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Abstract 


The fetal electrocardiogram contains within it, information regarding the health of 

the fetus. Currently, fetal ECG is recorded directly from the scalp of the baby during 

labour. However, it has been shown that fetal ECG can also be measured using surface 

electrodes attached to a pregnant mother's abdomen. The advantage of this method lies 

in the fact that fetal ECG can be measured noninvasively before the onset of labour. The 

difficulty lies in isolating the fetal ECG from extraneous signals that are simultaneously 

recorded with it. 

Several signal processing methodologies have been put forth in order to extract 

the fetal ECG component from a mixture of signals. Two recent techniques that have 

been put forth include a scheme that has previously been used to nonlinearly reduce noise 

in deterministically chaotic noise and the other uses a blind source separation technique 

called independent component analysis. 

In this thesis, we describe the significance of the fetal electrocardiogram as a 

diagnostic tool in medicine, a brief overview of the theory behind the nonlinear noise 

reduction technique and blind source separation, and results from having processed 

synthetic and real data using both techniques. We find that although the noise reduction 

technique performs adequately, the blind source separation process performs faster and 

more robustly against similar data. The two techniques can be used in tandem to arrive at 

an approximate fetal ECG signal, which can be further analyzed by calculating, for 

example, the fetal heart rate. 
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Antepartum 

Bradycardia 

Cerebral Palsy 

Cutaneous 

Fundus 

Fundic 
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Hypoxia 

Intrapartum 

Intrauterine 

Noninvasive 

Supine 

Tachycardia 

Glossary 

The act of listening for sounds within the body, chiefly for ascertaining the 
condition of the lungs, heart, pleura, abdomen and other organs and for the 
detection of pregnancy. 

Before labour or childbirth. 

A slowness of the heart beat, as evidenced by slowing of the pulse rate to 
less than 60 beats per minute. 

A persisting qualitative motor disorder appearing before the age of three 
years, due to non-progressive damage to the brain. 


Pertaining to the skin, dermal, dermic. 


The bottom or base of any hollow organ; as, the fundus of the bladder; the 

fundus of the eye. 


Pertaining to the fundus 


The reduction of the oxygen concentration in the arterial blood, recognized 

clinically by the presence of central and peripheral cyanosis. When the 
partial pressure of oxygen (p02) falls below 8.0 kPa (60 mmHg), the 
condition is defined as respiratory failure. 

Reduction ofoxygen supply to tissue below physiological levels despite 

adequate perfusion of the tissue by blood. 


During labour and delivery or childbirth. 


fu the uterus (the womb). 


Denoting a procedure that does not require insertion of an instrument or 

device through the skin or a body orifice for diagnosis or treatment. 


Lying on the back. 


The excessive rapidity in the action of the heart, the term is usually applied 

to a heart rate above 100 per minute and may be qualified as atrial, junctional 

(nodal) or ventricular and as paroxysmal. 
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Chapter 1 


Fetal Monitoring and Fetal Electrocardiography 


1.1 INTRODUCTION 

Often it is necessary to monitor the heart condition of a fetus during pregnancy in 

order to assess health and diagnose possible diseases. This is especially true for high-risk 

pregnancies where it is necessary for the physician to know about the existence of fetal 

distress syndromes, which indicate problems in fetal oxygenation. For humans, 

prolonged periods of oxygen deprivation results in a variety of brain injuries. In the case 

of the fetus, there is the possibility ofpermanent damage to the brain and nervous system, 

which, for example, may manifest itself in the form of cerebral palsy. Early detection 

and diagnosis helps increase the effectiveness of any appropriate intervention. Therefore, 

it remains relevant to continuously investigate the possibility of finding indicators of 

disease as early as possible during pregnancy. Valuable clinical information can be 
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obtained by performing an antepartum analysis of the condition of a fetus. Although 

there are some commercial tools available for the intrapartum recording of the fetal 

electrocardiogram (FECG) via scalp electrodes used during labour, there is still little 

available to the physician in the way of off-the-shelf tools to aid the obstetrician before 

the onset oflabour. Recent literature by Zarzoso and Nandi (2001), DeLathlauwer et al. 

(2000), Richter, Schreiber and Kaplan (1996), and Kanjilal et al. (1997), suggests that 

there are methodologies that engineers can effectively use to assist the obstetrician to 

non-invasively and reliably obtain and analyze the FECG. The objectives of this thesis 

are as follows 

A. 	 To develop a hardware/software for recording and extracting the fetal 

electrocardiogram from abdominal recordings. 

B. 	 To make a series of local recordings to and document the performance of 

our system. 

The first chapter gives an overview of fetal physiology, the medical motivation 

for obtaining information regarding the fetus (especially the FECG), and the development 

of fetal electrocardiography over the last 50 years. The first chapter also discusses the 

engineering efforts that have been made to extract fetal heart information from mixed 

abdominal electrode recordings. The second chapter of the thesis describes the theory of 

nonlinear noise reduction (NLNR) and blind source separation (BSS) -two techniques 

that we employ and will be compared for the extraction of the fetal heart signal from the 

mixed abdominal recordings. The third chapter outlines some design considerations 

pertaining to the data acquisition hardware and the recording protocol. The thesis 
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concludes with a summary of findings of the studies usmg our analysis tools on 

abdominal recordings both obtained from other centers and data recorded locally. 

1.2 FETAL ELECTROCARDIOGRAMS 

1.2.1 Fetal Physiology 

Consider the simplified diagram of the fetal circulation depicted in Figure 1.1. 

The placenta is the organ inside the uterus that functions as the exchange station for 

chemicals including water, oxygen, nutrients, and waste chemicals (e.g. carbon dioxide). 

These chemicals collectively exist in the form of amniotic fluid on the fetal side of the 

placenta while the same chemicals are carried to and from the placenta via arteries and 

veins on the maternal side. Clearly, changes in the uterine blood flow will affect the 

manner in which the fetus exchanges vital chemicals. Physicians are aware of several 

factors that cause a decrease in uterine blood flow. For example, the flow through the 

intervillous space may decrease due to position, exercise, uterine contractions, maternal 

hypertension, or anesthesia. In the present context, we are particularly interested in the 

effects of any such decrease in uterine blood flow on the amount of oxygen received by 

the fetus, (fetal oxygenation). A primary concern for obstetricians is fetal hypoxia- a 

condition that can result from a prolonged decrease in uterine blood flow. Such a state is 

known as utero-placental insufficiency (UPI). Chronic UPI may be associated with 

intrauterine growth restriction and/or antepartum fetal death (Freeman, 1991). 
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Figure 1.1 Fetus-placenta model. Note that the well-oxygenated blood returning from the placenta 
via the inferior vena cava (IVC) crosses into the left atrium while the superior vena cava (SVC) blood 
tends to run into the right ventricle. The placenta is connected to the fetus (not shown here) and 
resides inside the uterus. (Source: http://www.bartleby.com/107/lmages/large/image502.git) 

http://www.bartleby.com/107/lmages/large/image502.git
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1.2.2 Clinical Significance of FECG Morphology 

The FECG is closely related to the adult ECG, containing the same basic 

waveforms including the P-wave, the QRS complex, and the T -wave. The PR Interval 

reflects the conduction time in the A V node and the QRS complex represents ventricular 

depolarization. The FECG directly displays the muscle particular shapes of the FECG 

waveform that can serve as direct evidence of specific malfunctions and abnormalities. 

Morphologies of interest include the shape, size, and duration of individual and groups of 

FECG waveforms as well as the various ratios relating these quantities to each other. 

Table 1.1 summarizes some of the FECG waveform-based quantities that have been 

linked to particular physiological phenomena. 

WAVEFORM PHYSIOLOGICAL INTERPRETATION AND SIGNIFICANCE SOURCE 

PR Interval PQ interval is prolonged in the asphyxiated fetus Pardi and Croignani, 1971 

PR/FHR Ratio Positive PR/FHR correlation and shortening ofPR 
interval for fetal comp_rornise and hypoxaernia 

Murray, 1986 

T/QRS Ratio Strong correlation with rate of rise oflactate Greene et al., 1982 

ST Segment Biphasic ST segment associated with myocardial hypoxia Rosen, 1976 

Table 1.1 Physiological Interpretations of Various FECG Waveforms 

1.2.3 Clinical Significance of Fetal Heart Rate 

Monitoring of the fetal heart rate gives an indirect measure of the fetal state 

through an understanding of the physiological conditions and mechanisms that give rise 

to changes in the heart rate. To this end, this section briefly illustrates the meaning 

behind the fetal heart rate in terms of the physiological state of the fetus. 
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As is the case with adults, the heart rate variability of a developed fetus is 

dependent upon its own autonomic nervous system. Accelerations of the heart rate 

(tachycardia) are precipitated by signals sent via the sympathetic nerves and decelerations 

(bradycardia) sent via the vagal nerve (sometimes referred to as parasympathetic 

stimulation). The only other immediate factor governing the heart rate would be the 

atrial pacemaker node found on the heart itself. Therefore, marked accelerations and 

decelerations can be traced to particular factors that influence the sympathetic and 

parasympathetic nervous system. For example, stimulation of baroreceptors in the aortic 

arch (through changes in blood pressure) and chemoreceptors in the cartoid sinus 

(through changes in partial oxygen pressures or "p02") both result in a deceleration 

mediated by the vagal nerve. In the case of a fetus under normal circumstances, the heart 

rate ranges from 120 to 160 beats per minute (bpm) (Symmonds, 2001). 

Barcroft initially showed results that indicated a link between umbilical cord 

occlusion, a parasympathetic response, and significant decelerations in FHR (Barcroft, 

194 7). Umbilical occlusion initiates an increase in fetal blood pressure (categorized as 

fetal hypertension) resulting in the stimulation of fetal baroreceptors, which leads to a 

central vagal response and a subsequent deceleration in FHR. Further work by Siassi 

also illustrated how changes in arterial p02 also contributed to this reflex bradycardia. 

Incidentally, intermittent hypoxia was found not to result only in vagally influenced 

bradycardia but prolonged hypoxia was found to cause metabolic acidosis, which lead to 

myocardial depression- a secondary mechanism for causing decelerations (Siassi, 1973). 

Thus, it is believed that FHR decelerations are an indicator of a decrease in the 

flow of oxygenated blood to the fetus and/or some fetal hypoxemic episode that is 
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limiting the amount of oxygen received by the fetus (Freeman, 1991). The mechanism 

linking fetal oxygenation and decelerations in the fetal heart rate is summarized in Figure 

1.2. 

1.3 EVOLUTION OF FETAL ELECTROCARDIOGRAMS 

1.3.1 A Brief History of Fetal Electrocardiography 

Cremer performed the first documented recording of a fetus' heart signal in 1906. 

Over the next 50 years, various improvements to fetal electrocardiography were made in 

the way of amplification, and abdominal electrode placement, mostly in an attempt to 

improve resolution of the fetal QRS complex and calculate the fetal heart rate (FHR). 

Often, such efforts resulted in the complete obliteration of the P and T waves 

(Symmonds, 2001). In the mid-1950's the introduction of intrauterine electrodes (i.e. 

electrodes placed on the scalp of the baby via the birth canal during labour) and improved 

filtering techniques allowed physicians to obtain P and T waveforms whose shapes and 

positions they could relate to various fetal characteristics such as oxygen saturation and 

bradycardia (Symmonds, 2001). Thereafter, many of the advances in improving the 

signal quality of the FECG focused on signals acquired directly from the fetus during the 

birthing process. The series of papers published by Hon and Lee on fetal 

electrocardiography from the early 1960's, for example, still dealt primarily with 

recordings from scalp electrodes. Improvements to signal-to-noise ratio that Hon and 

Lee discuss in their papers focused primarily on triggered averaging used in combination 

with analog filters (Hon and Lee, 1963). The use of scalp electrodes remains common as 
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is evidenced by the design of fetal monitors that are available from major medical 

equipment manufacturers such as GE Medical and Hewlett Packard. 

1.3.2 FECG EXTRACTION FROM ABDOMINAL RECORDINGS 

Initially, isolation of the FECG from the maternal abdominal recording containing 

both the FECG and the maternal electrocardiogram (MECG) was implemented with 

fairly elementary methods. These methods focused on the subtraction of the MECG from 

the mixed FECG-MECG abdominal recordings. In some cases (e.g. Surreau, 1955 and 

Wheeler, 1978), a separate MECG was recorded from the mother's chest in addition to 

the abdominal recordings. These schemes generally involved the "elimination" (whether 

through matched amplitude subtraction or outright erasure) of the MECG from the mixed 

abdominal signal. A major drawback of these methods was the difficulty of matching the 

MECG patterns in the abdominal recordings with those recorded from the chest region. 

In 1966, Van Bemmel published a pioneering procedure based on statistical signal 

processing for detecting the FHR (Bemmel, 1966). His particular scheme was less of a 

separation method than a technique to detect the presence of a fetal heart beat and 

estimate the FHR based on a windowed (i.e. using finite segments of an ECG signal) 

autocorrelation function (ACF). Van Bemmel compared the ACF of a mixed abdominal 

signal and that of some reference signal containing only the MECG (how this was 

obtained remains unspecified). There was a notable discrepancy between the two ACF's 

at a particular lag time that corresponded with the average fetal heart rate (Bemmel, 

1966). Autocorrelation is still used to determine short-term fetal heart rate using 
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UMBILICAL ARTERIAL OCCLUSION 

FETAL HYPERTENSION FETAL HYPOXEMIA 

FETAL BARORECEPTOR 
STIMULATION 

FETAL CHEMORECEPTOR 
STIMULATION 

CENTRAL VAGAL 
STIMULATION 

FHR DECELERATION 

HYPOXEMIC 
MYOCARDIAL 

Figure 1.2 Mechanism for decelerations in FHR (Source: Freeeman, (1991)) 
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ultrasound signals (Peters, 1990). Since Van Bemmel's method was published in an 

engineering journal it received very little exposure in the obstetrics community, which at 

the time was focused on the work ofHon and Lee. 

Further progress was made in FECG extraction by Ferrara and Widrow (1982) 

who applied the idea of using a linear combination of multiple observations to achieve a 

the desired signal from a mixture of signals. Ferrara and Widrow's technique in 

particular uses the now-familiar adaptive signal enhancement model where the error 

between some reference signal and a linear sum of multiple signals is minimized through 

the adaptation oftap weights (Ferrara and Widrow, 1982). In a similar concept, Bergveld 

and Meijer (1981) published a paper that forwarded the idea of arriving at an optimal 

linear combination not by adaptive noise cancellation but through a type of "spatial 

filtering". Although their work did not result in total signal separation, their idea that 

electrode position need only be adjusted for maximum FECG amplitude and was not 

considered critical for the actual separation process was significant (i.e. electrode position 

is accounted for in the optimization of the weights). 

Vanderschoot and Callaerts built on the ideas of Bergveld and Meijer (1981) by 

applying singular value decomposition (SVD) to the multiple samples of multiple 

electrode recordings. By doing so, they argued that orthogonality was the key to 

maximally separating the physiological signals found in the mixed abdominal recordings. 

Specifically, their work used, as a starting point, the assumption that FECG and MECG 

were orthogonal in signals space as well as the columns of the transfer vector. Although 

their assumptions did not quite match with recorded data, good signal separation was 

achieved, especially with the incorporation of thoracic MECG recordings, which aided in 



11 

the differentiation between FECG and MECG in signal space (Vanderschoot and 

Callaerts, 1987). Kanjilal et al. suggested that SVD could be performed on a single 

channel recording to extract FECG by building an observation matrix of consecutive 

samples of a single recording. The separation resulting from the method outlined by 

Kanjilal et al. (1997) appears good although the implementation of an automated scheme 

of building the observation matrix based on a singular value ratio (SVR) spectrum 

remains unclear (Kanjilal, 1997). 

fu 2000, De Lathauwer et al. presented a method to extract the FECG using blind 

source separation (BSS) (DeLathauwer et al., 2000). The use of BSS techniques on 

abdominal signals retained the idea of linearly combining the multiple ECG signals but 

differed in the criterion used in arriving at an optimal set of weights. Here, the driving 

force behind the optimization was the idea of making the resulting combined signals as 

statistically independent from each other as possible. One interesting aspect of using the 

BSS model for FECG extraction is the clear indication of the need to consider the 

statistical characteristics of the signals through the use of higher-order statistics whereas 

previous solutions attempted inversion using, at most, second-order statistics. 

DeLathauwer et al. (2000) also formally outlined how the FECG problem is essentially 

one that involves multiple sources (assumed to be independent), some unknown 

instantaneous mixture matrix that mixes these sources up (assumed to be linear), and 

multiple observations. This is of course the initial framework for a particular kind of 

BSS method known as independent component analysis (ICA). De Lathauwer et al. 

demonstrated the effectiveness of ICA on FECG isolation and their work was followed 

by a paper from Zardoso and Nandi (Zardoso and Nandi, 2001) comparing DeLathauwer 
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et. al's technique with adaptive weighting methods proposed by Callaerts et. al (Callaerts 

et al., 1990). Their comparisons show that the increased computational complexity of 

BSS methods resulted in a more robust approach. 

While progress was being made in the domain of signal processing - largely a 

field within engineering - independent work was being made by some physicians 

collaborating with physicists who specialized in deterministically chaotic systems. This 

particular thread of work began with Schreiber and Kaplan's paper on noise reduction in 

ECG's (Schreiber and Kaplan, 1996), which was based on similar work on chaotic data 

(e.g. Henon and Ikeda maps) (Grassberger et al., 1993). 

1.4SUMMARY 

The fetal electrocardiogram is useful in diagnosing the health of a fetus by it s 

morphology as well as its derivative quantities such as fetal heart rate. Although there is 

now a good understanding of how to interpret the fetal electrocardiogram, the actual 

acquisition of the signal remains a challenge. A variety of signal processing techniques 

have been proposed that address the extraction of the antepartum FECG from skin 

electrodes attached to the abdomen ofpregnant women. 
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Chapter 2 


FECG Extraction - Signal Processing Theory 


2.1 OVERVIEW 

Outside of instrumentation issues, the main focus of this thesis is related to the 

mathematical aspects of the feta electrocardiogram (FECG) extraction process. This 

chapter describes the theoretical basis for the two techniques we have chosen to use: 

nonlinear noise reduction and blind source separation. The principles of both techniques 

are examined, after which the application specific details of these techniques with regards 

to FECG extraction will be presented. The framework for nonlinear noise reduction 

involves the idea of delay space representation as well as the primary parameters that 

affect this representation: embedding window length and nearest neighbourhood size. 

Blind source separation separates signals by maximizing their respective independence in 

a statistical sense. Although the descriptions contained within are often mathematical, 
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this chapter is meant to an intuitive idea of how both techniques are able to separate the 

FECG from an otherwise mixed signal. 

2.2 NONLINEAR NOISE REDUCTION (NLNR) 

Quasi-periodic signals are accessible to a umque nmse reduction approach. 

Unlike aperiodic signals, quasi-periodic signals have repeating patterns in time even 

though the patterns themselves may be completely irregular and the period may show 

significant variation. The noise reduction scheme involves: 

1. 	 Transforming the data into its delay space representation 

2. 	 Making lower-dimensional linear approximations of short segments of the 

transformed data 

3. 	 Projecting individual data points onto the lower-dimensional subspace associated 

with the linear approximation 

4. 	 Resolving all the corrections made to the transformed data and applying an 

inverse transform to arrive at a corrected time-series. 

2.2.1 Delay Space Representation 

Many systems do not lend themselves towards traditional linear filtering 

techniques such as Fourier-based filters that assume that a distinction between noise and 

signal can be found in frequency space. For such systems, an alternate approach to 

capturing the characteristics of a signal involves breaking down the signal into a series of 

delay vectors. For a given moment in time t, each delay vector contains values of the 

time series x at t, t-r, ... ,t-(m-l)r where m is some positive integer and r is a real-valued 
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delay interval. Each delay vector represents a co-ordinate in an m-dimensional delay 

space (sometimes called phase space or an embedding space) and the delay co-ordinates 

form what is known as an attractor - a pattern resembling a closed loop around which 

delay co-ordinates are scattered possibly due to non-stationarity and noise. 

In order to construct a "good" delay space representation of the signal, it is 

necessary to determine an m and a rthat adequately capture the characteristic attractor. In 

nonlinear time series literature, the parameters m and r are collectively called the 

embedding and there have been several embedding theorems put forth that attempt to 

quantitatively arrive at appropriate embedding lengths (Grassberger, 1994). The 

alternative is to use heuristic approaches that require careful observation of the 

characteristic temporal patterns and a series of visualizations of lower dimensional delay 

representations. Appropriate plots used in an explorative way can actually prove useful 

in exploiting the structure hidden in scalar time series (Grassberger, 1994). Figure 2.1 

demonstrates how different characteristic components of an ECG waveform are 

represented in a two-dimensional delay space (i.e. m = 2) with r = 0. 02 seconds. 

2.2.2 Correction by Local Linear Approximation in Delay Space 

The principle of the noise reduction scheme lies in projecting delay vector co­

ordinates onto a local linear approximation of the attractor surface. The linear 

approximation consists of a subspace defined by the principal components of a local 

cluster ofpoints in delay space. Consider, for example, a time signal of length T seconds 

that has been converted into a delay space representation for a particular m and r. For 

simplicity let r = nk where n is some positive integer and k is the sampling rate. The 
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resulting data set consists of a total of Tk-(m-l)r m-length delay vectors. The correction 

of any particular delay vector x begins by searching the data set for its nearest neighbours 

according to, say, some Euclidean distance. In practice, this process should be limited to 

a reasonably sized subset of the data in order to speed up the overall process. In addition, 

the nearest neighbourhood's size could be increased to incorporate a minimum number of 

neighbours (Schreiber and Kaplan, 1996). For example, we could design our algorithm 

so that the initial Euclidean distance is increased by 10% until some minimum number of 

neighbours is found. Once a suitable neighbourhood is determined, the eigenvectors and 

eigenvalues for that neighbourhood are computed. The eigenvectors associated with the 

largest p eigenvalues (where p<m) are considered to span the subspace that is 

representative of the enveloping ellipsoid of the delay co-ordinates. The delay vector x is 

then "corrected" through an orthogonal projection onto this subspace. This correction 

procedure is repeated for all points in the transformed data set. 

2.2.3 Reconstruction 

Once the correction scheme 1s completed for all vectors, they need to be 

recombined into a single time-series. Since each element of the scalar time series is a 

member ofm different but consecutive delay vectors, it is necessary to find the average of 

these m different "instances" of a particular time-series element when performing 

reconstruction. Consequently, a delay vector set created from the reconstructed time 

series would actually not lie precisely on the local subspaces but are moved toward them 

(Schreiber and Kaplan, 1996). 



17 

1.5 

tau= 15 
2 .5,--~---r---~--~-~----, 

1.5 

0.5 

.()~5 0.5 1.5 2.5 

(b) 

tau= 3J 

(a) 

tau= 25 
2.5~-~--~-~--~-~--~ 

1.5 

0.5 

.()~5 0.5 1.5 2.5 

(c) 

tau= 40 
2.5 2.5 

1.51.5 

0.5 0.5 

-o~.L5--"----=o"=.5----'-------'1.5,-------'-- -::l2.5 -o~.'=-5--~---=o:"::.5:-----'--_,..1.5=---~-~2.5 

(d) (e) 

Figure 2.1 Two-dimensional delay space representation of ECG. (a) Original ECG sample, which is 
relatively noise free (b)-(d) Two-dimensional plot of delay space co-ordinates which are spaced apart 
by various tau values. Actual temporal spacing is tau multiplied by the sampling interval (2 ms in 
this case). The large loop represents the QRS complexes while the P and T waves reside in the 
smaller loop. Note that particular tau values directly affect the ambiguity of what the delay co­
ordinate represents in the original time series. 
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2.3 BLIND SOURCE SEPARATION 

Consider the classical example of a recording a conversation between multiple 

people in an echoless room using five microphones in varied positions around them. 

Each of the microphones records a (possibly) unique combination of the conversation 

depending on its relative proximity to the various people. Using only the five recordings, 

we want to isolate, as much possible, each person's voice. Knowing next to nothing 

about the situation in the room makes the problem a "blind" source isolation or separation 

problem. However, the lack of prior information is, in some sense, compensated by the 

"statistically strong but often physically plausible assumption of independence between 

the source signals." (Cardoso, 1998) The idea is to find some way of mixing the 

observations (i.e. the recordings) such that the initial mixing process is "reversed". The 

criterion that drives this process of "remixing" the observations is some measure of 

statistical independence between the resulting "remixed" signals. 

For non-engineers, the task of blindly separating two mixed signals may seem 

somewhat mysterious. Consider though the addition of multiple random variables from a 

statistical point of view. The Central Limit Theorem states that the sum of even two 

independent random variables is more Gaussian than the original variables, and thus as 

the number of summed independent random variables increases, the closer to Gaussian 

the distribution of that sum becomes. By constraining our sources to be non-Gaussian 

(except possibly for one source), separation becomes a process of finding the right 

weights that will allow the weighted sum of the observations to be maximally distributed 

in a non-Gaussian fashion. What we need then, from a high level perspective, is some 

measure of Gaussianity/non-Gaussianity for a given sampling of random variables (in 
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particular, the "remixture" of our observations). Many such measures have been 

suggested, from fourth-order statistics of a signal to information theoretic quantities such 

as negentropy. These ideas and will be more fully explored in the Section 2.2.3. 

Briefly, the idea of blind source separation can be approached from different 

paths, and the equivalencies between these approaches have been shown by Hyvarinen 

(Hyvarinen et al., 2001). Here, we will constrain our explanation to two prominent 

interpretations of blind source separation: Maximum likelihood estimation and 

information theory. The development of BSS from these two frameworks essentially 

leads to a coherent picture of why blind source separation tends to work as well as 

arriving at a practical and popular BSS algorithm known as independent component 

analysis (ICA). 

2.3.1 The BSS Model 

Before proceeding with the various mathematical derivations, it is necessary to 

establish the premise for the particular kind of blind source separation that will be dealt 

with in subsequent sections. Specifically, we need to establish some fundamental 

conditions and assumptions: 

2.3.2.1 Source Independence 

The sources are assumed to be statistically independent. Consider two random 

vectors s1 and s2, which represent our source signals. Independence implies that 

information on s1 does not yield any information about s2• A strict mathematical 
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definition of independence requires introducing joint and marginal probability density 

functions (p.d.f.'s) for s1 and s2: 

P12(SJ,s2) 7 joint p.d.f. of s1 and s2 

PI(si) 7 marginal p.d.f. of s1 defined to be fp12(SJ, s2)d s2 

p2(s2) 7 marginal p.d.f. of s2 defined to be fp12(s1, s2)ds1 

Given these defined quantities, our source signals s1 and s2 are said to be 

statistically independent if and only if 

(2.1) 


Similarly, for a set of n random vectors to be independent, their joint probability 

density function would have to be the product of their respective marginal densities. 

2.3.1.2 Limits on the Number of Gaussian Sources 

One fundamental constraint in ICA is that, at most, only one of the sources can be 

distributed in a Gaussian fashion if ICA is to work. The rationale behind this restriction 

can be best explained by examining a multivariate distribution of two Gaussian random 

variables with identical variances that has been decorrelated (rotated). The resulting joint 

distribution is completely symmetrical and ambiguous (Figure 2.2a). Contrast this with, 

for example, a similar example with the Gaussian densities replaced by uniform densities. 

In this case, the existence of different components is unambiguous (Figure 2.2b ). The 

asymmetry in the joint density would clearly be visible even if one of the two random 

variables had a Gaussian distribution. 
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2.3.1.3 Mixing 

The methods to be explored here are for use when the signal mixture can be 

assumed to be instantaneous, without delays and echoes. Such complications would 

require moving away from an additive mixture to a convolutive mixture, which requires 

slightly different separation criteria. ICA algorithms do not inherently account for 

convolutive mixing and therefore their application would not be appropriate for such 

cases. In addition, we would ideally like some statistical stationarity in the mixing 

process. That is, the mixing process does not drastically change from moment to 

moment. Strictly speaking, this is not a necessary condition although the rate of change 

of the mixing process will affect the ability of our algorithm to converge to a particular 

"remixture" solution. 

The most basic BSS model has n independent signals s1(t),... ,sn(t) denoted by an 

n-dimensional vector s(t) and the observations x1(t), ...,xm(t) denoted by x(t). Ideally, we 

have m;:?: n (i.e. an equal number or more observations than sources) defined in one of 

two ways: 

n 

x;(t) = l:a!isj(t) (2.2) 
j=l 

x(t) = As(t) (2.3) 

A is the unknown m x n mixing matrix that has rows that correspond to the n-

length weight vector aij· As mentioned in section 2.1, we want to somehow combine our 

observations (i.e. the individual elements Xi(t)) to arrive at out source approximations 

YI(t),... ,yn(t) or y(t). Given a "remixing" matrix W, we can write 

y(t) =Wx(t) ~ y(t) =BAs(t) =Zs(t) (2.4) 
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Figure 2.2 (a) A multivariate distribution of two independent Gaussian variables. The orientation 
of each component is unclear. (b)A joint distribution of two independent variables distributed 
uniformly. Note that the direction of each component is unambiguous, in contrast to the two 
independent Gaussian variables 
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Note that y(t) can easily be interpreted as a linear combination of the source 

vectors. W is an n x m matrix that is found adaptively according to some criterion of 

convergence. Criteria are often summarized in the form of functions known as a cost or 

contrast functions and convergence is a matter of optimizing such a function. A brief 

exploration of the nature of source separation gives a better idea of appropriate/practical 

cost functions. 

2.3.2 MAXIMUM LIKELIHOOD ESTIMATION 

For a given data model, "likelihood" is the probability of obtaining a certain data 

set as a function of the parameters of that model (Cardoso, 1998). This gives us a way of 

watching how the changes in parameters affect the chances of arriving at the observations 

that have been made. In fact, the goal becomes one of maximizing this likelihood and 

simultaneously finding the right parameters and the right models for the data. This is the 

idea behind maximum likelihood estimation (MLE). In the context of signal separation, a 

"model" refers to a statistical model that describes the way some quantity is distributed 

(e.g. a Gaussian model). In fact, the quantities in question are the source signals whose 

models are assumed to be unknown. We are, in essence, trying to "guess" and arrive at 

the model that best approximates the model describing the distribution of the source 

signals. 

In this formulation, we will drop the time index on our signal vectors and simply 

denote the source, observation, and source approximation signals as s, x, and y 

respectively unless otherwise noted. In addition, the derivation assumes m = n or that 

there are an equal number of observations and sources, implying that A is a square 
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matrix. Suppose that the p.d.f. for s is q(s). The density of x = As conditioned on a 

particular A and q( •) (the probability distribution of s) is then given by Cardoso ( 1998) 

as: 

This conditional probability is called the likelihood of x. The "A-1
" term is 

actually the remixing/demxing matrix that we intend to find as a part of our separation 

scheme. Hence, let us replace A-1 by Wand write the absolute value of the determinant 

of A as a constant term c. Next, let us then define X1:N as the matrix whose N columns 

represent N successive but independent realizations of the vector x. We then have 

N N 

p(X,:N;W,q) = flp(x(k);W,q)= fl c-'q(Wx(k)) (2.6) 
k=! k=! 

If we take the log of both sides and normalize each side by dividing by N, we get 

the normalized log-likelihood of seeing X1:N: 

1 1 N 
-logp(X,:N;W,q) =-~)ogq(Wx(k))+ canst. (2.7)
N N k=! 

As the number of realizations N approaches oo, the left side of the equation 

approaches the expected value of the quantity in the summation and hence we get 

1 N 
lim-L log q(Wx(k) )+canst.= E~og q(Wx) ]+canst. 
N--+~ N k=! 

E[logq(Wx)]+canst. ~ E[logq(y)]+canst. 

Here, we have further simplified the log-likelihood expression by replacing Wx 

with our source approximation vector y. 
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Recall that we define an expectation of a random variable u distributed according 

to f(u) as 

"' 
E[u ]= Juf(u)du (2.8) 

-«> 

There is a subtle step that needs to be briefly explained by rewriting the 

expectation term of the log-likelihood in integral form. Recall that q(•) is a hypothesized 

distribution/density function for our source vector s, based on application specific 

knowledge. Furthermore, we have y, the approximation of our signal that is a 

transformed version of s (i.e. y = Zs where Z is a product of W and A) with its own 

distribution r( • ), which changes with W since A is not accessible. The resultant 

distribution r( •) also happens to determine the nature of the expectation term in our log-

likelihood expression. Hence we get 

"' 
Jr(y)logq(y)iy +canst. (2.9) 

Which can be rewritten so that the log-likelihood expression can be expressed in 

terms of the Kullback-Leibler (KL) divergence K[•] and Shannon entropy H[ •]: 

}<v)log q(v}!y + const. = }<v)logq(v):~~ dy +const. 

}<v)log q(v)iy + const. = - }<v)log ;~~dy + }<v)logr{v}!y + const. 

"' 
Jr(y)logq(y)iy +canst.= -K~ Iq]-H~]+canst. (2.10) 

-«> 

The KL divergence is a non-symmetric non-negative measure of the divergence 

between the distributions of two random variables. By non-symmetric we mean that 
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K[rlq] is not necessarily the same as K[qlr]. The KL divergence is a statistical way of 

quantifying the closeness of two distributions. In the present context, the derived log-

likelihood expression incorporates this explicit measure of divergence between the 

distribution of y = Wx and the hypothesized distribution of the sources (Cardoso, 1998). 

Maximizing the log-likelihood then becomes a question of finding a W that minimizes 

the discrepancy between r( •) and q( •) as expressed by the KL divergence. 

2.3.3 INFORMATION THEORETIC INTERPRETATIONS 

Note that the KL divergence term embodies two measures of "mismatch" 

between y and s. Cardoso (1998) points out a classic property of the KL divergence: 

K[r Iq] =K[r Ir *] + K[r* Iq] (2.11) 

The term r*(•) represents a product of the distributions such that r* = (r*1) (r*2) 

... (r* n). Each r*i is equal to the distribution of the corresponding Yi· Note that r*( •) is 

essentially r( •) without the cross terms. The second KL divergence term is indicative of 

how far the marginal distributions of the outputs Y1,...,yn are from the hypothesized 

distribution. The first KL divergence term quantifies how far apart the output distribution 

is from the closest distribution with independent entries. Another name for such a 

measure is mutual information. The mathematical definition for mutual information can 

be derived directly from the KL divergence-based expression and summarizes the 

integrals in terms of differential entropy: 

n 

I{ypy2 , ••• ,yJ= LH(y;)-H(y) (2.12) 
i=l 
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Mutual information is a natural measure of the independence of a given set of 

random variables (Hyvarinen, 2000). It is always non-negative if and only if the 

individual entries are independent from one another. The idea of maximizing 

independence by minimizing mutual information is significant in that it allows us to 

mathematically justify the idea of achieving maximum independence by maximizing the 

non-Gaussianity of each component (mentioned briefly in section 2.1 ). We start by 

rewriting mutual information in terms of negentropy, which is proven to be a measure of 

non-Gaussianity (Cover and Thomas, 1991). Negentropy can be thought of as a 

normalized version of differential entropy in the sense that it is always non-negative. 

Specifically, it is defined as the difference between the entropy of a Gaussian variable 

with a similar covariance matrix: 

J(y) =H(ygauss)- H(y) (2.13) 

Here, Ygauss is a Gaussian random vector whose covariance matrix is the same as y. 

We can rewrite the definition of mutual information using negentropy instead of 

differential entropy, constraining the observation vectors to be uncorrelated. The 

''uncorrelatedness" constraint allows us to avoid dealing with cross correlation terms. 

The end result is 

n 

J(yl'y2'"''Yn) = J(y)- LJ(y;) (2.14) 

To evaluate Equation 2.14, a timely way of computing negentropy is necessary. 

Kurtosis-based methods of approximating negentropy suffer from the problems 

associated with accurately calculating kurtosis (a calculation that is sensitive to the 

presence ofoutliers). 
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An alternate approximation developed by Hyvarinen et al. (Hyvarinen et al., 

2000) is 

J (yi) ~ f k j [E {T j (yi) }- E {T j ( v)R (2.15) 
j 

Hyvarinen (2000) specifies Gj( ) to be some non-quadratic equations and k1 some 

positive constants. The random variable v is a Gaussian variable of zero mean and unit 

vanance. Hyvarinen (2000) draws attention to the simplest case (p=l) so that we have 

J(y;) ~ k[E{G(y;)}- E{G(v)}f (2.16) 

(2.17) 

That is, J(y;) is maximized when the quantity on the right is at maximum. In an 

optimization framework, we have from Equation 2.17 an objective function for the ith 

component y;, dependent on the choice of some G( ). 

(2.18) 

Noting that 

where x is the observation vector (which is not variable) and Wi is the ith row of the 

demixing matrix W (which is variable), we can re-write the objective function as a 

function ofwi alone: 

(2.19) 

It is possible to optimize our objective function using stochastic gradient 

descent. Although this can and is done using neural algorithms that allow for fast 

adaptation to non-stationary signals (Hyvarinen, 2000), the methodology outlined in 
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Section 2.3.2 involves computations made in batch mode, favouring appealing 

convergence properties over real-time adaptation (Hyvarinen, 2000). 

2.3.4 ICA IMPLEMENTATION USING NEWTON'S METHOD 

In order to find the maxima of JG(w) (for any individual component) as defined 

in Equation 2.19, we clearly need to find the maxima of E{G(wTx)} for certain values of 

w. Hyavarinen (2000) sums up his development of a Newton's method-based algorithm 

(built on the assumption of white or whitened data) to find these optima in 4 steps 

(Hyvarinen, 2000): 

1) According to the Kuhn-Tucker condition (Luenberger, 1969), the optima ofE{G(wTx)} 

under the constraint E{(wTx/} = llwll2 
= 1 are obtained at points where 

F(w)= E{xG(wTx)}- f3w =0 (2.20) 

p is a constant based on the optimal value of w. For the purposes of a practical 

implementation, we use the current value instead. 


2) Solving for F(w) = 0 using Newton's method takes the initial form 


+ F(w) 
(2.21)w =w- VF(w) 

+ 

w• = : +II ~ newnormalized value of the current vector w 

11 

3) Formally, the Jacobian ofF(w), denoted VF(w) is defined as 

(2.22) 
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In order to simplify the inversion, we exploit the fact that whitened data allows for the 

reasonable approximation 

This gives us a diagonal matrix whose inverse is straightforward. 

4) The final step involves substituting the equation from step 3 and multiplying both 

sides by 

This gives us the final form of Hyavarinen's iterative scheme to achieve a single 

independent component: 

(2.23) 

+ 

w• = : +II ~ newnormalized value of the current vector w 
11 

Hyvarinen further stabilizes his algorithm by adding a step-size parameter ll to the 

F(w)/VF(w) term in the second step. When convergence is achieved for a single 

component, the data set is projected onto the orthogonal complement of this component 

and the process is resumed. Hyavarinen (2000) refers to this method as a "deflation" 

scheme. 

2.4 APPLICATION OF NLNR AND BSS TO FECG ISOLATION 

2.4.1 NLNR Applied to Fetal Electrocardiography 

The application of NLNR techniques to abdominal FECG recordings is the focus 

of research by Thomas Schreiber, Marcus Richter, and Daniel T. Kaplan summarized in 

papers that were published between 1995 and 1998 (e.g. Schreiber and Kaplan, 1995­
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1996 and Richter et al., 1998). Their work extended the idea of reducing noise in 

deterministically chaotic data to cleaning up noisy electrocardiograms. Eventually this 

lead them to formulate a method to isolate the FECG from a single abdominal electrode 

recording by varying the parameters that define the embedding window length (i.e. m and 

r) used in the NLNR scheme outlined in section 2.2. More specifically, NLNR is 

performed twice on the same mixed MECG/FECG signal. It is first performed such that 

the fetal component is removed along with regular noise. Subtracting the resulting signal 

containing only a maternal component from the original gives an approximation of a fetal 

signal plus noise. The procedure is then repeated on the original data with a shorter 

embedding window and a smaller neighbourhood size in order to obtain a relatively 

noise-free MECG/FECG signal. The fetal component is estimated as the difference 

between the two resulting signals as illustrated in Figure 2.3. The methods proposed by 

Richter et al (1998) is slightly modified to account for the case when the noise amplitude 

is comparable to the peak-to-peak amplitude of the FECG, making the separation of the 

MECG/FECG and the noise more difficult. Thus, NLNR with slightly altered parameters 

is performed directly on the fetal-noise signal rather than subtracting from it a signal 

containing only noise. 

Further, the specific parameters (m, r, and the nearest-neighbour dimension p) 

that give the best results with respect to a particular effect were found through 

experimentation (Richter et al., 1998) and are summarized in Table 2.1. 
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m T 

(in ms) 
p 

Comment 
Result of using NLNR with these m, r, and p 

values 

10 4 10 

The delay vector length is 40 rns 
(average maternal R-R interval 

is 800 ms - roughly twice that of 
fetus) 

Performed on the original signal. The result is 
an MECG only signal which is subtracted from 

the original signal, yielding FECG+noise 

10 2 3 

Smaller neighbourhood size and 
embedding window length 

means finer resolution in delay 
space 

Performed on the FECG+noise signal. The 
result is a reduction in the noise but not an 

elimination of the FECG component 

Table 2.1 Parameter values for NLNR used in the FECG separation process in (Richter et al., 1998). 

One of the main advantages of this process is that the data acquisition process is 

simplified by the fact that only one signal is necessary. However, baseline fluctuations in 

the signal can cause problems by causing the clusters of delay vector co-ordinates to be 

less cohesive. 

2.4.2 BSS Applied to Fetal Electrocardiography 

The application BSS techniques to abdominal FECG recordings is the focus of 

work done by Lieven De Lathauwer and his colleagues at K. U. Leuven in Belgium and 

is mentioned in articles by De Lathauwer et al. (2000) and Zarzoso and Nandi (2001). 

In some ways ICA goes further than any other techniques in isolating the fetal signal 

because it is not only trying to enhance and/or attenuate certain parts of abdominal 

signals, but actually attempting to identify and invert the mixing process that makes 

FECG extraction problematic in the first place. In addition, the distribution of ECG 

signals is favourable in an ICA context since they are clearly non-Gaussian (Figure 2.4). 



33 

TOTALECG 

TOTALECG 

MECG ~ ...............................j FECG +NOISE 


MECG + FECG ~.......................................~ NOISE 


(SUBTRACT)--------t------- ­

APPROX. FECG 

Figure 2.3 Schematic diagram for the extraction of the fetal ECG. Two locally linear projections 
are performed. The fetal component is estimated as the difference of the two resulting signals. 
Sometimes, it can be useful to perform an additional noise reduction step on the estimated fetal ECG 
signal, with an additionally lower neighbourhood diameter and delay vector length (Source: 
Schreiber and Kaplan, 1996). 
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Figure 2.3 Demonstration of the effects of low frequency noise (e.g. muscle movement) on an ECG's 
delay space representation. The ECG sample in (a) has been combined with a sinusoidal signal 
resulting in the signal shown in (c). The associated delay space representation in (d) shows how the 
manifold is increasingly ambiguous. 



35 

Figure 2.4 Demonstration of the non-Gaussianity of ECG signals. The histogram of a typical ECG 
signal has a highly skewed distribution. In particular, the R-wave results in a long right-hand tail. 
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2.4SUMMARY 

The nonlinear noise reduction technique outlined in this chapter works well with 

quasi-periodic signals in particular because the "clustering" of delay vector co-ordinates 

in delay space allows for the eigen-analysis to yield plausible linear approximations. 

However, the noise reduction scheme appears to have an inordinate number of 

parameters that need to be optimized, and it is not clear as to what the quantitative 

objective of this optimization should be. One goal of this thesis is to obtain a range of 

values for which both FECG waveforms and noise components can be separated from a 

mixed signal. 

In contrast to the nonlinear noise reduction technique blind source separation 

requires less application specific adjustments before the data is actually processed. One 

can say, moreover, that the non-Gaussian nature of ECG signals makes successful 

separation likely. 
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Chapter 3 


Recording Apparatus and Protocol 


3.1 OVERVIEW 

The objective is to design and build a data acquisition system that can amplify and 

digitize the electrical activity within the abdomen of a pregnant woman. This chapter 

describes the main components of our system including: 

1. 	 Transducers to convert the electrical activity recorded from the surface of the 

body 

2. 	 High quality amplifiers with attractive SNR properties 

3. 	 A subsystem to digitize and record the signals for further processing offline 

(possibly on a different computer system). 



38 

Although the design is not constrained to be portable, the preference is for the overall 

setup to be non-intrusive. In addition, this chapter outlines a detailed procedure for 

recording signals from the maternal abdomen. 

3.2 APPARATUS 

3.2.1 Electrodes 

Standard ECG conductive adhesive electrodes are cheap, widely available, do not require 

additional electrolyte jelly and are designed to fit a widely available ECG leads with 

button clips. However, given that the initial stages of the recording session requires the 

technician to find the optimal electrode location through some type of exploratory 

process, the adhesive electrodes prove to be less than ideal since they are designed for 

single use and constant sticking and unsticking of such an electrode would be unpleasant 

for the patient. An alternative to adhesive electrodes is to use bulb electrodes that consist 

of a small metal cup with a hole in that leads to a rubber bulb. Used in conjunction with 

an electroconductive jelly, these electrodes allow the technician to continuously adjust 

the position of the electrode and secure its various temporary positions by using the 

suction generated by deflating the bulb. Since prolonged use of bulb electrodes in one 

spot causes reddening of the skin due to the suction, it is probably best to substitute them 

for adhesive electrodes once a suitable electrode location is found. The impedances for 

the bulb electrodes and leads were all measured to be between 1.3 and 1.5 Ohms each. 
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3.2.2 Amplifiers 

In light of the inherently weak fetal signal (which can sometimes be comparable 

to noise levels), there is a priority on having high-quality amplifiers available for 

recording. Due to the availability of off-the-shelf ECG monitors and the low priority for 

portability, amplifier circuitry was not custom built at this time. The Spacelabs 90721 

neonatal monitors used for recording purposes have the following amplification 

specifications: 

Gain 1000 

Bandwidth 0.2 Hz to 40 Hz at 3 dB points 

CMRR 100 dB at 60Hz 

Filtering Line Frequency (50Hz/60Hz) notch filter 

Table 3.1 Spacelabs 90721 neonatal monitor amplifier specifications 

For the short ~o midterm, the Spacelabs 90700 series ECG monitors are fully 

supported by local offices and warehouses, and the acquisition of parts and 

documentation does not appear to be problematic. They are a viable alternative to 

smaller custom-built ECG amplifiers while such devices remain under construction. 

3.2.3 Digitization 

Analog-to-digital conversion is accomplished by a DataQ CODAS System 

installed on a 486-powered personal computer. The specifications for the onboard 

analog-to-digital converter are outlined in Table 3.2. 
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Resolution 12-bits 

Total Input Channels 16 

Range -2.5 V to 2.5 V 

Overall Throughput 50kHz 

Table 3. 2 DataQ CODAS system digital-to-analog conversion board specifications 

Aside from the general bulk of computer and the relative lack of onboard 

computing power for immediate analysis, the CODAS data acquisition unit is more than 

adequate for the collection of data, especially considering the high throughput of the 

converter. A preferred solution is a Pentium-based laptop computer running the 

increasingly popular Lab View data acquisition/analysis suite from National Instrument. 

3.2.4 Assembled Apparatus 

The overall hardware setup fits on a cart with the monitors occupying the lower 

shelf and the data acquisition hardware occupies the top. The metallic cart includes a 10­

gauge grounding wire, which connects the cart to the patient bed for optimal grounding 

(the monitors are designed to be grounded to their respective casings which are in contact 

with the cart). All electronic components are plugged into a hospital-grade power bar 

and the entire unit is then isolated by and isolating transformer. A diagram of the 

recording suite is pictured in Figure 3 .1. 
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Figure 3.1 Diagram of apparatus used for abdominal recording. 
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3.3 RECORDING PROCEDURE 

One of the constant challenges of employing abdominal ECG's for any type of 

diagnosis has been the difficulty in obtaining a useful fetal signal. Optimal recording of 

the fetal signal is a combination of (a) medical expertise, (b) obtaining the maximum 

amount of prior information about the fetal position, and (c) an exploratory electrode 

placement process that takes advantage of the previous two factors. In many of the 

articles that focus on using abdominal recordings for fetal diagnoses there is much 

written about the nature of the FECG signal with respect to anatomy and physiology. 

However, there is very little written of a systematic method to actually record the data 

and this is where assistance from physicians and nurses experienced in performing 

abdominal recordings becomes crucial. The protocol presented in section 3.2.3 reflects a 

combination of information from obstetrics texts, experience from previous experiments, 

and knowledge obtained through the course of the initial stages of the current recording 

sessiOns. 

3.3.1 The Nature ofFECG Recording 

The pumping action of a human heart is the result of the nervous system initiating 

an electrical wavefront, which propagates across the heart. The subsequent electrical 

current causes potential differences to exist on different point of the body. These 

potentials are what ECG equipment is designed to detect and record. The now well­

known ECG waveform has direct interpretive value concerning the mechanical function 

and the health of different heart muscles. The FECG is no less relevant for investigating 

the health of the fetus. However, recording the fetal ECG before term is made 
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challenging by several factors. Potential measurements made on the mother's abdomen 

contain contributions from several bioelectric phenomena (e.g. maternal, and fetal heart 

activity, potential distributions generated by respiration and stomach activity, uterine 

muscle contractions). In addition, there are several sources of noise (e.g. 60 Hz line 

noise, thermal noise, electrode impedance). Lastly, difficulties in recording the FECG 

using abdominal electrodes arise from factors inherent to pregnancy such as the 

impedance brought on by the development of the vernix caseosa and the placenta at 

different stages of pregnancy, and the patient-to-patient variability in obesity, fetal 

position, and fetal geometry. Each of these aspects of recording the FECG from 

abdominal electrodes needs to be addressed in the recording protocol. 

3.3.2 Recording Protocol 

The protocol outlined in this section is derived from a combination of direct 

medical expertise, experience, and insights into abdominal recording featured in 

(Freeman, 1991). Volunteers were chosen and approached by Dr. Barbara Brennan of 

McMaster University Medical Center (MUMC) and consent is obtained formally through 

a written form that is witnessed and signed. Dr. Patrick Mohide of MUMC observed that 

the optimal stage in pregnancy for abdominal recording is between 24 and 26 weeks. 

Prior to this window, the fetal signal is too weak and afterwards the impedance from the 

tissue and fluid surrounding the fetus becomes too great. When available, the attending 

physician first determined fetal position and the approximate location of the fetal heart. 

This procedure requires the use of ultrasound equipment and takes anywhere from 15 to 

20 minutes. 
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Once a reference point was decided upon, a line from that point to the maternal 

heart was noted and used as the cardiographic midline. Optimal electrode placement was 

then found through an exploratory ECG process. One monitor was activated and the 

ground lead for this monitor was attached to the patient's leg via a plate electrode or a 

simple adhesive electrode. Next, the first suction electrode was placed in the supra-pubic 

region as close to the midline as possible. This particular region has been found to have 

the least amount of signal impeding tissue. Staying on the midline and relative to the first 

electrode, the second suction electrode was placed an equal distance on the opposite side 

of the approximate fetal heart position. This second position may correspond to an infra­

umbilic position. While watching for improvements in the FECG waveform amplitude, 

the second electrode was moved from side to side. Here, Freeman (1991) advises moving 

the electrode away from the fetal small parts and the possibility of tilting the mother's 

position for improving the fetal signal. Locating an optimal electrode location often 

required an additional 20 minutes. 

For recording purposes the suction electrodes were substituted with adhesive 

electrodes. For four abdominal channels, four pairs of electrodes were placed in a cluster 

around the optimal electrode location. The remaining monitor was used for the maternal 

thoracic (chest) ECG recording. During a five-minute recording, the subject was asked to 

remain as still and relaxed as possible to minimize motion and respiratory artifacts. 
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3.4 SEPARATION SOFTWARE 

The algorithms outlined in Chapter 2 are both implemented as Matlab functions 

and scripts. Specifically, the NLNR Matlab code was written by the author according to 

the methodology outlined by Schreiber and Kaplan (1996) and the ICA Matlab code is 

the FastiCA package written by Hugo Gavert based on Hyavarinen's fixed point ICA 

algorithm and IS available from Helsinki University's website 

http://www.cis.hut.fi/projects/icalfastica/. 

In addition to the Matlab implementations, both techniques have been re-written 

in C-code making the analysis tools more widely available to the collaborating physicians 

as well as reducing the computation time. All code written by the author over the course 

of this thesis is available upon request. 

3.5SUMMARY 

It is very likely that the overall recording procedure will evolve with the number 

of recordings that are made. We have assumed that amplifiers with CMRR of 100 dB is 

sufficient to ensure that the fetal signal can be recorded using skin electrodes attached to 

the abdomen. We have also assumed that the neonatal amplifier gain is sufficient to yield 

recognizable FECG. The validity of both assumptions requires the analysis of the 

recorded data and continuous consultation/discussions with medical experts. 

http://www.cis.hut.fi/projects/icalfastica
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Chapter 4 


Results and Analysis 


4.1 OVERVIEW 

The NLNR technique was tested using synthesized mixed ECG primarily to 

ascertain the effects of changes in the various parameters. The results from these tests 

offer insight into ways of efficiently finding effective parameters for real physiological 

signals such as MECG and FECG. Since the BSS technique is a form of blind 

identification, it is much more meaningful and timely to apply the BSS algorithms to 

real-world mixtures rather than synthesizing and simulating a mixing matrix and multiple 

sources. Several recordings were made over the course of the writing of this thesis. It 

should be noted that the final recording protocol outlined in Section 3 evolved to its 

documented form while these recordings were being made. 
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4.2 ABDOMINAL RECORDINGS 

Five abdominal recordings have been attempted to date (Table 4.1 ). Of these five 

sessions, only on the last four occasions was any signal recorded. The FECG is not 

evident in any of these recordings. The recordings served more as opportunities to 

familiarize the relevant staff with the recording procedure and to bring attention to issues 

such as the necessity for a systematic scheme to position the electrodes and the necessity 

to employ suction electrodes for exploration purposes and use adult-sized adhesive 

electrodes for the actual recording. More importantly, the abdominal recordings are 

useful in providing a "real" signal environment (minus the fetal signal) for better 

simulations. Segments of our recordings (Figure 4.1 - Figure 4.4) clearly show the 

presence of the various artifacts that are inherent to abdominal recordings. Figure 4.5 

illustrates how a suitably scaled and subsampled ECG signal is added to simulate the 

absent FECG component in the recorded signal. 

Subjects 
Initials 

Gestation 
(weeks) 

Length of 
Recordinng 
(minutes) 

Comments 

KG 36 - - AID converter malfunction 7 no ECG 

SM 27 5 
- Inadequate grounding wire results in abundant 60 Hz noise 

- Neonatal electrodes used (less obtrusive) 

DE 32 2 
- Better grounding wire 

- Adult electrodes used (stronger signal) 

SM 30 5 - Introduced use of suction electrodes for initial electrode positioning 

JW 35 3 

- New electrode positioning protocol (ultrasound used to determine 

approximate fetal heart position) 

- Reference electrode for abdominal ECG seems best on when placed 

on back of patient 

Table 4.1 Summary of recording sessions made at McMaster University Medical Center. 
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Figure 4.1 Sample of a 4-channel abdominal recording made at McMaster University Medical 
Centre. Note the increased amount of 60Hz noise in channel 2 (second row). For this recording, all 
channels were used for abdominal signals and no thoracic ECG was recorded. 
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DED516 ECG signal 
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Figure 4.2 Sample of a 4-channel abdominal recording made at McMaster University Medical 
Centre. Note the inversion of the R-wave in the abdominal channels (channels 2, 3, and 4) and the 
lower amplitude of MECG components. 



50 

500 1DOD 1500 2000 2500 3000 3500 4000 4500 5000 5500 

_:~b:};f?!s:I:J::U 

500 1DOD 1500 2000 2500 3000 3500 4000 4500 5000 5500 

Time (in milliseconds) 

Figure 4.3 Sample of a 4-channel abdominal recording made at McMaster University Medical 
Centre. Note the motion artifact from fetal movement in the abdominal signal at the bottom. The 
thoracic signal is second from the top and is weakly amplified. 
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JVVDBD1 ECG signal 
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Figure 4.4 Sample of a 4-channel abdominal recording made at McMaster University Medical 
Centre. 60 Hz appears to be problematic in this recording as well. 
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Figure 4.5 Example of combining simulated FECG signal and actual (filterd) abdominal recording. 
The filtering is meant to reduce the line noise and some of the baseline drifting. Note that the FECG 
is not added to the first channel, which was recorded from chest leads (lead II ECG). 
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4.3 NOISE REDUCTION OF A SYNTHETIC MECG-FECG SIGNAL 

For initial testing of the NLNR algorithm two adult ECG's sampled at 500 Hz 

were artificially mixed together to simulate the mixed MECG-FECG signal from the 

abdomen of a pregnant patient. One of the two signals was subsampled to have an 

approximate R-R interval of 500 ms (roughly half the size of an adult R-R interval) and 

scaled to be approximately a fifth of the amplitude of the other ECG. This is based on 

tracings observed in previous articles (Hon and Lee, 1963; Bemmel, 1968; Crowe et al., 

1996) and on a previous occasion at McMaster University Medical Centre. Figure 4.6 

illustrates a sample of the mixed signal and its two-dimensional delay space 

representation. In order to assess the optimal parameter values (since the process of 

finding these values is not discussed by Schreiber and Kaplan), we perform a bank of 

tests for parameter adjustments and observe the effects on the FECG component of the 

simulated mixed signal. 

The NLNR is a process that is capable of filtering out different components found 

in the ECG signal based on duration of signal components (by adjusting the embedding 

window length defined as (m-l)r) and the amplitude of signal components (by adjusting 

the nearest neighbourhood via the neighbourhood radius) (Richter et al., 1998). The aim 

of these experiments is to find the optimal values for these parameters and develop some 

intuition about the effects of varying these parameters. We believe this practical 

expertise will lead to better signal analysis in the future. 
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4.3.1 Embedding Window Length 

The first set of tests involves adjusting the r parameter while keeping m = 10. 

Recall from Figure 2.1 that the embedding window length value is directly associated 

with how the manifold "unfolds" in delay space. Figure 4.7 shows the results of varying 

r. The fact that the MECG is well-preserved while FECG is attenuated for certain values 

of r shows how the NLNR technique differs from traditional frequency based filtering 

that would filter out parts ofboth the MECG and FECG. 

In particular, the maternal ECG waveform is nearly unaffected by the NLNR 

process. The fact that the MECG waveform is not affected (especially the R-wave) helps 

to overcome the difficulty in matching the amplitudes of the maternal components when 

the processed signal is subtracted from the original mixed signal. This difficulty is 

exactly what makes simply subtracting a thoracic signal from an abdominal signal 

problematic. The attenuation of the fetal signal around the T -wave is particularly good 

largely due to the uniqueness of T -wave related points in delay space. Also, there 

appears to be a "ringing" phenomenon about the FECG waveforms as r is greater than 15 

(Figure 4.7e and Figure 4.7f). In fact, the attenuation of the FECG in Figure 4.7fis about 

the same as that in Figure 4.7b except with additional noise. One may recall that 

increasing the embedding window length (i.e. (m-l)*r) also resulted in a worse delay 

space representation (Figure 2.1 e). In this case, the embedding window for what is 

nearly an ideal signal whose FECG is suppressed and whose MECG is conserved appears 

in Figure 4.7c is 90 samples or 90 ms at a 1000Hz sampling rate- roughly a tenth the 

time between successive heart beats for an adult and little less than fifth the time between 
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Figure 4.6 Comparing the mixed ECG delay space representation in (b) with the delay space 
representation of a normal ECG signal in (d). The associated ECG signals (sampling rate 1000 Hz) 
appear in the left hand column. The effect of the second ECG signal leaves the QRS complex of the 
"maternal" signal relatively uncorrupted. The idea is to project the "deviated" points back onto the 
approximate manifold associated with the quasi-periodic ECG. 
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Figure 4.7 The effects of varying the T parameter. (a) The original mixed signal. The NLNR­
processed signals show how the FECG signal is increasingly attenuated while the MECG remains 
practically unaffected. (b) r-=5 (c) r-=10 {d) r-=15 (e) r-=20 (f) r-=40. The bottom right result is 
beginning to show signs of "ringing" around the locations of the FECG waveforms. 
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Figure 4.8 Approximate FECG signals from subtracting the processed signal from the original 
signal for various values of the -.parameter. (a) r-5 (b) r-10 (c) r-15 (d) r-20 (e) r-40 (e) r-50. The 
optimum value of -.is approximately 5 to 10. The approximate signal becomes increasingly "noisy" 
due to the fact that an increased embedding window used in the NLNR process creates a greater 
difference between the desired signal component of the original signal and the processed signal. 
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successive heart beats for an adult and little less than fifthe the time between successive 

fetal heart beats. The effectiveness of the NLNT process is more evident in Figure 4.8, 

which illustrates the result of subtracting the processed signal from the original signal. 

Given an embedding window of 90 ms, we tried varying the parameter m only to 

discover that above m = 10, there is very little difference in the resulting approximate 

FECG signal. This makes sense since m represents the dimension of the subspace 

occupied by the mixed MECG-FECG signal. Increasing number of dimensions above the 

dimension of the subspace should have no effect on the separation process. 

4.3.2 Nearest Neighbourhood 

A series of experiments were run to determine the effects of varying the 

parameters associated with the nearest neighbourhood search in delay space. This 

includes the size of the nearest neighbourhood (in terms of the delay space plots, this 

would be the number of total points) as well as the radius. It should be noted that in the 

implementation of the NLNR process, the nearest neighbourhood radius exponentially 

increases from its initial value until a predetermined number of delay coordinates are 

found. Our tests demonstrate that a small neighbourhood radius (e.g. Figure 4.9a) causes 

the NLNR process to insufficiently suppress the FECG component. On the other hand, 

too great a radius causes the MECG to be increasingly suppressed, causing problems in 

the subtraction process. The ideal size of the radius appears to be lie between the 

maximum amplitudes of the MECG and FECG signals. 

Finally, the total number of delay coordinates used for a "correction" iteration 

was varied as well. The number of delay coordinates equivalent to 1-2 ECG cycles was 
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Figure 4.9 The effects of varying the nearest neighbourhood radius. The NLNR-processed signals 
show how the FECG signal is increasingly attenuated for increased radius length epsilon (a) 
epsilon=O.S (b) epsilon=l (c) epsilon=2 (d) epsilon=4 (d) epsilon=8 (e) epsilon = 20. However, note 
that for the last two values, the MECG is significantly reduced in amplitude, which causes problems 
in trying to calculate an approximate FECG signal. The desired result is (c) for which the epsilon 
value is 4. 
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Figure 4.10 Approximate FECG signals from subtracting the processed signal from the original 
signal for various nearest neighbourhood radius (epsilon) values. (a) epsilon=O.S (b) epsilon=l (c) 
epsilon=2 (c) epsilon=4 (d) epsilon=8 (e) epsilon= 20. Note that the FECG waveform is incomplete in 
{a) because the FECG was not adequately suppressed in the previous step. In addition, the 
attenuation of the MECG signal in Figure 4.9d and 4.9e result in an MECG waveform in the 
associated FECG approximations. The ideal best result is (c), for which epsilon is 4. 
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required to see any noticeable "corrections" to the original signal (the actual number of 

delay coordinates used depended on the sampling rate). However, it was found that of 

all parameters, the NLNR process is least sensitive to the number of delay coordinates 

used. An increased number of delay coordinates only lengthen the computation time. 

4.4 NLNR ON K. U. LEUVEN DATA 

A similar bank of tests were performed on a data set obtained online from 

http://www.esat.kuleuven.ac.be/sista/daisy/ where Katholieke Universiteit Leuven in 

Belgium has made available the cutaneous potential recordings of a pregnant woman. 

This is a portion of the data used by De Lathauwer (2000) to demonstrate the 

effectiveness of BSS on abdominal MECG-FECG signals. Figure 4.9 displays a 

segment of the K. U. Leuven recording and a two-dimensional delay space 

representation. The data appeared to be sampled at 250 Hz and the amplitude was scaled. 

4.4.1 Embedding Window Length 

The embedding window length m was varied as before. The results were 

consistent with the results from Section 4.3. The embedding window that gave ideal 

results in terms of suppressed FECG and preserved MECG corresponded to the case 

when m=20 and r-2, and when m=JO and r-2. For a 250Hz sampled signal is equal to 

an embedding window of 152 ms and 72 ms, respectively. For other values of m and r 

we again have difficulty in adequately subtracting the MECG component (note the 

http://www.esat.kuleuven.ac.be/sista/daisy
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Figure 4.11 A sample of the K. U. Leuven MECG-FECG signal (a) and a two-dimensional delay­
space representation for tau= 3 and m = 2 (b). 
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Figure 4.12 Approximate FECG signals from subtracting the processed signal from the original 
signal for various rvalues (a) -r-1 (b) -r-2 (c) -r-4. In the presence of noise, the embedding window 
size is increasingly critical in terms of adequately subtracting the MECG component and preserving 
the FECG component. For all three cases, m=20 and epsilon=15. 
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Figure 4.13 Approximate FECG signals from subtracting the processed signal from the original 
signal for various -rvalues (a) r-=J (b) r-=2 (c) r-=4. The epsilon value has been increased to 25, which 
results in undesired residual MECG components for all three embedding window lengths. 
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residual MECG components in Figure 4.12c). It was difficult to extract the complete 

FECG signal, even for the ideal case. However, the FECG is sufficiently unambiguous 

for calculating the R-R intervals of the FECG and, subsequently, the fetal heart rate 

variability. 

4.4.2 Nearest Neighbourhood 

In order to isolate the FECG, we observed that the nearest neighbourhood radius 

falls between the maximum amplitudes of the fetal and maternal R-waves. For the K. U. 

Leuven data, the corresponding values are approximately 10 units and 40 units, 

respectively. Over a range of epsilon values between these two extremes, optimal 

FECG extraction occurs closer to the FECG R-wave value. Figures 4.12 shows good 

FECG isolation for an epsilon value of 15, but Figure 4.13 shows how, for the same 

embedding window size, an epsilon value of 25 results in residual MECG components in 

the approximated FECG signal. 
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Figure 4.14 A segment of the the original K. U. Leuven signal. The "SNR" between the MECG 
component of the signal and the FECG component of the signal is about 10 dB. 
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Figure 4.15 An approximate FECG signal. The extraction of the prominent R-wave allows for the 
straightforward calculation of derivative quantities such as the fetal heart rate. 
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Figure 4.16 Approximate MECG signal. The NLNR process has effectively removed the fetal 
waveform and preserved the maternal waveforms. The better the preservation of the MECG, the 
more effectively it can be used to lessen the presence of a MECG component in the approximate 
FECG signal {see Figure 4.15). 
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4.5 BLIND SOURCE SEPARATION ON ABDOMINAL RECORDINGS 

In the absence of any detectable FECG component, the abdominal recordings 

made at McMaster University Medical Center were combined with a re-sampled and 

scaled adult ECG that would simulate the FECG (Figure 4.5). The scaling of the adult 

ECG was varied to investigate the particular levels for which a BSS can successfully 

isolate the fetal signal. The main criterion for separation is the ability to visually discern 

the R-wave of the fetal signal and detect the R-wave through a QRS detection algorithm 

that is typically employed in heart rate variability software. The amplitude of the FECG 

was varied such that the SNR between the MECG and FECG defined by 

MECGRMS
SNRMF =20log10 (4.1)

FECGRMS 

ranges from 12 dB to 6 dB. MECGRMs and FECGRMs are the root mean square values of 

a segment of the maternal and fetal signal, respectively. 12 dB roughly corresponds to 

the case when the maternal R-wave is about 10 times the amplitude of the fetal R-wave 

and 6 dB corresponds to the case when the difference is approximately a factor of 2. 

Recording a fetal R-wave greater than half the amplitude of the maternal R-wave is 

highly unlikely. 

Only for one of the four recordings did the FastiCA algorithm yield favourable 

results. For this one case, the maximum SNRMF corresponding with a visible fetal signal 

among the separated signals was 10 dB (Figure 4.18). The noise contained within the 

separated FECG signal caused the peak-detection algorithm to fail, but we were able to 

reduce the noise by applying the NLNR process (m = 10, 't = 4, epsilon = 2.5). A 

segment of the resulting FECG signal is visible in Figure 4.19. In addition, we can see 
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Figure 4.17 Thoracic (top) and abdominal (rows 2 to 4) recordings mixed with a scaled and re­
sampled ECG signal simulating a FECG component. The signal-to-noise-ratio between the MECG 
and FECG components in the simulated is 10 dB. 
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Figure 4.18 Successful separation of the fetal signal (third from top). The signal-to-noise-ratio 
between the MECG and FECG components in the simulated signal before the ICA algorithm was 
performed was 10 dB. The noise that was present is mostly concentrated in the bottom component. 
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Figure 4.19 The third output component of the BSS process before (a) and after (b) an additional 
noise reduction process using the NLNR method (embedding window length of 72 ms and epsilon of 
2.5). This will facilitate the use of an automated peak detection algorithm that fails in the presence of 
excess noise. 
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Figure 4.20 R-R intervals from the FECG signal (a) prior to being mixed into the abdominal 
recordings (b) the R-R intervals after extraction and (c) the R-R intervals after extraction and noise 
reduction. Improved QRS detection results from the noise-reduced FECG component displayed in 
Figure 4.19b. There error at beat 150 is due to motion artifact. 
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that an application of NLNR significantly improves the detectability of the R-wave using 

our QRS detection algorithm (Figure 4.20). The remaining three recordings processed 

using the FastiCA algorithm did not yield favourable results, but gave insight into the 

limitations of ICA as a scheme to isolate the fetal component. The primary difficulty 

when using BSS to generate an approximate FECG signal lies in keeping the number of 

extraneous signals equal to or less than the number of recording channels. Recordings 

from three patients that did not result in a clean FECG signal using ICA at an SNRMF = 6 

dB all contained various combinations of line noise, motion artifacts, and baseline 

wander. Motion artifacts often appeared unpredictably across channels. Thus, we can 

interpret the difficulty in extracting the fetal ECG as a case of too many sources and an 

insufficient number of observations. In addition, motion artifacts and baseline wander 

cause the distributions of recorded signals to be highly nonstationary. Since ICA is 

dependent on estimating various probability distributions of the embedded signals, these 

factors also make source separation increasingly challenging. 

We thus see that although SNRMF = 10 dB is sufficient for extracting the FECG, 

the success of the extraction is dependent on the extent ofnoise suppression that has been 

performed beforehand as well as the number of available channels. 

4.6SUMMARY 

Our results demonstrate that the NLNR technique is capable of separating the 

FECG R-wave from a mixed signal both for synthetic mixed signals and real abdominal 

recordings. We determined that the embedding window length needs to be roughly a 

tenth of the size of a typical adult ECG R-R interval or approximately 100 ms. The 
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nearest neighbourhood radius yields optimal separation for a value greater than the R­

wave amplitude of the fetal signal, but significantly less than the maternal R-wave 

amplitude. 

Blind source separation is capable of extracting the FECG under low nOise 

conditions. The resulting ECG is visually easily recognizable and can be processed using 

an automated QRS detection algorithm with good results. However, in the presence of 

motion artifacts, 4-channel ECG is insufficient to adequately extract a sufficient quantity 

of the fetal component. 
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Chapter 5 


Discussion and Recommendations 


5.1 COMPARISON OF TECHNIQUES 

Both the nonlinear noise reduction and blind source separation techniques aid in 

the extraction of the FECG. The most conspicuous similarity between the two techniques 

is their sensitivity to low-frequency noise. Motion artifacts are to be minimized and/or 

eliminated completely in a preprocessing stage through linear filtering. In the absence of 

such noise, and with a minimum of 4 channels, the blind source separation (BSS) method 

can extract an FECG signal for an SNRMF of approximately 10 dB. Although the NLNR 

technique works with a slightly lower SNRMF, the quality of the resulting FECG signal is 

not any different. With an additional noise reduction step following the FECG extraction 

process, (for either method) the final FECG signal is such that it lends itself to automated 

QRS detection. 
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In terms of performance, the nearest neighbourhood search slows down the 

NLNR algorithm considerably. The time-consuming nature of finding optimal parameter 

values is partly resolved by using the results in Section 4.4 as a guide. Determining the 

ideal parameters could perhaps be quickened through the use of visual feedback of the 

effects of parameter changes. This is in direct contrast to FastiCA algorithm which has 

fewer parameters to optimize although it is consequently less intuitive to modify. The 

positive and negative aspects of each technique are summarized in Table 5.1. 

Advantages Disadvantages 

Nonlinear Noise Reduction 

- Only a single channel of mixed ECG is 
necessary 

- Common framework for both FECG 
extraction and noise reduction 

- Can obtain an MECG only signal whose 
amplitude matches the MECG 
component of the original mixed signal 

- Computationally expensive due to 
nearest neighbour search required 
on every iteration 

- Sensitive to low-frequency noise 
- Requires "fme-tuning" of 

parameters 

Blind Source Separation 
- Fast convergence 
- Given a sufficient channels, noise can be 

separated as a component 

- Separation is difficult in the 
presence of several noise sources 

Table 5.1 Comparison chart of NLNR and BSS with respect to FECG extraction. 
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5.2 RECOMMENDATIONS AND FUTURE CONSIDERATIONS 

The results of the recordings and experiments done during the course of this thesis 

indicate that the necessary signal processing technology is available to sufficiently isolate 

the fetal signal from a mixed MECG-FECG signal to assess indicators of fetal health such 

as the fetal heart rate. One area that will require attention in the future is the recording 

process. Two things in particular need to be explored: A consistent and reliable protocol 

for the placement of electrodes and increased common mode rejection (CMRR) by the 

amplifiers. Until both of these issues are resolved, signal-processing techniques 

employed to isolate the fetal ECG component will remain inadequate for timely clinical 

use. 

We are still in the initial stages of systematically obtaining optimal electrode 

location and very little literature exists that documents a consistent framework for 

abdominal recordings. We need to establish the optimal stage of pregnancy for 

abdominal recordings, which according to Dr. Patrick Mohide of McMaster University 

Medical Center is around 26 to 27 weeks. In addition to further consultation with 

physicians about possible factors that would aid in efficiently recording fetal signals from 

abdominal electrodes, we need to conduct multiple electrode "mapping" sessions 

(multichannel recordings over a grid on the maternal torso) that would deepen our 

knowledge of how the fetal signal traverses its way through maternal tissue to various 

points on the torso. 

We have found that no fetal signal can be detected using neonatal ECG amplifiers 

with CMRR's of 100 dB. Although we cannot directly attribute such failure to detect a 

signal to the insufficiency of the instrumentation, it is reasonable to construct and employ 
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ECG amplifiers with CMRR close to 120 dB in our studies. In addition to improving the 

ability of the amplifiers to reject common signals such as 60 Hz noise, construction of 

custom ECG amplifiers will allow us to reduce the size of our instrumentation. For 

similar reasons, we recommend employing a portable computer in lieu of the current 

desktop model. The portability of the equipment will also facilitate maintenance and 

equipment modifications by eliminating the need to transport heavy equipment to and 

from the recording site. 
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Chapter 6 


Summary 


6.1 SUMMARY 

The work described in this thesis discusses the clinical significance of the fetal 

electrocardiogram and current signal processing methods that can be employed to extract 

the fetal ECG. Chapter 1 outlines the physiological interpretations of the fetal 

electrocardiogram and the fetal heart rate as well as their relevance in diagnosing fetal 

health. 

The theory underlying two recently proposed methods of FECG extraction using 

nonlinear noise reduction and blind source separation are outlined in Chapter 2. We 

discuss how nonlinear noise reduction works to transform a mixed MECG-FECG signal 

into an approximate MECG signal, which we can subtract from the original signal to 

obtain an approximate FECG signal. Blind source separation is related to the idea of 
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linearly combining multiple signals using a weighting matrix. The recombined signals 

are meant to be as statistically independent as possible, according to criteria based on 

higher-order statistics such as the fourth-order cumulants and related quantities such as 

negentropy. 

In Chapter 3, we examined at the recording apparatus and the protocol used to 

perform abdominal recordings at McMaster University Medical Center. We identified 

some of the issues that were brought to our attention over the course of our research, 

including the difficulties in finding the optimum locations for our skin electrodes, the 

challenge of reducing the level of line noise in the recording space, and exploring the 

limitations of the existing hardware (e.g. ECG amplifiers). 

Our results presented in Chapter 4 show how the NLNR process is effective in 

extracting the FECG signal while simultaneously suppressing noise and MECG signal 

content. For a mixed MECG-FECG signal, we found that an embedding window length 

was 90 ms and a nearest neighbourhood radius that was slightly larger than the fetal R­

wave amplitude was adequate to separate the MECG signal from the FECG signal. We 

showed that the BSS technique could extract the FECG signal, given 4 channels of ECG 

data when motion artifacts and other noise components were kept at a minimum during 

the recording. In addition, the extracted signal's noise content was reduced by applying 

the NLNR process whose embedding window length and nearest neighbourhood radius 

was set to 72 ms and 2.5, respectively. The FECG R-wave could be easily recognized 

and lent itself to automated QRS detection. 
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