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Abstract 

The purpose of this project is to find a mathematical model to describe the 

vision profile of patients after treatment for choroidal neovascularization. 

In this model the dependent variable is the level of vision which will be 

predicted by time after treatment and a number of other variables measured 

before treatment. A standard multiple regression analysis is used to find 

significant predictor variables, to investigate interactions and an appropriate 

transformation. To take the correlation of observations on the same patient 

into account a linear mixed effects model is fitted. Finally the usefulness of 

a nonlinear mixed effects model is investigated. 
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Chapter 1 

Description of Problem 

1.1 Introduction 

The leading cause of new blindness in Canada and the United States is 

age-related macular degeneration. One form of this disease that is often 

responsible for severe vision loss is choroidal neovasculariza tion ( CNV) ( 7]. 

The cause of vision loss with this condition is the presence of lessions in the 

macular with resultant bleeding under and scarring of the retina. 

It has been shown that the argon blue-green laser provides an effective 

treatment for CNV [11]. The goal of treatment is to completely obliterate the 

lession without damaging the foveal avascular zone at the center of the eye. 

Choroidal neovascular lessions tend to recur after laser treatment. However 

in one, three and five years of follow up after treatment there is considerably 

less vision loss in laser treated eyes than in nontreated eyes [11,14,15]. 

The Canadian Opthomology Study Group (COSG) was formed in 1985 to 

design a clinical trial to determine whether krypton red laser or argon green 

laser is superior for the treatment of CNV. The resulting trial commenced 

in July 1986 at 16 Canadian centers. Patients enrolled in the study had to 
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meet certain eligibility requirements [5]. The requirements included: 

• 	 50 years of age or older 

• 	 best corrected visual acuity score of 35 (number of letters read) or 

better on the ETDRS chart (measurements taken as recommended in 

the COSG Manual of Proceedures [5]) 

• 	 an angiographically proven CNV whose edge was 200-2500 pm from 

the edge of the foveal avascular zone (FAZ). 

The treatment was done according to standard COSG protocol [5]. Visual 

acuity was measured at the time of treatment and recorded as the number 

of letters read from a ETDRS chart . Visual accuity was also measured at 

follow-up visits occuring at 2 weeks, 6 weeks, 3 months, 6 months and at 6 

month intervals thereafter up to 3 years. 

1.2 Outline of Project 

The purpose of this project is to find a suitable mathematical model to 

describe the visual acuity profile as a function of time after treatment for 

CNV and the following variables measured at or just before treatment. 

• 	 distance from the edge of the lession to the edge of the foveal avascular 

zone (FAZ) 

• 	 age of the patient 

• 	 type of treatment,either argon green laser or krypton red laser 

• 	 size of the CNV 
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• time between symptoms and treatment 

The purpose of such a model will be to identify and describe the effect of 

these independent variables on the patients vision profile and to predict follow 

up vision. The data used consists of 1817 observations from 190 patients from 

the previously mentioned clinical trial. 

In Chapter 2 the method of linear regression is used to model vision with 

the independent variables. Significant independent variables are determined 

and transformations of the time after treatment variable are investigated. In 

Chapter 3 linear mixed effects models are discussed and fitted to the data 

using the independent variables deemed significant in Chapter 2. Nonlinear 

mixed effects models are described and used in Chapter 4. 



Chapter 2 

Fitting a Regression Model 

2.1 Introduction 

In this chapter the results from fitting a standard regression model to the 

data will be presented. This of course implies that the errors are assumed to 

be independently distributed normal random variables with mean zero and 

the same variance. First the independent variables that have a significant 

effect on the response variable will be identified. Interaction terms and some 

other functional forms will then be investigated in order to improve the 

model. The adequacy of the fitted model will be discussed. 

The following abreviations will be used. 

VIS the level of vision measured in number of letters read 

TIME time after treatment measured in years 

TRT treatment group, coded 0 for the krypton red laser and 1 for the argon 

green laser 

AGE age of the patient in years 

4 




5 

SIZE size of the CNV measured in p.m 

DIST distance between the edge of the CNV and the edge of the FAZ 

measured in p.m 

PRE time between symptoms and treatment measured in days 
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2.2 Significant Independent Variables 

The purpose of this section is to identify which of the independent variables 

previously discussed have a significant effect on the response variable. The 

following model was fit to the data. 

VIS= f3o + f31TIME + f32TRT + f33AGE + f34SIZE + f3sDIST + f3sP RE 

Using SAS the following results were obtained. 

TABLE 2.1 Regression Results 

(a)Regression Coefficients 

Coefficient Value Std. Error p-value 

f3o 88.75225 5.0772349 .0001 

/31 -7.80131 .5248592 .0001 

/32 -.11117 1.5248592 .9168 

{33 -.55227 .0697365 .0001 

/34 .00072 .0009389 .4454 

f3s .00776 .0011398 .0001 

f3s .00681 .0072096 .3452 

(b)Analysis of Variance 


Source ss df MS p-value 


Regression 162789.69 6 27131.61 .0001 

Error 923560.97 1810 510.25 

Total 1086350.65 1816 

The nonsignificant T ratios for /32,/34 and /36 indicate that there is little 

evidence that the corresponding independent variables individually affect 

vision. To test the hypothesis 

http:1086350.65
http:923560.97
http:27131.61
http:162789.69
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Ho : fJ2 = {34 = f3s = 0 

H1 : not all of {32, {34, f3s are equal zero 

the following F test will be used. 

F* = MSR(TRT,SIZE,PRE I AGE,DIST,TIME) 

MSE 

where MSR(TRT,SIZE,PRE I AGE,DIST,TIME) is the extra sum 

of squares obtained from adding TRT,SIZE and PRE to the model when 

AGE,DIST and TIME are already present, divided by the appropriate de­

grees of freedom. For details see page 271 of [17]. 

If H0 holds then F* "' F(3, 1810). Thus large values of F* will lead to 

rejection of H0 in favour of H1 • 

In this case F* = ((162789.69- 162019.55)/3) + 510.25 = 0.5032 which 

yields a p-value of .6801. Thus it is concluded that the variables TRT,SIZE 

and PRE do not have a significant effect on VIS and can be dropped from 

the model. 

2.3 Interaction Effects 

In this section the interactions between the three variables· AGE,DIST and 

TIME will be analyzed to determine if any of them would significantly im­

prove the model. The regression results of the following model are shown in 

Table 2.2. 
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VIS= 	 f3o + f3tAGE + f32DIST +{33TIME 

+f34AGE x DIST + {35AGE x TIME+ {36 DIST x TIME 

+f37 AGE x DIST x TIME 

TABLE 2.2 Model With Interactions 

(a)Regression Coefficients 

Coefficient Value Std. Error p-value 

f3o 90.82167 10.79835 .0001 

f3t - .56802 .15310 .0002 

/32 -.00327 .01164 .7790 

/33 -2.09285 7.51885 .7808 

!34 .00016 .00017 .3377 

f3s -.08173 .10707 .4453 

f3s .00146 .00785 .8526 

/31 -.00002 .00011 .8562 

(b)Analysis of Variance 


Source ss df MS p-value 


Regression 163746.43 7 23392.35 .0001 

Error 922604.22 1809 510.01 

Total 1086350.65 1816 

The t* values indicate that any one of the interactions could be dropped 

from the model individually. An F test based on extra sums of squares as in 

the last section yields F* = .846. Under the null hypothesis of all coefficients 

of interaction effects equal to zero the test statistic is distributed F(4, 1809 ). 

A p-value of .4959 results and it is concluded that none of these interaction 

effects need be included in the model. 

http:1086350.65
http:922604.22
http:23392.35
http:163746.43


9 

2.4 	 Quadratic and Exponential Terms 

It is possible that curvature exists in the relation of some predictor variable 

with VIS. The following model was analyzed to check for significant quadratic 

terms and the results are in Table 2.3. 

VIS= 	 /3o + /31AGE + /32 DIST + /33TIME 


+/34AGE2 + /3sDIST2 + /36TIME2 


TABLE 2.3 Model With Quadratic Terms 

(a)Regression Coefficients 

Coefficient Value Std. Error p-value 

/3o 133.84180 33.92127 .0001 

/31 -1.83435 .99526 .0655 

/32 .01226 .00410 .0029 

f3a -15.60817 1.80846 .0001 

/34 .00931 .00721 .1972 

/3s .0000021 .0000018 .2427 

{36 2.79733 .61880 .0001 

(b)Analysis of Variance 


Source ss df MS p-value 


Regression 173772.79 6 28962.13 .0001 

Error 912577.86 1810 504.19 

Total 1086350.65 1816 

These results provide evidence that the only quadratic term that is im­

portant is the TIME 2term. It can be verified that the D I ST2 and AGE 2 

terms can be dropped from the model with an extra sum of squares F test 

http:1086350.65
http:912577.86
http:28962.13
http:173772.79
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as before. In this case a p-value of .5543 is the result. 

With the DIST2 and the AGE2 terms dropped the model is as follows. 

VIS= 	91.66- .5492AGE + .00769DIST -15.66TIME 


+2.815TIME2 


All coefficients are significant with p-values of .0001. Note that the neg­

ative coefficient for AGE indicates a decrease in the expected VIS the older 

the patient gets. The positive coefficient for DIST indicates an increase in 

expected VIS the further the edge of the lession from the edge of the FAZ. 

The negative coefficient for TIME indicates the expected VIS decreases as 

time after treatment increases. The positive coefficient of the TIME 2 term 

implies the rate of expected VIS decrease slows as time increases. 

This model has a coefficient of determination, R2 value, of .1588. It is not 

uncommon for medical data to yield low R2 values because of high between 

and within patient variability. 

However it still may be possible to improve the fit. Instead of a quadratic 

relationship between TIME and VIS an inverse exponential relationship may 

prove more descriptive. This is in because very few patients vision actually 

decreased to zero as in the quadratic relationship and e-TIME approaches 

zero only when time gets very large. The results of the following model can 

be found in Table 2.4. For this and future models AGE, TIME and DIST 

will be centered around their most favourable values. 
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TABLE 2.4 Model With Exponential Term 

(a)Regression Coefficients 

Coefficient Value Std. Error p-value 

f3o 61.01080 4.93306 .0001 

/31 -.55098 .06853 .0001 

!32 .00778 .00112 .0001 

/33 23.74847 1.49518 .0001 

{b)Analysis of Variance 


Source ss df MS p-value 


Regression 176308.38 3 58769.46 .0001 

Error 910042.28 1813 501.95 

Total 1086350.65 1816 

The resulting model shows a marginal improvement in the R2 value to 

.1609. The coeeficients indicate an expected decrease of 5.5 letters read for 

every 10 years of AGE and an expected increase of 7.8 letters read for every 

millimetre of DIST between the edge of the lession and the edge of the FAZ. 

The coefficient of e-TIME indicates that the total expected decrease in VIS 

will be 23.7 letters read. 

http:1086350.65
http:910042.28
http:58769.46
http:176308.38
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2.5 Model Adequacy 

To evaluate the adequacy of the fitted model the following scatter plots were 

prepared. 

• predicted values vs. residuals (Figure 2.1) 

• AGE vs. residuals (Figure 2.2) 

• DIST vs. residuals (Figure 2.3) 

• TIME vs. residuals (Figure 2.4) 

• e-TIME vs. residuals (Figure 2.5) 

• normal probability plot of the residuals (Figure 2.6) 

The adequacy of the assumption of normal errors is demonstrated in 

Figure 2.6 as the correlation between the residuals and the quantiles of the 

standard normal is .9934. 



Figure 2.1 
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Figure 2.2 
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Figure 2.3 
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Figure 2.4 
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Figure 2.5 
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Figure 2.6 
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None of the plots of AGE, DIST, TIME and e-TIME against the residuals 

indicate a serious lack of fit problem. The plot of predicted values against 

residuals does indicate some irregularities. Although the variance appears 

constant there is a definite trend for a more frequent underfit for lower pre­

dicted values. There is also a greater number of severe cases of overfit for 

higher predicted values. This effect appears more pronounced visually as it 

is partially caused by the zero vision cut off point creating a sharp downward 

trend at the bottom of the plot. However this situation is a usual symptom of 

lack of fit. Therfore although this model seems to be a reasonable predictor 

of the mean vision level there is some degree of a lack of fit problem. 

2.6 	 Adding The Initial Vision Variable 

In order to decrease the error variance of the model, increase its R 2 value and 

thus improve its use for prediction another variable will be considered. The 

patients initial vision observation will now be excluded from the data as an 

observation and instead will be used as a prediction variable denoted STVIS. 

It is expected that the inverse exponential relationship will more adequately 

describe the effect of time in this case since often there was an increase in 

VIS between the initial reading, before treatment, and the second reading, 

which was after treatment. In the previous model this increase contributed 

to error as the exponential function is decreasing. Hence the following model 

and regression results. 

VIS= 	 f3o + {31(AGE- 50)+ {32(DIST- 2500) + {33e-TIME 


+f34STVIS 
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TABLE 2.5 Model With Initial Vision Variable 

(a)Regression Coefficients 

Coefficient Value Std. Error p-value 

f3o 17.80838 4.39043 .0001 

(31 -.35027 .07380 .0001 

!32 .00691 .00118 .0001 

(33 23.78202 1.64401 .0001 

(34 .629904 .04799 .0001 

(b)Analysis of Variance 


Source ss df MS p-value 


Regression 237018.92 4 59254.73 .0001 

Error 798315.14 1622 492.18 

Total 1035334.06 1626 

The result is that STVIS is a significant variable, the R2 value has in­

creased to .2289 and the estimate of the error standard deviation has de­

creased to .J492.18 = 22.19. Thus with every additional 10 letters read 

before treatment the expected VIS will increase by 6.3 letters read. 

The model can be further improved with the inclusion of the interactions 

of STVIS with both AGE and DIST. The resulting model is as follows. 

VIS= 	 59.6 + 1.53(AGE- 50)- 0.0151(DIST- 2500) + 23.6e-TIME 

+(1.91- 0.0318(AGE- 50)+ 0.000367(DIST- 2500))STVIS 

All coefficients are significant with p-value of .0001 except (32 which has 

a p-value of .01 and (36 with .0002. The R2 value is .2473 and the estimate of 

http:1035334.06
http:798315.14
http:59254.73
http:237018.92
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the error standard deviation is 21.93. The comments made concerning the 

adaquacy of the model without STVIS are similar for this model. 



Chapter 3 

Linear Mixed Effects Models 

3.1 Introduction 

Repeated measures data refers to data where several observations are taken 

on a sample of individuals. The set of observations taken on any one indi­

vidual is called a cluster. Mixed effects models recognize the relationship 

between observations taken within a cluster. Unlike multivariate models, 

mixed effects models can model data that is unbalanced in the sense that 

different experimental designs are used on different individuals. The vision 

loss data reported herein is unbalanced in this way as differing numbers of 

observations are taken on different individuals. In this chapter the linear 

mixed effects model will be described and applied to the vision loss data. 

3.2 Description of Model 

Let Yi be a vector of length ni of observations on individual i for i = 
1, 2, ... , M. Let Xi and Zi be design matrices of sizes ni x p and ni x k 

respectively. Let (3 denote a vector of length p of fixed effect coefficients and 

22 
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let hi denote the vector of length k of random effects. For individual i, 

where ei are independently distributed multivariate normal with mean 0 

and covariance matrix <7
2Ri. The hi are distributed multivariate normal 

with mean 0 and covariance matrix 0'2D independently of each other and 

the ei. Marginally, Yi is distributed multivariate normal with mean Xi/3 and 

covariance matrix <7
2(Ri + ZiDZ(). 

The combined model for all the data can be written in matrix form by 

letting 

x1 Y1 hl e1 

X= 
x2 

,y= 
Y2 

,h= 
h2 

,e = 
e2 

XM YM hM eM 

D =diag(D, D, ... , D), Z =diag(Z1, Z2, ... , ZM) and R =diag(R1, R2, ... , RM)· 

Thus 

y = X(3 +Zh +e 

where e is distributed multivariate normal with mean 0 and covariance ma­

trix <72R and h is distributed multivariate normal with mean 0 and covari­

ance matrix 0'2D. Therefore y is distributed multivariate normal with mean 

X(3 and covariance matrix <72 (R + ZDZT). 

3.3 Inference of Unknown Parameters 

Let (} be a vector that contains the unique elements of R and D and let 

V = R+ zj)zT. If(} is known the standard estimator for (3 is the generalized 

least square estimator 
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To estimate b the empirical Bayes estimate is used. Thus 

which is the posterior mean, ECb Iy, PC8), 8). This was shown to be the best 

unbiased estimator by Harville[9]. 

The standard errors of PC8) and bC8) are estimated by 

and 

If 8 is unknown it has to be estimated to use in the above formulas. If Bis 

an estimate of 8 the estimates of {3 and b will be PCB) and bCB). To estimate 

the variance components 8 and a two methods are used. First consider 

maximum likeihood estimation CML). The maximum likelihood estimators 

of 8 and a maximize 

lFCf3,8,a Iy) = 	 -~log I a 2V I 

-~a-2Cy- X{3fV-1Cy- X{3) 


as does the estimate of {3, PC8). 

The ML estimates of 8 and a are biased downward since they fail to take 

into account the loss of degrees of freedom from the estimation of {3. 

The second method is restricted maximum likelihood CRML). The RML 

estimates are not biased. The RML estimates of 8 and a are obtained by 
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maximizing the likelihood of() and u based not on y but on N- p (N = 

Ef;1 ni) linearly independent error contrasts, uTy, chosen so that 

This log likelihood, derived by Harville[S], is 

Estimates of the standard errors can be obtained by substituting einto 

the appropriate formula i.e. var(,B(e)), var(b(e)). Methods for adjusting 

these formulas for the uncertainty of the estimation of () are not available at 

present. 

3.4 	 Fitting a Linear Mixed Effects Model to 

the Vision Data 

The following model will be fitted with the vision loss data. 

where i = 1, ... , M with M the number of patients and j = 1, ... , ni with ni 

the number of observations on patient i. /3 = (f3o, /317 /32 , /33 f are the fixed 

effects and hi = (boi, b3if are the random effects specific to patient i. The 

ei,i are assumed to be independently distributed normal random variables 

with mean 0 and variance u2 Thus the matrix R is the identity matrix in 

this case. 

To estimate /3 and the bi the methods of the previous section were em­

played. The calculations were done using a function written for the S sta­

tistical software package ([4], [6]) by Bates, Lindstrom and Pinherio[3]. This 
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function was written utilizing the ability of S to interphase with C lan­

guage programming. The maximum likelihood equations are solved using 

the Newton-Ralphson method to yield the parameter estimates. Estimates 

of the standard errors and correlations of the fixed effects are also provided. 

The estimation results using maximum likelihood estimation follow. The es­

timates of the random effects boi, b3 i for i = 1, ... , 190 are not shown. The 

estimate of the residual variance ( <72 ) is 116.45. 

TABLE 3.1 Linear Mixed Effects using ML 

(a)Fixed Effects Estimates 

Value Std Error Z Ratio 

f3o 52.78381 5.19533 10.160 

{31 -0.42781 0.12461 -3.433 

!32 0.00653 0.00208 3.137 

{33 28.11356 2.28402 12.309 

(b)Correlations of Fixed Effects Estimates 

f3o {31 !32 

!31 -0.5039 

{32 0.7392 -0.0117 

!33 -0.4195 0.0034 0.0011 

(c)Covariance/Correlation Matrix of b 

b1 b3 

b1 986.21 -841.08 

b3 -0.92 842.09 
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The model was also fitted using restricted maximum likelihood with re­

sults shown in table 3.2. The estimate of q 2 in this case is 116.44. 

TABLE 3.2 Linear Mixed Effects using RML 

(a)Fixed Effects Estimates 

Value Std Error Z Ratio 

f3o) 52.77831 5.23267 10.086 

f3t -0.42777 0.12562 -3.405 

!32 0.00653 0.00210 3.115 

(33 28.11718 2.29079 12.274 

(b)Correlations of Fixed Effects Estimates 

f3o f3t /32 

f3t -0.5043 

/32 0.7398 -0.0117 

/33 -0.4177 0.0033 0.0011 

(c)Covariance/Correlation Matrix of b 

bo b3 

bo 994.26 -846.52 

b3 -0.92 847.80 

Notice that the variance component estimates for the covariance matrix 

of random effects are slightly lower using maximum likelihood estimation. 

This is as expected due to the biasing downward as previously discussed. 

The fixed effects estimates are very similar in both fits in fact they are equal 

to three decimal places. 

The conclusion from this model is that with every additional 10 years 
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of age the expected vision reading of the patient will decrease by 4.28 let­

ters and with every additional mm that separates the CNV and the FAZ 

the vision reading will increase by 6.53 letters read. The effect of TIME 

after treatment will cause the expected vision to decrease with an inverse 

exponential relationship as time increases. With AGE and DIST at their 

most favourable values the expected level of VIS will be 52. 78+28.11=80.89. 

As TIME gets large the expected level of VIS will approach 52. 78. These 

coefficient estimates are somewhat different than the regression model with­

out random effects and they can be considered more reliable as the within 

patient correlation is taken into account. 

Note how much greater the variance of the random effects is than the error 

variance (986 and 842 to 116). This indicates that a much larger portion of 

the error not accounted for by the fixed effect part of the model can be 

attributed to between patient variance than to within cluster random error. 

http:78+28.11=80.89
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3.5 Evaluation of Model 

The discussion of the fitted model in this section will refer to the model 

estimated by maximum likelihood. These comments are also applicable to 

the model fitted with the restricted maximum likelihood method as it differs 

only slightly. 

The method of estimation of the random effects is based on the normality 

assumption for the error terms and the random effects. By this assumption 

the estimator for the random effects will be normaly distributed as will the 

estimates of the errors. Normal probability plots of the random effect and 

error term estimates were prepared and are shown in Figures 3.1, 3.2, and 

3.3. For the random effect estimates the normal probability plots show a 

fairly linear trend with correlation coefficients of .977 and .975 for ho and b3 

respectively. However in both plots there is some curvature in the high and 

low extremes. This indicates the tails of the distributions of the estimators of 

the random effects are shorter than the tails of a normal distribution. Thus 

there is some evidence that the normality assumptions in the model may not 

be adequate for this data. The normal probability plot concerning the error 

estimates is also fairly linear with a correlation coefficient of .978. 

To check the assumption of a constant variance of the error terms Figure 

3.4 was prepared. The boxplots of the error estimates for each cluster seem 

to give some evidence against this assumption as there is large differences in 

dispersion over the clusters. However this can be partially explained by the 

large number of observations and small relative size of the clusters. 

The high estimated variances of both random effects indicate that it is 

reasonable to assume that their respective variables' coefficient has a random 

component that varies over the clusters. 
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Figure 3.2 
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Figure 3.3 
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Figure 3.4 
Boxplots of Residuals by cluster 
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Figure 3.5 
Predicted Values vs. VIS for Linear Model 
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Figure 3.6 
Predicted Values vs. Residuals for Linear Model 
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The plots of residuals and actual values against fitted values (Figures 

3.5, 3.6) indicate some overfit in the low predicted values and underfit in 

the high range. These plots are tightened up considerably compared to the 

corresponding standard regression model with no random effects ie Var(b) = 
0. The error variance estimate is down to 116.45 compared to 501.95 in the 

standard regression model. 

Although this model does fit the data better this is due to the random 

effect estimates. When using the model to predict for patients not used 

as clusters in the model the random effects must be considered zero. To 

assess and compare this models usefulness for prediction an R2 value can 

be calculated by finding the fraction of the total sum of squares that is 

explained by the model with random effect estimates taken as zero. This R2 

value turns out to be .1860 which is an improvement over the value of .1623 

for the corresponding standard regression model. 

3.6 	 Linear Mixed Effects Model With Initial 

Vision Variable 

The model with the initial vision variable is again considered. The model 

is the same as the one from the previous section except the initial vision 

readings are used as a predictor variable (STVIS) and are excluded as data 

points. 

V lSi;= 	 (f3o + bo,i) + f31(AGEi- 50)+ f32(DISTi- 2500) 


+(/33 + b3,i)e-TIME;; + {34STV lSi+ Eij 
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The initial vision is constant across clusters and thus is fitted with only 

a fixed effect. The estimation results follow. The estimate of a 2 is 110.78. 

TABLE 3.3 Linear Model With Initial Vision Variable 

(a)Fixed Effects Estimates 

Value Std Error Z Ratio 

f3o 13.05141 8.04782 1.622 

/31 -0.22061 0.13304 -1.658 

/32 0.00787 0.00210 3.740 

/33 28.42298 2.31833 7.389 

/34 0.63936 0.08653 7.389 

(b)Correlations of Fixed Effects Estimates 

f3o /31 /32 /33 

/31 -0.5147 

/32 0.5412 -0.0403 

/33 -0.2619 0.0029 -0.0028 

134 -0.7595 0.2434 -0.0796 0.0052 

(c)Covariance/Correlation Matrix of b 

bo b3 

bo 913.76 -802.05 

b3 -0.91 847.18 

The coeeficient of STVIS indicates the expected vision will increase by 

.639 for every unit of increase in STVIS. Figures 3.7 and 3.8 show further 

improvement of the fit although the same problems exist. 



Figure 3.7 

Predicted Values vs. VIS for Linear Model 
With Initial Vision Variable 
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Figure 3.8 
Predicted Values vs. Residuals for Linear Model 
With Initial Vision Variable 
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Chapter 4 

NonLinear Mixed Effects 

Models 

4.1 Description of Model 

A general nonlinear mixed effects model is defined as follows. 

y = f(A(3 + Bb,X) + e 

• 	 y is the vector of responses of length N = 2:~1 ni where ni is the 

number of observations on cluster i and M is the number of clusters. 

• 	 X is the matrix of prediction vectors of length N. 

• 	 e is a normally distributed error vector with mean 0 and covariance 

matrix a 2R 
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• f(A/3 + Bb, X) = 

f(At/3 + Btbt,xn) 

f(At/3 + Btbt,Xt2) 

f(At/3 + Btbt,Xtn1 ) 

j(A2f3 +B2b2,x21) 

f(AM/3 + BMbM,XMnM) 

where f3 is a vector 

of length p of fixed population parameters, bi "' N(O, u2 D) and is a 

vector of length q of random effects associated with individual i, Ai 

and Bi are design matrices of size r X p and r x q respectively. Xij 

is the row of X that corresponds to the jth observation in cluster i, 

f(Ai/3 + Bibi, Xij) is the expectation function of the component of y 

corresponding to the jth observation on cluster i, 

b = (bf, bj', ... , b&t)T, and 

B =diag(Bt, B2, ... , BM)· 

The design matrices A and B allow situations to be considered where 

not all of the parameters have a random component or different fixed ef­

fects are needed for grouped data. The conditional distribution y I b "' 

N(f(A/3 + Bb, X), 0"2R). 

4.2 Estimation of Parameters 

The estimation procedure proposed by Bates and Lindstrom in [2] is a two 

stage alternating algorithm. Let () be the vector of unknown variance com­

ponents. In the first stage of the algorithm estimates of f3 and b are obtained 
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by maximizing the function 

g(b I y, /3, 0, u) = -!u-2(y- f(A/3 + Bb))TR-1 (y- f(A/3 + Bb)) 

-!u-2bT:i)-1b. 
Given /3, (} and u it can be shown that the posterior mean of b maximizes g. 

In the first iteration of the algorithm starting values of f3, u and (} are used 

and estimates of b are obtained. 

Because the expectation function f is nonlinear in b there is no dosed 

form expression for the marginal density of y. Thus maximum likelihood 

estimators of 0, u 2 and f3 with respect to the marginal density of y are not 

calculated. Instead the conditional distribution of y given b is approximated. 

The expectation f( A/3 + B b) is approximated by a first order Taylor series 

expansion about a current estimate of b say b. Thus 

f(A/3 + Bb) ~ f(A/3 + Bb) + Z(b- b) 

where 

~ 8flz = 8b b. 

The approximate conditional distribution of y given b is 

Therefore the marginal distribution of y can be approximated as 

where V = R + zi)zT. 
The log likelihood corresponding to this approximate distribution is 

lF(/3, u, (} Iy) = -!log I u2V I 
-!u-2(y- f(A/3 +Bb) +Zb)Tv-1(y- f(A/3 +Bb) +Zb). 

In the second stage of the algorithm IF is maximized, with the estimates 

of b from stage 1, to obtain estimates of {3, u and (}. These estimates are 

then used in stage 1 in the next iteration of the algorithm. 
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Standard errors and correlations of the fixed effects are obtained from 

the likelihood function used in stage 2 of the last iteration of the estimation 

algorithm. They tend to underestimate the actual standard error and cor­

relation as their estimates are conditional on 8 as in the linear mixed effect 

estimation. 
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4.3 	 Fitting a Nonlinear Mixed Effects Model 

To the Vision Data 

With the algorithm for estimating coefficients for a nonlinear mixed effects 

model the coefficient for the TIME variable, that previously was taken to 

be -1, can be estimated. An attempt was made to fit the following model 

with the vision loss data. The calculations were again carried out by an S 

function written by Bates, Lindstrom and Pinheiro [3]. 

V lSi; = 	 (f3o + bo,i) + fJ1(AGEi- 50) 


+f32(DISTi- 2500) + ((33 + b3,i)eUJ4+b4,;)TIME;i + Eij 


The subscript on the variables denotes the jth observation on the ith 

cluster. The Eij are independently distributed normal random variables with 

mean 0 and variance u2 • Thus the R matrix in this case is the identity. 

(3 = (f3o, (311 fJ2, f33)T and bi = (boi, b3if are the fixed and random effects 

respectively. 

The algorithm would not converge with this model. Estimates of the 

covariance matrix of b in step 2 of the algorithm become larger in absolute 

value with each successive iteration. This indicates that the model may be 

overparameterized in terms of random effects. It was decided that the ran­

dom effect would be dropped from the coefficient of TIME. This parameter 

effects the shape of the exponential curve and it is reasonable to have the 

shape parameter constant between clusters. Therefore a fit of the following 

model was done. 
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V lSi;= 	 (Po+ bo,i) + P1(AGEi- 50) 


+P2(DISTi- 2500) + (p3 + b3,i)ef3•TIME,, + eii 


The estimation results follow. The estimates of the random effects, 

bo,i, b3,i fori = 1, 2, ... , 190 are not shown. 

TABLE 4.1 Nonlinear Model 

(a)Fixed Effects Estimates 

Value Std Error Z Ratio 

Po 55.32297 5.06697 10.918 

P1 -0.43307 0.12283 -3.526 

P2 0.00644 0.00205 3.138 

P3 26.29027 2.16294 12.155 

p4 -1.35471 0.08689 -15.591 

(b)Correlations of Fixed Effects Estimates 

Po p1 p2 p3 

P1 -0.5076 

P2 0.7454 -0.0120 

p3 -0.3973 0.0004 0.0017 

p4 -0.0721 -0.0140 0.0179 0.1278 

(c)Covariance/Correlation Matrix of b 

bo b3 

bo 848.93 -727.16 

b3 -0.91 746.27 
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The fixed effects estimates, their estimated standard errors and the ran­

dom effect estimates (not shown) are all very similar to their corresponding 

estimates in the linear mixed effects model. The variance of both random ef­

fects is lower (849 to 986 for b0 , 746 to 842 for b3 ) while the residual variance 

(estimate of u2 = 116.89) is slightly higher. It seems that the estimation 

of the coefficient for TIME has caused more of the random variation to be 

attributed to within cluster error than to between cluster error. 

The use of the approximate log likelihood accounts for a slight decrease 

in the prediction usefulness of the model as measured by an R2 value cal­

culated with random effects taken as zero (18.60 to 18.19). The standard 

errors of the fixed effects are all slightly lower than in the linear mixed effect 

model. Although in both models they are expected to be biased downward, 

these estimates are even more of an approximation in this model as they are 

obtained from an approximate log likelihood. 

Figure 4.1 shows the fitted values plotted against the VIS variable to 

assess the fit. It is similar to the corresponding plot for the linear model. 

4.4 Adding the Initial Vision Variable 

A nonlinear mixed effects model with the first observation on each patient 

ommitted and the vision component used as a predictor variable will now 

be discussed. Everthing in the following model corresponds to the model of 

the previous section except for the addition of the STVIS variable and the 

coefficient f3s. 

V lSi;= 	 (f3o + bo,i) + f31(AGEi- 50)+ f32(DIST; - 2500) 


+({33 + b3,i)efl,TIMEi; + f3sSTVISi + fij 




Figure 4.1 
Predicted Values vs. VIS for Nonlinear Model 
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TABLE 4.2 Nonlinear Model With Initial Vision Variable 

(a)Fixed Effects Estimates 

Value Std Error Z Ratio 

Po 15.65356 7.91746 1.977 

P1 -0.22858 0.13146 -1.739 

P2 0.00784 0.00207 3.773 

p3 27.22975 2.23136 12.203 

p4 -1.31777 0.08725 -15.102 

fis 0.63540 0.08547 7.433 

{b)Correlations of Fixed Effects Estimates 

fio /31 !32 fi3 /34 

fil -0.5155 

P2 0.5431 -0.0407 

fi3 -0.2460 -0.0004 -0.0015 

p4 -0.0333 -0.0242 0.0159 0.0804 

f3s -0.7619 0.2416 -0.0801 0.0041 -0.0161 

(c)Covariance/Correlation Matrix of b 

bo b3 

bo 796.73 -712.19 

b3 -0.90 783.32 

The comparison between this model and the corresponding linear mixed 

effects model is the same as the comparison for the models without the STVIS 

variable. The fixed effects estimates and standard deviations are similar to 

the estimates for the linear model and the estimate of u 2 is up slightly to 

111.14. 



49 

The plot of fitted values against the VIS variable is shown in Figure 4.2. 

In the nonlinear mixed effect models as with the others, the model with the 

initial vision variable added is preferable when used for prediction however 

it may not be preferable when estimating the effect of AGE on VIS as the 

standard error for (31 is quite high. 



Figure 4.2 
Predicted Values vs. VIS for Nonlinear Model 
With Initial Vision Variable 
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Chapter 5 

Conclusion 

It can be concluded from the estimated coefficients that increases in DIST 

and STVIS will result in a increase in expected vision while an increase in 

AGE will result in a decrease in expected vision. As TIME after treatment 

increases the expected vision decrease can be described with the inverse 

exponential relationship. 

Table 5.1 shows a comparison of the estimated coefficients and estimated 

error and random effect variances for the models fit with the effect of time 

after treatment described by an inverse exponential relationship. 
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Table 5.1 Summary of Results 

Model Linear Linear Nonlinear 

Fixed Effects Only Mixed Effects Mixed Effects 

Ali AGE -5.51 -4.28 -4.33 

Observations DIST 7.78 6.53 6.44 

ef3TIME 23.8 28.1 26.3 

TIME -1 -1 -1.35 

(J2 502 116 117 

Var(bo) 986 849 

Var(b3) 842 746 

Post Treatment AGE -3.50 -2.21 -2.29 

Observations DIST 6.91 7.87 7.84 

ef3TIME 23.8 28.4 27.2 

TIME -1 -1 -1.32 

STVIS .630 .639 .635 

q2 492 111 114 

Var(bo) 914 797 

Var(b3) 847 783 

In all 3 model types the coefficient of AGE decreased with the addition 

of the STVIS variable. The obvious correlation between these two variables 

accounts for this. The variance of the random effect associated with the 

intercept (b0 ) was reduced in the models with the start vision variable. This 

indicates, as expected, that the addition of STVIS reduces the between sub­

ject variability. 

The error variance ( u2 
) decreased greatly in the mixed effects models. 

This is because the random effects account for the within patient variability. 
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The effect of AGE and DIST are less in most cases in the mixed effect models. 

Thus some of their effect has been accounted for by within patient variability. 

There is no improvement in the model when estimating a coefficient for 

TIME using the nonlinear mixed effect algoithm in fact there is a slight 

decrease in prediction usefulness. It turns out in this case that the estimate 

of the coefficient for time is very close to the -1 that had been us~d in the 

linear model and that it is not possible to use a random effect with this 

coefficient. Thus the advantages in this approach are very slight while the 

disadvantage of using the approximate log likelihood for estimation outweighs 

them. · 

However, based on the fact that the estimation results are in fact very 

close for the two methods it is suggested that the nonlinear mixed effects 

algorithm is an efficient method to fit a model that has no linear alternative. 

To show how the model is used for prediction assume that a patient is 

65 years old, the distance from the FAZ is 1 mm and the number of letters 

read before treatment is 70. Suppose a prediction of vision after 2 years is 

needed. If the linear model with the initial vision variable is used the values 

for AGE, DIST, TIME and STVIS are substituted into 

VIS= 13.05-.221(AGE-50)+.00787(DIST-2500)+.639STVIS+28.4e-TIME. 

Notice that the random effects are taken as there expected value of 0. Thus 

the expected vision after 2 years will be 46.54 letters read. 
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