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LINEAR MODELS WITH NESTED ERROR STRUCTURE IN

PREDICTING VISION LOSS FOR PATIENTS WITH

SUBRETINAL NEOVASCULAR MEMBRANES

Abstract

Age-related macular degeneration (AMD)* and presumed ocular histoplasmosis 

(POHS) are common causes of macular degeneration. Both are major causes of 

blindness, with AMD being the leading cause of blindness in people over the 

age of 65. The major cause of visual loss in both categories is the presence 

of a subretinal neovascular membrane (NVM) in the macular. Sometimes these 
conditions can be treated successfully with laser therapy. Our task was to 
develop a regression model for predicting post-treatment vision as a function 

of time from treatment and baseline prognostic factors measured at diagnosis. 
The particular analysis of the model was to examine how patients' post­

treatment vision is affected by baseline factors. A nested-error structure

was used in a linear model.

*: Abbreviations see Table A.

I. Medical Background

Age-related macular degeneration (AMD) and presumed ocular 

histoplasmosis (POHS) are common causes of macular

1



degeneration. Both are major causes of blindness with AMD 

being the leading cause of blindness for those over 65 years 
of age. The major cause of visual loss in both conditions is 

the presence of a subretinal neovascular membrane (NVM) in the 

macular with resultant bleeding under and scarring of the 

retina. These conditions can be treated successfully with 

laser therapy in some cases. The goals of treatment are to 

obliterate completely the subretinal neovascular membrane 

without damaging the foveal ascular zone (FAZ).

Patients for this study were those recruited for the Canadian 

Ophthalmology Study Group trial. All patients had a suspected 

subretinal neovascular membrane associated with age-related 

macular degeneration or presumed ocular histoplasmosis.

Visual acuity (vision) was measured following refraction using 

the Early Treatment Diabetic Retinopathy Study Chart. Vision 

was recorded as the total number of letters the patient can 

read. Patients had their vision measured just prior to 

treatment and again at 3 months, 6 months, 12 months, 18 

months, 24 months, 30 months and 36 months following

treatment.

Laser therapy was performed with either Aryon-green or 

Krypton-red photocoagulators according to a standard protocol 

for each instrument. Treatment will continue until the
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membrane is completely closed or until it grows to involve the 

centre of the fovea.

II. Purpose of Analysis

The object of this study is to determine which factors 

predicted visual loss, and to develop a regression model for 

predicting vision as a function of baseline prognostic factors 

and time from treatment.

The prognostic variables to be considered are diagnostic 

category (AMD or POHS), diameter of the NVM, distance from the 

f oveal edge of the NVM to the centre of the FAZ, duration 

measured in days between first symptom and diagnosis, and time 

measured in years between baseline vision and follow-up 

vision. Patients belonged in one of two categories, and 

distance ranged from 200 to 2500 microns. Distribution of 

number and average duration of patients in each category and 

each distance range is shown in Table 1.

We wish to examine how patients' post-treatment vision is 

affected by baseline factors and the time from treatment. Two 

methods were used to achieve this. In the first method, the 

slope of the regression line of vision on time were calculated
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for each patient. Then the effect of the baseline factors on 

the slope was examined. In the second method all the 

observations from all patients were used in a regression 

analysis using a nested error structure. A nested error 

structure was used to account for the correlation between 

observations on the same patient. The error structure for the 

ith observation on the jth subject was assumed to be Sj + e±j, 

where Sj follows a normal distribution with mean zero and 

variance ozSi and e^ follows a normal distribution with mean 

zero and variance o2..

TABLE - 1.

AMD POHS TOTAL

200 — 500 89 52.37 49 54.59 138 53.16
501 — 1000 73 58.25 58 31.38 131 46.35
1001 — 1500 13 71.08 13 22.46 26 46.77
1501 — 2000 10 54.90 2 29.50 12 50.67
2001 — 2500 4 59.75 7 64.00 11 61.45

TOTAL 189 56.22 129 41.04 318 50.06

Number of patients and average duration (days) between first 
symptom and diagnosis in each category and distance group. 
First entry is number of patient and second is average 
duration.
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III. Theoretical Considerations

1. Method of slopes.

The first method considered for this study was to calculate 

the slope for the regression of vision on time, and the 

variance of slope for each patient, as follows

vij = b«i + hitij + £ij «ij~ N(0,0^)

2nj=1(V1:) - VJit^ - tj 
A
bi = ____________________________

2nij=l(tij - t±)2

" Vi)2

var(bi) = ____________________________

(ni “ 2 )2nij=1 (t±j - t±)2

The slope, biz was calculated from the regression of vision 

versus time, where vision is measured by the number of letters 

the patient can read and time is the number of years between 

baseline vision and observation vision.

We used the method of least squares to fit general linear 

models.
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Let B = X© + e with E(B) = X© 

where

bi X1O Xn • • . . . . Xlp

t>2 ) X20 x21 .. .. .. x2p '

•• X = • • • • • •

•• • • • • • •

bn\ > Xn0X
X„1 .. . • . • xnp

© 1 /• -X

©1 e2
•• e = ••
• •• 1 •

where b± is the slope of the ith patient and (xi0,x±1, ... ,xlp) 

is the vector of predictors.

The ordinary least squares used involves choosing © as the 

value of © which minimizes the sum of squares of deviations of 

the observations from their expected values, i.e., choose © as 

that © which minimizes
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SVjbi - E(b±)]2 = (B - X©)'(B - X0)

The resulting estimator is

© = (X'X)_1X'B

However, since the weighted least squares estimates are best 

linear unbiased estimators if the weights for the observations 

are proportional to the reciprocals of the error variances, we 

adopted the BLUE to get the estimates of ©. A weighted 

residual sum of squares ^.^(bi - E(b±))2 is minimized, where

W = 1/(variance of slope)

calculated from data. So the weighted normal equations used

are:

© = (X'WXJ^X'WB

This © is the best linear unbiased estimator. To test the null 

hypothesis Ho: ©j = 0, we define the p-value to be twice the 

area the right of |t| under the curve of the t-distribution 

having (n-p) degrees of freedom. If the inference assumptions 

are satisfied, we can reject Ho: 0j = 0 in favour of Hx: ©j # 

0 by setting the p-value of type I error equal to a if and 

only if following condition hold:
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p-value < a

We use this method to choose our final model for which the 

factors are significant.

2. Regression with nested error structure

Frequently data arise from the random selection of 

"individuals" on which several "measurements" are made. So a 

sample of patients may be selected and vision measurements 

taken for the individuals over several years in the study of 

the relationship between vision and time. This "nesting" 

pattern by which the data are generated has a significant 

bearing on the statistical model that is appropriate for valid 

analyses of the data.

In the presentation of the statistical model for the analysis 

of observations that arise in a one-fold nested structure, we 

denote the variable under study by the letter y with two 

subscripts. The first subscript distinguishes the individual 

(patient) in the sample, and the second subscript 

distinguishes the measurement (observation) for the particular 

individual. We assume the N individuals are selected at random 

with eligibility criteria and that n± measurements are made on 

the ith individual. The linear model is expressed as
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Yij — ^Pk=lXijk^k ■*" Ulj (3.2.1)

i = 1,2, ... ,N 

j = 1,2,...,n±

and

u±j = s± + e„ (3.2.2)

where,

y±j denotes the value of the jth measurement for the ith 

individual.

xijk, k=l,2,...,p, denotes the levels of the p predictor 

variables at which the observation y±j is obtained.

Bk, k=l,2,...,p, denotes the unknown regression 

coefficient to be estimated.

and

u^, the random error associated with y^, is assumed the 

sum of the random effect associated with ith sample

individual (s±) and the random effect associated 

with the jth measurement for the ith individual in

the sample (e^).

The random errors Si and ei3 are assumed to be independently 

normal distributed with means zero and variances 0% and o2e 

respectively, where 0% a 0 and 0% > 0. The covariance

structure for the random errors u£j is thus expressed by
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ECu^Uvp) =0^ + 0% if i=i', j=j'

= Oac if i=i', j/j '

=0 if i^i'

See Fuller & Battese (1973). As proposed by Fuller & Battse 

(1973) we transform (3.2.1) into the regression equation

Yij “ aiYi. = 2Pk=l(xljk “ aiXi.k)^k + U ij (3.2.3)

where
cq = l-faVi^e+niCr^p (3.2.4)

and yi./Xi.k, k=l,2,...,p, denote the averages of the n± y-and 

x-measurements on the ith individual. The errors, u’^, are 

uncorrelated with the variances cs\, and the £ parameters in 

(3.2.3) are identical to these in (3.2.1).

We write the linear model (3.2.1) as

Yij = SXijkBfc + u ^(3.2.5)

where,

E(u‘u*') = var(u‘) = Io2e

Since the variance components o2s and 0% are unknown, the 

values of the transformation factors a± defined in (3.2.4) 

must be estimated from estimates of o2s and dc. Fuller and
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methodBattese (1973) used the "fitting-of-constants" 

suggested by Henderson (1953) and discussed by Searle (1971)*. 

By the regressing the y-deviations, on the x-

deviations, xijk-xi>k, k=l,2,...,p, that are not identically 

zero, we obtain the unbiased estimator for o2^

o2e = e'e I (Nr - N - p + 4i)

where,

e'e denotes the residual sum of squares obtained

from the regression and <J>X is the number of x-variables which 

are a linear combination of the indicator variables for 

individuals. The variance component 0% is unbiasedly estimated 

by

A A A_
U'U - (Nr - PJtKe

Nx - tr[(X'X)‘12H1.xn21x1/x1J

where u'u denotes the residual sum of squares from the 

regression of Y on X, and Xx. denotes the (lxp) vector having 

kth element xi-k, k=l,2,...,p.

*: "fitting-of-constant" was presented by Searle (1971). The value of this 

method is to yields estimators of the variance components unaffected by the 

fixed effects.
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3. Alternatives

An alternative approach of predicting a future measurement on 

an individual given the past measurements will be considered 

here. It was introduced by Rao (1987) who presented several 

papers on prediction of future observations from linear 

models. Statistical techniques have also been proposed by 

Barndorff-Nielsen (1981), Bock (1976), Geisser (1975), Hinkley 

(1979), Lee (1972) and Young (1977).

Rao (1987) gave some formulae for predicting future 

observations in a linear model, and compared different 

formulae by applying them on empirical data relating to 

biological growth. The method of principal components is used 

to estimate the coefficients of a linear model when the 

coefficients are not specified. Rao (1987) also assessed the 

efficiencies of different methods of prediction by cross- 

validation or leave-one-out technique. Bayesian and empirical 

Bayesian methods were used to estimate unknown parameters.

Rao's method can be summaried as follows:

Consider the linear model

Y = Xfi + E (3.3.1)

where Y and E are pxl vectors, X is a pxn matrix and J3 is an
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nxl vector. Further, let y be a vector of k random variables 

with a Gauss-Markoff structure

y = xB + e (3.3.2)

where B is the same parameter as above. The problem we 

consider is that of predicting y be a linear function of Y 

depending on the nature of information available on X, B, E

and e.

We note that the problem of finding an optimum predictor y 

under the loss function

(Y " Y)'G(y - y), (3.3.3)

where G is a positive definite matrix, is equivalent to that 

of optimum prediction of each component of y under a quadratic 

loss function. Thus the solution under the loss function 

(3.3.3) is independent of G. We shall, therefore, consider y 

to be a single future observation to be predicted.

Let the dispersion matrix of (E,e) given B be written in the 

partitioned form, apart from a multiplier o2,
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(3.3.4)\ v21 v22 y

where V±j and o2 do not depend on B. Further let B be a random 

variable with mean u and dispersion matrix t^F. We shall 

assume that (Vi:j), F and X are all full rank to avoid some 

complications.

When all parameters are known, the best linear predictor (BLP) 

of y under quadratic loss function is the regression of y on 

Y,

xu+ (xFX' +V21) (XFX'+V11)'1(Y-Xu) , (3.3.5)

and the associated prediction mean square error is

cf2[V+xFx'-(xFX'+V21) (XFX'+V11)-1(XFx'+V12) ] (3.3.6)

Let us denote by B, the least squares estimator of B from 

(3.3.1).

A
B = (X'V-^X^X'V^Y = UX'V-^Y

where U = (X'V-111X). Then (3.3.5) can be written as the sum of 

three expressions:
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(3.3.7)

xB
-(x - V21V-111X)U(F + U)-1(B - u)

+ V21V-111(Y-XB)

The prediction mean square error (3.3.6) can also be written, 

apart from the multiplier a2, as

V22-xUX ' V-111V12-V21V111XUx ' +xUx '

“ ( x-V^V^X ) U ( F+U ) _1U ( x ' -XV111V12 )

-V21 ( V\1-V-111XUX ' ) V12 (3.3.8)

corresponding to the three terms in (3.3.7). The expression 
(3.3.5) can be also written as

A
xu + (xF+V21V“111XU) (F+U)_1(B-u) (3.3.9)

+ V21V-\1(Y-XB) (3.3.10)

where (3.3.9) is the regression of y on B and (3.3.10) is the 

regression of y on the residual (Y-XB).

The BLP depends on all the parameters (Vi;j), u, o2 and F whose 

values may not be known in any particular situation. If past 

data on the linear model (3.3.1) are available, it may be 

possible to estimate the unknowns, substitue the estimates for 

parameters in the formula for the BLP and thus obtain am 

empirical best linear predictor.

Rao (1987) suggested that in the absence of any information on
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the stochastic process describing an individual's growth, a 

standard approach to the prediction problem is to consider the 

joint distribution of Y = W and (Y1ZY2,... ,Yp) = U over the 
individuals of the relevant population and derive the 

conditional distribution of W given U for use in prediction.

IV. Results and Discussion

We used two methods to analyze this study.

1. The method of slope.

There are two data files collected for the Canadian 

Ophthalmology Study Group trial. One is the patients data set, 

called PATIENT.dat. It has a record for each patient including 

patient identifier, category (AMD vs POHS), diameter, 

distance, duration, baseline vision, slope of regression line 

of vision on time, and weight (1/variance of slope).

The GLM procedure in SAS was employed to fit general linear 

models with slope as the dependent variable. The GLM procedure 

uses the method of least squares and allows many different 

analyses, such as simple regression, multiple regression, 

analysis of variance, analysis of covariance, weighted 

regression and so on. In addition, The GLM procedure allows 

the specification of any degree of interaction (cross effects)
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and nested effects. It also provides for continuous-nesting 

effects. Through the concept of estimability, the GLM 
procedure can provide tests of hypotheses for the effects of 
a linear model. The GLM prints not only the sum of squares 

(SS) associated with each hypothesis tested but also upon 

request the form of the estimate function employed in the 

test. The GLM can produce the general form of all estimable 

functions.

We chose slope as the dependent variable and used category, 

diameter, distance, duration, and baseline vision as 

independent variables respectively. The program is described 

briefly as follows writing by SAS.

DATA = PATIENT.DAT

PROC GLM

MODEL SLOPE = CATEGORY

WEIGHT WGHT
•
r

MODEL SLOPE = DIAMETER

WEIGHT WGHT
•
f

MODEL SLOPE = DISTANCE

WEIGHT WGHT
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Where, WGHT = 1/(variance of slope)

We set a = 0.05 to test each hypothesis. If p-value of an 

independent variable was less than 0.05 (two tailed test), 

then we included it in the model. We used a step-foward 

approach to model building. In the first step each independent 

variable was entered in a model as a single factor. The most 

significant of these was category (p < 0.0001), see Table 2.

Through running this program with one independent variable at 

a time, we found only category, distance and duration are 

important factors, ie, the associated p-value is less than 

0.05. The p-values of category, distance, and duration are 

0.0001, 0.0079 and 0.0367, respectively. Therefore we have 

strong evidence that category, distance and duration are 

significantly related to Y, the slope.

In the next step we calculated the p-value of each independent 

variable in a model that included category. The only 

significant variable in this step was distance (p = 0.0046),

see Table 2.
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TABLE - 2

Stepl Step2 Step3 Step4 Step5 Step6 Step7 Step8

CATE .0001 * .0001 .0001 * * .0001 *
DI AM .2178 .9178 .1267 .2562 .6907 .9191 .1522 .6927
DIST .0079 .0046 * .0075 * .0050 * *
DURA .0367 .3033 .0399 * .3304 * * *
TRET .7135 .8182 .8425 .6471 .9620 .7787 .7715 .9220
VIS I .0541 .9800 .1217 .9880 .6020 .9252 .2009 .5577

P-values at each step of independent variable.

The terms marked by * are included in the model with any other 

factors. In the first column of Table 2 the p-value of each 

variable entered by itself is given. In the second column the 

p-value given for each variable is the p-value with category 

already in the model. In the column 3 the p-value given for 

each variable is the p-value with distance already in the 

model, and so on.

The final best model is

E( slope) = ©0 + ©jcategory + @2distance

We conclude the category and distance are the only significant 

factors.
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Category and distance are main effects and there is no 

interaction between them, i.e., the causes of visual loss with 

subretinal neovascularization and distance from the foveal 

edge to the centre of the foveal ascular zone are important 

components in this study, and the effect of distance is the 

same for all the causes of visual loss. Rate of visual loss 

was greater in patients with AMD and for patients whose NVM

was closer to the FAZ.

2. Regression with nested error structure.

Let us analyze this study from another point of view. Since 

the data arose from a random selection of patients (189 AMD 

patients and 129 POHS), for which several vision measurement 

were taken over a period of up to 36 months, we can regard it 

as a linear model with nested error structure.

The second data file used is VISIT.dat which recorded several 

vision measurements for each of 318 patients for a total of 

2823 observations. Each patient may be regarded as a cluster, 

providing different values of the dependent variable. There 

are 1702 observations with AMD and 1121 observations with POHS

in this data file.

Model: y±j = 2pk=1xljkfik + ui3
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Thus the intra-class correlation coefficient (i.c.c.c.) is 

given by

o2«
O2S + O2e

So we can test a null hypothesis Ho: Bj = 0 by defining the t- 

test statistics
A

t = -------
sVckk (4.2.3)

where, s is standard error, defined as 
VSSE

s = Vs2 =------
Vn—p (4.2.4)

SSE = - yi.)

and ckk is jth diagonal element of (X'X)-1. If |t| > t(n-p)[a/2] 

holds, we can reject Ho: Bk=0 in favour of H1: Bk#0 by setting 

the p-value of type I error equal to a.

The first model we considered is:

y = xB + u

i.e.,

Vision = Bo + BjCategory + B2distance + B3time + e + e 

(4.2.5)
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or,

Yij = Bo + BiXljx + fi2xlj2 + B3xji3 + ex + e1;)

where, y±j = vision^

Xijx == category^ (CATEi;))

Xij2 := distanceXj (DIST±j)

Xij3 := timei:j (TIME±j)

i=l,2,...,N number of patients 

j=l,2,...,n1 number of objects on patient i

The numbers of vision measurements taken are not same for all

the patients. However,

CATE1X == CATE12 = . . . = CATEinl

DIST±1 == DISTi2 = . . . = DISTini

TIME±j i TIMEi:), when j j'

The program SUPER CARP was used to fit this model to the data 

points defined by 2823 values of (y, xx, x2, x3), where xr,x2 

and x3 denote the potential confounders category (0 = AMD, 1 

= POHS), distance (microns), and time (year) respectively.
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To assess the statistical significant of the independent 
variables xlz x2 and x3, we inspect the estimated generalized 

least-squares coefficients, their associated standard errors 

and corresponding t-statistic, as presented in Table 3. The 

intra-class correlation coefficient is estimated as 0.579.

Table 3

VARIABLE COEFFICIENT STD. ERROR t-STATISTIC

INTERCEPT 48.068 1.875 25.636

CATEGORY 17.106 1.981 8.634

DISTANCE 0.009 0.002 4.421

TIME -5.947 0.297 -20.004

Since the t-statistic of category is 8.634, we conclude that 

the patients with AMD have significantly worse vision than 

patients with POHS, adjusting for distance and time.

Although the coefficient of distance, given by B2 = 0.009, is 

very small, it is significant in this model since t=4.421>1.96 

with 2814 the degrees of freedom. So we can reject Ho: B2=0 in 

favour of Hx: B2#0, and conclude that patients with smaller 

distance have poorer followup vision. The t-value indicates 

that time is by far the most important predictor of vision Y. 

Since the coefficient of time, B3 = -5.947, is negative, we
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conclude that the visual acuity decreases as time increases. 

We want to know that the relationship of vision and time is 
presented by straight line or by curve, so we tried next

model:

E(yij) = Bo + B1CATE + B2DIST + B3TIME + B4TIME2

The corresponding results is given by Table 4.

Table 4

VARIABLE COEFFICIENT STD. ERROR t-STATISTIC

INTECEPT 49.316 1.889 26.104

CATEGORY 17.051 1.983 8.599

DISTANCE 0.009 0.002 4.440

TIME -11.112 0.956 -11.636

TIMESQUA 1.933 0.339 5.689

P < 0.05

From Table 4, we found t-value of time2 is 5.689, ie, the 

effect of time2 is significant in this model. The loss of 

vision with increasing time is represented by a concave-up

curve.
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We use a forward stepwise approach, considering all the 
interactions between category, distance and time, adding the 

most significant terms, one at a time. This leads to the 

following model:

E (VISION) = Bo + BjCATE + B2DIST + B3TIME + B4TIME2 +

B5TIME*DIST + B6TIME*CATE + B7TIME2*CATE +

B8TIME2 *DIST (4.2.6)

The result is shown in Table 5. We conclude that any cross- 

product terms on category, distance and time are highly 

significant. The cause of vision loss depends on the causes of 

macular degeneration, distance from the centre of the foveal 

avascular zone and years between baseline and observations.

For AMD patients (category = 0), using the coefficients from 

Table 5, equation 4.2.6 becomes

E(VISION)=(55.0+0.00575WIST)+(-23.6+0.00829*DIST)*TIME 

+ (4.94-0.00237*DIST)*TIME2

For POHS patients (category = 1), equation 4.2.6 becomes

E(VISION)=(63.7+0.00575 WIST) + (-6.99+0.00829*DIST)*TIME 

+ (1.56-0.00237*DIST)*TIME2
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TABLE 5

EFFECT COEFFICIENT T—STATISTIC P-VALUE

INTECEPT 54.98889 28.07291 <0.00001
CATEGORY 8.76783 4.20944 0.0001
DISTANCE 0.00575 2.67756 0.001

TIME -23.64002 -13.56672 <0.00001
TIMESQUA 4.93554 7.87168 <0.00001
TIMEDIST 0.00829 4.56533 <0.00001
CATETIME 16.65519 8.90217 <0.00001
TISQCATE -3.36927 -5.07531 <0.00001
TISQDIST -0.00237 -3.71227 0.001

Thus we can see that for both categories VISION is a quadratic 

in TIME where the coefficients of the quadratic, while 

dependent on category, are affected by distance in the same 

way.

These relationships between VISION, DISTANCE, CATEGORY and 

TIME are illustrated in Figure 1.
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V. CONCLUSION

The method of slope is used to analyze the relation between 

vision and time. Using slope as the dependent variable in the 

model showed the vision was affected not only by baseline 

factors also by time.

Using methods proposed by Fuller and Battese (1973), a model 

was developed by considering a time-squared term to allow for 

curvature and all possible interactions in a forward stepwise 

procedure. The final model includes terms for time, time- 

squared, patient category, distance, time by distance and 

category interaction and a time-squared by distance and 

category interaction. The model allows us to conclude that 

patients with AMD have poorer vision, although vision 

deteriorates at about the same rate in both categories; that 

the slope of the final model is flatter as the distance goes 

up; that the vision of patients whose subretinal neovascular 

membrane (NVM) is close to the foveal ascular zone (FAZ) 

deteriorates at a fast rate, with the rate of deterioration 

declining over time; and that the vision in patients whose NVM 

is far from the FAZ deteriorates at a slow but constant rate. 

By observing the quadratic relationship between vision and 

time in the second analysis, we found method of slope was 

invalidated and linear-relation turned to non-linear.
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Because the model was supposed as linear regression and the 
coefficient of time-square was very significant, so the 

relation between VISION and TIME on POHS is not deeply down, 

whereas flatter up when the distances go up (greater than 

1000). See figure 2. It means the model we supposed does not 

fit very well. We may try to use other regression model, such 

exponetial as following:

Vision = fr(t) + f^tje-^* + E

to fit data later.
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TABLE A

1. AMD: age-related macular degeneration

2. POHS: presumed ocular histoplasmosis

3. FAZ: foveal ascular zone

4. NVM: neovascular membrane
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figure l.a



figure l.b



figure 2
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