﬂl)tett. Edt
(a%-1) (v3(etol) *-("41)?)
= aJ

To evaluate the integrel J we conshder the comfour integral

(9.6)3{{ : (o "R
(o%ed) (v (o1} *=(0*-1) ")

around the contour shown in fig. 1.

b g
~g i i atcx
TR 7 J - p
figd Y A
B £~ \ c
AT N
~R -8 4 U & ‘ L




gherg

logvel , v71

Yol

log lgv , 0<4v<ll
l-v

The first term of (9.8) hag simple poles at
g= ixX

z-flog lav Ocwvel
Ly

z=2log yel # i70 v>1
vl

The second term hasg simple poles at

s=tlog lev ¢ i Dewel
l-v

z - ilog val v>1
Tl

Thua we hove to consider two cuses corresponding to v~ 1
or 0Lv L1,

For v 21 we have poles at

2= 4 with residue -irx/e

g=tlog yal ¢ i with total residue -47/8
e 7) Vel

2 <tlog T4 . with total residue 0

For 02 v <1 we have poles at

g= 47 with residue «iT/2
@ eorlog B4 4y with total residue  ein/?

2= *log %ﬁ with totel residue 0



It is easily seen that the integrals along /P end CD are

of the order O(EVOR).
Furthemmore, both integrals along BC and DA tend to Jyas R e

Thus we have
0=2J« O(R/oa) - ir(sum of residues)
i.00 2J= ir(sur of residues) when @ >=
Fom (9.7) and (9.8) 1t easily seen that
x! v>l1
ir f ={
(sun of residues) A sicwid
Thus
aﬁ v2l
&= 1I=
0 O<cvcl,

Recalling the definition of v - c', w=x-t we obtsin

I:{"l'a x>t
0 x<lt

For the oase x=% L.e. v=1, we vetum to (9.5) and obtain

2
I- 4 Z at- 4rv/8=x2/2
/ s /8 =x%/

0o®-%
Substituting the veluss for the inner integrel into (9.4) we
finally have

o X
l/ngi,jv(t) I1dt= % / y(t)at
W < ¥



3%
This proves our clain (9.85); and we see that the operstor
Bp) = (o/c)eotAD/2
defined by (9.72) inverts the ecustion (%.1).
Sumaing ur our result we have:

The esuvation

0
/lag coth k;[y(t)du = £{x)
g
— 50
hug the solution
oo
y(x) = 1/7\‘26 & flx-p)ds
gink ¢
- K

Be-sides the operationsl method described in section 8 and 9,
the Fourier transform can be used to invert the convolution trans-
form. See [8].

Coneider
(10.1) / k(s-t)y(t)at = £(e)

-0
vith y(%), £ s)éh2 and k{s-t) satislfing comd. 4.
Bultiplying by 1/(2K) é'iu snd integrating,

1/(2n) / (s) 6*%s = 1/(28) / ”“’d%( s-t) y(t)dt

-


http:bt.lt-S.er

v}

= /()" / 1% (D ax o Py(e)at

—

the inversgion of intagretion being justified by the conditions

Onh:, f, and ¥

Thuas
(10.2) P(e) = K(w)¥(u) (o)
where
i
P = /(o) [ 1(e)** %2

—_— o

is the Fourier transform of €£(e) and K(u) and Y(u) are the Fourier

transforme of k(s) and y(&) respectivaly,
From (10.2) we have
Yw) = Flu)/K(u)(20%
But

o

78 = 1(en 2w o0t

~ o0

tharefore

-iut

y(t) = 1/(25') m__,_
K(u)("‘ir)%

82
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'ftms.the formal solution ie given by

(10.5) v(t) = 1/(27) / 5{3} o lutyy,
u

For this to be an actual solution K(u) hss to satisfy
specizl conditions which we summerisze in
Tneores 100 Let £(s) cL*(=>5 ), and k(x) €L(-=,=).

Then in order thet there should be a solution y(t) cLZ(<-s, =),
it is necessary and sufficient that r(u)/K(u) should belong to
LE(-o0,0),

For the proof suppose that f(s), k(x), y(t) belong to the
given L-classes, and (10.1) holds. Then using Thm.85 in Titchmarsh[&]
we find that (10.2) holds and T(u)< L%, Bence F(u)/K(w) €12,

Conversely, if F(u)/K(u) L% then y(t) defined by (10.5)
is in La and by ;the same theorem in [a] » the Fourier transform

of the left side of (10.1) is

(2r) ¥K (u) L "51:“?2' = Plw)
" 5 4

Hence (10,1) holds.
Remarks Laplace transforms instead of Fourler trensforms can be
uzed, The method is similar to the sbove method. For more detailed

aceount we refer to Doetach[16 ] and widder [17/.



CHAPTER IIIX

The integral ecuation

a
(111) g/{; gg{g;t; B =i ?k §2 y(t)at = £(s)
A/ | 1-2rcos| set)sr 1-2rcos(s-t)er
0

with 0L YZ1 cen be solved by using the orthogonal systems [4,;3.169]
gn(s) = (z/a‘)‘éain ns (s -1,2,004)
n(t) = (?/x)écos mt, hy(t) = L/7 (m-1,2,004)
The solution is again given in the form of 2 series

7(t) El_t_‘%;o- nt ey,

with the condition that f }fnla
278

be convergent. A ie sn arbitrarily chosen constant.

The ecustion (11.1) however, can be put in the form
2x

(11.2) ¢ sin(s-t)y(t) dt = f(s) 0<4rz1

770 1-2reoa(l—t)0r2
(11.2) has the ssme denominator as the ecuation in Poisson's
integral formule, vis. @D, p.l‘«?d]

54
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(11.%) u(r,8) 1 RE-r  ___ u(R¥)ae

2 o R2—2chos(9-30r

As it turns out, we can use (11.3) to solve (11.2) and
give the solution in a closed form.

We first prove
Theorem 11.1 Let f(2) be snalytic inside the circle (z(< R
and let u(r,0), v(r,6) be the resl and imasginery part respectively.

Then for 0 v «R we have

2\

2
v(r,8) -.:_p_@/ b~ bdt
A
v}

-2ch0 s(e ?) T

u(r,9) = 'ﬁ/——M—Js—(——ﬁ—n £=.8€ o constant

-2Rreos(9- ?)c-r

Proof: Let z = re r<R
then f(2) is anslytic and can be expsnded in s series i.e.

g

n o &
Kz = o <35 (e 1/6)rnein
n n “n
n=o n:o
u(r,o) + iv(r,o)

Separating rezl and imaginary parts, we have

(11.4) u(r,2) = f (oc cos né - /nsin ne )
=0
(11.8) v(r,4) = EO( G, 5in no & /6ncoa né )t

Both series are uniformly convergent with respect top.
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Hence we may multiply by cos né or sin n& and integrate term by term;

end obtain from (11.4)

2T 2Z
(11.8) R = l/rl/u(ﬁ,!")ooa ot dfy, « :;/u(a,‘f)d?
n o] o
& o
L

(11.7) /gna“ - -1/,r/u(n,f’)s1n nf daf, ﬁ =0

from (11.5) we obtain

2T

(11.8) o(an:- l/;r/v(a,?)sin nt df, o, =0
©

2x e

(11.9) A8 =1 Zv(R,Z")con w a4 - %ﬂ/pv(a,%)ak

We then substitute the velues of « snd /5;! es given by

(11.8) end (11.7) into ecuetion (11.5) and obtein

0%
(11.10)  v(r,8) =14 S %g /u(R,‘r)(coa nt ein né -s8in ng cos no )d ¥
n=1 'RB -

LR

o 1/7{/;(3.?’)2/5; sin n(é-?) (o/R)" b ap

2z

= I‘ﬁ/;(— E‘ B..{"I%nig -ﬁz : s N
R“-2rRcosl -¢) +r°

4
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the inversion being justifisd by the uniform convergence of the
series.

This givee the first part of cur theorem., For the second
part we substitute the values of u, snd /n 9 given in (11,8) end
(11.9) into (11.%). Trds will give

27

{(11.11)  ulr,8) = -vi/r Wd?’ 01/2/7(&,(’)511’
&

Rﬁ-mmu@ Her®

(-4
where the second term csn be chosen arbitrarily.
Eouation (10.10) eorresponds to the intprel emuation (11.2)
with R=1, y(t) =v(1,0), and £(8) = v(r,9),
flance the solution of (11.8) is

y(8) = -v/r / &t + constent.
1-2re0s( s-t)er

Theoren 11.1 slso shows that y(t) snd £(%) are harmonic
conjugates. Furthermore, it gives ssolution for the more general
integeel ecuation

2r

R/ ___W__‘dt = f{s) ﬁ&t’f_a.

R’ -2rreon( e-t) er®



In this section we shell describe & function-theoretical
method used by Carlemanflll to solve the ecustion

&

(12.1) / y(t)at = f(x) OQzex7l, Q<~=<1
)x-t[“
0
This integral ecuation differs from Abel's equation viz.
x

(12.2) / z‘fb) at = f(x) Oz xz1, 0< <<l
(x=t)°
0
in thet (12.2) has a variable upper limit of integration.

The solution of (12.2), which we assume to be known is 13

x
y(x) = gin<7 _g__/f(s)(x-s)('lds.
/T X
0

We first consicder the homogeneous eguation which is written
ag the sum of two integrals; one from O to x the other from x to 1.
Both integrals are shown to be identicaly equal to zero. From this
we deduce that the only solution is y-0.

To solve the nonhomogeneous equation we consider sn suxili-
ary function 97(:) containing the unknown function y(x).F(x) is
continued analytic&(ly into the complex plane and transformed into
a Riemenn boundary value problem. From the known solution of this

problem we obtain the solution of (12.1).


http:Rietna.nn

4 Riemann boundary value problem, or sometimes called a none
homogeneous Hilbert problm[le,p.'m], is the following problem,
Let 7 be a connected region, bounded by a smooth contour L.
Find the sectionelly holomorphic function é( z) heving finite degree
at infinity snd satisfying on L the limiting condition
Pl = an) P+ g(v)
where G(t), g(t) are functions on L satisfying the Hoylder condition
and G(t) #0 on L.
ff('t), é(’ t) are the limits of éz z) as 2z approachee L from the
left and right respectively.
A function%( z) iz said to be of finite degree ,if in the
expansion off (z) in the neight:urhood of the point at infinity.
gf( ) ‘-‘—Jga;zj
there are only a finite number of terms with positive powers of z.
The general solution of the Riemann problem, which we assume

to be known, is given by [19,p.78],

é(z) * ﬁ?/;{ t)g‘(:-)z)dt + X2)P(2)
L ,

where P(z) is an arbitrary polynomial and X(z) is a solution of the
homogeneous Hilbert problem, i. e. g(t) = 0.
Following these preliminaries we return to the

ecuetion (12.1).

59
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Consider the homogeneous ecustion

4 x 1
(12.3) / ) ot = O / y(t)at « | _y(t)as
Ak o (=t ()"

and the funection

1
12, #(x) = ylt) at
(12.4) ¥(x) f(ﬁ&c
0

analytic for x>1., y(t) is assumed to be ebsolutely integreble and
such that y(t)/ [zt *CL(0,1).
For x real end x/1 define
F(x#10) = linF(xeig),
£Eve

F(x-10) 1im F(x-ig), (£>0),
i~>®
From this definitionwe obtasin the relations
x : 4
-‘
(12.58) P{x#40) = 1.(1:.‘)” dt + e ﬂ'/ ;S{_t)cit (0, x21)
(z-t)* (t-x)"
0 x
1
-4 .
(12.5b) F(x#i0)= e j z‘ktz at (x20)
(t=x)%
0

1

X
(12,8s) F(x«-iﬁ))‘-‘/ y(t) dt e"‘"’ #(L) dt (0,2x21)
0

(x-£)* 2 (-0



1

(12.8b) F(x-10) = @<7% / ) et (x<0)
o (t-x)"
%e claim that F(xedi0) i real 47 O x_1. To show thie we use
the reflection prineiple 1.0.[13 Jp. 265}.
If ¥(2) is analytic in e domein D, D eymmetric ebout
the x-axie and HW = #(3) then F({z) 418 rexl whenever z is real.
Let D=/xedy [0 sxcld, «coyec{rrom (12.5e),(12.80) we
have
Flzely) = F(x-1y) = F(xely)
It remeine to show that F(e) is =malytic in Te ¥(z) 18 amslytic
for y#0. To prove F(s) enslytic on She segment (0,1) of the x-axis
eonsider

x 1
{(12.7) a(x)rf P(s)ce ll j(x—t)l.ﬂ;’(t)ét
-
0O

1= :
Since (x-t] is bounded end

/(:( t)(m.

is sbeolutely continucus we see that G(xedl) is uniformly convergent
in the interval 0. x <) to G(xed0). Since G(xei¢) is analytic for¢> 0
we sec thet C is spulytic on the intervsl (0,1). 8y (12.7) we have
that ¥ ig analytic on the interval (0,1).

Thus F(xe10) 15 resl. Similavly F(x-40) L2 veul, This iwplies

that


http:l'~-5c.),(l2.6a
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i

PP

(t-x)
x

Thus (12.2) reduces to

v

(I-t)

But thie is Abel's ecustion with the solution y(t)="0.

We sur up our result in

Theorem 17,1 The homogeneous ecustion
1
/_;_(_t)_dt = 0 O0<4x 4, 0<=~z1
t <
o (=t

where y(t)/ {x-t[_%s assumed to be Lebesoue integrable on the intervsl
(0,1), has the only sclution
y(t) ="0,

To solve the non-homogemsous ecuation (12.1) we again

conskder the function (12. E)e
From (12.5a,b), (12.8a,b) and (12.1) we obtain the relations

(12.8) F(x10) = o TF(x-io) (x<0)
(12.9) P(xe10) = o P(x-10)s (Lee " T)e(x),(0 cx<1)

To obtein (12.8) multiply (12.8B) by e~ " &nd subtract the
result from (12.5b). & similar calculation gives (12.9).

We now consider the auxiliary function
(12.10) £ = 7(x) [xx=1)] i



From (1£.5a,b), (12.8e,b) we obtein the relations
(12.11) Pa10) = K x-10) (x20)
(12.12) f(xﬂﬂ)-ﬂx—m) = «2icos 1;:?‘," ¢ (%) Zﬁzc(x--lﬂ{E (0<x<l).

A Riemann boundary velue problem with solution

, _ | .
(12.1%20 ,J(x):-l/x cos < | f(s) {_s(a—l)J 3 dse
g A G
From (12.5a), (12.62) we have
4
(12.,14) j ;‘&2(11’. — i (F(x~10) ~F(x#40))
(t=x)  2isin~x
x
x
(12.15) / W) at - L (et F(xe10)-e 1 F(2-10))
(x~t)* Pising s
“Q

From (12,10) it followg that
F(xei0)= i [x(l—x);{‘:"‘ e‘i‘{ﬂuiﬂ)
F(x-10) = --1[::(3.--::)1'%< oY F(x-10).
Substitute these into (12.14) end (12.15) to get
1

(A%24) j xdt = =l (ei%hﬁio)*e-k{ﬂxﬂo) )[ x(l-x)] “f;(,
(t-x)" 2einr

X
x -
(1217 | _y(&) at: _1 (eyixﬂ x#10)e6 5 fx-10)) [x(1-0)] .
(z-t)% gsindy

0
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But (12.17) is 2bel's ecustion, where the solution is

known to be

(12,18) ¥x)= L f (et Tfhe10) 0t TS (1-10)) b1-t)] < at
en dx Xet) (-

Let /; be & con/our in the comlex t-pleone which begins at
the point x £(0,1), goes counter-clockwise about the origin and
returns to x without cutting the positive recl axis.

It is essily seen that (12.18) can be written

(=<
(12.18) W= 1. [/ _2k)]* Avat.
M7 dx ) (tex)' <
) X
This follows 4{ we imegine the t-plane cut slong the

positive reel axis end chose for [t(t-l)]‘; and (t-x)  those
branches which, for real t > 1, are vresl on the upper edge of the
resl axis,

Substituting (12.1%) into (12.16) we obtain

1
(12.20) y(x)=-1 co&‘g / 8($=1)] g at /ﬂ{) [5(1-3)Jf ds.
x)l—-( . 30

as the solution for (1L2.17).

We claim that (12,20) is slsc the solution of (12.1). To
verify this, we assume that £(8) i¢ snalytic on the interval (0,1).
Let I be & region enclosing the interval (0,1) and such thst f(s)
remains regulsr in D,



Let g be the curve shown in fig., 2,

flg. 2.

The inner integral in (12,£0) esn then be written (for t out-

side g ) as
1 1
(12.8) j ,ﬁ%)[au-.)] R ﬁ(»l)] Lsige
0 T8

For ¢t inside g we have

(12.22) j ﬁg) [n(l-s)] g i ﬁ(o—-l)] d _g_({)da
-

ewa‘{ﬁ
8 8 :

T £(%) [t.(t-l)] 7

cowr
The first term on the right side is reguler in the neigh-
bourbood of =0 and t=1.(t) in this case, can be continued ana-
lytically scroes the intervel (0,1). From the behaviour of ﬂt)
near t=0 and t -1 as shown in (12.22) we see that there exist:
solutions for (12.16) end (12.17).
Let L be & closed contour enclosing the interval (0,1).

The integral

(12.2%) ] {% F(t)dt
ac) et


http:lyt.icaJ.ly
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T

does not chenge its value if we deform L without eroseing (0,1).

If we let L tend to an infinitely large circle them (12.28) tends
to 2 constent k independent of x.

If we let L shrink into the couble lins (0,1) (that /(%) sstisfies

the necepsary conditione follows from (12.22),) we hsve

X
/ MJ E (F(t-10) o +/{ t#i0) &t yat

0 (xt) ™
1
| [80=t)] ° (F(t-10) T s t440) 6717 Jat = K( constant)
(z=0)" <
X

Differentiating, we obtain

x
= 7 -
4. (@t (At-10)e7 of tat0)6'? ) et

dx | (x-t)/~<
Q
4
) Bl s . An
— 4. | ko9 (ﬂuae)u"‘f.ﬂum)a“? )ét.
ax 7 (tex)' 7
x

Thie implies that (12,18) and (12.17) heve the seme solution y(x)
where y(x) 1e given by (12.20).

Adding (12.18) and (12.17) we have

1

et =1 (Hxe10)-f(3-10)) [x(1-0) ] T
g |2t [ Roowts
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Making use of (12.12) we finally obtain
|

/ et — o(x)

ff L
o [*%]
¥e sum up our result in

Theorem 12.2 The ecuation

3
]-ﬂﬂ,@t = f(x) 0L xely, OLxcl

0 / %=t [%
has the unicue solution
1l
1=% 5
y(x) — icosx g__/&gg-;}l e [g‘;-a)] t f(s)ds
-‘-‘T"- ¥ dx 1993 st
X

where /; is a closed curve cutting the positive resl axis at x only.
Remari: This met!;od of snelytic continuation end transforming into
2 Riemann boundsry velue problem can be applied to more genersl
kernels of the fors 1/(t-x), log|t-x|, and|[t-x ~“(02x21) end

gome of thepe combinetions, See Gakiov, [ 18,ppi118-152].
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