
EXPERT SYSTEM FOR PREOPERATIVE ASSESSMENTS

INVESTIGATIONS IN THE DEVELOPMENT
OF A WINDOWS-BASED EXPERT SYSTEM FOR

PREOPERATIVE ASSESSMENTS

By

DEL ARCHER, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

(c) Copyright by Del Archer, August 1993

MASTER OF SCIENCE (1993)
(Computer Science and Systems)

MCMASTER UNIVERSITY
Hamilton, Ontario

TITLE: Investigations in the Development of a Windows
Based Expert System for Preoperative Assessments

AUTHOR: Delbert Wayne Archer, B.Sc. (McMaster University)

SUPERVISOR: Professor N. Solntseff
Karl Langton

NUMBER OF PAGES: vii, 303

ii

ABSTRACT

The Preop medical expert system (Langton et. al, 1990)

was originally developed using the expert system tool, Nexpert

Object, on a VAX computer. Nexpert Object creates an expert

system specification which is executed by an interpreter

within Nexpert Object. The original implementation, however,

has several limitations, including:

1. lack of physical portability
2. requires Nexpert Object to run
3. crude user interface

In order to overcome the first limitation, Preop is

implemented on a PC DOS portable computer. This project is

addresses the other two limitations. Creating a compiled

version of Preop eliminates the need for the Nexpert Object

interpreter, and implementing it as a Microsoft Windows

application provides a better user interface.

iii

ACKNOWLEDGEMENTS

I would like to thank both K. Langton and N. Solntseff

for all their guidance and patience. I would also like to

thank my parents, Del and Sylvia, for all the support they

have given me as I pursued my academic interest. Lastly, I

would like to thank my wife, Lou-Ann. She has constantly

encouraged and motivated me.

iv

TABLE OF CONTENTS

1. INTRODUCTION.. 1

1.1 Introduction.................................... 1

1.2 Terminology..................................... 1

1.3 PREOP .. 3

1.4 General Outline 7

2. EXPERT SYSTEMS .. 9

2.1 Introduction 9

2.2 Components of an Expert System 10

2.3 Knowledge Representation 12

2.4 Production Systems 14

2.5 Inference Mechanisms 15

3. HUMAN-COMPUTER INTERFACES 21

3.1 Interfaces 21

3.2 User and Computer Profiles 22

3.3 Display Considerations 25

3.4 Window Displays 30

3.5 Menu Driven Systems 31

v

4. INTERPRETERS ..

4.1 Introduction

4.2 Types of Interpreters

4.3 The Abstract Machine

4.4 Interactive Interpreters

5. MICROSOFT WINDOWS

5.1 Microsoft Windows Introduction

5.2 Benefits of Windows

5.3 Requirements

6. OBJECT-ORIENTED PROGRAMMING

6.1 The Evolution of Object-Oriented Programming
Languages

6.2 Encapsulation

6.3 Inheritance

6.4 TurboPascal for Windows with ObjectWindows ...

7. NEXPARSE ..

7.1 Requirements

7.2 The Knowledge Base File

7.3 Program Description

34

34

36
37

37

39

39

40

42

46

46

48

51

52

55

55

56

59

vi

8. SGROUP .. 63

8.1 Requirements 63

8.2 Program Description 67

9. NEXMACH ... 71

9.1 Requirements 71

9.2 Program Description 75

10. CONCLUSIONS .. 83

10.1 Conclusions 83

10.2 Future Directions 84

BIBLIOGRAPHY .. 86

APPENDIX A .. 90

NEXPARSE.PAS program listing 90

SGROUP.PAS program listing 140

NEXMACH.PAS program listing 174

vii

CHAPTER 1

INTRODUCTION

1.1 Introduction

For the past several years, the Health Information

Research Unit (HIRU) of the Faculty of Health Sciences and the

Department of Computer Science and Systems (CSS) at McMaster

University have been collaborating on the development of the

PREOP system. PREOP is an expert system for medical

consultation. Before delving into the specifics of the

project, it is necessary to explain a few terms that will be

used throughout this paper. One should be familiar with the

following key concepts: expert systems, NexpertObject,

knowledge bases,

interpreters.

Microsoft Windows applications, and

1.2 Terminology

An expert system is an artificial intelligence (AI)

application that is created to solve problems related to a

particular area of interest (Levine, Drang and Edelson, 1990).

The term "expert" reflects two facts about such systems. For

one, expert systems are programs that are very specific in

their application (i.e., specialists or experts, not

1

2

generalists). Secondly, such systems are generally developed

to concentrate the knowledge of experts in a given area for

use by others who are not experts.

Neuron Data's (1991) NexpertObject is an expert system

development tool. The tool combines an object-oriented

programming approach with rule based inference mechanisms.

The next chapter will present a more detailed look at

inference mechanisms, while chapter six will discuss the

object-oriented paradigm.

NexpertObject is composed of three main parts; besides

the main Nexpert kernel which governs the primary

functionality of the tool, there is a graphical user

interface, allowing developers to work in a point-and-click

environment. In addition, there is an application program

interface (API) which allows software developers to access

NexpertObject functions from programs written in more

conventional languages (C, Pascal, and FORTRAN).

A knowledge file is a text file produced by

NexpertObject. This file represents the facts and rules that

make up the expert knowledge used by the expert system (i.e.,

the knowledge base). Knowledge bases and the NexpertObject

knowledge file will be discussed in greater detail later in

this report.

A Microsoft Windows application (or just Windows

application) is an executable program that works with the

3
Microsoft Windows operating system (MS Windows). In fact,

such an application requires MS Windows for execution.

Windows applications make use of the MS Windows interface

objects to present the user with a graphical interface that is

standard across all Windows applications. Chapters three and

five will examine the subjects of user interfaces and Windows

applications in further detail.

Another term that requires some explanation is

interpreter. For the purposes of this project, an interpreter

is a computer program that analyses a line from a source file

and simulates, via the computer, the functions described by

that line. This means that the interpreter must know the

"meaning" of the functions described. That is, the

interpreter must be able to translate the functions into

machine-executable instructions. A more detailed discussion
of interpreters will be presented later in this report.

1.3 PREOP

Having briefly reviewed the key concepts of this

project, it is time to describe the PREOP application in more

detail. PREOP is an expert system whose purpose is to provide

clinicians with a tool to aid in the preoperative assessment

of patients about to undergo emergent or urgent surgery

(Holbrook et al, 1992).

4

PREOP is designed to provide medical staff with

information about a given patient's chances of developing

serious or severe post-operative complications. These

probabilities are expressed in terms of a modified

multifactorial index (MMI) score. MMI is a modification of an

earlier multifactorial index (Langton et al., 1990). The

index is a list of cardiac risk factors, each having an

associated value. A patients MMI score is the sum of values

of all applicable risk factors (Detskey et al, 1986). In

addition to the MMI score, the PREOP system also makes

recommendations regarding the management (around the time of

surgery) of any medications that the patient requires.

To develop the PREOP system, Neuron Data's expert

system development shell, NexpertObject (sometimes referred to

as simply Nexpert) was used (Langton, 1990). Initially, PREOP

was implemented on a VAX station and then later transferred to

a Toshiba 3100-SX laptop computer (Holbrook et al, 1992).

PREOP has five logical steps, as seen in Figure 1.1. The

first three gather information from either the clinician or a

database of patient information, if the patient's data has

already been entered before. The last two steps represent the

output of the PREOP system.

5

(1) History and demographics
(2) Medical status
(3) Medication profile
(4) Probability of an adverse cardiac event
(5) Recommendations

Figure 1.1: Five Steps of PREOP

After a satisfactory prototype of PREOP had been

developed, focus shifted from expert system design to a search

for a more practical implementation of a working system. That

is, the version of PREOP developed using NexpertObject was

limited in several ways, and an enhansed version was needed.

Foremost among these limitations were:

(a) the system required the NexpertObject software
to run.

(b) the system had a very limited user-interface.

The fact that NexpertObject was required for execution

of PREOP was less than desirable for two reasons. First, each

copy of PREOP would require a copy of NexpertObject, which

would have to be paid for. Secondly, packaging PREOP with

NexpertObject would require the user to become familiar with

NexpertObject, and would allow the user to examine (and

possibly alter) PREOP in ways he/she was not intended to.

Equally troubling, however, is the extremely limited

user-interface that NexpertObject provides for applications.

In particular, once an entry has been made, the user may not

go back and change it. For example, suppose a user is

prompted for the patients age and he enters it and then

6

proceeds to the next entry prompt. Later, the user discovers

that he made a mistake in entering the age value. It is not

possible for the user to go back and alter it.

It has been documented that doctors do not favour

computerized tools (Covel, Uman, and Manning, 1965; Abate et

al, 1989). It follows then that they (physicians) would be

even less likely to use a tool that is unwieldy. In the

instance of expert systems, many users have particularly high

expectations, perhaps because the software falls into the

realm of artificial intelligence. In any case, the human-

computer interface plays a major role in the acceptability of

the software, from a user perspective.

E. Hoogendoorn (1991) developed a PC DOS-based

interface using the WINDOWS Toolbox library of functions

(Goodwin, 1989). While Hoogendoorn's work addressed some of

the problems associated with the original interface, it still

was not completely independent of the NexpertObject software.

In addition, the PREOP executable file was very large (465K).

The high memory requirements could cause problems (in the DOS

environment) if subprocesses are spawned from the main

program. One can compensate for this by using a product, such

as Microsoft Windows (sometimes simply called Windows or MS

Windows), which allows the use of memory beyond 640K.

However, if one is using Windows, why not create a Windows
application?

7

1.4 General Outline

This project is a continuation of the expert systems

research being carried out by the Health Information Research

Unit of the Faculty of Health Sciences and the Department of

Computer Science and Systems at McMaster University. It looks

to address the two limitations mentioned above. In order to

"free" PREOP from the NexpertObject system, an investigation

was conducted into the development of an interpreter that

interprets a NexpertObject knowledge-base (a fuller

explanation is found in subsequent chapters). This

investigation led to the implementation of a prototype

interpreter that handles a subset of the NexpertObject

functions. At the same time, the human-computer interface

issue was addressed by implementing the interpreter as a

Windows application, taking advantage of the user-friendly,

graphic interface provided.

This document describes the work above. Chapter one

outlines the purpose of the project, its key concepts, and

relates this project to the PREOP research. Chapter two is a

discussion of expert systems, especially inference mechanisms

and knowledge representation. Both are crucial issues in the

development of an expert system.

Chapter three presents an in-depth look at the issues

involved in designing and implementing a human-computer

interface. For a user-oriented application, the human-

8

computer interface is very important. Design issues related

to interpreters are discussed in Chapter four. Specifically,

the design of a hybrid interpreter and an abstract machine is

examined.

Chapters five and six are closely related to each

other. The former is an overview of Microsoft Windows and the

issues related to creating applications for this operating

system. In chapter six, the programming paradigm of object-

oriented programming is explored, especially how one such

language aids in developing Windows applications.

Chapters seven, eight and nine present descriptions of

the three programs produced to implement the knowledge file

interpreter, NexParse, SGroup and NexMach. And finally,

Chapter ten is a discussion of the project in general, as well

as an offering of possibilities for the future.

CHAPTER 2

EXPERT SYSTEMS

2.1 Introduction

Among the different branches of artificial

intelligence (AI) technology, one branch in particular has

proven to be very successful in real world applications: the

expert system technology. Although a quick survey of the

literature will provide several different definitions for the

term, expert system, the following definition will suffice for

the purposes of this paper. An expert system is an AI system

created to solve problems in a particular domain (Levine,

Drang, and Edelson, 1990).

The title, expert system, tends to conjure up ideas of

an extremely "intelligent" system. However, the expert in

expert system has slightly humbler connotations (Bench-Capon,

1990). In the early days of AI research, the impetus was to

develop a "general problem solver". That is, early AI

applications were intended to be able to solve problems of any

description. Not surprisingly, these attempts met with very

limited success. When a human being (a very good "general

problem solver") tackles a problem, she draws from past

experience and uses common sense; the latter has proven to be

9

10

very difficult to encode in a computer program. Because of

this stumbling-block, some researchers put their efforts into

the development of AI applications that had very focused areas

of purpose. That is, the application was intended to act as

a specialist or expert, if you will. In addition, the fact

that AI techniques are not generally employed for trivial

situations, led to expert systems being utilised in situations

where only a handful of people had expertise. The systems

were (and are) intended to act as stand-ins for the human

experts; this re-enforced the use of expert in the term expert

system.

2.2 Components of an Expert System

Figure 2.1 illustrates the various components of a

generic expert system. Excluding the user, the most

important, and absolutely necessary, components are the user-

interface, the knowledge base and the inference engine.

The user-interface serves to manage the interaction

between the human user and the other components of the expert

system. As alluded to earlier, the importance of the user-

interface lies in that it greatly influences the user's

opinion of the entire expert system, and this plays a key role

in determining whether or not the user will make use of the

expert system. The design of a human-computer interface will

be investigated in a later chapter.

11

Figure 2.1: A Generic Expert System

An inference is a process of drawing a conclusion

through reasoning. The inference engine, then, is the part of

the expert system that manipulates the knowledge base to

arrive at some conclusion, which is the solution to a given

problem. The strategy used to infer (or problem solve)

depends on the knowledge representation scheme. Section 2.5

will examine some common inference mechanisms.

In chapter one, the term, "knowledge base", was

briefly introduced. Essentially, it is a collection of facts

and rules defining relationships between facts. The facts and

rules must be acquired from an expert (or experts), and this

is the job of a knowledge engineer. Much of the issues

surrounding knowledge acquisition falls into the realm of

cognitive psychology and is beyond the scope of this paper.

12

After the knowledge engineer has gathered all the necessary

knowledge, it must be translated into a form that is machine

useable.

2.3 Knowledge Representation

Knowledge representation is the set of syntactic and

semantic conventions that allow for a machine-useable

description of facts, processes that change facts, objects

related to the facts, and relationships between objects

(Bench-Capon, 1990). When seeking a knowledge representation

one must ensure that is meets certain criteria. Trevor Bench-

Capon (1990) refers to these as criteria of adequacy; they are

required properties. The first of these is metaphysical

adequacy. A representation is metaphysically adequate if, and

only if, it does not allow contradictions to exist between the

facts that are to be represented. For example, consider the

knowledge required for an expert system such as PREOP. In

such a system, it is necessary to be able to represent a great

deal of information about patients. If the knowledge

representation allowed a single patient to have more than one

age, for example, it would not be metaphysically adequate.

The second criterion for adequacy is epistemic

adequacy. To satisfy this criterion, the knowledge

representation must allow for the expression of all the facts

that are required. Again, using the PREOP expert system as an

13

example, a representation that did not allow for the

description of a given patients medications would not be

epistemically adequate.

Bench-Capon (1990) lists heuristic adequacy as another

criterion of adequacy. However, this implies that the

knowledge representation must be capable of expressing the

reasoning that was used to reach a conclusion. It is doubtful

that this is required for a knowledge representation to be

useful, and so it will not be listed a required property in

this paper.

The final property that a knowledge representation

requires is computational tractability. A knowledge

representation is computationally tractable if one is able to

manipulate it efficiently within a computer system. Because

this property depends heavily on the state of hardware and

software technology, it is quite possible that representations

that do not currently meet this standard, will in the future.

In addition to the criteria of adequacy, there are

several other factors that one may wish to consider when

choosing a knowledge representation. However, these factors

do not represent required properties, but rather, properties

that are desirable features. Interested readers are directed

to Knowledge Representation by T. Bench-Capon (1990) for a

detailed examination of such factors.

14

2.4 Production Systems

In Figure 2.2 one will find definitions for the

leading knowledge representation paradigms. Because they are

one of the representations used by NexpertObject, production

rules are of particular importance for this discussion. A

production rule is comprised of two parts. There is a left

hand side, which consists of one or more conditions, and a

right hand side, which is made up of one or more actions (or

results) (Hu,
Paradiqm

1987).
Description

Production Knowledge is represented as a set of
Rules condition/action pairs (Hu,1987).

Semantic Knowledge is represented as a collection of
Networks
describing

objects with links between objects,

1979) .
relationships between objects (Findler,

First Order Knowledge is represented as a set of axioms,
Logic which are expressed in a formal language, and

set of inference rules (Rolston, 1988) .

Figure 2.2: Knowledge Representation Paradigms

A production system is a system that makes use of

production rules to solve problems. Production systems are

comprised of three components (Bench-Capon, 1990)

(1) working memory
(2) production memory
(3) rule interpreter

15

The working memory is a "scratch pad" of sorts. Initially, it

contains the initial facts and the desired goal(s). As

processing takes place, the working memory is updated with new

facts and, perhaps, new goals. This means that the working

memory is dynamic. It is important to note that in order for

the production system to keep track of progress, it is

necessary for the action portion of rules to update the

working memory section.

The area of memory used to store the production rules

is called production memory. Unlike working memory,

production memory is static (i.e., does not change).

The final component of the production system, the rule

interpreter, applies the rules stored in production memory to

the current facts and updates working memory. The rule

interpreter is also responsible for "deciding" when the final

conclusion has been reached. The application of rules to

facts is not a haphazard affair. On the contrary, a specific

inference strategy (or strategies) is employed. The next

section will examine this issue further.

2.5 Inference Mechanisms

Because in this project production rules are used to

represent knowledge, inference mechanisms will be examined in

the context of production rules. Essentially, conclusions are

reached (or inferred) by searching through the knowledge base

16

until all pertinent knowledge has been examined. The two

inference mechanisms that will be examined here are forward

chaining and backward chaining.

Forward chaining is a data-driven search of the

knowledge base (Bench-Capon, 1990). The search starts with a

set of initial facts, and the production rules are searched

for a rule whose condition will be satisfied by the facts.

Once such a rule is found, the right hand side or result of

the rule is evaluated. This will produce a new set of facts.

The search then continues for another rule and so on, until no

more rules will apply to the set of facts (Levine, Drang, and

Edelson, 1990). An example will give one a better

understanding of forward chaining.

Rule 1: If person has sneezed, then person has a cold.

Rule 2: If person has a cold, then person stays in bed.

Rule 3: If person stays in bed, then person won't be at
work.

_____ NB: person is a variable representing any human being.
Figure 2.3: A Simple Knowledge Base

Examine the small set of rules found in Figure 2.3.

These rules define an imaginary expert's knowledge about

colds. Let's assume that we wish to know what will happen if

17

the person, Del, sneezes. Our starting set of facts is

simply, "Del has sneezed". Searching through the set of

rules, it is found that the left hand side of the first rule

is satisfied. Evaluating the right hand side of the rule

yields the new set of facts, "Del has sneezed" and "Del has a

cold". The knowledge base is searched for a rule satisfied by

this new set. Of course rule one is still satisfied, but, it

has already been evaluated. The second rule is also

satisfied. After evaluating its right hand side, the set of

facts is "Del has sneezed", "Del has a cold", and "Del stays

in bed". If processing continues, the final set of facts will

be :

"Del has sneezed"
"Del has a cold"
"Del stays in bed"
"Del won't be at work"

So, because Del sneezed, Del will not be at work. Figure 2.4

summarizes the forward chaining that took place in this

example.

18

Start
Initial Fact: Del has sneezed.

LHS of Rule 1 is satisfied.

New Fact: Del has a cold.

LHS of Rule 2 is satisfied.

New Fact: Del stays in bed.

LHS of Rule 3 is satisfied

Conclusion: Del wont be at work.

End

Figure 2.4: An Example of Forward Chaining
It should now be apparent why the term used to

describe this process is forward chaining. Chaining describes

the chain of rules that results; forward is used because the

process "moves" from an initial state to a final result state.

As one might guess, backward chaining is similar to

forward chaining except that the process "moves" in the

opposite direction (i.e., from final result to initial state).

For this reason, backward chaining can be considered to be a

goal-driven search of the knowledge base (Bench-Capon, 1990).

The process begins with a final result (or goal). A search is

19
made for a rule whose right hand side or result matches the

final result; it is then hypothesized that the facts,

necessary for the condition portion of the rule to be

satisfied, are true. The process is then repeated using these

facts as new results. This continues until there are no more

rules that apply to the results. Again, an example will be

enlightening.

Once more the knowledge base form Figure 2.3 will be

used. Let's suppose that the result (fact) "Del won't be at

work" is known. This is a result; it is the cause that is

sought. Scanning the rules reveals that the last rule has a

result that matches the given final result. Based on the

conditions of this rule, it is hypothesized that "Del stays in

bed". Next a rule is sought that has "Del stays in bed" as a

result; this would be rule two. The conditions of rule two

lead to the inference "Del has a cold". Continuing will lead

to the conclusion that "Del won't be at work" because "Del has

sneezed". Figure 2.5 summarizes the backward chaining that

took place to reach this conclusion.

20

Start

Conclusion: Del wont be at work.

RHS of Rule 3 is satisfied.

New Fact: Del stays in bed.

R fS of Rule 2 is satisfied.

New Fact: Del has a cold.

RHS of Rule 1 is satisfied

Initial Fact: Del has sneezed.

Figure 2.5: An Example of Backward Chaining

CHAPTER 3

HUMAN - COMPUTER INTERFACES

3.1 Interfaces

An interface is a means of interaction between two

systems. In the case of a human-computer interface, a person

and a computer are the two systems. As computers became ever

more pervasive in society, the frequencies of interaction

between people and computers has increased. This, in turn,

has meant that there has been more emphasis on how

communication between the two is handled. In this context,

the interface is extremely important.

In many cases, the interface determines whether or not

people will use a particular computer system. If a computer

system is not "user-friendly" (i.e., does not have a good

human-computer interface), it is not likely to be used if

there is a viable alternative. In fact, this may be

especially true of artificial intelligence applications, as

users may expect such systems to exhibit human

characteristics. From the human perspective, there are two

key aspects to be considered in interface design:

1) how information is displayed
2) how information is gathered

21

22

This chapter will explore the various issues involved in these

two factors.

It is also important to consider what type of user

(i.e., level of subject and computer literacy) and what kind

of computer system are interacting. These elements can

influence the design as well.

3.2 User and Computer Profiles

In the design of a computer system, it is necessary to

have some sort of idea as to who the users will be. This is

particularly true when developing the human-computer

interface. Just as one must keep one's audience in mind when

writing a report, one must keep in mind who the intended

client is when creating a user interface. In technical terms,

this "idea of the intended client" is called the user profile.

Similarly, there is a system profile. This is the way

that the users of the system view it. Note, the way that the

system is precieved is not necessarily close to reality;

however, it may be easier for the client to make use of the

system if he or she is able to draw some sort of analogy

between what the computer system is doing and some human

activity. Perhaps an example will make this more clear.

Consider the automated bank teller (ABT) as an

illustration. ABTs allow users to perform a set of standard

23

banking transactions without having to interact with a bank

teller and, perhaps, without having to go to a bank. The user

profile would be that of a typical bank customer. That is,

the system is designed for users who will have banking

transactions that will fall within the predefined standard

set. As for the system profile, users of the ABTs view the

system as working in roughly the same way that a bank teller

does. You "tell" the ABT (teller) which transaction to

perform and then withdraw or deposit your money accordingly.

In the past, the human-computer interface design has

been dominated by the computer, due to hardware and software

constraints. Slow processing speeds, primitive output

devices, and limited software tools, severely limited the

types of interfaces that could be developed. Typically, early

interfaces were simple and restrictive (deal and Heaton,

1988); the user was restricted to a predetermined set of

program states. Movement from one state to another was

rigidly defined (Norton and Yao, 1992).

Hardware advances have produced faster processors and

rapidly refreshed graphical displays. These advances, coupled

with sophisticated software tools, allow the development of

more advanced human-computer interfaces. Improving the

interface involves more than simply enhancing the visual

presentation of the interface. The ideal interface would be

24

one that is tailored for a given user, responding to the needs

of that user.

Of course it is not feasible to create a separate,

custom interface for every possible user of a computer system.

The solution lies in making a single interface that adjusts to

different users. One approach would be to devise different

interface states to accomodate different classes of users

(Cleal and Heaton, 1988). For example, users may be

categorized as novice, intermediate, or advanced. The

interface would provide a different help system, a different

method of gathering information, etc., depending on the level

of the user. The problem with this approach is that there is

a limited number of user categories. Even if the number of

categories were increased, the transition from one class to

another would still be an "all-or-nothing" change. There is

no accounting for the gradual change in knowledge as users

learn more about the system.

It has been proposed (Cleal and Heaton, 1988) that the

aforementioned problem could be solved by employing artificial

intelligence technology in the interface design. An expert

system could be developed that accumulates data about users

and acts according to a set of production rules. The

development of such an interface is, however, beyond the scope
of this paper.

25

3.3 Display Considerations

For many computer applications, information is

displayed via text on a CRT. It should then be a primary

concern of the interface designer(s) to present the text in a

form that is most readable and, hopefully, most pleasing to

the user. After all, if the user is unable to gather needed

information from the computer system (especially an expert

system), the system is unlikely to be used.

Muter, Latremouille, Treurniet, and Beam (1982) have

clearly shown that, with respect to readability, text

displayed on a CRT is very different from text displayed on

paper. In a study involving two groups of readers, one group

reading text from books and the other reading text from a CRT,

it was demonstrated that text from a CRT is much more

difficult to comprehend. On average, the group reading from

the CRT read 28.5% slower. The reason: reduced legibility of

CRT text.

There are several factors that contribute to the

reduced legibility. One is the length of the text line

(Kolers, Duchnicky, and Ferguson, 1981). Experiments have

indicated that the length of the line can have an affect on

reading speed. For example, a passage of text with forty

characters per line is read 17% slower than the same passage

with eighty characters per line. In the test conducted by

26

Muter et al., the CRT displayed thirty-nine characters per

line, while the book had sixty characters per line.

Related to the length of the line is size of the text,

or size of type. It is customary to measure the size of the

type by points, with one point being roughly equal to 1/72 of

an inch. The most common type sizes are nine, ten, eleven and

twelve points. All these sizes have been found to be equally

legible (Hulme, 1984). However, one should keep in mind that

the size of type used will depend a great deal on the distance

the viewer will be from the display.

Another factor is the method of contrast. Typically,

books employ negative contrast. That is, the page

(background) is light (usually white) and the text is dark

(usually black). The effect is to increase the overall

luminance of the reading material. CRT displays, on the other

hand, often use positive contrast. The text is bright, and

the the background is dark. Studies have shown that people

prefer negative contrast (Radi, 1980).

Finally, it is worth noting that the case of the

printing is also critical. On many older computer displays,

all text was printed in uppercase. The shape of a word is an

important clue to the reader (Hulme, 1984), aiding in the

recognition of the word. Because upper case printing gives

words uniform shape (see Figure 3.1), reading uppercase

passages is more difficult.

27

[sFiajpei ISHAPE

Figure 3.1: Case and Word Shape

The illustration in Figure 3.1 makes it apparent that

lowercase words have a great deal of shape, where as uppercase

words appear to be rectangular.

The above has been a discussion of the physical form

of displayed information. It is also important to pay

attention to the methods used to represent the information.

Specifically, the layout of the display can greatly influence

a user's impression of the human-computer interface. There
are several rules of thumb that should be employed when

planning the layout of the display (Reid, 1984). These are

summarized in Table 3.1.

One should particularly note that it is unwise to

display too much information on the screen. It is important

to keep this in mind because there is a strong tendancy to

feel that the screen display should be filled with data, much

as a text book would be. However, such displays will

overwhelm users. Display only the information that is needed

28

at any given time; keeping the screen display simple will make

it easier for users to see what is truly important.

Some of the other rules deal with attracting a users

attention. Although it has been discovered that the upper-

right quarter of the screen is best place to display messages,

many commercial software packages choose to use other areas of

the screen. In some cases, it is known that the user will be

focused on a particular part of the screen when the message

will be displayed. In such an instance, it is best to present

the message in this area of focus. Another factor to consider

is the type of user that will be operating the software. For

example, let us compare users who are skilled typists versus

users who are two-finger typists. When the former are

operating a computer terminal, they will likely be focused on

the screen, where as the latter, will likely be concentrating

on the keyboard, as they hunt down the next key to be pressed.

Therefore, in the case of the expert typist, important

messages should be placed in the centre of the display. On

the other hand, messages should positioned at the bottom of

the screen for two-fingered typists, since this is the portion

of the display that is visible when one is focused on the

keyboard.

Another way to draw the notice of a user is to present

a message in blinking text. However, care should be taken not

to employ this method too often. If the screen is filled with

29
Table 3.1: Summary of Display Layout Rules

Rule Description

Do not overfill Do not use more than 25% of the
the screen display area. Beyond this limit,

readers are unable to pick out
information easily.

Use the upper- When display exceptional information
right quadrant (e.g., error messages, warnings,
for exception notices) the upper-right quarter
reporting of the screen. Viewers are most

sensitive to changes in this area
of

the display. Of course, this
assumes that the viewer is not
focused on any particular part of
the display.

Use mixed As discussed earlier, readers can
case words more easily recognize lower case

words.

Allow data to The layout should be designed so
flow naturally that the user's eyes fall naturally

on the next item of information.

Use blinking Flashing messages will draw the
for important readers attention.
messages

flashing messages, the user is apt to become desensitized to

this technique. It is important to note that these rules only

refer to the visual display. One should remember that there

are other ways to notify the viewer of an important event.

Specifically, one can use an audible cue, such as a beep.

30

3.4 Window Displays

One method of creating a better display, and,

therefore, better human-computer interface, is to divide the

screen into windows. Dividing the screen has several

advantages. For instance, each window could be used to

represent a distinct task that a user is expected to complete;

the operator simply moves to a specific window when she wishes

to tackle a particular chore. This provides a level of

organization to the display. Another example would be to

employ overlapping windows as a way to preserve a history of

what has already been accomplished. An operator could jump to

a previous state by moving to that window.

A windowed display also helps in addressing some of

the issues brought up by the rules found in Table 3.1. If the

windows are resizable (i.e., the windows can be enlarged or

reduced), then a user, who feels overwhelmed by the amount of

information displayed on the screen, can reduce those windows

that he feels are unnecessary at the moment.

If the windows are moveable (i.e., the windows can be

relocated on the screen), users may reposition any window that

is currently being used to a position on the screen that

allows them to notice any messages that may be displayed

during operation. This can prevent important information from

going unnoticed. Returning to the earlier example of the

users of two different typing skill levels, the expert typist

31

may chose to position an active window in the centre of the

screen. The two-fingered typist may be best served by

positioning the active window near the bottom of the screen.

Before the advent of operating systems, such as

Microsoft Windows (MS Windows), which support graphical user

interfaces (GUIs), providing a windowed interface reguired a

great deal of effort on the part of software developers.

Microsoft Windows makes the task easier, however, by providing

many functions for implementing windows. In addition, the

resulting interface, in many cases, surpasses what many

programmers are capable of, or have the time to, produce

without the MS Windows functions. Besides the window, MS

Windows provides many other interface elements. These will be

discussed in further detail in later chapters, but one of

these is the menu.

3.5 Menu Driven Systems

Menus provide a way for users to communicate with the

computer system by selecting an item from a list of available

options, which are meaningful in the context of the current

state of the system. For example, the system may be in a

state that requires the user to answer the question, "What is

the sex of the patient?". A menu offering the choices, "(1)

Male (2) Female", can make it simpler for the user to

communicate to the system the correct response.

32

While menus are a valuable interface element, they are

not appropriate in all situations. Knowing when to employ

them is part of the skill of system design. A menu driven

system can benefit occasional or novice users by limiting the

amount of information to remember. Furthermore, because the

number of responses are limited, it prevents nonsense

responses from novice level users. On the other hand, the

limited nature of menu response prevents their use in

situations where all possible responses can not be

anticipated. Advanced users may become frustrated with a menu

driven system, finding that it takes too long to reach a

particular option or that it is too awkward to navigate around

the system (Reid, 1984). The latter is especially true of

very complex systems.

Through careful design, it is possible to eleviate

some of the navigation problems. A "Where Am I" facility,

which will inform the user as to the current state of the

system, is helpful. Coupled with this can be a "backup" and

"return to start" function, that allows the operator to go

back one level or return to the top level. Ideally, a map of

the entire system could be presented, and the user would

simply point to the system state that she wishes to go to

(although this goes beyond menuing).

Special attention should be paid to the content and

ordering of the menu items. It is imperative that these be

33

logical to the end user. If this is done, the user will have

an intuitive idea as to what he or she should do as the

operator. Also, when there will be a processing delay when a

selection is made, confirming the selection visually will

allow the user to know that the selection was made correctly

and that the delay is simply part of program execution.

CHAPTER 4

INTERPRETERS
4.1: Introduction

There are two methods to achieve execution of programs

written using a high level language. One way is to compile

the source code using a compiler. The compiler software

converts the source code into eguivalent machine code, which

can be executed by the computer. The alternative method is to

use an interpreter.

A computer language interpreter behaves much like a

human language interpreter. A human interpreter listens to

(or reads) each statement (or partial statement) and

translates it. If the statement is repeated, the translation

process is repeated. Likewise, a computer language

interpreter analyses a source code statement and simulates the

functions specified therein (i.e., evaluates the statement).

If a statement is repeated, it is interpreted each time it is

encountered (Parker, 1989). Figure 4.1 shows a fragment of

BASIC source code. Consider the statement:

LET S = S + I

This statement will be interpreted with each repetition of the
FOR..NEXT loop.

34

35

100 INPUT N
110 LET S = 0
120 FOR I = 1 TO N
130 LET S = S + I
140 NEXT I

Statement
100
110
120
130
140

Description
Accept an integer input from the user.
Store a value of zero in the variable, S.
Set the counter I to one.
Assign S the value of S plus I.
Add one to I; if I is less than N, go to
statement 140.

Figure 4.1: A Fragment of BASIC Code

The analysis and evaluation performed by the

interpreter can be decomposed into four distinct processes

(Zarrella, 1982):

(1) determine the statement type
(2) decompose the statement into operators and

operands
(3) search the symbol table for the address of any

variable operands
(4) call subroutines to process the operators

The systematic nature of the analysis and evaluation lends

itself well to automation. The list closely resembles the

type of processing that a person goes through when she reads

an algorithm and simulates the computations.

36

Although they generally result in program execution

speeds that are slower than those achieved by compiled

programs, interpreters are usually considered to be

"friendlier" than compilers. This is because problems, both

in development and execution, are reported immediately.

4.2 Types of Interpreters

A pure interpreter is one in which the source text is

stored exactly as entered by the program developer. While

this makes it easy to display the source in the way it was

inscribed, it has some major disadvantages. For one, memory

is needed to store blanks that are embedded in the text.

Because of the styles employed in writing source code, this

may require a large portion of available storage. In

addition, the repeated scanning and analyzing of the source

code can be very time consuming. Because of these issues,

pure interpreters are seldom used.

To overcome the disadvantages of pure interpreters,

hybrid interpreters have been developed. Such interpreters

alter the original source text. For example, extra blanks are

removed, operators are represented by numeric codes, and a

symbol table is utilised to keep track of variables and

statement labels. The consequence of all this is that the

original source code cannot be regenerated from the altered

version (Zarrella, 1982).

37

4.3 The Abstract Machine

Execution speed and memory requirements can be further

improved by implementing an ideal, abstract machine (Zarrella,

1982). The abstract machine has an instruction set that

closely resembles the source code, yet can be easily

implemented on existing systems. The source code is converted

to the abstract machine code, also known as intermediate code

or pseudocode. Because the source code closely resembles the

intermediate code, the conversion is a rapid process. The

instruction set of the intermediate code must be designed

carefully, taking into account the following requirements

(Zarrella, 1982) :

1) Conciseness: it must be much more succinct than
the source code.

2) Easily simulated: the host machine must be able
to easily simulate the intermediate instruction
set; a complex simulator requires a larger
interpreter and more memory.

3) Complexity: it must handle complex data and
control structures, built-in functions, etc.

4) Speed: execution speed must be reasonable.

4.4 Interactive Interpreters

An interactive interpreter is one in which there is a

continuous exchange of information between the interpreter and

the user of the interpreter. Because this interaction aids in

the development process, most interpreters fall into this

category. For example, when one enters a line of source code,

38

it is checked for syntax immediately, and any errors are

reported. In addition, many interpreters possess an integral

debugger. When a run-time error occurs, the debugger reports

the location and type of error to the programmer.

Although they serve as powerful development tools,

interpreters do have two major disadvantages, when compared to

compilers. For one, the execution speed of interpreted

applications is slower than that of compiled applications; a

compiler would be more appropriate, then, for applications for

which execution speed is critical. Another drawback for

interpreters is that any program written for an interpreter,

requires the interpreter software to be present for its

execution. This means that distribution of the program

requires distribution of the interpreter.

CHAPTER 5

MICROSOFT WINDOWS

5.1 Microsoft Windows Introduction

The Microsoft Windows (Windows) operating system is an

extension of the Microsoft DOS operating system. Moreover, it

is a graphical extension of MS DOS. The extensive use of

graphics to represent operating system and program commands is

intended to make Windows easier for end users to perform

operating system commands and to use application programs

(Microsoft, 1992).

Windows extends DOS in three ways (Norton and Yao,

1992); it provides:

1) the ability to run multiple programs at the same
time.

2) high level graphics
3) a standard user interface

In addition, Windows is designed to respond to user-initiated

events. All these factors contribute to the creation of

applications that are optimized for user interaction.

Therefore, applications that involve a great deal of user

interaction benefit the most from the Windows environment.

39

40

5.2 Benefits of Windows

Windows provides benefits for two distinct groups:

users and developers. For users, Windows supplies:

1) a standard interface
2) inter-application communications
3) multitasking
4) no need to set up devices or drivers
5) access to more memory

Among these, the first three are of particular importance to

the average user. A standard interface means that all Windows

applications "look and feel" the same. This, in turn, means

that once a user has learnt to use the interface of one

Windows application, she has learnt to use the interface of

all Windows applications. This is far superior to the

situation that exists with MS DOS, where users are often

required to learn a new interface for each application they

may wish to use.

Often, users will want to transfer the results of one

program to another program. For example, one may wish to

bring a graph created by a spreadsheet program into a word-

processor document. Windows support of inter-application

communication makes this an easier task. Screen data of any

type can be transferred from one application to another by use

of a buffer called the Clipboard. In addition, applications

can communicate directly with one another by passing messages.

These messages can contain data items.

41

Because PC computers have a single CPU, it is not

possible to have true concurrency. However, Windows provides

a method for multitasking. Many operating systems provide

multitasking by dividing the CPU time into slices. Each

application is processed only during its time slice; since the

time slices are very short, users have the illusion of

concurrency. The Windows approach is somewhat different,

though. While it is true that the CPU time is divided up into

time slices, applications only use their time slice if there

is "something to do". In most cases "something to do" means

that there is a message to respond to. If there is no such

message, then the application surrenders its time slice.

For developers, Windows provides the following

benefits (Borland International, 1991):

1) device independent graphics
2) support for a wide range of devices
3) a library of graphics routines
4) support of interface objects (menus, icons,

bitmaps, etc.)

The Graphics Device Interface (GDI) is central to the concept

of device independent graphics. The GDI provides a standard

set of functions that can be used to create graphics displays.

The programmer need not be concerned as to which device the

display is being sent to. The GDI determines which device it

is and takes care of the details. From the programmers point

of view, the function calls are the same, regardless of the

42
device. In addition, Windows readily supports a great number

of devices. These devices fall into four broad categories:

1) display screen
2) hard-copy (e.g., laser printer)
3) bitmaps
4) metafiles

The latter two are actually pseudo-devices, which provide a

method of storing graphic images in RAM (or on disk) and a

method of sharing such images between applications.

The built-in graphics library functions furnish

developers with routines for creating geometric figures for

display purposes. This eliminates the need to develop the

actual code to do the drawing. Related to this is the built-

in support for many user-interface objects. Such objects are

used to communicate with users. Again, time is saved because

the code to implement such objects is already written.

5.3 Requirements

The aforementioned benefits are not without cost. The

cost can be divided into two categories; there is a hardware

cost and a software development cost. From the hardware

standpoint, Windows requires "bigger" and faster computers.

Bigger means more RAM, and faster means a more sophisticated

CPU with a higher clock speed than is required for MS DOS.

According to the Windows manual (Microsoft Corporation, 1992),

version 3.1 of Windows requires at least 1Mb of RAM and a

43

80286 processor or better. Although not required, it is

highly recommended that one use a VGA colour monitor and a

mouse, as well. It has been the experience of this author,

however, that a 80386 with 4Mb RAM is a more realistic minimum

system.

In the area of software development, Windows

programmers are required to take a new approach to application

programming. Unlike most DOS applications, which are written

in a sequential, procedure-driven manner, Windows applications

are generally message driven.

Sequential, procedure-driven programs (also called

modal programs) have a distinct beginning, middle, and end;

the program is composed of distinct modes. A mode is a

program state in which user actions are interpreted in a

certain way and produce a specific result (Norton and Yao,

1992). The chief drawback to the modal programming approach

is that users are limited in the way that they can move from

one mode to another. The flow of control is precisely defined

by the programmer. Also, the user is often required to

remember which mode he is in, without being supplied with good

visual clues. It should be noted, however, that modal

programs are usually easier to write, since each mode can be

written and tested separately.

In the context of message driven programming, a

message signals an event that may or may not need to be

44

responded to. A Windows message is an integer, which

represents some change in the user interface. It is up to the

developer to decide which messages to respond to and which

messages to ignore. The flow of program control is governed

by the actions of the user. The advantages of this approach

to application programming is that it is easy for users to

change program state, and the user is given good visual clues

as to which state the program is in at any given point in

time. For the developer, though, message driven programs are

generally more work. The programmer must first identify all

messages that should be responded to and then the code to

execute the response must be developed.

In addition to the complexities of writing message-

driven applications, Windows software developers must become

accustomed to Windows method of output. All output from a

Windows application is graphical, and all graphics are high-

level graphics. This contrasts with the character-based

output of most DOS applications. The emphasis on high-level

graphical output means that it is quite easy to produce

geometric figures. This is particularly true of the graphics

that Windows supports with callable subroutines. However,

because it is treated as a graphical object, text is more

difficult to produce in Windows than in DOS. Instead of

positioning text on the screen by character cell references,

text must be positioned by pixel reference.

45

Finally, software developers must learn to use the

user-interface objects employed by Windows applications. The

most important interface objects are:

1) Window: provides a view into the application
2) Menu: provides a selection mechanism for users
3) Dialog Box: allows users to enter complex data

elements
4) Cursor: indicates where in the window the user is

currently pointing
5) Scroll Bar: allows users to scroll through a

graphic display
6) Icon: provides a visual representation of some

command, program, or data

Each of these interface objects is supported by Windows. This

means that it is not necessary for programmers to write the

code to implement them, as this has already been done.

Instead, the challenge to developers is that they must

understand how each is used.

CHAPTER 6

OBJECT ORIENTED PROGRAMMING

6.1 The Evolution of Object Oriented Programming Languages

Before beginning a discussion of object-oriented

programming, it is necessary to first review the history of

the development of such languages (i.e., the motivation for

their conception). Originally, the justification for

inventing programming languages was to remove many of the

tedious details of programming at the machine level. That is,

in order to save on development time, the ease with which a

program could be written was increased and the probability of

making an error was decreased by automating many of the tasks

that had to be performed manually during machine level

programming. It was this line of thinking that led to the

invention of pseudocode (MacLennan, 1987).

Of course, the first real high-level language was

FORTRAN, but the motivation for its development was

essentially the same as that of the aforementioned pseudocode.

However, FORTRAN went a step further, in that there was a

conscious effort to allow programmers to be able to represent

arithmetic equations in a format similar to that used by

mathematicians. It is also worth noting that there was a

46

47

great effort put forward to produce a compiler (pseudocode was

executed by an interpreter) that would produce fast code; to

this end FORTRAN was successful. In fact, FORTRAN represents

an incredible first step, but it hardly encourages the

creation of clear and easily understood programs (Schildt,

1991) .

As the complexity of the problems that computer

programmers were required to solve increased, it became

apparent that first-generation languages, such as FORTRAN,

were not sufficient. Eventually, new programming paradigms

were proposed to fill the gap. One of these was the

structured programming method. This method took the best of

previous models and built on them. The resulting approach to

programming allowed programmers to tackle even more complex

problems successfully. Unfortunately, as had happened in the

past (and will very likely, continue to happen in the future),

the size and complexity of programming projects continued to

grow, and many of the modern day programming tasks are now

approaching a level of complexity that can no longer be

handled sufficiently by the structured programming approach.

Once again, there is a call for a novel programming paradigm.

One possible solution that has been put forward is the

object-oriented approach to programming. In essence, this

methodology borrows the best from structured programming, but

48

makes two major additions, encapsulation and inheritance

(Snyder, 1986).

6.2 Encapsulation:

Encapsulation is the binding into a single unit of the

data and the code pertaining to that data. This unit is

called an object. The code forms what are called methods,

which are functions or procedures bound to the object. Some,

if not all of the code, Serves as an external interface by

which external code is able to access the data within the

object. In other words, the only way that the data within the

object can be "seen" is through the external interface, at

least in theory. External code makes use of this interface by

sending messages to the object. The object "reads" these

messages and takes appropriate action. Of course, code within

the object can manipulate the data directly, without having to

go through a message system. In practice, many object

oriented programming languages (e.g., TurboPascal for Windows)

allow data within an object to be accessed directly. When

using such languages, one should resist the temptation to

access object data directly. One creates an object by first

creating a class of that object type. Classes are object

types, and objects are instances of classes (Wegner, 1987).

Therefore, classes merely respond to calls for instantiation

of objects. For this reason, the data declarations within a

49

class are often referred to as instance variables, as the data

only comes into existence when an object is instantiated.

Figure 6.1 shows an example of a class declaration of an

object in object-oriented Pascal, as implemented by

TurboPascal for Windows. The class (or object type) is called

Point. It consists of two data elements, X and Y, and three

procedural elements, Init, SetXY, and GetXY. The Init

procedure is a special type of procedure called a constructor.

A constructor is called automatically when an object is

instantiated.

Type Point = object
x: integer;
y: integer;

constructor Init(InitX, InitY: integer);
procedure SetXY(SomeX, SomeY: integer);
procedure GetXY(var SomeX, SomeY: integer);

Figure 6.1: An Object Declaration

The encapsulation of code by object-oriented languages

exemplifies three of the principles of programming languages

(MacLennan, 1987). First, code that relates to a single

abstract data type can be abstracted out and kept within a

single object. This is the Abstraction Principle in action.

Also, the fact that code pertaining only to the access and

manipulation of a single abstract data type is kept hidden

50

within an object, as well as the fact that the data itself is

hidden within an object, is an example of the Information

Hiding Principle. Finally, the third principle obeyed by

encapsulation is the Manifest Interface Principle, which

states that all interfaces should be apparent in the language

syntax. Well, in the case of objects, the interface is just

the set of messages that it responds to.

Of course, it would mean very little to obey the

aforementioned axioms if there were not some sort of payoff.

Well, there is. Abstracting data and hiding the

implementation details of the abstracted data type means that

coupling (interdependencies) among separately written modules

is greatly reduced (Snyder, 1986). Coupling is a measure of

how tightly one module is related to or dependent on another;

if the coupling is high, then changes in one module will

affect the other module. Obviously this is undesirable, since

it will mean more time is required for program maintenance.

In many situations, the majority of the time spent on a

program is spent maintaining it (Dr. Franek, personal

communication). Therefore, steps should be taken to reduce

maintenance requirements. The object-oriented approach, with

its encapsulation, presents an effective method for reducing

interdependencies; all would be fine if not for the added

feature of inheritance.

51

6.3 Inheri tance :

Inheritance is a means for the sharing of data and

methods (code) between different classes of objects (Wegner,

1987). There are two types of inheritance, single inheritance

and multiple inheritance. In the case of single inheritance,

a subclass inherits from only one immediate parent or base

class. The base class may itself inherit from another base

class, and so on. By contrast, multiple inheritance involves

inheriting from more than one base class.

Earlier, it was implied that inheritance complicates

the object-oriented paradigm. It does so by introducing a new

type of customer for classes. As described above, classes

responded to commands invoking the instantiation of an object;

with the addition of inheritance, classes must also respond to

commands calling for inheritance of class features (Snyder,

1986). The bottom line is that a second interface is needed

for communication between a parent class and its child classes

(subclasses). (Recall that the first interface was between a

class and anything outside that class.)

While it is true that inheritance complicates object-

oriented languages, this is counter-balanced by the fact that

inheritance reduces software development effort by allowing

developers to reuse code that has already been written, by

having classes inherit common code from other classes. In

this way redundant coding is eliminated. For example, in the

52

development of the Windows application of Preop, a specialized

stack called a conclusion stack (see Chapter 9 for more

details) was needed. A conclusion stack is a type of stack

and, therefore, requires all the functions that a simple stack

requires. As this author had already created a "stack class",

none of the code required for the basic stack functions had to

be rewritten. The "conclusion stack class" simply inherited

from the "stack class".

6.4 TurboPascal for Windows with ObjectWindows

Obviously developing Windows applications puts new

demands on programmers. TurboPascal for Windows (Borland,

1991) is an object oriented version of Pascal, with a library

of objects developed to aid programmers in facing these new

challenges. The library is suitably named ObjectWindows.

ObjectWindows serves to provide a better application

interface (API) to Windows than is available with Windows

alone. Interface elements (menus, icons, etc.) are

represented by objects. Such objects contain Windows

information and provide for the abstraction of Windows

functions. By encapsulating the API in objects, many of the

details of the Windows interface are removed from the

programmer. It is important to note, however, that these

library objects only define the behaviour, attributes, and

data storage of the various interface elements; the physical

53

implementation (i.e., the actual screen appearance) is handled

by Windows. A library object is logically linked to the

actual interface element by an integer handle.

The Windows API consists of approximately 600

different functions. Each of these functions requires many

parameters of many different types. Keeping track of all

these functions and parameters can be a daunting task.

ObjectWindows simplifies this situation. As stated earlier,

the objects in the ObjectWindows library store Windows

information. Therefore, many of the values needed for

function parameters are stored in objects, and are passed to

the appropriate functions automatically. Also, related

functions are grouped together (abstraction) into a single

method, requiring developers to remember less.

A typical Windows application must deal with hundreds

of messages. ObjectWindows makes the processing of these

messages easier by providing a mechanism for automating

message response. Instead of having to write code to process

the various messages, it is only necessary to produce the code

needed to respond to a given message. The responding code

will be automatically invoked when the message is received.

54
In summary, ObjectWindows aids developers of Windows

applications by:

1) providing a simplified interface through use of
object oriented programming principles

2) simplifying function calls to the Windows API
3) automating message response

CHAPTER 7

NEXPARSE

7.1 Requirements

NexpertObject is a tool for building and running

expert system applications. While this product is good for

prototyping such applications, the presentation of data and

the method of acquisition of data is not satisfactory. With

the NexpertObject run-time user interface (called NORT), the

presentation is limited to text mode displays; however, what

is more problematic is the linear approach to data

acquisition. Once a value has been entered, the user cannot

go back and change it.

In addition, NexpertObject does not produce an

executable file as its end product, but rather, creates a

knowledge base file, which is an ASCII file containing the

information needed to run the application, within

NexpertObject. Therefore, each user of the expert system

would also require NexpertObject. This situation is far from

satisfactory.

The goal of this project, therefore, is to develop a

set of tools that will allow one to take the knowledge base

file, containing all the information needed for NexpertObject

55

56

to run an expert system, and produce a stand-alone, executable

file, that will be the final expert system product. Moreover,

this final product will be a Microsoft Windows application,

providing users with an easy-to-use interface.

There are two approaches that can be taken in creating

a stand-alone expert system. Either a system, that compiles

the knowledge base file into an executable file, can be

implemented, or a system can be built that will interpret the

knowledge base file. In this project, the latter option was

chosen, and NEXPARSE is the first step in achieving this goal.

Briefly, NEXPARSE is the first component of a three-component

hybrid interpreter. It takes as its input a knowledge base

file and produces several files, rearranging and categorizing

the information contained in the input file. However, before

going into this further, it is necessary to explain some of

the terminology used.

7.2 The Knowledge Base File

A knowledge base file consists of collections of some

or all of the following: PROPERTIES, CLASSES, OBJECTS, META

SLOTS, RULES, and GLOBALS. CLASSES are the facility by which

users represent real world entities. That is, CLASSES allow

users to describe real world entities by listing the

characteristics of these entities. These characteristics are

listed as PROPERTIES. A PROPERTY consists of a name, which is

57

made up of alphanumeric characters and underscores, but no

spaces, and a type, which is either Integer, Float, Boolean,

String, Date, or Time. Within the CLASS, only the PROPERTY

name is listed. The name is bound to a type in a separate

PROPERTY declaration. Additionally, CLASSES can contain

subclasses. The use of subclasses allows CLASSES to inherit

the PROPERTIES of an already declared CLASS, without having to

relist all those PROPERTIES; instead, the name of the

previously defined CLASS, which is syntactically similar to a

PROPERTY name, is listed as a subclass of the new class.

While CLASSES are intended to describe (or represent)

real world entities, OBJECTS serve to represent actual

instances of these real world entities. For this reason,

OBJECTS are often said to be instances of CLASSES. For

example, one may define a CLASS, AUTOMOBILE, which describes

automobiles. AUTOMOBILE would then list the PROPERTIES of

automobiles in general. Now, the OBJECTS, MY_CAR and YOUR_CAR

would be instances of the CLASS, AUTOMOBILE, and would

represent actual real world entities. They would possess the

same list of attributes that AUTOMOBILE does, but they would

each have values for these PROPERTIES, corresponding to the

values of the real world entities they represent.

Every OBJECT has a name, which is similar to a

PROPERTY name. An OBJECT may also contain a list of CLASSES

to which it belongs. If an OBJECT belongs to a CLASS, it is

58

an instance of that CLASS and inherits all of the PROPERTIES

of that CLASS. With NexpertObject, it is possible for an

OBJECT to inherit from more than one CLASS (multiple

inheritance). Also, an OBJECT can have a list of associated

PROPERTIES. These PROPERTIES are in addition to PROPERTIES

inherited from declared CLASSES and are defined in the same

way as PROPERTIES of CLASSES. As a special case, it is also

possible to associate one elementary data value directly with

the OBJECT itself. To do this, one must define a special

PROPERTY with the reserved name, VALUE.

Closely linked to both CLASSES and OBJECTS is the

notion of a META-SLOT. META-SLOTS are used to define

attributes of PROPERTIES (i.e., properties of PROPERTIES),

that are associated with CLASSES or OBJECTS. These attributes

determine the behaviour of the PROPERTY in its interaction

with the rest of the system. For example, using META-SLOTS,

a user of NexpertObject can determine how the value of a

PROPERTY is determined, or how a PROPERTY is inherited from

CLASSES to subclasses.

While CLASSES and OBJECTS (and their composite

PROPERTIES) are used to describe real world entities, the

expert knowledge is stored in RULES. Each RULE consists of

one or more conditions, exactly one hypothesis, and zero or

more actions. If all the conditions of a RULE are found to be

true, the hypothesis, or conclusion, associated with the RULE

59

is also true; if there are any actions associated with this

RULE, then each of these actions is performed, only if all the

conditions have been satisfied. This describes the components

of a RULE. The execution of an expert system involves the

evaluation of the appropriate RULE at the appropriate time.

A RULE is evaluated either when its hypothesis is suggested as

a goal to be investigated, or when one of its conditions is

proposed to be true. The former is called backward chaining,

and the latter is referred to as forward chaining.

Finally, GLOBALS are variables which dictate how the

system will run. A GLOBAL consists of a global variable name

and a boolean value (true or false) indicating the state of

the variable.

7.3 Program Description
As previously mentioned, a knowledge base file

contains instances of some or all of the aforementioned terms.

For a precise specification of the knowledge base file, see

"The Knowledge Base File" in Appendix A.

NEXPARSE produces six file types from its single input

file. They are (1) PROPERTY files (*.prp), which are listings

of PROPERTY names and their types; (2) CLASS files (*.cls),

which are lists of CLASSES; (3) OBJECT files (*.obt), which

are listings of OBJECTS; (4) META-SLOT files (*.slt), which
contain lists of META-SLOT data; (5) RULE files (*.rul), which

60

are listings of RULES; (6) GLOBAL files (*.gbl), which are

lists of global variable names and their boolean values.

Breaking the one data file into several subfiles makes

managing the data easier, but the subfiles serve an additional

purpose.

The data in the knowledge base file, as described

above, is embedded among unnecessary information and is

encoded in a less than useful format. For example, Figure 7.1

shows a typical PROPERTY declaration.

(@PROPERTY= age @TYPE=Integer;)

Figure 7.1: A Typical PROPERTY Declaration

If a file contains only PROPERTIES, then it is not

necessary to state that it is a PROPERTY that is being

declared (@PROPERTY=). Also, since all PROPERTIES must have

a type, it is wasteful to identify the type with @TYPE; one

can determine it is a type by its position. Another problem

with the declaration in Figure 7.1 is that in order to

determine the PROPERTY'S name and type, one must parse this

information from the line. Figure 7.2 shows a file format

that addresses all these issues.

61

age
Integer

figure 7.2: A New PROPERTY Format

This simplistic approach makes use of position (within the

file) to identify the PROPERTY components. The PROPERTY name

always precedes the type. Since all PROPERTIES must have

these two items, every pair of lines, within the file,

comprises a PROPERTY definition. Also, note that extracting

the information is quite easy, as one must simply read a line

to obtain the name or type.

NEXPARSE works by first reading the knowledge base

file one line (up to 80 characters) at a time. Each line is

then searched for the keywords: ^PROPERTY, @CLASS, ^OBJECT,

@SLOT, @RULE, and ^GLOBAL. Lists, containing records for

holding data related to each of the keywords, are maintained.

When one of the keywords is encountered, a subroutine for

handling that particular keyword is called, and the subroutine

creates a new element of the appropriate list and extracts,

from the input file, the necessary information. For example,

when PROPERTY" is encountered, the PROPERTY name and type

are extracted from the file and stored in a record. Upon

reaching the end of the of the input file, the data, in the

62

lists, are written to the appropriate output files, in a

format consistent with the principles discussed earlier.

CHAPTER 8

SGROUP

8.1 Requirements

NexParse is only one step towards the final goal of an

expert system independent of NexpertObject. Recall that one

of the main goals of this project is to provide a system that

allows physicians to enter the patient information and then

allows them to go back at any point and modify it. It was

decided that the best way to facilitate this in a Windows

application would be to create a pull-down menu Figure 8.1

provides an example of one such pull-down menu. The menu

contains a list of "information categories". When a category

is selected, the physician is presented with questions

pertaining to that category. One can return to a category and

alter the answers at any point, simply be re-selecting it.

The menu seen in Figure 8.1 is an example of a Windows

resource. A resource is a data file containing information

descripting one or more of the MS Windows

63

64

graphical elements (Borland International, 1991).

include:

These

1. bitmaps
2. cursors
3. dialog boxes
4. icons
5. keyboard accelerators
6. menus

The resource defines the visual aspects of these elements, not

their functionality. For example, a menu resource would

describe the screen appearance of the menu (height, width,

contents) but would not describe what to do when a given menu

option was selected.

— I Expert System' |

■ airil Questions
Consultant Information
Patient Information
Surgical Information
Coronary Artery Disease
Aveolar Pulmonary Edema
Valvular Disease
Arrhythmias
General Medical Status

Figure 8.1: A PullDown Menu

Resources are stored externally of the executable

files that use them. This means that they must be loaded at

run-time. This has two great advantages. For one, a single

resource can be used by many programs, introducing an element

of reusability. Also, a resource can be altered without

65

affecting the executable program that uses it. This makes

applications using resources more maintainable.

There are two considerations when creating and using

a menu resource. First, in order to create the pull-down

menu, one must have a list of the menu options. For this

project, the list is a list of "information categories".

Since NexpertObject does not have a menu system, there is no

equivalent list stored in the knowledge base file. Therefore,

there is a problem in obtaining this list.

Also, once the pull-down menu has been constructed,

the application program must be coded to respond to menu

selections. It is possible to write routines to handle each

of the menu selections specifically, but this would mean that

any change in the content of the menu resource would require

a similar change in the application program. Obviously, this

eliminates the advantage of easier maintenance that was gained

by making use of a Windows resource in the first place.

The SGroup utility was developed to address these

issues. Written in the TurboPascal for Windows language

(Borland International, 1991), it also provided an

introduction to Microsoft Windows programming concepts.

SGroup provides the expert system designer with a

mechanism for entering the "information categories" that make

up the menu selections. Each "information category"

represents a group. Each group, in turn, contains a list of

66

questions to be asked when the menu option it represents has

been selected. The designer specifies which questions belong

in a group by selecting them from a list derived for the

NexpertObject META-SLOTS.

Recall that a META-SLOT is a NexpertObject entity that

functions to define attributes of a PROPERTY (see chapter

seven for more details). One of the attributes of a PROPERTY

can be how its value is determined. In cases where the value

of a PROPERTY is entered by the user of the expert system,

NexpertObject defines a META-SLOT containing a PROMPT element.

The PROMPT is an alphanumeric string representing the question

that is to be directed at the user in order to retrieve the

value for the PROPERTY. The list of META-SLOTS presented by

SGroup is comprised of those that have a PROMPT element.

As output, SGroup produces an ASCII file containing

one or more group names ("information categories"). Each

group name is followed by a list of all the META-SLOTS that

are to be included in that group. (Note: each META-SLOT has

a unique label, that is the same as the PROPERTY to which it

is associated) . Because there is a data file with this

information in it, it is possible to develop an algorithm to

handle a general menu selection and use the data file to fill

in the specifics at run-time. If the contents of the menu

change, only the data file needs to be altered; the executable

67

program that uses it remains unchanged. Chapter nine will

examine the general menu handling algorithm in more detail.

8.2 Program Description

Unlike NexParse, SGroup is a MS Windows application.

As such, it needs to be able to manipulate Windows' interface

objects and respond to Windows' messages. A large part of the

complexity of dealing with these issues is alleviated by using

the library of Windows objects that comes with TurboPascal for

Windows (TPW). The following discussion highlights the most

important constructs of the SGroup program and how it makes

use of the TPW Windows objects.

Like all interactive Windows applications, SGroup

needs to be able to display and manipulate Windows' interface

objects. Foremost among these are the windows. A window
defines the display space for a given application (see Figure

8.2). All windows have some common functionality (Resize,

Close, Move, etc.). The TPW object, TWindow, provides methods

that implement these basic window functions. If one looks at

the SGROUP.PAS code in Appendix A, one will notice that the

TSGroupWin object defines the main window for SGroup. This

object inherits its basic window functions from TWindow and

then defines methods specific for this application. The

ability to inherit the methods of TWindow means that

68

programmers do not have to re-invent the basic window with

each new application program.

Slol Groups
Elle Group Help Me

Figure 8.2: A Typical Window

As discussed in an earlier chapter, the MS Windows

environment is an event-driven environment. Therefore,

programs that are developed to operate interactively in this

environment must respond to the events that are happening.

Events are related to an application program through messages.

Programs will ignore all messages except those that they have

been coded to act upon. Figure 8.3 shows the declaration of

a method that handles the selection of the "Help" option from

the menu bar of SGroup. The message sent when the selections

in made has the identifier: cm_First + cm_Help. The method is

linked to the message by putting the message identifier after

69

the method declaration. The result is that when the "Help"

selection is made, the Help method is invoked.

procedure Help(var Msg: TMessage) ;
virtual cm_First + cm_Help;

Figure 8.3: A Method Responding to a Message

In order to facilitate the creation of groups and

their corresponding list of META-SLOTS, the SGroup application

implements functions for creating and deleting groups and for

adding and removing META-SLOTS to and from the groups. Each

of these functions is implemented as a pull-down menu option

of the Groups main menu option. Selecting any of these

options invokes methods that allow the user to make selections

from list boxes. A list box is an interface object that

presents a window containing a list of elements. In the case

of SGroup, these elements are groups and META-SLOTS. The list

boxes are implemented via the TPW object, TListBox. The use

of list boxes provides a very visual (and intuitive) way for

the expert system designer to make selections regarding

groups.

Once all groups have been formed, the designer should

create the output file by selecting the "Save" option. This

will cause the group name, followed by the name of each META

SLOT associated with it, to be written to an ASCII file, with

70

the extension, ".SGP". All names are separated by carriage

returns, and groups are further separated from one another by

a carriage return; the order of output is the order of

appearance in the list boxes. Figure 8.4 displays part of an

SGroup output file. "Consultant Information" and "Patient

Information" are the groups. The other labels represent META

SLOTS .

Consultant Information
consultant.name
consultant.referring_physician
consultant.service

Patient Information
drug
patient.age
patient.id
patient.name
patient.sex

Figure 8.4: A Partial Output File

CHAPTER 9

NEXMACH

9.1: Requirements

The last two chapters were dedicated to the

explanation of two utility programs that are distinct steps

toward the overall goal of this project. NexParse parses a

NexpertObject knowledge base file into several files, which

reorganize the expert system information into a format that is

easier to use. The SGroup utility provides a mechanism for

grouping the questions, that are to be posed to the expert

system user, into distinct categories. These categories will

be menu options in the final product.

The NexMach program represents the final product.

NexMach is the last step in achieving the project goal. To

recap, the goal of this project is to investigate methods of

improving the PREOP expert system (developed using the

NexpertObject expert system development software) in three

ways. First and foremost, PREOP needs to be independent of

NexpertObject; all NexpertObject expert systems require the

NexpertObject software to function. Secondly, it is desirable

to improve the user interface of PREOP. As it exists now, it

is quite primitive, especially in comparison to current PC

71

72

software. Finally, the PREOP system needs to be changed so

that the end-user can make alterations to responses that have

already been entered. In other words, one should be able to

go back to any previous step and change one's input.

There are several ways one could set out to remove

PREOP from the NexpertObject development system. The most

obvious of these is to recode PREOP in some conventional

language; in fact, this was done (Ho et al., 1992). However,

the production rules for PREOP were hard coded. If there were

to be any changes to PREOP, the source code would have to be

modified and recompiled, causing increased maintenance costs.

In addition, any designing and developing that would be done

in NexpertObject would have to be manually transcribed into

the source code of PREOP. Or, any changes could be made

directly in the source code, without going back to the

original NexpertObject design. This would mean, however, that

all the design and rapid development features of NexpertObject

would be lost.

It was decided that the best approach would be to

create a system that given a NexpertObject knowledge base file

as input, would mimic the functionality of NexpertObject in

the execution of the expert system. In other words, the

system would be a knowledge base interpreter.

In chapter seven, the functionality of the NexParse

program was discussed. NexParse reorganizes the raw knowledge

73

base file into several files that were more readable or more

easily interpreted. This represents the first step of a

hybrid interpreter (the input text is modified); NexMach is

the second step, in that it interprets the results.

In order to improve the human-computer interface of

PREOP, a decision was made to explore the possibility of

making PREOP a Microsoft Windows application. The emphasis

was on using menus in an effort to make the whole system more

intuitive. The end-user can make menu selections using either

the keyboard or the mouse. Once a selection is made, if more

detailed information is needed, dialog windows are used to

retrieve it. A dialog window is a window object that poses a

question and provides an input area for the response (i.e.,

conducts a dialog; see Figure 9.1 for an example). Dialog

windows provide an effective way to focus the users attention

on a subset of the expert system.

The overall principle that governed the design of the

interface was Clarity of Presentation. All test is presented

in clear type and as dark print on a light background. This

is for readability. Dialog windows and messages are placed on

the screen in locations that attract the users attention.

This is for clear operation. Also, no information is

displayed or prompted for until it is needed, keeping the

display uncluttered. This avoids user confusion. Following

the basic principle of clarity resulted in an interface that

74

Figure 9.1: A Typical Dialog Box

is not only attractive but is also easy to use.

The implementation of PREOP as a MS Windows

application also provided a way to address the issue of

altering previously entered data at any time. Since

information is grouped into categories, and these categories

are represented by menu selections, from the user's

perspective, altering previously entered information is simply

a matter of re-selecting the appropriate menu option. When

this is done, a dialog window, containing the information,

will appear. To alter the data, edit the dialog box entry.

This change, however, is only to the value of the entry. At

75

the program level, it is necessary to re-evaluate the current

state of the expert system, in light of this most recent

change. This process will be dealt with in more detail later

in this chapter.

9.2: Program Description

When the NexMach program initially starts up, its

first task is to retrieve the knowledge base information that

was outputted by NexParse and SGroup. This information is

stored in several files: one for PROPERTIES, OBJECTS, CLASSES,

META-SLOTS, RULES, GLOBALS, and Slot Groups (see chapters

seven and eight for more details). The contents of each data

file is imported into NexMach and stored in a list. Each list

is an object inheriting from the TCollection object (Borland

International, 1991).

The TCollection object is a dynamic array that can

store any type of object passed to it. Each of the lists adds

to the basic TCollection functionality, the ability to import

data that is stored on disk. An object is defined for each of

the different NexpertObject entities (PROPERTIES, OBJECTS,

etc.), and as each of the data files is read, the appropriate

object is created and stored in the appropriate list.

Once the initial knowledge base information has been

imported, NexMach must begin inferring based on the rules and

information at hand. Because the main inference mechanism

76

employed in the initial design of PREOP is backward chaining,

NexMach begins with backward chaining. See chapter two from

a more detailed description of backward chaining.

Figure 9.2 shows a subset of the PREOP rules as a tree

diagram. The figure shows graphically how the evaluation of

one rule may require that one first evaluate another rule,

which may, in turn, require the evaluation of another rule

(i.e. chaining). That is, one rule may contain a condition

that is the hypothesis of another rule. If the value of the

hypothesis is unknown, then the other rule must be evaluated

before the first rule. A problem arises, though, in knowing

which rule to return to when a segment of the chain has been

evaluated. For example, in evaluating rule 13 in Figure 9.2,

rule 3 must be evaluated first. In addition, the evaluation

of rule 3 requires that other rules be evaluated. Once rule

3 has been evaluated, how do we know to return to rule 13?

To overcome this difficulty, NexMach implements a

Conclusion Stack. A Conclusion Stack is an object consisting

of a stack, knowledge base entities (PROPERTIES, OBJECTS,

CLASSES, RULES and META-SLOTS), and an initial suggestion.

The suggestion is the conclusion or hypothesis that is

initially suggested to be true in order to start the backward

chaining. The stack is used to hold Conclusions. A

Conclusion is an object that points to a rule to be evaluated

77

s consult«nt_îdentifî

Yes patientaidentîfi

Yes surgery_înfo_added

►Yts surgery_deterwi

^/$urgery_urgencywdetenni

Yes gener» l_info_probe

Yes genera l_infoj>robe

Yes general_înfojsrobe- -r.2-

Yes general_fnfo_probe

Yes general_info_prob*

,Yes prophylactic^antibiotic_determi

■Yes general_înfo_pr

Yes cardiac_risk_deter»i

Yes iædîcation_deter»î

■Yes pul«onary_risk_deterwî

■Yes h«natologle_rfsk_deterwi

■Yes endocrinologic_risk_detenaî

■Yes hepatîc_rf*k_detenal

■Yes renal_risk_deterrai

xYes res

.T3—

Yes generat_info_probe~

Figure 9.2: A Subset of the PREOP Rules

and indicates at which clause evaluation is currently at. A

clause is a condition or action of a rule. (Recall, RULES can

have one or more conditions and one or more actions; the

clause is used to keep track of what condition or action is

currently being determined.)

When NexMach first starts, the Conclusion Stack is

initialized by determining what rule contains the initial

hypothesis and pushing a Conclusion object for this rule onto

78
the stack. From here, chaining begins. For each rule that

must be evaluated, a Conclusion object is pushed onto the

stack. Whenever an unresolved condition is encountered, the

rule that will resolve it is found and a Conclusion object for

it is pushed onto the stack. Whenever a rule is completely

evaluated, its Conclusion object is pulled from the stack and

processing continues with the Conclusion on the top of the

stack. Once the Conclusion stack is empty, backward chaining

is complete and a conclusion or inference can be drawn about

the original suggestion.

Figure 9.3 depicts graphically what occurs to the

Conclusion Stack during backward chaining. (For a description

of the Conclusion Stack and Conclusion object, see the

BakChain Unit in Appendix A) . The example starts with the

evaluation of rule 13. A Conclusion object for rule 13 is

placed on the top of the stack (TOS); the clause indicator

shows that clause 1 of rule 13 (Yes general_info_probe) is to

be determined. At this point general_info_probe is

unresolved; however, the hypothesis (or conclusion) of rule 3

is general_info_probe. Therefore, evaluating rule 3 will

resolve the hypothesis. So, a Conclusion object for rule 3,

with a clause indicator of 1, is pushed onto the stack.

Processing will continue until the last clause of rule

3 (clause 5: Yes surgery_urgency_determined) is determined.

When this is done, the rule 3 hypothesis, general_info_probe

79

will be resolved (either true or false), the Conclusion object

for rule 3 is pulled from the stack. Processing will continue

with rule 13, clause 2.

© Rulel 3/Clause1 «------ Top of Stack

©
Rule3/Clause1
Rulel 3/Clausel

1-------Top of Stack

Rule3/Clause5

Rulel 3/Clausel
<.... Top of Stack

© Rulel 3/Clause2 «------ Top of Stack

Figure 9.3: The Conclusion Stack During Backchaining

Supporting backward chaining is only half the battle

for NexMach. It is also necessary to have a means of

obtaining information to infer upon. This information is

obtained from the user of the expert system. As stated

previously, the key mechanism for obtaining input from the

user is the dialog window. Also, recall that the prompting

for, and accepting of, information from the user is to be as

general as possible. This is the reason for the SGroup

utility and its output, the slot-group data file.

80

The groupings created in SGroup comprise the options

of the Questions option of the main menu. When a selection is

made, the group name is used to determine which META-SLOTS are

to be used and which PROPERTIES will store the information.

Each META-SLOT describes prompting information (i.e. the

question to be posed). Based on the number of prompts to be

displayed in the window and the length of the longest prompt,

the size of the dialog window is calculated.

The dialog window is then constructed by defining a

window using the dimensions just calculated. Each prompt is

added to the window as a static string (i.e. unchanging). To

accept the user's input, edit boxes are added after each

prompt. An edit box is a rectangular area whose borders are

marked with a line. The user's entry appears inside the

rectangular area. See the QuesWind Unit in Appendix A for a

description of the source code required to implement the

dialog window.

The PROPERTY descriptions provide details on the type

of data that the user is to input. Currently type checking

exists for only three types: real, integer, and string. In

some cases, a list of allowable data values is also supplied,

but currently, NexMach does not make use of this information.

As a future enhancement, this information could be used to

present a list of possible values, and validation could be

81

performed to ensure that the data entered is among the

allowable values.

Once the information has been entered, the user press

an "OK" button in the dialog window to signal that the

information should be processed. NexMach then retrieves the

information from the edit box, performs type checking, and

stores it in the appropriate PROPERTY. If more than one entry

was made, this process is performed for each one.

The last component that NexMach required was a

NexpertObject command processor. NexpertObject has its own

set of operators, which are used in the conditions and actions

of RULES. These operators are used to evaluate expressions,

to evaluate the state of the expert system, to import data

from external files, etc. For example, the YES operator will

determine if the value of a hypothesis is true or not. For

this project, the NexMach program only handles a subset of all

the NexpertObject operators, as the knowledge base file used

to develop this prototype did not make use of all the

available operators.

All RULES are stored as objects, having a hypothesis,

a left-hand side and possibly a right-hand side; the left-hand

side consists of one or more conditions, and the right-hand

side consists of one or more actions. To evaluate a RULE,

each condition is evaluated first. If all conditions hold,

each action is then performed. The left-hand side and right

82

hand side are similar in that they are both composed of an

operator and at least one operand. Based on the value of the

operator, a Pascal case statement is used to call the

appropriate procedure to imitate the behaviour of the

NexpertObject operator.

CHAPTER 10

CONCLUSIONS

10.1 Conclusions
One of the goals of this project was to investigate

the possibility of developing an interpreter of the

NexpertObject knowledge file. To this end, the project was

successful. The NexMach program can successfully interpret

any knowledge file that sticks to the subset of NexpertObject

operators that have been included in the NexMach instruction

set. This is definitely an avenue worth pursuing. If the set

were expanded to include all NexpertObject operands, then it

would be possible to create a stand-alone version (i.e., a

"NexpertObject-independent" version) of any expert system

developed with NexpertObject.

Another project goal was to improve the human-computer

interface of PREOP. This has been done in that NexMach

translates knowledge file functions to produce a Windows

application. That is, the interpretation produces machine-

instructions that use the MS Windows interface. However, the

NexMach instruction set must be expanded to handle all the

NexpertObject operands that PREOP utilizes.

83

84

10.2 Future Directions

As previously mentioned, the work done in this project

is intended to be investigative. As such, there is a great

deal of work that can be picked up from this point. For

instance, the set of operators implemented in NexMach could be

expanded to include all of the operators supported by

NexpertObject.

Similarly, NexMach uses the inference mechanism of

backward chaining; however, NexpertObject also supports

forward chaining. This too could be added to NexMach. With

these sorts of enhancements, NexMach becomes a tool that can

interpret any NexpertObject knowledge base file, not just the

PREOP expert system.

As for the human-computer interface, more work could

be done in improving the overall appearance of the interface.

One feature that might prove very valuable is the addition of

a tool (or accelerator) bar that allows users to press a

button to quickly access menu options.

Finally, with respect to the PREOP application itself,

a future direction that could be explored is the development

of a system that actually "learns" from past results and

modifies itself accordingly. A database of past results would

need to be maintained and actions taken based on the contents

of this database. Because all the knowledge required for the

expert system is stored externally of the executable program,

85

it is possible for the system to modify the knowledge in these

files and, thereby, modify itself. This is would truly be a
versatile system.

REFERENCES

1. Abate, M.A, Jacknowitz, A.I., and Shumway, J.M., 1989,
"Information Sources Utilized by Private Practice and
University Physicians'', Drug Info Journal, 23,
pp. 309-319.

2. Bench-Capon, T., 1990, Knowledge Representation: an
Approach Artificial Intelligence. Academic Press,
Toronto, Ontario.

3. Borland International, 1991, Turbo Pascal for Windows
(Windows Refernce Guide). Borland International,
Scotts Valley, California.

4. Cleal, D. and Heaton, N., 1988, Knowledge-based Systems :
Implications for Human-Computer Interfaces. Ha1sted
Press, Toronto, Ontario.

5. Coveil, D.G., Uman, G.C., and Manning, P.R., 1985,
"Information Needs in Office Proctice: Are They Being
Met?", Ann. Intern. Med., 103, pp. 596-599.

6. Detskey, A.S., Abrams, H.B., McLaughlin, J.R.,
Drucker, D.J. Sasson, A., Johnston, N., Scott, J.G.,
Forbath, N., and Hilliard, J.R., 1986, "Predicting
Cardiac Complications in Patients Undergoing Non-cardiac
Surgery ", J. Gen. Int. Med., JL, pp. 211-219.

7. Goodwin, M., 1988, User Interfaces in C. Programmer's
Guide to State-of-the-Art Interfaces. Management
Information Source Inc., Portland, Oregon.

8. Ho, J., Leung, S., and Zohrri, N., 1992, "The
Development of a Windows User Interface for PREOP, a
Medical Expert System", Computer Science 3MP6 Project,
McMaster University, Hamilton, Ontario.

86

87

9. Holbrook, A., Langton, K.B., Haynes, R.B., Mathieu, A.,
and Cohen, S., 1992, "Development of an Evidence-Based
Expert System to Assist with Preoperative Assessments",
Proceedings of the Fifteenth Symposium on Computer
Applications in Medical Care, Wasington D.C.,
pp. 669-673.

10. Hoogendoorn, E., 1991, "Investigations into the
Development of Run-Time Interface for Nexpert",
M.Sc. Thesis, Department of Computer Science and
Systems, McMaster University, Hamilton, Ontario.

11. Hu, David, 1987, Programmers Reference Guide to Expert
Systems. H.W. Sams, Indianapolis, Indiana.

12. Hulme, Charles, 1984, Reading: "Extracting Information
from Printed and Electronically Presented Text",
in : Monk, Andrew (editor), Fundamentals of Human
Computer Interaction, Academic Press, London, Ontario,
pp. 35-47.

13. Kolers, P.A., Dachnicky, R.L. and Ferguson, D.C., 1981,
"Eye Movement Measurement of Readabililty of CRT
Displays", Human Factors, 23, pp. 517-527.

14. Langton, K.B., Ramsden, M.F., Montaxemi, A.R.,
Solntseff, N. and Haynes, R.B., 1990, "PREOP: An Expert
System for Preoperative Assessment", Proceedings of the
Second IASTED International Symposium, M.H. Hamza
(editor), pp. 167-170.

15. Levine, Drang, and Edelson, 1990, AI and Expert Systems :
a Comprehensive Guide, C Language. McGraw-Hill,
New York.

16. MacLennan, Bruce, 1987, Principles of Programming
Languages. 2nd ed., Holt, Rinehart, and Winston, Inc.,
Toronto, Ontario.

17. Microsoft Corporation, 1991, Microsoft Windows Version
3.1. Microsoft Corporation, USA.

88

18. Muter, P., Latremouille, S.A., Treurniet, W.C., and
Beam, P., 1982, "Extended Reading of Continuous Text on
Television Screens", Human Factors, 24, pp. 501-508.

19. Neuron Data, 1991, NexpertObject, Introduction Manual.
Neuron Data, Palo Alto, California.

20. Norton, Peter and Yao, Paul, 1992, Borland C++
Proqramminq for Windows. Bantam Books Inc., Toronto,
Ontario.

21. Parker, C.S., 1989, Management Information Systems.
McGraw-Hill, Inc., Toronto, Ontario.

22. Radi, G.W., 1980, "Experimental Investigations for
Optimal Presentation-Mode and Colours of Symbols on the
CRT-Screen", in: Grandjean, E. and Vigliani, E.
(editors), Ergonomic Aspects of Visual Display
Terminals, Taylor and Francis, London.

23. Reid, P., 1984, "Work Station Design, Activities and
Display Techniques", in: Monk, Andrew (editor),
Fundamentals of Human-Computer Interaction,
Academic Press, London, Ontario, pp. 107-126.

24. Schildt, Herbert, 1991, C++: The Complete Reference.
Osbourne McGraw-Hill, Toronto, Ontario.

25. Snyder, Alan, 1986, "Encapsulation and Inheritance in
Object-Oriented Programming Languages", OOPSLA '86
Conference Proceedings, 21:11, pp. 38-45.

26. Turbo Pascal for Windows: Windows Programming Guide.
1991, Borland International, Scotts Valley, California.

27. Wegner, Peter, 1987, "Dimensions of Object-Based
Language Design", OOPSLA '87 Conference Proceedings,
pp. 168-182.

89

28. Zarrella, John, 1982, Language Translators.
Microcomputer Applications, Suisun City, California.

APPENDIX A

NEXPARSE

NEXPARSE.PAS

Program Nexparse (input, output);

Uses Dos, Decode, RuleTree;

Const
FILE_NOTFOUND_MESS = 'Error: Input file not found.';
NUM_PARAMETERS = 2 ;

Var
rule_tree : PRule_Node;
input_filename, output_filename : TFilename;
lists : TLists;

Procedure Display_Usage;
{--
Display_Usage: information pertaining to the usage of this
program is displayed on the screen. The program then
halts.
Called by: Process_Commandline--}

begin
{ Display usage information.}
writeln;
writeln('USAGE: ',paramstr(0),' <input_file_name>

<output_file_name>');
writeln;
writeln(' where input_file_name is the full file name,

including path,');
writeln(' of the file to be parsed, and

output_file_name is the prefix');
writeln(' for the file name, including path, of the

files in which the');
writeln(' parsed data is to be written to. A file name

prefix is the');
writeln(' file name without the extension.');
writeln;
writeln(' eg. ',paramstr(0),' preop.tkb testrun');

90

91
writeln;
writeln(' The file preop.tkb will be parsed and the

following output');
writeln(' files will be produced: ');
writeln;
writeln(' testrun.prp testrun.cls
testrun.obt');

writeln(' testrun.sit testrun.rul
testrun.gbl');

{ Stop execution.}
halt(1);

end; {Display_Usage}

Procedure Process_Commandline(var input_filename,
output_filename: TFilename);

{-------- ---
Process_Commandline: check the commandline for the proper
number of parameters; if the number is correct, retrieve the
parameters into the string variables, INPUT_FILENAME and
OUTPUT_FILENAME. Otherwise, usage information is displayed.
Called by: Main-- }

var num_params : integer;

begin
num_params := paramcount;

{ If there aren't 2 parameters on the command line,
remind the user how this program is suppose to be
used.}

if (num_params <> NUM_PARAMETERS) then Display_Usage

{ Otherwise, retrieve the parameters.}
else

begin
input_filename := paramstr(l);
output_filename := paramstr(2);

end; {else}

end; {Process_Commandline}

FUNCTION FNAME_CHK (fname: TFilename): boolean;
{ ---
Fname_Chk: Using the FSEARCH() function of TurboPascal,
FNAME_CHK scans the drive specified by DRV for the file
whose name matches FNAME. If the file is found (ie. P which

92

holds the full file name, including the path, is not empty)
then the function returns TRUE, otherwise, it returns FALSE.
Called by: Open_Files-- }

var p : TFilename;
i : byte;

begin
p := fsearch(fname, '');
i := length(p);
fname_chk := i <> 0;

end; {Fname_Chk}

Procedure Open_Files(filename : TFilename);
{ --
Open_Files: the input file is opened, using the name given
on the command line.
Called by: Main-- }

begin
{ Check to see if the input file really does exist.}
if (Fname_Chk(filename)) then
begin

{ Open the input file.}
assign(target_file, filename);
reset(target_file);

end {if}
{ If the input file doesn't exist, display an error

message and halt.}
else
begin
writeln(FILE_NOTFOUND_MESS);
halt(1);

end; {else}
end; {Open_Files}

Procedure Close_Files;
{ ---
Close_Files: both the input and the output file are closed.
Called by: Main--}

begin
{ Close all files.}
close(target_file);

end; {Close Files}

93
Procedure Create_Rule_Tree(var rule_tree: PRule_Node; var
rules: TRules; var globals: TGlobals);
{ ---
Create_Rule_Tree: a tree (RULE_TREE) is constructed from the
rule data extracted from the input file.
Called by: Main
Calls: Process_Line--- }

begin
old_hypos.first := nil;
rule_tree := Build_Rtree(rules,globals);

end; {Create_Rule_Tree}

Procedure Parse_Input(var lists: TLists);
{ ---
Parse_Input: the input file is read in, one line at a time.
Each line is then sent to the line processing routine.
Called by: Main
Calls: Process_Line-- }

var line : TLine;

begin
{ Discard the first line.}
readln(target_file, line);

{ Process each line until the end of file marker.}
while (not eof(target_file)) do

begin
{ Process the next line.}
readln(target_file, line);
Process_Line(line,lists);

end; {while}

end; {Parse_Input}

{ ---
Main: first, the input and output files are opened.
Following this, the lists which will hold the different
elements of the input file, once it has been processed, are
initialized. Each line of the input file is then read and
processed. Lastly, the aforementioned lists are written to
the output file, and all files are closed.
Calls: Process_Line, Open_Files, Init_Lists, Display_Lists -- }

94

Begin
{ Check the command line parameters.}
Process_Commandline(input_filename, output_filename);

{ Open the input and output files.}
Open_Files(input_filename);

{ Initialize all lists.}
Init_Lists(lists);

{ Process the input file.}
Parse_Input(lists);

{ Display all lists.}
Display_Lists(lists, output_filename);

{ Create the rule tree.}
Create_Rule_Tree(rule_tree, lists.rules, lists.globals);
if (rule_tree <> nil) then

Preorder_Rtree(rule_tree);

{ Close all files.}
Close_Files;

End. {Main}

95
DECODE.UNT

Unit Decode;

Interface
Const

FILENAME LENGTH = 255;
MAX LINE LENGTH = 255; { Max len of an output line. }
PROMPT MAX = 255; { Max len of a slot prompt. }
NUM MAX = 5; {

{
Max digits in a inference
catagory number. }

}
Type

TFilename = string[FILENAME_LENGTH];
TLine = string[MAX_LINE_LENGTH];
TIndex = 0..MAX_LINE_LENGTH+1;
TPrompt = string[PROMPT_MAX];

{ Types associated with the PROPERTIES list.}
PProperty = ^TProperty;
TProperty = record

property_name : TLine;
property_type : TLine;
next : PProperty;

end; {record}
TProperties = record

first : PProperty;
last : PProperty;

end; {record}

{ Types associated with the CLASSES list.}
PClass_Props = ~TClass_Props;
TClass_Props = record

cp_name : TLine;
next : PClass_Props;

end; {record}
PClass_Subclass = ^TClass_Subclass;
TClass_Subclass = record

cs_name : TLine;
next : PClass_Subclass;

end; {record}
PClass
TClass

^TClass;
record

class_name :
class_props :
last_cp :
class_subclass:
last_cs :
next :

end; {record}

TLine;
PClass_Props;
PClass_Props;
PClass_Subclass;
PClass_Subclass;
PClass;

96

TClasses = record
first : PClass;
last : PClass;

end; {record}

PObject_Props =
TObj-ect_

PObject
TObject

{ Types associated with the OBJECTS list.}
PObject_Class = ^TObject_Class;
TObject_Class = record

oc_name : TLine;
next : PObject_Class;

end; {record}
^TObject_Props;

Props = record
op_name : TLine;
next : PObject_Props;

end; {record}
^TObject;
record

object_name : TLine;
object_val : boolean;
object_val_type: TLine;
object_classes : PObject_Class;
last_oc : PObject_Class;
object_props : PObject_Props;
last_op : PObject_Props;
next : PObject;

end; {record}
TObjects = record

first : PObject;
last : PObject;

end; {record}

{ Types associated with the SLOTS list.}
PExpr = ^TExpr;
TExpr = record

operator : TLine;
operandl : TLine;
operand2 : TLine;
next : PExpr;

end; {record}
PContext = ^TContext;
TContext = record

context_name : TLine;
next : PContext;

end; {record}
PStrat = ^TStrat;
TStrat = record

strat_lhs : TLine;
strat rhs : TLine;

97

PSlot
TSlot

TSlots

next : PStrat;
end; {record}

''TSlot ;
record

slot_name : TLine;
slot_prompt : TPrompt;
slot_format : TPrompt;
slot_source : PExpr;
last_source : PExpr;
slot_context: PContext;
last_context: PContext;
slot_strat : PStrat;
last_strat : PStrat;
next : PSlot;

end; {record}
record

first : PSlot;
last : PSlot;

end; {record}

{ Types associated with the RULES list.}
PRule = -'TRule;
TRule = record

rule_ name : TLine;
rule_ infcat : TLine;
rule_ lhs : PExpr;
last_ lhs : PExpr;
rule_ rhs : PExpr;
last_ rhs : PExpr;
rule_ hypo : TLine;
next : PRule;

end; {record}
TRules = record

first : PRule;
last : PRule;

end; {record}

{ Types associated with the GLOBALS list.}
PGlobal = 'TGlobal;
TGlobal = record

global_lhs : TLine;
global_rhs : TLine;
next : PGlobal;

end; {record}
TGlobals = record

first : PGlobal;
last : PGlobal;

end; {record}

98

{ The record structure holding all lists.}
TLists = record

properties
classes
objects
slots
rules
globals

end; {record}

TProperties;
TClasses;
TObjects;
TSlots;
TRules;
TGlobals;

Var
target_file text; { This file accessed globally.}

Function Next_Word(line : TLine; i,j: TIndex): TIndex;
Procedure Parse_Word(line : TLine; delimiter: char;

var pword: TLine; var i,j: TIndex)
Function Extract_Name(line : TLine; i,j: TIndex): TLine;
Procedure Init_Properties(var properties: TProperties);
Procedure Add_Properties(pname, ptype: TLine; var

properties: TProperties);
Procedure Display_Properties(properties : TProperties;

prefix: TFilename);
Procedure Init_Classes(var classes: TClasses);
Procedure Add_Classes(cname: TLine; var classes:

TClasses);
Procedure Add_Class_Props(cpname: TLine; var classes:

TClasses);
Procedure Add_Class_Subclass(csname: TLine; var classes

TClasses);
Procedure Display_Classes(classes : TClasses; prefix:

TFilename);
Procedure Init_Objects(var objects: TObjects);
Procedure Add_Objects(oname: TLine; var objects:

TObjects);
Procedure Add_Object_Classes(ocname: TLine; var objects

TObjects);
Procedure Add_Object_Props(line,opname: TLine; var i,j:

TIndex; var objects: TObjects);
Procedure Display_Objects(objects : TObjects; prefix:

TFilename);
Procedure Init_Slots(var slots: TSlots);
Procedure Add_Slots(sname: TLine; var slots
Procedure Process_Prompt_Format(line: TLine

TSlots);
var prompt

TPrompt; var i,j: TIndex);
Procedure

TLine);
Procedure Process_Expr(var operator

TLine);
Procedure Process_Source(var slots: TSlots)

New_Expr(var p: PExpr; optr, oprdl, oprd2:

operandl, operand2

99
Procedure Add_Context(cname: TLine; var slots: TSlots);
Procedure Process_Context(var slots: TSlots);
Procedure Process_Strat(strat_var,line: TLine; i,j:

TIndex; var slots: TSlots);
Procedure Display_Slots(slots : TSlots; prefix: TFilename);
Procedure Init_Rules(var rules: TRules);
Procedure Add_Rules(rname: TLine; var rules: TRules);
Procedure Process_Infcat(line: TLine; i,j: TIndex; var

rules: TRules);
Procedure Process_Lhs(var rules: TRules);
Procedure Process_Rhs(var rules: TRules);
Procedure Process_Hypo(line: TLine; i,j: TIndex; var

rules: TRules);
Procedure Display_Rules(rules: TRules; prefix: TFilename);
Procedure Init_Globals(var globals: TGlobals);
Procedure Add_Globals(lhs, rhs: TLine; var globals:

TGlobals);
Procedure Display_Globals(globals: TGlobals; prefix:

TFilename);
Procedure Parse_Fn(line : TLine; var fn: TLine;

var i,j: TIndex);
Procedure Do_Property(line : TLine; var i,j: TIndex;

var properties: TProperties);
Procedure Do_Class(line : TLine; var i,j: TIndex; var

classes: TClasses);
Procedure Do_Object(line : TLine; var i,j: TIndex; var

objects: TObjects);
Procedure Do_Slot(line: TLine; var i,j: TIndex; var slots:

TSlots);
Procedure Do_Rule(line: TLine; var i,j: TIndex; var rules:

TRules);
Procedure Do_Global(var globals: TGlobals);
Procedure Init_Lists(var lists: TLists);
Procedure Process_Line(line: TLine; var lists: TLists);
Procedure Display_Lists(lists : TLists; prefix: TFilename);

Implementation

Function Next_Word(line : TLine; i,j: TIndex): TIndex;
{ ---
Next_Word: This function moves the line index, I, to point
to the next non-white-space character in the line, LINE, or
point to the end of the line, J.
Called by: Do_Property, Do_Class, Do_Object,
Add_Object_Props, Do_Slot, Process_Expr, Process_Hypo --- }

begin
{ Increment I until a non-white-space character is found

100

or the end of the line is reached.}
while ((i <= j) and ((line[i] < '!') or (line[i] >

'*'))) do i := i+1;
Next_Word := i;

end; {Next_Word}

Procedure Parse_Word(line : TLine; delimiter: char;
var pword: TLine; var i,j: TIndex);

{ ---
Parse_Word: the line index, I, is used to procédé character
by character along the line, LINE, from the current position
of I until the delimiter, DELIMITER, is found or a
white-space character is encountered, adding each character
to the string variable, PWORD. If neither of the previous
conditions are met, the parsing stops when the end of the
line (J) is reached.
Called by: Parse_Fn, Do_Property, Do_Class, Do_Objects,

Add_Object_Props, Do_Slot, Process_Expr,
Process_Hypo, Process_Infcat--- }

var quit : boolean;

begin
pword := '';

{ Add each character to PWORD until the DELIMITER is
found or the end of the line is reached or a
white-space character is encountered.}

quit := false;
while ((i <= j) and (not quit)) do

begin
if ((line[i] = delimiter) or (line[i] < ' ') or

(linefi] > ')) then
quit := true

else
begin

pword := pword + linefi];
i := i+1;

end; {else}
end; {while}

end; {Parse_Word}

Function Extract_Name(line: TLine; i,j: TIndex): TLine;
{ ---
Extract_Name: LINE is parsed for the first word in it; this
word (NAME) is then returned.

101

Called by: Do_Class, Do_Object, Do_Slot, Do_Rule
Calls: Next_Word, Parse_Word--- }

var name : TLine;

begin
i : = i +1 ;
i := Next_Word(line,i,j);
Parse_Word(line,' ',name,i,j);
Extract_Name := name;

end; {Extract_Name}

Procedure Init_Properties(var properties: TProperties);
{ ---
Init_Properties: the linked list that holds the list of
properties is initialized to the empty state.
Called by: External--- }

begin
{ Set up an empty list.}
properties.first := nil;
properties.last := nil;

end; {Init_Properties}

Procedure Add_Properties(pname, ptype: TLine; var
properties: TProperties);

{ ---
Add_Properties: a new PROPERTIES list element is created (P)
and the values PNAME and PTYPE are inserted in it. If the
list is empty, it is added to the front of the list;
otherwise, the new element is added to the end of the list.
Called by: Do_Property--- }

var p : PProperty;

begin
{ Create a new property list element.}
new(p);
p^.property_name := pname;
p^.property_type := ptype;
p^.next := nil;

if (properties.first = nil) then
begin

102
{ New element is the first of the list.}
properties.first := p;
properties.last := p;

end
else

begin
{ New element is added to the end of the list.}
properties.last^.next := p;
properties.last := p;

end;

end; {Add_Properties}

Procedure Display_Properties(properties: TProperties;
prefix: TFilename);

{ ---
Display_Properties: the linked list that holds the list of
properties is displayed from start to end. P is used as a
temporary pointer to traverse the list.
Called by: External--- }

var p : PProperty;
file_name : TFilename;
prop_file: text;

begin
file_name := concat(prefix, '.prp');
assign(prop_file, file_name);
rewrite(prop_file);
writeln(prop_file,'PROPERTIES');

p := properties.first;

{ Display the attributes of each property in the list.}
while (p <> nil) do

begin
writeln(prop_file, p^.property_name);
writeln(prop_file, p^.property_type);
writeln(prop_file);
p := p^.next;

end; {while}

close(prop_file);

end; {Display Properties}

103
Procedure Init_Classes(var classes: TClasses);
{ ---
Init_Classes: the linked list that holds the list of classes
is initialized to the empty state.
Called by: External-- }

begin
{ Set up an empty list.}
classes.first := nil;
classes.last := nil;

end; {Init_Classes}

Procedure Add_Classes(cname: TLine; var classes: TClasses);
{---
Add_Classes: a new class element (C) is created and added to
the list of classes. Initially, CNAME is inserted in the
element, and the list of properties associated with this
class (CLASS_PROPS) is set to the empty state.
Called by: Do_Class--- }

var c : PClass;

begin
{ Create a new class list element.}
new(c);
c^.class_name := cname;
c^.class_props := nil;
c^.last_cp := nil;
c^.class_subclass := nil;
c^.last_cs := nil;
c^.next := nil;

if (classes.first = nil) then
begin

{ New element is the first of the list.}
classes.first := c;
classes.last := c;

end
else
begin

{ New element is added to the end of the list.}
classes.last^.next := c;
classes.last := c;

end;

end; {Add Classes}

104

Procedure Add_Class_Props(cpname: TLine; var classes:
TClasses);
{ ---
Add_Class_Props: a new element is created for the list of
properties, associated with the current class
(CLASSES.LAST^). CPNAME is inserted into this element. As
before, an empty list is treated as a special case.
Called by: Do_Class--- }

var cp : PClass_Props;

begin
{ Create a new element for the list of properties for
the current class.}

new(cp);
cp^.cp_name := cpname;
cp^.next := nil;

{ New element is the first in the list.}
if (classes.last^.class_props = nil) then
begin
classes.last~.class_props := cp;
classes.last^.last_cp := cp;

end
{ Add element to the end of the list.}
else
begin
classes.last^.last_cp^.next := cp;
classes.last^.last_cp := cp;

end;

end; {Add_Class_Props}

Procedure Add_Class_Subclass(csname: TLine; var classes:
TClasses);
{ ---
Add_Class_Subclass: a new subclass element (CSNAME) is added
to the list of subclasses associated with the current class.
Called by: Do_Class--- }

var cs : PClass_Subclass;

begin
{ Create a new element for the list of properties for
the current class.}

new(cs);
cs~.cs_name := csname;

105
csA.next := nil;

{ New element is the first in the list.}
if (classes.lastA.class_subclass = nil) then
begin
classes.lastA.class_subclass := cs;
classes.lastA.last_cs := cs;

end
{ Add element to the end of the list.}
else
begin
classes.lastA.last_csA.next := cs;
classes.lastA.last_cs := cs;

end;

end; {Add_Class_Subclass}

Procedure Display_Classes(classes: TClasses; prefix:
TFilename);

Display_Classes: the linked list that holds the list of
classes is displayed from start to end. C is used as a
temporary pointer to traverse the list, and CP is used as to
traverse the list of class properties within each class.
Called by: External--- }

var c : PClass;
cp : PClass_Props;
cs : PClass_Subclass;
file_name : TFilename;
class_file: text;

begin
file_name := concat(prefix, '.cis');
assign(class_file, file_name);
rewrite(class_file);
writeln(class_file,'CLASSES');

c := classes.first;

{ Display the attributes of each class in the list.}
while (c <> nil) do

begin
writeln(class_file, cA.class_name);
cs := cA.class_subclass;
cp := cA.class_props;

{ Display the contents of the subclass list for the

106
current class.}

while (cs <> nil) do
begin
writeln(class_file, 'SC ',cs^.cs_name);
cs := cs^.next;

end; {while}

{ Display the contents of the property list for the
current class.}

while (cp <> nil) do
begin
writeln(class_file, 'PR ',cp~.cp_name);
cp := cp^.next;

end; {while}

writeln(class_file);
c := c^.next;

end; {while}

close(class_file);

end; {Display_Classes}

Procedure Init_Objects(var objects: TObjects);
{ ---
Init_Objects: the linked list that holds the list of objects
is initialized to the empty state.
Called by: External--- }

begin
{ Set up an empty list.}
objects.first := nil;
objects.last := nil;

end; {Init_0bjects}

Procedure Add_Objects(oname: TLine; var objects: TObjects);
{ ---
Add_Objects: a new class element (0) is created and added to
the list of objects. Initially, ONAME is inserted in the
element, and the list of classes associated with this object
(OBJECT_CLASSES), and the list of properties associated with
this object (OBJECT_PROPS) are set to the empty state.
Called by: Do_Object--- }

var o : PObject;

107

begin
{ Create a new object list element.}
new(o);
o^.object_name:= oname;
o^.object_val := false; { Assume no value declaration.}
o^.obj ect_val_type:= '';
o^.object_classes:=nil; { All associated lists}
o^.last_oc := nil; { are empty. }
o^.object_props := nil;
o^.last_op := nil;
o^.next := nil;

if (objects.first = nil) then
begin

{ New element is the first of the list.}
objects.first := o;
objects.last := o;

end
else

begin
{ New element is added to the end of the list.}
objects.last^.next := o;
objects.last := o;

end;

end; {Add_Objects}

Procedure Add_Object_Classes(ocname: TLine; var objects:
TObjects);
{ ---
Add_Object_Classes: a new element is created for the list of
classes associated with the current object (OBJECTS.LAST~).
OCNAME is inserted into this element. As before, an empty
list is treated as a special case.
Called by: Do_Object--- }

var oc : PObject_Class;

begin
{ Create a new element for the list of classes for the
current object.}

new(oc);
oc^.oc_name := ocname;
oc^.next := nil;

{ New element is the first in the list.}
if (objects.last^.object_classes = nil) then
begin

108
objects.last^.object_classes := oc;
objects.last~.last_oc := oc;

end
{ Add element to the end of the list.}
else
begin
objects.last^.last_oc^.next := oc;
objects.last^.last_oc := oc;

end;

end; {Add_Object_Classes}

Procedure Add_Object_Props(line,opname: TLine; var i,j:
TIndex; var objects: TObjects);

{---
Add_Object_Props: a new element is created for the list of
properties, associated with the current object
(OBJECTS.LAST^). OPNAME is inserted into this element. As
before, an empty list is treated as a special case.
Called by: Do_Object--- }

var op : PObject_Props;
var vtype : TLine;

begin
{ Check if the current object has a value.}
if (opname = 'Value') then
begin

{ Find the type of this value.}
{ Skip @TYPE declaration.}
i := Next_Word(line,i,j);
Parse_Word(line,'=',vtype,i,j);
i := i+1;

{ Fetch the type and store it in the current object
record.}

Parse_Word(line,';',vtype,i,j);
objects.last~.object_val := true;
objects.last^.object_val_type := vtype;

end {if}
{ Otherwise, this is just an ordinary property.}
else

begin
{ Create a new element for the list of properties

for the current object.}
new(op);
op~.op_name := opname;

109
op'', next := nil;

{ New element is the first in the list.}
if (objects.last^.object_props = nil) then
begin
objects.last^.object_props := op;
objects.last^.last_op := op;

end {if}
{ Add element to the end of the list.}
else

begin
objects.last^.last_op^.next := op;
objects.last^.last_op := op;

end; {else}
end; {else}

end; {Add_Object_Props}

Procedure Display_Objects(objects : TObjects; prefix:
TFilename);
{ ---
Display_Objects: the linked list that holds the list of
objects is displayed from start to end. 0 is used as a
temporary pointer to traverse the list, and OC and OP are
used to traverse the list of object classes and object
properties within each object.
Called by: External--- }

var o : PObject;
oc : PObject_Class;
op : PObject_Props;
file_name: TFilename;
obj_file : text;

begin
file_name := concat(prefix, '.obt');
assign(obj_file, file_name);
rewrite(obj_file);
writeln(obj_file, 'OBJECTS');

o := objects.first;

{ Display the attributes of each object in the list.}
while (o <> nil) do

begin
writeln(obj_file, o^.object_name);
if (o^.object_val) then
writeln(obj_file,'VA ',o^.object_val_type);

110
oc := o''. ob ject_classes ;
op := o^.object_props;

{ Display the classes associated with this object.}
while (oc <> nil) do

begin
writeln(obj_file, 'OC ',ocA.oc_name);
oc := oc^.next ;

end; {while}

{ Display the properties associated with this
object.}

while (op <> nil) do
begin
writeln(obj_file, 'OP ',op^.op_name);
op := op'', next;

end; {while}

writeln(obj_file);
o : = o^.next;

end; {while}

close(obj_file);

end; {Display_Objects}

Procedure Init_Slots(var slots: TSlots);
{ ---
Init_Slots: the linked list that holds the list of slots is
initialized to the empty state.
Called by: External--- }

begin
{ Set up an empty list.}
slots.first := nil;
slots.last := nil;

end; {Init_Slots}

Procedure Add_Slots(sname: TLine; var slots: TSlots);
{ ---
Add_Slots: a new SLOTS element is created (S) and the values
SNAME is inserted in it. If the list is empty, it is added
as the first of the list; otherwise, the new element is
added to the end of the list.
Called by: Do_Slot--- }

Ill
var s : PSlot;

begin
{ Create a new slot list element.}
new(s);
s^.slot_name := sname;
s^.slot_prompt :=
s^. slot__f ormat := '
s^.slot_source := nil;
s^.last_source : = nil;
s^.slot_context:= nil;
s^.last_context:= nil;
s^.slot_strat := nil;
s^.last_strat := nil;
s^.next := nil;

if (slots.first = nil) then
begin

{ New element is the first of the list.}
slots.first := s;
slots.last := s;

end
else
begin

{ New element is added to the end of the list.}
slots.last^.next : = s;
slots.last := s;

end;

end; {Add_Slots}

Procedure Process_Prompt_Format(line: TLine; var prompt:
TPrompt; var i,j: TIndex);

{ ---
Procèss_Prompt_Format: the PROMPT or FORMAT operator was
encountered, and this procedure extracts the string
associated with this operator. The string starts and ends
with a double quote (").
Called by: Do_Slot--- }

var quit : boolean;

begin
prompt { Initialize the prompt string. }
i := i+2; { Skip the opening double quote.}

{ Continue adding characters to the prompt string until
a closing double quote is encountered.}

112
quit := false;
while ((not quit) and (not eof(target_file))) do

begin
if (i <= j) then { Check for " and ; }
quit := ((line[i] = ';') and (line[i-l] =

{ Case of end of current line.}
if (i > j) then
begin

readln(target_file, line);
i := 1; j := length(line);
prompt := prompt + ' ';

end {if}

else if (not quit) then
begin

prompt := prompt + line[i];
i := i+1;

end; {else}
end; {while}

{ Drop the ending quote.}
j := length(prompt);
delete(prompt,j,1);

end; {Procèss_Prompt_Format}

Procedure New_Expr(var p: PExpr; optr, oprdl, oprd2: TLine);
{ ---
New_Expr: creates a new expression record, putting OPTR,
OPRD1, OPRD2 in the appropriate slots.
Called by: Process_Lhs, Process_Rhs, Process_Source --- }

begin
new(p);
p^.operator := optr;
p^.operandl := oprdl;
p~.operand2 := oprd2;
p^.next := nil;

end; {New_Expr}

Procedure Process_Expr(var operator, operandl, operand2:
TLine);

{ ---
Process_Expr: the next line in the data file will contains
an expression. This expression will contain an operator and
one or two operands. This procedure parses these out.

113

Called by: Do_Slot, Process_Lhs, Process_Rhs
Calls: Next_Word, Parse_Word--- }

var i,j : TIndex;
line, temp : TLine;
quit : boolean;

begin
{ The next line contains the expression data.}
readln(target_file,line);
i := 1; j := length(line);

{ Parse the expression data.}
{ Parse out the operator name.}
i := Next_Word(line,i,j);
i := i+1;
Parse_Word(line,' ',operator,i,j);

if (operator <> '') then
begin

{ Parse out the 1st operand.}
i := Next_Word(line,i,j);
i := i+1;
quit := false;
while (not quit) do

begin
Parse_Word(line,')',temp,i,j);
operandl := operandl + temp;
quit := ((line[i+l] <= ' ') or (line[i+l] > "*')

or (i+1 = j));
if (not quit) then begin
inc(i);
operandl := operandl + line[i];

end; {if}
end; {while}

{ Parse out the 2nd operand, if there is one.}
i := i+1;
i := Next_Word(line,i,j);
if (i <= j) then
begin

i := i+1;
Parse_Word(line,chr(13),temp,i,j); { Go to the

end of the line.}
operand2 := operand2 + temp;

while (line[j] = '
begin

V) do

114
delete(operand2,length(operand2),1);
readln(target_file, line);
i := 1; j := length(line);
Parse_Word(line,chr(13),temp,i, j) ;
operand2 := operand2 + temp;

end; {while}

{ The last 2 characters will be closing
parentheses.}

delete(operand2,length(operand2)-1,2);
end {if}

else delete(operandl,length(operandl),1);
end; {if}

end; {Process_Expr}

Procedure Process_Source(var slots: TSlots);
{ ---
Process_Source: this procedure extracts the source
expressions for the from the input file, that are associated
with the current SLOT. Each expression (OPERATOR, OPERAND1,
OPERAND2) is added to the list of source expressions
(SLOT_SOURCE) associated with the current SLOT.
Called by: Do_Slot
Calls: Process_Expr, New_Expr--- }

var quit : boolean;
p : PExpr;
operator, operandl, operand2 : TLine;

begin
quit := false;
while ((not quit) and (not eof(target_file))) do

begin
{ Fetch the expression into the temporary
variables.}

operator := ''; operandl := operand2 := ";
Process_Expr(operator,operandl,operand2);

{ Check for end of this SOURCE declaration.}
quit := operator = '';

{ If not over, add the expression to the SOURCE list
of the current slot.}

if (not quit) then
begin
New_Expr(p,operator,operandl,operand2);

115
{ Case of an empty list.}
if (slots.last^.slot_source = nil) then
begin

slots.last^.slot_source := p;
slots.last^.last_source := p;

end {if}

{ Otherwise, add it on to the end.}
else
begin
slots.last^.last_source^.next := p;
slots.last^.last_source := p;

end; {else}
end; {if}

end; {while}

end; {Process_Source}

Procedure Add_Context(cname: TLine; var slots: TSlots);
{ ---
Add_Context: a new context element is created and added to
the list of contexts, belonging to the current slot.
Called by: Process_Context--- }

var p : PContext;

begin
{ Create a new context element.}
new(p);
p^.context_name := cname;
p^.next := nil;

{ If the context list for the current slot is empty, add
this new element to the list.}

if {slots.last^.slot_context = nil) then
begin
slots.last^.slot_context := p;
slots.last^.last_context := p;

end {if}

{ Otherwise, add it to the end of the list.}
else
begin
slots.last^.last_context~.next := p;
slots.last^.last_context := p;

end; {else}

end; {Add Context}

116

Procedure Process_Context(var slots: TSlots);
{ ---
Process_Context: this procedure extracts from the input file
all context names (NAME) until a closing parenthesis is
found. Each name is then inserted into the list of
contexts, belonging to the current slot.
Called by: Do_Slot
Calls: Extract_Name, Add_Context--- }

var line,name : TLine;
i,j : TIndex;

begin
{ Extract each context name.}
repeat
begin

readln(target_file,line);
i := 1; j := length(line);
name := Extract_Name(line,i,j);

{ Add it to the list of contexts.}
if (name <> ')') then Add_Context(name,slots);

end; {repeat}
until (name = ')');

end; {Process_Context}

Procedure Process_Strat(strat_var,line: TLine; i,j: TIndex;
var slots: TSlots);

{ ---
Process_Strat: the current LINE contains a strategy
variable, which has already been parsed out (STRAT_VAR), and
a value for this variable, which has not been parsed out.
This procedure parses out this value and creates a new
strategy element and adds it to the strategy list belonging
to the current slot.
Called by: Do_Slot
Calls: Parse_Word--- }

var s : PStrat;

begin
{ Create a new strategy element.}
new(s);
s~.strat_lhs := strat_var;
s^.next := nil;

117
{ Get the next word in the line.}
i := i+1;
Parse_Word(line,';',s^.strat_rhs,i,j);

;= s;
= s;

slot_strat
last strat

{ If the list is empty, make S the first element.}
if (slots.last^.slot_strat = nil) then
begin
slots.last'
slots.last'

end {if}
else
begin
slots.last^.last_strat^.next := s;
slots.last^.last_strat := s;

end; {else}

end; {Process_Strat}

Procedure Display_Slots(slots : TSlots; prefix: TFilename);
{ ---
Display_Slots: the linked list that holds the list of slots
is displayed from start to end. S is used as a temporary
pointer to traverse the list and SRC and CON are used to
traverse the source lists and context lists associated with
each slot.
Called by: External--- }

var s : PSlot;
src: PExpr;
con: PContext;
str: PStrat;
file_name : TFilename;
slot file : text;

begin
file_name := concat(prefix, '.sit');
assign(slot_file, file_name);
rewrite(slot_file);
writeln(slot_file,'SLOTS');

s := slots.first;

{ Display the attributes of each slots in the list.}
while (s <> nil) do

begin
writeln(slot_file,s~.slot_name);
if (s^.slot_prompt <> '') then
writeln(slot file, 'PR ',s^.slot prompt);

118
if (s~.slot_format <> '') then
writeln(slot_file, 'FR ',s^.slot_format);

{ Display the list of source expressions.}
src := s^.slot_source;
while (src <> nil) do

begin
writeln(slot_file, 'SR ',src^.operator);
writeln(slot_file, srcA.operandl);
if (srcA.operand2 <> '') then

writeln(slot_file, src^.operand2)
else

writeln(slot_file);
src := src^.next;

end; {while}

{ Display the list of context names.}
con : = s^.slot_context;
while (con <> nil) do

begin
writeln(slot_file, 'CN ',conA.context_name);
con := con^.next;

end; {while}

{ Display the list of strategy variables and their
values.}

str := s^.slot_strat;
while (str <> nil) do

begin
writeln(slot_file, 'ST ',str^.strat_lhs);
writeln(slot_file, str~.strat_rhs);
str := str^.next;

end; {while}

writeln(slot_file);
s := s^.next;

end; {while}

close(slot_file);

end; {Display_Slots}

Procedure Init_Rules(var rules: TRules);
{ ---
Init_Rules: the linked list that holds the list of rules is
initialized to the empty state.
Called by: External--- }

119
begin

{ Set up an empty list.}
rules.first := nil;
rules.last := nil;

end; {Init_Rules}

Procedure Add_Rules(rname: TLine; var rules: TRules);
{ ---
Add_Rules: a new RULES element is created (R) and the values
RNAME is inserted in it. If the list is empty, it is added
as the first of the list; otherwise, the new element is
added to the end of the list.
Called by: Do_Rules--- }

var r : PRule;

begin
{ Create a new slot list element.}
new(r);
r^.rule_name := rname;
rÆ.rule_infcat :=
r^.rule_lhs := nil;
r^.last_lhs := nil;
r^.rule_rhs := nil;
r^.last_rhs := nil;
r^.rule_hypo :=
r^.next := nil;

if (rules.first = nil) then
begin

{ New element is the first of the list.}
rules.first := r;
rules.last := r;

end
else
begin

{ New element is added to the end of the list.}
rules.last^.next := r;
rules.last := r;

end;

end; {Add_Rules}

Procedure Process_Infcat(line: TLine; i,j: TIndex; var
rules: TRules);

{ ---
Process_Infcat: an Inference Catagory is an integer ranging

120
from -32000 to +32000. This procedure extracts and stores
this value in the current rule record.
Called by: Do_Rule
Calls: Parse_Word--- }

begin
{ The number is the next 'word' in the line.}
i := i+1;
Parse_Word(line,';',rules.last~.rule_infcat,i,j);

end; {Process_Infcat}

Procedure Process_Lhs(var rules: TRules);
{ ---
Process_Lhs: the next one or more lines contain expressions
that are part of the LHS of the current rule. Each of these
expressions is retrieved from the input file, parsed, and
added to a list of expressions associated with the LHS of
the current rule.
Called by: Do_Rule
Calls: Parse_Word, New_Lhs_Rhs, New_Expr--- }

var quit : boolean;
p : PExpr;
operator, operandl, operand2 : TLine;

begin
quit := false;
while ((not quit) and (not eof(target_file))) do

begin
{ Fetch the expression into the temporary
variables.}

operator := ''; operandl := operand2 :=
Process_Expr(operator,operandl,operand2);

{ Check for end of LHS.}
quit := operator =

{ Otherwise, add the expression to the LHS of the
current rule.}

if (not quit) then
begin
New_Expr(p,operator,operandl,operand2);

{ Case of an empty list.}
if (rules.last^.rule_lhs = nil) then
begin

121

rules.last^.rule_lhs := p;
rules.last~.last_lhs := p;

end {if}

{ Otherwise, add it on to the end.}
else
begin
rules.last^.last_lhs^.next := p;
rules.last~.last_lhs := p;

end; {else}
end; {if}

end; {while}

end; {Process_Lhs}

Procedure Process_Rhs(var rules: TRules);
{ ------------------------- ---------------------------------
Process_Rhs: the next one or more lines contain expressions
that are part of the RHS of the current rule. Each of these
expressions is retrieved from the input file, parsed, and
added to a list of expressions associated with the RHS of
the current rule.
Called by: Do_Rule
Calls: Parse_Word, New_Lhs_Rhs, New_Expr--- }

var quit : boolean;
p : PExpr;
operator, operandl, operand2 : TLine;

begin
quit := false;
while ((not quit) and (not eof(target_file))) do

begin
{ Fetch the expression into the temporary
variables.}

operator := ''; operandl := operand2 := '';
Process_Expr(operator,operandl,operand2);

{ Check for end of RHS.}
quit := operator = '';

{ Otherwise, add the expression to the RHS of the
current rule.}

if (not quit) then
begin
New_Expr(p,operator,operandl,operand2);

{ Case of an empty list.}

122
if (rules.last^.rule_rhs = nil) then
begin
rules.last~.rule_rhs := p;
rules.last~.last_rhs := p;

end {if}

{ Otherwise, add it on to the end.}
else
begin
rules.last^.last_rhs^.next := p;
rules.last^.last_rhs := p;

end; {else}
end; {if}

end; {while}

end; {Process_Rhs}

Procedure Process_Hypo(line: TLine; i,j: TIndex; var rules:
TRules);

{ ---
Process_Hypo: the hypothesis is the next word in the current
line, delimited by a closing parenthesis. It is parsed out
and stored in the current rule record.
Called by: Do_Rule
Calls: Parse_Word, Next_Word--- }

begin
{ The next 'word' in the current line is the
hypothesis.}

i := i+1;
i := Next_Word(line,i,j);
Parse_Word(line,')',rules.last^.rule_hypo,i,j);

end; {Procèss_Hypo}

Procedure Display_Rules(rules : TRules; prefix: TFilename);
{ ---
Display_Rules: the linked list that holds the list of rules
is displayed from start to end. R is used as a temporary
pointer to traverse the list.
Called by: External--- }

var r : PRule;
lhs, rhs : PExpr;
file_name: TFilename;
rule_file: text;

123
begin

file_name := concat(prefix, '.rul');
assign(rule_file, file_name);
rewrite(rule_file);
writeln(rule_file, 'RULES');

{ Start with the first element of the list.}
r := rules.first;

{ Process each rule until the list is empty.}
while (r <> nil) do

begin
writeln(rule_file, r^.rule_name);
if (r^.rule_infcat <> ") then
writeln(rule_file,'IC ', r^.rule_infcat);

{ Process all LHS expressions.}
lhs := rÆ.rule_lhs;
while (lhs <> nil) do

begin
writeln(rule_file,'Ll ',lhs^.operator);
writeln(rule_f ile,lhs^.operandl);
writeln(rule_file,lhs^.operand2);
lhs := lhs^.next;

end; {while}

{ Process all RHS expressions.}
rhs := r^.rule_rhs;
while (rhs <> nil) do

begin
writeln(rule_file, 'R1 ', rhs''.operator) ;
writeln(rule_file,rhs .̂operandl);
writeln(rule_f ile,rhs^.operand2);
rhs := rhs^.next;

end; {while}

if (r^.rule_hypo <> ") then
writeln(rule_file,'HY ', r^.rule_hypo);

writeln(rule_file);
r := r^.next ;

end; {while}

close(rule_file);

end; {Display_Rules}

Procedure Init_Globals(var globals: TGlobals);
{ --

124

InitGlobals: the linked list that holds the list of global
variables is initialized to the empty state.
Called by: External--- }

begin
{ Set up an empty list.}
globals.first := nil;
globals.last := nil;

end; {Init_Globals}

Procedure Add_Globals(lhs, rhs: TLine; var globals:
TGlobals);

{ ---
Add_Globals: a new element is added to the GLOBALS list.
Again, an empty list is a special case.
Called by: Do_Global--- }

var g : PGlobal;

begin
{ Create a new global list element.}
new(g);
g^.global_lhs := lhs;
g*.global_rhs := rhs;
g^.next := nil;

if (globals.first = nil) then
begin

{ New element is the first of the list.}
globals.first := g;
globals.last := g;

end
else

begin
{ New element is added to the end of the list.}
globals.last*.next := g;
globals.last := g;

end;

end; {Add_Globals}

Procedure Display_Globals(globals: TGlobals; prefix:
TFilename);

{ ---
Display_Globals: the linked list that holds the list of
properties is displayed from start to end. G is used as a

125

temporary pointer to traverse the list.
Called by: External--- }

var g : PGlobal;
file_name : TFilename;
gbl_file : text;

begin
file_name := concat(prefix, '.gbl');
assign(gbl_file, file_name);
rewrite(gbl_file);
writeln(gbl_file,'GLOBALS');

g := globals.first;

{ Display the attributes of each global variable in the
list.}

while (g <> nil) do
begin
writeln(gbl_file, g^.global_rhs);
g := g^.next ;

end; {while}

close(gbl_file);

end; {Display_Globals}

Procedure Parse_Fn(line : TLine; var fn: TLine;
var i,j: TIndex);

{ ---
Parse_Fn: the current line, LINE, is parsed for the next
word.
Called by: Process_Line
Calls : Parse_Word--- }

begin
{ Initialize function name string.}
fn := ' ' ;
i := i+1;

{ Fetch the function name.}
Parse_Word(line,'=',fn,i,j);

end; {Parse Fn}

126
Procedure Do_Property(line : TLine; var i,j: TIndex;

var properties: TProperties);
{ ---
Do_Property: the current line, LINE, is parsed for the
property name, PNAME, and the property type, PTYPE. Both of
these values should be found on the current line.
Called by: Process_Line
Calls : Next_Word, Parse_Word, Add_Properties--- }

var pname, ptype : TLine;

begin
{ Find the property's (variable's) name.}
i := i+1;
i := Next_Word(line,i,j);
Parse_Word(line,' ',pname,i,j);

{ Find the type of this property.}
{ Skip @TYPE declaration.}
i := Next_Word(line,i,j);
Parse_Word(1ine,'=',ptype,i,j);
i := i+1;

{ Fetch the type.}
Parse_Word(line,';',ptype,i,j);

{ Add these property attributes to the list.}
Add_Properties(pname, ptype, properties);

end; {Do_Property}

Procedure Do_Class(line: TLine; var i,j: TIndex; var
classes : TClasses);

{ ---
Do_Class: first, the current line, LINE, is parsed for the
class name, CNAME. A new class list element is then added
to the class list. Next, lines are read from the input
file, TARGET_FILE, and each line is parsed for a single
property name. Each of these names is added to the list of
class properties associated with the current class. This
continues until a line containing a closing parenthesis is
encountered.
Called by: Process_Line
Calls : Next_Word, Parse_Word, Add_Class_Props,

Add_Class_Subclass--- }

var tempi, temp2 : TLine;

127
quit : boolean;

begin
{ Find the class's name.}
tempi := Extract_Name(line,i,j);
Add_Classes(tempi, classes);

quit := false;
while ((not quit) and (not eof(target_file))) do

begin
readln(target_file, line);
i := 1; j := length(line);
i := Next_Word(line,i,j);
i := i+1;
Parse_Fn(line,tempi,i,j);

quit := i > j;
if (not quit) then
begin
while ((not quit) and (not eof(target_file))) do

begin
readln(target_file, line);
i := 1; j := length(line);
i := Next_Word(line,i,j);
Parse_Word(line,' ',temp2,i,j);

{ A closing parenthesis marks the end of the
section.}

if (temp2 = ')') then quit := true
else if tempi = 'PROPERTIES' then
Add_Class_Props(temp2, classes)

else if tempi = 'SUBCLASSES' then
Add_Class_Subclass(temp2, classes);

end; {while}
quit := false;

end; {else}
end; {while}

end; {Do_Class}

Procedure Do_Object(line: TLine; var i, j : TIndex; var
objects: TObjects);

{ ---
Do_Object: first the name of the object is extracted from
the current line. The subsequent lines contain the
components of the object; these are either PROPERTIES or
CLASSES. Each component is enclosed in parenthesis, and
this is fact is used to extract each component and add it to
the appropriate list associated with the current object.

128
Called by: Process_Line
Calls : Next_Word, Parse_Word, Add_Object_Props,

Add_Object_Classes--- }

var oname, tempi, temp2 : TLine;
quit : boolean;

begin
{ Find the object's name.}
oname := Extract_Name(line,i,j);
Add_Obj ects(oname, objects);

{ Retrieve the component type.}
quit := false;
while ((not quit) and (not eof(target_file))) do

begin
readln(target_file, line);
i := 1; j := length(line);
i := Next_Word(line,i,j);
i := i+1;
Parse_Fn(line,tempi,i,j);

quit := i > j;
if (not quit) then
begin
while ((not quit) and (not eof(target_file))) do

begin
readln(target_file, line);
i := 1; j := length(line);
i := Next_Word(line,i,j);
Parse_Word(line,' ',temp2,i,j);

{ A closing parenthesis marks the end of the
section.}

if (temp2 = ')') then quit := true
else if tempi = 'PROPERTIES' then
Add_Object_Props(line,temp2,i,j,objects)

else if tempi = 'CLASSES' then
Add_Object_Classes(temp2,objects);

end; {while}
quit := false;

end; {else}
end; {while}

end; {Do_Object}

129
Procedure Do_Slot(line: TLine; var i,j: TIndex; var slots:

TSlots) ;
{ ---
Do_Slot: a SLOT consists of one or more subcomponents
(meta-slots), separated by blank lines. The first line
contains the name of the slot and the subsequent lines
contain the meta-slots. After the name is parsed out, a new
element of the slots list is created, and the meta-slots are
then processed.
Called by: Process_Line
Calls : Next_Word, Parse_Word, Add_Slots,

Procèss_Prompt_Format, Process_Source,
Process_Context-- }

var sname,fn : TLine;
quit : boolean;

begin
sname := Extract_Name(line,i,j);
Add_Slots(sname, slots); { Create a new slot entry.}

{ Extract and process each of the meta-slots associated
with this slot.}

quit := false;
while ((not quit) and (not eof(target_file))) do

begin
readln(target_file,line); {Fetch meta-slot name.}
i := 1; j := length(line);
i := Next_Word(line,i,j) - 1;
Parse_Fn(line,fn,i,j);

if fn = '' then quit := true { Slots are separated
by empty lines.}

else if (fn = '^PROMPT') then

Process_Prompt_Format(line,slots.last^.slot_prompt,i,j)
else if (fn = '@FORMAT') then

Procèss_Prompt_Format(line,slots.last^.slot_format,i,j)
else if (fn = '(^SOURCES') then

Process_Source(slots)
else if (fn = '(^CONTEXTS') then

Process_Context(slots)
else if (fn <> ')') then

Process_Strat(fn,line,i,j,slots);
end; {while}

end; {Do Slot}

130

Procedure Do_Rule(line: TLine; var i,j: TIndex; var rules:
TRules);
{ ---
Do_Rule: each rule consists of at least a LHS and a
HYPOthesis; in addition, there may be a RHS and an INFerence
CATagory. This routine determines the subcomponents of the
current rule. Each subcomponent is labelled, and this
procedure acts according to the labels it finds.
Called by: Process_Line
Calls : Next_Word, Parse_Word, Add_Rules--- }

var fn : TLine;
rname: TLine;
quit : boolean;

begin
rname := Extract_Name(line,i,j); { Determine the

rules name.}
{ Create a new rule
entry. }

Add_Rules(rname, rules);

{ Process each subcomponent of the current rule.}
quit := false;
while ((not quit) and (not eof(target_file))) do

begin
readln(target_file,line);
i := 1; j := length(line);
i := Next_Word(line,i,j);
quit := line[i] = ')';
if (not quit) then
begin

i := i+1;
Parse_Word(line,'=',fn,i,j);
if (fn = 'INFCAT')

Process_InfCat(line,i,j,rules)
else if (fn = '@LHS')
else if (fn = '@HYPO')

Process_Hypo(line,i,j,rules)
else if (fn = '@RHS')

end; {if}
end; {while}

then

then
then

Process_Lhs(rules)

then Process_Rhs(rules)

end; {Do_Rule}

Procedure Do_Global(var globals: TGlobals);
{ ---
Do_Global: each line, until a closing parenthesis is
encountered, contains the name of a global variable as well

131
as the value for this variable (in the form GV=Val). This
procedure parses the line, extracting and storing the name
and its value in a list of global variables.
Called by: Process_Line
Calls : Next_Word, Parse_Word, Add_Globals--- }

var quit
line
lhs,rhs
i/j

boolean;
TLine;
TLine;
TIndex;

begin
{ Process all globals.}
quit := false;
while ((not quit) and (not eof(target_file))) do

begin
readln(target_file,line);
i := 1; j := length(line);
i := Next_Word(line,i,j);
Parse_Word(line,' = ',lhs,i,j) ;

{ A closing parenthesis marks the end of the global
declarations.}

quit := lhs = ')';
if (not quit) then
begin

i := i+1;
Parse_Word(line,';',rhs,i,j);
Add_Globals(lhs,rhs,globals);

end; {if}
end; {while}

end; {Do_Global}

Procedure Init_Lists(var lists: TLists);
{ ---
Init_Lists: all the lists for the different file elements
are initialized to the empty state.
Calls: Init_Properties, Init_Classes, Init_Objects,

Init_Slots, Init_Rules, Init_Globals--- }

begin
{ Initialize all lists.}
with lists do

begin
Init_Properties(properties);
Init_Classes(classes);

132

Init_Objects(objects);
Init_Slots(slots);
Init_Rules(rules);
Init_Globals(globals);

end; {with}

end; {Init_Lists}

Procedure Process_Line(line : TLine; var lists: TLists);
{ ---
Process_Line: the first word of LINE is parsed out. This
word should be a function name; depending on the value of
this function name, the appropriate action is taken. I and
J are line indices used for parsing. I represents the
current position in the line and J represents the length of
the line.
Called by: External
Calls : Parse_Fn, Do_Property, Do_Class, Do_Object,

Do_Slot--- }

var i,j : TIndex;
fn : TLine;

begin
j := length(line);
i := 1;

{ Find the opening parenthesis.}
while (i <= j) and (line[i] <> '(') do i := i+1;

{ Determine the function name.}
Parse_Fn(line,fn,i,j);

{ Take the appropriate action for the given function.}
with lists do

if (fn = '^PROPERTY') then
Do_Property(1ine,i,j,properties)

else if (fn = '^CLASS') then
Do_Class(line,i,j,classes)

else if (fn = '@OBJECT') then
Do_Object(line,i,j,objects)

else if (fn = '@SLOT') then
Do_Slot(line,i,j,slots)

else if (fn = '@RULE') then
Do_Rule(line,i,j,rules)

else if (fn = '@GLOBALS') then
Do_Global(globals)

else if fn <> '' then

133

writeln('Unknown function name, ',fn);

end; {Process_Line}

Procedure Display_Lists(lists : TLists; prefix: TFilename);
{ ---
Display_Lists: all the lists for the different file elements
are displayed.
Calls: Init_Properties, Init_Classes, Init_Objects,

Init_Slots, Init_Rules, Init_Globals--- }

begin
{ Display all lists.}
with lists do

begin
Display_Properties(properties, prefix);
Display_Classes(classes, prefix);
Display_Objects(objects, prefix);
Display_Slots(slots, prefix);
Display_Rules(rules, prefix);
Display_Globals(globals, prefix);

end; {with}

end; {Display_Lists}

End.

134

RULETREE.UNT
Unit RuleTree;

Interface

Uses Decode;

Type
{ Types associated with the construction of the RULE
TREE.}

PRule_Node = ^TRule_Node;
TRule_Node = record

rule_name : TLine;
child : PRule_Node;
sibling : PRule_Node;

end; {record}

{ Types associated with the list of hypotheses already
processed.}

P01d_Hypo = ^T01d_Hypo;
T01d_Hypo = record

rule : PRule;
next : P01d_Hypo;

end; {record}
T01d_Hypos = record

first : P01d_Hypo;
last : P01d_Hypo;

end;

Var
old_hypos : T01d_Hypos; { List is accessed globally.}

Procedure Add_01d_Hypos(rule: PRule);
Function Seen_Hypo(hypo: TLine): boolean;
Function Add_Rule(rtree: PRule_Node; r: PRule):

PRule_Node;
Procedure Find_Hypo(var r,q: PRule; operand: TLine);
Procedure Add_to_Tree(rule: PRule; rtree: PRule_Node;

rules: TRules);
Function First_Rule(rules : TRules; globals: TGlobals):

PRule;
Function Build_Rtree(rules : TRules; globals: TGlobals):

PRule_Node;
Procedure Preorder_Rtree(rule_tree: PRule_Node);

Implementation

Procedure Add_01d_Hypos(rule: PRule);

135

{ ---
Add_01d_Hypos: a new element is added to the list of old
hypotheses (ie. hypotheses which have already been
encountered). If this list (OLD_HYPOS) is empty, then the
new element is put at the front of the list; otherwise, it
is added to the end of the list.
Called by: Find_Hypo--- }

var oh : P01d_Hypo;

begin
new(oh);
oh'', rule := rule;
oh^.next := nil;

if (old_hypos
begin

old_hypos
old_hypos

end {if}
else
begin

old_hypos
old_hypos

end; {else}

first = nil) then

first := oh;
last := oh;

last^.next := oh;
last := oh;

end; {Add_01d_Hypos}

Function Seen_Hypo(hypo : TLine): boolean;
{ ---
Seen_Hypo: this function returns a boolean indicating
whether or not HYPO is in the list OLD_HYPOS.
Called by: Add_to_Tree

}
var h : P01d_Hypo;

begin
h := old_hypos.first;

{ Scan the list of old hypotheses for a match.}
while ((h <> nil) and (h^.rule^.rule_hypo <> hypo)) do

h := h^.next;
Seen_Hypo := h <> nil;

end; {Seen_Hypo}

Function Add_Rule(rtree: PRule_Node; r: PRule): PRule_Node;

136

{ ---
Add_Rule: this function creates a new node (P) and inserts
as a child of the rule node pointed to by RTREE. There are
two scenarios for insertion. (1) the inserted node is the
1st child (2) the inserted node is the 2nd or more child.
Each of these cases is handled separately.
Called by: Add_to_Tree--- }

var p,q : PRule_Node;

begin
{ Create a new node.}
new(p);
p^.child := nil;
p^.sibling := nil;
p^.ru1e_name := r.ru1e_name;

{ Rule has no children yet.}
if (rtree^.child = nil) then rtree^.child := p

{ Rule already has one child.}
else

begin
q := rtree^.child;

{ Find the end of the sibling chain.}
while (q^.sibling <> nil) do q := q^.sibling;
q^.sibling := p;

end; {else}

{ Return a pointer to the new node.}
Add_Rule := p;

end; {Add_Rule}

Procedure Find_Hypo(var r,q: PRule; operand: TLine);
{ ---
Find_Hypo: the list of rules is searched until the end of
the list is reached or a rule is found whose hypothesis
matches OPERAND.
Called by: Add_to_Tree
Calls: Add_01d_Hypos--- }

begin
{ Scan all rules until the end or a match is made.}
while ((r <> nil) and (r^.rule_hypo <> operand)) do

r := r^.next;

137
if (r <> nil) then Add_01d_Hypos(r);
q := r;

end; {Find_Hypo}

Procedure Add_to_Tree(rule: PRule; rtree: PRule_Node; rules:
TRules);
{ ---
Add_to_Tree: this is a recursive procedure which builds a
tree consisting of rule data. Rules are linked together by
a PARENT - CHILD relationship, although a parent only points
to its first child; the rest are indirectly pointed to via
sibling pointers starting at the first child. Children of
any given rule are those rules whose hypothesis matches a
hypothesis on the LHS of the parent rule. All hypotheses on
the LHS of RULE are used to find children of the current
rule tree node (RTREE).
Called by: Add_to_Tree
Calls: Find_Hypo, Add_Rule, Add_to_Tree--- }

var p : PExpr;
q,r : PRule;
new_rtree : PRule_Node;

begin
{ Start at the front of the list of LHS records for
current RULE.}

p := rule^.rule_lhs;

{ Process all LHS records.}
while (p <> nil) do

begin
{ Hypotheses are indicated by a 'Yes' operator.}
if (p^.operator = 'Yes') then

if (not Seen_Hypo(p^.operandl)) then
begin

r := rules.first;

{ Find all rules that have this hypothesis as
their RULE_HYPO component.}

repeat
begin
Find_Hypo(r,q,p^.operandl);
if (q <> nil) then
begin

{ Add this new rule to the current
rule tree (RTREE), producing a new
rule tree (NEW RTREE).}

138
new_rtree := Add_Rule(rtree,q);
{ Recursively call this procedure with
the new rule tree.}

Add_to_Tree(q,new_rtree,rules);
end; {if}

r := .next ;
end; {repeat}

until (r = nil);
end; {if}

{ Get the next LHS record.}
p := p^.next;

end; {while}

end; {Add_to_Tree}

Function First_Rule(rules : TRules; globals: TGlobals):
PRule;
{ ---
First_Rule: this function returns a pointer to the 1st (and
only) rule whose hypothesis is the hypothesis in the
SUGgestion LIST, found in the list of global variables.
Called by: Build_Tree
Calls: Find_Hypo--- }

var g : PGlobal;
p,q : PRule;

begin
{ Search the list of globals for the SUGgestion LIST.}
g := globals.first;
while ((g~.global_lhs <> '@SUGLIST') and (g <> nil)) do

g := g^.next ;

{ Find the rule whose hypothesis matches the one in the
suggestion list.}

if (g <> nil) then
begin

p := rules.first;
Find_Hypo(p,q,g^.global_rhs);

end {if}
else q := nil;

First_Rule := q;

end; {First_Rule}

Function Build_Rtree(rules : TRules; globals: TGlobals):
PRule_Node;

139

{ ---
Build_Rtree: this function returns a pointer to the rule
tree. The first rule is found and becomes the root node of
this tree, and then ADD_TO_TREE is called to add the rest of
the rules to this single node tree, in the appropriate
order.
Called by: Main
Calls: First_Rule, Add_to_Tree-- --------------- }

var root_rule : PRule;
rule_tree : PRule_Node;

begin
{ Find the first rule for the rule tree.}
root_rule := First_Rule(rules, globals);

{ Create a one node tree, consisting of this 1st rule.}
if (root_rule <> nil) then
begin
new(rule_tree);
rule_tree/s. child := nil;
rule_tree^.sibling := nil;
rule_tree^.rule_name := root_rule^.rule_name;
{ Add the rest of the tree to this root.}
Add_to_Tree(root_rule,rule_tree,rules);

Build_Rtree := rule_tree;
end {if}

else
Build_Rtree := nil;

end; {Build_Tree}

Procedure Preorder_Rtree(rule_tree: PRule_Node);
{ ---
Preorder_Rtree: a postorder traversal of the rule tree,
RULE_TREE, is performed by recursive calls to this
procedure.
Called by: Main--- }

begin
if (rule_tree <> nil) then { Base Case.}
begin
writeln(rule_tree^.rule_name);
Preorder_Rtree(rule_tree^.child);
Preorder_Rtree(rule_tree .̂sibling);

end; {if}
end; {Preorder_Rtree}

End. {RuleTree}

SGROUP

SGROUP.PAS
program Sgroup(input,output);

uses Strings, WinTypes, WinProcs, WinDos, WObjects, StdDlgs,
SGLoad, PrmptObj, Group, GrpObj, GDWind, GAWind,

GRWind;

{$R SGROUP.RES}

const
MAIN_MENU = 100; { Main menu id.}

cm_Open = 101; { These constants define the id
numbers for the}

cm_Save = 102; { various menu selections.
}

cm_GrpCreate = 201;
cm_GrpDelete = 202;
cm_GrpAdd = 2 0 3 ;
cm_GrpRemove = 204;
cm_Help = 301;

type
TSGroupApp = object(TApplication)

{ Methods}
procedure InitMainWindow; virtual;

end;

{ The Main window.}
PSGroupWin = ^TSGroupWin;
TSGroupWin = object(TWindow)

{ Attributes}
Modified: Boolean;
FileName: TFilename;
Prompts : PCollection;
Groups : PCollection;

{ Methods}
constructor Init(AParent: PWindowsObject; ATitle:

PChar);
destructor Done; virtual;

140

141
function CanClose: Boolean; virtual;
procedure FileOpen(var Msg: TMessage);

virtual cm_First + cm_Open;
procedure FileSave(var Msg: TMessage);

virtual cm_First + cm_Save;
procedure GrpCreate(var Msg: TMessage);

virtual cm_First + cm_GrpCreate;
procedure GrpDeletefvar Msg: TMessage);

virtual cm_First + cm_GrpDelete;
procedure GrpAdd(var Msg: TMessage);

virtual cm_First + cm_GrpAdd;
procedure GrpRemove(var Msg: TMessage);

virtual cm_First + cm_GrpRemove;
procedure Help(var Msg: TMessage);

virtual cm_First + cm_Help;
end;

{ —--- }
{ TSGroupWin's method implementations: }
{--------- -- }

constructor TSGroupWin.Init(AParent: PWindowsObject; ATitle:
PChar);
{---
Init: this is the constructor for the TSGroupWin object. It
simply calls the TWindow constructor, loads the main menu
(100), initializes the list of slots with prompts (PROMPTS)
and the list of GROUPings, and sets MODIFIED, which
indicates whether or not the GROUPings have modified, to
false.-- }
begin

TWindow.Init(AParent, ATitle);
Attr.Menu := LoadMenu(HInstance, PChar(MAIN_MENU));
Init_Prompts(Prompts);
Init_Groups(Groups);
Modified := false;

end; {TSGroupWin.Init}

destructor TSGroupWin.Done;
{---
Done: this is the destructor for the TSGroupWin object. All
lists are deallocated.--- }
begin

TWindow.Done;
Prompts^.FreeAl1;
Groups^.FreeAl1;

142
Dispose(Prompts, done);
Dispose(Groups, done);

end; {TSGroup.Done}

function TSGroupWin.CanClose: Boolean;
{---
CanClose: If the current data has not been saved since the
last change, the user is asked if he/she wishes to save
before exiting, or cancel the exit command.--- }
var

Reply: Integer;

begin
CanClose := true;

{ Has the data been modified?}
if (MODIFIED) then
begin

{ Create a message box.}
Reply := MessageBox(HWindow, 'Do you want to save?',

'Output has changed', mb_YesNoCancel or
mb_IconQuestion);

{ Check the REPLY.}
if (Reply = id_Yes) then Print_Groups(groups,

FileName)
else if (Reply = id_Cancel) then CanClose := false;

end; {if}

end;

procedure TSGroupWin.FileOpen(var Msg: TMessage);
{-------------- ------------------- ---------------------------
FileOpen: When OPEN is selected from the FILE menu
selection, this procedure presents the user with a
file-dialog box in order to prompt the user for the DOS name
of the file to import. The file is then read (via
FETCH_SLOTS) and all slots with prompts are added to the
collection of slots, PROMPTS.--- }
var SlotFile : text;

begin
{ Get the file name.}
if Application .̂ExecDialog(New(PFileDialog,

Init(@Self, PChar(sd_FileOpen), StrCopy(FileName,
'*.SLT')))) = id Ok

143
then
begin

{ Retrieve the appropriate slots.}
Open_Files(SlotFile, FileName);
Fetch_Slots(SlotFile, Prompts);
Close_Files(SlotFile);

end; {if}

end; {TSGroupWin.FileOpen}

procedure TSGroupWin.FileSave(var Msg: TMessage);
{---
FileSave: As long as the grouping data has been altered
since the last save (MODIFIED = TRUE), this procedure saves
all GROUP data and resets the MODIFIED flag.--- }
begin

if (Modified) then
begin
Print_Groups(groups, FileName);
Modified := false;

end; {if}

end; {TSGroupWin.FileSave}

procedure TSGroupWin.GrpCreate(var Msg: TMessage);
{---
GrpCreate: This procedure is invoked when the user selects
the CREATE option of the GROUP menu selection. A dialog box
is used to prompt the user for the name of the new group to
be created and then creates a new element in the GROUP
collection, with this name (NOM).--- }
var nom : TGName;

begin
if (not Modified) then Modified := true;
StrPCopy(nom,'groupl');
if Application^.ExecDialog(New(PInputDialog, Init(@Self,

'Create Group','Enter Group Name:', nom,
SizeOf(nom)))) = id_OK then
Add_Group(@ nom, Groups);

end; {TSGroupWin.GrpCreate}

procedure TSGroupWin.GrpDelete(var Msg: TMessage);
{---
GrpDelete: When the DELETE option of the GROUP menu

144

selection is chosen, this procedure produces a popup window
that prompts the user for the name of the group to be
deleted. The group by that name is then removed from the
collection of groups--- }
var GrpDelWnd : PWindow;

begin
if (groups^.Count > 0) then
begin

if (not Modified) then Modified := true;
GrpDelWnd := new(PGrpDelWnd, Init(@Self, 'Group

Delete', groups));
Application .̂MakeWindow(GrpDelWnd);

end; {if}

end; {TSGroupWin.GrpDelete}

procedure TSGroupWin.GrpAdd(var Msg: TMessage);
{---
GrpAdd: This procedure is activated when the user selects
the ADD option of the GROUP selection menu. A popup window
is generated, GRPADDWND, which allows the user to add slots
to a selected group.--- }
var

GrpAddWnd : PWindow;

begin
if ((groups^.Count > 0) and (prompts^.Count > 0)) then
begin

if (not Modified) then Modified := true;
GrpAddWnd := new(PGrpAddWnd, Init(@Self, 'Add Slots',

groups, prompts));
Application^.MakeWindow(GrpAddWnd);

end; {if}

end; {TSGroupWin.GrpAdd}

procedure TSGroupWin.GrpRemove(var Msg: TMessage);
{---
GrpRemove: If the user selects the REMOVE option of the
GROUP menu, a popup window is created that prompts the user
to select which group to remove slots from, and
subsequently, which slots to remove.--- }
var
GrpRmvWnd : PWindow;

145
begin

if ((groups^.Count > 0) and (prompts^.Count > 0)) then
begin

if (not Modified) then Modified := true;
GrpRmvWnd := new(PGrpRmvWnd, Init(@Self, 'Remove

Slots', groups, prompts));
Application .̂MakeWindow(GrpRmvWnd);

end; {if}

end; {TSGroupWin.GrpRemove}

procedure TSGroupWin.Help(var Msg: TMessage);
{---
Help: Selecting the HELP option from the main menu activates
the help system.--- }
begin
MessageBox(HWindow, 'Feature not implemented', 'Help',

mb_Ok);

end; {TSGroupWin.Help}
{--- }
{ TSGroupApp's method implementations: }
{--------------------------------------- -------------- }

procedure TSGroupApp.InitMainWindow;
{---
InitMainWindow: A primary window is created with the title
"Slot Groups"--- }
begin
MainWindow := New(PSGroupWin, Init(nil, 'Slot Groups'));

end; {TSGroupApp.InitMainWindow}

{---
Main program: The application, with id SGROUP, is started. --- }

var
SGroupApp : TSGroupApp;

begin
SGroupApp.Init('SGroup');
SGroupApp.Run;
SGroupApp.Done;

end. {SGroup}

146
SGLOAD.UNT
Unit SGLoad;

{$V-} { Turn off type checking for strings.}

Interface
Uses WObjects, WinDos, Strings, PrmptObj;

Const
LINE_MAX = 255;
TYPE_MAX = 2 ;
NEWLINE = chr(13);
MAX_PROMPTS = 100;
PROMPTS_OVERFLOW= 25;

Type
TLine = string[LINE_MAX];
TLineType = string[TYPE_MAX];
TLineIndex= 0..LINE_MAX+1;
TFilename = array [0..fsPathName] of char;

Procedure Parse_Word(line : TLine; delimiter: char;
var pword: TLine; var i,j: TLinelndex);

Procedure Open_Files(var target_file: text; var filename:
TFilename);

Procedure Close_Files(var target_file: text);
Procedure Init_Prompts(var prompt_list: PCollection);
Function Process_Prompt(line: TLine; i,j: TLinelndex):

TLine;
Procedure Add_Prompt(AName, APrompt: TLine; var prompts:

PCollection);
Procedure Fetch_Slots(var slot_file: text; var

prompt_list: PCollection);

Implementation

Procedure Parse_Word(line: TLine; delimiter: char;
var pword: TLine; var i,j: TLinelndex);

{ --
Parse_Word: the line index, I, is used to procédé character
by character along the line, LINE, from the current position
of I until the delimiter, DELIMITER, is found or a
white-space character is encountered, adding each character
to the string variable, PWORD. If neither of the previous
conditions are met, the parsing stops when the end of the
line (J) is reached.
Called by: Fetch_Slots, Process_Prompt, Open_Files--- }

147

var quit : boolean;

begin
pword := '';

{ Add each character to PWORD until the DELIMITER is
found or the end of the line is reached or a
white-space character is encountered.}

quit := false;
while ((i <= j) and (not quit)) do

begin
quit := ((line[i] = delimiter) or (line[i] < ' ') or

(line[i] > '""));
if (not quit) then
begin

pword := pword + line[i];
inc(i);

end; {if}
end; {while}

end; {Parse_Word}

Procedure Open_Files(var target_file: text; var filename:
TFilename);
{ --
Open_Files: the input file is opened, using the name,
FILENAME.
Called by: External
Calls: Parse_Word--- }

var i,j : TLinelndex;

begin
{ Open the input file.}
assign(target_file, filename);
reset(target_file);

end; {Open_Files}

Procedure Close_Files(var target_file: text);
{ ---
Close_Files: both the input file is closed.
Called by: External-- }

begin
{ Close all files.}
close(target_file);

148
end; {Close_Files}

Procedure Init_Prompts(var prompt_list: PCollection);
{ ---
Init_Prompts: the list of prompts to be grouped,
PROMPT_LIST, is set to the empty state.
Called by: External-- }

begin
{ Initialize the list to the empty state.}
prompt_list := new(PCollection,

Init(MAX_PROMPTS,PROMPTS_OVERFLOW));

end; {Init_Prompts}

Function Procèss_Prompt(line: TLine; i,j: TLinelndex):
TLine;
{ ---
Procèss_Prompt: the remainder of the input LINE contains the
prompt for current slot. This function parses out the
prompt and returns it.
Called by: Fetch_Slots-- }

var APrompt : TLine;

begin
{ Extract the remainder of the line.}
inc(i);
Parse_Word(line,NEWLINE,APrompt,i,j);

Process_Prompt := APrompt;

end; {Process_Prompt}

Procedure Add_Prompt(AName, APrompt: TLine; var prompts:
PCollection);
{ ---
Add_Prompt: a new prompts element is created with the slot,
ANAME, and the prompt, APROMPT. This new element is then
added to the list of prompts that may be grouped. The name
and prompt passed to this procedure are Pascal strings,
which must be converted to null-terminated strings for
storing. BSLOT and BPROMPT act as buffers for this
conversion.
Called by: Fetch_Slots--- -------------}

var slot, prompt: PChar;

149
Bslot, Bprompt: array [0..LINE_MAX] of char;

begin
{ Convert the Pascal strings to null-terminated
strings.}

slot := StrPCopy(Bslot,AName);
prompt := StrPCopy(Bprompt,APrompt);

{ Create a new prompt entry.}
prompts^,insert(new(PPrompt, Init(slot,prompt)));

end; {Add Prompt}

150

Procedure Fetch_Slots(var slot_file: text; var prompt_list:
PCollection);

{ ---
Fetch_Slots: each slot containing a prompt entry (indicated
by a value of 'PR' in LINE_TYPE) is added to the list of
slots that may be grouped. LINE, I, and J are used to hold
the current input line and parsing data. The slots are
contained in the file, SLOT_FILE.
Called by: External
Calls: Parse_Word, Procèss_Prompt, Add_Prompt-- }

var line
i/j
slot_name
slot_prompt
line_type

: TLine;
: TLinelndex;
: TLine;
: TLine;
: TLineType;

begin
{ Discard the first line.}
readln(slot_file);

while (not eof(slot_file)) do
begin

{ Fetch the name of the slot.}
readlnfslot_file, line);
i := 1; j := length(line);
Parse_Word(line,' ',slot_name,i,j);

{ Fetch the line-type of the next line in the file.}
readln(slot_file, line);
i := 1; j := length(line);
Parse_Word(line,' ',line_type,i,j);

{ If the line-type is PRompt, then extract the
prompt and add this slot to the list of prompts
that may be grouped.}

if (line_type = 'PR') then
begin

slot_prompt := Process_Prompt(line,i,j);
Add_Prompt(slot_name, slot_prompt, prompt_list);

end; {if}

{ Advance to the next record or end of the file.}
while ((not eof(slot_file)) and (line <> '')) do

readln(slot_file,line);
end; {while}

end; {Fetch_Slots}
End. { SGLoad}

151
PRMPTOBJ.UNT

Unit PrmptObj;

Interface
uses WObjects, WinTypes, WinProcs, Strings;

Type
PPrompt = ^TPrompt;
TPrompt = object(TObject)

{ Attributes}
Slot : PChar;
Prompt : PChar;
Available : boolean;

{ Methods}
constructor Init(ASlot, APrompt: PChar);
destructor Done; virtual;
function GetSlot : PChar; virtual;
function GetPrompt: PChar; virtual;
function GetAvail : boolean; virtual;
Procedure SetSlot(ASlot: PChar); virtual;
Procedure SetPrompt(APrompt: PChar); virtual;
Procedure SwitchAvail; virtual;

end; {TPrompt}

Implementation
Constructor TPrompt.Init(ASlot, APrompt: PChar);
{---
TPrompt.Init: This is the constructor for the TPrompt
object. All attributes are assigned values. The group
indicator is set to the default value of 0.
--- }
begin

Slot := StrNew(ASlot);
Prompt := StrNew(APrompt);
Available := true;

end; {TPrompt.Init}

Destructor TPrompt.Done;
{---
TPrompt.Done : This is the destructor for the TPrompt object.
The string attributes are disposed of.--- }

begin
StrDispose(Slot);
StrDispose(Prompt);

end; {TPrompt.Done}

152
Function TPrompt.GetSlot: PChar;
{---
TPrompt.GetSlot: Returns the Slot value for the TPrompt
object.--- }
begin

GetSlot := Slot;

end; {TPrompt.GetSlot}

Function TPrompt.GetPrompt: PChar;
{---
TPrompt.GetPrompt: Returns the Prompt value for the TPrompt
object.--- }
begin
GetPrompt := Prompt;

end; {TPrompt.GetPrompt}

Function TPrompt.GetAvail: boolean;
{---
TPrompt.GetAvail: Returns the GROUP value for the TPrompt
object.--- }
begin

GetAvail := Available;

end; {TPrompt.GetAvail}

Procedure TPrompt.SetSlot(ASlot: PChar);
{---
TPrompt.SetSlot: The Slot value for the TPrompt object is
assigned the value, ASLOT.--- }

begin
Slot := StrNew(ASlot);

end; {TPrompt.SetSlot}

Procedure TPrompt.SetPrompt(APrompt: PChar);
{---
TPrompt.SetPrompt: The Prompt value for the TPrompt object
is assigned the value, APROMPT--- }
begin

Prompt := StrNew(APrompt);
end; {TPrompt.SetPrompt}

153

Procedure TPrompt.SwitchAvail;
{
TPrompt.SwitchAvail: The AVAILABLE flag of the TPrompt
object is toggled.

0530729799

begin
Available := not Available;

end; {TPrompt.SwitchAvail}

End.

154
GROUP.UNT
Unit Group;

Interface

uses Strings, WinDos, WinProcs, WObjects, GrpObj;

const
MAX_GROUPS = 25;
GROUPS_OVERFLOW = 10;

Procedure Init_Groups(var group_list: PCollection);
Procedure Add_Group(name : PChar; var groups: PCollection);
Procedure Add_Slot(ASlot: PChar; var AGroup: PGroup);
Procedure Print_Groups(groups : PCollection; FileName:
PChar);

Implementation

Procedure Init_Groups(var group_list: PCollection);
{ ---
Init_Groups: the list of groups, GROUP_LIST, is initialized
to the empty state.
Called by: External-- }

begin
{ Initialize the list to the empty state.}
group_list := new(PCollection,

Init(MAX_GROUPS,GROUPS_OVERFLOW));

end; {Init_Groups}

Procedure Add_Group(name : PChar; var groups: PCollection);
{ ---
Add_Group: A new group item is added to the collection of
groups, giving it the name, NAME.
Called by: External-- }

begin
{ Create a new prompt entry.}
groups*.insert(new(PGroup, Init(name)));

end; {Add_Group}

155

Procedure Add_Slot(ASlot: PChar; var AGroup: PGroup);
{ ---
Add_Group: A new group item is added to the collection of
groups, giving it the name, NAME.
Called by: External-- }

begin
{ Create a new prompt entry.}
AGroup^.Addslot(ASlot);

end; {Add_Group}

Procedure Print_Groups(groups: PCollection; FileName:
PChar);

{ ---
Print_Groups: All group names and the list of slots
associated with them are written to the text file, OUTFILE.
Called by: External-- }

var OutFile: text;
PasFileName: string[fsPathName];
dot : integer;

procedure PrintOut(g: PGroup); far;

begin
g^.WriteGrp(OutFile);

end;

begin
{ Derive the output file name from the input file name.}
PasFileName := StrPas(FileName);
dot := Pos('.', PasFileName);

if (dot <> 0) then
PasFileName := Copy(PasFileName, 1, dot) + 'sgp'

else
PasFileName := PasFileName + '.sgp';

{ Open the output file.}
assign(OutFile, PasFileName);
rewrite(OutFile);
{ Print each group.}
groups~.ForEach(^Printout);
{ Close the output file.}
close(OutFile);

end; {Add_Group}
End.

156
GRPOBJ.UNT
Unit GrpObj;

Interface
uses Strings, WinTypes, WinProcs, WObjects;
const
GNAME_MAX = 50;
MAX_SLOTS = 25;
SLOTS_OVERFLOW = 10;

type
TGName = array[0..GNAME_MAX] of char;
PPGroup = ^PGroup;
PGroup = ^TGroup;
TGroup = object(TObject)

{ Attributes}
name : PChar;
slots : PCollection;

{ Methods}
constructor
destructor
function
procedure
procedure
procedure
procedure

end; {TPrompt}

Init(AName: PChar);
Done; virtual;
GetName : PChar; virtual;
SetName(AName: PChar); virtual;
AddSlot(ASlot: PChar); virtual;
DeleteSlot(Idx: Integer); virtual;
WriteGrp(var OutFile: text);

Implementation

Constructor TGroup.Init(AName: PChar);
{---
TGroup.Init: This is the constructor for the TGroup object.
All attributes are assigned values. The collection of slots
is set to the empty state.--- }
begin

{ Set the group name.}
name := StrNew(AName);

{ Initialize the list to the empty state.}
slots := new(PCollection,

Init(MAX_SLOTS,SLOTS_OVERFLOW));

end; {TGroup.Init}

157

Destructor TGroup.Done;
{---
TPrompt.Done : This is the destructor for the TGroup object.
The string attribute, NAME, is disposed of.--- }

begin
StrDispose(name);

end; {TGroup.Done}

Function TGroup.GetName: PChar;
{---
TGroup.GetName: Returns the group NAME for the TGroup
object.--- }
begin

GetName := name;

end; {TGroup.GetName}

Procedure TGroup.SetName(AName: PChar);
{---
TGroup.SetName: Sets the NAME attribute of the TGroup
object.--- }

begin
name := StrNew(AName);

end; {TGroup.SetName}
Procedure TGroup.AddSlot(ASlot: PChar);
{---
TGroup.AddSlot: Adds a new slot, ASLOT, to the collection of
slots.--- }
begin

slots'^, insert (StrNew(ASlot)) ;

end; {TGroup.AddSlot}

Procedure TGroup.DeleteSlot(Idx: integer);
{---
TGroup.DeleteSlot: Removes the slot indexed by, IDX, from
the collection of slots.--- }
begin

slots^.AtDelete(Idx);

end; {TGroup.DeleteSlot}

158

Procedure TGroup.WriteGrp(var OutFile: text);
{---
TGroup.WriteGrp: The name of the group is written to the
file, OutFile.--- }
var OutName : string[GNAME_MAX];

procedure PrintSlot(s: PChar); far;

var
SlotName : string[255];

begin
SlotName := StrPas(s);
writeln(OutFile, SlotName);

end; {PrintSlot}

begin
{ Write the group name.}
OutName := StrPas(name);
writeln(OutFile, OutName);

{ Write each slot name associated with this group.}
slots~.ForEach(@PrintSlot);

{ Write a separator line.}
writeln(OutFile);

end; {TGroup.DeleteSlot}

End.

159
GDWIND.UNT

Unit GDWind;

Interface

uses WObjects, WinTypes, WinProcs, GrpObj;

const
id_LBl = 301;
id_BNl = 302;
id_BN2 = 303;

GRPDEL_XPOS = 100;
GRPDEL_YPOS = 100;
GRPDEL_WIDTH = 300;
GRPDEL_HEIGHT =200;

type
PGrpDelWnd = ^TGrpDelWnd;
TGrpDelWnd = object (TWindow)

{ Attributes}
LB1 : PListBox;
GrpList: PCollection;

{ Methods}
constructor Init(AParent: PWindowsObject; ATitle:

PChar; AGrpList: PCollection);
procedure SetupWindow; virtual;
procedure IDBNl(var Msg: TMessage); virtual id_First +

id_BNl;
procedure IDBN2(var Msg: TMessage); virtual id_First +

id_BN2;
end; {TGrpDelWnd}

Implementation

Constructor TGrpDelWnd.Init(AParent: PWindowsObject; ATitle:
PChar; AGrpList: PCollection);

{---
Init: this is the constructor for the TGrpDelWnd object. It
creates a pop-up window containing a list box and two
buttons. Also, the GRPLIST attribute is assigned the list
passed as a parameter, AGRPLIST.--- }

const
LB X = 20; BN1 X = 220; BN2 X = 220;
LB Y = 30; BN1 Y = 20; BN2 Y = 70;
LB WIDTH = 150; BN1 WIDTH = 60; BN2 WIDTH = 60;

160

LBJHEIGHT = 100; BN1_HEIGHT = 30; BN2_HEIGHT = 30;

var
Btn : PButton;

begin
TWindow.Init(AParent, ATitle);
DisableAutoCreate;

{ Set the attributes for this popup window.}
Attr.Style := ws_PopupWindow or ws_Caption or

ws_Visible;
Attr.X := GRPDEL_XPOS;
Attr.Y := GRPDEL_YPOS;
Attr.W := GRPDEL_WIDTH;
Attr.H := GRPDEL_HEIGHT;

{ Create the list box.}
LB1 := new(PListBox, Init(@Self, id_LBl, LB_X, LB_Y,

LB_WIDTH, LB_HEIGHT));
LB1~.Attr.Style := LBl^.Attr.Style and not lbs_Sort;

{ Create the two buttons (OK and CANCEL).}
Btn := newfPButton, Init(@Self, id_BNl, 'OK', BN1_X,

BN1_Y, BN1_WIDTH, BN1_HEIGHT, true));
Btn := newfPButton, Init(@Self, id_BN2, 'CANCEL', BN2_X,

BN2_Y, BN2_WIDTH, BN2_HEIGHT, false));

{ Assign the group list.}
GrpList := AGrpList;

end; {TGrpDelWnd.Init}

Procedure TGrpDelWnd.SetupWindow;
{---
SetupWindow: This procedure sets up the list box by adding
all the elements of the collection, GRPLIST, to the list box
list of selections.--- }
procedure AddList(g: PGroup); far;

begin
{ Add the group name to the list of selections.}
LBl^.AddString(g~.name);

end; {AddList}

begin
TWindow.SetupWindow;

161

{ Add each element of GRPLIST collection to list box.}
GrpList^.ForEach(@AddList);

end; {TGrpDelWnd.SetupWindow}

Procedure TGrpDelWnd.IDBN1(var Msg: TMessage);
{---
IDBN1: If the user presses the 'OK' button, then the current
selection in the list box (SELINDEX) is used as an index to
the collection of of groups (GRPLIST), and the indexed group
is deleted. The window then closes.---------------------- ---------------------------------------}

var
Sellndex : integer;

begin
Sellndex := LBl^.GetSellndex;
GrpList^.AtDelete(SelIndex);
CloseWindow;

end; {TGrpDelWnd.IDBN1}

Procedure TGrpDelWnd.IDBN2(var Msg: TMessage);
{---
IDBN2: If the 'CANCEL' button is pressed, the window is
closed and no other action is taken.--- }

begin
CloseWindow;

end; {TGrpDelWnd.IDBN2}

End. {GDWind}

162
GAWIND.UNT
Unit GAWind;

Interface

uses WObjects, WinTypes, WinProcs, GrpObj, PrmptObj,
SGrpDS, Strings;

const
id LB1 = 401;
id LB2 = 402;
id BN1 = 403;
id_BN2 = 404;

GRPADD XPOS = 100;grpadd" YPOS = 100;
GRPADD-"WIDTH = 500;
GRPADD-"HEIGHT = 300;

type
PGrpAddWnd = ^TGrpAddWnd;
TGrpAddWnd = object (TWindow)

{ Attributes}
LB1 : PListBox;
LB2 : PListBox;
GrpList : PCollection;
PrmptList: PCollection;

{ Methods}
constructor Init(AParent: PWindowsObject; ATitle:

PChar; AGrpList: PCollection; APrmptList:
PCollection);

procedure SetupWindow; virtual;
procedure IDBNl(var Msg: TMessage); virtual id_First +

id_BNl;
procedure IDBN2(var Msg: TMessage); virtual id_First +

id_BN2;
end; { TGrpAddWnd }

Implementation
{---
TGrpAddWnd's method implementations. --- }

Constructor TGrpAddWnd.Init(AParent: PWindowsObject; ATitle:
PChar; AGrpList: PCollection; APrmptList: PCollection);

{---

163

Init: this is the constructor for the TGrpAddWnd object. It
creates a pop-up window containing a list box and two
buttons. Also, the GRPLIST attribute is assigned the list
passed as a parameter, AGRPLIST, and the prompt list,
PRMPTLIST, is assigned the passed parameter, APRMPTLIST.-- }

const
LB1 X. = 20;
LB1 Y = 30;
LB1 WIDTH = 300;
LBf_HEIGHT = 100;

LB2 X = 20;
LB2 Y = 150;
LB2 WIDTH = 460;
LB2 HEIGHT = 100;

BN1_X = 350;
BN1_Y = 30;
BN1_WIDTH = 60;
BN1_HEIGHT = 30;

BN2_X = 350;
BN2_Y = 80;
BN2_WIDTH = 60;
BN2_HEIGHT = 30;

var
Btn : PButton;

begin
TWindow.Init(AParent, ATitle);
DisableAutoCreate;

{ Set the attributes for this popup window.}
Attr.Style := ws_PopupWindow or ws_Caption or

ws_Visible;
Attr.X := GRPADD_XPOS;
Attr.Y := GRPADD_YPOS;
Attr.W := GRPADD_WIDTH;
Attr.H := GRPADD_HEIGHT;

{ Create the list boxes.}
LB1 := new(PListBox, Init(0Self, id_LBl, LB1_X, LB1_Y,
LB1_WIDTH,LB1_HEIGHT));

LBl^.Attr.Style := LBl^.Attr.Style and not lbs_Sort;
LB2 := new(PListBox, Init(@Self, id_LB2, LB2_X, LB2_Y,

LB2_WIDTH, LB2_HEIGHT));
LB2^.Attr.Style := LB2~.Attr.Style and not lbs_Sort

or lbs_MultipleSel;

{ Create the two buttons (OK and CANCEL).}
Btn := new(PButton, Init(@Self, id_BNl, 'OK',

BN1_Y, BN1JWIDTH, BN1_HEIGHT, true));
Init(@Self,
BN2 HEIGHT,

Btn := new(PButton,
BN2_Y, BN2 WIDTH,

BN1 X,

id_BN2, 'CANCEL', BN2_X,
false));

{ Assign the group and prompt lists and the group
selection.}

164

GrpList := AGrpList;
PrmptList := APrmptList;

end; {TGrpAddWnd.Init}

Procedure TGrpAddWnd.SetupWindow;
{---
SetupWindow: This procedure sets up the two list boxes, LB1
& LB2. Into LB1, all group names in the list of groups,
GRPLIST, are inserted. Into LB2, all prompts from the list
of prompts, PRMPTLIST, are inserted.--- }

procedure AddGrpList(g: PGroup); far;

begin
{ Add the group name to the list of selections.}
LB1^.AddString(g^.name);

end; {AddGrpList}

procedure AddPrmptList(p: PPrompt); far;

var
temp : array [0..255] of char;

begin
{ Add the slot prompt to the list of selections.}
if (p^.GetAvail) then LB2^.AddString(p^.Prompt)
else

begin
StrCopy(temp, '*');
StrCat(temp, p^.Prompt);
LB2^.AddString(temp);

end; {else}

end; {AddPrmptList}

begin
TWindow.SetupWindow;

{ Add each element of the GRPLIST collection to the list
box. }

GrpList^.ForEach(@AddGrpList);
LBl^.SetSelIndex(0);

{ Add each element of the PRMPTLIST collection to the
list box.}

PrmptList^.ForEach(@AddPrmptList);
end; {TGrpAddWnd.SetupWindow}

165

Procedure TGrpAddWnd.IDBN1(var Msg: TMessage);
{---
IDBN1: If the 'OK' button is pressed, the list of selections
made in the list box, LB2, which lists the prompts, is
transfered to a transfer buffer, TRANSBUF. All selections
are then used as indices to locate the slot names
corresponding to the prompts selected. These slot names are
then added to the list of SLOTS associated with the GROUP
that was selected in list box, LB1. I & J are used as
temporary integer holders for traversing the array of
selections. Also, after each selection is used to add the
slot names to the SLOTS list, the corresponding prompt is
deleted from the prompt list, PRMPTLIST.
--- }
var

TransBuf
Group
Prompt
temp
i, j

PMultiSelXferRec;
PGroup;
PPrompt;
array [0..255] of char;
integer;

begin
{ Create a transfer buffer.}
New(TransBuf);
TransBuf*.List := New(PStrCollection, Init(100,25));
TransBuf*.MultiSelRec := AllocMultiSel(LB2*.GetCount);

{ Perform the transfer.}
LB2*.Transfer(TransBuf, tf_GetData);

if (TransBuf*.MultiSelRec <> nil) then
with TransBuf* do

begin
{ Determine the selected group.}
Group := GrpList*.At(LBl*.GetSelIndex);
i := MultiSelRec*.Count;
j := 0;
{ Add the slot name corresponding to each selected
prompt to list of slots associated with GROUP.}

while (j < i) do
begin

Prompt :=
PrmptList*.At(MultiSelRec*.Selections[j]);

if (Prompt*.GetAvail) then
begin
Group*.AddSlot(Prompt*.GetSlot);
Prompt*.SwitchAvail;

end; {if}

166
inc(j);

end; {while}

end; {with}

{ Free the memory required for the transfer buffer.}
FreeMultiSel(TransBuf.MultiSelRec);
Dispose(TransBuf^.List, Done);
Dispose(TransBuf);

{ Close the window.}
CloseWindow;

end ; {TGrpAddWnd.IDBN1}

Procedure TGrpAddWnd.IDBN2(var Msg: TMessage);
{---
IDBN2: If the 'CANCEL' button is pressed, then the window is
closed, and no further action is taken.--- }

begin
{ Close the window.}
CloseWindow;

end; {TGrpAddWnd.IDBN2}

End.

167
GRWIND.UNT
Unit GRWind;

Interface

uses Strings, WObjects, WinTypes, WinProcs, GrpObj,
PrmptObj, SGrpDS;

const
id_LBl = 501;
id_LB2 = 502;
id_BNl = 503;
id_BN2 = 504;

GRPRMV_XPOS = 100;
GRPRMV_YPOS = 100;
GRPRMV_WIDTH = 500;
GRPRMV_HEIGHT = 300;

type
PGrpRmvWnd = ^TGrpRmvWnd;
TGrpRmvWnd = object (TWindow)

{ Attributes}
LB1 : PListBox;
LB2 : PListBox;
GrpList : PCollection;
PrmptList: PCollection;

{ Methods}
constructor Init(AParent: PWindowsObject; ATitle:

PChar; AGrpList, APrmptList: PCollection);
procedure SetupWindow; virtual;
procedure IDLBl(var Msg: TMessage); virtual id_First +

id_LBl;
procedure IDBNl(var Msg: TMessage); virtual id_First +

id_BNl;
procedure IDBN2(var Msg: TMessage); virtual id_First +

id_BN2;
end; {TGrpRmvWnd}

Implementation
{---
TGrpRmvWnd's method implementations. --- }

168

Constructor TGrpRmvWnd.Init(AParent: PWindowsObject; ATitle:
PChar; AGrpList, APrmptList: PCollection);

{---
Init: this is the constructor for the TGrpRmvWnd object. It
creates a pop-up window containing a list box and two
buttons. Also, the GRPLIST attribute is assigned the list
passed as a parameter, AGRPLIST.--- j.

const
LB1 X = 20; BN1 X = 350; BN2 X = 350;
LBl Y = 30; BN1 Y =30; BN2 Y =80;
LBl WIDTH = 300; BN1 WIDTH = 60; BN2 WIDTH = 60;
LBl' HEIGHT = 100; BN1 HEIGHT = 30; BN2 HEIGHT = 30;

LB2 _X = 20;
LB2_Y = 150;
LB2_WIDTH = 460;
LB2_HEIGHT = 100;

var
Btn : PButton;

begin
TWindow.Init(AParent, ATitle);
DisableAutoCreate;

{ Set the attributes for this popup window.}
Attr.Style := ws_PopupWindow or ws_Caption or
ws_Visible;

Attr.X := GRPRMV_XPOS;
Attr.Y := GRPRMV_YPOS;
Attr.W : = GRPRMV_WIDTH;
Attr.H := GRPRMV_HEIGHT;

{ Create the list boxes.}
LB1 := new(PListBox, Init(@Self, id_LBl, LB1_X, LB1_Y,

LB1_WIDTH, LB1_HEIGHT));
LBl^.Attr.Style := LBl^.Attr.Style and not lbs_Sort;
LB2 := new(PListBox, Init(@Self, id_LB2, LB2_X, LB2_Y,

LB2_WIDTH, LB2_HEIGHT));
LB2^.Attr.Style := LB2^.Attr.Style and not lbs_Sort

or lbs_MultipleSel;

Btn := new(PButton,
BN1_Y, BN1_WIDTH,

Btn := new(PButton,
BN2_Y, BN2_WIDTH,

Init(eSelf,
BN1_HEIGHT,
Init(@Self,
BN2JHEIGHT,

true));
id_BN2,
false))

'CANCEL', BN2_X,

169

{ Assign the group list.}
GrpList := AGrpList;
PrmptList := APrmptList;

end; {TGrpRmvWnd.Init}

Procedure TGrpRmvWnd.SetupWindow;
{---
SetupWindow: This procedure adds all group names to list
box, LB1. LB2, on the other hand, is left empty, until a
group is selected.--- }
procedure AddGrpList(g: PGroup); far;

begin
{ Add the group name to the list of selections.}
LBl^.AddString(g^.name);

end; {AddGrpList}

begin
TWindow.SetupWindow;

{ Add each element of the GRPLIST collection to the list
box. }

GrpList^.ForEach(@AddGrpList);

end; {TGrpRmvWnd.SetupWindow}

Procedure TGrpRmvWnd.IDLBl(var Msg: TMessage);
{---
IDLBl: If a message is sent from list box, LB1, this
procedure intercepts it, and if the message indicates that
there has been a change in the users selection, the list
box, LB2, is cleared, and a list of slot names associated
with the group, whose name has been selected in LB1, are
displayed in list box, LB2. I indicates which group name
has been selected; GRP is a pointer to the selected group. --- }

var
i : integer;
Grp : PGroup;

procedure AddList(s: PChar); far;

var
i : integer;
p : PPrompt;
found : boolean;

170
begin

{ Add the prompt, corresponding to the slot-name, to
LB2. }

i := 0; found := false;
{ Search for a match to the slot-name in the PROMPT
LIST.}

while ((i < PrmptList^.Count) and (not found)) do
begin

p := PrmptList^.At(i);
found := StrComp(p~.slot, s) =0;
if (not found) then inc(i);

end; {while}

if (found) then LB2^.AddString(p^.prompt);

end; {AddList}

begin
{ Is it a selection change?}
if (Msg.IParamHi = lbn_SelChange) then
begin

{ Find the index of the selected group.}
i := LBl^.GetSelIndex;
LB 2^.ClearList;
{ Use the index to find the actual group.}
Grp := GrpList^.At(i);
{ Add all slot names associated with this group to
LB2. }

Grp^.Slots^.ForEach(@AddList);
end {if}

else DefWndProc(Msg);

end; {TGrpRmvWnd.IDLB1}

Procedure TGrpRmvWnd.IDBN1(var Msg: TMessage);
{---
IDBN1: If the 'OK' button is pressed, the selections made in
list box, LB2, are transfered to the transfer buffer,
TRANSBUF. These selections are then used as indices to
remove the selected slots from the list of slots associated
with the GROUP selected in list box, LBl. I and J are used
to examine the selections, in the transfer buffer,
sequentially.--- j
var

TransBuf : PMultiSelXferRec;
Group : PGroup;
p : PPrompt;

171

i/ j /k
found

integer;
boolean;

begin
{ Create a transfer buffer.}
New(TransBuf);

{*} TransBufZs.List := New(PStrCollection, Init(100,25));
TransBuf^.MultiSelRec := AllocMultiSel(LB2^.GetCount);

{ Perforin the transfer.}
LB2^.Transfer(TransBuf, tf_GetData);

if (TransBuf^.MultiSelRec <> nil) then
with TransBuf^ do

begin
{ Determine the selected group.}
Group := GrpList^.At(LBl^.GetSelIndex);
i := MultiSelRec^.Count;
j : = 0 ;
{ Remove all the selected slots from the list of
slots.}

while (j < i) do
begin

k := 0; found := false;
{ Search for a match to the slot-name in the
PROMPT LIST.}

while ((k < PrmptList^.Count) and (not found))
do begin

p := PrmptList^.At(k);
found := StrComp(p^.slot, Groupé.Slots^.At(

MultiSelRec^.Selections[j])) = 0;
if (not found) then inc(k);

end; {while}
if (found) then p^.SwitchAvail;
Groupé.DeleteSlot(MultiSelRec^.Selections[j]);
inc(j);

end; {while}

end; {with}

{ Free the memory required for the transfer buffer.}
FreeMultiSel(TransBuf^.MultiSelRec);
Dispose(TransBuf^.List, Done);
Dispose(TransBuf);

{ Close the window.}
CloseWindow;

172

end; {TGrpRmvWnd.IDBN1}

Procedure TGrpRmvWnd.IDBN2(var Msg: TMessage);
{---
IDBN2: If the 'CANCEL' button is pressed, then the window is
closed, and no further action is taken.-- }
begin

{ Close the window.}
CloseWindow;

end; {TGrpRmvWnd.IDBN2}

End. {GRWind}

173

SGRPDS.UNT
Unit SGrpDS;

Interface

Uses WObjects;

Type
PMultiSelXferRec = ^TMultiSelXferRec;
TMultiSelXferRec = record

List : PCollection;
MultiSelRec : PMultiSelRec;

end; {TMultiSelXferRec}

Implementation

End. {SGrpDS}

NEXMACH
EXPERT.PAS
program Expert(input,output);

uses
WinTypes, WinProcs, WObjects, Strings, TSlotGrp, SlotList,
PropList, ClassObj, ClsList, ObtList, RuleLoad, GblLoad,
GrpObj, QuesWind, SlotObj, BakChain, WinCrt;

{$R TEST.RES}

const
MAIN_MENU = 100; { Main menu id.}
MAX_GRPS = 25;
GRPS_OVRFLOW = 5 ;

cm_Open = 101; { These constants define the id numbers}
cm_Save = 102; { for the various menu selections. }
cm_Ques = 200;
cm_Help = 300;

type
TExpertApp = object(TApplication)

procedure InitMainWindow; virtual;
end;

{ The Main window.}
PExpertWin = ^TExpertWin;
TExpertWin = object(TWindow)

{ Attributes}
Groups : PSlotGrps;
Props : PPropList;
Classes: PClassList;
Objts : PObjtList;
Slots : PSlotList;
Rules : PCollection;
Globals: TGlobal;
SugList: string;
ConclusionStack: PConclusionStack;

{ Methods}
constructor Init(AParent: PWindowsObject; ATitle:
PChar);

destructor Done; virtual;

174

175
function CanClose: Boolean; virtual;
procedure WMCommand (var Msg: TMessage);

virtual wm_First + wm_Command;
procedure FileOpen(var Msg: TMessage);

virtual cm_First + cm_Open;
procedure FileSave(var Msg: TMessage);

virtual cm_First + cm_Save;
procedure Help(var Msg: TMessage);

virtual cm_First + cm_Help;
private

procedure UnCheckQuestions; virtual;
procedure EnableQuestions; virtual;

end; {TExpertWin}

{--- }
{ TExpertWin's method implementations: }
{--- }

constructor TExpertWin.Init(AParent: PWindowsObject; ATitle:
PChar);

{---
Init: this is the constructor for the TExpertWin object. It
simply calls the TWindow constructor, loads the main menu
(100), retrieves the slot-group data, the Property, Object,
Slot.

begin
TWindow.Init(AParent, ATitle);
Attr.Menu := LoadMenu(HInstance, PChar(MAIN_MENU));

{ Retrieve all data from disk files into the appropriate
lists.}

Groups := new(PSlotGrps, Init(MAX_GRPS, GRPS_OVRFLOW));
Props := new(PPropList, Init(MAXPROPS, PROPS_OVRFLOW));
Classes:= new(PClassList, Init(MAX_CLASS, CLASS_OVRFLOW));
Objts := new(PObjtList, Init(MAX_OBTS, OBTS_OVRFLOW,

Props, Classes));
Slots := new(PSlotList, Init(MAXJSLOTS, SLOTS_OVRFLOW));
FetchRules(Rules);
FetchGlobals(Globals, SugList);
UnCheckQuestions;
ConclusionStack := new(PConclusionStack, Init(SugList,

Props, Classes, Objts, Rules, Slots));
if (not ConclusionStack^.BackChain) then EnableQuestions;

end; {TExpertWin.Init}

176
destructor TExpertWin.Done;
{---
Done: this is the destructor for the TExpertWin object. All
lists are deallocated.--- }
begin

TWindow.Done;
dispose(ConclusionStack, done);
dispose(Groups, done);
dispose(Props, done);
dispose(Classes, done);
dispose(Objts, done);
dispose(Slots, done);
dispose(Rules, done);

end; {TSGroup.Done}

function TExpertWin.CanClose: Boolean;
{---
CanClose: If the current data has not been saved since the
last change, the user is asked if he/she wishes to save
before exiting, or cancel the exit command.--- }
var

Reply: Integer;

begin
CanClose := true;

{ Create a message box.}
Reply := MessageBox(HWindow, 'Do you want to save?',

'Output has changed', mb_YesNoCancel or
mb_IconQuestion);

{ Check the REPLY.}
if (Reply = id_Yes) then CanClose := false
else if (Reply = id_Cancel) then CanClose := false;

end;

procedure TExpertWin.WMCommand(var Msg: TMessage);
{---
WMCommand: Every time the user selects a menu item, this
procedure is invoked. It checks the command id (Msg.wParam)
to see if it is in the range that has been reserved for the
Question submenu. If it is within this range, a Question
popup window is created which will display the prompts
associated with the selected group.--- }

177
var

QuesWnd : PWindow;
Grp : PGroup;

begin
TWindowsObject.WMCommand(Msg);

{ Is the message id in the Question range?}
if ((Msg.wParam > cm_Ques) and (Msg.wParam < cm_Ques+100))
then begin

{ Fetch the group selected.}
Grp := Groups^.At(Msg.wParam - 201);

{ Create the Question Window.}
QuesWnd := new(PQuesWindow, Init(@Self, 'Questions',

Grp,Props,Objts,Rules,Slots,ConclusionStack));
Application^.MakeWindow(QuesWnd);
if (not ConclusionStack .̂Backchain) then

EnableQuestions;
end; {if}

end; {TExpertWin.WMCommand}

procedure TExpertWin.FileOpen(var Msg: TMessage);
{---------------------------------- ---------------------------
FileOpen:--- }

begin
MessageBox(HWindow, 'Feature not implemented', 'FileOpen',

mb_Ok);
end; {TExpertWin.FileOpen}

procedure TExpertWin.FileSave(var Msg: TMessage);
{---
FileSave:--- }

begin
MessageBox(HWindow, 'Feature not implemented', 'FileSave',

mb_Ok);

end; {TExpertWin.FileSave}

procedure TExpertWin.Help(var Msg: TMessage);
{---
Help: Selecting the HELP option from the main menu activates
the help system.--- }

178
begin
MessageBox(HWindow, 'Feature not implemented', 'Help',

mb_Ok);

end; {TExpertWin.Help}

procedure TExpertWin.UnCheckQuestions ;
{---
UnCheckQuestions: Each of the items in the Questions submenu
is unchecked.-- }
var

Idx : word;

begin
Idx := 1;
repeat
begin

CheckMenuItem(Attr.Menu, cm_Ques+Idx, mf_UnChecked);
inc(Idx);

end; {repeat}
until (Idx > Groups^.Count);

end; {TExpertWin.UnCheckQuestions}

procedure TExpertWin.EnableQuestions;
{---
EnableQuestions: For each group in Groups, all slots are
checked to see if any are "active" (ie. are accepting
input). If any are, then the group menu selection is
enabled.--- }
var

i,j : integer;
Flag: boolean;
Slot: PSlot;
Grp : PGroup;

begin
for i := 0 to Groups^.Count-1 do
begin

Grp := Groups^.At(i);
Flag := false;
j := 0;
while ((not Flag) and (j < Grp^.SlotCount)) do
begin

Slot := Slots^.FindMatch(StrPas(Grp^.Getslot(j)));
if (Slot <> nil) then Flag := Slot^.IsActive;

179
inc(j);

end; {while}

if (Flag) then
EnableMenuItem(Attr.Menu,i+cm_Ques+l,mf_ByCommand +

mf_Enabled);
end; {for}

end; {TExpertWin.EnableQuestions}

{--- }
{ TExpertApp's method implementations: }
{--- }

procedure TExpertApp.InitMainWindow;
{---
InitMainWindow: A primary window is created with the title
"Expert System"

begin
MainWindow := New(PExpertWin, Init(nil, 'Expert System'));

end; {TExpertApp.InitMainWindow}

{---
Main program: The application, with id EXPERT, is started.

var
ExpertApp : TExpertApp;

begin
ExpertApp.Init('Expert') ;
ExpertApp.Run;
ExpertApp.Done ;

end. {Expert}

180
GRPOBJ.UNT
Unit GrpObj;

Interface
uses Strings, WinTypes, WinProcs, WObjects;
const
GNAME_MAX = 50;
MAX_SLOTS = 25;
SLOTS_OVERFLOW = 10;

type
PSlotName = ^TSlotName;
TSlotName = object(TObject)

{Attributes}
Slot : PChar;
{Methods}
constructor Init(ASlot: PChar);

end; {TSlotName}

TGName = array[0..GNAME_MAX] of char;

PGroup = ^TGroup;
TGroup = object(TObject)

{ Attributes}
Name : PChar;
Slots : PCollection;

{ Methods}
constructor
destructor
function
procedure
function
function
procedure
procedure
function

end; {TPrompt}

Init(AName: PChar);
Done; virtual;
GetName : PChar; virtual;
SetName(AName: PChar); virtual;
GetSlots: PCollection; virtual;
GetSlot(Idx: Integer): PChar; virtual;
AddSlot(ASlot: PChar); virtual;
DeleteSlot(Idx: Integer); virtual;
SlotCount: Integer; virtual;

Implementation

Constructor TGroup.Init(AName: PChar);
{---
TGroup.Init: This is the constructor for the TGroup object.
All attributes are assigned values. The collection of slots
is set to the empty state.--- }

181
begin

{ Set the group name.}
Name := StrNew(AName);

{ Initialize the list to the empty state.}
Slots := new(PCollection,

Init(MAX_SLOTS,SLOTS_OVERFLOW));

end; {TGroup.Init}

Destructor TGroup.Done;
{---
TPrompt.Done: This is the destructor for the TGroup object.
The string attribute, NAME, is disposed of.--- }

begin
StrDispose(Name);
dispose(Slots, done);

end; {TGroup.Done}

Function TGroup.GetName: PChar;
{---
TGroup.GetName: Returns the group NAME for the TGroup
object.--- }

begin
GetName := Name;

end; {TGroup.GetName}

Procedure TGroup.SetName(AName: PChar);
{---
TGroup.SetName: Sets the NAME attribute of the TGroup
object.--- }
begin

Name := StrNew(AName);

end; {TGroup.SetName}

Function TGroup.GetSlots: PCollection;
{---
TGroup.GetSlots: Retrieves the slot list for the group. The
list is a collection of pointers to pointers of null
terminated strings (PChar).--- }
begin

GetSlots := Slots;

182

end; {TGroup.GetSlots}

Function TGroup.GetSlot(Idx: Integer): PChar;
{---
TGroup.GetSlot: Retrieves the slot specified by the index
(IDX) .--- }
var

s : PSlotName;
begin

s := Slots'''.At(Idx) ;
GetSlot := s^.Slot;

end; {TGroup.GetSlot}

Procedure TGroup.AddSlot(ASlot: PChar);
{---
TGroup.AddSlot: Adds a new slot, ASLOT, to the collection of
slots.--- }
begin

Slots^.insert(new(PSlotName, Init(ASlot)));

end; {TGroup.AddSlot}

Procedure TGroup.DeleteSlot(Idx: integer);
{---
TGroup.DeleteSlot: Removes the slot indexed by, IDX, from
the collection of slots.--- }
begin

Slots'^.AtFree(Idx) ;

end; {TGroup.DeleteSlot}

Function TGroup.SlotCount: Integer;
{---
TGroup.SlotCount: The number of slots in the SLOTS list is
returned.--- }
begin

SlotCount := Slots^.Count;

end; {TGroup.SlotCount}

183

Constructor TSlotName.Init(ASlot: PChar);
{---
Init: The TSlotName object is initialized by allocating
space on the heap 4 the string pointed to by PChar, and
setting Slot to point to this new null terminated string.--- }
begin

Slot := StrNew(ASlot);

end; {TSlotName.Init}

End.

184
PROPLIST.UNT
Unit PropList;

Interface
Uses

WinTypes, WinProcs, WObjects, PropObj, NexFile;

Const
MAX_PROPS = 200;
PROPS_OVRFLOW = 20;
PROP_EXT = '.prp';

Type
PPropList = ^TPropList;
TPropList = object(TCollection)

{Methods}
constructor Init(AMax, AnOvrFlow: integer);

private
procedure FetchProps; virtual;

end; {TPropList}

Implementation

Constructor TPropList.Init(AMax, AnOvrFlow: integer);
{ ---
InitProps: This is the constructor for the TProps object
which is a special collection object that holds a list of
properties. The collection is initialized by calling the
ancestral constructor and then a routine loads the property
data from a file.-- }
begin
TCollection.Init(AMax, AnOvrFlow);
FetchProps;

end; {TPropList.Init}

Procedure TPropList.FetchProps ;
{ ---
FetchProps: Each pair of lines in the file, PropFile,
represents a PROPERTY. This procedure reads each pair of
lines (Linel, Line2) and creates a new TProp object and
inserts it into the list of PROPERTIES that this object
holds.-- }
var

PropFile : text;
Linel, Line2 : string;

185

begin
OpenFiles(PropFile, ConCat(NEX_FILE, PROPJSXT));

{ Discard the first line.}
readln(PropFile);

while (not eof(PropFile)) do
begin

readln(PropFile, Linel);
if (not eof(PropFile)) then readln(PropFile, Line2);
Insert(new(PProp, Init(Linel, Line2)));
readingPropFile);

end; {while}

CloseFiles(PropFile);

end; {TPropList.FetchProps}

End. {PropList}

186
NEXFILE.UNT

Unit NexFile;

{$V-} { Turn off type checking for strings.}

Interface

Uses
WinDos ;

Const
LINE_MAX = 255;
TYPE_MAX = 2 ;
NEWLINE = chr(13);
NEX_FILE = 'test';

Type
TLine = string[LINE_MAX];
TLineType = string[TYPE_MAX];
TLineIndex= 0..LINE_MAX+1;
TFileName = string[fsPathName];

Function NextWord(line : TLine; i,j: TLinelndex):
TLinelndex;

Procedure ParseWord(Line: TLine; delimiter: char;
var pword: TLine; var i,j: TLinelndex);

Function ProcessComponent(Line: TLine; i,j: TLinelndex):
TLine;

Procedure OpenFiles(var TargetFile: text; filename:
TFileName);

Procedure CloseFiles(var TargetFile: text);

Implementation

Function NextWord(line : TLine; i,j: TLinelndex): TLinelndex;
{ ---
Next_Word: This function moves the line index, I, to point
to the next non-white-space character in the line, LINE, or
point to the end of the line, J.-- }

begin
{ Increment I until a non-white-space character is found
or the end of the line is reached.}

while ((i <= j) and ((line[i] < '!') or (line[i] >
'~'))) do i := i+1;

NextWord := i;
end; {Next Word}

187

Procedure ParseWord(Line: TLine; delimiter: char;
var pword: TLine; var i,j: TLinelndex);

{ ---
ParseWord: The Line index, I, is used to procédé character
by character along the Line, Line, from the current position
of I until the delimiter, DELIMITER, is found or a
white-space character is encountered, adding each character
to the string variable, PWORD. If neither of the previous
conditions are met, the parsing stops when the end of the
Line (J) is reached.
Called by: External
-- }
var

quit : boolean;

begin
pword := '';

{ Add each character to PWORD until the DELIMITER is
found or the end of the Line is reached or a
white-space character is encountered.}

quit := false;
while ((i <= j) and (not quit)) do

begin
quit := ((Line[i] = delimiter) or (Line[i] < ' ') or

(Line[i] > "*'));
if (not quit) then
begin

pword := pword + Line[i];
inc(i);

end; {if}
end; {while}

end; {ParseWord}
Function ProcessComponent(Line: TLine; i,j: TLinelndex):
TLine;
{ ---
ProcessComponent: The remainder of the input Line contains
the name of the component to be added to the current Object.
This function extracts and returns the name.
Called by: External-- }

var
AComponent : TLine;

begin
{ Extract the remainder of the Line.}
inc(i);

188

ParseWord(Line,NEWLINE,AComponent,i,j);
ProcessComponent := AComponent;

end; {ProcessComponent}

Procedure OpenFiles(var TargetFile: text; filename:
TFileName);
{ ---
OpenFiles: The input file is opened, using the name,
FILENAME.
Called by: External-- }

var
i,j : TLinelndex;

begin
{ Open the input file.}
assign(TargetFile, filename);
{$1-}
reset(TargetFile);
{$1+}
{ Check for an 10 error.}
if (IOResult <> 0) then
begin
writeln('File ',filename,' not found.');
halt(1);

end; {if}

end; {OpenFiles}

Procedure CloseFiles(var TargetFile: text);
{ ---
CloseFiles: Both the input file is closed.
Called by: External-- }

begin
{ Close the file.}
close(TargetFile);

end; {CloseFiles}

End. {NexFile}

189
CLASSOBJ.UNT

Unit ClassObj;

Interface

Uses
WinTypes, WinProcs, WObjects;

Const
MAX_PROPNAMES = 25;
PROPNAMES OVRFLOW = 5;

Type
PPropName = ^TPropName;
TPropName = object(TObject)

{Attributes}
Name : string;
{Methods}
constructor Init(AName: string);
function GetName: string; virtual;

end; {TPropName}

PClass = ^TClass;
TClass = object(TObject)

{Attributes}
Name : string;
PropNames : PCollection;
{Methods}
constructor Init(AName: string);
destructor Done; virtual;
function GetName: string; virtual;
procedure AddProp(AProp: string); virtual;
function GetProp(Idx: integer): string; virtual;
function PropCount: integer; virtual;

end; {TClass}

Implementation

Constructor TClass.Init(AName: string);
{---
Init: A TClass object is constructed by assigning Name the
value of AName. Also, the list, PropNames, is initialized.--- }
begin

Name := AName;
PropNames := new(PCollection, Init(MAX_PROPNAMES,

PROPNAMES_OVRFLOW));
end; {TClass.Init}

190
Destructor TClass.Done;
{---
Done: The PropNames list is disposed, freeing the memory-
allocated to it.--- }
begin
dispose(PropNames, done);

end; {TClass.Done}

Function TClass.GetName: string;
{---
GetName: The string value of Name is returned.--- }
begin

GetName := Name ;

end; {TClass.GetName}

Procedure TClass.AddProp{AProp: string);
{---
AddProp: A new TPropName object is created and added to the
list of PropNames.--- }
begin

PropNames^.Insert(new(PPropName, Init(AProp)));

end; {TClass.AddProp}

Function TClass.GetProp(Idx: integer): string;
{---
GetProp: As long as the index, Idx, is within range, the
TPropName object indexed by Idx, in the list PropNames, is
found and the string stored within it is returned.
--- }
var

p : PPropName;

begin
if (Idx < PropNames^.Count) then
begin

p := PropNames .̂At(Idx);
GetProp := p^.GetName;

end {if}
else GetProp :=

end; {TClass.GetProp}

Function TClass.PropCount: integer;

191
{---
PropCount: The number of items in the PropNames list is
returned.--- }
begin

PropCount : = PropNames^.Count;

end; {TClass.PropCount}

Constructor TPropName.Init(AName: string);
{---
Init: This constructor creates a new TPropName object and
stores in it the string, AName, in the Name attribute.--- }
begin

Name := AName;

end; {TPropName.Init}

Function TPropName.GetName: string;
{---
GetName: The string held by Name is returned.--- }
begin

GetName := Name;

end; {TPropName.GetName}

End. {ClassObj}

192
BAKCHAIN.UNT

Unit BakChain;

Interface

Uses
WObjects, ObtObj, RuleObj, SlotList, Stack, Operator,

Expr ;

Type
TPerform = (Incomplete, CompleteTrue, CompleteFalse,

Wait);

PConclusion = ^Conclusion;
TConclusion = object(TObject)

{Attributes}
Ruleldx : integer;
Rule : PRule;
Clause : integer;
{Methods}
constructor Init(ARule: PRule; ARuleldx, AClause:

integer);
function GetRule: PRule; virtual;
procedure NuRule(ARule: PRule; ARuleldx: integer);

virtual;
function GetClause: integer; virtual;
function IncClause: boolean; virtual;

end; {TConclusion}

PConclusionStack = ^TConclusionStack;
TConclusionStack = object(TStack)

{Attributes}
boolean;
string;
PSlotList;
PCollection;
PCollection;
PCollection;
PCollection;

Start
Suggest
Slots
Props
Classes
Objts
Rules
{Methods}
constructor Init(ASuggestion: string; APropList,

AClassList, AnObjtList, ARuleList: PCollection;
ASlotList: PSlotList);

function BackChain: boolean; virtual;
procedure ClearStack; virtual;

private
function FindHypo(Idx: integer; AHypo: string):

integer; virtual;

193

function NextRule: boolean; virtual;
function NuConclusion(AHypo: string): boolean;

virtual;
function PerformOp(AnExpr: PExpr): TPerform; virtual;
procedure AdvTop; virtual;

end; {TConclusionStack}

Implementation

Constructor TConclusion.Init(ARule: PRule; ARuleldx,
AClause: integer);

{---
Init: The TConclusion object is instantiated by setting Rule
and Clause equal to ARule and AClause, respectively.-------- --- }
begin

Rule := ARule;
Ruleldx := ARuleldx;
Clause := AClause;

end; {TConclusion.Init}

Function TConclusion.GetRule: PRule;
{---
GetRule: This function serves to return a pointer to the
RULE that is stored in the TConclusion object.--- }
begin
GetRule := Rule;

end; {TConclusion.GetRule}

Procedure TConclusion.NuRule{ARule: PRule; ARuleldx:
integer);

{---
NuRule: The current value of Rule is replaced by ARule and
the current value of Ruleldx is replaced by ARuleldx.--- }
begin

Rule := ARule;
Ruleldx := ARuleldx;
Clause := 0;

end; {TConclusion.NuRule}

Function TConclusion.GetClause: integer;
{---
GetClause: This function serves to return the value of the
Clause indicator, that is stored in the TConclusion object.

194
--- }
begin
GetClause := Clause;

end; {TConclusion.GetClause}

Function TConclusion.IncClause: boolean;
{---
IncClause: If Clause is less than the number of LHS
expressions, then Clause is incremented by one, and the
function returns true; otherwise, Clause is left unchanged,
and the function returns false.--- }
begin

if (Clause < Rule~.LhsCount-1) then
begin

inc(Clause);
IncClause := true;

end {if}
else

IncClause := false;

end; {TConclusion.IncClause}

Constructor TConclusionStack.Init(ASuggestion: string;
APropList, AClassList,

AnObjtList, ARuleList: PCollection; ASlotList:
PSlotList);
{---
Init: The stack is initialized by calling the parent
constructor, and then the collection holders are assigned
the appropriate values.--- }
begin

TStack.Init;
Start := true;
Suggest := ASuggestion;
Slots := ASlotList;
Props := APropList;
Classes := AClassList;
Objts := AnObjtList;
Rules := ARuleList;

end; {TConclusionStack.Init}

Function TConclusionStack.FindHypo(Idx: integer; AHypo:
string): integer;

{---
FindHypo: The list of RULES, Rules, is searched, starting at

195

the index Idx and proceding forward (+ve) through the list.
The search halts when a match (as indicated by Match) is
made between a RULE (r) hypothesis and AHypo, or when the
end of the list is reached. If a match is made, this
function returns the index (Idx) to the matching RULE.
Otherwise, a value of -1 is returned.--- }
var
Match : boolean;
Count : integer;
r : PRule;

begin
Match := false;
Count : = Rules^.Count ;
{ Search for a match.}
while ((Idx < Count) and (not Match)) do

begin
r := Rules^.At(Idx);
Match := AHypo = r^.GetHypo;
inc(Idx);

end; {while}

{ If a match is found, return the index to the matching
rule.}

if (Match) then FindHypo := Idx-1
{ Otherwise, return -1.}
else FindHypo := -1;

end; {TConclusionStack.FindHypo}

Function TConclusionStack.NextRule: boolean;
{---
NextRule:--- }
var

c : PConclusion;
Ruleldx : integer;
Rule : PRule;

begin
c := Top;
Ruleldx := FindHypo(cÆ.RuleIdx+l, c^.Rule^.GetHypo);
if (Ruleldx <> -1) then c^.NuRule(Rules^.At(Ruleldx),

Ruleldx);
NextRule := Ruleldx <> -1;

end; {TConclusionStack.NextRule}

196
Function TConclusionStack.NuConclusion(AHypo: string):

boolean;
{---
NuConclusion: If the hypothesis, AHypo, is found in a RULE
in Rules, a new TConclusion object is created and pushed
onto the top of the conclusion stack and the function
returns true. If AHypo is not found, then the function
simply returns false.--- }
var

Ruleldx : integer;
Rule : PRule;

begin
Ruleldx := FindHypo(0, AHypo);
if (Ruleldx <> -1) then
begin

Rule := Rules*.At(Ruleldx);
Push(new(PConclusion, Init(Rule, Ruleldx, 0)));

end; {if}

NuConclusion := Ruleldx <> -1;

end; {TConclusionStack.NuConclusion}

Function TConclusionStack.PerformOp(AnExpr: PExpr):
TPerform;

{---
PerformOp:--- }
var

TriAns : TriBool;
p : TPerform;

begin
p := CompleteTrue;
case (AnExpr*.GetOperator) of
_CreateObject:

ProcCreateObject(Classes, Objts, Props,
AnExpr*.GetOperandl, AnExpr*.GetOperand2);

Do :
ProcDo(Objts,AnExpr*.GetOperand1,AnExpr*.GetOperand2);

Is :
begin

TriAns := Procis(Objts, AnExpr*.GetOperandl,
AnExpr*.GetOperand2);

if (TriAns = Unknown) then

197

begin
if (not Slots^.IsActive(AnExpr^.GetOperandl))
then
Slots^.ToggleSlot(AnExpr̂ .GetOperandl);
p := Wait;

end
else if (TriAns = No) then p := CompleteFalse;

end; {_Is}

IsNot:
begin

TriAns := ProcIsNot(Objts, AnExpr^.GetOperandl,
AnExpr^-.Get0perand2) ;

if (TriAns = Unknown) then
begin

if (not Slots'^. IsActive(AnExpr^.GetOperandl))
then
Slots .̂ ToggleSlot (AnExpr-^. GetOperandl) ;

p := Wait
end

else if (TriAns = No) then p := CompleteFalse;
end; {_IsNot}

Name :
if (ProcName(Objts, AnExpr^.GetOperandl,
AnExpr^.Get0perand2) = Unknown) then

begin
if (not Slots^.IsActive(AnExpr^.GetOperandl)) then
Slots^.ToggleSlot(AnExpr^.GetOperandl);

p := Wait;
end; {if}

No:
begin

TriAns := ProcNo(Objts, AnExpr^.GetOperandl);
if (TriAns = Unknown) then p := Incomplete
else if (TriAns = No) then p := CompleteFalse;

end; {_No}

Retrieve :
if (not ProcRetrieve(Classes, Objts, Props,
AnExpr^.GetOperandl, AnExpr^.GetOperand2)) then
p := CompleteFalse;

Show:
ProcShow(Objts, AnExpr^.GetOperandl,
AnExpr^.Get0perand2);

Yes :

198
begin

TriAns := ProcYes(Objts, AnExpr^.GetOperandl);
if (TriAns = Unknown) then p := Incomplete
else if (TriAns = No) then p := CompleteFalse;

end; {_Yes}

end; {case}

PerformOp := p;

end; {TConclusionStack.PerformOp}

Procedure TConclusionStack.AdvTop;
{---
AdvTop: This is a recursive procedure that increments the
Clause indicator of the TConclusion object on the top of the
Conclusion Stack. If incrementing this object results in
the Clause indicator surpassing the number of clauses in the
associated RULE, then the Conclusion is popped off the
stack, disposed of, and the procedure recursively calls
itself.--- }
var

c : PConclusion;

begin
if (not IsEmpty) then
begin

c := Top;
{Increment the Clause indicator.}
if (not c*.IncClause) then
begin
AssignValue(Objts,'TRUE',c^.Rule^.GetHypo);
c := Pop;
dispose(c, done);
AdvTop;

end; {if}
end; {if}

end; {TConclusionStack.AdvTop}

Function TConclusionStack.BackChain: boolean;
{---
BackChain:--- }
var

c : PConclusion;
LHS : PExpr;
Op : TPerform;

199
begin

readln;
Op := Incomplete;
if (Start) then
begin
NuConclusion(Suggest);
Start := false;

end; {if}

while ((not IsEmpty) and (Op <> Wait)) do
begin

c := Top;
LHS : = c~.Rule^.GetLHS(c~.Clause);
Op := PerformOp(LHS);
if (Op = Incomplete) then

if (not NuConclusion(LHS .̂GetOperandl)) then halt;
else if (Op = CompleteTrue) then AdvTop
else

begin
AssignValue(Objts, 'FALSE', c^.Rule^.GetHypo);
if (not NextRule) then
begin

c := Pop;
dispose(c, done);

end; {if}
end; {else}

end; {while}

BackChain := Op <> Wait;
end; {TConclusionStack.BackChain}

Procedure TConclusionStack.ClearStack;
{---
ClearStack: The contents of the stack are popped off one at
a time and disposed. In this way, the stack is cleared.--- }
var

c : PConclusion;
begin
while (not IsEmpty) do
begin

c := Pop;
dispose(c,done);

end; {while}
Start := true;

end; {TConclusionStack.ClearStack}
End. {BakChain}

CLSLIST.UNT

Unit ClsList;
{$V-} { Turn off type checking for strings.}

Interface
Uses

WObjects, ClassObj, NexFile;

Const
MAX_CLASS =25;
CLASS_OVRFLOW = 5;
CLS_EXT = '.cis';

Type
PClassList = ^TClassList;
TClassList = object(TCollection)

{Methods}
constructor Init(AMax, AnOvrFlow: integer);

private
procedure ProcessSubClass(ClassLine: TLine; var

AClass: PClass); virtual;
procedure FetchClasses; virtual;

end; {TPropList}

Implementation

Constructor TClassList.Init(AMax, AnOvrFlow: integer);
{ ---
Init :--- }
begin

TCollection.Init(AMax, AnOvrFlow);
FetchClasses;

end; {TClassList.Init}

Procedure TClassList.ProcessSubClass(ClassLine: TLine; var
AClass: PClass);

{ ---
ProcessSubClass: If a subclass has been encountered, then
this procedure is called to find all the PROPERTIES of the
subclass, and add them to the current CLASS. Cis is used as
a pointer to find the subclass in the list of CLASSES.
Therefore, CLASSES must be defined before they can be used
as subclasses. Once the subclass is found, i and j are
used, as an index and upper limit, to retrieve all the
PROPERTIES from the subclass (NB: the function Match is used
to find the subclass in the list of CLASSES.)

201
-- }
var

Cis : PClass;
i, j: integer;
Prop : string;

function Match(c: PClass):boolean; far;
begin
Match := c^.GetName = ClassLine;

end; {Match}

begin
Cis := FirstThat(@Match);
if (Cis <> nil) then begin

i : = 0 ;
j := Cls^.PropCount;
while (i < j) do

begin
Prop := Cls^.GetProp(i);
if (Prop <> ") then AClass^.AddProp(Prop);
inc(i);

end; {while}
end; {if}

end; {TClassList.ProcessSubClass}

Procedure TClassList.FetchClasses;
{ ---
FetchClasses: The CLASS file, ClassFile, is opened and the
CLASS information found in it is extracted and stored in
CLASS objects (c). CLASSES are made up two different
elements, subclasses and PROPERTIES. A subclass is a CLASS
that has already been defined and converted to a list of
PROPERTIES. Therefore, when a subclass is encountered (as
indicated by LineType), the list of PROPERTIES for the
subclass is substituted, instead. If a PROPERTY is found,
then it is simply added to the list PROPERTIES for the
current CLASS.-- }
var
ClassFile : text;
c : PClass;
i,j : TLinelndex;
LineType : TLineType;
Line, ClassLine : TLine;

begin
OpenFiles(ClassFile, concat(NEX FILE, CLS EXT));

202

{ Discard the first Line.}
readln(ClassFile);
while (not eof(ClassFile)) do

begin
{ Fetch the name of the class.}
readln(ClassFile, Line);
i := 1; j := length(Line);
ParseWord(Line,’ ',ClassLine,i,j);

{ Allocate a new class.}
c := new(PClass, Init(ClassLine));

while ((not eof(ClassFile)) and (length(Line) > 0)) do
begin

{ Fetch the Line-type of the next Line in the
file.}

readln(ClassFile, Line);
i := 1; j := length(Line);
ParseWord(Line, ' ',LineType,i,j);
ClassLine := ProcessComponent(Line,i,j);

{ Act according to the LineType.}
if (LineType = 'SC') then

ProcessSubClass(ClassLine, c)
else c^.AddProp(ClassLine);

end; {while}
Insert(c);

end; {while}

CloseFiles(ClassFile);

end; {TClassList.FetchClasses}

End. {ClsList}

203
RULELOAD.UNT

Unit RuleLoad;
{$V-} { Turn off type checking for strings.}

Interface

Uses
WObjects, RuleObj, NexFile;

Const
MAX_RULE = 25;
RULE_OVRFLOW = 5 ;
RULE_EXT = '.rul';

procedure FetchRules(var ARuleList: PCollection);

Implementation

Procedure InitRules(var ARuleList: PCollection);
{ ---
InitClasses: The list of rules, ARuleList, is initialized.
Called by: FetchRules-- }

begin
{ Initialize the list to the empty state.}
ARuleList := new(PCollection, Init(MAX_RULE,

RULE_OVRFLOW));

end; {InitRules}

Procedure ProcessIC(AnIC: TLine; var ARule: PRule);
{ ---
ProcessIC: The string AnIC is converted to a real value. If
the conversion is ok, the IC of ARule is assigned the
integer equivalent of the real.
Called by: FetchRules-- }
var

Err : integer;
Result : real;

begin
val(AnIC, Result, Err);
if (Err = 0) then ARule^.SetIC(Trunc(Result));

end; {ProcessIC}

204

Procedure ProcessLhs(ALine: TLine; var RuleFile: text; var
ARule: PRule);

{ ---
ProcessLhs: The Operator line (ALine) of a Lhs expression
has been encountered and this procedure fetches the next two
lines (Operandl, Operand2) which contain the first and
second operands of the expression, from the input file,
RuleFile. Then, the Lhs expression is added to the list of
such expressions in the RULE, ARule.
Called by: FetchRules-- }
var

Operator, Operandl, Operand2 : TLine;

begin
Operator := ALine;
readln(RuleFile, Operandl);
readingRuleFile, Operand2);
ARule^.AddLhs(Operator, Operandl, Operand2);

end; {ProcessLhs}

Procedure ProcessRhs(ALine: TLine; var RuleFile: text; var
ARule: PRule);

{ ---
ProcessRhs: The Operator line (ALine) of a Rhs expression
has been encountered and this procedure fetches the next two
lines (Operandl, Operand2) which contain the first and
second operands of the expression, from the input file,
RuleFile. Then, the Rhs expression is added to the list of
such expressions in the RULE, ARule.
Called by: FetchRules-- }
var

Operator, Operandl, Operand2 : TLine;

begin
Operator := ALine;
readln(RuleFile, Operandl);
readingRuleFile, Operand2);
ARule^.AddRhs(Operator, Operandl, Operand2);

end; {ProcessRhs}

Procedure FetchRules(var ARuleList: PCollection);
{ ---
FetchRules: The file, RuleFile, is read and the RULE data is
extracted from it and stored in RULE objects (r), which are
kept in a list of rules, ARuleList. The integers, i and j,

205

are used to parse the lines of the file; LineType is used
to store the line type, as indicated by the first two
characters on the input line. Also, Line is used to hold
each line of the input file, while it is being analysed.
Called by: External--- }
var

RuleFile : text;
r : PRule;
i,j : TLinelndex;
LineType : TLineType;
Line, RuleLine : TLine;

begin
InitRules(ARuleList);
OpenFiles(RuleFile, concat(NEX_FILE, RULE_EXT));

{ Discard the first Line.}
readln(RuleFile);
while (not eof(RuleFile)) do

begin
{ Fetch the name of the class.}
readln(RuleFile, Line);
i := 1; j := length(Line);
ParseWord(Line,' ',RuleLine,i,j);

{ Allocate a new class.}
r := new(PRule, Init(RuleLine));

while ((not eof(RuleFile)) and (length(Line) > 0)) do
begin

{ Fetch the Line-type of the next Line in the
file.}

readln(RuleFile, Line);
i := 1; j := length(Line);
ParseWord(Line,' ',LineType,i,j);
RuleLine := ProcessComponent(Line,i,j);

{ Act according to the LineType.}
if (LineType = 'IC') then ProcessIC(RuleLine, r)
else if (LineType = 'Ll') then

ProcessLhs(RuleLine, RuleFile, r)
else if (LineType = 'Rl') then

ProcessLhs(RuleLine, RuleFile, r)
else if (LineType = 'HY') then
r^.SetHypo(RuleLine);

end; {while}
ARuleList^.Insert(r);

end; {while}

206
CloseFiles(RuleFile);

end; {FetchRules}

End. {RuleLoad}

207
OBTLIST.UNT

Unit ObtList;

{$V-} { Turn off type checking for strings.}

Interface

Uses
WObjects, Strings, NexFile, ObtObj, ClassObj, PropObj;

Const
MAX_OBTS = 100;
OBTS_OVRFLOW = 20;

OBT_EXT = '.obt';

Type
PObjtList - ^TObjtList;
TObjtList = object(TCollection)

constructor Init(AMax, AnOvrFlow: integer;
APropList, AClassList: PCollection);

private
procedure ProcessClass(Line: TLine; AClassList,

APropList: PCollection; var Objt: PObjt); virtual;
procedure ProcessProp(Line: TLine; APropList:

PCollection; var Objt: PObjt); virtual;
procedure InsertObjt(AnObjt: PObjt); virtual;
procedure FetchObjects(APropList, AClassList:

PCollection); virtual;
end; {TObjtList}

Implementation

Constructor TObjtList.Init(AMax, AnOvrFlow: integer;
APropList, AClassList: PCollection);

{ ---
Init: This is the constructor for the TObjtList object,
which inherits from TCollection. First the collection is
initialized by calling the parent constructor. Then, the
OBJECT data is retrieved from disk by a call to
FetchObjects.-- }
begin

TCollection.Init(AMax, AnOvrFlow);
FetchObjects(APropList, AClassList);

end; {TObjtList.Init}

208

Procedure TObjtList.ProcessClass(Line: TLine; AClassList,
APropList: PCollection; var Objt: PObjt);

{ ---
ProcessClass: The parameter, Line, contains a CLASS name.
The list, AClassList, is searched for a CLASS having this
name. If such a CLASS is found, all PROPERTIES of this
CLASS are added to the list of PROPERTIES associated with
the current OBJECT, Objt.-- }
var

PropName: string;
i, j: integer;
Cis: PClass;

function ClassMatch(c: PClass): boolean; far;
begin

ClassMatch := c*.GetName = Line;
end; {ClassMatch}

function PropMatch(p: PProp): boolean; far;
begin

PropMatch := p^.GetName = PropName;
end; {PropMatch}

begin
Cis := AClassList^.FirstThat(@ClassMatch);
if (Cis <> nil) then
begin

j := Cls^.PropCount;
i : = 0 ;
while (i < j) do

begin
PropName := Cls~.GetProp(i);
if (PropName <> '') then
Objt^.AddProp(APropList*.FirstThat(@PropMatch));

inc(i);
end; {while}

end; {if}

end; {TObjtList.ProcessClass}

Procedure TObjtList.ProcessProp(Line: TLine; APropList:
PCollection;

var Objt: PObjt);
{ ---
ProcessProp: Line contains the name of a PROPERTY. The
list, APropList, is searched (Match) for a PROPERTY with
this name. If the search is successful, the PROPERTY is
added to the list of PROPERTIES associated with the current

209

OBJTECT, Objt.-- }
var

Prop : PProp;

function Match(p: PProp): boolean; far;
begin
Match := p^.GetName = Line;

end; {Match}

begin
Prop := APropList^.FirstThat(@Match);
if (Prop <> nil) then Objt^.AddProp(Prop);

end; {TObjtList.ProcessProp}

Procedure TObjtList.InsertObjt(AnObjt: PObjt);
{---
InsertObjt: This procedure adds the OBJECT, AnObjt, to the
collection of OBJECTS, as long as it is not already found in
the list. If it is already in the list, then this procedure
has no effect. To find the location to insert, a binary
search is used.-- }
var

First, Last, i : integer;
Found : boolean;
o : PObjt;

begin
{ Initialize search variables.}
First := 0;
Last := Count -1;
Found := false;
{ Search until successful or completed list.}
while ((First <= Last) and (not Found)) do

begin
i := (First+Last) div 2;
o := At(i);
if (AnObjtGetName < o*.GetName) then Last := i-1
else if (AnObjt^.GetName > o^.GetName) then

First := i+1
else Found := true;

end; {while}

{ If the object is not already in the list, insert it.}
if (First > Last) then Atlnsert(First, AnObjt);

end; {TObjtList.InsertObjt}

210

Procedure TObjtList.FetchObjects(APropList, AClassList:
PCollection);

{ ---
FetchObjects: This procedure opens and reads the OBJECT
file, ObjectFile. This file contains information on
OBJECTS. An OBJECT consists of a name, which is read in and
used to instantiate a new OBJECT object (o), and one or more
subcomponents (being PROPERTIES from the list, APropList,
and CLASSES from the list, AClassList). Each subcomponent
is read in, and is processed, according to its type
(LineType). New OBJECTS are added to the list of OBJECTS,
held by TObjtList. Line and ObjectLine are used as buffers
for the input file.-- }
var
ObjectFile : text;
o : PObjt;
i,j : TLinelndex;
LineType : TLineType;
Line, ObjectLine : TLine;

begin
OpenFiles(ObjectFile, concat(NEX_FILE, OBT_EXT));

{ Discard the first Line.}
readln(ObjectFile);
while (not eof(ObjectFile)) do

begin
{ Fetch the name of the object.}
readln(ObjectFile, Line);
i := 1; j := length(Line);
ParseWord(Line,' ',ObjectLine,i,j);

{ Allocate a new object.}
o := new(PObjt, Init(ObjectLine));

while ((not eof(ObjectFile)) and (length(Line) > 0))
do begin
{ Fetch the Line-type of the next Line in the file.}
readln(ObjectFile, Line);
i := 1; j := length(Line);
ParseWord(Line,' ',LineType,i,j);
ObjectLine := ProcessComponent(Line,i,j);

{ Act according to the LineType.}
if (LineType = 'VA') then o^.SetType(ObjectLine)
else if (LineType = 'OC') then

ProcessClass(ObjectLine,AClassList,APropList,o)
else if (LineType = 'OP') then

211

ProcessProp(ObjectLine,APropList, o);
end; {while}

InsertObjt(o);
end; {while}

CloseFiles(ObjectFile);

end; {TObjtList.FetchObjects}

End. {ObtList}

212
PROPOBJ■UNT

Unit PropObj;

Interface
Uses

WinTypes, WinProcs, WObjects;

Const
PROPERTY_SIZE = 255;

Type
TPropType = (Proplnt, PropFloat, PropBool, PropStr,

PropDate, PropTime, PropUnknown);

PProp = ^TProp;
TProp = object(TObject)

{Attributes}
Name : string[PROPERTY_SIZE];
PropType : TPropType;
Value : string;
{Methods}
constructor Init(AName: string; APropType: string)
function GetName: string; virtual;
function GetType: TPropType; virtual;
function GetValue: string; virtual;
procedure SetValue(AValue: string); virtual;

end; {TProp}

function
function
function
function

CalcType(APropType: string): TPropType;
CalcIntValue(AValue: string): integer;
CalcRealValue(AValue: string): real;
CalcBoolValue(AValue: string): boolean;

Implementation

Constructor TProp.Init(AName: string; APropType: string);
{---
Init: The TProp object is initialized by setting Name to
AName and fetching the TPropType corresponding to the
string, APropType.--- }
begin

Name := AName;
PropType := CalcType(APropType);
Value := '';

end; {TProp.Init}

213
Function TProp.GetName: string;
{---
GetName: The value of the string, Name, is returned.--- }
begin

GetName := Name;

end; {TProp.GetName}

Function TProp.GetType: TPropType;
{---
GetType: The value of PropType is returned.--- }
begin
GetType := PropType;

end; {TProp.GetType}

Function TProp.GetValue: string;
{---
GetValue: The string held by Value is returned.--- }
begin

GetValue := Value;

end; {TProp.GetValue}

Procedure TProp.SetValue(AValue: string);
{---
SetValue: Value is assigned the string, AValue.--- }
begin

Value := AValue;

end; {TProp.SetValue}

Function CalcType(APropType: string): TPropType;
{---
CalcType: This function returns a value of TPropType,
depending on the string, APropType.--- }
var

i : TPropType;

begin
if (APropType = 'Integer') then i := Propint
else if (APropType = 'Float') then i := PropFloat
else if (APropType = 'Boolean') then i := PropBool
else if (APropType = 'String') then i := PropStr

214

else if (APropType = 'Date') then i := PropDate
else i := PropTime;

CalcType := i;

end; {CalcType}

Function CalcIntValue(AValue: string): integer;
{---
CalcIntValue: This function attempts to convert the string,
AValue, to an integer value by use of the Val() function.
If the conversion fails (ie. ErrCode non-zero) then a value
of zero is returned.--- }
var

ErrCode: integer;
Dest : real;

begin
val(AValue, Dest, ErrCode);
if (ErrCode <> 0) then CalcIntValue := 0
else CalcIntValue := Round(Dest);

end; {CalcIntValue}

Function CalcRealValue(AValue: string): real;
{---
CalcRealValue: This function is similar to CalcIntValue,
except that if the conversion is successful, a real value is
returned.-- }
var

ErrCode: integer;
Dest : real;

begin
val(AValue, Dest, ErrCode);
if (ErrCode <> 0) then CalcRealValue := 0
else CalcRealValue := Dest;

end; {CalcRealValue}

Function CalcBoolValue(AValue: string): boolean;
{---
CalcBoolValue: If AValue is 'true' then the boolean, true,
is returned. All other values of AValue result in false
being returned.--- }
begin

215

if (AValue = 'TRUE') then CalcBoolValue := true
else CalcBoolValue := false;

end; {CalcBoolValue}

End. {PropLoad}

216
OBTOBJ.UNT

Unit ObtObj;

Interface

Uses
WinTypes, WinProcs, WObjects, Strings, PropObj;

Const
NAMEJ3IZE = 255;
MAX_OPS = 15;
OPS_OVRFLOW = 5 ;

Type
PObjtProp = ^TObjtProp;
TObjtProp = object(TObject)

{Attributes}
Prop : PProp;
{Methods}
constructor Init(AProp: PProp);

end; {TObjtProp}

PObjt = ^TObjt;
TObjt = object(TObject)

{Attributes}
Name : string[NAME_SIZE];
ObjtType : ^TPropType;
Value : ^string;
Props : PCollection;
{Methods}
constructor Init(AName: string);
destructor Done; virtual;

SetType(AnObjtType: string); virtual;
SetValue(AValue: string); virtual;
AddProp(AProp: PProp); virtual;
GetName: string; virtual;
GetType: TPropType; virtual;
GetValue: string; virtual;
GetPropCount: integer; virtual;
GetProp(Idx: integer): PProp; virtual;

procedure
procedure
procedure
function
function
function
function
function

end; {TObjt}

function StringType(APropType: TPropType): string;

Implementation

217

Constructor TObjt.Init(AName: string);
{---
Init: The Name field is assigned the value, AName, the
ObjtType field gets set to nil, and each of the lists is
initialized.-- }
begin

Name := AName;
ObjtType := nil;
Value := nil;
Props := new(PCollection, Init(MAX_OPS, OPS_OVRFLOW));

end; {TObjt.Init}

Destructor TObjt.Done;
{---
Done: All the lists of TObjt are destroyed, freeing the
memory.-- }
begin

if (ObjtType <> nil) then dispose(ObjtType);
if (Value <> nil) then dispose(Value);
dispose(Props, done);

end; {TObjt.Done}

Procedure TObjt.SetType(AnObjtType: string);
{---
SetType: ObjtType is given a value of TPropType, based on
the contents of AnObjtType.--- }
begin

new(ObjtType);
ObjtType* := CalcType(AnObjtType);
SetValue('');

end; {TObjt.SetType}

Procedure TObjt.SetValue(AValue: string);
{---
SetValue: Value is assigned the string, AValue.--- }
begin

new(Value);
Value* := AValue;

end; {TObjt.SetValue}

218
Procedure TObjt.AddProp(AProp: PProp);
{---
AddProp: A new element of the Props list is initialized and
added to the list.--- }
begin

Props^.Insert(new(PObjtProp, Init(AProp)));

end; {TObjt.AddProp}

Function TObjt.GetName: string;
{---
GetName: The value of Name is returned.--- }
begin

GetName := Name ;

end; {TObjt.GetName}

Function TObjt.GetType: TPropType;
{---
GetType: The value of ObjtType is returned.--- }
begin
GetType := ObjtType^;

end; {TObjt.GetType}

Function TObjt.GetValue: string;
{---
GetValue: The value of Value is returned.--- }
begin

GetValue := Value^;

end; {TObjt.GetValue}

Function TObjt.GetPropCount: integer;
{---
GetPropCount: An integer indicating the number of TProp
objects in the collection, Props, is returned.--- }
begin
GetPropCount := Props^.Count;

end; {TObjt.GetPropCount}

219

Function TObjt.GetProp(Idx: integer): PProp;
{---
GetProp: A pointer to the OBJECT PROPERTY (from the list of
PROPERTIES for this OBJECT, Props, and indexed by Idx) is
returned. If the Idx index is invalid (ie. out of range), a
nil pointer is returned, instead.--- }
var

p : PObjtProp;

begin
if ((Idx >= 0) and (Idx < Props^.Count)) then
begin

p := Props~.At(Idx);
GetProp := p^.Prop;

end {if}
else GetProp := nil;

end; {TObjt.GetProp}

Constructor TObjtProp.Init(AProp: PProp);
{---
Init: The Prop field is assigned the value, AProp.--- }
begin

Prop := new(PProp, Init(AProp^.GetName,
StringType(AProp^.GetType)));

end; {TObjtProp.Init}

Function StringType(APropType: TPropType):. string;
{---
StringType: This function returns a string value
corresponding to the TPropType value of APropType.
--- ---------- }
begin

case (APropType) of
Proplnt: StringType := 'Integer';
PropFloat: StringType := 'Float';
PropBool: StringType := 'Boolean';
PropStr: StringType := 'String';
PropDate: StringType := 'Date';
else StringType := 'Time';

end; {case}
end; {StringType}
End. {ObtObj}

220
SLOTLIST.UNT

Unit SlotList;

{$V-} { Turn off type checking for strings.}

Interface

Uses
WObjects, NexFile, SlotObj;

Const
MAX_SLOTS = 50;
SLOTS_OVRFLOW = 20;

SLOT_EXT = ' .sit';

Type
PSlotList = ^TSlotList;
TSlotList = object(TCollection)

constructor Init(AMax, AnOvrFlow: integer);
function FindMatch(AName: string): PSlot; virtual;
function ToggleSlot(AName: string): boolean; virtual;
function IsActive(AName: string): boolean; virtual;

private
function ProcessPrompt(Line: TLine; i,j: TLinelndex):

TLine; virtual;
procedure ProcessSource(Line: TLine; i,j: TLinelndex;

var s: PSlot; var SlotFile: text); virtual;
procedure ProcessStrategy(Line: TLine; i,j:

TLinelndex; var s: PSlot; var SlotFile: text);
virtual;

procedure FetchSlots; virtual;
end; {TSlotList}

Implementation

Constructor TSlotList.Init(AMax, AnOvrFlow: integer);
{ ---
Init: The TSlotList object holds a collection of META-SLOTS.
This collection is initialized by calling the parent
constructor and the FetchSlots procedure, which retrieves
the META-SLOT information from disk.
--- -------------}
begin

TCollection.Init(AMax, AnOvrFlow);
FetchSlots;

end; {TSlotList.Init}

221

Function TSlotList.FindMatch(AName: string): PSlot;
{---
FindMatch: The collection of SLOTS is searched sequentially
for a Slot whose name matches the string (AName); if such a
slot is found, this function returns a pointer to the Slot;
otherwise, a nil pointer is returned.--- }
var

i : integer;
Match : boolean;
s : PSlot;

begin
i := Count -1;
Match := false;
while ((i >= 0) and (not Match)) do

begin
s := At(i);
Match := s^.GetName = AName;
dec(i);

end; {while}

if (not Match) then s := nil;
FindMatch := s;

end; {TSlotList.FindMatch}

Function TSlotList.ToggleSlot(AName: string): boolean;
{ ---
ToggleSlot: The SLOT with the name, AName, is first searched
for in the collection. If it exists, it has its activity
toggled and the function returns true; otherwise, the
function returns false, indicating that no such SLOT exists.-- }
var

s : PSlot;
Found : boolean;

begin
Found := true;
s := FindMatch(AName);
if (s<> nil) then s^.SwitchActivity
else Found := false;

ToggleSlot := Found;

end; {TSlotList.ToggleSlot}

Function TSlotList.IsActive(AName: string): boolean;

222

{ ---
IsActive: The SLOT by the name of AName is searched for in
the collection. If it is found, the function returns its
"active" status. If it is not found then false is returned.-- }
var

s : PSlot;

begin
s := FindMatch(AName);
if (s <> nil) then IsActive := s^.IsActive
else IsActive := false;

end; {TSlotList.IsActive}

Function TSlotList.ProcessPrompt(Line: TLine; i,j:
TLinelndex): TLine;
{ ---
{ ProcessPrompt: The remainder of the input Line contains
the prompt for current slot. This function parses out the
prompt and returns it.-- }
var
APrompt : TLine;

begin
{ Extract the remainder of the Line.}
inc(i);
ParseWord{Line,NEWLINE,APrompt, i, j) ;
ProcessPrompt := APrompt;

end; {TSlotList.ProcessPrompt}

Procedure TSlotList.ProcessSource(Line: TLine; i,j:
TLinelndex; var s: PSlot; var SlotFile: text);

{ ---------------------------------- ---------------------------
ProcessSource: The remainder of Line holds the Operand for
the Source. Then, the next two lines in SlotFile hold the
Operandl and 0perand2, respectively. Once all three values
are obtained, they are added to the current Slot, s.-- }
var

Operator, Operandl, 0perand2: TLine;

begin
{ Extract the remainder of the Line.}
inc(i);
ParseWord(Line,NEWLINE,Operator,i,j);
readln(SlotFile, Operandl);

223

readln(SlotFile, 0perand2);
{ Add Source data to Slot.}
s^.AddSource(Operator, Operandl, 0perand2);

end; {TSlotList.ProcessSource}

Procedure TSlotList.ProcessStrategy(Line: TLine; i,j:
TLinelndex; var s: PSlot; var SlotFile: text);

{ ---
ProcessStrategy: The remainder of the Line holds the left
hand side (Lhs) of the Strategy, and the next line in the
file, SlotFile, holds the right hand side, Rhs. These two
values are added to the current Slot, s.-- }
var

Lhs, Rhs: TLine;

begin
{ Extract the remainder of the Line.}
inc(i);
ParseWord(Line,NEWLINE,Lhs,i,j);
readlnfSlotFile, Rhs);
{ Add Strategy data to Slot.}
s~.Addstrategy(Lhs, Rhs);

end; {TSlotList.ProcessStrategy}

Procedure TSlotList.FetchSlots;
{ ---
FetchSlots: First, the NEXPARSE Slot File is opened for
reading. Then, each line is read and its Line Type is
determined. Depending on the Line Type, the appropriate
procedure is called to extract the data from SlotFile and
added to the Slot, s, which is currently being formed.
Slots are divided by blank lines; if one of these is
encountered, s is added to the collection, and a new Slot is
dynamically allocated.-- }

var
i/j
LineType
s
SlotFile
SlotLine,

TLinelndex;
TLineType;
PSlot;
text;

Line: TLine;

begin
OpenFiles(SlotFile, ConCat(NEX_FILE, SLOT_EXT));

224
{ Discard the first Line.}
readln(SlotFile);
while (not eof(SlotFile)) do

begin
{ Fetch the name of the slot.}
readln(SlotFile, Line);
i := 1; j := length(Line);
ParseWord(Line,' ',SlotLine,i,j);

{ Allocate a new slot.}
s := new(PSlot, Init(SlotLine));

while ((not eof(SlotFile)) and (length(Line) > 0))
do begin

{ Fetch the Line-type of the next Line in the file.}
readln(SlotFile, Line);
i := 1; j := length(Line);
ParseWord(Line,' ',LineType,i,j);

{ Act according to the LineType.}
if (LineType = 'PR') then
begin

SlotLine := ProcessPrompt(Line,i,j);
s~.AddPrompt(SlotLine);

end {if}
else if (LineType = 'FR') then
begin

SlotLine ;= ProcessPrompt(Line,i,j);
s^.AddFormat(SlotLine);

end {else if}
else if (LineType = 'CN') then
begin

SlotLine := ProcessPrompt(Line,i,j);
s^.AddContext(SlotLine);

end {else if}
else if (LineType = 'SR') then

ProcessSource(Line,i,j,s,SlotFile)
else if (LineType = 'ST') then
ProcessStrategy(Line,i,j,s,SlotFile)

else if (length(LineType) = 0) then Insert(s);
end; {while}

end; {while}

CloseFiles(SlotFile);

end; {TSlotList.FetchSlots}

End. { SlotList}

225
GBLLOAD.UNT

Unit GblLoad;
{$V-} { Turn off type checking for strings.}

Interface

Uses NexFile, PropObj;

Const
GBL_EXT = '.gbl';
MAX_GLOBALS = 15;

Type
TGlobal = array[0..MAX_GLOBALS] of boolean;

Procedure FetchGlobals(var AGlobalList: TGlobal; var
ASugList: string);

Implementation

Procedure FetchGlobals(var AGlobalList: TGlobal; var
ASugList: string);

{ ---
FetchGlobals: The GLOBAL variables are stored in an array,
AGlobalList, and the Suggestion List is stored as a string,
ASugList. This procedure reads a file (GlobalFile)
containing a list of boolean values (one for each GLOBAL
variable) in ASCII format. These are converted to Pascal
booleans and are stored in AGlobalList. The last line of
the input file holds the Suggestion List and is read and
stored in ASugList, as is. Line and i are used for reading
the input file.
Called by: External-- }
var

i : integer;
GlobalFile : text;
Line : TLine;

begin
{ Open the global file and discard the first line.}
OpenFiles(GlobalFile, concat(NEX_FILE, GBL_EXT));
readln(GlobalFile, Line);

i : = 0 ;
{ Retrieve each of the global variable values.}
while ((not eof(GlobalFile)) and (i <= MAX_GLOBALS)) do

begin

226

readln(GlobalFile, Line);
AGlobalList[i] := CalcBoolValue(Line);
inc(i);

end; {while}

{ Retrieve the suggestion list.}
readln(GlobalFile, ASugList);

CloseFiles(GlobalFile);

end; {FetchGlobals}

End. {GblLoad}

227

QUESWIND.UNT

Unit QuesWind;

Interface

Uses WinTypes, WinProcs, WObjects, Strings, GrpObj,
PropObj, ObtObj, SlotObj, SlotList, Expr, Bakchain;

Const
BN_HEIGHT =30; { These determine the appearance }
BN_WIDTH = 60; { of the Buttons in the window.}

EC_MAX = 10; { These determine the appearance }
EC_OVRFLOW = 5; { of the Edit Control Objects. }
EC_WIDTH = 100;
EC_HEIGHT =30;
EC_LEN = 80;
First_EC = 201;
TEXT_HEIGHT =20; { These constants determine the look}
TEXT_WIDTH = 7; { of text displayed in the window.}

TEXT_SPACE = 12;
SUBLINE_LEN = 60;

INIT_X =10; { These constants determine the position}
INIT_Y = 10; { and size of the window.}
TOP_MARGIN = 10;
SIDE_MARGIN = 10;

id_BNl = 298; { The button id's.}
id_BN2 = 299;

Type
PPEdit = ^TPEdit;
TPEdit = object(TObject)

{Attributes}
Edit : PEdit;
SlotNum : integer;
{Methods}
constructor Init(AnEdit: PEdit; ASlot: integer);

end; {TPEdit}

PPSlot = ^TPSlot;
TPSlot = object(TObject)

{Attributes}
Slot : PSlot;
FormatedPrompt : string;
{Methods}

228

constructor Init(ASlot: PSlot; AFormatedPrompt:
string);

end; {TPSlot}

PQuesWindow = ^TQuesWindow;
TQuesWindow = object(TWindow)

{Attributes}
Group: PGroup;
Props: PCollection;
Objts: PCollection;
Rules: PCollection;
Slots: PSlotList;
GrpSlots: PCollection;
EditControls: PCollection;
ConclusionStack: PConclusionStack;

{Methods}
constructor Init(AParent: PWindowsObject; ATitle:

PChar; AGrp: PGroup; APropList, AnObjectList,
ARuleList: PCollection; ASlotList: PSlotList;
AConStack: PConclusionStack);

destructor Done; virtual;
procedure IDBNl(var Msg: TMessage); virtual id_First

+ id_BNl;
procedure IDBN2(var Msg: TMessage); virtual id_First

+ id_BN2;
private

procedure GetGrpSlots(var AGrpSlots: PCollection;
var NumLines: integer);

end; {TQuesWindow}

function MaxPromptLen(AList: PCollection): word;
function NewStatic(Self : PWindowsObject; APrompt: string;

x,y: integer): PStatic;
function NewEdit(Self: PWindowsObject; i,x,y: integer;

AValue: string): PEdit;
procedure SetAttr(SlotCount, LineCount: integer; Len:

word; var AnAttr: TWindowAttr);
function FormatPrompt(APrompt: string): string;
procedure AssignObjt(AnObjtList: PCollection; AnObjtName,

APropName, AValue: string);

Implementation

Constructor TQuesWindow.Init(AParent: PWindowsObject;
ATitle: PChar; AGrp: PGroup; APropList, AnObjectList,
ARuleList: PCollection; ASlotList: PSlotList;
AConStack: PConclusionStack);

229

Init: This is the constructor for TQuesWindow. The Group
and Slots list take on the lists, AGrp and ASlotList,
respectively, which indicate the group that was selected
(along with the slots contained in that group) and the list
of Slots associated with the expert system. In order to
determine the dimensions of the TQuesWindow, the number and
maximum length of the lines in the prompts to be displayed
is calculated. Then, each prompt is displayed on the screen
as a static control object. In addition, for each prompt an
edit control is displayed so that users may enter data at
the prompt. Finally, two buttons are added to the window.
The 'OK' button is intended to allow users to exit the
window and save any data they may have entered; the 'CANCEL'
button simply closes the window without saving.
-------- -- }
var

s : PPSlot;
i,x,y,NumLines: integer;
MaxLen : word;
Static : PStatic;
Button : PButton;

begin
TWindow.Init(AParent, ATitle);
DisableAutoCreate;

{ Initialize the lists.}
Group := AGrp;
Props := APropList;
Objts := AnObjectList;
Slots := ASlotList;
Rules := ARuleList;
ConclusionStack := AConStack;
EditControls := new(PCollection, Init(EC_MAX,

EC_OVRFLOW));
GrpSlots := new(PCollection, Init(MAX_SLOTS,

SLOTS_OVERFLOW));

GetGrpSlots(GrpSlots, NumLines);
MaxLen := MaxPromptLen(GrpSlots);
if (MaxLen > SUBLINE_LEN) then MaxLen := SUBLINE_LEN;

{ Set the attributes for this popup window.}
SetAttr(GrpSlots^.Count,NumLines, MaxLen, Attr);

x := INIT_X;
y := INIT_Y;
for i:= 0 to GrpSlots^.Count-1 do
begin

230

s := GrpSlots^.At(i);
if (s^.Slot^.IsActive) then
begin

Static := NewStatic(@Self,s~.FormatedPrompt,x, y);
EditControls^.Insert(new(PPEdit, Init(NewEdit

(@Self, i, x+(MaxLen*TEXT_WIDTH)+SIDE_MARGIN, y,
FetchValue(.Slot^.GetName, Objts)), i)));

y := y + TEXT_HEIGHT * ((length(s^.FormatedPrompt)
div SUBLINE_LEN)+1) + TEXT_SPACE;

end; {if}
end; {for}

y := y + TOP_MARGIN;
x := x + (MaxLen*TEXT_WIDTH+EC_WIDTH+3*SIDE_MARGIN) div 2

- (BN_WIDTH+SIDE_MARGIN);
Button := new(PButton, Init(@Self, id_BNl, 'OK', x, y,

BN_WIDTH, BN_HEIGHT, true));
x := x + BN_WIDTH+SIDE_MARGIN;
Button := new(PButton, Init(@Self, id_BN2, 'CANCEL', x, y,

BN_WIDTH, BN_HEIGHT, false));

end; {TQuesWindow.Init}

Destructor TQuesWindow.Done;
{---
Done: All lists associated with this popup window are
destroyed, freeing the allocated memory.--- }
begin
TWindow.Done;
dispose(GrpSlots, done);
dispose(EditControls, done);

end; {TQuesWindow.Done}

Procedure TQuesWindow.IDBN1(var Msg: TMessage);
{---
IDBN1: If the user presses the 'OK' button, then each of the
control objects (e) is checked to see if it has been
modified. If a change has occurred, the new value is
extracted (TextBuffer) and assigned to the Property or
Object (as determined by the value of j) that corresponds to
the Slot (s) for which this value has been entered.-- }
var
TextBuffer : array[0..EC_LEN] of char;
i,j : integer;
e : PPEdit;
s : PPSlot;

231
SlotName : string;

begin
{ Check each edit control.}
for i := 0 to EditControls .̂Count-1 do
begin

e := EditControls^.At(i);

{ If the edit control has been modified, process the
new data.}

if ((e^.Edit^.IsModified) and
(e^.Edit^.GetText(@TextBuffer, EC_LEN) <> 0)) then
begin

s := GrpSlots^.At(e^.SlotNum);
{Slot corresponding to the edit.}
SlotName := s^.Slot^.GetName;
j := posSlotName); { Property names follow

a ' . ' . }

{ Is it a Property or an Object?}
if (j <> 0) then
AssignObjt(Objts, Copy(SlotName, 1, j-1),

Copy(SlotName,j+1,length(SlotName)),
StrPas(TextBuffer))

else
AssignObjt(Objts, SlotName, '',

StrPas(TextBuffer));
end; {if}

end; {for}

CloseWindow;

end; {TQuesWindow.IDBN1}

Procedure TQuesWindow.IDBN2(var Msg: TMessage);
{---
IDBN2: If the 'CANCEL' button is pressed, the window is
closed and any data that was entered is ignored.--- }
begin

CloseWindow;

end; {TQuesWindow.IDBN2}

Procedure TQuesWindow.GetGrpSlots(var AGrpSlots:
PCollection; var NumLines: integer);

{---
GetGrpSlots: This procedure creates a list of Slots
(AGrpSlots) that corresponds to the list of Slot names

232

(Groupé.GetSlot(i)). I is used as an index for traversing
the list of Slots associated with the Group (Group) and s
acts as a temporary pointer for pointing to the Slots to be
added to the list, and gs is used to create new elements of
AGrpSlots.--- }
var

i : integer;
s : PSlot;

begin
s := nil;
NumLines := 0;
for i := 0 to Groups.SlotCount-1 do
begin

{ Find the Slot whose name matches the name of the
slot in list of slots associated with the group.}

s := Slots^.FindMatch(StrPas(Groupé.GetSlot(i)));
if (s <> nil) then
begin
AGrpSlots^.Insert(new(PPSlot, Init(s,

FormatPrompt(s^.GetPrompt))));
NumLines := NumLines + (length(s^.GetPrompt)

div SUBLINE_LEN) + 1;
end; {if}

end; {for}

end; {TQuesWindow.GetGrpSlots}

Constructor TPSlot.Init(ASlot: PSlot; AFormatedPrompt:
string);
{---
Init: The TPSlot object, which holds a pointer to a Slot, is
initialized by setting the pointer to the value of ASlot.--- }
begin

Slot := ASlot;
FormatedPrompt := AFormatedPrompt;

end; {TPSlot.Init}

constructor TPEdit.Init(AnEdit: PEdit; ASlot: integer);
{---
Init: The TPEdit object is initialized by setting the Edit
Control pointer (Edit) to the value of AnEdit and SlotNum to
ASlot.--- }
begin

Edit := AnEdit;

233
SlotNum := ASlot;

end; {TPEdit.Init}

Function MaxPromptLen(AList: PCollection): word;
{---
MaxPromptLen: The string length of each prompt in the list
of Slots (AList) is examined, and the maximum length is
returned. I is used as an index to traverse AList, s is
used as a temporary Slot pointer, and Max is used to hold
intermittant maximum string lengths.
Called by: Init--- }
var

i : integer;
s : PPSlot;
Max : word;

begin
i := AList~.Count -1;
Max := 0 ;
while (i >= 0) do

begin
s := AList^.At(i);
if (Max < length(s^.Slot^.GetPrompt)) then Max :=

length(s~.Slot^.GetPrompt);
dec(i) ;

end; {while}

MaxPromptLen := Max;

end; {MaxPromptLen}

Function NewStatic(Self : PWindowsObject; APrompt: string;
x,y: integer): PStatic;

{---
NewStatic: This function returns a pointer to a new Static
Control Object. The Static will display APrompt at the
location x,y.
Called by: Init--- }

var
Prompt : array[0..PROMPT_SIZE] of char;
LineLen, NumLines : integer;

begin
NumLines := length(APrompt) div SUBLINE_LEN + 1;
if (NumLines > 1) then LineLen := SUBLINE_LEN

234

else LineLen := length(APrompt);
NewStatic := new(PStatic, Init(Self, -1, StrPCopy(Prompt,

APrompt), x, y, LineLen * TEXT_WIDTH, TEXT_HEIGHT *
NumLines, LineLen));

end; {NewStatic}

Function NewEdit(Self: PWindowsObject; i,x,y: integer;
AValue: string): PEdit;

{---
NewEdit: A new Edit Control Object is created, and a pointer
to this object is returned. The Edit is placed at the
position x,y and is given the id, i+First_EC.
Called by: Init
-------- --- }
var
Value : array [O..EC_LEN] of char;

begin
StrPCopy(Value, AValue);
NewEdit := new(PEdit, Init(Self, i+First_EC, Value, x,

y, EC_WIDTH, EC_HEIGHT, EC_LEN, False));

end; {NewEdit}

Procedure SetAttr(SlotCount, LineCount: integer; Len: word;
var AnAttr: TWindowAttr);

{---
SetAttr: The attribute record (AnAttr) of the popup window
is initialized, dictating the size and style of the window.
Called by: Init--- j.
var

i,j : integer;

begin
AnAttr.Style := ws_PopupWindow or ws_Caption or

ws_Visible;
AnAttr.X := INIT_X;
AnAttr.Y := INIT_Y;

i := LineCount * TEXT_HEIGHT + (SlotCount+1) * TEXT_SPACE;
j := (SlotCount+1) * EC_HEIGHT;
if (i < j) then i := j;

AnAttr.H := i + 4 * TOP_MARGIN + BN_HEIGHT;

i := 3 * SIDE_MARGIN + 2 * BN_WIDTH;
AnAttr.W := (Len * TEXT WIDTH) + (3*SIDE MARGIN) +

235
EC_WIDTH;

if (AnAttr.W < i) then AnAttr.W := i;

end; {SetAttr}

Function FormatPrompt(APrompt: string): string;
{---
FormatPrompt: If the prompt, APrompt, has a length greater
than SUBLINE_LEN, then it is broken into sublines which are
linked together but are separated by carriage return/line
feed characters. The single string of concatenated sublines
is returned.--- }
var

i : integer;
Result : string;

begin
Result := '';
{ Break APrompt into sublines of no longer than

SUBLINE_LEN.}
while (length(APrompt) > SUBLINE_LEN) do

begin
i := SUBLINE_LEN;
while ((i > 0) and (APrompt[i] <> ' ')) do dec(i);
Result := concat(Result, copy(APrompt, 1, i)) +#13#10;
APrompt := copy(APrompt, i+1, length(APrompt)-i + 1);

end; {while}

Result := concat(Result, APrompt);
FormatPrompt := Result;

end; {FormatPrompt}

Procedure AssignObjt(AnObjtList: PCollection; AnObjtName,
APropName, AValue: string);

{---
AssignObjt: This procedure inserts AValue as the value of
the OBJECT, whose name is AnObjtName (ObjtMatch). If the
OBJECT itself does not hold a value, but has PROPERTIES
instead, then the OBJECT PROPERTY matching APropName is
found (PropMatch) and AValue is stored in it.--- }
var

FoundObjt : PObjt;
Prop : PObjtProp;

function ObjtMatch(o: PObjt): boolean; far;
begin

236

ObjtMatch := o^.GetName = AnObjtName;
end; {ObjtMatch}

function PropMatch(p: PObjtProp): boolean; far;
begin

PropMatch := p^.Prop^.GetName = APropName;
end; {PropMatch}

begin
FoundObjt := AnObjtList''.FirstThat(@ObjtMatch) ;
if (FoundObjt <> nil) then

if (APropName = ") then FoundObjt^.SetValue(AValue)
else
begin

Prop := FoundObjt^.Props^.FirstThat(@PropMatch);
PropÆ.Prop^.SetValue(AValue);

end; {else}

end; {AssignObjt}

End. {QuesWind}

237

EXPR.UNT

Unit Expr;
{$V-} { Turn off type checking for strings.}

Interface

Uses
WObjects, Strings, NexFile, PropObj, ObtObj, Stack,
ItemObj, Funcs;

Type
SOperators = set of char;

PReal = ^Real;

Const
OperatorSet : SOperators = ' + ', '/',

procedure InsertObjt(AnObjtList: PCollection; AnObjt:
PObjt);

function FindObjt(AnObjtList: PCollection; AnObjt:
string): PObjt;

procedure AssignValue(AnObjtList: PCollection; ASource,
ADest: string);

function FetchValue(AName: string; AnObjtList:
PCollection): string;

function FetchType(AName: string; AnObjtList:
PCollection): TPropType;

function UnQuoteString(AQuotedString: string): string;
function Evaluate(AnExpr: string; AnObjtList:

PCollection): PResult;
function Interpretation(AnObjtList: PCollection;

Anlnterpret: string): string;
function ExtractClass(AClass: string): string;
procedure ExtractCreateLists(var CList, OList:

PCollection; AList: string);
function DoFuncs(AnObjtList: PCollection; AFnNo: integer;

AnOperandList: PCollection): PResult;

Implementation

Procedure InsertObjt(AnObjtList: PCollection; AnObjt:
PObjt);
{---
InsertObjt: This procedure adds the OBJECT, AnObjt, to the
collection of OBJECTS, AnObjtList, as long as it is not
already found in the list. If it is already in the list,
then this procedure has no effect. To find the location to

238

insert, a binary search is used.-- }
var

First, Last, i : integer;
Found : boolean;
o : PObjt;

begin
{ Initialize search variables.}
First := 0;
Last := AnObjtList^.Count -1;
Found := false;
{ Search until successful or completed list.}
while ((First <= Last) and (not Found)) do

begin
i := (First+Last) div 2;
o := AnObjtList^.At(i);
if (AnObjt^.GetName < o*.GetName) then Last := i-1
else if (AnObjt~.GetName>o^.GetName) then First := i+1
else Found := true;

end; {while}

{ If the object is not already in the list, insert it.}
if (First>Last) then AnObjtList^.Atlnsert(First, AnObjt);

end; {InsertObjt}

Function FindObjt(AnObjtList:PCollection;AnObjt:string) :
PObjt;

{---
FindObjt: This function performs a binary search on the
list, AnObjtList, searching for an OBJECT with the name
AnObjt. If successful, a pointer to the OBJECT is returned;
otherwise, a nil pointer is returned. First, Last, i, o,
and Found are used in the search.--- }
var

First, Last, i : integer;
Found : boolean;
o : PObjt;

begin
{ Initialize search variables.}
First := 0;
Last := AnObjtList^.Count -1;
Found := false;
{ Search until successful or completed list.}
while ((First <= Last) and (not Found)) do

begin

239

i := (First+Last) div 2;
o := AnObjtList^.At(i);
if (AnObjt < o^.GetName) then Last := i-1
else if (AnObjt > o^.GetName) then First := i+1
else Found := true;

end; {while}

{ If successful, return a pointer to the OBJECT;
otherwise, return nil.}

if (First <= Last) then FindObjt := o
else FindObjt := nil;

end; {FindObjt}

Procedure AssignValue(AnObjtList: PCollection; ASource,
ADest: string);
{---
AssignValue: ADest holds the name of an OBJECT or OBJECT
PROPERTY in which to store the string, ASource. The target
OBJECT is searched for in AnObjtList, and, if necessary, the
PROPERTY is found by invoking PropMatch.
-- -------- }
var

PropName : string;
i : integer;
o : PObjt;
p : PObjtProp;

function PropMatch(p: PObjtProp): boolean; far;
begin

PropMatch := p^.Prop~.GetName = PropName;
end; {PropMatch}

begin
{ Determine if it is an OBJECT or OBJECT PROPERTY.}
i := pos('.', ADest);
if (i = 0) then
begin { Case OBJECT.}

o := FindObjt(AnObjtList, ADest);
if (o <> nil) then o^.SetValue(ASource);

end {if}
else

begin { Case OBJECT PROPERTY.}
o := FindObjt(AnObjtList, copy(ADest, 1, i-1));
PropName := copy(ADest, i+1, length(ADest));
p := o^.Props^.FirstThat(@PropMatch);
p^.Prop^.SetValue(ASource);

end; {else}
end; {AssignValue}

240

Function FetchValue(AName: string; AnObjtList: PCollection):
string;

{---
FetchValue: First, it is determined whether or not AName is
the name of an OBJECT or the name of an OBJECT.PROPERTY. If
the former, then the OBJECT is found in AnObjtList and its
value is retrieved. Otherwise, the OBJECT is found and then
the PROPERTY within that OBJECT. Then, the PROPERTIES value
is retrieved.--- }
var

PropName,ObjtName : string;
FoundProp: PObjtProp;
FoundObjt: PObjt;
i : integer;

function PropMatch(p: PObjtProp): boolean; far;
begin

PropMatch := p^.Prop^.GetName = PropName;
end; {Match}

begin
i := pos('.', AName);
if (i <> 0) then
begin

ObjtName := copy(AName, 1, i-1);
FoundObjt:= FindObjt(AnObjtList, ObjtName);
if (FoundObjt <> nil) then
begin

PropName := copy(AName, i+1, length(AName));
FoundProp :=
FoundObjt^.Props.FirstThat(@PropMatch);

if (FoundProp <> nil) then
FetchValue := FoundProp^.Prop^.GetValue

else FetchValue := '';
end {if}

else FetchValue :=
end {if}

else
begin

ObjtName := AName;
FoundObjt := FindObjt(AnObjtList, ObjtName);
if (FoundObjt <> nil) then
FetchValue := FoundObjt^.GetValue

else FetchValue := '';
end; {else}

end; {FetchValue}

241

Function FetchType(AName: string; AnObjtList: PCollection):
TPropType;
{---
FetchType: First, it is determined whether or not AName is
the name of an OBJECT or the name of an OBJECT.PROPERTY. If
the former, then the OBJECT is found in AnObjtList and its
type is retrieved. Otherwise, the OBJECT is found and then
the PROPERTY within that OBJECT. Then, the PROPERTIES type
is retrieved.--- }
var
PropName,ObjtName : string;
FoundProp: PObjtProp;
FoundObjt: PObjt;
i : integer;

function PropMatch(p: PObjtProp): boolean; far;
begin

PropMatch := .Prop^.GetName = PropName;
end; {Match}

begin
if ((AName[l] = #39) or (ANamefl] = '\')) then
AName := Interpretation(AnObjtList, AName);

i := pos('.', AName);
if (i <> 0) then
begin

ObjtName := copy(AName, 1, i-1);
FoundObjt:= FindObjt(AnObjtList, ObjtName);
if (FoundObjt <> nil) then
begin

PropName := copy(AName, i+1, length(AName));
FoundProp :=
FoundObjt^.Props^.FirstThat(@PropMatch);

if (FoundProp <> nil) then FetchType :=
FoundProp^.Prop^.GetType

else FetchType := PropUnknown;
end {if}

else FetchType := PropUnknown;
end {if}

else
begin

ObjtName := AName;
FoundObjt := FindObjt(AnObjtList, ObjtName);
if (FoundObjt <> nil) then FetchType :=

FoundObjt^.GetType
else FetchType := PropUnknown;

end; {else}

242

end; {FetchType}

Function NuNumeric(ANumber: real): PReal;
{---
NuNumeric: This function allocates memory to hold a real
variable and stores the real, ANumber, in this memory. A
pointer to the allocated memory is then returned.--- }
var

r : PReal;

begin
new(r);
r~ := ANumber;
NuNumeric := r;

end; {NuNumeric}

Function NuString(AString: string): PString;
{---
NuString: This function allocates memory to hold a string
variable and stores the string, AString, in this memory. A
pointer to the allocated memory is then returned.------------------------ ------------------------------------ }
var

s : PString;

begin
new(s);
s^ := AString;
NuString := s;

end; {NuString}

Function NuOperator{AnOperator: char): PChar;
{---
NuOperator:--- }
var

c : PChar;

begin
new(c);
c~ := AnOperator;
NuOperator := c;

end; {NuOperator}

Function UnQuoteString(AQuotedString: string): string;

243
{---
UnQuoteString: The string passed to this function is
contained by double quotes. The purpose of this function is
to strip away the double quotes and return the resultant
string.--- }
var

i, j : TLinelndex;
UnQuotedString : string;

begin
i : = 2 ;
j := length(AQuotedString) ;
ParseWord(AQuotedString, UnQuotedString, i, j);
UnQuoteString := UnQuotedString;

end; {UnQuoteString}

Function CalcExpr(AnOperator: PChar; AnOperandl, An0perand2:
PReal): real;
{---
CalcExpr: Based on the operator character (*,/,+,-) stored
in memory location pointed to by AnOperator, an arithmetic
operation is performed on the two real numbers, pointed to
by AnOperandl and An0perand2. The result of this operation
is returned.--- }
begin

case (AnOperator^) of
: CalcExpr := An0perand2Æ * AnOperandl^;

{ Notice that there is no division-by-zero check!}
'/' : CalcExpr := An0perand2~ / AnOperandl^;
' + ' : CalcExpr := An0perand2~ + AnOperandl^;

: CalcExpr := An0perand2^ - AnOperandl^;
else CalcExpr := 0;

end; {case}

end; {CalcExpr}
Procedure AddOperator(AnOperator: PChar; var AStack, BStack:
PStack);
{---
AddOperator: The operator character, pointed to by
AnOperator, is to be added to the operator stack, AStack.
However, if the operator currently on the top of AStack is
of higher priority than the new operator, the old operator
must be evaluated before the new one can be added. To
evaluate an operator, CalcExpr is called with the old
operator and two operands (these come for the operand stack,

244

BStack). The result is placed on the top of BStack. The
process is repeated as long as the operator on top of AStack
is of higher priority than AnOperator. In the end, however,
AnOperand is placed on the top of AStack.--- }
var

NuValue : PReal;
Top : PChar;

begin
{ If the operator is not * or / and the operator stack is

not empty, check the operator on the top of the stack to
see if it is of higher priority than the new operator.}

if ((AnOperator^o'*') and (AnOperator^<>'/') and not
(AStack^.IsEmpty)) then repeat begin
Top := AStack^.Top;
if ((Top^ = '*') or (Top^ = '/')) then
{ Higher priority ops.}
begin

new(NuValue) ;
{ Evaluate the operator on top of the stack.}
NuValue^ := CalcExpr(AStack^.Pop, BStack^.Pop,

BStack^.Pop);
BStack^.Push(NuValue);

end; {if}
end; {repeat}

until (((Top^ <> '*') and (Top^ <> '/')) or
(AStack^.IsEmpty));

{ Push the new operator onto the operator stack.}
AStack^.Push(AnOperator);

end; {AddOperator}
Function Evaluate(AnExpr: string; AnObjtList: PCollection):
PResult;
{---
Evaluate: The Evaluate function has two distinct components.
The first parses the expression, AnExpr, into its composite
operands and operators. If the expression is a constant of
any type, the function ceases by returning the constant.
The expression may contain references to OBJECTS. If this
is the case, the value of the OBJECT is retrieved, and this
is placed on the operand stack. If, the expression is an
arithmetic expression, then the OperandStack and perhaps the
OperatorStack will be non-empty. In this case, the
expression is evaluated by popping the two stacks (2:1
OperandStack:OperatorStack) until both stacks are exhausted.

245

The final result is returned.--- j.
var

IsReal : boolean;
i,j,ELen,FLen : TLinelndex;
OperandList : PCollection;
SubExpr, StrResult, Func, Operand : string;
ArrResult : array [0..255] of char;
Num : real;
Result : PReal;
SResult : PChar;
ErrCode : integer;
OperandStack, OperatorStack: PStack;

begin
{Pad the expression.}
AnExpr := AnExpr + ' ' ;

{Initialize the two stacks and the number flag.}
IsReal := false;
OperandStack := new(PStack, Init);
OperatorStack := new(PStack, Init);

{Parse the Expression.}
ELen := length(AnExpr);
i := 1;
while (i < ELen) do

begin
{ Extract subexpression.}
ParseWord(AnExpr, ' SubExpr, i, ELen);
val(SubExpr, Num, ErrCode);

{ Extract possible function name.}
j := l;
FLen := length(SubExpr);
ParseWord(SubExpr, '(', Func, j, FLen);

if (ErrCode = 0) then
begin

IsReal := true;
OperandStack^.Push(NuNumeric(Num));

end {if}
else if (SubExpr[l] in OperatorSet) then
AddOperator(NuOperator(SubExpr[1]), OperatorStack,

OperandStack)
else if (SubExprfl] = then

begin
Evaluate := new(PResult,
Init(UnQuoteString(SubExpr), 'String'));

246

exit ;
end {elseif}

else if ((SubExpr = 'TRUE') or (SubExpr = 'FALSE'))
then begin

Evaluate := new(PResult, Init(SubExpr,
'Boolean'));

exit;
end {elseif}

else if (IsFunc(Func) <> -1) then
begin

OperandList := new(PCollection, Init(MAX_OPERANDS,
OPERAND_OVRFLOW));

while (j < FLen) do
begin
ParseOperand(SubExpr, Operand, j);
if (Operand <> '') then
OperandList^.Insert(new(PItem,

Init(Operand)));
end; {while}

Evaluate := DoFuncs(AnObjtList, IsFunc(Func),
OperandList);

dispose(OperandList, done);
exit;

end
else

begin
{ Handle OBJECT references.}
if ((SubExpr[l] = #39) or (SubExpr[l] = '\')) then
StrResult := FetchValue(Interpretation

(AnObjtList, SubExpr), AnObjtList)
else StrResult := FetchValue(SubExpr, AnObjtList);

val(StrResult, Num, ErrCode);
StrPCopy(ArrResult, StrResult);
if (ErrCode = 0) then
begin
OperandStack^.Push(NuNumeric(Num));
IsReal := true;

end {if}
else OperandStack^.Push(StrNew(ArrResult));

end; {else}

inc(i);
end; {while}

{If the expression was non-arithmetic, then return the
string on the operand stack.}

if ((OperatorStack^.IsEmpty) and (not IsReal)) then

247

begin
SResult := OperandStack^.Pop;
if (SResult <> nil) then
begin

Evaluate := new(PResult, Init(StrPas(SResult),
StringType(FetchType(SubExpr, AnObjtList))))

end
else Evaluate := new(PResult, Init('', StringType(

FetchType(SubExpr, AnObjtList))));
end {if}

else
begin

{If it's an arithmetic expression, process the
operators and operands.}

while not (OperatorStack^.IsEmpty) do
OperandStack^.Push(NuNumeric (CalcExpr

(OperatorStack^.Pop,OperandStack^.Pop,
OperandStack^.Pop)));

Result := OperandStack^.Pop;
str(Result^, StrResult);
Evaluate := new(PResult, Init(StrResult, 'Float'));

end; {else}

end; {Evaluate}

Function InterpretationAnObjtList: PCollection;
Anlnterpret: string): string;

{---
Interpretation: This function takes as its input the string
Anlnterpret, which is a NEXPERT OBJECT Interpretation. The
function then derives the actual value of the Interpretation
by first decomposing the string into its composite parts:
(a) the root string (Prefix), (b) the attribute name
(Attribute), and (c) the suffix (Suffix). Then the value
stored in the attribute with the name Attribute is
determined, by searching AnObjtList, and this value is
concatenated with the root string and the suffix to form the
end result. Max and i are used in the parsing of the
Interpretation.--- }
var

Prefix, Suffix, Attribute : string;
i, Max : TLinelndex;

begin
i := 1;
Max := length(Anlnterpret);
Prefix := '';

248
{ Parse the root string if there is one.}
if (Anlnterpret[1] = #39) then
begin

inc(i);
ParseWord(Anlnterpret, #39, Prefix, i, Max);
inc(i);

end; {if}

{ Parse the attribute name.}
inc(i);
ParseWord(Anlnterpret, 'V, Attribute, i, Max);

{ Parse the suffix. If there isn't one, this will be an
empty string.}

inc(i);
ParseWord(Anlnterpret, #13, Suffix, i, Max);

{ Concatenate the subcomponents of the Interpretation.}
Interpretation : = concat(Prefix, FetchValue(Attribute,

AnObjtList), Suffix);

end; {Interpretation}

Function ExtractClass(AClass: string): string;
{---
ExtractClass: The name of a CLASS is stored in AClass; it is
enclosed by vertical lines (eg. JClassNamei). This function
parses out the name of the CLASS, temporarily storing it in
ClassName, and returns it. Max and i are used in the
parsing of AClass.--- }
var

i, Max : TLinelndex;
ClassName : string;

begin
i : = 2 ;
Max := length(AClass);
ParseWord(AClass, 'J', ClassName, i, Max);
ExtractClass := ClassName;

end; {ExtractClass}

Procedure ExtractCreateLists(var CList, OList: PCollection;
AList: string);

{---
ExtractCreateLists: The string, AList, holds a list of CLASS
and OBJECT names. This procedure parses out these names and
adds them to the lists, CList (for CLASS names) and OList

249

(for OBJECT names). Note: as it is, this procedure does not
yet handle OBJECT names.--- }
const
MAX_LIST = 10;
LIST_OVRFLOW = 5;

var
i, Max : TLinelndex;
ClassName : string;

begin
{ Initialize the lists.}
CList := new(PCollection, Init(MAX_LIST, LIST_OVRFLOW));
OList := new(PCollection, Init(MAX_LIST, LIST_OVRFLOW));

i : = 1 ;
Max := length(AList);
{ Parse the CLASS names out of the list.}
while (i < Max-2) do

begin
if (AList[i] = '!') then
begin

inc(i);
ParseWord(AList, ClassName, i, Max);
{ Add the ClassName to the list.}
CList^. Insert (new (PI tern, Init(ClassName)));

end; {if}
if (i < Max-2) then i := i+2;

end; {while}

end; {ExtractCreateLists}

Function DoFuncs(AnObjtList: PCollection; AFnNo: integer;
AnOperandList: PCollection): PResult;

{---
DoFunc:-- }
var

i, Count, ErrCode : integer;
Operand, Operand2 : PItem;
Result, Result2 : real;
ValueList: PCollection;
Value : PResult;

begin
ValueList := new(PCollection, Init(MAX_OPERANDS,

OPERAND_OVRFLOW));
i : = 0 ;

250

Count := AnOperandList^.Count;
while (i < Count) do

begin
Operand := AnOperandList^.At(i);
Value := Evaluate(Operand^.GetValue, AnObjtList);
ValueList^.Insert(new(Pltem, Init(Value^.GetValue)));
inc(i);

end; {while}

case (AFnNo) of

FTDay:
begin

Operand := ValueList^.At(0);
DoFuncs := new(PResult,

Init(FnDay(Operand^.GetValue), 'String')) ;
end; {FTDay}

FTInt2Str:
begin
Operand := ValueList^.At(0);
val(Operand^.GetValue, Result, ErrCode);
DoFuncs := new(PResult,

Init(FnInt2Str(Round(Result)), 'String'));
end; {FTInt2Str}

FTNow: DoFuncs := new(PResult, Init(FnNow, 'Date'));

FTStrCat:
begin
Operand := ValueList^.At(0);
Operand2:= ValueList^.At(1);
DoFuncs := new(PResult,

Init(FnStrCat(Operand^.GetValue,
Operand2~.GetValue), 'String'));

end; {FTStrCat}

FTSubString:
begin
Operand := ValueList^.At(0);
Operand2:= ValueList^.At(1);
val (Operand2><.GetValue, Result, ErrCode);
Operand2:= ValueList^.At(2);
val(Operand2^.GetValue, Result2, ErrCode);
DoFuncs := new(PResult, Init(FnSubString

(Operand^.GetValue, round(Result), round(
Result2)), 'String'));

end; {FTSubString}

251

else DoFuncs := new(PResult, Init('TRUE','Boolean'));

end; {case}

end; {DoFuncs}

End. {Expr}

252

FUNCS.UNT
Unit Funcs;
{$V-} { Turn off string type checking.}

Interface

Uses
WinDos, WObjects, NexFile, PropObj, ItemObj;

Const
NUM_FUNCS = 5;

MAX_OPERANDS = 10;
OPERAND_OVRFLOW = 5;

MonthTbl : array[1..12] of integer = (
31, 28, 31, 30, 31, 30,
31, 31, 30, 31, 30, 31);

FuncTbl : array[0..NUM_FUNCS~1] of string = (
'DAY',
'INT2STR',
'NOW',
'STRCAT',
'SUBSTRING');

FTDay = 0 ;
FTInt2Str = 1;
FTNow = 2 ;
FTStrCat = 3 ;
FTSubString = 4;

Type
PResult = ^TResult;
TResult = object(TObject)

{Attributes}
Value: string;
PropType: TPropType;
{Methods}
constructor Init(AValue, APropType: string);
function GetValue: string; virtual;
function GetType : TPropType; virtual;

end; {TResult}

function IsFuncfAFunc: string): integer;
function FnDay(ADate: string): string;
function FnInt2Str(Anlnteger: integer): string;
function FnNow: string;

253

function FnStrCat(AString, AnotherString: string): string;
function FnSubString(AString: string; AStart, ACount:

integer): string;
function NextParenthesis(AList: string; Idx: TLinelndex):

TLinelndex;
procedure ParseOperand(var AList, AnOperand: string; var

Idx: TLinelndex);

Implementation

Constructor TResult.Init(AValue, APropType: string);
{---
Init: The string, AValue, is stored in the attribute, Value.
The string APropType is used to calculate a TPropType
equivalent, which is stored in the PropType attribute.--- }
begin
Value := AValue;
PropType := CalcType(APropType);

end; {TResult.Init}

Function TResult.GetValue: string;
{---
GetValue: The Value string is returned.--- }
begin

GetValue := Value;

end; {TResult.GetValue}

Function TResult.GetType: TPropType;
{---
GetType: The value of the PropType attribute is returned.--- }
begin

GetType := PropType;

end; {TResult.GetType}

Function IsFunc(AFunc: string): integer;
{---
IsFunc: This function returns either -1 if the string AFunc
is not the name of a NEXPERT OBJECT function, or an integer
index to the NEXPERT OBJECT function name in the array of
such names, FuncTbl.--- }
var

i : integer;

254
begin

i : = 0 ;
while ((i < NUM_FUNCS) and (FuncTbl[i] <> AFunc))

do inc(i);
if (i >= NUM_FUNCS) then IsFunc := -1
else IsFunc := i;

end; {IsFunc}

Function FnDay(ADate: string): string;
{---
FnDay: This Function extracts the Day value from the date
string, ADate. If the Day position of the string does not
hold a numeric value, then a value of 0 is returned to
indicate an error.-- -------- }
var

i, j : TLinelndex;
Day : string;
ErrCode: integer;
DayVal : real;

begin
j := length(ADate);
i := pos(' ', ADate);
i := i + pos(' ', copy(ADate, i+1, j-i)) + 1;
ParseWord(ADate, ' ', Day, i, j);

val(Day, DayVal, ErrCode);
if (ErrCode = 0) then FnDay := Day
else FnDay := 'O';

end; {FnDay}

Function FnInt2Str(Anlnteger: integer): string;
{---
FnInt2Str: This function returns the string value of the
integer, Anlnteger.--- }
var
AString : string;

begin
str(Anlnteger, AString);
FnInt2Str := AString;

end; {FnInt2Str}

Function FnNow: string;

255
{---
FnNow: This function returns a date string containing the
current calendar date and time.--- }
var

Year, Month, Day, Hour, Minute, Second, Garbage : word;
StrYr, StrMth, StrDay, StrHr, StrMin, StrSec : string;

begin
GetDate(Year, Month, Day, Garbage);
GetTime(Hour, Minute, Second, Garbage);

str(Year, StrYr);
str(Month, StrMth);
str(Day, StrDay);
str(Hour, StrHr);
str(Minute, StrMin);
str(Second, StrSec);

FnNow := concat(StrYr, ' ', StrMth, ' ', StrDay, ' ',
StrHr, ' ', StrMin, ' ', StrSec);

end; {FnNow}

Function FnStrCat(AString, AnotherString: string): string;
{--
FnStrCat: The FnStrCat NEXPERT OBJECT function which
concatenates two strings, AString and AnotherString; this
function performs this operation by invoking the concat
Pascal function.--- }
begin

FnStrCat := concat(AString, AnotherString);

end; {FnStrCat}

Function FnSubString(AString: string; AStart, ACount:
integer): string;

{---
FnSubString: A substring of AString, beginning with the
character indexed by AStart and continuing for ACount
characters is returned.--- }
begin

FnSubString := copy(AString, AStart+1, ACount);

end; {FnSubString}

Function NextParenthesis(AList: string; Idx: TLinelndex):

256

TLinelndex;
{---
NextParenthesis: This is a recursive function that is called
when an opening parenthesis is found in the string, AList.
It increments Idx until the matching closing parenthesis is
found. If another opening parenthesis is encountered, then
a recursive call is made to this function.--- }
begin
inc(Idx);
while (AList[Idx] <> ')') do

if (AList[Idx] = '(') then Idx := NextParenthesis(AList,
Idx)

else inc(Idx);
inc(Idx);
NextParenthesis := Idx;

end; {NextParenthesis}

Procedure ParseOperand(var AList, AnOperand: string; var
Idx: TLinelndex);
{---
ParseOperand: This procedure parses the next operand from
the string AList and stores it it the string AnOperand. The
integer, Idx, marks the starting character of AList at which
to begin parsing.--- }
var

Oldldx, Max : TLinelndex;

begin
inc(Idx);
Oldldx := Idx;
Max := length(AList) ;

{ Keep incrementing Idx until a closing parenthesis is
found or a separating comma is encountered. }

while ((Idx <= Max) and (AList[Idx] <> ',') and
(AList[Idx] <> ')')) do

if (AList[Idx] = '(') then
Idx := NextParenthesis(AList,Idx)

else inc(Idx);
{ Copy the substring representing the operand.}
AnOperand := copy(AList, Oldldx, Idx-Oldldx);

end; {ParseOperand}
End. {Funcs}

257
TSLOTGRP.UNT
Unit TSlotGrp;

Interface

Uses
GrpObj, Strings, WObjects, NexFile;

Const
SNameSize = 100;
SGRPJSXT = '.sgp';

Type
TSName = array [0..SNameSize] of char;

PSlotGrps = ^TSlotGrps;
TSlotGrps = object(TCollection)

{Methods}
constructor Init(AMax, AnOvrFlow: integer);

private
procedure FetchGrps; virtual;

end; {TSlotGrps}

Implementation

Constructor TSlotGrps.Init(AMax, AnOvrFlow: integer);
{---
Init: The special collection object, TSlotGrps, is
initialized by first calling the ancestral constructor, and
then calling a routine that loads slot group data from a
disk file.--- }
begin

TCollection.Init(AMax, AnOvrFlow);
FetchGrps;

end; {TSlotGrps}

Procedure TSlotGrps.FetchGrps;
{---
FetchGrps: This procedure reads the list of group names and
SLOT names, within each group, from the input file, AFile.
Each group is added to the list of groups that this object
holds.--- j.
var

p : PGroup;
AName : TGName;

258

ASlot : TSName;
AFile : text;

begin
{ Open the input file.}
OpenFiles(AFile, concat(NEX_FILE, SGRP_EXT));
while (not eof(AFile)) do

begin
{ Read the group name.}
readln(AFile, AName);
p := new(PGroup, Init(AName));

repeat
begin

{ Read the name of each SLOT in the group.}
readln(AFile, ASlot);
{ A blank line separates groups.}
if (StrLen(ASlot) > 1) then p^.AddSlot(ASlot);

end; {repeat}
until ((eof(AFile)) or (StrLen(ASlot) <= 1));

Insert(p);
end; {while}

CloseFiles(AFile);

end; {TSlotGrps.FetchGrps}

End. {TSlotGrp}

259
ITEMOBJ.UNT
Unit ItemObj;

Interface

Uses WObjects;

Const
ITEMJSIZE = 255;

Type
PItem = ^Tltem;
TItem = object(TObject)

{Attributes}
Value : string[ITEMJSIZE];
{Methods}
constructor Init(AValue: string);
function GetValue: string; virtual;

end; {TItem}

Implementation

Constructor TItem.Init(AValue: string);
{---
Init: The attribute, Value, is assigned the string, AValue.}--- }
begin

Value := AValue;

end; {TItem.Init}

Function TItem.GetValue: string;
{---
GetValue: The string, Value, is returned.--- }
begin

GetValue := Value;
end; {TItem.GetValue}

End. {ItemObj}

260

SLOTOBJ.UNT
Unit SlotObj;

{$V-} { Turn off

Interface

type checking for strings.}

Uses WinTypes, WinProcs, WObjects, Strings;

Const
NAME_SIZE
PROMPT_SIZE

string sizes for}
FORMAT_SIZE

}
SOURCE_SIZE
CONTEXT_SIZE
STRATEGY_SIZE

MAX_SRC=5; {
MAX_C0N=5; {
MAX_STRAT =
SRC_OVRFLOW
CON_OVRFLOW
STRAT OVRFLOW

= 255;
= 255; { These constants dictate the

= 40; { the slot components.

= 100;
= 255;
= 100;

These constants dictate the list size for}
the Source, Context, and Strategy lists.}
5;
= 5;
= 5;
= 5;

Type
PPrompt = ^TPrompt;
TPrompt = string[PROMPT_SIZE];

PFormat = ^TFormat;
TFormat = string[FORMAT_SIZE];

PSource = ^TSource;
TSource = object(TObject)

{Attributes}
Operator : string[SOURCE_SIZE];
Operandl : string!SOURCE_SIZE];
Operand2 : string[SOURCE_SIZE];
{Methods}
constructor Init(AnOperator, AnOperandl, AnOperand2:

string);
end; {TSource}

PContext = ^TContext;
TContext = object(TObject)

{Attributes}
Context : string[CONTEXTJ3IZE];

261
{Methods}
constructor Init(AContext: string);

end; {TContext}

PStrategy = ^TStrategy;
TStrategy = object(TObject)

{Attributes}
Lhs : string[STRATEGY_SIZE];
Rhs : string[STRATEGY_SIZE];
{Methods}
constructor Init(ALhs, ARhs: string);

end; {TStrategy}

PSlot = ^TSlot;
TSlot = object(TObject)

{Attributes}
Name : String[NAME_SIZE];
Active : boolean;
Prompt : PPrompt;
Format : PFormat;
Source : PCollection;
Context : PCollection;
Strategy: PCollection;

{Methods}
constructor
destructor
procedure
procedure
procedure

Init(AName: string);
Done; virtual;
AddPrompt(APrompt: string)
AddFormat(AFormat: string)

virtual;
virtual;

An0perand2: string);
AddSource(AnOperator, AnOperand1,

procedure
procedure
function
function
function
function
function
procedure

function
procedure

function
function
function

virtual;
AddContext(AContext: string); virtual;
AddStrategy(ALhs, ARhs: string); virtual;
GetName: string; virtual;
IsActive: boolean; virtual;
SwitchActivity: boolean; virtual;
GetPrompt: string; virtual;
GetFormat: string; virtual;
GetSource(Idx: Integer; var AnOperator,
AnOperandl, An0perand2: string); virtual;
GetContext(Idx: Integer): string; virtual;
GetStrategy(Idx: Integer; var ALhs, ARhs:
string); virtual;
SourceCount: Integer; virtual;
ContextCount: Integer; virtual;
StrategyCount: Integer; virtual;

end; {TSlot}

262
Implementation

Constructor TSlot.Init(AName: string);
{---
Init: The Prompt and Format pointers are set to nil and each
list is initialized. As well, the Active flag is set to the
default state, false.-- }
begin

Name := AName;
Active := false;
Prompt := nil;
Format := nil;
Source := new(PCollection, Init(MAX_SRC, SRC_OVRFLOW));
Context := new(PCollection, Init(MAX_CON, CON_OVRFLOW));
Strategy:=new(PCollection,Init(MAX_STRAT, STRAT_OVRFLOW));

end; {TSlot.Init}

Destructor TSlot.Done;
{---
Done: If they exit, the Prompt and Format memory is freed;
also, the lists are destroyed, freeing the allocated memory.-- }
begin

if (Prompt <> nil) then Dispose(Prompt);
if (Format <> nil) then Dispose(Format);
Dispose(Source, Done);
Dispose(Context, Done);
Dispose(Strategy, Done);

end; {TSlot.Done}

Procedure TSlot.AddPrompt(APrompt: string);
{---
AddPrompt: Memory is allocated to hold a string of type
TPrompt. APrompt is stored in this string and Prompt is set
to point at this string.--- }
var

p : PPrompt;

begin
p := new(PPrompt);
p^:= APrompt;
Prompt := p;

end; {TSlot.AddPrompt}

263

Procedure TSlot.AddFormat(AFormat: String);
{---
AddFormat: Memory is allocated to hold a string of type
TFormat. AFormat is stored in this string and Format is set
to point at this string.--- j.
var

f : PFormat;

begin
f := new(PFormat);
f^:= AFormat;
Format := f;

end; {TSlot.AddFormat}

Procedure TSlot.AddSource(AnOperator, AnOperandl,
An0perand2: string);

{---
AddSource: A new Source element is dynamically created. The
three parameters passed to this procedure are stored as
strings in this new element, and the new element is added to
the list, Source.--- }
var

s : PSource;

begin
{ Create a new Source element.}
s := new(PSource, Init(AnOperator, AnOperandl,

An0perand2));

Source'". Insert(s) ; { Insert it in the list. }

end; {TSlot.AddSource}

Procedure TSlot.AddContext(AContext: string);
{---
AddContext: A new Context string is dynamically created, and
AContext is stored in it. The Context string is then added
to the Context list.-- }
var

c : PContext;

begin
c := new(PContext, Init(AContext));

Context element.}
Context'". Insert (c) ;

{ Create a new

{ Add it to the

264

list. }

end; {TSlot.AddContext}

Procedure TSlot.AddStrategy(ALhs, ARhs: string);
{---
AddStrategy: Memory is allocated for a new Strategy element,
ALhs and ARhs are stored in it, and it is added to the
Strategy list.-- }

var
s : PStrategy;

begin
s := new(PStrategy, Init(ALhs, ARhs)); { Create a new

Strategy element.}
Strategy^.Insert(s); { Insert it in the list. }

end; {TSlot.AddStrategy}

Function TSlot.GetName: String;
{---
GetName: This function returns a pointer to the string
containing the name of the slot. If there is no string, a
nil pointer will be returned.--- }
begin
GetName := Name;

end; {TSlot.GetName}

Function TSlot.IsActive: boolean;
{---
IsActive: This function returns a boolean value indicating
whether the Active flag is true or false.--- }
begin

IsActive := Active;

end; {TSlot.IsActive}

Function TSlot.SwitchActivity: boolean;
{---
SwitchActivity: The boolean Active is given the opposite
value that it currently holds. The resulting boolean value
is returned by the function.--- }
begin

265

Active := not Active;
SwitchActivity := Active;

end; {TSlot.SwitchActivity}

Function TSlot.GetPrompt: string;
{---
GetPrompt: This function returns a string containing the
prompt. If there is no prompt, then an empty string is
returned.--- }
begin

if (Prompt <> nil) then GetPrompt := Prompt^
else GetPrompt := ";

end; {TSlot.GetPrompt}

Function TSlot.GetFormat: string;
{---
GetFormat: Similar to GetPrompt, except that the string
returned contains the format string.--- }
begin

if (Format <> nil) then GetFormat := Format^
else GetFormat := '';

end; {TSlot.GetFormat}

Procedure TSlot.GetSource(Idx: Integer; var AnOperator,
AnOperandl, An0perand2: string);

{---
GetSource: A pointer, s, is used to point to the Source
element indexed by Idx. The strings contained in this
element are then assigned to An Operator, AnOperandl, and
An0perand2.--- }
var

s : PSource;

begin
s := Source^.At(Idx);
AnOperator := s^.Operator;
AnOperandl := s~.Operandl;
An0perand2 := s^.0perand2;

end; {TSlot.GetSource}

Function TSlot.GetContext(Idx: Integer): string;

266

GetContext: A string is returned that contains the Context
element indexed by Idx.--- }
var

c : PContext;

begin
c := Context^.At(Idx);
GetContext := c^.Context;

end; {TSlot.GetContext}

Procedure TSlot.GetStrategy(Idx: Integer; var ALhs, ARhs:
string);

{---
GetStrategy: The parameters, ALhs and ARhs, are assigned the
values of the strings held by the Strategy element indexed
by Idx.-- }
var

s : PStrategy;

begin
s := Strategy^.At(Idx);
ALhs := s^.Lhs;
ARhs := s^.Rhs;

end; {TSlot.GetStrategy}

Function TSlot.SourceCount: Integer;
{---
SourceCount: The number of Source elements is returned.--- }
begin

SourceCount := Source^.Count;

end; {TSlot.SourceCount}

Function TSlot.ContextCount: Integer;
{---
ContextCount: The number of Context elements is returned.
{--- }
begin
ContextCount := Context^.Count;

end; {TSlot.ContextCount}

Function TSlot.StrategyCount: Integer;
{--- }

267

StrategyCount: The number of Strategy elements is returned.-- }
begin

StrategyCount := Strategy^.Count;

end; {TSlot.StrategyCount}

Constructor TSource.Init(AnOperator, AnOperandl, An0perand2:
string);

{---
Init: The Source object is initialized by storing strings
containing AnOperator, AnOperandl, and An0perand2 in it.
------------------------------------ -------------------------}
begin
Operator := AnOperator;
Operandl := AnOperandl;
0perand2 := An0perand2;

end; {TSource.Init}

Constructor TContext.Init(AContext: string);
{---
Init: The Context object is initialized by storing AContext
in it.-- }
begin

Context := AContext;

end; {TContext.Init}

Constructor TStrategy.Init(ALhs, ARhs: string);
{---
Init: ALhs and ARhs are stored in the Strategy object.-- }
begin

Lhs := ALhs;
Rhs := ARhs;

end; {TContext.Init}

End. {SlotObj}

268

OPERATOR.UNT
Unit Operator;
{$V-} { Turn off string type checking.}

Interface

Uses WObjects, WinDos, PropObj, ClassObj, ObtObj, NexFile,
ItemObj, Expr, Error, Funcs, Strings;

Const
MAX_ITEMS = 10;
ITEM OVRFLOW = 5;

Type
TriBool = (Yes, No, Unknown);
TFileType = (UnknownFileType, NXPDB);
TFill = (NoFill, Add);

PRetrieve = ^TRetrieve;
TRetrieve = object(TObject)

{Attributes}
string;
TFileType;
TFill;
string;
string;
PCollection;
PCollection;
string;

FileName
FileType
Fill
ObjtName
Create
Props
Fields
Cursor
{Methods}
constructor
destructor
function
function
function
function
function
function

Init(AName, TheRest: string);
Done; virtual;
GetFileName: string; virtual;
GetFileType: TFileType; virtual;
GetFill: TFill; virtual;
GetObjtName: string; virtual;
GetCreate: string; virtual;
PropCount: integer; virtual;
GetProp(Anldx: integer): string;function

private
function CalcFileType(AFileType:

virtual;
function CalcFill(AFill: string):
function CalcName(AName: string):
function CalcProps(AList: string):

virtual;
function CalcFields(AList: string)

virtual;

virtual;

string): TFileType;

TFill; virtual;
string; virtual;

: PCollection;

PCollection;

269
end; {TRetrieve}

function ProcYes(AnObjtList: PCollection; AVariable:
string): TriBool;

function ProcNo(AnObjtList: PCollection; AVariable:
string): TriBool;

function Procis(AnObjtList: PCollection; AnOperandl,
An0perand2: string): TriBool;

function ProcIsNot(AnObjtList: PCollection; AnOperandl,
An0perand2: string): TriBool;

function ProcEqual(AnObjtList: PCollection; AnOperandl,
Anoperand2: string): boolean;

function ProcNotEqual(AnObjtList: PCollection; AnOperandl,
Anoperand2: string): boolean;

procedure ProcReset(AnObjtList: PCollection; AnOperand:
string);

function ProcName(AnObjtList: PCollection; ASource, ADest:
string): TriBool;

procedure ProcCreateObject(AClassList, AnObjtList,
APropList: PCollection;AnOperandl,An0perand2 : string);

function ProcRetrieve(AClassList, AnObjtList, APropList:
PCollection; AnOperandl, An0perand2: string): boolean;

procedure ProcDo(AnObjtList: PCollection; ASource, ADest:
string);

procedure ProcShow(AnObjtList: PCollection;
AFileName,AParamList: string);

Implementation

Constructor TRetrieve.Init(AName, TheRest: string);
{---
Init: This is the constructor for the TRetrieve object. The
parameter, AName, holds the DOS name of the file to retrieve
from. However, this name is enclosed by double-quotes (")
and must be unquoted. The string, TheRest, holds the other
parameters of the Retrieve operator. These are parsed out,
one at a time and used to set the other attributes of the
TRetrieve object.-- }
var

i, Max : TLinelndex;
Tempi, Temp2 : string;

begin
{ Unquote the file name.}
FileName := UnQuoteString(AName);

{ Parse the parameters from TheRest.}
i := 1; Max := length(TheRest);

270
while (i < Max) do

begin
ParseWord(TheRest, Tempi, i, Max);
inc(i);
ParseWord(TheRest, Temp2, i, Max);
inc(i);

{ Depending on the contents of Tempi, set the
appropriate attribute.}

if (Tempi = '@TYPE') then
FileType := CalcFileType(Temp2)

else if (Tempi = '@FILL') then Fill := CalcFill(Temp2)
else if (Tempi = '@NAME') then

ObjtName := CalcName(Temp2)
else if (Tempi = '^CREATE') then Create := Temp2
else if (Tempi = '^PROPS') then

Props := CalcProps(Temp2)
else if (Tempi = '^FIELDS') then

Fields := CalcFields(Temp2)
{ NB: no Interpretations handled by @CURSOR!!!}
else if (Tempi = '^CURSOR') then Cursor := Temp2
else writeln('Parameters not understood: ',Tempi,'

',Temp2);
end; {while}

end; {TRetrieve.Init}

Destructor TRetrieve.Done;
{---
Done: This is the destructor for the TRetrieve object. The
two collection attributes were dynamically created;
therefore, their memory needs to be freed.--- }
begin

{ Deallocate the list memory.}
dispose(Props, done);
dispose(Fields, done);

end;

Function TRetrieve.GetFileName: string;
{---
GetFileName: This function simply returns the FileName
attribute.-- }
begin
GetFileName := FileName;

end; {TRetrieve.GetFileName}

271

Function TRetrieve.GetFileType: TFileType;
{---
GetFileType: This function simply returns the FileType
attribute.--- }
begin
GetFileType := FileType;

end; {TRetrieve.GetFileType}

Function TRetrieve.GetFill: TFill;
{---
GetFill: The value of the Fill attribute is returned.-- }
begin

GetFill := Fill;

end; {TRetrieve.GetFill}

Function TRetrieve.GetObjtName: string;
{---
GetObjtName: The string attribute, ObjtName, is returned by
this function.-- }
begin

GetObjtName := ObjtName;

end; {TRetrieve.GetObjtName}

Function TRetrieve.GetCreate: string;
{---
GetCreate: The string attribute, Create, is returned by this
function.--- }
begin

GetCreate := Create;

end; {TRetrieve.GetCreate}

Function TRetrieve.PropCount: integer;
{---
PropCount: The number of items in the Props collection is
returned.--- }
begin

PropCount := Props'^. Count ;

end; {TRetrieve.PropCount}

272
Function TRetrieve.GetProp(Anldx: integer): string;
{---
GetProp: If the index, Anldx, is within the bounds of the
collection, Props, the value held by the item indexed by
Anldx is returned. Otherwise, an empty string is returned.--- }
var

p : Pltem;

begin
if (Anldx < Props'^. Count) then
begin

p := Props'^. At (Anldx) ;
GetProp := p^.GetValue;

end {if}
else GetProp := '';

end; {TRetrieve.GetProp}

Function TRetrieve.CalcFileType(AFileType: string):
TFileType;
{---
CalcFileType: Based on the contents of the string parameter,
AFileType, a value of the type, TFileType, is returned.--- }
begin

if (AFileType = 'NXPDB') then CalcFileType := NXPDB
else CalcFileType := UnknownFileType;

end; {TRetrieve.CalcFileType}
Function TRetrieve.CalcFill(AFill: string): TFill;
{---
CalcFill: A value of the type, TFill, is returned, based on
the contents of the string, AFill.--- }
begin

if (AFill = 'ADD') then CalcFill := Add
else CalcFill := NoFill;

end; {TRetrieve.CalcFill}

Function TRetrieve.CalcName(AName: string): string;
{---
CalcName: The quoted-string, AName, is first unquoted, and
then all substrings enclosed by exclamation points (!) are
extracted and concatenated together. The resulting
composite string is returned.--- }

273
var

Name, Tempi, Temp2 : string;
i, Max : TLinelndex;

begin
Name := '';
Tempi := UnQuoteString(AName);
i := 1; Max := length(Tempi);
while (Templ[i] = '!') do

begin
inc(i);
ParseWord(Tempi, '!', Temp2, i, Max);
Name := concat(Name, Temp2);
inc(i);

end; {while}

CalcName := Name;

end; {TRetrieve.CalcName}

Function TRetrieve.CalcProps(AList: string): PCollection;
{---
CalcProps: This function takes a string containing a list of
comma separated PROPERTY names, and extracts the names from
it and stores them as TItem objects in the collection,
PropList. Temp, i, Max are used in the extraction of the
names.

}
var

PropList
i, Max
Temp

PCollection;
TLinelndex;
string;

begin
PropList := new(PCollection, Init(MAX_ITEMS,

ITEM_OVRFLOW));
i := 1; Max := length(AList);
while (i < Max) do

begin
ParseWord(AList, Temp, i, Max);
if (Temp <> ") then PropList^.Insert(new(PItem,

inc(i);
end; {while}

Init(Temp)));

CalcProps := PropList;

end; {TRetrieve.CalcProps}

274

Function TRetrieve.CalcFields(AList: string): PCollection;
{---
CalcFields: The string, AList, contains a list of comma
separated, quoted (") strings that represent record field
names. This function parses out the quoted strings, strips
the quotes away, and adds them to the collection, FieldList,
which is returned as the result of the function. Temp, i,
and Max are used in the extraction of the fields.-- }
var

FieldList : PCollection;
i, Max : TLinelndex;
Temp : string;

begin
FieldList := new(PCollection, Init(MAX_ITEMS,

ITEM_OVRFLOW));
i := 1; Max := length(AList);
while (i < Max) do

begin
ParseWord(AList, Temp, i, Max);
if (Temp <> '') then
FieldList^.Insert(new(PItem,

Init(UnQuoteString(Temp))));
inc(i);

end; {while}

CalcFields := FieldList;

end; {TRetrieve.CalcFields}

Function ProcYes(AnObjtList: PCollection; AVariable:
string): TriBool;
{---
ProcYes: The value corresponding to the variable, AVariable,
is determined, and then the value is converted into a return
value of the type, TriBool.--- }
var

s : string;

begin
s := FetchValue(AVariable, AnObjtList);
if (s = '') then ProcYes := Unknown
else if (CalcBoolValue(s)) then ProcYes := Yes
else ProcYes := No;

end; {ProcYes}

275

Function ProcNo(AnObjtList: PCollection; AVariable: string):
TriBool;
{---
ProcNo: Since the No operator is the logical negation of the
Yes operator, this function calculates the value of the No
operator by calling ProcYes and returning the opposite
result (Result). The exception is in the case ProcYes
returns Unknown; if it does, then ProcNo also returns
Unknown.--- }
var

Result : TriBool;

begin
{ Invoke ProcYes.}
Result := ProcYes(AnObjtList, AVariable);
if (Result = Yes) then ProcNo := No
else if (Result = No) then ProcNo := Yes
else ProcNo := Unknown;

end; {ProcNo}

Function Procis(AnObjtList: PCollection; AnOperandl,
An0perand2: string): TriBool;

{---
Procis: AnOperandl must be an OBJECT or OBJECT PROPERTY
specification. The value of this OBJECT or OBJECT PROPERTY
is retrieved from the list, AnObjtList, and stored in the
variable, Value. An0perand2 is either a boolean constant,
one or more string constants, or one of 'KNOWN', 'UNKNOWN',
or 'NOTKNOWN' (UNKNOWN and NOTKNOWN are treated the in the
same manner). This function returns a TriBool value
indicating whether or not Value matches An0perand2. In the
case of 'KNOWN' and UNKNOWN (and NOTKNOWN), the TriBool
returned indicates whether Value contains any value or Value
contains no value, respectively.--- }
var

s : string;
r : PResult;
i, Max: TLinelndex;
Temp : boolean;

begin
r := Evaluate(AnOperandl, AnObjtList);
if (An0perand2 = 'KNOWN') then

if (r^.GetValue <> ") then Procis := Yes
else Procis := No

else if ((An0perand2 = 'UNKNOWN') or (An0perand2 =

276
'NOTKNOWN')) then

if (r^.GetValue = '') then Procis : = Yes
else Procis := No

else
if (rA.GetValue = '') then Prods := Unknown
else if (AnOperand2[1] <> '"') then

if (r^.GetValue = AnOperand2) then Prods := Yes
else Prods := No

else
begin
Max := length(AnOperand2);
i : = 2 ;
Temp := false;
while ((i < Max-3) and (not Temp)) do

begin
ParseWord(An0perand2, , s, i, Max);
Temp := s = rdGetValue;
if (i < Max-3) then i := i+3;

end; {while}

if (Temp) then Prods := Yes
else Prods := No;

end; {else}

end; {Prods}

Function ProcIsNot(AnObjtList: PCollection; AnOperandl,
An0perand2: string): TriBool;

{---
ProcIsNot: This function returns a boolean value which is
simply the logical negation of Prods, with the same
parameters. If Procis returns Unknown, then ProcIsNot is
also Unknown.-- }
var

Result : TriBool;

begin
Result := Procis(AnObjtList,AnOperandl,An0perand2);
if (Result = Yes) then ProcIsNot := No
else if (Result = No) then ProcIsNot := Yes
else ProcIsNot := Unknown;

end; {ProcIsNot}

Function ProcEqual(AnObjtList: PCollection; AnOperandl,
Anoperand2: string): boolean;

{--
ProcEqual: If the value of the attributes indicated by

277

AnOperandl & AnOperand2 are known and equivalent, then this
function returns true; otherwise a false value is returned.-- }
var

vl, v2 : string;

begin
vl := FetchValue(AnOperandl, AnObjtList);
{ Is the value of AnOperandl known?}
if (vl <> '') then
begin

v2 := FetchValue(An0perand2, AnObjtList); {Known}
ProcEqual := vl = v2;

end {if}
else

ProcEqual := false; {Unknown}

end; {ProcEqual}

Function ProcNotEqual(AnObjtList: PCollection; AnOperandl,
Anoperand2: string): boolean;

{---
ProcNotEqual: The NotEqual operator is the counter-part of
the Equal operator. As such, it is calculated by calling
ProcEqual and logically negating the boolean result. This
negated result is returned by the function.--- }
begin

ProcNotEqual := not ProcEqual(AnObjtList, AnOperandl,
An0perand2);

end; {ProcNotEqual}

Procedure ProcReset(AnObjtList: PCollection; AnOperand:
string);

{---
ProcReset: Invoking the Reset operator causes the attribute
represented by AnOperand to be reset to the unknown state
(") •-- }
begin
AssignValue(AnObjtList, AnOperand, '');

end; {ProcReset}

Function ProcName(AnObjtList: PCollection; ASource, ADest:
string): TriBool;

{---
ProcName: Using the Name operator causes the value of the

278

NEXPERT OBJECT expression, ASource, to be assigned to the
attribute with the name ADest. Of course, the two must be
type compatible. AnObjtList is needed for finding the
destination attribute. If ASource hasn't been defined yet,
the operation is not performed, and the function returns
Unknown. Otherwise, the function returns Yes.--- }
var

r : PResult;
t : TPropType;

begin
{ Evaluate the source.}
r := Evaluate(ASource, AnObjtList);

if (r^.GetValue <> ") then
begin

{ Retrieve the type of the destination.}
t := FetchType(ADest, AnObjtList);

{ If the type is Integer, round off the Float result.}
if (t = Propint) then

{ Check if the result is indeed a Float.}
if ((r^.GetType = PropFloat) or (r^.GetType =

Propint)) then begin
str(CalcIntValue(r^.GetValue),ASource);
AssignValue(AnObjtList, ASource, ADest)

end {if}
else TypeClash(ASource, ADest)

{ For all other types, check for type compatibility.}
else if (t = r^.GetType) then
AssignValue(AnObjtList, rA.GetValue, ADest)

else TypeClash(ASource, ADest);
ProcName := Yes;

end {if}
else ProcName := Unknown;

end; {ProcName}

Procedure ProcessClass(Line: TLine; AClassList, APropList:
PCollection; var Objt: PObjt);

{ ---
ProcessClass: The parameter, Line, contains a CLASS name.
The list, AClassList, is searched for a CLASS having this
name. If such a CLASS is found, all PROPERTIES of this
CLASS are added to the list of PROPERTIES associated with
the current OBJECT, Objt.-- }

279
var

PropName: string;
i, j: integer;
Cis: PClass;

function ClassMatch(c: PClass): boolean; far;
begin
ClassMatch := c^.GetName = Line;

end; {ClassMatch}

function PropMatch(p: PProp): boolean; far;
begin

PropMatch := p^.GetName = PropName;
end; {PropMatch}

begin
Cis := AClassList^.FirstThat(@ClassMatch);
if (Cis <> nil) then
begin

j := Cls^.PropCount;
i := 0;
while (i < j) do

begin
PropName := Cls^.GetProp(i);
if (PropName <> '') then
Objt^.AddProp(APropList^.FirstThat(@PropMatch));

inc(i);
end; {while}

end; {if}
end; {ProcessClass}

Procedure ProcCreateObject(AClassList, AnObjtList,
APropList: PCollection; AnOperandl, AnOperand2: string);

{---------------------------------- ■--------------------------
ProcCreateObject: This procedure performs the duties of the
CreateObject operand. The operand takes one or two operands
(AnOperandl, AnOperand2). If only one operand is used then
AnOperand2 is an empty string. The first operand is the
name of an OBJECT to be created or a CLASS to be made a
subCLASS. The second operand, if there is one, is a list of
CLASS and/or OBJECT names, for which the first operand is
made an instance or, subOBJECT of, or is made a subCLASS of.
CList and OList are used to hold the lists of CLASSES
(CList) and OBJECTS (OList) held by the second operand.
ClassName and ObjtName are used to hold the name indicated
by AnOperandl, depending on whether it is a CLASS or OBJECT
name. (NB: both operands may contain patterns or interpret
ations. Note: as is, this procedure does not handle

280

subOBJECTS or patterns.-- }
var

ClassName, ObjtName : string;
Objt : PObjt;
AClass : PItem;
i, Count : integer;
CList, OList : PCollection;

begin
ObjtName := '';
{ Process the first operand.}
if ((AnOperandl[1] = 'V) or (AnOperandl[1] = #39)) then
ObjtName := Interpretation(AnObjtList, AnOperandl)

else if (AnOperandl[1] = '!') then
ClassName := ExtractClass(AnOperandl)

else ObjtName := AnOperandl;

{ If the first operand is an OBJECT, create an OBJECT with
this name.}

if (ObjtNameo'') then Objt := new(PObjt, Init(ObjtName));

if (An0perand2 <> ") then
begin

{ Process the second operand.}
ExtractCreateLists(CList, OList, AnOperand2);

i : = 0 ;
Count := CList^.Count;
{ Add each CLASS in the list to the new OBJECT.}
while (i < Count) do

begin
AClass := CList^.At(i);
ProcessClass(AClass^.GetValue, AClassList,
APropList, Objt);

inc(i);
end; {while}

end; {if}

InsertObjt(AnObjtList, Objt);

end; {ProcCreateObject}

Function GetAttributes(AList: string): PCollection;
{---
GetAttributes: This function extracts all the delimited
strings from the string AList. Each substring is added to a
collection of strings, Attr. When the end of AList is
reached, the collection is returned.

281
--- }
var
Attr : PCollection;
i, Max : TLinelndex;
Temp : string;

begin
{ Initialize the new collection.}
Attr := new(PCollection, Init(MAX_ITEMS, ITEM_OVRFLOW));
i := 1; Max := length(AList);
{ Parse the string for delimited substrings.}
while (i < Max) do

begin
i := NextWord(AList, i, Max);
ParseWord(AList, Temp, i, Max);
inc(i);
AttrÆ.Insert(new(Pltem, Init(Temp)));

end; {while}

{ Return the new collection.}
GetAttributes := Attr;

end; {GetAttributes}

Procedure AddAttributes(ARetrieve: PRetrieve; AnAttrList:
PCollection; AnObjt: PObjt);

{---
AddAttributes: The list of values held by AnAttrList are
assigned to the values held by the PROPERTIES of the OBJECT,
AnObjt. If there are more values than PROPERTIES to hold
them, then an error message is displayed, and no assignment
takes place.--- }
var

i, Idx, Count : integer;
Prop : string;
p : PProp;
a : Pltem;

begin
Idx := 0; Count := AnAttrList .̂Count;

{ Check for too many values in the list.}
if (Count > AnObjt^.GetPropCount) then
begin
writeln('Too many attributes to add to

',AnObjt^-.GetName, ' . ') ;
halt(1);

end {if}

282

else
{ Assign the values to the corresponding PROPERTIES.}
while (Idx < Count) do

begin
p := AnObjt^.GetProp(Idx);
i := 0; a := nil;
while (i < ARetrieve^.PropCount) do

begin
Prop := ARetrieve .̂GetProp(i);
if (Prop = p^.GetName) then
begin

a := AnAttrList^.At(i);
i := ARetrieve^.PropCount;

end; {if}
inc(i);

end; {while}
if (a <> nil) then .SetValue(a~.GetValue);
inc(Idx);

end; {while}

end; {AddAttributes}

Function GetNameIndex(AFieldList: PCollection; AName:
string): integer;

{---
GetNameIndex: This function searches the collection of
TIterns, AFieldList, for one that matches the string, AName.
If a match is found (Found = TRUE), an integer index to the
matching item in the collection is returned. Otherwise, a
value of -1 is returned.-- }
var

p : PItem;
Idx, Count : integer;
Found : boolean;

begin
Idx := 0; Count := AFieldList^.Count;
while ((Idx < Count) and (not Found)) do

begin
p := AFieldList^.At(Idx);
Found := p^.GetValue = AName;
if (not Found) then inc(Idx);

end; {while}

if (Found) then GetNameIndex := Idx
else GetNamelndex := -1;

end; {GetNamelndex}

283
Function FileFound(AFileName: string): boolean;
{---
FileFound: A search of all directories in the current path
is made for the file AFileName. If it is found, this
function returns TRUE; otherwise, the result is false.-- }
var

s: array[0..fsPathName] of char;
FileName: array[0..12] of char;

begin
StrPCopy(FileName,AFileName);
FileSearch(s, FileName, GetEnvVarf'PATH'));
FileFound := s[0] <> #0;

end; {FileFound}

Function ProcRetrieve(AClassList, AnObjtList, APropList:
PCollection; AnOperandl, AnOperand2: string): boolean;

{---
ProcRetrieve: This function performs the operation of the
NEXPERT OBJECT Retrieve operator. AnOperandl holds the name
of the file to be read from, and AnOperand2 contains a list
of parameters for the retrieve. A TRetrieve object is
created and is used to hold info indicating how the file
data is to be interpreted. Each line (Line) of the file is
then read and the information contained therein is parsed
out and added to a list (Attr) of such data. If new OBJECTS
are to be made (@FILL=ADD), then ProcCreateObjt is invoked
and the data in Attr is stored in the PROPERTIES of the new
OBJECT.--- }
var

r : PRetrieve;
a : Pltem;
InFile : text;
Line : string;
Attr : PCollection;
i, Count, Nameldx : integer;

begin
{ Create a new TRetrieve object.}
r := new(PRetrieve, Init(AnOperandl, An0perand2));
Nameldx := GetNameIndex(r~.Fields, r^.GetObjtName);
if (FileFound(r~.GetFileName)) then
begin
OpenFiles(InFile, r^.GetFileName);
{ Skip the first two lines of a NXPDB file.}
if (r^.GetFileType = NXPDB) then
begin

284

if (not eof(InFile)) then readln(InFile);
if (not eof(InFile)) then readingInFile);

{ Process the rest of the file.}
while (not eof(InFile)) do

begin
readln(InFile, Line);
if (Line[l] <> '*') then
begin
Attr := GetAttributes(Line);
if (r^.GetFill = Add) then
begin

a := Attr^.At(Nameldx);
ProcCreateObject(AClassList, AnObjtList,

APropList,a^.GetValue, rA.GetCreate);
AddAttributes(r, Attr, FindObjt(

AnObjtList, a^.GetValue));
end; {if}
dispose(Attr, done);

end; {if}
end; {while}

ProcRetrieve := true;
end {if}

else
ProcRetrieve := false;

CloseFiles(InFile);
end {if}
else

ProcRetrieve := false;

dispose(r, done);
end; {ProcRetrieve}

Procedure ProcDo(AnObjtList: PCollection; ASource, ADest:
string);

{---
ProcDo: The expression held by the parameter, ASource, is
evaluated and the result is assigned to the OBJECT indicated
by the parameter ADest.-- }
var

r : PResult;
t : TPropType;

begin
{ Evaluate the source.}
r := Evaluate(ASource, AnObjtList);

285

{ Retrieve the type of the destination.}
t := FetchType(ADest, AnObjtList);

{ If the type is Integer, round off the Float result.}
if (t = Proplnt) then

{ Check if the result is indeed a Float.}
if ((r^.GetType = PropFloat) or (r^.GetType = Proplnt))
then begin

str(CalcIntValue(r^.GetValue),ASource);
AssignValue(AnObjtList, ASource, ADest)

end {if}
else TypeClash(ASource, ADest)

{ For all other types, check for type compatibility.}
else if (t = r^.GetType) then AssignValue(AnObjtList,

r*.GetValue, ADest)
else TypeClash(ASource, ADest);

end; {ProcDo}

Procedure ProcShow(AnObjtList: PCollection; AFileName,
AParamList: string);

{---
ProcShow: Display the contents of the file AFileName.-- }
var

r : PResult;
AFile : text;
Line : string;

begin
r := Evaluate(AFileName,AnObjtList);
if (r^.GetValue <> '') then

if (FileFound(r^.GetValue)) then
begin

OpenFiles(AFile, r~.GetValue);
while (not eof(AFile)) do readln(AFile, Line);
writeln(Line);
CloseFiles(AFile)

end; {if}

dispose(r,done);

end; {ProcShow}

End. {Operator}

286

ERROR.UNT
Unit Error;

Interface

Uses WinCrt;

procedure TypeClash(ASource, ADest: string);

Implementation

Procedure TypeClash(ASource, ADest: string);
{---
TypeClash: Report a type mismatch into a standard out
window.-- }
begin

writeln;
writeln('TYPE MISMATCH!');
writeln('The error occurred when ', ASource,' was assigned

to ', ADest);
writeln('Consequently, the assignment has been ignored.');
writeln;

end; {TypeClash}

End. {Error}

287
STACK.UNT

Unit Stack;

Interface

Uses WObjects;

Type
PStackltem = ^TStackltem;
TStackltem = record

Item : Pointer;
Next : PStackltem;

end; {TStackltem}

PStack = ^TStack;
TStack = object(TObject)

{Attributes}
TOS : PStackltem;
{Methods}
constructor
function
function
procedure
function

end; {TStack}

Init;
Top: Pointer; virtual;
Pop: Pointer; virtual;
Push(AnItem: Pointer); virtual
IsEmpty: boolean; virtual;

r

Implementation

constructor TStack.Init;
{---
Init: The conclusion stack is set to the empty state by
assigning TOS the nil pointer.--- }
begin

TOS := nil;

end; {TStack.Init}

function TStack.Top: Pointer;
{---
Top: A pointer to the item stored in the top element of the
stack is returned, but the top element is left intact and
the stack is not altered in any way.-- }
begin

Top := TOS^.Item;

end; {TStack.Top}

288
function TStack.Pop: Pointer;
{---
Pop: A pointer (p) to the item stored in the first element
of the stack (TOS) is returned. The top element is also
deallocated (via q), and the top of stack pointer (TOS) is
move downward by one element.--- }
var

p : Pointer;
q : PStackltem;

begin
{ Fetch the stack values.}
p := TOS''. Item;

{ Dispose of the top item and update the stack.}
q := TOS;
TOS := TOS^.Next;
dispose(q);
Pop := p;

end; {TStack.Pop}

procedure TStack.Push(AnItem: Pointer);
{---
Push: A new stack item is dynamically created and Anltem is
stored in it. The new item (p) is then inserted into the
linked list representing the stack, and the TOS pointer is
updated.
-- --------------- }
var

p : PStackltem;

begin
{ Create a new stack element and insert the appropriate

values.}
new(p);
p^.Item := Anltem;

{ Insert p and update the Top Of Stack pointer.}
p''. next : = TOS ;
TOS := p;

end; {TStack.Push}

289

function TStack.IsEmpty: boolean;
{---
IsEmpty: If the conclusion stack is empty, then this
function returns true; otherwise, false is returned.-- }
begin

IsEmpty := TOS = nil;

end; {TStack.IsEmpty}

End. {ConStack}

290
RULELIST.UNT
Unit RuleList;
{$V-} { Turn off type checking for strings.}

Interface

Uses WinCrt, WObjects, RuleObj, NexFile;

Const
MAX_RULE = 25;
RULE_OVRFLOW = 5 ;
RULE_EXT = '.rul';

Type
PRuleList = ^TRuleList;
TRuleList = object(TCollection)

constructor Init(AMax, AnOvrFlow: integer);
private
procedure ProcessIC(AnIC: TLine; var ARule: PRule);
virtual;

procedure ProcessLhs(ALine: TLine; var RuleFile: text;
var ARule: PRule); virtual;

procedure ProcessRhs(ALine: TLine; var RuleFile: text;
var ARule: PRule); virtual;

procedure FetchRules; virtual;
end; {TRuleList}

Implementation

Constructor TRuleList.Init(AMax, AnOvrFlow: integer);
{---
Init: Construct TRuleList as a collection; then retrieve the
rules.--- }
begin

TCollection.Init(AMax, AnOvrFlow);
FetchRules;

end; {TRuleList.Init}

Procedure TRuleList.ProcessIC(AnIC: TLine; var ARule:
PRule);

{ ---
ProcessIC: The string AnIC is converted to a real value. If
the conversion is ok, the IC of ARule is assigned the
integer equivalent of the real.--}
var

291
Err : integer;
Result : real;

begin
val(AnIC, Result, Err);
if (Err = 0) then ARule^.SetlC(Trunc(Result));

end; {TRuleList.ProcessIC}

Procedure TRuleList.ProcessLhs(ALine: TLine; var RuleFile:
text; var ARule: PRule);

{ -- ----------------
ProcessLhs: The Operator line (ALine) of a Lhs expression
has been encountered and this procedure fetches the next two
lines (Operandl, Operand2) which contain the first and
second operands of the expression, from the input file,
RuleFile. Then, the Lhs expression is added to the list of
such expressions in the RULE, ARule.-- }
var

Operator, Operandl, Operand2 : TLine;

begin
Operator := ALine;
readln(RuleFile, Operandl);
readln(RuleFile, Operand2);
ARule^.AddLhs(Operator, Operandl, Operand2);

end; {TRuleList.ProcessLhs}

Procedure TRuleList.ProcessRhs(ALine: TLine; var RuleFile:
text; var ARule: PRule);

{ ---
ProcessRhs: The Operator line (ALine) of a Rhs expression
has been encountered and this procedure fetches the next two
lines (Operandl, Operand2) which contain the first and
second operands of the expression, from the input file,
RuleFile. Then, the Rhs expression is added to the list of
such expressions in the RULE, ARule.-- }
var

Operator, Operandl, Operand2 : TLine;

begin
Operator := ALine;
readln(RuleFile, Operandl);
readingRuleFile, Operand2);
ARule^.AddRhs(Operator, Operandl, Operand2);

end; {TRuleList.ProcessRhs}

292

Procedure TRuleList.FetchRules;
{ ---
FetchRules: The file, RuleFile, is read and the RULE data is
extracted from it and stored in RULE objects (r), which are
kept in the collection of rules. The integers, i and j, are
used to parse the lines of the file; LineType is used to
store the line type, as indicated by the first two
characters on the input line. Also, Line is used to hold
each line of the input file, while it is being analysed.-- }
var

RuleFile : text;
r : PRule;
i,j : TLinelndex;
LineType : TLineType;
Line, RuleLine : TLine;

begin
OpenFiles(RuleFile, concat(NEX_FILE, RULE_EXT));

{ Discard the first Line.}
readln(RuleFile);
while (not eof(RuleFile)) do

begin
{ Fetch the name of the class.}
readln(RuleFile, Line);
i := 1; j := length(Line);
ParseWord(Line,' ',RuleLine,i,j);

{ Allocate a new class.}
r := new(PRule, Init(RuleLine));

while ((not eof(RuleFile)) and (length(Line) > 0)) do
begin
{Fetch the Line-type of the next Line in the file.}
readln(RuleFile, Line);
i := 1; j := length(Line);
ParseWord(Line,' ',LineType,i,j);
RuleLine := ProcessComponent(Line,i,j);

{ Act according to the LineType.}
if (LineType = 'IC') then ProcessIC(RuleLine, r)
else if (LineType = 'Ll') then
ProcessLhs(RuleLine, RuleFile, r)

else if (LineType = 'Rl') then
ProcessLhs(RuleLine, RuleFile, r)

else if (LineType = 'HY') then
r^.SetHypo(RuleLine);

end; {while}

293
Insert(r);

end; {while}

CloseFiles(RuleFile) ;

end; {TRuleList.FetchRules}

End. {RuleList}

294
RULEOBJ.UNT
Unit RuleObj;

Interface

Uses WinTypes, WinProcs, WObjects;

Const
MAX_EXPRS = 10;
EXPR_OVRFLOW = 5 ;

RNAME_SIZE = 5;
HYPO_SIZE = 100;
OPERAND_SIZE = 255;

Type
TOperator = (_Do, _Let, _CreateObject, _DeleteObject,
-Retrieve, _Write, _Reset, —Strategy, _Show, —Execute,
_LoadKB, _UnloadKB, _Nolnherit, _InhMethod,
—Interrupt, _InitValue, _RunTimeValue, _InhValueDown,
_AskQuestion, —Backward, _InhValueUp, _Is, _IsNot,
—Name, _No, _Yes);

POperand = ^TOperand;
TOperand = string[OPERAND—SIZE];

PExpr = ^TExpr;
TExpr = object(TObject)
Operator : TOperator;
Operandl : TOperand;
Operand2 : POperand;
{Methods}
constructor Init(AnOperator: string);
destructor Done; virtual;
procedure SetOperandl(AnOperand: TOperand);
procedure SetOperand2(AnOperand: TOperand);
function GetOperator: TOperator; virtual;
function GetOperandl: TOperand; virtual;
function GetOperand2: TOperand; virtual;

end; {TExpr}

virtual;
virtual;

PRule = ^TRule;
TRule = object(TObject)

{Attributes}
Name : string[RNAME_SIZE];
IC : integer;
Hypo : string[HYPO_SIZE];
Lhs : PCollection;

295

Rhs : PCollection;
{Methods}
constructor Init(AName: string);
destructor Done; virtual;
procedure SetIC(AnIC: integer); virtual;
procedure SetHypo(AHypo: string); virtual;
procedure AddLhs(AnOperator, AnOperandl, An0perand2

string); virtual;
procedure AddRhs(AnOperator, AnOperandl, An0perand2

string); virtual;
GetName: string; virtual;
GetIC: integer; virtual;
GetHypo: string; virtual;
GetLhs(Idx: integer): PExpr; virtual;
GetRhs(Idx: integer): PExpr; virtual;
LhsCount: integer; virtual;
RhsCount: integer; virtual;

function
function
function
function
function
function
function

end; {TRule}

function CalcOperator(AnOperator: string): TOperator;

Implementation

Constructor TRule.Init(AName: string);
{---
Init: The Name field is assigned the value, AName, IC is set
to 1 (default), and each of the lists is initialized.-- }
begin

Name := AName;
IC := 1;
Lhs := new(PCollection, Init(MAX_EXPRS, EXPR_OVRFLOW));
Rhs := new(PCollection, Init(MAX_EXPRS, EXPR_OVRFLOW));

end; {TRule.Init}

Destructor TRule.Done;
{---
Done: The Lhs and Rhs list are disposed of, freeing the
memory allocated to them.--- }
begin

dispose(Lhs, done);
dispose(Rhs, done);

end; {TRule.Done}

296

Procedure TRule.SetIC(AnIC: integer);
{---
SetIC: The attribute, IC, is assigned the value of AnIC.-- }
begin

IC := AnIC;

end; {TRule.SetIC}

Procedure TRule.SetHypo(AHypo: string);
{---
SetHypo: The attribute, Hypo, is assigned the value of
AHypo.-- }
begin

Hypo := AHypo;

end; {TRule.SetHypo}

Procedure TRule.AddLhs(AnOperator, AnOperandl, An0perand2:
string);

{---
AddLhs: A new TExpr object (e) is dynamically created, with
AnOperator as an operator, AnOperandl as operandl, and, if
An0perand2 is not an empty string, An0perand2 as operand2.
This new object is then inserted into the list, Lhs.-- }
var

e : PExpr;

begin
e := new(PExpr, Init(AnOperator));
e~.SetOperandl(AnOperandl);
if (An0perand2 <> '') then e^.Set0perand2(An0perand2);
Lhs^.Insert(e);

end; {TRule.AddLhs}

Procedure TRule.AddRhs(AnOperator, AnOperandl, An0perand2:
string);

{---
AddRhs: A new TExpr object (e) is dynamically created, with
AnOperator as an operator, AnOperandl as operandl, and, if
An0perand2 is not an empty string, An0perand2 as operand2.
This new object is then inserted into the list, Rhs.--- }
var

e : PExpr;

297

begin
e := new(PExpr, Init(AnOperator));
e^.SetOperandl(AnOperandl);
if (AnOperand2 <> ") then eÆ.SetOperand2(AnOperand2);
Rhs^.Insert(e);

end; {TRule.AddRhs}

Function TRule.GetName: string;
{---
GetName: The string value of Name is returned.-- }
begin
GetName := Name;

end; {TRule.GetName}

Function TRule.GetIC: integer;
{---
GetIC: The integer value of IC is returned.--- }
begin

GetIC := IC;

end; {TRule.GetIC}

Function TRule.GetHypo: string;
{---
GetHypo: The string value of Hypo is returned.-- }
begin

GetHypo := Hypo;

end; {TRule.GetHypo}

Function TRule.GetLhs(Idx: integer): PExpr;
{---
GetLhs: As long as the index, Idx, is within range, then a
pointer to the expression (PExpr) representing the indexed
element of the Lhs list, is returned. Otherwise, a nil
pointer is returned.-- }
begin

if ((Idx >= 0) and (Idx < Lhs^.Count)) then
GetLhs := Lhs^.At(Idx)

else GetLhs := nil;

end; {TRule.GetLhs}

298

Function TRule.GetRhs(Idx: integer): PExpr;
{---
GetRhs: As long as the index, Idx, is within range, then a
pointer to the expression (PExpr) representing the indexed
element of the Rhs list, is returned. Otherwise, a nil
pointer is returned.-- }
begin

if ((Idx >= 0) and (Idx < Rhs^.Count)) then GetRhs :=
Rhs^.At(Idx)

else GetRhs := nil;

end; {TRule.GetRhs}

Function TRule.LhsCount: integer;
{---
LhsCount: This function returns the number of items in the
Lhs list.-- }
begin

LhsCount := Lhs^.Count;

end; {TRule.LhsCount}

Function TRule.RhsCount: integer;
{---
RhsCount: This function returns the number of items in the
Rhs list.-- }
begin

RhsCount := Rhs^.Count;

end; {TRule.RhsCount}

Constructor TExpr.Init(AnOperator: string);
{---
Init: The Operator attribute is assigned a value based on
the contents of AnOperator; Operandl is made an empty string
and Operand2 is set to nil, since it is optional.-- }
begin
Operator := CalcOperator(AnOperator);
Operandl : = '';
Operand2 := nil;

end; {TExpr.Init}

299
Destructor TExpr.Done;
{---
Done: If it has been allocated memory, the 0perand2
attribute is disposed, freeing the memory.-- }
begin

if (0perand2 <> nil) then dispose(Operand2);

end; {TExpr.Done}

Procedure TExpr.SetOperandl(AnOperand: TOperand);
{---
SetOperandl: The Operandl attribute is assigned the value of
the string, AnOperand.-- }
begin

Operandl := AnOperand;

end; {TExpr.SetOperandl}

Procedure TExpr.SetOperand2(AnOperand: TOperand);
{---
SetOperand2: The Operand2 attribute is dynamically allocated
and assigned the value of the string, AnOperand.-- }
begin
new(0perand2) ;
Operand2~ := AnOperand;

end; {TExpr.SetOperand2}

Function TExpr.GetOperator: TOperator;
{---
GetOperator: The value of the Operator attribute is
returned.-- }
begin
GetOperator := Operator;

end; {TExpr.GetOperator}

Function TExpr.GetOperandl: TOperand;
{---
GetOperandl: The value of the Operandl attribute is
returned.-- }
begin

GetOperandl := Operandl;
end; {TExpr.GetOperandl}

300

Function TExpr.GetOperand2: TOperand;
{---
GetOperand2: The value of the Operand2 attribute is
returned.-- }
begin

if (Operand2 <> nil) then GetOperand2 := Operand2^
else GetOperand2 := '';

end; {TExpr.GetOperand2}

Function CalcOperator(AnOperator: string): TOperator;
{---
CalcOperator: The string AnOperator is analysed and a
corresponding value of the type, TOperator, is returned.-- }
begin

if (AnOperator = 'Do') then CalcOperator := _Do
else if (AnOperator = 'Let') then CalcOperator := _Let
else if (AnOperator = 'CreateObject') then

CalcOperator := _CreateObject
else if (AnOperator = 'DeleteObject') then

CalcOperator := _DeleteObject
else if (AnOperator = 'Retrieve') then

CalcOperator := —Retrieve
else if (AnOperator = 'Write') then CalcOperator := _Write
else if (AnOperator = 'Reset') then CalcOperator := _Reset
else if (AnOperator = 'Strategy') then

CalcOperator := —Strategy
else if (AnOperator = 'Show') then CalcOperator := _Show
else if (AnOperator = 'Execute') then

CalcOperator := —Execute
else if (AnOperator = 'LoadKB') then

CalcOperator := _LoadKB
else if (AnOperator = 'UnloadKB') then

CalcOperator := _UnloadKB
else if (AnOperator = 'Nolnherit') then

CalcOperator := _Nolnherit
else if (AnOperator = 'InhMethod') then

CalcOperator := _InhMethod
else if (AnOperator = 'Interrupt') then

CalcOperator := —Interrupt
else if (AnOperator = 'InitValue') then

CalcOperator := _InitValue
else if (AnOperator = 'RunTimeValue') then

CalcOperator := _RunTimeValue
else if (AnOperator = 'InhValueDown') then

CalcOperator := —InhValueDown
else if (AnOperator = 'AskQuestion') then

301

CalcOperator := _AskQuestion
else if (AnOperator = 'Backward') then

CalcOperator := _Backward
else if (AnOperator = 'Is') then CalcOperator := _Is
else if (AnOperator = 'IsNot') then CalcOperator := _IsNot
else if (AnOperator = 'Name') then CalcOperator := _Name
else if (AnOperator = 'Yes') then CalcOperator := _Yes
else if (AnOperator = 'No') then CalcOperator := _No
else CalcOperator := _InhValueUp;

end; {CalcOperator}

End. {RuleObj}

302

CONSTACK.UNT
Unit ConStack;

Interface

Uses WObjects, Stack;

Type
PConcl = ^TConcl;
TConcl = record

Rule : integer;
Clause: integer;

end; {TConcl}

PConStack = ^TConStack;
TConStack = object(TStack)

constructor Init
private

function FindHypo(ARuleList: PCollection; Idx:
integer; AHypo: string): integer; virtual;

end; {TConStack}

Implementation

Function FindHypo(ARuleList: PCollection; Idx: integer;
AHypo: string): integer;

{---
FindHypo: The list of RULES, ARuleList, is searched,
starting at the index Idx and proceding forward (+ve)
through the list. The search halts when a match (as
indicated by Match) is made between a RULE (r) hypothesis
and AHypo, or when the end of the list is reached. If a
match is made, this function returns the index (Idx) to the
matching RULE. Otherwise, a value of -1 is returned.-- }
var
Match : boolean;
Count : integer;
r : PRule;

begin
Match := false;
Count := ARuleList^.Count;
{ Search for a match.}
while ((Idx < Count) and (not Match)) do

begin
r := ARuleList^.At(Idx);
Match := AHypo = r^.GetHypo;

303

inc(Idx);
end; {while}

{ If a match is found, return the index to the matching
rule. }

if (Match) then FindHypo := Idx-1
{ Otherwise, return -1.}
else FindHypo := -1;

end; {FindHypo}

End. {ConStack}

