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IMTROPUCTIQN

1, ORIGIN OF PROBLEM

In the theory of beta-decay the main problem has been 

to determine the form of the interaction between the heavy 

and light particle fields. The theory is based upon Fermi’s 

{1934) neutrino hypothesis and Dirac theory for leptons and 

nucleons, according to the Dirac theory, five independent 

Lorentz invariant expressions can be chosen for the interact­

ion Hamiltonian (e.g. Bethe and Bâcher (1936)). Due to their 

method of formation these are called scalar, vector, tensor, 

axial vector, and pseudo-scalar interactions; and are denoted 

by S, V, T, A, P respectively. Excluding derivatives of the 

wave functions, a linear combination of these five invariants 

is the most general Interaction possible (e.g. Fiera (1937)). 

Since there is no good theoretical reason for preferring any 

particular term or linear combination, the interaction must 

be determined by experiment. The constants used to form the 

linear combination are the coupling constants g^.

At present it is believed that the beta-decay interact 

ion contains only the vector and axial vector terms (e.g. 

Gatlinburg Conference, 195B). The absolute value of the ratio 

of the coupling constants can be determined experimentally 

with considerable accuracy. A recent value for ïg^/gyl is 

1.19 t- 0.04 reported at the Rochester conference (1953).

(1)
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The coupling constants are believed to be real since it appears 

that time-reversal invariance is perserved in beta-decay (e.g. 

Burgy et al. (1958)). There remains some question as to the 

relative sign of the coupling constants and gy. It is the 

main purpose of this present work to determine this sign. 

Further, a check will be made to see if the value quoted above 

will fit our analysis. There is a theoretical question as to 

whether the coupling constants are independent of the nucleus 

decaying. Feynman and Gell-Mann (1953) show the vector coupl­

ing constant to be so (except for small electromagnetic 

corrections) but nothing definite is said about the axial 

vector coupling constant. Indeed, the sign Itself may depend 

upon the nucleus decaying.

The coupling constants gy and gA are those originally 

introduced for the parity-conserving interaction. Allowing 

for the nonconservation of parity, Lee and Yang (1956) introd­

uced another five terms into the interaction Hamiltonian.

They showed that measured quantities out of which pseudoscalars 

cannot be formed, such as spectrum shapes and lifetimes, could

usted correctly by replac- ,,.2 by gy2 4 gy*2, eygA

by gy£rt +- gv*ga’, ©tc. (here their results have been part­

icularized). gy’ and gA* are the new coupling constants for 

the parity-nonconserving interactions. Evidence indicates, 

however, that gA « gA* and gy « gv» (e.g. see Wu (1958)).

Thus, the measured quantity which is really l(gA2 ■+ gAt2)/

(gy2 ♦ gy’2) 1 reduces to Ig^/g^las it as before the
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nonconservation of parity.

The analysis of forbidden beta-decay spectra is useful 

in studying the beta-decay interaction. For the present work 

the third forbidden decay of Rb^? has been 9 r (A J - 3, 

parity change). There are three reasons for this choice.

First, the method of conics as developed in chapter 

II depends strongly upon the Fermi plot of the observed spect­

rum not being a straight line. In the case of allowed spectra 

the method is not applicable. It seems that the chances for 

a successful analysis would be best with a high degree of 

forbiddeness. Second, the nucleon structure of allows

for a shell model assumption. Reasons for such an assumption 

are found in chapter 1. Finally, in the theoretical group 

here at McMaster there has been past interest in this decay. 

Calculations employing scalar-tensor theory have been carried 

out by 2ernik (1956) and Pearson (1956). I am indebted to 

the latter for tables of certain functions which he calcul­

ated to five significant figures and for the normalised shape 

correction f-factors (see chapter II).

2. THE SHAPE CORRECTION FACTOR

If the Interaction is vector and axial vector the 

Hamiltonian may be written as

’ gvV + gAA <.gv*¥’ * gA»A*

V and A are respectively the vector and axial vector parity- 

conserving invariants, and gy and gA are the respective coupl­

ing constants; the primed quantities refer to the corresponding
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parity-nonconserving parts. Then the formula for the shape 

of the beta-spectrum is
P(E)dS » (1/2x}3 B (B* - X)l (Eo - E)2 F(2, ) Cn(E,2) dE

where P(K) is the decay probability

B is the total energy of the electron 

Bo is the end-point energy of the spectrum 

F(2,E) is the Fermi function

Cn is the shape correction factor for the n-th forbidden 

transition considered, C also depends on certain nuclear 

matrix elements.

2 is the charge of the daughter nucleus.

The units tr = e = « 1 are used here and elsewhere, unless

otherwise stated.

If the beta-decay interaction consists only of vector 

and axial vector terms {as above), the shape correction factor 

for a third forbidden transition where aJ • 3 can be written 

as C » (gy2 + gy,2î C^v * (gA2 * 6â,2Î C3a

* (s„sv +S»’Sv') cjv*
Using Pursey’s (1951) notation for the nuclear matrix elements 

Qn»
£3^ * 1 f42 *Mq) + \^3 (?O|2 8(q) *¥ i ( (w) .Qj (r) « e.c.)D(q)

Bjj - *<<0 ♦ V'/JtH2 k(q)

G3VA * + c.c.)G(q) 4 i(Oj(r) •Q^Cî.xr) * C.c.)H(q)

q is the momentum of the neutrino, and <r and < are the usual 

Dirac operators. The expressions for Gqy and C3A are taken 

from Greuling (1942); from Pursey (1951). Notation unex­
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plained here will be found in Greuling’s article. In the above

B(q) • (1^30^4 + I^q2 + (15/2)1^

k(q) « {Lo/‘63O)q6+ (Ll/10)q4 4 (5/2)L2q2 4 (35/2)1^

A(q) x Q2 ** 2n

D(q) » Q3 - m

F(q) = Q2+2n “ kA

G ( q ) ~ Qj + m

H(q) “ Qj+Q2 " and

Qi • (Mo/3o)q4 * ‘W * (15/2)M2

Q2 » (L0/630)q64 (L1/l$)q4 + (3/2)1^ + 10L3

Q3 • (Lo/21O)q54 (L1/$)q3 + (5/2}2>2<

n » (80/210)q5+ (Ni/3)q3 ♦ (5/2)N2q

m - (N0/30)q44 Nxq2 4 (1$/2)N2

The L*, Mm, Mw functions are defined precisely by 

Greuling (1942). They are combinations of radial lepton wave 

functions evaluated at the position of the transforming neut­

ron. These have been tabulated by Rose et al, (1953) to four 

significant figures for the effective radial position R » 1.41 

aV3 x 10“ x3 cm. For the conic analysis of chapter IX greater 

accuracy was found to be needed.

Pearson (1956) has made expansions for Ly, 1^, and 

Nx (see Zernik (1956)) and tabulated values to five signif­

icant figures for the Rb^? decay. The latter has been done 

for three effective radial positions to investigate the

dependence of this uncertain quantity



JJh MATS Dt» or.

1, SHELL MODEL ASSUMPTION

In this t< ■' the ■'.u, ~ f ■ ' . '•(./ . (r.

calculated. This calculation ^as suggested by the results 

found in chapter II and it turns out to be useful in complet­

ing the analysis.

To evaluate this matrix ratio we need to assume some 

nuclear model. From the energy level scheme of the extreme 

single particle model (eg. Lane and Elliot (1957)) it is seen 

that this shell model of the nucleus predicts our beta-decay 

process to be the transition of a lgç/2 neutron into a 2P3/2 

proton. This event leaves a hole in the lgn/2 neutron level 

and fills up the 2pJ/2 proton level of Sr»?. The measured 

ground state spins of and Sr^7 are 3/2 and 9/2 respect­

ively (so Ad » 3). The measured magnetic moments of fcb®? ano 

Sr®7 lie fairly close to the Schmidt limits. Both are near 

their respective "j • L + i limits’- indicating good agreement 

with the parity assignments predicted by the extreme single 

particle model (eg. Blin-Stoyle (1957)).

It is known from the change of spin and the measure­

ments of half-life, **5 x 10lf) years, and end-point energy,

280 kev (Goodman (1956)), that the Rb^? beta-decay is 3rd 

forbidden. The above argument is consistent with this result.

(6)
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Now, we wish to write wav© functions for the initial 

and final states. Let each total wave function be written as 

a linear combination of properly antiayæmetrlzed product wave 

functions; each term being formed from a possible set of 

eighty-seven single particle shell states. This allows for 

possible configuration mixing. The resulting total matrix 

elements will each be a sum of terms, each such term being a 

matrix element between two product wave functions. Next, it 

is important to remember the nature of our operators—they are 

single particle operators. This means that matrix elements 

between two product wave functions can be non-zero only if 

these product wave functions differ in only one of their 

single particle states.

Let us look at the two nuclei and their shell struct­

ure. Since fifty is a magic number it is expected that the 

fifty neutrons in Rb&7 will have only one possible configurat­

ion-filling all levels up to and including the Ig^g* Also, 

the thirty-eight protons in Sr&7 are expected to have only 

the configuration which fills all levels up to and including 

the If5/2* can write

{Sr^7) = -Cl P(30 protons filling levels to Ifç/gl

x 2. * , ^ t(39) <<i(4°)

® -Q_p x^iS'ï

* * •

^{Rb^7) « -£^n(50 neutrons filling levels to 1^9/2)

x 2 <« j(l) ^j(2) ... 437)

= jxn ' x 2
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and are the fixed core wave functions for Sr^7 and 

Rb^7 respectively. <^(k) are the single particle nucleon 

wave functions; k £ 37 for protons, k > 39 for neutrons. 

Particle number 38 undergoes beta-decay.

The Rb^7 Sr&7 decay is the transition of & 1&9/2

neutron into a 293/3 proton. Contributions to the matrix 

elements may be obtained only when

a. jx.n find are identical for particles 39 to 87 which 

means that represents the neutron configuration

... (U9/2)9 ï ”

b. XV and *ŸP are identical for particles 1 to 37 which 

MISS that represents the proton configuration

... (2p3/2)3 1 N* ?
In taking the ratio of the matrix elements the product of the 

cor,;tion • ixirv covnr...nts •* s (?r will cancel out. There­

fore, any configuration mixing present will not influence our 

result.

2, OUTLINE OF CALCULATION

The calculation is simplified by using the theorem

of Longmire and Messiah (1951). This states that the ratio 

of matrix elements is independent of the values of the indicias 

and of the magnetic quantum numbers of the initial and final 

states, be choose to calculate

tf<2p3/z)
Jdc -/f^P3/2) ®zzz
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The suras which appear in the general expressions for 

the numerator and denominator (e.g. Greuling (1942)) reduce 

to single terms. The integrations over the eighty-six part­

icles not affected by the operators cancel out.

The operator 0zzz(r) is easily written in terms of 

spherical harmonics Yg. The spherical harmonics used here 

are those defined by Condon and Shortley (1935). Note that 
(Y«f » (-lR“«. We have

08zz(r) * * (l/5)z r2 - (2/5)« r2
- (4*/?)^(2/5) r3 Y°

The proceedure for the operator 0za2(<) is more invol­

ved. The odd Dirac operator •* is replaced by the even operator 

-jj/M (e.g. Rose and Osborn (1954)). £ and M are the nucleon

momentum and mass, respectively. One finds

0Z2Z(«) • (-1A ) (z2 Pz -(1/5)r2 p2 - (2/5)z <£•>>)

« (41/510 (x/21)l (3^0 r2£ - Y’1 r L+ - y| r L„)

Here L^. and L_ are the ladder operators. They satisfy 

14 Ym ® ( A - rap ( A* m + 1)§ Y® *1 

L. Y» - ( A.+ ( 4 - a * 1)1 1

It is noted that Ozzz (r) will have matrix elements 

only between states of equal magnetic quantum numbers, J2. 

Choose Jz - 3/2. We have

tfinal * Rzp(r) •<

Vlnit.l * Rlg<r> ( (2/3)^ ïite.M)* + < 1/3 )* ïg<®,<e) (Ï )

< and (Î are the usual spin wave functions; « for spin up, (S 
for spin down.
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Using the relationship

U 4jr(2L *.. 1)

where the latter two factors are the usual Clabsch uordan 

coefficients (e.g. Condon and Shortley), the ratio reduces to

Now an assumption needs to be made about the radial 

wave functions &gp and Rig. It is felt that most of the error 

in the final ratio will enter here. For this type of a 

calculation, however, the spherical harmonic oscillator radial 

wave functions should give a fair approximation. From Mayer 

and Jensen (1955),
»ig - «ig «-Vr2 r

a2p • H2p r(1 * <*VS) r2)

1 • e same t is used for both wv« funcMons. As a I wt

this is a safe assumption since the measured nuclear radius

eh is used to fix Ï is the same for f, th nuclei.

Using these radial functions,

The constant K is fixed by compu: uæ root mean

square radius. We take

JO'-X » (3/5)^ 1.20 <S7)V3 10-13 cm. (e.g. Hofstadter

(1956))

1.06 x 10“2 relativistic units.
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From Mayer and Jensen (1955),

<r2? nA » (l/2y) ( 2(n - 1) * X + 3/2 )

Averaging over the protons of Rb®?,

* 1.64/ >( ,

or averaging over all the nucleons

<i*2>av « 1.96/j

For Sr^7 the respective values are 1.86/$ and 1.96/$.

Using the first of these values, 1.84^, since the measured 

radius is from a ’’charge-dependent** experiment and letting 

M - 133? we have

$'ZZ2 '* « 6.0 i

The value 1.96/$ would give a value for the ratio of 6.4 1.

Y&msda (1953) has calculated this matrix ratio using

the model-independent method developed by Ahrens and Feenberg 

(1952). Adjusting his value to correspond to our choice of 

nuclear radius, one obtains

Ü7 ~ 2.6 1

This result does agree with ours for its siFjn which is import 

ant in the final analysis. The disagreement of the values is 

not too unreasonable.



CHAPTER II: CONIC ANALYSIS

1. METHOD OF CONICS

The following method is based upon that of Lee-Whiting

(1955). We let

« • 1 fit ..ShS?.. , r • fit tySL. , u2 .gA Q^lexr) gA CjtrxrT

The notation hn(«)|2 - l «tJ

By a time-reversal argument one can show that x and y are 

real. This means that their squares will be positive. Using 

the theorem of Longmire and Messiah (1951), we have

,2 » ( Sy \ 2 l^teH2 4
VgA I '[Q3(»xr)V

2 lQ3teH2
<A J ^texr )’\ 2IS)

The expression for the shape factor can then be

written as

£i2l
‘gA24F5'':=\ > Hp

= A(q) x2 4 B(q) y2 - 2D(q) xy4 2G(q) y

4- 2H(q) x 4» F(q) 4- k(q) u2

Let p« C(q)/C(q0). Thus, we have

a’ x2 4 B ’ y2 - 2D * xy 4 2G * y 4- 2H ’ x 4 F ’ 4 k’ u2 - 0

where A»(q) « A(q) - f(q) A(qo), etc.

Although the order of magnitude of u2 is unity, the 

smallness of its coefficient k’ allows the term k* u2 to be 

considered as a correction to the constant F*.

Then, our equation represents a conic In x and y. In 

principle, an exact solution for x and y could be determined

(12)
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by obtaining the common point of intersection of a few conics 

for different values of momentum. As will be seen in the next 

section, uncertainties in the Lv, functions and the (>

factors require the replacement of the above conics with 

bands of finite width. The intersection of these bands is 

employed In our analysis.

Finally, we may again use our shell model assumption 

here to evaluate the matrix ratio in x. Horita, Fujita, and 

Tamada (1953) give

This result is dependent only on the angular part of the wave 

functions since the radial Integrals cancel out. Thus, we get

«Â

2. DATA AND ANALYSIS

Using the spectrum obtained by Goodman (1955), Pearson 

>2} calculated the normalised shape -factors, > sil

at p ■ 0.3 (p is the electron’s momentum in relativistic 

units). For a discrete set of values of the electron’s moment­

um, he gives two extreme f-values pertaining to his 65% 

statistical calculations.

The special functions A*, B’, etc. (coefficients in 

conic-bands) were calculated employing Pearson’s five-place

N„. Du© to the slight uncertainty in end-point, energy 

the three energies 275» 230 and 235 Kev were considered. It
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turns out that this effect is not important. The dependence 

of the B functions upon the effective radial position

R is investigated by considering the three radii 1.13, 1.41, 

and 1.55 Ax/3 x 10“cm.

The approach to the numerical analysis is apparent 

from the method of conics already described. For each value 

of end-point energy and of radial position R, a set of conic- 

bands are drawn and their common area is found. Each conic- 

band is the allowed x-y area for a certain value of the 

electron’s momentum. Our allowed values for x and y will 

lie within the common area of the intersection of these bands.

There remains one point regarding u2. An attempt 

was made in a preliminary analysis of the spectrum to include 

this as a variable and to determine its maximum value, if any. 

An upper limit was found (as a function of y) but this was 

larger than the expected order of magnitude. It was decided 

to test the effect of u2 by doing the conic analysis for 

u2 » 0 and 2, and for further values if any large scale effects 

seemed to be present.

Most of the numerical work for the conic analysis was 

done on the Bendix G-15 computer here at McMaster.

3. RESULTS OF CONIC ANALYSIS

In the cases studied, the conics which serve as bound­

ary curves for the bands of allowed x and Y hyperbola
of a similar character. For each case, the bands—one for 

each value of the electron’s momenturn chosen—differ only by
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small amounts. Their common area of intersection, when this 

exists, occurs all along one arm of the hyperbolas defining 

almost a linear relationship for x and y (e.g. Fig. 1). This 

will be used in connection with the relationship found in 

chapter I by the matrix ratio calculation to complete our 

analysis.

It is found that there is very little dependence of 

this common area of intersection upon the end-point energy 

chosen (cf. Fig. 2). The effect of the term containing u*2 is 

smaller yet, and the term can be neglected.

The influence of the effective radial position R upon 

the system of conic-bands is appreciable. This is illustrated 
by the systems for R * 1.13 and 1.41 aV3 x 10*^3 cm. (cf.

Fig. 2 and 3}. The structures of the common areas of inter­

section are similar but their positions are shifted somewhat. 

The case R • 1.55 Ax/3 x 10*c®. does not give any allowed 

areas for either u2 « 0 or 2. This is not unexpected for 

such a radial position is well out into the mass distribution 

tail of the nucleus. The beta-decay process is thought to 

take place more within the nuclear matter. Although the 

variation of the common area of intersection with the radial 

position R as indicated by Fig. 2 ana 3 produces small changes 

in the values of x and y obtained, the important elements 

remain unchanged. This study justifies the statement that 

our final conclusions (as to sign end approximate values) are 

independent of reasonable values of the effective radial 

position R.
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Since our conic analysis gives both positive and 

negative /alues of x of a reasonable magnitude, it alone is 

not sufficient to determine the sign. All these values of 

x also satisfy the necessary requirement of giving a positive 

shape factor. From the position of the common area of inter­

section In the x-y plane one sees that a value of y/x should 

be helpful. Essentially, this has been calculated in chapter

I.

4. EFFECT OF FINITE SIZE OF NUCLEUS

Hose and Holmes (1951) have shown that taking into 

account the finite size of the nucleus the order of magnitude 

of the corrections to the LM, functions can be rather

large. The largest correction occurs in the f--

.■:t -;r example, the corrected value of Mq is about I the 

value for a point nucleus for Z » S3 (tne value is roughly 

energy independent).

To determine whether the finite size correction would 

be important in our result a sample calculation was carried 

out. Fig. 4 shows two conic-bands for p {electron’s momentum)

» 0.5» ®o " 275 Kev. and R » 1.41 aV3 x XO”^-3 c®., one of 

which is corrected for the finite size of the nucleus. The 

correction factors for 2 » 38 are approximated from the figures 

in the Oak Ridge report of Rose and Holmes (1951). assuming; 

the corrections to be energy-independent for our range of 

energy, we made the approximations 6Lq « -0.01, ALj - -0.0012,
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a * -e. » a * -o.oooi, ~ a .j * -0.12,

& * & * -0,15» Ah'. * ~( . 7, A 2 * 4. The

id Lg *(!•♦■ . , etc.

tne conic-bands were modified a little, the correction is 

not important here.



CONCLUSION

1. DISCUSSION

From the definitions of x and y and the matrix ratio 

calculated in chapter I we have y » 6x. This line is plotted 

on Fig. 1 and 3 to show its intersection ith the allowed 

areas of x and y values found in the conic analysis.

In Fig. 1 with R » 1.41 aV3 1O~^3 cau ^,c intersect­

ion of y » 6x with the allowed area gives for x {< -gy/f 

values between 0.53 and 0.58. In Fig, 3 with R » 1.13 aV3 

x lO-^cm. the corresponding values are 0.83 and 0,93. From 

our study it is believed also that intermediate values of R 

will give intermediate ranges of x values.

Since our matrix calculation assumed a single particle 

model with harmonic oscillator radial nave functions, we do 

not wish to insist too strongly on y/x being equal to 6, 

although it should be recalled that the simplest forms of 

configuration mixing do not change this value. The x values 

obtained become smaller but are definitely positive when this 

y/x value is increased. On decreasing this y/x value, the x 

values increase and are positive until y/x < 2, when large 

negative values of x are obtained (cf, Fig. 1). Allowing for 

an error of a factor of 2 In the result y/x - 6, we may rief- 

WMlr MX *bM the «U* .f « ( « -g„/sA) is positive. That 

is, the sign of the ratio of the coupling constants is negative

This conclusion is strengthened if w accept txt 4. 1. 

(18)
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The latter has been found in other beta-decays which are 

discussed in the next section. To get a negative x for R «

1,41 iq-13 cm>> a large negative y/x value is needed.

For R s 1.13 aV3 10“-^ cm>> the conic analysis alone is 

sufficient for the above conclusion.

2. OTHER EVIDENCE FOR gy/gA

Burgy et al. (1958)11 have studied the asymmetrical 

distribution of electrons in the decay of polarised neutrons. 

This Argonne experiment gives gy/g* s -0.80 £ 0.03.

The comparison of the lifetimes of the neutron (Sos- 

novskij et al. (1958)) and of 0^ (Gerhart (1958)) gives the 

absolute value of the ratio, lgy/gAl * 0.841 0.03. This 

assuiaes that gv is the same for both beta-decays.

Vlasov and Rudakov (1959) have found that the ratio 

gy/gA is negative in the first forbidden decay of Ba^39. Their 

method of analysis was angular correlation.

3. SUMMARY OF RESULTS

The assumption of only vector and axial vector terms 

in the interaction Hamiltonian allows for a consistent analy­

sis of the observed spectrum.

The approximate absolute value of the ratio found in 

our analysis for Kb8? is in the region of the measured values 

for other decays. All the values given in the previous sect­

ion will fit our analysis.

The sign of the ratio of the coupling constants for
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RfcS? is negative. This agrees with that found for the other 

decays mentioned above.

Our conic analysis was only slightly sensitive to 

end-point energy, to neglecting the terc containing Q^(«,r), 

and to the finite sise of the nucleus correction. Although 

the conic-bands were more sensitive to the effective radial 

position R, our conclusions are valid for reasonable values 

of R—unreasonable ones give no agreement for any values of 

x and y (see chapter II, section 3).

Because of the uncertainties in the nuclear matrix 

elements, one cannot use these results to argue that the value 

of gy/g^ is independent of the nucleus. It is however inter­

esting to remark that if we take the average experimental 
value gy/g^ --G.82, we find that, for R « 1.41 A1/^ iq-33 cm., 

the point on the conic is y - 3.8 and for R « 1.13 aV3 10-13 

cm., y - $.2. These values correspond to y/x * 4.7 and 6.3, 

in good agreement with the ’’theoretical” value 6.
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FIG.

FIG. 2

FIG. 3

FIG. 4

: Intersection of Conic-Bands for So * 275 Kev, 

g = 1.41 aV3 1O~13 cm., and u2 = 0. The five 

conic-bands are shown by the line segment pairs 

offset to the right of the integral values of y 

to which they refer. Bach conic-band corresponds 

to & value of the electron*s momentum p; from 

left to right p « 0.5, 1.0, 0.6, 0.9 and 0.7.

ï Intersection of Conic-Bands for Eo * 260 Kev and 
275 Kev, R - 1.41 Ax/3 io”^ cm., and u2 « 0.

: Intersection of Conic-Bands for Eo = 260 Kev,

R « 1.13 aV3 io-13 cm., and u2 « 0.

: Effect of Finite Size of Nucleus. Two conic-bands 

are drawn for Eo • 275 Kev, R = 1.41 Ax/3 10“13 

cm., u2 * 0, and p * 0.5» one corrected for the 

finite size of nucleus effect.
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