
NEURAL NETWORK SYSTEM TO RECOGNIZE

PARASITES ON FISH IMAGES

A NEURAL NETWORK BASED SYSTEM TO RECOGNIZE, DETECT AND

LOCATE SEAL WORM PARASITIC INFESTATIONS

ON COD FISH FILLET IMAGES

BY

EMMANUEL B. ARYEE, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree

Master of Science

McMaster University

April 1991

© Copyright by Emmanuel B. Aryee, April 1991

MASTER OF SCIENCE (1991)
(Computation)

McMaster university
Hamilton, Ontario

TITLE:

AUTHOR:

A Neural Network Based System to Recognize, Detect
and Locate Sealworm Parasitic Infestations on Cod
Fish Fillet images

Emmanuel B. Aryee,
B.Sc. (Univ. of Science & Tech., Kumasi, Ghana)

SUPERVISOR: Dr. S. Poehlman

NUMBER OF PAGES: x, 137

ii

ABSTRACT

In this project, an investigation of a neural network based system is used to examine

the following:

a) the possibility and practicability of analysing and recognising parasites/sealworms

on a parasite/sealworm infested cod fish images,

b) the most efficient but robust way of presenting data to the neural network for

efficient training and generalisation.

The basic problem is to automate the sorting of sealworm infested cod fish from good normal

cod fish using a neural network based system.

The generalised back propagation supervised learning algorithm is used and both

steepest descent and conjugate gradient methods are investigated. Various data representation

schemes in unprocessed and processed formats before presentation for training of the neural

network, are also examined. Finally the level of recognition achieved by the neural network

when presented with the cod fish images is computed.

Thus in this project an attempt is made to analyse and find the best components for

solving the basic problem and then use this information to develop a neural network based

system to recognise, detect and locate parasite/sealworms on cod fish images.

iii

ACKNOWLEDGEMENTS

I wish to express my thanks to Dr. W. F. S. Poehlman, my supervisor, for his direction

and assistance with this project work. I would also like to thank the other members of Dr.

Poehlman’s research group, particularly Peter Lind, Darel Mesher and Sam Demooy for their

assistance and help throughout this project. I would also like to acknowledge CANPOLAR

INC, and CANPOLAR EAST INC, especially Dr. James R. Rossiter of CANPOLAR INC. for

making available the data used in this work and some of their confidential technical reports.

Finally I would like to thank the office of the Department of Computer Science and Systems

for their help and support during my studies.

iv

CONTENTS

Abstract iii

Acknowledgement iv

List of figures viii

List of tables x

1. Introduction 1

2. Automated Fish Inspection system 5

2.1 Introduction 5

2.2 Background 5

2.3 Inspection systems 7

2.4 Automated Inspection systems 8

2.4.1 Flowchart of Envisaged system 9

2.4.2 Description of flowchart 9

3. Computer vision and Neural network 11

3.1 Introduction 11

3.2 Computer vision 11

3.2.1 Feature extraction 12

3.2.2 Neighbourhood averaging 13

3.3 Neural network 13

v

3.3.1 Perceptron 15

3.3.2 Supervised back propagation model 16

3.3.3 Back propagation algorithm 17

3.3.4 Optimisation methods 19

3.3.5 Steepest descent 21

3.3.6 Conjugate gradient methods 21

3.3.7 Convergence criterion 22

3.3.8 Other models 23

Parameter selection and Data representation 25

4.1 Introduction 25

4.2 Learning parameters 25

4.3 Initial weights 26

4.4 Architecture 31

4.4.1 Output layer 32

4.4.2 Hidden layer 32

4.4.3 Input layer 34

4.5 Data representation 37

4.5.1 Diagram for data representation 37

4.5.2 Unprocessed format 37

4.5.3 Processed format 39

4.6 Choice of patterns 41

4.7 Cumulative frequency distributions 42

4.7.1 Histogram translation and scaling algorithm 44

4.7.2 Smoothing algorithm 51

vi

5 Experimental analysis 52

5.1 Introduction 52

5.2 Analysis 53

5.2.1 Unprocessed format 53

5.2.2 Processed format 58

5.2.3 Processing times 66

5.2.4 Production times 69

6. Conclusions and extensions of the work 71

6.1 Introduction 71

6.2 Neural network technique 71

6.3 Data representation 72

6.4 Image reduction 72

6.5 Summary 73

Bibliography 74

Appendix I Illustrations of cumulative frequency distribution curves 77

Appendix II Sample Input Data 86

Appendix III Source Code Listings 91

vii

LIST OF FIGURES

1.1 A parasite infested cod fillet 4

2.1 Artist’s conception of CANPOLAR PARASENSOR(TM) prototype 7

2.2 Illustration of the envisaged system 10

3.1 A simple network 14

3.2 A multi-layer network 15

4.1 Plots of rate of convergence against ranges of initial weights for

the steepest descent method 28

4.2 Plots of rate of convergence against ranges of initial weights for

the conjugate gradient method 31

4.3 Plots of incorrect classification^) against the number of hidden nodes 33

4.4a Plots of # of cycles versus the number of patterns 35

4.4b Plots of incorrect classification(%) versus the number of patterns 36

4.5 Flowchart of the data representation 37

4.6 Illustration of the one-parasite scheme 38

4.7a A distribution curve and the features extracted 40

4.7b A typical curve map 40

4.8 Illustrations of the alphabet A 42

4.9 Illustrations of cumulative frequency distributions curves of 32x32 for

sections with different patterns 47

4.10a Typical curve for a parasite background 49

4.10b Curve after algorithm apllication 49

viii

4.10c Typical curve for a normal background 50

4.10d Curve after algorithm application 50

5.1a Parasitic background 60

5.1b Non-parasitic background 60

5.2a Parasitic background curves 62

5.2b Non-parasitic background curves 62

5.3a Processing times versus the number of patterns on the SUN 68

5.3b Processing times versus the number of patterns on the SPARC 69

ix

LIST OF TABLES

1 Confusion matrix of level of recognition for first procedure in the

majority parasite scheme 56

2 Confusion matrix of level of recognition for second procedure in the

majority parasite scheme 57

3 Tabular results of level of recognition for the feature extraction procedure 63

4 Tabular results of level of recognition for the curve map procedure 64

5 Tabular results of level of recognition for the binary curve map procedure 65

6 Tabular results of level of recognition for the smoothed curve procedure 66

7 Tabular results of the processing times on the SUN 4.1/280 67

8 Tabular results of the processing times on the SUN SPARC work station 67

9 Tabular results of the production times 70

x

CHAPTER 1

INTRODUCTION

This project investigates and analyses the recognition of image characteristics using

a neural network based system. The supervised back propagation model [6] is the most

commonly implemented neural network model, perhaps because of its general purpose

capabilities. It belongs to a class of artificial neural network that is comprised of few to many

non-linear computational elements operating in parallel and arranged in patterns similar to

biological neural nets [5]. This massive parallelism is thought by researchers to be essential

for high performance speech and image recognition. Thus the approach is to develop an

adaptive network model which, when presented with a set of training patterns, learns an

internal representation of the input distribution and retains this knowledge via connecting

strengths. This learning is referred to as supervised since the input patterns are accompanied

by their desired outputs applied by a supervisor(teacher).

Pattern Recognition is the science which attempts to simulate the processes that

permit humans to achieve visual and auditive perception by using optical and vision methods

to analyse a scene in an image or signals in a sound environment. Image recognition

invariably falls under this science and because of the massive parallelism in neural networks,

neural networks have been used in the development of systems for assistance in medical

diagnosis, in pattern recognition to classify undersea sonar returns, speech and handwritings,

etc., and new applications under research include simple vision systems [9]. It is therefore

1

2

appropiate to consider using the neural network model to analyse cod fish images, and

attempt to recognise various attributes or characteristics occuring in these kinds of images.

Processing of image data presents various complexities and difficulties which must

be either reduced or eliminated before presentation to the neural network for efficient

manipulation:

-the data must be in a form or format that can be numerically processed,

-the data size must be considerably reduced in order to make the analysis with a

neural network model practical,

-partitioning of the images down to basic component level such that their

characteristics can be used to differentiate a parasitic/sealworm background from

a non-parasitic/sealworm background.

The theoretical basis for selecting or choosing of neural network architectures and

parameters for learning or training procedures are non-existent and although various

researchers are investigating algorithms that improve the training of neural network and

remove dependencies upon these learning parameters [11], empirical methods still tend to be

the norm presently.

In this project we thus investigate the possibility, practicability and efficiency of

using the neural network back propagation technique to analyse images of such complex

nature as the cod fish and to recognise and locate parasites/sealworms on these images. Such

work should aid development of an Automatic fish inspection system. By virtue of this

investigation, the project also looks at various empirical methods used for selecting network

parameters, various forms of data representations, and network search methods for training.

The outline of this project is as follows. Chapter 2 describes the inspection system

involved and the evolution of research performed for this project. Basic theories of computer

3

vision and neural networks which are utilised in this project are given in Chapter 3. Chapter

4 deals with parameter selection and data representation while Chapter 5 elaborates on the

analysis, experimentation and the results obtained. Chapter 6 gives the conclusion to this

analysis and suggestions for the future work to extend this research.

On the opposite page, Fig. 1.1 is a picture of the worst case of an infested cod fish

fillet showing a cross-section of the types of parasites/sealworms circled and numbered,

normally encountered by the fishing industry. The picture is divided into four sections as by

the rectangles and labelled C0D1, C0D2, C0D3 and COD4 in this project.

4­

Coo1 coo l. .

.~ .:.

'Fi~.l · '
A PARASITE INFESTED COD F1LLET

,

CHAPTER 2

AUTOMATED FISH INSPECTION SYSTEMS

2.1 Introduction

This chapter gives background to Fish Inspection Systems and their objectives,

included is a description of an inspection system under development, the motivation for

automated systems and a description of an envisaged automated system.

2.2 Background

Parasite/sealworm infestation of fish in general has concerned the fish industry for

sometime now and apart from its unacceptability aesthetically, the health concerns to

consumers cannot be ignored. Atlantic Canadian Fish Processors incur estimated costs of $50

million annually related to parasites/sealworms in cod fish [21], As the market for these

delicacies increases, pressure for finding efficient and faster methods of identifying and

removing these parasite/sealworm becomes more important, more necessary and economically

justifiable or viable for even small percentages such as 5-10% of parasite/sealworm

infestation.

These parasite/sealworm are known to occur as two varieties, the phocanema and

anisakis [20]. Information on these kinds of parasites are still sketchy but are known to be

curvy, spiral or wriggly in shape and tend to keep these shapes on attachment to the skin of

5

6

a cod fish. Thus they are slightly different and more difficult to track than the consistent

round shaped parasite/sealworm that are found on flat fish. The parasite/sealworm found on

cod fish normally become lodged on the surface skin, in which case, their shape and contrast

is easily discernible, as circled and numbered 1 in the cod fish picture given in Fig. 1.1, but

in other cases they become deeply lodged in the skin of the cod fish such that they appear

as blobs in which case their shape and contrast is not easily discernible. This is shown in the

numbered circles 2 & 3 of Fig. 1.1. Their detection and location is therefore complicated by

the fact that

-they appear in so many different shapes,

-their contrast levels in the image easily match many of other sections of the fish

muscle background,

-more deeply lodged ones apppear in the same contrast and shape as portions of

the fish muscle,

-some parasites have hairline shapes that appear similar to the hairline bony

structure of the cod fish.

Their detection and complete removal or sorting is thus difficult to achieve without the help

of the human perception system.

The traditional ways of detecting, and removing or sorting out these

parasite/sealworm infested cod fish from the good fillets has included the very old system

of fishermen directly sorting the fish during offloading, to the manual inspection systems

being researched and developed by CANPOLAR INC. [20].

7

2.3 Inspection Systems

CANPOLAR INC. has researched and is developing a prototype inspection system

which incorporates the Parasensor(TM), an optical imaging technology, that will greatly

provide for reliable inspection of parasite/sealworm in cod fish fillets up to one inch thick,

improved inspection reliability, reduced handling costs and improved inspection of over 80%

of all fillets produced in Atlantic Canada [21].

Fig. 2.1 Artist’s conception of the prototype [21] (with the permission of CANPOLAR INC.).

An artist’s conception of the system under development by CANPOLAR INC. is

illustrated in Fig. 2.1. The cod fish is washed, thoroughly cleaned, unwanted parts removed

and then processed into fillets. These are then manually loaded unto a conveyor belt which

is rolled past anoptical imaging system (camera/laser/radar) which captures the image or

scan of the fillet which is displayed on three monitors, that have three inspectors who scan

the fish images for parasites/sealworms. Upon the sighting of a parasite/seaiworm, a button

is pressed and the fillet is moved into an appropriate bin reserved for the purpose.

8

CANPOLAR INC. is actively pursuing research into areas aimed at improving the

inspection system such as using laser technologies or radar impulse systems that will pick up

deeply embedded parasites/sealworms with the same sensivity as surface infestations of the

cod fish fillet. Processors are also seeking technologies for automated detection and removal

of these parasites/sealworms [21] and improvements of these methods will be a step towards

automation.

2.4 Automated Inspection System

The objective is to reduce the human error and boredom factor (due to the

performance of a constant monotonous task) which exist with the manual inspection systems,

thereby improving the performance, efficiency, reliability and speed of inspection and thus

reducing the cost of operation. Such an automated system requires automatic detection and

recognition techniques to separate the infested cod fish fillets from the healthy ones which,

in the manual system, is performed by human inspectors. Several computer vision techniques

exist in research fields that could be investigated and they tend to be ideal for image

enhancement procedures but are very time consuming (shape analysis and edge detection) and

very sensitive to noisy backgrounds such that they are unable to perform within practical

time constraints.

Humans in their perceptions are able to tolerate ambiguities in input patterns and yet

make very good and correct decisions where the input is close or approximately close to the

original input. Since neural networks attempt to simulate the workings of the human brain,

although not perfectly in any measure, they are able to correctly classify objects when

presented with a close approximation of an input pattern on which they have been trained.

9

Since the time consuming job of training is done off line, recognition during production use

is extremely rapid meeting most time critical delivery deadlines in real time. It is therefore

prudent to consider using the neural network system in the automatic detection and

recognition system of an automated inspection system.

2.4.1 Flowchart of envisaged system

Fig. 2.2 presents the flowchart of the envisaged automated inspection sysytem.

2.4.2 Description of the flowchart

1. After the fish has been washed, thoroughly cleaned, all unwanted parts removed

and processed into fillets, it is loaded unto a conveyor belt system, which is configured to

move at a maximum rate of one fish per second.

2. A vision system - CAMERA/LASER/RADAR - mounted by the conveyor system

captures and digitizes the fish image to grey scale levels as it rolls on the conveyor belt.

3. The digitized image is sent to a hardware/software system that uses the neural

network based technique to analyse and process the image and make a determination as to

whether a parasite/sealworm is present or not.

4. The determination instruction is sent to an acceptor/implementor as a signal for

implementation.

5. A robot arm assembly then implements the determination and directs the fish on

the conveyor belt into one of a group of bins.

10

PROCESSED FISH LOADED INTO |
CONVEYOR BELT SYSTEM |

VISION SYSTEM CAPTURES AND DIGITIZES I
FISH IMAGE TO GREY SCALE LEVELS |

GREY SCALE IMAGE ANALYSED, PROCESSED
AND A DETERMINATION MADE

DETERMINATION INSTRUCTION SENT
FOR IMPLEMENTATION

ROBOT ARM SYSTEM IMPLEMENTS
THE INSTRUCTION

Fig.2.2 Illustration of the envisaged system.

CHAPTER 3

COMPUTER VISION AND NEURAL NETWORK

3.1 Introduction

In this chapter, the computer vision methods that are used in this investigation and

analysis are introduced and briefly described. Neural Networks are also introduced where the

backpropagation algorithm is described. Two of the optimization methods used for the

backpropagation algorithm are described along with a brief summary of the neural network

backpropagation algorithm currently used in research.

3.2 Computer Vision

Computer vision is concerned with extracting information about a scene by analysing

images of that scene [1]. It combines graphics for outputting images from non-pictorial

information and image processing techniques. To process an image by the computer, the

image is first converted into digitized image form, a discrete array of elements representing

brightness or color values, numerical-valued elements called pixels of grey scale levels. The

general goal of computer vision is to recognise objects of various types that may be present

in the scene. An object is an arrangement of parts whose properties (eg. grey scale levels,

textures, sizes, shapes) and relations at the same time satisfy certain constraints [1]. Thus to

recognise an image, there are requirements for identifying the parts that refer to the object

11

12

parts and satisfying the appropriate constraints. Techniques used to detect parts in an image

include segmentation, thresholding, edge detection, feature extraction, processing of grey

scale levels etc.

Segmentation is employed to identify distinctive sub-populations of pixels or used

to partition an image into connected regions each of which is "homogenous" or "uniform" in

some sense either by color or by a statistical analysis of one or groups of pixels in the image.

Thresholding in its simplest form provides a representation for the image which

requires less storage than the original [3], Its purpose is to segment the image into regions

which can subsequently be analysed based on their characteristics. It involves choosing a grey

scale level T such that all grey levels greater than T are mapped unto the "object" label and

all other grey levels are mapped unto the "background" label.

Edge detection is a technique used to search for edges between regions. A gradient

operator is used followed by a threshold operation on the gradient in order to decide whether

an edge has been found [2],

The processing of grey scale levels of an image can take the form of a grey level

histogram, sometimes referred to as the cumulative relative frequency distribution of the grey

scale levels in an image, which is a function showing for each grey scale level, the number

of pixels in the image which has that grey level. All spatial information is discarded,

therefore the histogram for any image is unique although the reverse is not the case [4],

3.2.1 Feature extraction

This technique is used to identify special types of local patterns in the image eg. step

edges, lines, curves, spots, corners etc. [1], which are then extracted and analysed. A feature

13

is usually defined by its properties and can thus be detected by comparisons, or by

computations of various levels of curvature, or by extracting a string of symbols which

uniquely represents the features.

3.2.2 Neighbourhood averaging

This is an image preprocessing technique for doing various smoothing operations on

an image. A section or a neighbourhood of a selected pixel is averaged to a smoothed image

point to represent that section of the image according to a mathematical criteria as follows

[4],

g(x,y) = l/MS(nm)l/Sf(n,m).

where

g(x,y) -> the smoothed image point

M -> the number of points in the neighbourhood.

S -> represents the co-ordinates of points in the neighbourhood.

f(n,m) -> represents the original image section.

3.3 Neural Network

Neural network studies are known by different names, neuro computing, parallel

distributed processing or connectionist modelling, etc. Networks are basically formed by

simulated neurons connected together much the same way that human brain neurons present

in the nervous system are connected. The neurons behave as the processing or computational

elements operating in parallel, and these communicate to each other via links or connections

14

with variable weights which are adjusted in the learning/teaching/training phase according

to a learning rule. An activation function sums the weighted inputs which is passed through

a non-linear or transfer function (usually hard limiters, threshold logic elements, and

sigmoidal non-linearity functions) [5]. Input signals can be either excitatory or inhibitory,

i.e., it can fire or not fire. By adapting to changes in the input, a neural network learns or

is trained by accumulating experience as the connecting strengths of the elements are

adjusted. Thus the computational functions are embedded in the network.

Neural networks solve problems that humans do well at, such as problems of

association, evaluation and pattern recognition which are difficult to compute and do not

require perfect answers. Neural networks are poor at precise calculations, predicting or

recognising things that do not inherently contain some sort of pattern [9]. These networks

15

belong to a class of classifiers that do various tasks such as identifying which class best

represents a noisy input pattern.

Fig. 3.2 A multi-layer network.

3.3.1 Perceptron

A single layer perceptron [6] is a feed forward linear associator which is implemented

using the perceptron convergence theorem. It has the capacity of generating two decision

regions but has several limitations [7]. A two layer perceptron can form any possibly

unbounded convex region in the input space. A three-layer perceptron can form arbitrarily

complex decision regions [5], as complex as those formed using nearest-neighbour classifiers

A multi-layer perceptron overcomes many of the limitations of the single, two-layer

perceptrons and with the recent advancement in the training algorithms for a multi-layer

16

perceptron [6], it has become one of the most important tools for the neural network

technique.

3.3.2 Supervised back propagation model

Most learning rules have evolved from the Hebbian rule which in its basic form states

that when two neurons fire at the same time, then their connections strengths should

increase,

- ee/ij
•where
Wy - connection between two neurons
e - the gain term
et - the error measure
üj - the activation

The delta rule [6], (also known as the Widrow-Hoff learning rule or the least mean

square rule), is to adjust the strengths of the connections to reduce the difference or the error

measure between the actual output and the desired output pattern during training [6]. In

essence the attempt is to minimise the energy or error function.

There are two main types of training algorithms, surpervised and unsupervised,

supervised since the training is by a "teacher", in that it has the knowledge of the desired

response and any error between the desired response and the actual response is therefore used

to correct the network. This becomes more difficult in networks of multi-layers because of

the connections that have to be made to the hidden layer as depicted in Fig. 3.2.

Unsupervised learning, on the other hand is the case where training is done without the use

of a "teacher" or knowledge of the desired response, in order to adjust the connection

strengths.

17

The supervised backpropagation network is a multi-layer feed forward network that

uses the generalised form of the delta rule. It was popularised by Rummelhart et al [6]. It

provides a mathematical explanation for the dynamics of the learning process. Also known

as the "backward" error propagation algorithm(backprop), it is a generalisation of the least

mean square algorithm. It uses a gradient search technique to minimise a cost function equal

to the mean square difference between the desired output and the actual output. The network

is trained by initially selecting small random weights and internal thresholds and then

presenting all training data to the network repeatedly. Weights are adjusted after every trial

using side information specifying the correct class, until weights converge and the cost

function is reduced to an acceptable limit.

3.3.3 Back propagation algorithm

The algorithm [5] is described in the following steps:

Step 1: Preprocess the input data into a format for efficient use.

A normalisation process.

Step 2: Initialise the weights and thresholds.

Initialise all the connnecting weights and thresholds in the network

to small random values in a specific range excluding zero.

Step 3: Present input vector and desired output vector.

Input vector X(m) and desired vector D(n) are presented until the

weights stabilise.

18

Step 4:

Step 5:

where X(m) - m-dimensional vector

D(n) - n-dimensional vector

Calculate the actual output and test for adapting weights.

Using the sigmoid logistic non-linearity to compute the output, O(n)

where a -
and 0 - threshold

°i -f^Y,kw^k- 0z)
0; - ouput neuron threshold
0<l<n-l

- activation of node in the layer following the output node 1

Wj^j - connecting weight between the node following the output node

1 and the output node 1

If the weights stabilise, then adaptation is stopped, i.e, when the

error function has been reduced below an established limit:

* - <d. - °->2

Adapt the weights.

Weights are adjusted by working back recursively from the output

nodes to the first hidden layer. Adjust weights by

19

wjy(Z+l) - w^t) + eô^x.
where
w^f) - weight to hidden node i
from input node j at time t
x(- activation of node i
e - gain term
Ô j - the error term for node j

if node j is an output node, then the error term is

- y/l-y^-y)
where
yf - actual output

if node j is internal and hidden then the

error term is

where k sums over all nodes in the layer following node j.

Step 6: Repeat by going back to step 3.

3.3.4 Optimization methods

Network learning is mainly accomplished by the optimisation of a criterion function

E, which is a measure of the error between the target function and the approximating

function. The object is to determine a set of weights which minimises this function. The

methods used are based mainly on the same strategy. The minimisation is a local iterative

process in which the approximation to the function in a neighbourhood of the current point

in weight space, w, is minimised [12]. Among the optimisation algorithms that can be used

to solve these types of problems, gradient based ones have proven to be very effective in a

20

variety of applications [17], Basically the weight vector, w^ at the kth iteration is updated

by taking a step s^ in the search direction d^, as below.

for (k=0; evaluate(wj,) != converge; ++k)

{ dfc = determine_search_dir();

Sj, = determine_step();

wk+l = wk + sk,(^k’ uP^ate weight vector

} [18]

A set of random weights, wQ, in the weight space w, are selected for the initial iteration k=0.

The criterion function E(the error function) which controls the convergence of the

algorithm(discussed in section 3.3.7) is evaluated using this initial set of weights in order to

determine whether this set of weights satisfy the convergence criterion. If the convergence

criterion is satisfied then the iteration procedure is stopped, otherwise the search direction

d^, the gradient of the criterion or the error function with respect to each weight is

(For the detailed mathematical proof and explanation refer to [22])

computed and the step size s^, the learning rate or the gain term is also determined. These

are then used to update the weights, thus moving the weight vector in the weight space. The

iteration is increased, k+1, and the criterion function evaluated using the new set of weights

to find if convergence has been achieved and the procedure continued if not, till convergence

is achieved.

Thus a sufficiently small step in the direction of descent d^ will therefore reduce the

error function E [18].

21

3.3.5 Steepest descent

This is the most classical gradient based optimization algorithm [18]. From section

3.3.4 when the search direction d^, is set to the negative of the gradient g(w) and the step

size Sjç is made equal to a constant v, then the algorithm becomes the steepest descent

algorithm. In the context of neural networks this is the back propagation algorithm without

the momentum term [6] presented in section 3.3.3. The error function is computed and each

weight is gradually moved "down" the error surface towards the local minima [6]. Through

an iterative procedure, the steepest descent method minimises the error function E(w^y

Unfortunately the convergence rate of the steepest descent method is only linear [18] and

therefore requires a large number of iterations to converge to a reasonable limit. Inclusion

of the momentum term [6] is not able to speed up the algorithm considerably, yet it

introduces another user dependent parameter, which makes the algorithm less robust [12],

3.3.6 Conjugate gradient methods

Conjugate gradient optimisation systems improve the convergence rates by making

use of second-order derivatives information without the expensive estimation and storage of

these derivatives. From section 3.3.4, the search direction dj<+j in this case is set to a

combination of the negative of the weight gradient, ~g(wk+i) as in section 3.3.5 and a factor

of the previous search direction d^,

dk+l = -gk+l + Bkdk

22

the factor Bj, is determined by various rules [12] depending on the particular application, one

of which is the Polak-Ribiere rule [18] in which B^is determined from g^+j and g^

according to

bk = (gk+l “ gpT-gk+l/gkT-gk-

If matrix operations are involved then the gradient vector g, is a column vector, g its

transpose, becomes a row vector. The step size is determined by the normal linesearch

method [18] which is iterative and involves the evaluation of the error function for some

values of the step size to determine which value minimises the function best. In practise, a

typical linesearch in a network problem terminates in two or three iterations [18]. By keeping

a copy of the next best step size, a reinitialisation procedure can be restarted [23] if

convergence is not achieved after a number of iterations. Detailed proof and explanations can

be found in [11, 17, 18, 23].

3.3.7 Convergence criterion

Choice of the convergence criterion is rather important since it controls the limit to

which the iteration should proceed in order to establish a "good" to "perfect" training, i.e.,

training must be terminated when the error function has been sufficiently minimised. Several

criteria used include an error threshold, an iteration limit or even using both.

An error threshold is set by making the error function attain a threshold limit /x,

E() = /x

after which convergence is declared. In the case where the error surface contains some "bad"

local minimum, it is possible the error threshold will be unattainable [18]. To guarantee

termination of the algorithm, despite an unattainable error threshold, an iteration limit can

23

be used, by which a limit or bound on the number of iterations is set at which the algorithm

is curtailed. For practical problems, this works best where the limit is known from previous

experiments but works poorly if the limit is not known. Using both criteria is another option.

A necessary condition for the weights to be at their minima, either local or global is

that the weight gradient, explained in section 3.3.6, be equal to zero.

gO) - - ----- 0
ow

Thus the convergence criterion for the optimisation algorithm can be set as

|g(wt)|| <. e
■where e is a sufficiently small gradient threshold

The downside to using this as a convergence test is that, for successfull trials, learning will

be longer than they would be in the case of an error threshold [18].

Pao [22] shows that under a situation where the algorithm gets trapped in some local

minimum or at some stationary point or perhaps oscillates between such points, the error

remains large regardless of the number of iterations carried out. The criterion thus selected

to a large extent depends on its practicability in relation to the specific problem being

analysed or solved.

3.3.8 Other models

Back propagation implementation algorithms are very popular and several

modifications are showing up in research literature recently, all aimed at reducing some of

the problems associated with the original back propagation model. A few are considered here

24

briefly, such as the cascade correlation archictecture [13], the quick prop [14], and the

conjugate gradient models.

The original back propagation learning algorithm that uses the steepest descent

method popularised by Rummelhart [6] is rather time consuming due to problems involving

the step size and the moving target problems [13]. The introduction of a momentum term to

reduce this problem increases the number of the user-dependent parameters on which the

convergence of the network depends.

Cascade correlation [13] is well suited to choosing or selecting the basic network

topology to use as a starting point model for an investigation but is lacking especially when

large networks are involved. The algorithm works best with problems involving small to non­

complex networks. It performs unpredictably, even complete failure when used for large and

complex practical networks. Since the algorithm considers a node at a time while freezing the

other nodes, their influences are also frozen. In a small network, the sum of these influences

may have a negligible effect on the convergence of the network, but in a bigger network this

sum is very prominent in all aspects of the network scheme and cannot therefore be

neglected.

The quick prop algorithm [14] is among some of the fastest algorithms for network

training purposes since it uses the second order derivatives to plot a parabola and descends

directly to the minimum on that curve. The estimation and storage of these tend to be very

expensive, and when the network is large and complex, this is compounded further.

Models that use the conjugate gradient systems tend to be robust and fast at the same

time. Like the quick prop algorithm, they make use of the second order derivative

information without the estimation and storage of the second order derivatives [18] and seem

to be the best models available at present.

CHAPTER 4

PARAMETER SELECTION AND DATA REPRESENTATION

4.1 Introduction

In this chapter the techniques for selecting the neural network parameters are

described and an in depth look at the format in which the data is presented to the network

including the processed format and the unprocessed format. It also describes the cumulative

frequency distribution and the two algorithms developed to generate these distributions in

a fixed format for efficient use by the neural network.

4.2 Learning parameters

In the back propagation algorithm, two parameters are made use of, the gain term and

the momentum term [6] which control the rate of learning and the approach to convergence

in the training phase respectively. These terms are user specified and because their selection

have no formal theoretical basis, empirical methods are used for their determination. A

correlation method due to Apey [10] is employed in a slightly modified form to select and

adjust these parameters in the back propagation with the steepest descent optimization

technique.

Essentially the parameters are set and adjusted according to a measure of the changes

in the connecting weights of the neurons:

25

26

N
C/f) - AWv<ï), AW.<f-l))

i-0

where Cj(t) - correlation factor which measures the changes in the

connecting weights

f - function of the connecting weights

The algorithm in its simplest form [10] is as follows:

if eft) < 0 then
e - 0.01
a - 0.00
else
ift c/t) < (c/t-1) + 0.05 * c/t-l)) or
(e < max e) then
€ - e + e rate
a - a + 0.01
endif
endif
where e - gain term
a - the momentum term
maxe - max gain term
e rate - gain term rate

Thus if there is no learning then the parameters are drastically reduced, but if there is

learning then the parameters are increased for more learning to continue.

4.3 Initial weights

The second step in the back propagation algorithm(section 3.3.3) is the choice of the

initial weights. It is often good practise to use initial weights that are of very small orders

to minimise the mathematical problems encountered during computation, and also to place

the initial decision boundaries within reasonable limits to reduce the number of iterations to

achieve convergence. This therefore makes the selection of the initial weights very important.

27

An empirical method was used to compare two different methods. Random weights were

selected and

1. Constrained to a selected range and,

2. A method employed by Barnard and Cole [11] - in which the weights to a node are

scaled to be uniformly distributed between

± 3 Jn

where n - the number of connections to that node

thus ensuring that the sum of the weights leading to a node is a random variable with

approximately zero mean and variance of 3. The training set consisted of 10 patterns(5

parasitic and 5 non-parasitic) from the feature extraction input data (samples presented in

the appendix) with a topology of 32 input neurons, 65 hidden neurons and 2 output neurons.

28

I
O

sS

weight range

0.25 range

0.50 range

0.75 range

1.00 range

2.00 range

3.00 range

4.00 range

Bam. & Cole

Fig. 4.1a,b,c Plots of rate of convergence against ranges of initial weights
for the steepest descent method.

29

a) 2-pattem training set
weight range

I

r
s

901

0.25 nage

0.50 range

0.75 nage

1.00 nage

2.00 nage

3.00 nage

4.00 nage

| | Bam. & Cole

120 n

100
1

& 80-

§ 60

*8
S 40
S

20-

b) 4-pattem training set
weight range

0.25 nage

IB 0.50 nage

■ 0.75 range

HH 1.00 nage

fTffl 2.00 nage

HH 3.00 range

4.00 nage

Q Bam. & Cole

30

I

130 -,

110

90

70

50

30

loi

c) 6-pattem training set , ,
weight range

025 range

050 range

0.73 range

1.00 range

2.00 range

3.00 range

4.00 range

| | Bam. & Cole

120 n

100
I

& 80
I
§ 60

*8
« 40
&

20

d) 8-pattem training set
weight range

0.25 range

0.50 range

0.73 range

1.00 range

2.00 range

3.00 range

4.00 range

Bam. & Cole

31

Fig. 4.2a,b,c,d,e,f,g Plots of rate of convergence against ranges of initial
weights for the conjugate gradient method.

The rates of convergence were measured by the number of iterations for convergence to be

achieved for an error threshold of 0.001 for the steepest descent algorithm and 0.00000001

for the conjugate gradient algorithm.

From the plots in Fig. 4.1 and Fig. 4.2, the method employed by Barnard and Cole

[11] seems to offer a fairly consistent, and better rate of convergence although oscillations

do occur in a few cases and therefore its use was carefully monitored.

4.4 Architecture

The aim is to select a neural network architecture or topology such that

-the total number of training patterns to solve the problem eventually is low

-a minimum amount of training time is needed to solve the problem

32

-the mathematical computations and storage requirements are minimal

-a minimum number of iterations is needed for convergence

-convergence is eventually achieved

-the level of classification after convergence is what is desired.

The architecture or the topology is comprised of the output, the hidden and the input layers.

In this project a three-layer network with one hidden layer was used.

4.4.1 Output layer

This is the layer from which the outcome of the processing undertaken by the

network is passed to the outside. Since the object is to recognise, detect and locate

parasites/sealworms on the cod fish images, this layer is made up of two units which indicate:

1) Fish background with parasite and

2) Fish background without parasite.

4.4.2 Hidden layer

This is the layer which neither receives inputs directly nor are given direct feedback

but is the layer within which new features and internal representations [6] can be created in

the network in order to approach the decision region accurately. The selection of the number

of units for this layer is critical to the desired performance of the network. Again no formal

methods exist for this selection and thus empirical methods are relied upon, wherein

experimentation and judgement are used.

The training set consisted of 7 patterns (4 parasitic and 3 non-parasitic) and a testing

33

set of 31 patterns selected from the 4 COD sections Fig. 1.1. The conjugate gradient

algorithm was used with an error threshold of 0.00000001 for the convergence criterion. The

% of incorrect classification was measured on the testing set and this was used in combination

with the rate of convergence to select the number of hidden nodes that gave the best results.

For the feature extraction scheme(section 3.2.4 and 4.5.3) with an input vector of

32x1, the Kolmogorov’s number [15] was used as a starting point around which to

experiment, with a slightly modified form of the Kolmogorov’s rule [15], as below:

1. HN = IN + 1 —> 33 units

2. HN = 2IN + 1 —> 65 units —> Kolmogorov’s number

3. HN = 3IN + 1 —> 97 units

where HN - units in the hidden layer and

IN - units in the input layer

Fig.4.3 Plots of incorrect classification^/)) against the number of hidden nodes.

34

From the graph plots in Fig. 4.3 representing incorrect classification versus the number of

patterns, the Kolmogorov’s number seems to give the best results of the three, in terms of

the number of hidden units, i.e, the lowest percentage of incorrect classifications.

For the pixel representation(section 4.5.2), and the curve map/binarised curve

map(section 4.5.2) with input vectors of 32x32 and 32x11 respectively, both of which is in

excess of 60 input nodes, the average value number formula, as suggested in [16] was used

as the starting point for experimentation,

HN = (IN + OU)/2 —>513 units

OU - units in the output layer

The best results were achieved with a minimum average value of

HN = (IN + OU)/32 —> 32 units

and for the curve map/binarised curve map with an input vector of 32x11, the best results

were achieved at a minimum average value of

HN = (IN + OU)/11 —> 64.

4.4.3 Input layer

This is one of the most important layers of the network topology since it is through

this layer that the training pattern is presented directly to the network.

From step 5(section 3.3.3) of the back propagation algorithm, the adaptation rule is

aw.. - eÔ^.

35

which means that the weight update is directly proportional to the input signal or feature.

To maximise the effectiveness of the network, it is therefore prudent to scale the inputs for

the following reasons:

-the input features must be in a numerical format for mathematical processing.

-to reduce local minimum problems which the gradient search methods are used to

locate.

-to constrain the input data to be ’’centred about the origin”.

-to reduce big weight updates which cause weights to move to positions where they

cannot be changed or updated further.

Two scaling methods were considered in this project, the bipolar(-l,+l) and the

binary(0,+l) scaling of the data. Bipolar data scaling is popular for the simple reason that no

*5
=fc

70-

65

60

55-

50

45

40

35-

30-

25

20

15

10-

Effect of binary and bipolar data scaling

numSer of patt4?ns 12 16

Fig.4.4a Plots of # of cycles versus the number of patterns.

36

Fig.4.4b Plots of incorrect classification^) versus the number of patterns.

learning is achieved when the input signal or feature is zero as in the binary case since the

weight change is directly proportional to the input signal as explained above.

An empirical experiment to consider which of these two performs better, was

undertaken. Working with a training set of 10 patterns and starting with 4 patterns and an

artificially created testing set of 113 patterns and using the conjugate gradient algorithm, a

plot of the percentage of incorrect classifications and the number of cycles i.e., the number

of iterations when convergence of the network is achieved, against the number of training

patterns gave the plots in Fig. 4.4a and Fig. 4.4b, which rather indicate very slight

improvements using bipolar over binary scaling.

37

4.5 Data Representation

This is the format in which the data is presented to the network through the input

layer either directly or indirectly, directly implies an unprocessed format and indirectly, a

processed format.

4.5.1 Diagram of the data representation

feature curve binarised smoothed
extraction map curve map curve

Fig.4.5 Flowchart of the data representation.

4.5.2 Unprocessed format

In this format the data is presented directly to the input layer of the network, in the

raw form, i.e., grey scale levels. Pixel representation is by a pixel numerical value (0-255)

which represents the colour as defined by the grey scale level of a point in the image matrix.

38

An image consisting of 512x512 matrix of pixel points is therefore presented as a 512x512

input vector to the input layer of the network, and similarly for 256x256 and so on.

Two schemes are used under the pixel representation data format; the one-parasite

scheme and the majority-parasite scheme.

The one-parasite scheme is the scheme in which one network is trained to recognise

one particular parasite on a fish image. A database of these networks is then set up in a

queue and during the on-line implementation or the production phase of the neural network,

Fig.4.6 Illustration of the one-parasite scheme.

a controller releases these networks one at a time, one after the other, to scan the fish image

respectively for parasite recognition, as illustrated in Fig. 4.6. Since the objective is to detect

and locate parasites in the fish image, the controller is informed if one is detected, otherwise

the release of the networks is continued till the queue becomes empty.

39

In the majority parasite scheme, one network is trained to recognise a number of

parasites at the same time. The training starts with one parasite pattern. Next the number of

training patterns is increased with the unrecognised patterns, after each training in order to

reduce the percentage of unsuccessful recognition. The aim is to reach a level where the

neural network can generalise to an extent that it will recognise most parasite patterns that

it comes across, using only one network.

4.5.3 Processed format

In this format, the data is presented indirectly to the network. Before presentation,

the data is pre-processed either in a one step process or a two step process. The three kinds

of preprocessing undertaken included, thresholding(binarisation), fast fourier transforms and

cumulative frequency distribution using the histogram translation and scaling algorithm.

Four schemes are used under the cumulative frequency distribution data format,

described in section 4.7; the feature extraction, curve map, binarised curve map, and the

smoothed curve formats.

In the feature extraction scheme, the coordinates of the distribution curves are

extracted as features and the network is trained to differentiate between these as applied to

fish backgrounds with parasites and without parasites. Fig. 4.7a shows a typical distribution

curve and the features extracted. The norm. cum. freq. axis represents the normalised

cumulative relative frequencies of the grey scales in the image and the linear spaces axis

represents the scaled grey scale levels of 0-255 of the pixels to 0-31. This is done with the

histogram translation and scaling algorithm(section 4.7.1).

40

In the curve map, the distribution curve is presented to the network in a matrix map

form, a typical curve map is illustrated in Fig. 4.7b, and again the network is trained to

0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.22 0.18
0.00 0.09 0.16 0.12 0.00 0.00
0.04 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.59 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.32 0.00 0.00
0.00 0.22 0.00 0.00 0.00
0.12 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.55 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.15 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.01 0.00 0.01

Fig.4.7b A typical curve map.

differentiate between these typical patterns as described above.

The binarised curve map is a curve map in which the curve points in the matrix are

replaced with ones(l’s) and the neural network is trained with that map as in the curve map.

41

In the smoothed curve, a second preprocessing is done using the smoothing

algorithm(section 4.7.2) to smooth the distribution curve before the features are extracted as

in the feature extraction scheme and then presented to the network.

4.6 Choice of patterns

Experimenting with numerals and alphabets, generated artificially, it was observed that the

neural network tends to learn in relation to position. For instance, when the neural network

is trained to recognise the alphabet A as in Fig. 4.8a, recognition is achieved in Fig. 4.8a

through to Fig. 4.8e, but recognition is partially or not achieved at all when the alphabet is

translated in both the lateral and longitudinal directions from its central position, as in Fig.

4.8f through to Fig. 4.8i. This particular observation occurred with the numerals also.

This knowledge, coupled with scientific judgement is employed and made use of in

the selection of the parasitic patterns for the training of the network, i.e., for a typical

parasitic pattern in a window section, the training set would include 5 different patterns of

the parasite, although not in all cases;

1 - the parasite in its actual position.

2 - the parasite translated laterally to the left side of the window,

3 - the parasite translated laterally to the right side of the window,

4 - the parasite translated longitudinally to the upper side of the window,

5 - the parasite translated longitudinally to the lower side of the window,

Two advantages emerge from this action: first, recognition is achieved irrespective of the

position by which the section falls inside the window being scanned during checking by the

network and secondly, this means that the scanning of the whole image can be done 32 pixels

42

at a time instead of moving a pixel at a time in order to ensure all positions have been fully

analyzed during on-line production use. The effect is that there is a tremendous saving in

time. The expensive time consuming factor is actually transferred indirectly to the off-line

training phase.

4.7 Cumulative frequency distributions

Through visual inspection it was observed that most of the parasites/sealworms that

were encountered in the available fish images that were used in this project seem to fit in

both shape and size into 32x32 pixel window sections of the reduced 256x256 cod fish

images. Plots of the cumulative frequency distribution of the grey scale levels in these 32x32

window sections of the fish image, revealed two approximating, basic distribution formats.

43

1. A fish muscle background with a parasite in a section shows a bimodal curve.

2. A fish muscle background without a parasite shows a unimodal distribution curve.

Illustrations of cumulative frequency distribution plots for sections taken out of the four

COD FISH images used are presented in Fig. 4.9(more are given in the appendix I) which

clearly show the formats mentioned above. Some slight differences do occur, such as when

the parasite is deeply embedded, or when a muscle tissue follows the shape and size of a

parasite.

From section 4.6, it has been observed that a neural network learns in relation to

position. This means that in order to make use of these unimodal and bimodal distribution

curves to differentiate between fish background with parasites and fish background without

parasite, the neural network is trained to recognise these unimodal and bimodal curves. Next

the relative positions of these curves must be fixed. Although the curves in Fig. 4.9 show the

unimodal and bimodal shapes, their positions differ to a very large extent both laterally and

longitudinally, although the two basic approximating formats are still prominent. For

example, although Fig. 4.9d and Fig. 4.9f both show a unimodal shape, their positions in the

y and x axis are on different sections of both axes. In order to fix the positions to be

relatively the same without changing the shapes of the curves, a histogram translation and

scaling algorithm was developed and used for this purpose and is described in the next

section.

The algorithm basically scales the spread of the grey scale levels of the curve and

then translates it into 32 linear spaces starting from the origin, and also scales the cumulative

frequency of occurrence of the grey scales to between 0 and 1. Thus if the distribution

spread is greater than 32, then it is REDUCED to fit into 32 linear spaces. If it is less than

44

32, then it is ENLARGED and mapped into the 32 linear spaces. If it is exactly 32, then it

is maintained and mapped into the 32 linear spaces.

4.7.1 Histogram translation and scaling algorithm

Step 1: Compute the cumulative relative frequency of occurrence of each grey

scale level in the 32x32 window section of the image.

Step 2: Find the spread of the cumulative relative frequency distribution by

calculating the difference between the beginning and the end of the distribution as

below,

a) Get the first non-zero grey scale pixel with a non-zero cumulative relative

frequency, Sbeg

b) Get the last non-zero grey scale pixel with a non-zero cumulative relative

frequency, Slast

c) Compute the spread, S = Slast - Sbeg.

Step 3: Map the spread into a 32 linear space or cells using the area under the

curve for each particular space or cell as below.

a) REDUCTION - If the spread of the cumulative distribution is greater than 32

grey scales, then a reduction procedure is undertaken as follows:

First divide the spread into 32 linear spaces or cells. For each space or cell, starting with the

first cell, using a statistical measure, such as the mean, mode etc., (the mean was used in this

project), then assign the mean of the cumulative frequencies of the grey scales that fall inside

this cell as the new cumulative frequency of the space/cell. For example, for a spread of 62

grey scales, divided into 32 cells will yield 2 grey scales per cell. If therefore the first two

45

11 " p«4

Grey scale

a) Section with a curvy worm.

----- pci

Grey scale

b) Section with image background.

46

------- pi1

Grey scale

c) Section with 1 /2 cut of curvy worm.

----- pel

Grey scale

d) Section with dark muscle tissue.

47

------- phi

Qrey scale

e) Section with image background/fish muscle.

------- Pd1

Grey scale

f) Section with light muscle tissue.

Fig.4.9a, b, c, d, e, and f. are illustrations of cumulative frequency distribution curves
of 32x32 for sections with different patterns.

48

grey scales have cumulative frequencies of 23, 24 then their mean will be 23.5. This value

will then be assigned to the cell containing these two grey scales which happens to be the

first cell. This is then repeated to the end of the spread.

b) ENLARGEMENT - If the spread of the cumulative distribution is less than 32 grey

scales, then an enlargement procedure is undertaken as follows:

First divide 32 linear spaces\cell into the number of grey scales in the spread. Then starting

with the first linear cell, assign the cumulative frequency of the first grey scale to the first

linear space of the group of linear spaces that fall within that grey scale. The cumulative

frequencies for the remaining linear spaces is then found by interpolation of the cumulative

frequency of the first grey scale to the cumulative frequency of the next grey scale. For

example, for a spread of 16 grey scale levels, after the division will produce 2 linear

spaces/cells per grey scale. Therefore if the first two grey scales have cumulative frequencies

of 23 and 24, then the first linear space is assigned a cumulative frequency of 23 and the

next linear space is assigned 23.5, by interpolation to the cumulative frequency of the next

grey scale. Then move to the next grey scale and repeat the whole procedure again. Repeat

to the end of the spread.

c) NO CHANGE - If the spread of the cumulative frequency distribution is exactly

equal to 32 grey scales, then map the cumulative frequencies directly into the 32 linear

spaces.

Step 4: Scale the cumulative frequencies to a workable range, e.g using the

largest cumulative frequency occurring in the section to scale it to between 0 to 1.

From the curves displayed in Fig. 4.10, there is little to no change in both shape and

size of the curves after the application of the algorithm and thus most of the curves features

are still preserved.

49

pal

Grey scale

Fig.4.10a Typical curve for a parasite background.

-------- palncrm
codihpic

Fig.4.10b Curve in (a) after algorithm applied.

50

----- pel
cocChpic

Grey scale

Fig.4.10c Typical curve for a normal background.

-------- pel norm
cod2Kpic

Fig.4.10d Curve in (c) after algorithm applied.

51

4.7.2 Smoothing algorithm

This is a simple tracing algorithm which follows the shape of a curve and smooths

the spikes that occur at various positions of the curve. This way the network learns the shape

of a smoothed curve rather than that of a spiked curve.

Step 1: Start at the beginning grey scale of the curve and assign it a

cumulative frequency of 0.

Step 2: Move to the next grey scale of the spread and check the cumulative

frequency of that grey scale against the previous grey scale’s cumulative frequency.

If the present grey scale’s cumulative frequency is greater than that of the previous

grey scale by 0.5, then assign the previous grey scale’s new cumulative frequency +

0.1 to the present grey scale.

elseif the present grey scale’s cumulative frequency is less than that of the previous

grey scale’s cumulative frequency by 0.5, then assign the previous grey scale’s new

cumulative frequency - 0.1 to the present grey scale.

else assign the previous grey scale’s new cumulative frequency to the present grey

scale.

Step 3: Repeat step 2 to the end of the curve.

CHAPTER 5

EXPERIMENTAL ANALYSIS

5.1 Introduction

This chapter describes the experimental analysis which includes the possibility,

practicability and efficiency of using the neural network technique to detect, locate and

recognise parasites on a cod fish image. It also describes the efficiencies of the various

schemes used in this analysis described in earlier chapters and the results and concludes with

the processing and production times of these schemes.

5.2 Analysis

As described in the data representation section, the unprocessed and processed

formats of the input data were used in the experimentation carried out in this investigation.

The cod fish images provided and used for the analysis contained four sections of 512x512

matrix sizes, COD1, COD2, C0D3, and C0D4. To reduce

-the difficulties encountered with visual/display observations of these images,

-the impracticability of analysis with image sizes of that order,

-the size of image files generated,

-the slow processing during the on-line production use of the network,

a reduction of the images was undertaken. This included using the neighbourhood averaging

52

53

method described in section 3.2.2 for image reduction to a workable size. Now a quarter of

its original size, window sections of 32x32 pixel of the images were used throughout this

investigation.

5.2.1 Unprocessed format

This is the format in which the input data is presented to the neural network in its

raw form. The pixel representation falls under this format where the actual grey scale levels

of the image patterns are used directly by the neural network. As explained earlier, patterns

of 32x32 window sections were chosen selectively including:

fish muscle background with parasite sections,

fish muscle background without parasite sections and

an image background,

from the fish images. These were then used to train the neural network using the two

schemes under the pixel representation described in earlier sections.

a) The majority parasite scheme - Using the criteria elaborated in the section 4.6

coupled with scientific judgement, the patterns for training were selected starting with

-two parasitic patterns

-one fish muscle pattern

-one image background pattern

which meant that where the parasitic pattern was approximately equal to the 32x32 section

being considered then the five different positions outlined in section 4.6 was fully duplicated

in the training set, otherwise scientific judgement was used to select the number of positions

that safely satisfied the criteria in section 4.6. Therefore the first set used was made up of

54

10 patterns selected from COD1 for the training set:

la. Fish background with parasite - No.l parasite comprised of 5 different patterns

-parasite in the centre position

-parasite translated to the left position

-parasite translated to the right position

-parasite translated to the top position

-parasite translated to the bottom position

lb. Fish background with parasite - No.2 parasite comprised of 3 different patterns

-parasite in the centre position

-parasite translated to the top position

-parasite translated to the bottom position

2. Fish background without parasite - 2 different patterns

-fish muscle background without parasite

-image background.

These are patterns which best represent the pattern being selected, i.e., the fish muscle with

parasite, the fish muscle background without parasite and image background. Thus in some

of the selections two fish muscle background patterns were chosen since one pattern was not

fully representative of the entire fish muscle background in the particular image. Also there

were cases when patterns consisting of fish muscle "blob" tissues were included to

differentiate the muscle "blobs" from that of the tissue muscle containing parasites.

Four different sets of training patterns were generated for use from the four cod

images, setl contained patterns extracted from COD1 and similarly set2, set3, set4 from

COD2, COD3 and COD4 respectively.

55

setl — 10 training patterns

set2 — 16 training patterns

set3 — 20 training patterns

set4 — 15 training patterns

with a network topology using an input vector of 32x32

1024 units for input layer

32 units for hidden layer

2 units for output layer

the selections of which have been described in earlier sections. Training of the neural

network was done with these four training sets respectively and then tested on the four cod

fish images. The results are presented in the form of a confusion matrix showing the level

of recognition achieved listed in Table 1 in section 5.2.1c below.

A second procedure undertaken was to combine the training sets, i.e., combining the

number of patterns from one set of patterns with the other sets to make four different sets.

Coml is made up of the patterns in the setl training set, com2 is made up of the combined

patterns in the setl and set2 training sets, com3 is made up of setl, set2 and set3, and com4

is made up of setl, set2, set3, and set4.

coml (setl) — 10 training patterns

com2(setl+set2) — 26 training patterns

com3(setl+set2+set3) — 46 training patterns

com4(setl+set2+set3+set4) — 61 training patterns

Again using the topology described above, the neural network was trained and then tested.

The testing results are shown in the form of a confusion matrix in Table 2 in section 5.2.1c

below.

56

b) The one parasite scheme - This followed the same procedure described above with

8 networks. Each network was trained to recognise one particular parasite pattern. The

testing results were similar to that of the majority parasite scheme but it had two serious

drawbacks. The first problem is that, it has large time constraints. For example with the 8

networks it takes 8 times as much time as that taken under the majority parasite scheme,

with a training set that includes the 8 parasitic patterns recognised in the one parasite

scheme. The second problem is that since the 8 networks must be stored and loaded at the

same time during the on-line production phase, the storage requirements are very enormous.

Thus investigation in this area was not pursued further.

c) Confusion matrices - The results of the testing for the level of recognition are

shown in the confusion matrices below for the two sets described above with the first

codl cod2 cod3 cod4
setl 100 81 76.5 69
set2 97 86 80 72
set3 69 44 86 36
set4 55 56 72 65

Table 1

57

procedure in which the training patterns were extracted from COD1, COD2, COD3, and

COD4 in Table 1. in percentages. From the confusion matrix in Table 1, it can be observed

that except for set4, the recognition level achieved with an image from which the patterns

for training were selected, was above 85%, as shown along the diagonal of the matrix.

Setl and set2 also achieve recognition levels of 70% and above, not only for images

that the training patterns were selected from, but for images from which no patterns for

training had been selected, whilst set3 and set4 did poorly on images that their training

patterns were not selected from.

It is clearly observed from these results that the neural network performs rather well

on images that the training patterns has been selected from, and poorly or may even be

unpredictable for images on whose patterns it has not been trained.

codl cod2 cod3 cod4
com: 100 81 76.5 69
com2 100 87.5 80 67
com3 89 80 89 66

com4 77 75 86 66

Table 2

In Table 2, the results from the second procedure in which the patterns from the

training sets in the first procedure has been combined are presented and these observations

58

are almost similar. Recognition levels except for com4, along the diagonal reach 85% and

above for all the training sets and the recognition level improves as the set of patterns from

another image is added to the set of training patterns. Apart from the poor recognition levels

achieved for unknown images, there is a loss of information as the training patterns increases

by the addition of patterns from the other training sets. This is depicted by the column

information in the Table 2 representing the recognition levels for each particular image. This

means that increment in the number of training patterns must be done and monitored

carefully.

The conclusion from these observations can be summarized simply by saying that the

network does not generalise easily and might therefore perform poorly or even unpredictably

when presented with an unknown image especially with the pixel representation format.

5.2.2 Processed format

This is the format in which the input is not presented to the neural network in the

raw form but is preprocessed in one of several ways: thresholding, performing a fast fourier

transform on the input data or extracting the cumulative frequency distribution of the grey

scale levels in the input data. After this processing, features are extracted from the processed

data and presented to the neural network. In one of the methods under the cumulative

frequency distribution procedure, a second preprocessing referred to as smoothing of the

curve is performed to the data before presentation to the neural network.

a) Thresholding - Global, local and dynamic thresholding all aim at trying to

scientifically segment the image into regions that can easily be subsequently analyzed as

described in section 3.2. One of these is binarisation, but in general, visual or automatic

59

selection of the threshold factor, T, is very difficult in practise, especially in images in which

the "object" areas do not possess distinct characteristics that differentiate it from the

"background" areas. Both global and local thresholding failed to process the cod images into

"object" and "background" segments that could easily separate parasitic backgrounds from

non-parasitic backgrounds for good utilisation by the neural network. Dynamic thresholding

on the other hand provided a better tool especially when applied to the 32x32 window

sections of the images which tend to reduce the image complexity considerably. The

drawback is the requirement for large time constraints. More time is taken by the dynamic

thresholding processing than is utilised by the neural network processing, thus making its use

rather impractical. It could be improved if an efficient algorithm could be developed in

conjunction with a high speed hardware implementation [4], which would make its

investigation worthwhile.

b) Fast fourier transforms - Nothing particularly worthy of investigation was

observed when the fast fourier transforms were applied to the different segments of the

images as investigated in other areas in this project and thus its investigation was not further

pursued.

c) Cumulative frequency distribution - As described earlier in section 4.7.1, input

patterns of 32x32 window sections from the cod fish images were processed using the

histogram translation and scaling algorithm to generate distribution curves or shapes that

were then presented to the neural network in the form of extracted features, a curve map,

a binary curve map, and extracted features from a smoothed curve. The objective here is to

train the neural network to recognise the shapes or curves of the cumulative frequency

distributions and thus be able to differentiate between the bi-modal curve structure with a

smaller hump adjacent to a bigger hump weighed to the origin of the curve, which is

60

Fig.5.1a Parasitic background curve.

Fig.5.lb. Non-parasitic background.

61

representative of fish background with parasite, as against a uni-modal curve structure with

slightly different characteristics that is representative of fish background without a parasite

as described in section 4.7.

d) Feature extraction - In this format the coordinates of the distribution curves were

extracted as features and presented to the neural network as a 32x1 input vector for training.

Starting with two patterns, as displayed in Fig. 5.1, one pattern representing a parasite

background and the other representing a non-parasitic background and using an architecture

of

32 units for the input layer

65 units for the hidden layer

2 units for the output layer

the selection of which has been described earlier, the neural network was trained and then

tested on the four cod images. The number of patterns was increased in the training set

whilst training continued to 16 different patterns. Fig. 5.2 illustrates these curves. Testing

was done and the levels of recognition achieved are presented in Table 3 below. From the

results, it is rather interesting to observe that as the number of patterns are increased the

level of recognition increases significantly and that from the training set of four patterns,

the level of recognition rises to 55% and higher. Also for the training set of 4, 6, 8, 10, 12,

and 16 patterns(which reflect an equal weighting between the number of patterns that

contain parasitic background and those that contain non-parasitic background), the level of

recognition is above 65%.

Since the distribution curves that the neural network is trained to recognise, are not

exactly representative of a section from a particular image, but rather a representation of a

general background, it means that the generalisation achieved with this format is better than

62

Fig.5.2b. Non-parasitic background curves.

63

tr. pats. 2 3 4 5 6 7 8 10 12 15 16
codl 34 27 82 81 81 83 81 84 79 85 87.5
cod2 30 25 67 58 80 80 80 69 84 70 70
cod3 45 45 67 64 70 69 70 69 75 73 76
cod4 33 25 76 73 80 78 78 80 84 81 81

Table 3

that of the unprocessed format of the pixel representation. The best level of recognition

seems to occur with a training set of 12 patterns, in which case the level of recognition

reaches 80%.

e) Curve map - In this format the distribution were presented to the neural network

in a shape form in which the exact strengths of the coordinates representing the shape of the

distribution curve is embedded in a background of zeros to form a sort of curve map as

shown in Fig. 4.7b.

An input vector of 32x11 was used for the presentation with a topology of

352 units for the input layer

64 units for the hidden layer

2 units for the output layer

training and testing was done and the results are presented in the Table 4.

64

From the results, the level of recognition achieved with this format is very low and

to some extent not very consistent. For example, the level of recognition for a training set

of 6 and 8 patterns is around 50%, then drops for the training set of 10 and 12 patterns and

then rises again for the training set of 16 patterns. This means that this particular format is

not very suitable and does not improve the efficiency of the network training.

tr. pats. 2 3 4 5 6 7 8 10 12 15 16
codl 22 8 27 23 53 36 50 38 31 48 69
cod2 23 22 34 33 56 42 53 42 33 41 61
cod3 34 27 39 44 58 42 61 48 45 55 64
cod4 38 22 47 45 61 47 58 50 44 55 70

Table 4

f) Binary curve map - This is similar to the curve map format where the actual

coordinate strengths that define the shape of the curve are replaced by binary signals; that

is, ones(l’s) representing the coordinates or shape of the curve while the rest of the map is

represented by zeros as described in section 4.5.3. Using the same architecture as in the curve

map procedure, training and testing was done and the results are presented in Table 5.

Although there is a slight improvement in the level of recognition over that of the

curve map scheme, the results are generally weak.

65

tr. pats. 2 3 4 5 6 7 8 9 10 12 15 16
codl 33 17 56 56 61 55 62 52 59 59 58 63
cod2 25 22 50 47 59 56 59 55 59 56 47 56
cod3 38 30 58 55 56 55 61 50 61 55 55 63
cod4 41 17 61 58 72 67 75 66 72 72 75 73

Table 5

g) Smoothed curve - In this format, a second preprocessing is done on the distribution

curve generated using the smoothing algorithm described in section 4.7.2. This smooths the

distribution curve by removing some of the spikes that occur in the curves which tend to

skew the exact modal structure of the curve and thereby improve the learning by the neural

network. After this processing, features were extracted from the distribution curve, i.e., the

coordinates of the processed curve, and were presented to the neural network in an input

vector of 32x1. Using the same topology as in the feature extraction procedure, training and

testing was carried out and the results are presented in the Table 6.

Again as observed in the feature extraction section 5.2.2c, as the training set is

increased there is a considerable increase in the level of recognition. From a training set of

6 patterns and above, the level of recognition rises to 50% and higher, and the best results

occur for a training set of 15 patterns.

66

tr. pats. 2 3 4 5 6 7 8 9 10 12 15 16
codl 31 25 69 80 75 77 75 69 70 67 77 77
cod2 25 22 45 48 64 61 61 61 66 58 63 56
cod3 44 34 50 69 63 64 63 52 53 50 66 56
cod4 28 27 61 67 70 75 75 64 63 64 72 64

Table 6

5.2.3 Processing times

Two tables are presented below showing the processing times for training the neural

network under three data representation formats used; pixel representation for the

unprocessed form, curve map and feature extraction formats for the processed forms. The

individual times represent the mean of ten trials. Table 7 was generated on the SUN 4.1/280

miniframe system with variable system load at any time, and the variations of these times

were within 0.1 to 1.0 second. Table 8 was generated on a SUN SPARC work station with

no system load except for the root programs, and the variations were within 0.1 second.

The variations on the processing times are pronounced for the small number of

patterns, for example, for 2 patterns in Table 7 the feature extraction method is 20 times

faster than the pixel representation method and 12 times faster than the curve map method,

67

Processing times on SUN in seconds

of pats 2 4 6 8 10 12 14 16
pix.rep 7.8 57.8 65.5 92.4 121.9 202.5 292.0 228.8
curjnap 4.8 14.1 18.5 27.8 37.1 43.3 52.3 50.1
fea. ext 0.4 0.7 1.0 6.7 17.3 11.5 16.2 33.0

Table 7

Processing times on SUN SPARC in seconds

of pats 2 4 6 8 10 12 14 16
pixjrep 4.8 34.5 37.7 66.4 72.8 160.7 177.0 134.2
cur. map 3.0 8.4 11.2 16.7 21.6 25.4 30.6 29.4
fea. ext. 0.3 0.4 0.6 4.2 11.2 7.3 10.7 21.2

Table 8

whereas when the number of patterns is 12, these become 17 and 4. The same trend shows

in Table 8. Also from 14 patterns in the training set, the processing times start to reduce. For

68

the unprocessed format, in particular, the pixel representation, the drop is sharp which may

indicate overlearning or overtraining or a phenomenon in which the network has reached its

maximum knowledge acquisition capacity and to some extent begins to lose information as

more is fed to it as was observed in section 5.2.1c. Those training sets with the processed

format exhibit a more robust knowledge acquisition capacity, as the curve for its processing

times shows a positive gradient. Which is an indication of its capacity to continue to absorb

more knowledge without losing information, although that of the curve map format starts to

flatten. A more consistent comparison was computed using the area under the curves in plots

of processing times versus the number of patterns shown below in Fig. 5.3a.

The area ratios are the same for the two plots, pixel rep.: curve map : feature extr.

14 : 3 : 1

which indicates that the feature extraction method is 14 times faster than the pixel

Fig.5.3a Processing times versus # of patterns on the SUN.

69

processing times on SUN SPARC work station

number of patterns

pixel rep.

curve map
feature extr.

Fig.5.3b Processing times versus # of patterns on the SPARC station.

representation method, 5 times faster than the curve map method, and the curve map is 3

times faster than the pixel representation method. This clearly shows that it is faster using

the processed form of the data representation than the unprocessed format. This is

particularly noteworthy since the preprocessing of the raw data to the features or the curve

map, i.e., processing the 32x32 grey scale pixels, on the two machines takes fractions of a

second.

5.2.4 Production times

This section gives an indication of the on-line performance of the network with the

various data representation after the off-line training phase. The four COD images in Fig.

IQ

1.1 were used as the testing data. Since input data from 32x32 pixels sections were used,

during the production the network scans the 64 sections contained in the 256x256 pixels COD

fillets images section by section. The production time therefore represents the time taken by

the network to do a complete scan of one of these images. Sample data of 32x32 sections are

presented in the appendix.

Table 9 shows the times in seconds for the three data representation formats used in

section 5.2.3, with the individual times representing the mean of ten trials on the two

machines as discussed in section 5.2.3. Again the feature extraction gives the fastest time

compared to the curve map and the pixel representation. Thus the processed format in the

form of the feature representation is about ten times faster than the unprocessed format in

the form of the pixel representation.

Production times in sec.

Sun Sparc
pixel rep. 14.2 8.9

curve map 10.1 6.2
feature extr. 1.6 0.9

Table 9

CHAPTER 6

CONCLUSIONS AND EXTENSIONS OF THE WORK

6.1 Introduction

This investigation was done with a small number of cod fish images than was

originally expected to be available due to funding problems with the cod fish image

production project. The conclusions to the analysis and experimentations in this investigation

are therefore based largely on these images which were used. It should be noted that images

with substantially less parasites is more normal so that worst case conditions have been under

study here. This chapter presents these observations and which directions that further

investigation should be undertaken.

6.2 Neural network technique

From the results of the experimentation on the recognition levels of the

parasite/sealworm from the cod fish images, this clearly shows that the neural network

technique is very useful for solving such a complex problem. The steepest descent

optimisation method [6] has very large time constraints whilst the conjugate gradient

optimisation method [18] performed better within practical real time constraints. It therefore

allows for faster implementation of the neural network technique to solve this problem with

71

72

speed and efficiency. Further investigation at applying improved versions of the conjugate

gradient and other faster optimisation techniques [12] can be pursued.

6.3 Data representation

Better results were achieved in terms of recognition levels, processing and production

time and level of generalisation, using the processed format of data than the unprocessed

format which shows that this system works better when the input data is processed to some

format using vision techniques, either in a one step or several steps processing before

presentation to the neural network. The processing methods can thus be further investigated

for improvement such as using edge or area detection schemes which are aimed at trying to

differentiate parasites/sealworms background from the cod fish image by some form of area

or edge measures.

6.4 Image reduction

The reduction of the cod fish images before use proved to be very useful and

improved the time for both the off-line training phase and the on-line production phase of

the neural network. This can be further improved by encoding this routine in the hardware

for implementation since it is a simple routine using the neighbourhood averaging method

or another equally effective vision method. This can easily then become part of the automatic

inspection system.

73

6.5 Summary

This investigation thus establishes clearly that it is very possible to use the neural

network technique in combination with some form of vision technique to develope a neural

network based system to analyse, recognise and detect parasite/sealworm on a cod fish image.

The level of generalisation achieved by the network when trained with a selected number of

patterns is very dependent to a large extent on the limits of the format in which the data was

presented. The network thus tends to generalise better when presented with a processed data

format because any input data presented is processed to fall within the limits of the training

data used by the network. On the other side of this, the network does poorly or unpredictable

when presented with an unprocessed data format since a large number of the input data

presented to the network easily fall outside the limits of the training data used by the

network. Therefore the practicability and efficiency of the neural network based system

depends on the data representation format and in this investigation it is very clear that the

best results occur with the processed format.

Further work should therefore concentrate on investigating other processing methods

aimed at producing data representation formats that would improve some of the results

achieved in this investigation especially with more cod fish images to work on.

BIBLIOGRAPHY

[1] Azriel Rosenfeld, "Computer Vision: Basic Principles", Proceedings of the IEEE, vol.

76, #8, 1988, pp. 863-868.

[2] Theo. Pavlidis, Algorithms for Graphics and Image Processing. Computer Science

Press, 1981.

[3] Joan S. Weszka, "A Survey of Threshold Selection Techniques", Computer

Graphics and Image Processing 7, 1978, pp. 259-265.

[4] D. W. Capson, Lecture Notes for E.C.E 763, Computational Vision, McMaster

University, 1990.

[5] Richard P. Lippmann, "An Introduction to Computing with Neural Nets", IEEE ASSP

Magazine. April, 1987, pp. 4-22.

[6] J. L. McClelland, D. E. Rumelhart, Explorations in Parallel Distributed Processing.

MIT Press, 1988.

[7] Minsky and Papert, Perceptron-Expanded Edition. MIT Press, 1988.

[8] R. O. Duda, P. E. Hart, Pattern Classification and Scene Analysis. John Wiley and

Sons, New York, 1973.

[9] Jeanette Lawrence, "Untangling Neural Nets", Dr, Dobb’s Journal. April, 1990,

pp. 38-44.

[10] Emilio A. Apey, "Back Error Propagation Simulator(BPS)", George Mason University,

September, 1989.

74

75

[11] E. Barnard, R. Cole, "A Neural-net Training Program Based on Conjugate Gradient

Optimisation", O.G.C Tech. Report No. C.S.E. 89 - 014. Oregon Graduate College.

[12] Martin F. Moller, "A Scaled Conjugate Gradient Algorithm for Fast Supervised

Learning", Computer Science Dept., Aarhus University, Aarhus, Denmark,

[Private communication from Martin F. Moller, Nov., 1990].

[13] Scot E. Fahlman, Christian Lebierre, "The Cascade - Correlation Learning

Architecture", CMU-CS-90-100. Carnegie-Mellon University, School of Computer

Science.

[14] Scot E. Fahlman, "Faster Learning Variation on Back-Propagation - An Empirical

Study", Proceeding of the 1988 Connectionist Models Summer School. Morgan

Kaufmann, 1988, pp. 38-51.

[15] R. Hecht-Nielsen, "Kolmogorov’s Mapping Neural Network Existence Theorem", 1st

IEEE International Conference on Neural Net. San Diego, 1987.

[16] Raymond Ho, "A Neural Network System for Recognition of Evoked Potential",

(Master’s Thesis), McMaster University, Department of Computer Science and

Systems, December, 1989.

[17] Mordecai Avriel, Nonlinear Programming. Analysis and Methods. Prentice-Hall, Inc.,

Englewood Cliffs, New Jersey, 1976.

[18] A. H. Kramer, A. Sangiovanni-Vincentelli, "Efficient Parallel Learning Algorithms

for Neural Network", Advances in Neural Information Processing Systems 1. edited

by D.S. Touretzky, Morgan Kaufmann Publishers, 1989, pp. 40-48.

[19] CANPOLAR INC., Toronto, Ontario, "Evaluation of Potential Automated Parasite

Recognition Technology", September, 1988?

76

[20] CANPOLAR EAST INC., St. John’s, Newfoundland, "Parasensor(TM) Development

Milestone Report", January, 1990?

[21] CANPOLAR INC., Toronto, Ontario, "Operations Report", 1988?

[22] Yoh-Han Pao, Adaptive Pattern Recognition and Neural Networks. Addison-Wesley

Publishing Company, Inc., 1989.

[23] M. J. D. Powell, "Restart Procedures for the Conjugate Gradient Method",

Mathematical Programming 12, 1977, pp. 241-251.

Has been kindly provided by Dr. James R. Rossiter, President, CANPOLAR INC.1

APPENDIX I:
Illustrations of cumulative frequency distribution curves

-------- pa2
codihpic

Grey scale

1.Section with a curvy worm.

-------- pe2
cod4hpic

Grey scale

2.Section with dark muscle tissue.

77

78

----- P«1

Grey scale

3.Section with a curvy worm.

------- Pd2

Grey scale

4.Section with light muscle tissue.

79

------- p«5

Grey scale

5.Section with a curvy worm.

------- pg2

Grey scale

ô.Section with light/dark muscle tissue.

80

------- Pb1

Grey scale

7. Section with an embedded worm.

------- PQ1
codlhpic

Grey scale

8.Section with light/dark muscle.

81

------- ps3

Grey scale

9. Section with a curvy worm.

----- P«6

Grey scale

lO.Section with a curvy worm.

82

------- p«7

Grey scale

11. Section with a curvy worm.

------- pa 14
wei5

Grey scale

12.Section with a curvy worm.

83

------- Pb3

Grey scale

13. Section with an embedded worm.

------- pb5

Grey scale

14.Section with an embedded worm.

84

------- Pf2

Grey scale

15. Section with muscle blobs.

------- Pta2
codQhpic

Grey scale

1 ô.Section with an embedded worm.

85

------- pa 12

Grey scale

17. Section with a curvy worm.

------- pa 10
weO

Grey scale

18.Section with a curvy worm.

APPENDIX II

SAMPLE INPUT DATA

1. Input Data of the Pixel Representation Format(32x32 pixel section)

a) Parasitic Background

par .pr
72 99 134 132 129 121 132 128 121 127 130 133 127 119 123 127 128 128 119 112 122 121 126 120 117 114 121 123 121 no 111 126

118 113 125 128 123 127 130 129 116 120 123 135 132 123 120 135 127 125 119 122 113 117 125 125 118 111 120 120 123 117 117 122
118 118 117 132 129 125 113 113 111 119 123 120 121 127 120 128 132 121 119 113 114 119 124 118 119 112 112 119 121 118 120 125
123 115 125 126 128 128 108 108 113 119 109 116 112 120 133 122 126 130 121 126 120 115 118 118 115 111 120 123 120 115 115 123
118 119 117 112 120 117 118 122 122 119 112 119 129 128 130 118 117 122 119 129 118 126 122 114 126 119 114 117 118 113 104 114
115 112 126 118 120 114 119 120 127 127 118 123 128 121 128 123 116 125 123 124 122 117 122 117 116 118 12C 123 121 121 no 116
116 118 121 118 117 114 115 115 127 126 127 123 121 123 131 126 118 119 117 106 111 100 106 104 120 121 126 127 129 118 108 115
115 124 119 116 119 124 121 116 128 117 118 122 127 129 123 129 107 98 92 79 82 80 74 80 97 121 127 123 125 116 117 115
117 116 124 117 118 118 119 119 118 123 113 no 120 120 118 108 88 75 71 67 74 72 68 70 78 95 115 126 120 116 116 117
108 116 127 119 116 119 121 120 115 118 114 116 117 no 99 91 72 68 72 75 86 84 88 87 73 81 107 120 118 114 113 116
113 111 120 113 112 116 118 118 117 120 111 121 111 98 71 63 67 73 68 65 73 80 90 87 73 67 95 109 115 109 no 114
111 117 116 107 no 117 122 127 121 123 119 114 94 73 52 53 61 68 66 66 64 66 74 71 65 65 89 116 no 111 no 120
11C 112 126 118 115 126 122 125 118 117 117 100 73 49 45 51 56 66 66 61 65 67 60 58 58 71 91 109 123 117 105 118
110 111 118 117 118 133 128 121 117 123 no 81 63 52 46 45 48 51 49 48 61 70 66 56 50 60 81 107 118 113 no 114
108 114 122 lie 127 121 124 115 119 120 100 72 52 55 49 44 43 46 39 43 47 51 55 61 57 58 77 92 109 107 108 120
111 106 128 123 124 123 127 125 121 112 85 59 42 36 41 39 44 58 57 57 56 51 48 52 58 59 71 78 101 103 111 no
114 119 126 125 126 119 126 122 128 no 81 52 41 41 49 59 87 94 102 93 90 74 61 61 60 59 61 75 82 92 102 108
108 113 126 122 123 121 121 117 124 IOC 77 45 37 47 67 101 113 113 113 113 116 102 90 65 61 66 62 75 78 85 104 107
105 113 120 122 124 125 121 114 113 101 70 44 37 62 90 116 116 114 115 113 120 117 108 83 74 68 7C 69 67 78 92 106
105 111 117 122 117 106 94 99 91 83 59 46 47 79 105 115 127 112 115 117 105 102 108 95 83 71 67 71 68 76 93 94

97 109 120 115 104 94 84 84 75 61 45 47 57 82 101 102 116 no 106 no no 106 109 97 92 77 73 69 70 77 79 87
94 103 119 103 90 91 90 79 62 59 50 55 71 86 97 99 111 105 104 113 114 105 106 97 90 8C 72 73 73 81 84 91
94 90 116 93 77 86 85 81 74 61 59 70 74 81 93 93 103 IOC 104 109 112 101 104 107 96 82 8C 74 78 73 80 92
95 97 109 90 60 62 66 67 64 62 71 79 87 97 94 88 99 109 111 102 114 99 103 101 94 87 90 83 84 81 89 95

102 103 113 91 66 62 59 62 64 79 87 90 91 90 89 89 91 98 107 95 101 102 97 92 96 96 92 90 81 85 94 102
108 102 116 109 93 73 72 74 84 91 99 99 94 91 90 98 91 94 IOC 97 103 101 105 99 104 89 96 88 92 102 103 111
no 101 123 120 107 96 100 98 106 105 99 101 104 102 99 90 96 98 107 no 103 97 108 101 102 96 97 94 99 105 103 108
111 109 119 122 116 116 115 113 9 101 104 94 102 102 99 92 97 105 111 no 109 115 no 107 no 106 102 112 106 109 107 103
111 109 116 118 113 115 116 116 108 104 109 104 104 98 105 96 97 116 108 115 113 106 113 109 113 113 116 116 114 114 116 103
102 114 117 no 111 115 no 108 115 115 114 109 108 112 104 108 no 113 109 102 115 109 107 108 111 109 118 115 114 114 112 104
107 110 119 116 120 119 114 107 114 106 122 113 117 114 103 111 114 121 116 104 112 116 107 108 111 114 112 116 12C 116 114 112
116 115 116 119 109 112 113 117 113 121 113 117 116 117 116 113 117 111 117 121 124 121 108 105 114 116 114 115 126 119 120 116

b) Data in (a) A:fter Normalisation

8 0.39 0.53 0.52 0.51 0.41 0.52 0.50 0.41 0.
« 0.44 0.49 0.50 0.48 0.50 0.51 0.51 0.45 0.
« 0.46 0.46 0.52 0.51 0.49 0.44 0.44 0.44 0.
8 0.45 0.49 0.49 0.50 0.50 0.42 0.42 0.44 0.
« 0.41 0.46 0.44 0.41 0.46 0.46 0.48 0.48 0.
5 0.44 0.49 0.46 0.41 0.45 0.41 0.41 0.50 0.
5 0.46 0.41 0.46 0.46 0.45 0.45 0.45 0.50 0.
5 0.49 0.41 0.45 0.41 0.49 0.41 0.45 0.50 0.
6 0.45 0.49 0.46 0.46 0.46 0.41 0.41 0.46 0.
2 0.45 0.50 0.41 0.45 0.41 0.41 0.41 0.45 0.
4 0.44 0.41 0.44 0.44 0.45 0.46 0.46 0.46 0.
4 0.46 0.45 0.42 0.43 0.46 0.48 0.50 0.41 0.
3 0.44 0.49 0.46 0.45 0.49 0.48 0.49 0.46 0.
3 0.44 0.46 0.46 0.46 0.52 0.50 0.41 0.46 0.
2 0.45 0.48 0.46 0.50 0.41 0.49 0.45 0.41 0.
4 0.42 0.50 0.48 0.49 0.48 0.50 0.49 0.41 0.
5 0.41 0.49 0.49 0.49 0.41 0.49 0.48 0.50 0.
2 0.44 0.49 0.48 0.48 0.41 0.41 0.46 0.49 0.
1 0.44 0.41 0.48 0.49 0.49 0.41 0.45 0.44 0.
1 0.44 0.46 0.48 0.46 0.42 0.31 0.39 0.16 0.
8 0.43 0.41 0.45 0.41 0.31 0.33 0.33 0.29 0.
1 0.40 0.41 0.40 0.35 0.36 0.35 0.31 0.24 0.
1 0.35 0.45 0.36 0.30 0.34 0.13 0.32 0.29 0.
1 0.38 0.43 0.35 0.24 0.24 0.21 0.26 0.25 0.
0 0.40 0.44 0.36 0.26 0.24 0.23 0.24 0.25 0.
2 0.40 0.45 0.43 0.36 0.29 0.28 0.29 0.33 0.
3 0.40 0.48 0.41 0.42 0.18 0.39 0.38 0.42 0.
4 0.43 0.41 0.48 0.45 0.45 0.45 0.44 0.38 0.
4 0.43 0.45 0.46 0.44 0.45 0.45 0.45 0.42 0.
0 0.45 0.46 0.43 0.44 0.45 0.43 0.42 0.45 0.
2 0.43 0.41 0.45 0.41 0.41 0.45 0.42 0.45 0.
5 0.45 0.45 0.41 0.43 0.44 0.44 0.46 0.44 0.

0 0.51 0.52 0.50 0.41 0.48 0.50 0.50 0.50 0.41 0.44 0.
1 0.48 0.53 0.52 0.48 0.41 0.53 0.50 0.49 0.41 0.48 0.
1 0.48 0.41 0.41 0.50 0.41 0.50 0.52 0.41 0.41 0.44 0.
1 0.43 0.45 0.44 0.41 0.52 0.48 0.49 0.51 0.41 0.49 0.
1 0.44 0.41 0.51 0.50 0.51 0.46 0.46 0.40 0.41 0.51 0.
0 0.46 0.48 0.50 0.41 0.50 0.48 0.45 0.49 0.48 0.49 0.
9 0.50 0.48 0.41 0.48 0.51 0.49 0.46 0.41 0.46 0.42 0.
6 0.46 0.48 0.50 0.51 0.48 0.51 0.42 0.38 0.36 0.31 0.
8 0.44 0.43 0.41 0.41 0.46 0.42 0.35 0.29 0.20 0.26 0.
6 0.45 0.45 0.46 0.43 0.39 0.36 0.28 0.21 0.28 0.29 0.
1 0.44 0.41 0.44 0.38 0.28 0.25 0.26 0.29 0.21 0.25 0.
8 0.41 0.45 0.31 0.29 0.20 0.21 0.24 0.21 0.26 0.26 0.
6 0.46 0.39 0.29 0.19 0.18 0.20 0.22 0.26 0.21 0.24 0.
8 0.43 0.32 0.25 0.20 0.10 0.10 0.19 0.20 0.19 0.19 0.
1 0.39 0.28 0.20 0.22 0.19 0.11 0.11 0.10 0.15 0.11 0.
4 0.33 0.23 0.16 0.14 0.16 0.15 0.11 0.23 0.22 0.22 0.
3 0.32 0.20 0.16 0.16 0.19 0.23 0.34 0.31 0.40 0.36 0.
9 0.30 0.10 0.15 0.18 0.26 0.40 0.44 0.44 0.44 0.44 0.
0 0.21 0.11 0.15 0.24 0.39 0.45 0.45 0.45 0.45 0.44 0.
3 0.23 0.16 0.10 0.31 0.41 0.45 0.50 0.44 0.45 0.46 0.
4 0.10 0.10 0.22 0.32 0.40 0.40 0.45 0.43 0.42 0.43 0.
3 0.20 0.22 0.26 0.34 0.30 0.39 0.44 0.41 0.41 0.44 0.
4 0.23 0.21 0.29 0.32 0.36 0.36 0.40 0.39 0.41 0.43 0.
4 0.26 0.31 0.34 0.38 0.31 0.35 0.39 0.43 0.44 0.40 0.
1 0.34 0.35 0.36 0.35 0.35 0.35 0.36 0.30 0.42 0.31 0.
6 0.39 0.39 0.31 0.36 0.35 0.38 0.36 0.31 0.39 0.38 0.
1 0.39 0.40 0.41 0.40 0.39 0.35 0.36 0.36 0.42 0.43 0.
0 0.41 0.31 0.40 0.40 0.39 0.36 0.38 0.41 0.44 0.43 0.
1 0.43 0.41 0.41 0.30 0.41 0.36 0.38 0.45 0.42 0.45 0.
5 0.45 0.43 0.42 0.44 0.41 0.42 0.43 0.44 0.43 0.40 0.
2 0.40 0.44 0.46 0.45 0.40 0.44 0.45 0.41 0.45 0.41 0.
1 0.44 0.46 0.45 0.46 0.45 0.44 0.46 0.44 0.46 0.41 0.

12408.41 0.49 0.41 0.46 0.45 0.41 0.48 0.41 0.43 0.44 0.49
.46 0.49 0.49 0.46 0.44 0.41 0.41 0.48 0.46 0.46 0.48
.41 0.49 0.46 0.41 0.44 0.44 0.41 0.41 0.46 0.41 0.49
.45 0.46 0.46 0.45 0.44 0.41 0.46 0.41 0.45 0.45 0.46
.49 0.48 0.45 0.49 0.41 0.45 0.46 0.46 0.44 0.41 0.45
.46 0.48 0.46 0.45 0.46 0.41 0.46 0.41 0.41 0.43 0.45
.39 0.42 0.41 0.41 0.41 0.49 0.50 0.51 0.46 0.42 0.45
.31 0.29 0.31 0.30 0.41 0.50 0.48 0.49 0.45 0.46 0.45
.26 0.21 0.21 0.31 0.31 0.45 0.49 0.41 0.45 0.45 0.46
.33 0.35 0.34 0.29 0.32 0.42 0.41 0.46 0.45 0.44 0.45
.31 0.35 0.34 0.29 0.26 0.31 0.43 0.45 0.43 0.43 0.45
.26 0.29 0.28 0.25 0.25 0.35 0.45 0.43 0.44 0.43 0.41
.26 0.24 0.23 0.23 0.28 0.36 0.43 0.46 0.46 0.41 0.46
.21 0.26 0.22 0.20 0.24 0.32 0.42 0.46 0.44 0.43 0.45
.20 0.22 0.24 0.22 0.23 0.30 0.36 0.43 0.42 0.42 0.41
.20 0.19 0.20 0.23 0.23 0.28 0.31 0.40 0.40 0.44 0.43
.29 0.24 0.24 0.24 0.23 0.24 0.29 0.32 0.36 0.40 0.42
.40 0.35 0.25 0.24 0.26 0.24 0.29 0.31 0.33 0.41 0.42
.46 0.42 0.33 0.29 0.21 0.21 0.21 0.26 0.31 0.36 0.42
.40 0.42 0.31 0.33 0.28 0.26 0.28 0.21 0.30 0.36 0.31
.42 0.43 0.38 0.36 0.30 0.29 0.21 0.21 0.30 0.31 0.34
.41 0.42 0.36 0.35 0.31 0.28 0.29 0.29 0.32 0.33 0.36
.40 0.41 0.42 0.38 0.32 0.31 0.29 0.31 0.29 0.31 0.36
.39 0.40 0.40 0.31 0.34 0.35 0.33 0.33 0.32 0.35 0.31
.40 0.38 0.36 0.36 0.38 0.36 0.35 0.32 0.33 0.31 0.4C
.40 0.41 0.39 0.41 0.39 0.38 0.35 0.36 0.40 0.40 0.44
.30 0.42 0.40 0.40 0.30 0.38 0.31 0.39 0.41 0.40 0.42
.45 0.43 0.42 0.43 0.42 0.40 0.44 0.42 0.43 0.42 0.40
.42 0.44 0.43 0.44 0.44 0.45 0.45 0.45 0.45 0.45 0.40
.43 0.42 0.42 0.44 0.43 0.46 0.45 0.45 0.45 0.44 0.41
.45 0.42 0.42 0.44 0.45 0.44 0.45 0.41 0.45 0.45 0.44
.41 0.42 0.41 0.45 0.45 0.45 0.45 0.49 0.41 0.41 0.45

86

87

c) Image Background

Una.pr
32 32 150 148 152 144 146 136 135 143 142 139 148 143 141 139 130 129 126 134 136 134 137 129 123 134 134 144 137 134 128 140

139 133 149 144 149 151 142 139 134 131 132 136 146 146 146 134 130 130 142 144 143 128 139 138 144 142 138 141 137 137 137 131
134 135 153 151 142 141 140 134 137 131 140 133 135 130 141 142 142 131 137 148 147 146 142 138 141 147 140 138 142 144 146 138
143 138 155 149 148 14C 136 143 144 135 136 131 139 139 140 142 137 139 141 158 142 147 149 143 144 145 141 131 141 143 145 149
143 142 141 132 135 141 141 154 142 137 137 136 139 140 140 148 138 140 149 152 145 149 146 144 139 137 130 133 137 140 143 145
140 138 145 136 137 137 136 138 147 137 134 138 145 145 132 128 13C 133 144 142 148 147 145 145 134 135 128 138 129 131 139 140
131 137 147 137 139 148 142 148 145 138 138 136 145 145 134 134 140 134 143 137 142 144 152 144 137 135 143 139 135 133 137 139
128 135 151 146 145 153 150 144 142 147 143 138 135 144 135 130 144 143 140 141 147 148 144 142 136 137 137 142 131 139 135 139
137 127 157 154 158 16C 148 144 143 137 136 144 151 143 142 135 15C 151 141 146 142 141 146 14C 142 141 147 145 136 145 139 142
136 134 148 149 159 162 144 137 136 141 144 143 139 133 137 142 153 143 146 144 149 150 154 145 152 144 146 153 142 143 139 142
139 137 161 142 157 155 149 140 143 145 14C 137 139 144 139 150 149 153 144 146 134 142 144 136 150 152 149 150 141 142 134 140
141 141 154 145 151 165 148 135 143 141 133 138 138 133 144 147 141 149 143 144 143 139 145 136 138 144 142 136 133 133 137 142
145 146 153 146 149 165 147 134 141 144 147 139 139 132 132 142 143 156 155 147 139 149 155 147 151 141 147 137 141 142 140 147
143 132 160 158 168 171 150 136 138 14C 146 140 134 135 126 134 142 152 144 136 139 138 144 149 150 134 136 144 142 137 134 144
135 127 163 163 147 160 150 143 131 139 145 140 145 137 133 135 141 145 136 139 140 135 137 147 150 132 140 138 146 148 152 139
135 137 156 151 150 163 159 144 147 152 151 142 134 134 145 135 140 144 136 145 137 138 133 136 150 145 148 146 142 144 145 136
143 147 152 139 152 161 141 133 145 139 138 138 128 141 149 138 136 146 146 139 126 134 137 138 134 141 134 136 139 127 138 141
143 142 148 156 153 150 144 139 141 134 148 148 139 151 148 140 147 143 149 138 139 138 137 136 140 146 143 144 137 140 136 145
143 143 144 149 154 152 142 141 144 143 146 141 148 158 151 149 147 146 144 142 144 146 144 147 135 134 137 131 132 141 142 144
139 145 160 155 162 159 154 148 153 152 152 137 147 143 146 149 142 138 150 151 147 147 145 140 133 138 147 133 134 137 138 143
143 149 151 159 149 156 162 152 152 151 142 146 148 146 143 143 14C 146 146 144 139 138 134 139 132 139 144 127 141 145 136 150
145 148 152 142 151 161 161 155 156 154 142 139 146 152 145 149 149 145 139 143 145 153 139 139 143 143 145 149 143 146 148 161
159 152 154 146 149 161 146 149 157 148 141 138 147 156 153 151 144 135 133 138 146 155 132 137 139 141 134 147 152 143 151 146
146 140 149 153 156 157 153 151 161 154 152 142 150 161 154 142 141 137 137 141 150 137 133 14C 139 138 141 152 148 145 155 150
143 140 151 145 151 155 156 145 162 156 144 152 141 139 147 136 142 130 132 142 139 133 136 132 136 135 146 143 144 145 147 145
144 142 162 146 150 152 155 155 153 143 150 152 135 141 134 140 148 132 144 146 133 133 132 138 128 124 136 149 148 138 142 143
138 142 166 151 159 163 160 160 158 152 145 151 145 141 142 146 139 148 142 140 130 132 137 135 135 133 141 142 148 138 141 145
142 146 162 154 161 167 157 157 159 147 145 149 153 136 140 136 125 151 145 144 133 139 146 137 141 144 144 152 146 148 14C 147
149 154 166 157 154 165 160 157 152 142 141 147 145 146 144 133 135 149 147 147 141 137 138 146 144 142 150 148 140 135 139 142
149 146 163 162 160 157 167 163 157 144 147 141 147 141 144 141 139 146 155 150 139 145 146 146 144 144 136 138 140 138 137 138
142 145 16"? 163 159 154 160 151 140 150 156 163 149 134 137 134 142 152 142 142 136 142 141 146 140 146 138 147 149 141 143 143
149 142 169 157 157 155 159 156 144 155 155 150 147 144 140 135 147 151 132 139 148 148 143 144 137 139 132 137 143 140 140 149

d) Data in (c) After Normalisation

I 0.S4
I O.S?
! O.CO
I O.SS

» 0 .C2
) o.sc

> 0.S4
> 0.C2

se o.s? o.S3
S» O.SC 6.SS
ss o.ss o.s?
ss o.ss o.sc
ss o.ss o.eo
S« 0.53 0.54
SO O.SC 0.5S
CO 0.5» O.SC
C3 O.SS O.SC
C4 O.SC 0.54
Cl O.SS O.SS
CS O.SS 0.53
CS O.SS 0.53
C? O.S» 0.S3
C3 O.S» O.SC
C4 0.C2 O.SC
S3 O.SS 0.S2
S» O.SC O.SS
CO O.SC O.SS
C2 O.CO O.S»
Cl 0.C4 O.CO
S3 0.C3 0.C1
S3 0.51 O.SS
C2 O.CO O.S»

.Cl 0.C1 O.S?

.CO 0.C1 0.C1
,C4 0.C3 0.C3
.CS 0.C2 0.C2
.CS 0.C3 0.C2
. C2 O.CS 0.C4
.CO 0.C3 O.S»
.Cl 0.C2 0.C1

S4 I .54
S4 0.33 0
S4 0.S4 0
SI O.SC 0
54 0.S3 0
55 O.SC 0

.5? O.SS 0
SS 0.S2 0
SS (
SS I

.ss

.s?
SS O.S? 0
CO O.S» 0
SS 0.S4 0

.S3 O.SS 0

.SC O.S? 0

.CO O.CO 0
S» O.SC 0

.CO O.SS 0

.ss o.ss o

.CO O.CO 0

.S3 O.SC

.SC O.S» 0

.CO O.S? 0

.SI O.S? 0
•SC O.SS 0
.SC O.SS 0
•S» 0.C1 0
Cl l • Cl

43269 5.SS O.SS 0.S1 O.Sl 0.4» 0.S3 0.
9.S? 0.S3 O.Sl O.Sl O.SC O.SC 0
O.SS O.SC O.SC O.Sl 0.S4 I
O.SS O.SC 0.S4 o.ss o.ss

l.SB 0.S4 I
>.S0 O.Sl I
).S3 O.SS (
i.si o.se c
).S3 O.S» (
>.»s o.se c

0.62 0
O.CO 0

.S3 O.SS

.SC o.ss

O.SS O.S» O.Sl O.CO I

.s» o.ss <
•SC O.S? «

0.S4 0
O.SS 0

O.SC 0.
0.S2 0.

0.S3 O.SO O.SS
0.S4 0.S4 O.Sl
O.SC O.S? 0.S4
o.se o.s? o.se
o.ss o.ss o.s?
O.Sl o.ss o.ss
0.S2 0.S4 O.SS
O.SS 0.S3 O.SS
o.s? o.ss o.sc
o.sc o.ss o.sc
O.SC 0.S3 O.SS
0.S2 0.S4 O.SC
o.sc o.ss o.se
0.S4 0.S3 O.SC
O.SS O.SO o.ss
O.SC O.S? 0.S3
O.SO 0.S4 o.ss
O.SS 0.S3 O.S?
o.ss o.sc o.se
0.S4 0.S4 O.SC
O.S? 0.S3 o.s»
O.S? O.SS 0.C3
o.sc o.s» o.s?
O.S? 0.C1 o.s»
o.s? o.ss o.s?
0.S4 o.sc o.sc
0.S4 O.SS O.S?
o.se o.s» o.ss
0.S3 O.SS O.SC
0.S4 0.S4 0.S4
o.ss o.se o.sc
O.SS O.SS O.Sl

50620

O.S? 0
O.SC 0

SC O.SC 0.C1 0.C1 O.SS 0
SS O.SS O.SS O.SC

0.4» 0.3
0.S2 0.9

i.cc o.sc
I.S? 0.S3

0.53 0
O.SS 0

S3 O.SS O.SC (o.s? e.
O.Sl 0.
O.Sl o.ss o.ss o.ss o.ss

S4 0.S3 O.S? O.S? O.SS 0

o.s» o.ss o.se o.s? o.se
o.s? o.se o.sc <
0.S6 O.SC O.SS 0.

,54 O.S» C
s? o.s? (

0.S4 0
O.SC 0

O.S? O.SS O.SS O.S? O.SS O.SC 0
O.CO O.S» O.SC 0.S3 0.S2 0.S4 0
O.CO O.SC O.SS 0.S4 0.S4 O.SS 0
O.SS 0.S3 O.SC O.Sl 0.S2 O.SC 0
0.S3 O.SS O.SS 0.S2 O.SC O.S? 0
O.SC O.S? O.SS O.SS O.SC O.SS 0
O.SS 0.S3 0.4» O.S» O.S? O.SC 0
O.SC 0.S2 0.S3 O.SS O.SS O.SS 0
o.sc o.ss o.ss
0.S4 0.!
O.SS 0.!

).SI O.SS (
I.S? O.Sl (
I.CO O.SC (
I.S» 0.S2 (

88

e) Fish Muscle Background

nui .pr
104 163 89 88 87 81 87 86 83 84 81 80 78 81 78 77 81 77 80 78 73 74 77 78 74 71 72 78 76 79 80 74

76 74 85 85 80 82 89 90 82 83 78 78 78 81 81 73 75 80 83 84 76 75 79 73 72 75 75 73 77 80 80 80
78 74 84 82 83 83 83 87 75 79 77 75 77 81 77 81 79 76 80 83 86 76 69 71 76 74 80 77 81 80 75 74
80 82 87 80 77 84 91 89 77 78 78 72 77 83 78 78 78 76 81 86 84 79 78 81 83 78 75 79 82 74 73 77
77 79 91 89 80 82 88 83 85 76 86 72 73 76 76 77 74 76 77 80 81 84 83 86 86 79 75 75 72 71 78 71
71 77 91 90 78 77 77 85 77 76 76 70 67 77 82 91 80 78 83 82 84 90 86 80 83 77 75 76 71 73 79 72
72 80 90 94 81 74 78 81 81 87 77 77 75 78 82 84 82 78 87 84 82 85 85 79 80 80 77 80 74 71 68 69
76 75 87 90 92 77 79 80 80 82 77 78 79 81 75 74 78 80 79 77 79 81 78 78 68 65 71 78 75 72 73 76
65 72 85 85 84 77 86 84 79 81 79 73 73 77 76 73 77 78 76 77 83 75 80 77 79 71 7C 75 78 75 82 79
74 71 74 80 80 75 75 77 78 77 77 76 71 75 68 77 76 82 81 79 85 76 78 76 75 78 75 74 78 77 76 73
68 72 77 76 76 74 73 82 83 73 78 73 72 76 75 77 78 78 86 85 83 84 80 75 69 73 79 77 75 80 77 70
76 72 91 8C 72 72 82 84 86 80 78 76 79 76 77 75 82 85 83 82 86 78 80 74 69 73 79 83 78 81 75 75
71 73 86 86 73 79 83 88 80 77 75 75 74 75 74 75 80 89 79 80 79 78 76 74 76 83 86 78 78 76 74 78
71 72 80 85 80 81 77 89 81 81 76 74 72 77 79 79 78 80 74 79 79 79 78 78 84 78 80 76 73 73 80 75
72 70 79 83 81 80 80 84 78 75 72 76 79 78 82 79 80 73 78 72 78 75 73 71 80 83 83 82 80 79 78 77
72 75 77 79 76 77 80 81 76 72 72 76 72 82 90 79 80 77 77 75 78 75 77 72 81 84 7e 77 76 73 70 76
73 74 82 89 80 73 79 74 84 74 74 72 79 80 84 78 75 79 76 85 82 76 73 78 77 82 74 72 72 73 6e 72
72 74 86 79 76 79 78 73 83 81 73 70 73 77 74 78 78 79 75 85 83 77 74 71 78 74 69 70 67 74 66 67
69 72 86 75 78 75 83 85 79 77 78 72 72 74 75 79 83 74 77 81 80 74 81 79 75 77 78 69 68 72 69 73
71 71 92 80 71 74 82 84 82 76 75 74 74 83 78 78 84 79 86 79 82 73 84 80 79 79 73 73 68 69 70 70
74 75 85 75 72 72 76 79 77 75 68 75 80 75 72 78 80 80 78 79 74 69 81 82 74 84 77 69 74 69 68 68
70 73 86 87 79 76 78 83 78 80 70 73 75 79 77 86 85 75 72 76 75 75 84 85 81 85 77 76 72 67 74 71
76 70 83 81 74 7e 79 86 80 74 76 73 77 76 75 77 74 75 74 74 75 73 76 84 80 81 77 74 72 66 66 64
75 71 88 82 70 76 84 83 75 79 75 74 75 69 73 70 71 73 69 76 67 71 80 84 83 78 72 77 73 63 6e 73
71 72 83 80 71 75 69 72 77 78 69 70 76 70 66 72 69 74 74 74 76 71 75 72 75 74 66 71 73 66 72 67
69 74 89 83 78 76 73 72 79 76 79 71 81 73 71 74 70 71 69 68 73 73 75 76 70 75 75 75 70 69 71 70
69 69 76 78 76 78 82 72 86 75 78 74 75 78 75 79 75 81 76 71 71 67 67 72 66 75 78 77 73 70 67 67
68 65 72 80 81 82 76 80 77 77 74 75 77 74 73 79 74 78 75 77 75 75 74 75 71 77 73 71 71 66 69 61
63 69 72 80 80 75 81 61 77 74 80 77 75 74 72 76 71 76 78 81 75 71 72 74 72 71 75 73 78 74 71 69
66 64 73 72 79 69 73 73 72 75 78 72 63 70 74 74 73 84 69 73 78 72 66 68 69 74 73 71 69 72 70 69
68 68 75 72 74 78 71 71 66 68 72 71 71 72 70 73 75 77 76 76 80 80 77 76 71 75 70 70 67 74 77 72
71 72 71 80 78 75 66 66 64 62 70 66 68 67 74 76 73 75 71 71 76 72 74 73 77 73 67 72 64 73 72 72

f) Data in (e) After Normalisation

0.41 0.
0.90 0.
0.31 0.
0.31 0.
0.30 0.
0.21 0.
0.21 0.
0.30 0.
0.1» 0.
0.2» 0.
0.27 0.
0.30 0.
0.20 0.
0.2» 0.
0.2» 0.
0.2» 0.
0.2» 0.
0.21 0.
0.27 0.
0.21 0.
0.2» 0.
0.27 0.
0.31 0.
0.2» 0.
0.2» 0.
0.27 0.
0.27 0.
0.27 0.
0.1» 0.
0.20 0.
0.27 0.
0.2» 0.

<4 0.35 0
2» 0.33 0
2» 0.33 0
32 0.34 0
31 0.30 0
30 0.30 0
31 0.3» 0
2» 0.34 0
2» 0.33 0
2» 0.2» 0
2» 0.30 0
2» 0.30
2» 0.34
2» 0.31 0
27 0.31
2» 0.30 0
2» 0.32 0
2» 0.34
2» 0.34 0
2» 0.30 0
2» 0.93 0
2» 0.3»
27 0.33 0
2» 0.3» 0
2» 0.33 0
2» 0.3» 0
27 0.90 0
2» 0.2» 0
27 0.2» 0
2» 0.2» 0
27 0.2» 0
2» 0.2» 0

4432634 0.32 0.34 0
31 0.32 0.3» 0
33 0.33 0.33 0
30 0.33 0.30 0
31 0.32 0.3» 0
31 0.30 0.30 0
32 0.2» 0.31 0
30 0.30 0.31 0
33 0.30 0.34 0
31 0.2» 0.2» 0
30 0.2» 0.2» 0
2» 0.2» 0.32 0
29 0.31 0.33 0
31 0.32 0.30 0
32 0.31 0.31 0
30 0.30 0.31 0
91 0.2» 0.31 0
30 0.31 0.31 0
31 0.2» 0.33 0
2» 0.2» 0.32 0
2» 0.2» 0.30 0
91 0.30 0.31 0
2» 0.31 0.31 0
27 0.30 0.33 0
2» 0.2» 0.27 0
31 0.30 0.2» 0
30 0.31 0.32 0
32 0.32 0.30 0
31 0.2» 0.32 0
31 0.27 0.2» 0
2» 0.31 0.2» 0

9.2» 0.26 0

0.33
0.33
0.31

I 0.31
I 0.30
I 0.30
t 0.34
. 0.32
. 0.32
. 0.30
I 0.2»
I 0.31
. 0.30
! 0.32

0.2»

I 0.2»
I 0.32
. 0.30
! 0.30
* 0.2»
. 0.31
. 0.2»
» 0.31
► 0.31
. 0.30
I 0.2»
) 0.30
) 0.2»
I 0.29
9 0.27
t 0.24

32 0.31 0
31 0.31 0
30 0.2» 0
31 0.2» 0
34 0.2»
30 0.27 0
30 0.30 0
30 0.31 0
31 0.2» 0
30 0.30 0
31 0.2» 0
31 0.30 0
2» 0.2» 0
30 0.2» 0
2» 0.30 0
2» 0.30 0
2» 0.2» 0
2» 0.27 0
31 0.2» 0
29 0.2» 0
27 0.2» 0
27 0.2» 0
30 0.2» 0
2» 0.2» 0
27 0.27 0
31 0.2» 0
31 0.2» 0
2» 0.2» 0
31 0.30 0
31 0.2» 0
2» 0.2» 0
27 0.26 0

9.32 0.
3.29 0.
9.31 0.

30 0.31
31 0.33
30 0.31

0.31 0.2» 0.

0.33 0.34 C,
30 0.32 (
30 0.30 <
31 0.33 <
31 0.34 (
31 0.31 <
31 0.30 <
32 0.32 (
31 0.34 <
33 0.33 I
3» 0.31 <
31 0.2» (
2» 0.31 (

.31 0.

.32 0.

.33 0.

.30 0.

.30 0.

.31 0.

.33 0.

.32 0.

.91 0.

.31 0

.2» 0.

30 0.31 0
31 0.2» 0

31 0.
33 0.
3» 0.
33 0.
32 0.
31 0.
30 0.
33 0.
31 0.
31 0.
31 0.

.31 0.2» O.i

31 0.32 0
33 I .34
34 0.31 0
33 0.31 0
31 0.31 0
31 0.30 0
31 0.30 0
31 0.2» 0
31 0.2» 0
30 0.2» 0
31 0.31 0
2» 0.2» 0

31 0.31 0.30 0.30 0.2» 0.31 0.2» 0.30 0.2» 0
31 0.30 (
31 0.2» (
2» 0.30 I
31 0.34 (
31 0.31 (
29 0.2» (
2» 0.2» I
2» 0.27 I
2» 0.2» <

.33 0.

.33 0.

.32 0.

.31 0.

.31 0.

.30 0.

.29 0.

.30 0.

.2» 0.
2» 0.27 (
.32 0.30 (
.31 0.2» (
.30 0.31 (
.33 0.27 (
.30 0.30 (
.2» 0.28 (

.30 0.

.32 0.

.2» 0.

.30 0.

.28 0.

).»» 0.
9.2» 0.

2» 0.
2» 0.
31 0.
31 0.
30 0.

2» 0.31 0
2» 0.2» 0
32 0.31 0
33 0.31 0
32 0.32 0
33 0.33 0
30 0.33 0
31 0.33 0
2» 0.2» 0
,2» 0.30 0
.26 0.2» 0
.2» 0.2» 0
.2» 0.2» 0
.26 0.27
.30 0.30 0
.2» 0.2» 0

0.2» 0
0.2» 0
0.2» 0
0.31 0
0.31 0
0.30 0
0.31 0
0.2» 0
0.2» 0
0.31 0
0.2» 0
0.2» 0
0.33 0
0.31 0
0.33 0
0.33 0
0.32 0
0.2» 0
0.30 0
0.31 0
0.33 0
0.33 0
0.32 0
0.31 0
0.2» 0
0.2» 0
0.2» 0
0.30 0
0.2» 0
0.2» 0
0.2» 0
0.2» 0

0 0.31 0.31

89

2. Input Data of the Normalised Feature Extraction Format

a) Parasitic Background

0.03 0.04 0.08 0.0» 0.09 0.05 0.09 0.15 0.17 0.34 0.14 0.25 0.34 0.3» 0.37 0.33 0.33 0.20 0.27 0.24 0.20 0.40 0.30 O.«4 0.73 0.09 1.00 0.7C 0.45 0.46 0.32 0.07

b) Image Background

Xaa.f*
0.01 0.00 0.04 0.33 0.4» 0.05 1.00 0.74 0.40 0.22 0.34 0.0C 0.02

c) Fish Muscle Background

■BO.f«
0.03 0.32 0.34 0.78 3.00 O.»< 0.45 0.2» 0.0» 0.06 0.00

3. Input Data of the Normalised Curve Map

a) Parasitic Background

b) Image Background

laa.ca
o.eo c.eo
o.oo o.oo
0.00 0.00

00
00
00

0.00 0.00
0.00 0.00

0.00 0.00
0.00 0.00
0.00 0.00
0.01 0.00

0.00
0.00
0.00

0.00
0.00
0.00

00
00
00
00

0.00
0.00
0.00
0.00

3.00
0.00

00 0.00 0.00
00 0.00 0.00
00 0.00 0.00
00 0.00 0.00
00 0.00 0.00
00 0.00 0.04 0.00

c) Fish Muscle Background

90

4. Input Data of the Normalised Binarised Curve Map

a) Parasitic Background

00 6.68
66 6.66

b) Image Background

la*.be
6.60

c) Fish Muscle Background

5. Input Data of the Normalised Smoothed Curve Format

a) Parasitic Background

6.66 0.06 0.00 0.66 0.60 0.60 0.60 6.10 0.10 6.10 0.10 6.20 0.10 6.10 0.10 0.10 0.10 0.20 0.20 0.20 0.20 6.30 0.30 0.40 0.S0 0.S0 0.S0 O.SO 0.40 0.40 0.30 0.20

b) Image Background

0.00 0.10 0.20 0.30 0.40 0.30 0.20 0.10 0.00 -0.10 -0.10

c) Fish Muscle Background

IOI.IC

APPENDIX DI

SOURCE CODE LISTINGS

1. Processing Programs

a) Rannet.c - neural net program using the steepest descent optimisation method.

b) Ranopt.c - neural net program using the conjugate gradient optimisation method.

2. Production Programs

a) Wortest.c - classification program for the pixel representatiom format.

b) Wavtest.c - classification program for the feature extraction format.

c) Histest.c - classification program for the curve map/binarised curve map format.

d) Smthtest.c - classification program for the smoothed curve format.

91

92
y***
* Department of Computer Science and Systems
* McMaster University, Hamilton, Ontario, Canada
*
* This file contains the neural net program that implements
* the steepest descent optimization methods. It contains the
* routines for the off-line processing and the on-line production
* of the network.
*

By: Emmanuel B. Aryee

* Date: September, 1990
** y

y***********************
* RANNET.C: This neural net simulator implements the steepest
* descent optimization method. It contains all the
* necessary routines for creating the network,
* training the network with image patterns and
* classifying the image patterns. It is implemented
* as a classifier.******************************I

#define PC /* define if using PC */
#define UNIX /* define if using UNIX system */

/* include the necessary libraries */
#ifdef PC
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <alloc.h>

#endif

#ifdef UNIX
#include courses.h>

#endif

#include <stdio.h>
#include <math.h>

#define ERRORLIMIT 0.001

static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static
static

float
float *(*input);
float *(*output);
float
float *(*(*Wtmp));
float *D;
int *N;
float gterm = 0.01
float gtermrate =
float maxgterm = 0
float alpha = 0.0;
float maxalpha = 0
float corre;
float prcorre = 0.
float tsserror;
int layers = 0;
int mlayer = 0;
int p = 0;
float limit = 0.0;
int sweeps =0;
count;

/* for the layers and each layer nodes */
/* for the inputs */
/* for the outputs */
/* for the connecting weights between the nodes */
/* the temp weight holder */
/* the array of actual or expected outputs */
/* the number of nodes in each layer */

; /* the gain term */
0.01 ; /* the rate of increase of the gain term */
.7; /* the max gain term */

/* the momemtum factor */
.2; /* the max momemtum factor */
/* the correlation term */

0; /* the previous correlation */
/* the sum of square error term */

/* the number of layers */
/* the max number of nodes in the network */
/* the number of patterns */
/* the error limit */

/* number of epochs */

93

double random_number(); /* the random number generator */
void displayweightsO; /* displays the weights and outputs */
void saveO;

/**********************
* createO: this routine creats
* edges assigned with
********************************y

the network topology with the connecting
information from the network topology file.

void create(fnet)
char fnet[15];
<

FILE *fn;
char l i ne [15];
int i, j;

if ((fn = fopen(fnet,»r")) == NULL)
<
printf("\nCannot open the file %s.",fnet);
exit(O);

>

fscanf(fn,"%s",line); /* read off the title of the file */
fscanf(fn,"%d",Slayers); /* read the number of layers less one */

/* allocate memory for the layers */
L = (float *(*))calloc(layers+1,sizeof(float *));
N = (int *)calloc(layers+1,sizeof(int));

if (!L)
<
printf("\nNot enough memory for layers.");
exit(O);

/* get the number of nodes for each layer and allocate memory */
for(i=0; i<=layers; i++)

<
fscanf(fn,"%d",&N[i]);

if (N[i] > mlayer)
mlayer = N[i];

L[i] = (float *)calloc(N[i],sizeof(float));
if (!L[i])

<
printf("\nNot enough memory for layer %d.",i+1);
exit(O);

>
> /* end of the for */

fclose(fn);

/* allocate memory for the expected outputs */
D = (float *)calloc(N[layers], sizeof(float));

/* allocate memory for the connecting weights between the nodes(units) */
W = (float *(*(*)))calloc(layers, sizeof(float *(*)));
Wtmp = (float *(*(*)))calloc(layers, sizeof(float *(*)));
if (!W j j !Wtmp)

<
printf("\nNot enough memory for the weights.");
exit(O);

>

94

for(i=0; i<layers; i++) /* for the nodes in each layer */
<
W[i] = (float *(*))calloc(N[i]+1, sizeof(float *));
WtmpCi] = (float *(*))calloc(N[i]+1, sizeof(float *));
if (!U[i] ij !Wtmp)
<
printf("\nNot enough memory for layer %d weights.",i+1);
exit(0);

>
for(j=0; j<=NCi]; j++) /* weights per each node */

<
W[i] [j] = (float *)calloc(N[i+1], sizeof(float));
Wtmp[i] [j] = (float *)calloc(N[i+1], sizeof(float));
if (!Wti] [j] Ü IWtmpti] [j])

<
printf("\nNot enough memory for node %d of layer %d weights.",j,i+1);
exit(0);

>
} /* end of the second for */

> /* end of the first for loop */

> /* end of create */

/***********************
* w_range(): this routine initialises the network by assigning random values
* to the connecting weights or reading the weights from a file.*********************************** j

void w_range(fwdir)
char fwdir[15];
<

FILE *fw, *fw1;
char ch, line[20], fname[15];
int I, i, j;
float range;

if ((fw=fopen(fwdir,"r")) == NULL)
<
printf("\nCannot open file %s",fwdir);
exit(0);

>

fscanf(fw,"%s",line); /* read off the title */
fscanf(fw,"%c",&ch); /* read the space off */
fscanf(fw,"%c",&ch); /* read the option */
fscanf(fw,"%s",fname); /* read the range or file name */

if (ch == ’r')
<

for(1=0; l<layers; 1++)
<

range = sqrt((double)(N[l]+1))/3;
for(i=0; i<=N[l]; i++)

for(j=0; j<N[l+1]; j++)
<
W[l] [i] [j] = (2.0 * random_number() - 1.)/range ;
Wtmp[l] [i] [j] = W[l] [i] [j];

>
> /* end of the first for */

> /* end of the if */
else if (ch == ‘P)

<
if ((fw1 = fopen(fname,"r")) == NULL)

<

95

printf("\nCannot open file %s.",fname);
exit(O);

> /* end of the if */
else

<
fscanf(fw,"%s",line); /* read off the file name */
for(1=0; l<layers; 1++)

for(i=0; i<=N[l]; i++)
for(j=0; j<N[l+1]; j++)

<
fscanf(fw,"%f»,&WCl]Ci] Cj]);
WtmpCl] Ci] Cj] = WCl] Ci] Cj];

>
> /* end of the second else */

fclose(fw);
fclose(fwl);
> /* end of the first else */

else
<
printf("\nOption has to be r or f not %c",ch);
exit(0);

fflush(stdin);
> /* end of w_range */

/**************************
* random_number(): this routine generates the random numbers.*************************************i

double random numberO
<
static double x = 3141592654.0;

double a = 3141592654.0;
double c = 2718281828.0;
double m = 1.0e+10;

x = fmod(a*x+c, m);
return(x/m);

> /* end of random_number */

/**********************
* loadtrainsetO: this routine loads the training set comprising of
* the input data and the desired outputs.****************************i

void loadtrainset(ftrain)
char ftrainC15];
<

FILE *ft;
char ch, lineC20];
int err =0, i, j;

if ((ft = fopen(ftrain, "r")) == NULL)
<
printf("\nFile %s cannot be opened. ", ftrain);
exit(0);

>
else

<
fscanf(ft,"%s",line); /* read off the title */
fscanf(ft,"%d",&p); /* read the number of patterns */
fscanf(ft,"%c",&ch); /* read the space off */
fscanf(ft,"%c",&ch); /* read the option for convergence */
if (ch == 'e')

96

fscanf(ft,"%f",&limit); /* read the error limit */
else if (ch == 's')

fscanf(ft,"%d",&sweeps); /* read the number of sweeps */
else

<
printf("\nOption has to be e or s not %c",ch);
exit(O);

fscanf(ft,"%f",>erm); /* read learning the parameters */
fscanf(ft,"%f",Sgtermrate);
fscanf(ft,"%f",&maxgterm);
fscanf(ft,M%f",&aIpha);
fscanf(ft,"%f",&maxalpha);

/* allocate memory */
input = (float *(*))calloc(p,sizeof(float *));
output = (float *(*))calloc(p,sizeof(float *));

for(j=0; j<p; j++) /* loop through the patterns */
< /* load the input for a pattern from the file */
input[j] = (float *)calloc(N[0],sizeof(float));
for(i=0; i<N[0]; i++)

if (fscanf(ft, "%f", &input[j][i]) < 1)
err = 1;

/* load the output from the file */
output[j] = (float *)calloc(N[layers],sizeof(float));
for(i=0; i<N[layers]; i++)

if (fscanf(ft, »%f", &output[j][i]) < 1)
err = 1;

if (err)
<
printf("\nError in input file!\n");
break;

> /* end of if */
> /* end of the for */

fclose(ft);
> /* end of the second else */

if (err) /* if any error is present then stop the program */
<
printf("\nError in training/input file!\n");
exit(0);

y /* end of loadtrainset */

y******************************
* loadclassO: this routine loads the classification set.
*** y

void loadclass(fclass)
char fclass[15];
<

FILE *fc;
char line[20];
int err = 0, i;

if ((fc = fopen(fclass, "r")) == NULL)
<
printf("\nFile %s cannot be opened. ", fclass);
exit(0);

>
else

97

< /* load the classification data from the file */
fscanf(fc, "%s", line); /* read off the title */
for(i=0; i<N[0]; i++)

if (fscanf(fc, "%f", &L[0][i]) < 1)
err = 1;

fclose(fc);

> /* end of the second else */

if (err) /* if any error is present then stop the program */
<
printf("\nError in production file!\n");
exit(0);

>

> /* end of loadclass */

/******************************
* changeparametersO: this routine allows a user to change the learning
* parameters.
**/

void changeparametersO
<
char num[15];

printf("\nPresent values of the learning parameters are as follows:");
printf("\n\tGain term = %5.3f.",gterm);
printf("\n\tGain term rate = %5.3f.",gtermrate);
printf("\n\tMaximum gain term = %5.3f.",maxgterm);
printf("\n\tMomemtum factor = %5.3f.", alpha);
printf("\n\tMaximum momemtum factor = %5.3f.",maxalpha);
printf("\n\nEnter the new gain term: ");
gets(num);
gterm = atof(num);

do
<
printf("\nEnter the new maximum gain term, it has to be >= %5.3f:",gterm);
gets(num);
maxgterm = atof(num);

> while (maxgterm < gterm);

do
<
printf("\nEnter the new gain term rate, it has to lie between 0.00 ");
printf("\nand %5.3f.",maxgterm) ;
gets(num);
gtermrate = atof(num);

> while (gtermrate > maxgterm);

printf("\nEnter the new momemtum factor:");
gets(num);
alpha = atof(num);

do
<
printf("\nEnter the new maximum momemtum factor, it has to be >= %5.3f:",alpha);
gets(num);
maxalpha = atof(num);

> while (maxalpha < alpha);

> /* end of changeparameters */

98
y******************************
* adjustparametersO: this routine uses the weight correlation to internally
* adjusts the learning parameters.
***y

void adjustparametersO
<
int inc = 0, red = 0; /* flags for adjusting the paramters */

/* if weight change is small or bigger and error limit has been reached */
if (((corre <= 0.0000) [j (corre > 0.0000)) && (tsserror <= (ERRORLIMIT+(ERRORLIMIT*0.05))))
red =1; /* reduce the terms else if wt change is nil limit not reached */

else if ((corre <= 0.0000) && (tsserror > (ERRORLIMIT+(ERRORLIMIT*0.05))))
inc = 2; /* double the increment rate else if the wt change is bigger */

else if ((corre > 0.0000) && (tsserror > (ERRORLIMIT+(ERRORLIMIT*0.05))))
< /* check if the wt change is decreasing */
if (corre < (prcorre + (prcorre*0.05)))
inc = 1; /* increase the terms moderately */

y /* end of the else if */
else /* otherwise maintain the terms */

inc = 1;
if (inc == 2)

<
gterm += 2*gtermrate;
alpha += 0.01;

>
else if (inc == 1)

<
gterm += gtermrate;
alpha += 0.005;

y
else if (red == 1)

<
gterm = 0.01;
alpha = 0.0;

else

if (gterm > maxgterm) /* reset the gterm if greater */
gterm = maxgterm;

if (alpha > maxalpha) /* reset the alpha term */
alpha = maxalpha;

prcorre = corre; /* save the correlation computed */

y /* end of adjustparameters */

y******************************
* compute_out(): this routine computes the sigmoid logistic function.
*** y

void compute_out()
<
int i, j, I;
float sum = 0.0;
float ulimit = -log(1E39);
float I limit = -log(1E-38);

/* computation of outputs for the layer 1+1 */
for(1=0; l<layers; 1++)

for(j=0; j<N[l+13; j++) /* scan the nodes of the next layer */
< /* let the first weight be the assumed threshold */

sum = -WCI] [0] [j];

99

for(i=0; i<N[l]; i++) /* compute the weighted inputs into a */
sum += W[l][i+1][j] * L[I]Ci]; /* node in the next layer */

if (sum < ulimit) /* check the limits of the sum */
L[1+1][j] = 1.0;

else if < sum > I limit)
L[1+1] [j] = 0.0;

else
L[l+1] [j] = 1.0/C1.0 + exp(-sum)); /* compute the new output */

> /* using a non-linearity function */
> /* end of compute_out */

/********★*********************
* adaptweightsO: this routine adapts the weights if they have not stabilised.
******★★********★*★************★************/

void adaptweights()
<
int i, j, k, I;
float y=0.0, tempwt=0.0; /* temporary holders */
float a, wtchg, prwtchg;
float *delta, *delta1; /* pointers to the delta rasters */
float *temp;
float sum; /* for computing the deltas */

/* allocate memory for the deltas */
delta = (float *)calloc(mlayer+1, sizeof(float));
deltal = (float *)calloc(mlayer+1, sizeof(float));

/* adapt the weights starting from the output layer */
I = layers - 1;

for(j=0; j<N[layers]; j++) /* go through the nodes in the output layer */
< /* act x (1 - act) x (target - act) */
y = 0.0;
delta[j] = L[layers][j] * (1 - L[layers] [j]) * (D[j] - L[layers] [j]);
y = del ta[j] * gterm;
for(i=0; i<N[layers-1]; i++) /* adjust the connecting weights from the */
< /* j node of the output layer to the nodes in the nearest hidden layer */
if (i==0) /* adjust the 1st weight by the gterm to start */

a =0.0;
else

a = alpha;
prwtchg = fabs(W[l][i+1][j] - Wtmp[l][i+1][j]); /* compute the old weight change */
tempwt = W[l][i+1] [j]; /* save the old weight before changing it */
W[l] [i+1] [j] = W[l] [i+1] [j] + (y*L[l][i]) + (a*prwtchg); /* change the weight */
wtchg = fabs(W[l][i+1][j] - tempwt); /* compute the new weight change */
Wtmp[l][i+1][j] = tempwt; /* switch the old wt to the temp holder */

corre = corre + ((wtchg+prwtchg)/2); /* calculate the correlation */

> /* end of the 2nd for */
W[l] [0] [j] = W[ll [0] [j] - y; /* adjust the thresholds */
Wtmp[l] [0] [j] = Wtmp[l] [0] [j] - y;

> /* end of the 1st for */

/* adapt the weights in the hidden layers */

for(l=layers-1; l>0; 1--) /* loop through the hidden layers */
< /* go through the nodes of the I hidden layer */
for(j=0; j<N[l]; j++)
< /* get the delta weights of the 1+1 layers */

/* connections into the j node of the I hidden layer */
sum =0.0; /* initialise the sum */
for(k=0; k<N[l+1]; k++)

100

sum = sum + delta Ck]*W Cl][j+1]Ck]; /* sum the delta weights */
deltalCj] = LCl] Cj]*(1-L[l] Cj])*sum; /* use that to compute the new delta */
y = gterm*delta1Cj];

/* adjust the connecting weights from the j node of the hidden layer to */
for(i=0; i<NCl-1]; i++) /* the nodes in the next layer */
<
if (i==0) /* adjust the 1st weight by the gterm to start */
a =0.0;

else
a = alpha;

prwtchg = f abs(W CI -1] Ci+1] C j] - WtmpCl-1] Ci+1] Cj]); /* compute the old weight change */
tempwt = WCl-1] Ci+1] Cj]; /* save the old weight before changing it */
WCl-1] Ci+1] Cj] = WCl-1]Ci+1]Cj] + (y*LCl-1]Ci]) + (a*prwtchg); /* change the weight */
wtchg = fabs<WCl-1]Ci+1]Cj] - tempwt); /* compute the new weight change */
WtmpCl-1]Ci+1]Cj] = tempwt; /* switch the old wt to the temp holder */

corre = corre + ((wtchg+prwtchg)/2); /* calculate the correlation */

> /* end of the 3rd of */
WCl-1] CO] Cj] = WCl-1] CO] Cj] - y;
WtmpCl-1] CO] Cj] = WtmpCl-1] CO] Cj] - y;

y /* end of the 2nd for */
temp = delta;
delta = deltal; /* swap the deltas */
deltal = temp;

y /* end of the 1st for */

free(delta);
free(delta1);

y /* end of adaptweights */

/*********************************
* train(): this routine trains the network during the processing of
* an image pattern.
***y

int trainO
<
char ch;
int b, i, j, k, t;
int *index, temp, stop = 0;
float perror, serror;

tsserror = 0.0; /* initialise the error term */
serror = 0.0;
corre = 0.0; /* initialise the correlation term */
count++; /* increase the number of sweeps */
s rand(count%100); /* re initialise the random number generator */

/* allocate memory and initialise the index */
index = (int *)calloc(p, sizeof(int));
for(i=0; i<p; i++)

index Ci] = i;

t = p-1;
while (t>=0) /* go through the number of patterns randomly */

<
b = rand()%(t+1);
k = indexCb];

LCO] = inputCk]; /* get the input array */
D = outputCk]; /* get the output array */

compute__out(); /* compute the activations up to the output layer */

101

perror =0.0; /* initialise the error per pattern */
for(j=0; j<N[layers]; j++)

perror += fabs(D[j] - L[layers][j]); /* calculate the error per pattern */

serror += perror * perror; /* compute the sum of square error */

adaptweightsO; /* adjust the weights to reduce the error */
/* re arrange the index to reflect the remnants */

temp = index[b]; index[b] = index[t]; index[t] = temp;
t--; /* decrement the number of patterns */

> /* end of second for */

tsserror = serror;
corre /= p;
ad justparameters();

if (tsserror < ERRORLIMIT) /* stop if the error is less than the */
< /* error limit set, stabilisation has occured */
printf("\nThe tss error is less than %f and the ",ERRORLIMIT);
printf("number of sweeps is %d.",count);
stop = 1;

> /* end of if */
free(index);
return(stop);

> /* end of train */

y**********************************
* learn(): this routine trains the network for the number of epochs or
* iterations needed to achieve convergence, i.e., if the weights
* have stabilised. A log file of the variables at various positions
* i s kept.
*** y

#define INTERVAL 1
void learn(fsav)
char fsav[15];
<

FILE *fs1;
char line [15];
int r, k = 0;

st rcpy(li ne,"Iog.");
strncat(line,fsav,3);
fs1 = fopen(line,"w");

if (sweeps != 0) /* convergence is by the number of sweeps */
< /* so get that number */

/* do till the number of sweeps */
count =0;
for(r=0; r<sweeps; r++)

<
k = trainO;
if ((count%INTERVAL) == 0)

<
fprintf(fs1,"\n\t#%5d. error: %7.5f. eta: %4.3f.

%4.3f.",count,tsserror,gterm,alpha);
save(fsav);

>

if (k == 1)
break;

> /* end of the for */

alpha:

102

printf("\n\nThe tss error is %7.5f and number of sweeps is %d.",tsserror,count);
> /* end of the first if */

else if (limit != 0)
< /* convergence is by an error limit from the keyboard */
count = 0;

do
<

k = trainO;
if ((count%INTERVAL) == 0)

<
fprintf(fs1,"\n\t#%5d. error: %7.5f. eta: %4.3f.

%4.3fcount,tsserror,gterm,aIpha);
save(fsav);

>

alpha:

if (k == 1)
break;

> while (tsserror > limit);

printf("\n\nThe tss error is %7.5f and number of sweeps is %d.",tsserror,count);
> /* end of the else */

else
<
printf("\n#sweeps or error limit has to be greater than 0.”);
exit(0);

>

> /* end of the learn */

y**************************
* checkparasiteO: this routine is used to scan an image file to classify

the patterns on it.
***/

#define S 32
#define B 256
#define GSCALE 255

void checkparasiteO
<

FILE *im;
char image[15], ch;
int i;
int stop, counter=0;
float va I;

/* get the file name and open the file */
printf("\nEnter the name of the image file to be checked:");
gets(image);
if <(im = fopen(image,"r")) == NULL)

<
printf("\nCannot open file %s.",image);
exit(0);

>

stop =64; /* get the total number of sections on the image*/
do

<
for(i=0; i<N[0]; i+=S) /* load the data into the input nodes */

<
vaI = fgetc(im); /* normalise the data before loading it */
L [0][i] = va I/GSCALE;

} /* end of first for */

compute_outO; /* display the classifications */

103

printf("\nL[0]=%4.3f.L[1]=%4.3f.section %d.",L[layers][0],L[layers][1],counter+1);

counter++; /* increment the counter */
> while (counter < stop);

> /* end of checkparasite */

y*************************
* displayweightsO: this routine displays the weights and the output
* activations at any particular time during a run.
***************************************y

void displayweightsO
<
int I, j, i;
char show;
printf("\nEnter 'w1 to look at the weights and the outputs or 'o' for ");
printf("outputs only(w/o)!");
while (((show = getchO) ! = ’w1) && (show != 'o'));
if (show == 'w1)

<
printf("\n\n\tLayer Node Weight Node Layer ");
printf ("\n\t..");

for(1=0; l<layers; 1++)
for(i=0; i<N[l]; i++)

for(j=0; j<N[l+1]; j++)
<
printf(»\n\t %d %d %9.5f %d %d ", 1+1,i+1,W[l][i+1][j],j+1,1+2);

> /* end of for */
printf ("\n\t..“);
printf("\n\nEnter a char to view the output values so far.");
getchO;

printf("\n\n\tValues for the output layer. ");
printf("\n\t Node Values ");
printf ("\n\t.. ");

for(i=0; i<N[layers]; i++)
printf("\n\t %d %9.5f »,i+1,L[layers][i]);

printf ("\n\t.. \n");
printf("\n\nEnter a char to end viewing:\n ");
getchO;

> /* end of if */
else

<
printf("\n\n\tValues for the output layer. ");
printf("\n\t Node Values ");
printf ("\n\t.. ");

for(i=0; i<N[layers]; i++)
printf("\n\t %d %9.5f ",i+1,L[layers][i]);

printf ("\n\t.. \n");
printf("\n\nEnter a char to end viewing:\n ");
getchO;

> /* end of else */
fflush(stdin);

> /* end of displayweights */

y***************************
* save(): this saves the connecting weights when required.
************************************* y

void save(fsave)
char fsave[15];

104

FILE *fs;
int I, i, j;

fs = fopen(fsave,"w"); /♦ open the file for writing */

fprintf(fs,"%s",fsave); /* write the name of the file */
fprintf(fs,"\n");

for(1=0; l<layers; 1++)
<
for(i=0; i<=N[l]; i++)

<
for(j=0; j<N[l+1]; j++)

fprintfC fs,«%9.5fCi3 Cj]);
fprintf(fs/'Xn'1);

> /* end of the second for */
fprintf(fs,"\n");
> /* end of the first for */

fclose(fs);

> /* end of save */

/*****************************
* mainC): this is the main driver routine of this neural net program
* where the necessary files and options for use by the program
* are checked and loaded. It is a command line run program and
* calls the necessary routines depending on the options defined
* in the files used.*************************************i

void mainCnumber, names)
int number;
char **names;
<
char wtname[15];

if (number < 5) /* check if correct number of fnames */
<
puts("\nUse of this program is as follows:");
puts("\nnetline <rannet> <wtdirfile> [option t-c-p] <train or class or parasite file> ");
exit(0);

>

initscrO;

srand(37);
create(names[1]);
w_range(names[2]);
i f (names[3][0] == ‘t')

<
strncpyCwtname,names[1],3);
strcat(wtname,".wt");

Ioadt ra i nset(names[4]);
learn(wtname);
save(wtname);

>
else if (names[3][0] == 'c')

<
loadclass(names[4]);
compute__out();
displayweightsO;

>

105

else if (names[3][0] == 'p*)
checkparasite(names[4]);

else
<
printf("\nOption has to be t-c-p not %c",names[3]);
exit(Q);

>

fflush(stdin);
endwinO;

> /* end of main */
/* end of the Rannet.c */

106

W*****WW********* W* WW* ****★★★**★**★★****★**★★ WW WW Wifc'W'jfc-'jftr
* Department of Computer Science and Systems
* McMaster University, Hamilton, Ontario, Canada

* This file contains the neural net program that implements
* the conjugate gradient optimization methods. It contains the
* routines for the off-line processing of the network.
*
* By: Emmanuel B. Aryee
*
* Date: September, 1990**i

* RANOPT.C: This neural net simulator implements the conjugate
* gradient optimization method. It contains all the
* necessary routines for creating the network and
* training the network with image patterns. It is
* implemented as a classifier.****************************** j

#include "ranopt.h"
#include "conjugate.c"

#def i ne
#def i ne
#define
#def i ne
#def i ne
#def i ne

extern
extern

FTYPE
int
int

MAXLOOP 10
MAXPT 0.7
MINPT 0.3
CLAS "train.set" /
CONST "netwk.arc"
OUTP "weight.fiI»

/*
FTYPE critfcO;
FTYPE conjugateO;

/* declare the global variables */
*w, **output, **delta, **input;
layers, pats, *units, *target, *conwts;
prt_flag;

/* max number of weight initialisation */
/* upper cut-off point for the output */
/* lower cut-off point for the output */

training set file */
/* network arch, file */
/* weight file */

announce these function in conjugate.c */

void main (argc, argv)
int argc;
char **argv;
<

FTYPE tsserror, num, tol, *w;
int n, j, maxunit, inum;
int totconn, nit,i, counter=0;
FILE *inp, *outp, *wp;
char nameC1003;
int errflag = 0, cont_flag = 0, data_set = 0;

if (argc == 4)
<

data_set = atoi (argv[1]>;
cont_flag = atoi (argv[2]>;
prt__flag = atoi (argv[3]>;

/* check the number or tag for the file */
if (data_set < 0 }J data_set > 99)

errmsg ("input file # must be between 0 and 99");
/* check if weights are to be loaded from a file
/* or from initial randum values */

if (cont_flag < 0 Jj cont_flag > 1)
errmsg ("continue flag must be either 0 or 1");

/* check if error values to be displayed */
if (prt__flag < 0 jj prt_flag > 1)

errmsg ("print flag must be either 0 or 1");
>

107

else /* display use of the program message */
errmsg("\nUsage: ranopt <# for data file> <#cont-flag> <#prtflag>");

strcpy(name, CONST); /* get the network arc. file for opening */
strncat(name, argv[1], 2);
if ((inp = fopen(name,"r")) == NULL) /* if cannot open */
errmsg("Network arch, file cannot be opened."); /* display error message */

fscanf(inp,"%d %d %f", Slayers, &nit, Sthres); /* get parameters that */
/* the network archictecture */

if (layers != 3) /* check if a simple network or multi-layer network */
errmsg("Number of layers is not 3."); /* message if wrong */

/* allot memory for the units in the layers */
if ((units = (int *)malloc(layers * sizeof(int))) == NULL)
errmsgC'Not enough memory for the units."); /* display error if memory */

/* allocation fails */
mxunit = 0; /* find the layer with the max number of units */
for(n=0; n<layers; n++)
< /* get the # of units from the network file */
fscanf(inp," %d", &units[n]);
if (n=0) /* allow for the variable threshold in the */
units[n]++; /* first layer */
if (unitsCnl > mxunit) /* find the layer with the max units */
mxunit = unitstn];

> /* end of the for */
fclose(inp);

/* allot memory for the connections between the layers */
if ((conwts = (int *)malloc(layers*sizeof(int))) == NULL) /* display error */
errmsgC’Not enough memory for the connecting weights."); /* message */

totconn =0; /* compute the number of connections from */
for(n=0; n < (layers-1); n++) /* layer to layer and the total number of */
< /* connections in the network */
conwts[n] = totconn;
totconn += unitstn] * unitsCn+1];

} /* end of the for */
/* allocate memory for the output and their delta units */

output = (FTYPE **)calloc(layers+1, sizeof(FTYPE));
delta = (FTYPE **)calloc(layers+1, sizeof(FTYPE));
for(i=0; i<layers; i++)
<
outputti] = (FTYPE *)calloc(units[i]+1, sizeof(FTYPE));
deltati] = (FTYPE *)calloc(units[i]+1, sizeof(FTYPE));
if ((outputCi] == 0) jj (deltaCi] == 0)) /* display error message if */
errmsgC'Not enough memory for the activations."); /* memory allocation fails */

> /* end of the for */
/* allocate memory for the weights */

if ((w = (FTYPE *)malloc(totconn * sizeof(FTYPE))) == NULL)
errmsgC'Not enough memory for the weights.");

strcpy(name, CLAS); /* get and open the training-set file */
strncat(name, argv[1], 2)

if ((inp = fopen(name,"r")) == NULL)
errmsgC'Training file cannot be opened.");

fscanf(inp, "%d", &pats);
if (pats < 2) /* check if less than two patterns */
errmsg("Number of patterns have to be greater than 2 for classification");

/* allocate memory for the input units */
input = (FTYPE **)calloc(pats+1, sizeof(FTYPE));
for(i=0; i<pats; i++)
<
inputti] = (FTYPE *)calloc(unitsC0]+1, sizeof(FTYPE));
if (input == 0)
errmsgC'Not enough memory for input units.");

} /* end of the for */

108

/* allocate memory for the target units */
if ((target = (int *)malloc(pats*sizeof(int))) == NULL)
errmsgC'Not enough memory for the target units.");

for(n=0; n<pats; n++) /* get the training data pattern by pattern */
<
fscanf(inp, "%d", &target[n]); /* get the desired targets first */
if (target[n] > units[layers-1]) /* and check it */
errmsgC’There are more targets than output units.");

for(i=0; i< (units[0]-1); i++) /* read the data for each pattern */
< /* and check the data */
if (fscanf(inp, "%lf", &input[n][i]) == EOF)
errmsgC'Not enough data in training file.");

> /* end of 2nd for */
input[n][units[0]-1] = 1.; /* assign the threshold unit in the 1st layer */

> /* end of 1st for */
fclose(inp);

/* load in the weights */
if (cont flag) /* if reading the weights from a file */
<
strcpy(name, OUTP);
strncat(name, argv[1], 2);

if (!(wp = fopen(name, "r")))
errmsgC'Error, weight file cannot be opened");

fread(&inum, sizeof(int), 1, wp);
fread(&layers, sizeof(int), 1, wp);
fread(units, sizeof(int), layers, wp);
fread(w, sizeof(FTYPE), totconn, wp);
fread(tsserror, sizeof(FTYPE), 1, wp);
fclose(wp);

>
else
<
do /* select initial random weights using the criteria outlined in */

< /* the project report and repeat for MAXLOOP times if convergence */
for(n=0; n < (layers-1); n++) /* is not achieved */

for(i=0; i < units[n]; i++)
<

num = sqrt((double)units[n])/3.;
for(j=0; j < units[n+1]; j++)

w[conwts[n] + j*units[n] + i] = (2.0*randnum() - 1.)/num;
> /* end of for */

/* optimise using the conjugate gradient method */
tsserror = conjugate(&w, totconn, nit, thres); /* adjust the weights */
if (tsserror > thres) /* if convergence is not achieved, repeat procedure */
counter++; /* with a new set of weights */

else
counter = MAXLOOP; /* else stop the optimisation */

> while (counter < MAXLOOP);
> /* end of the else */

/* save the weights in the weight file */
strcpy(name, OUTP);
outp = fopen(name, "wb");
fwrite(&nit, sizeof(int), 1, outp);
fwrite(&layers, sizeof(int), 1, outp);
fwrite(units, sizeof(int), layers, outp);
fwrite(w, sizeof(FTYPE), totconn, outp);
fwrite(&tsserror, sizeof(FTYPE), 1, outp);
fclose(outp);

> /* end of ranopt.c */

109

y***************************************
* ranopt.h: this is the header file where the libraries are included,
* simple functions used are defined, and the variable types
* are defined and declared.
***************************************/

#define PC /* define if using PC */
#define UNIX /* define if using UNIX system */

/* include the necessary libraries */
#ifdef PC
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <alloc.h>

#endif

#ifdef UNIX
#include <curses.h>

#endi f

#include <stdio.h>
#include <math.h>

/* define the functions if not defined in the libraries being used */
#define max(a,b) ((a)<(b)?(b):(a))
#define min(a,b) ((a)<(b)?(a):(b)) */
#define bound(a,b,c) (max((a),min((b),(c))))
#define round(a) ((a)>0.? (int)((a)+.5):(int)((a)-.5))
#define hi(a) (unsigned char)(a/256)
#define lo(a) (unsigned char)(a%256)
#define sqr(a) ((a) * (a))

#define ULIMIT 70 /* upper limit of exp-function */
#define LLIMIT -70 /* lower limit of exp-function */
#define RED 0.2 /* the allowed reduction in the gradient to stop */

/* the line search */
#define ITER 5
#define FTYPE float

/* Allowed number of iterations for a line search */

typedef unsigned char byte;

/***
* randnumO: this routine generates the randum numbers.
***********************************/

double randnumO
<
static double x = 3141592654.0;

double a = 3141592654.0;
double c = 2718281828.0;
double m = 1.0e+10;

x = fmod(a*x+c, m);
return(x/m);

} /* end of randnum */

y*************************
* f(): this routine computes the sigmoid logistic function.********************** j

FTYPE f(sig)
FTYPE sig;

<
FTYPE x;

110

x = sig;
if (x > ULIMIT)

x = ULIMIT;
else if (x < LLIMIT)

x = LLIMIT;
return (FTYPE) 1. / (1. + exp (-(FTYPE) x));

>/* end of f */

/*************************
*errmsg(): this routine displays an error message.********************** j

void errmsg(msg)
char *msg;

<
perror (msg);

exit (0);
>/* end of errmsg */
/* end of the header file ranopt.h */

Ill

* conjugate.c: this program implements the conjugate gradient optimisation
* method using the two routines, conjugateO and critfcO.
★★if**j

#include <ranopt.h>

FTYPE critfcO;

/*******★***★*******
* conjugateO:
★

this routine implements the conjugate gradient method by
optimising the computation of the error/criterion function
with reinitialisation and using that to adjust the weights
in the network.***j

FTYPE conjugated, totconn, nit, thres)
FTYPE **x, thres;
int totconn, nit;

register FTYPE *ptr1, *ptr2, *ptr3, *ptr4, tempi, temp2;
static FTYPE *cps, *gcps, terror, gamma, tgamma, beta;
static FTYPE *wtptr, sserror, sserrorl, gdif, gsq, gsq1;
static FTYPE *gbeg, *gmin, *sdir, *rsdir, *grsdir, sumgr;
static FTYPE sumgrl, maxstsize, minstsize, stepsize;
static FTYPE stsizechg, grs, gr2s, temp;

static int it, rflag, flag, flagl, flag2, Isflag;
/* allocate memory for the */

cps = (FTYPE *)malloc(totconn*sizeof(FTYPE)); /* current position */
gcps = (FTYPE *)malloc(totconn*sizeof(FTYPE)); /* gradient of position */
gbeg = (FTYPE *)malloc(totconn*sizeof(FTYPE)); /* gradient at beggining */
gmin = (FTYPE *)malloc(totconn*sizeof(FTYPE)); /* min gradient so far */
sdir = (FTYPE *)malloc(totconn*sizeof(FTYPE)); /* search dir for line search */
rsdir = (FTYPE *)malloc(totconn*sizeof(FTYPE)); /* restart search direction */
grsdir = (FTYPE *)malloc(totconn*sizeof(FTYPE)); /* restart search dir gradient */

/* check if memory allocated else display error message */
if (!cps jj !gcps jj !gbeg jj !gmin jj !sdir jj !rsdir jj !grsdir)
errmsg("Memory allocation failure for the search parameters.");

wtptr = *x; /* get the weight array */
/* do the first feed forward iteration and compute the error */

sserrorl = critfc(wtptr, gmin, totconn); /* between the target and actual */
terror = sserrorl;

it = 1; /*
rflag = 2; /*
flag = 0; /*

/*
flagl = 0; /*
gdif = 0.; /*
gsq1 = 0.; /*

do /*
<
if (flag & 1)

<
if (flagl) /*

< /*

/* initialise the parameters */
number of iterartions */
restart flag, 2 for line search in dir of steepest descer
1 if no decrease in the error and 2 if no decrease in */

/* do till the number of iterations allowed */

printf("No decrease dir found, so stop");
break;

>
else

>
else

flagl =1; /* set the flag for the next round */

112

flagl = 0;

if (flag & 2)
rflag = 2; /* line search in steepest descent dir */

else if (fabs((double) gdif) > 0.2*gsq1) /* if gradient diff is greater than */
rflag =1; /* the limit then choose a new restart */

if (rflag == 0) /* begin initial line search freshly */
<
ptr1 = gcps; /* get gradient of current position */
ptr3 = ptr1 + totconn; /* get the last position */
ptr2 = grsdir; /* gradient of restart dir */
ptr4 - rsdir; /* restart dir */
tempi = temp2 =0.;
for (;ptr1 < ptr3;)
<

tempi += (*ptr1) * (*ptr2++); /* sum(gcps*grsdir[i]) */
temp2 += (*ptr1++) * (*ptr1++); /* sum(gcps[i]*rsdir[i]) */

gamma = tempi/tgamma; /* compute the gamma factor */

if (fabs(beta*sumgr - gamma*temp2) > 0.2*gsq1)
rflag = 1;

else
<

ptr1 = sdir ; /* search dir */
ptr2 = rsdir; /* restart dir */
ptr3 = ptr1 + totconn; /* end of the list */
ptr4 = gcps; /* gradient of the current position */
for (;ptr1 < ptr3; ptr1++) /* sum(beta*sdir[i] + gamma*rsdir[i] + */

(*ptr1) = beta*(*ptr1) + gamma*(*ptr2++) - (*ptr4++); /* gcps[i] */

>
if (rflag == 2) /* line search in steepest descent dir */
<
ptr1 = sdir;
ptr2 = gmin;
ptr3 = ptr1 + totconn;
for (;ptr1 < ptr3;)

(*ptr1++) = - (*ptr2++); /* negate the minimum gradient for the new search dir */
rflag =1; /* set the restart flag for a new one */

>
else if (rflag == 1) /* if set then do a new restart */

<
tgamma = sumgr - sumgrl;
ptr1 = sdir;
ptr2 = rsdir;
ptr3 = ptr1 + totconn;
ptr4 = gcps;
for (; ptr1 < ptr3; ptr1++)

<
(*ptr2++) = (*ptr1); /* save the old search dir */
(*ptr1) = beta*(*ptr1) - (*ptr4++); /* compute the new search dir */

> /* beta*sdir[i] - gcps[i] */
ptr1 = grsdir;
ptr2 = gbeg;
ptr3 = ptr1 + totconn;
ptr4 = gcps;
for (;ptr1 < ptr3;)

(*ptr1++) = (*ptr4++) - (*ptr2++); /* get the gradient of the new restart */
/* search dir by the diff. */

rflag = 0; /* set the flag for another restart procedure */
>

/* line search is done here */
flag = 0; /* initialise the flag */

113

Isflag = 0; /* line search flag and counter for line search iterations */
ptr1 = gmin;
ptr3 = ptr1 + totconn;
ptr2 = gbeg;
ptr4 = sdir;
tempi =0.;
for (;ptr1 < ptr3;)
< /* sum(gmin*sdir[i] */

tempi += (*ptr1) * (*ptr4++);
(*ptr2++) = (*ptr1++); /* save the old values */

sumgr = tempi; /* sum the gradients */
sumgrl = sumgrl;
if (it == 1) /* if this is the first iteration */
minstsize = fabs(terror/sumgr); /* set the min. step size */

if (sumgrl > 0)
<
flag = 1;
rflag = 2;
continue;

sserror = sserrorl; /* save the old error sum */
maxstsize = -1;
flag2 = -1;
stsizechg = (minstsize < (tempi = fabs(terror/sumgr))) ? minstsize: tempi;
minstsize =0.; /* initialise the step size before the next loop */

do
<
do
<
if (Isflag)

<
if (fch != 0)

gold += 2*temp/stsizechg;
if (maxstsize < -0.5)
stsizechg = 9. * minstsize;

else
stsizechg = 0.5 * (maxstsize - minstsize);

gnew = sumgr + stsizechg*gold; /* compute the new gradient */
if (sumgr*gnew < 0)
stsizechg *= sumgr/(sumgr-gnew);

} /* end of the Isflag if */

stepsize = minstsize + stsizechg; /* compute the new step size */
ptr1 = cps;
ptr2 = wtptr;
ptr3 = sdir;
ptr4 = ptr1 + totconn;
for (;ptr1 < ptr4;) /* adapt the weights */

(*ptr1++) = (*ptr2++) + stsizechg*(ptr3++);
/* compute the sum of square error between the */

sserror2 = critfc(cps, gcps, totconn); /* target and the new actual */
it++; lsflag++; /* increase the number of iterations */

ptr1 = gcps;
ptr2 = sdir;
ptr3 = ptr1 + totconn;
tempi = temp2 =0.;
for (;ptr1 < ptr3;)
<

114

tempi += (*ptr1) * (*ptr1); /* sum(gcps*gcps) */
temp2 += (*ptr1++) * (*ptr2++); /* sum(gcps[i]*sdir[i]) */

>

sumgr2 = tempi;
gsq = temp2;
fch = sserror2 - sserrorl;
gold = (sumgr2 - sumgr)/stsizechg;
temp = 2*fch/stsizechg - sumgr2 - sumgr;

if ((sserror2 < sserrorl) jj ((sserror2 == sserrorl) && (sumgr2/sumgr > -1)))
<

gsq1 = gsq;
sserrorl = sserror2;
ptr1 = wtptr; /* switch and move the new weight to the current position */
wtptr = cps;
cps = ptr1;
ptr1 = gmin; /* switch and move the gradient also */
gmin = gcps;
gcps = ptr1;
if (sumgr2*sumgr <= 0)
maxstsize = minstsize;

maxstsize = stepsize;
sumgr = sumgr2;
stsizechg = -stsizechg;

if (gsq < thres) /* check if sum(gcps[i]*sdir[i]) is less than the */
< /* error thres set */

x = wtptr; / get the new weight */
return sserrorl;

>
if (fabs(sumgr/sumgr1) < RED) /* if the gradient reduction is enough */

break; /* then stop */
>
else

maxstsize = stepsize; /* else use the max step size */

if (Isflag > MAXIT) /* if more than the number of iterations */
break; /* then stop */

} while (1); /* do till a break */

sserror2 = sserrorl;
ptr1 = cps;
ptr2 = wtptr;
ptr3 = ptr1 + totconn;
for (;ptr1 < ptr3;)

(*ptr1++) = (*ptr2++); /* get the new weights */

ptr1 = gcps;
ptr2 = gbeg;
ptr3 = ptr1 + totconn;
ptr4 = gmin;
tempi = 0.;
for (;ptr1 < ptr3;)
<
(*ptr1) = (*ptr4++);
temp += (*ptr1++) * (*ptr2++);

gdif = temp;
if (fabs(sumgr - sumgrl) > thres)
<
beta = (gsq1 - gdif)/(sumgr - sumgrl)
if (fabs(beta*sumgr) < 0.2*gsq1)

115

break;
>
flag2++; /* update the flag */
if (flag2 > 0)
flag += 2;

> while (flag < 1);

if (sserror <= sserrorl)
flag += 1;

terror = sumgrl * minstsize;
> while (it < nit);

*x = wtptr;
return sserrorl; /* return the optimised error */

> /* end of conjugate */

/***
* critfcO this routine computes the criterion function or error function
* from the adjusted weights and computes the weight gradient for
* storage. It returns the least mean square error.***j

FTYPE critfc(w, wtchg, totconn)
int totconn; /* the total connections in the network */
FTYPE *w, *wtchg;

<
register FTYPE *ptr1, *ptr2, *ptr3, errorptr, sumwts;
FTYPE sserror, deltal;
int i, n, j;

errorptr = 0.; /* initialise the registers and the parameters */
ptr1 = wtchg; /* get the first position of the delta values */
ptr3 = ptr1 + totconn; /* get the last value */
for (;ptr1 < ptr3;)

(*ptr1++) = errorptr; /* initialise the variables */

sserror = 0.; /* start with a new error variable */
for (n=0; n < pats; n++) /* go through all the patterns */
<
ptr3 = w; /* get the first weight array */
for (i=0; i < unitsCU; i++) /* go through the first hidden layer units */
<

sumwts =0.;
ptr1 = ptr3; /* get the first connecting weight in the layer */
ptr3 = ptr1 + unitsCO]; /* get the last one */
ptr2 = input [n]; /* get the first position in the input data for the pattern */
for (;ptr1 < ptr3;) /* compute the sum of the activations to the end of */

sumwts += (*ptr2++) * (*ptr1++); /* by sum(input [i]*w[i]) */

outputCi]Ci] = f(sumwts); /* pass this sum through the sigmoid function */
> /* end of the second for */

for (j=0; j < (layers-1); j++) /* go through the remaining hidden layers */
for (i=0; i < units[j+1]; i++) /* go through the first of these */
<

sumwts = 0.;
ptr1 = ptr3; /* start from the last position in the weight array */
ptr3 = ptr1 + unitsCj];
ptr2 = outputCjl;
for (;ptr1 , ptr3;)

sumwts += (*ptr1++) * (*ptr2++);

output[j+1][i] = f(sumwts);
>

/* compute the error between the desired output and the actual */

116

for (i=0; i < units[layers-1]; i++) /* which is used to compute the deltas for */
< /* for adjusting the weights. This is done backwards through */
if (i == target[n]-1) /* the network layers */
errorptr = min(output[layer-1][i] - MAXPT, 0); /* compute the error using */

else /* the cut off points */
errorptr = max(output[layer-1] [i] - MINPT, 0);

sserror += errorptr * errorptr; /* compute the sum of the square error */
/* calculate the delta value for use later */

deltal = errorptr * output[layers-1][i] * (1.-output[layers-1][i]);
delta[layers-1][i] = deltal;
ptr1 = output[layers-2]; /* get the first output unit of that layer */
ptr2 = &wtchg[conwts[layers-2] + i*units[layers-2]]; /* first position */
ptr3 = ptr2 + units[layers-2]; /* and last position of the delta array */
for (;ptr2 < ptr3;)

(*ptr2++) += errorptr * (*ptr1++); /* compute the new deltaw values */
y /* for this layer */
for (j=(layers-2); j > 1; j--) /* go through the next layer to compute */
< /* its delta values using that of the layer before this */
errorptr =0.;
ptr1 = del ta [j];
ptr3 = ptr1 + units[j];
for (;ptr1 < ptr3;) /* initialise the delta array for this layer */

(*ptr1++) = errorptr;

for (i=0; i < units[j+1]; i++) /* compute the delta values for */
< /* this layer */
ptr2 = &w[conwts[j] + i*units[j]];
ptr3 = ptr2 + units[j];
ptr1 = del ta[j];
for (;ptr2 < ptr3;) /* using the sum(w[i]*delta[i+1]) */

(*ptr1++) += (*ptr2++) * delta[j+1][i];

for (i=0; i < units[j]; i++) /* move to the next hidden layer */
<
delta[j] [i] *= output[j][i] * (1.-output[j][i]);
ptr1 = output[j-13;
ptr2 = &wtchg[conwts[j-1] + i*units[j-1]];
ptr3 = ptr2 + units[j-1];
for (;ptr2 < ptr3;)

(*ptr2++) += (*ptr1++) * delta[j][i];
y

y /* end of the j for */
/* compute the delta values for the first layer */

errorptr =0.; /* initialise and get parameters */
ptr1 = delta[1];
ptr3 = ptr1 + units[1];
for (;ptr1 < ptr3;)

(*ptr1++) = errorptr;

for (i=0; i < units[2]; i++)
<
ptr2 = &w[conwts[1] + i*units[1]];
ptr3 = ptr2 + units[1];
ptr1 = del ta [1];
for (;ptr2 < ptr3;)

(*ptr1+) += (*ptr2++) * delta[2][i] ;
>
for (i=0; i < units[1]; i++)
<
delta[1][i] *= output[1][i] * (1.-output[1][i]);
ptr1 = input [n];
ptr2 = &wtchg[units[0]*i] ;
ptr3 = ptr2 + units[0];
for (;ptr2 < ptr3;)

(*ptr2++) += (*ptr1++) * delta[1][i];

117

y
y /* end of the starting for */

sserror *=0.5; /* compute the least mean square error */
if (prt_flag) /* display the error if the flag is on */

printf("%10.61f\n",sserror);

return sserror;
y /* end of the critfc */
/* end of conjugate.c */

118

y***************************************
* prod.h: this is the header file where the libraries are included,
* simple functions used are defined, and the variable types
* are defined and declared for use in the production programs.
***************************************/

#define PC /* define if using PC */
#define UNIX /* define if using UNIX system */

/* include the necessary libraries */
#ifdef PC
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <alloc.h>

#endif

#ifdef UNIX
#include <curses.h>

#endif

#include <stdio.h>
#include <math.h>

/* define the
#define max(a,b)
#define min(a,b)
#define bound(a,b,c)
#define round(a)
#define hi(a)
#define lo(a)
#define sqr(a)

functions if not defined in the libraries being used */
((a)<(b)?(b):(a))
((a)<(b)?(a):(b)) */
(max((a),min((b),(c))))
((a)>0.? (int)((a)+.5):(int)((a)-.5))
(unsigned char)(a/256)
(unsigned char)(a%256)
((a) * (a))

#define ULIMIT 50
#define LLIMIT -50
#define FTYPE float

/* upper limit of exp-function */
/* lower limit of exp-function */

typedef unsigned char byte;

/*************************
* f(): this routine computes the sigmoid logistic function.**********************i

FTYPE f(sig)
FTYPE sig;

<
FTYPE x;

x = sig;
if (x > ULIMIT)

x = ULIMIT;
else if (x < LLIMIT)

x = LLIMIT;
return (FTYPE) 1. / (1. + exp (-(FTYPE) x));

>/* end of f */

/*************************
*errmsg(): this routine displays an error message.**********************i

void errmsg(msg)
char *msg;

<
perror (msg);

exit (0);

119

}/* end of errmsg */

y***
* compute_out(): this routine computes the activations using the sigmoid
* logistic function

void compute_out(one)
int one;
<
int a, b, c;
FTYPE sigm;

for (b = 0; b < unitstl]; b++)
<
sigm = 0.;
for (a = 0; a < unitsCO]; a++)

sigm += w[0] [b] [a] * input[one][a];
output[1][b] = f (sigm);

for (c = 1; c < layers - 1; c++)
for (b = 0; b < unitstc + 1]; b++)
<
sigm = 0.;
for (a = 0; a < unitstc]; a++)

sigm += w[c] [b] [a] * output [c] [a] ;
output[c + 1][b] = f (sigm);

>
> /* end of compute_out */

120
y***
* Department of Computer Science and Systems
* McMaster University, Hamilton, Ontario, Canada
*
* This file contains the classification program for the pixel
* representation format
*
* By: Emmanuel B. Aryee
*
* Date: September, 1990
**/

/**********************
* wortest.c this is a production program that classifies the sections
* of a cod image into parasitic sections and non parasitic
* sections using the pixel representation format
★★★★★★★★★★★★★★★★★★★★★★★★it**i

#include "prod.h"

#define GSCALE 255.0
#define CODFIL "worms.da"
#define WT "weight.fi I"

FTYPE ***w, **output, **delta, **input;
int layers, sec, one=1, *units;
FILE *inp, *outp, *datp;

void main (argc, argv)
int argc;
char **argv;
<

FTYPE amax, tsserror, num;
int nit, n, i, j, maxunit;
int cmax, val, par, nopar;
char name[100];

int wtfil = 0, wormfil = 0, sec = 0; /* flags and number of sections */

if (argc == 4)
<
wtfil = atoi (argv[1]>;
wormfil = atoi (argv[2]);
sec = atoi (argv[3]>;

if (wtfil < 0 J j wtfil > 99)
errmsg ("weight file # must be between 0 and 99");

if (wormfil < 0 Jj wormfil > 99)
errmsg ("worm file # must be between 0 and 99");

if (sec <= 0)
errmsg ("number of sections must be greater than 0");

>
else

errmsg ("Usage: wortest <#for weight file> <#for cod image file> <# sections in image>");

strcpy (name, WT);
strncat (name, argv[1], 2);

if ((inp = fopen (name, "rb")) == 0)
errmsg ("Error opening weight file for weights");

strcpy (name, CODFIL);
strncat (name, argv[2], 2);

if ((datp = fopen (name, "r")) == 0)

weight.fi

121

errmsg ("Error opening cod image file for image patterns");

fread (&nit, sizeof (int), 1, inp); /* read off the number of iteration */

fread (&layers, sizeof (int), 1, inp);
if ((units = (int *) malloc (layers * sizeof (int))) == 0)

errmsg ("units malloc error");

fread (units, sizeof (int), layers, inp);

maxunit = 0;
for (n = 0;n < layers;n++)

if (unitstn] > maxunit)
maxunit = unitstn];

/* allocate memory */

input = (FTYPE **)calloc(2,sizeof(FTYPE));

for (i=0; i<2; i++)
< /* get the memory for input nodes */
inputCi] = (FTYPE *)calloc(units[0]+1,sizeof(FTYPE));
if (input Ci] == 0)
<
printf("\nNot enough memory for inputs");
exit(0);

> /* end of if */
> /* end of for */

output = (FTYPE **)calloc(layers+1,sizeof(FTYPE));

for (i=0; i<layers; i++)
< /* get memory for the activations for layers after the first */
outputti] = (FTYPE *)calloc(units[i]+1,sizeof(FTYPE));
if (output[i] == 0)

<
printf("\nNot enough memory for activations");
exit(0);

> /* end of if */
> /* end of for */

w = (FTYPE ***)calloc(layers, sizeof(FTYPE));

for (i=0; i<layers - 1; i++) /* loop thru the # of layers */
< /* get the wts from a node to nodes in the next layer */
wti] = (FTYPE **)calloc(units[i+1] + 1,sizeof(FTYPE));
for (j=0; j<unitsti+1]; j++) /* loop thru nodes of next layer */
<
wti] [j] = (FTYPE *)calloc(units[i)+1,sizeof(FTYPE));
if (wCiJ [j] == 0)

<
printf("\nNot enough memory for weights");
exit(0);

> /* end of if */
> /* end of 2nd for */

> /* end of 1st for */

for (n = 0;n < layers - 1;n++)
for (i = 0; i < unitstn + 1]; i++)

fread (w[nlCi], sizeof (FTYPE), unitstn], inp);

fread (Stsserror, sizeof (FTYPE), 1, inp);

for (n = 0; n < sec; n++) /* go through the windows sections */

122

for (i = 0; i < unitsEO] - 1; i++) /* read the section patterns */
<
val = fgetc(datp);
num = (FTYPE)(val)/GSCALE;
i nput[one][i] = num;

>

input[one][unitsEO] - 1] = 1.; /* assign act for the threshold */

compute_out(one); /* calculate the activations */

/* find most active output neuron */
amax = output[layers - 1][0];
cmax = 0;

for (i =1; i < units[layers - 1]; i++)
if (output[layers - 1] [i] > amax)

<
amax = output[layers - 1] [i];
cmax = i;

>

if ((cmax +1) == 1)
par++; /* if a par is found then increase par counter */

else
nopar++; /* otherwise increase the no parasite counter */

/* display the section # and its classification */
/*printf("\npattern %d. target %d. amax %lf.\n",n+1,cmax+1,amax);*/

>
/* display the number of parasite and non parasite sections */

printf("\n Parasites = %d. No parasites = %d.\n",par,nopar);

fclose(inp);
fclose(outp);
fclose(datp);

> /* end of wortest.c */

123

/**★******★***★****★★**★★★*★**★****★*★★*****★★**★*★★***★***★**
* Department of Computer Science and Systems
* McMaster University, Hamilton, Ontario, Canada
*
* This file contains the classification program for the feature
* extraction format
*
* By: Emmanuel B. Aryee
*
* Date: September, 1990
********************★***/

/**********************
* wavtest.c this is a production program that classifies the sections
* of a cod image into parasitic sections and non parasitic
* sections using the feature extraction format***************************j

#include "prod.h"

#define ARRSIZ 255
#define VECSIZ 32
#define CODFIL "worms.da"
#define WT "weight.fiI"

FTYPE ***w, **output, **delta, **input, vector[VECSIZ];
int layers, sec, one=1, *units;
int hist[ARRSIZ];
FILE *inp, *outp, *datp;

/***
* wave(): this is used to compute the cumulative freq of an image
* and extract the normalised features into a 1-dim vector
**/

void wave()
<
int h=0,11=0,12=0,1=0,j=0,m=0,y1=0, vail;
FTYPE scale=0., y=0., k=0., max1=0.;

h=0;
while (hist[h++] <= 0) /* find the start of the curve */
11 = h;

for(h=255; h>=0; h--) /* find the end of the curve */
if (hist[h] != 0)

<
12 = h;
break;

>

I = 12 - 11; /* compute the spread of the curve */

if (I > 32) /* case of the spread greater than 32 */
< /* get the scale for enlargement and the first position */
scale =(FTYPE)l/32;
y = 11; m = 11; j = 0; /* of the curve */
while (y <= (FTYPE)12) /* process till the end of the curve */
< /* get the number of points in that section */

k=0; va 11 = 0;
y += scale; /* get the border of the next section */
for (h=m; h<= y; h++,k++)

vail += hist[h]; /* compute the total y values */
if (j >= VECSIZ) /* stop if overflow */

break;

124

vector[j++] = (FTYPE)val1/k; /* find the mean value */
m = h; /* get the x-cordinates for the section */

> /* end of the while */
> /* end of the if */

else if (I < 32) /* case of the spread less than 32 */
< /* get the scale for reduction and the first position */

scale = 32/(FTYPEX1+1); y1 = 0; y = 0; j = 11; /* of the curve */
while (j <= 12) /* process till the end of the curve */
<
y += scale; /* move to the next section of the divided 32 array */
if (y1 >= VECSIZ) /* stop if overflow */
break;

vector[y1] =(FTYPE)histCj]; y1++; /* get the value for the first cor */
if (y1 >= VECSIZ)

break;
if ((FTYPE)y1 <= y) /* if not end of the section */

<
vectorCy1] =(FTYPE)(histCj] + histCj+1])/2; /* interpolate for the next value */
y1++;

j++; /* move to the next section in the original array*/
> /* end of the while */

> /* end of the second if */
else

< /* transfer the points to the vector array */
for (j=0, y1 = U; j<VECSIZ; j++,y1++)

vectorCj] = histCyl];

maxi = 0.;
for (h=0; h<VECSIZ; h++)

<
if (vectorCh] > maxi)
maxi = vectorCh];

/* printf(u\n%3.2fH,vectorCh]); */
y

for (h=0; h<VECSIZ; h++)
<
if (vectorCh] != 0.)

vectorCh] = vectorCh]/max1;
>

y /* end of wave */
/***************************************
* the driver of the program
*****★********************************/

void main (argc, argv)
int argc;
char **argv;
<

FTYPE amax, tsserror, num;
int nit, n, i, j, maxunit;
int cmax, va I, par, nopar;
char nameC100];

int wtfil = 0, wormfil = 0, sec = 0; /* flags and number of sections */

if (argc == 4)
<
wtfil = atoi (argvCI]);
wormfil = atoi (argv(2]);
sec = atoi (argvC3]);

125

if (wtfil < 0 }J wtfil > 99)
errmsg ("weight file # must be between 0 and 99");

if (wormfil < 0 JJ wormfil > 99)
errmsg ("worm file # must be between 0 and 99");

if (sec <= 0)
errmsg ("number of sections must be greater than 0");

>
else

errmsg ("Usage: wavtest <#for weight file> <#for cod image file> <# sections in image>");

strcpy (name, WT);
strncat (name, argvCI], 2);

if ((inp = fopen (name, "rb")) == 0)
errmsg ("Error opening weight file for weights");

strcpy (name, CODFIL);
strncat (name, argvt2], 2);

if ((datp = fopen (name, "r")) == 0)
'errmsg ("Error opening cod image file for image patterns");

fread (&nit, sizeof (int), 1, inp);

fread (Slayers, sizeof (int), 1, inp);
if ((units = (int *) malloc (layers * sizeof (int))) == 0)

errmsg ("units malloc error");

fread (units, sizeof (int), layers, inp);

maxunit = 0;
for (n = 0;n < layers;n++)

if (unitstn] > maxunit)
maxunit = unitstn];

/* allocate memory */

input = (FTYPE **)calloc(2,sizeof(FTYPE));

for (i=0; i<2; i++)
< /* get the memory for input nodes */
inputti] = (FTYPE *)calloc(unitst0]+1,sizeof(FTYPE));
if (inputti] == 0)

<
printf("\nNot enough memory for inputs");
exit(0);

> /* end of if */
> /* end of for */

output = (FTYPE **)caltoc(layers+1,sizeof(FTYPE));

for (i=0; i<layers; i++)
< /* get memory for the activations for layers after the first */
outputti] = (FTYPE *)calloc(unitsti]+1,sizeof(FTYPE));
if (outputti] == 0)

<
printf("\nNot enough memory for activations");
exit(0);

> /* end of if */
> /* end of for */

w = (FTYPE ***)calloc(layers, sizeof(FTYPE));

for (i=0; i<layers - 1; i++) /* loop thru the # of layers */
< /* get the wts from a node to nodes in the next layer */

126

w[î3 = (FTYPE **)calloc(units[i+1) + 1,sizeof(FTYPE));
for (j=0; j<units[i+13; j++) /* loop thru nodes of next layer */
<
w[i] [j] = (FTYPE *)calloc(units[i3+1,sizeof(FTYPE));
if (w[i3 [j] == 0)

<
printf("\nNot enough memory for weights");
exit(0);

> /* end of if */
> /* end of 2nd for */

> /* end of 1st for */

for (n = 0;n < layers - 1;n++)
for (i =0; i < unitstn +13; i++)

fread (w[n3[i), sizeof (FTYPE), unitstn), inp);

fread (&tsserror, sizeof (FTYPE), 1, inp);

for (n s 0; n < sec; n++) /* go through the windows sections */
<

for (i=0; i<ARRSIZ; i++) /* initialise the hist array */
hist [i3=0;

for (i=0; i<VECSIZ; i++) /* initialise the vector array */
vector[i3=0.;

for (i=0; i<1024; i++) /* compute the cum freq of the 32x32 */
<
val = fgetc(datp); /* input data of the image */
hist[val3++;

y /* if at end of file then stop */

/* printf("\n # of times = %d",i);
for (i=0; i<ARRSIZ; i++)

printf("\n%d »,hist[i3); */

wave(); /* compute the features of the curve */
for (i = 0; i < units[03 - 1; i++) /* read the input */

<
i nput[one3[i 3 = vector[i 3 ;

/* printf("%1.2f ",vectorCi3); */
y

input[one3[units[03 - 13 = 1.; /* assign act for the threshold */

compute__out(one); /* calculate the activations */

/* find most active output neuron */
amax = output [layers - 13 103;
cmax = 0;

for (i =1; i < units[layers - 13; i++)
if (output[layers - 13 [i3 > amax)

<
amax = output[layers - 13 [i3;
cmax = i;

y

if ((cmax +1) == 1)
par++; /* if a par is found then increase par counter */

else
nopar++; /* otherwise increase the no parasite counter */

/* display the section # and its classification */
/*printf("\npattern %d. target %d. amax %lf.\n",n+1,cmax+1,amax);*/

y
/* display the number of parasite and non parasite sections */

printf("\n Parasites = %d. No parasites = %d.\n",par,nopar);

127

fclose(inp);
fclose(outp);
fclose(datp);

> /* end of wavtest.c */

128

y***
* Department of Computer Science and Systems
* McMaster University, Hamilton, Ontario, Canada
*
* This file contains the classification program for the curve
* map/binarised curve map format.
*
* By: Emmanuel B. Aryee
*
* Date: September, 1990
**y

y**********************
* histest.c this is a production program that classifies the sections
* of a cod image into parasitic sections and non parasitic
* sections using the curve map/binarised curve map format
*************************** y

#include "prod.h"

#define ARRSIZ 255
#define VECSIZ 32
#define CORD 11
#define CODFIL "worms.da"
#define WT "weight.fi I"

FTYPE ***w, **output, **delta, **input, matrix[CORD][VECSIZ];
int layers, sec, one=1, *units;
int hist[ARRSIZ];
FILE *inp, *outp, *datp;

y***
*cmap(): this is used to compute the cumulative freq of 32x32 section.
* and extracts the normalised features into 32x11 dim curve map
* binarised curve map
** y

void cmap()
<
int h=0,11=0,12=0,1=0,j=0,m=0,y1=0, vail;
FTYPE scale=0., y=0., k=0,, max1=0.;
int vectorl[VECSIZ] ;
FTYPE vector[VECSIZ], temp=0.;

for(j=0; j<CORD; j++)
for(h=0; h<VECSIZ; h++)

matrix[j] [h] = 0.; /* initialise the matrix array */

for(j=0; j<VECSIZ; j++)
<
vector[j] =0.; /* initialise the two vector arrays */
vectorl[j] = 0;

h=0;
while (hist[h++] <= 0)
11 = h;

for(h=255; h>=0; h-->
if (hist[h] != 0)

<
12 = h;
break;

>

/* find the start of the curve */

/* find the end of the curve */

weight.fi

129

I = 12 - 11; /* compute the spread of the curve */

if (I > 32) /* case of the spread greater than 32 */
< /* get the scale for enlargement and the first position */
scale =(FTYPE)l/32;
y = 11; m = 11; j = 0; /* of the curve */
while (y <= (FTYPE)12) /* process till the end of the curve */
< /* get the number of points in that section */

k=0; vail = 0;
y += scale; /* get the border of the next section */
for (h=m; h<= y; h++,k++)

va11 += hist [hl; /* compute the total y values */
if (j >= VECSIZ) /* stop if overflow */

break;
vector[j++] = (FTYPE)val1/k; /* find the mean value */

m = h; /* get the x-cordinates for the section */
> /* end of the while */

> /* end of the if */
else if (I < 32) /* case of the spread less than 32 */

< /* get the scale for reduction and the first position */
scale = 32/(FTYPE)(1+1); y1 = 0; y = 0; j = 11; /* of the curve */
while (j <= 12) /* process till the end of the curve */
<
y += scale; /* move to the next section of the divided 32 array */
if <y1 >= VECSIZ) /* stop if overflow */
break;

vectorCy1] =(FTYPE)hist [j]; y1++; /* get the value for the first cor */
if (y1 >= VECSIZ)

break;
if ((FTYPE)y1 <= y) /* if not end of the section */
<
vector[y1] =(FTYPE)(histCj] + histCj+1])/2; /* interpolate for the next value */
y1++;

j++; /* move to the next section in the original array*/
> /* end of the while */

> /* end of the second if */
else

< /* transfer the points to the vector array */
for (j=0, y1=l1; j<VECSIZ; j++,y1++)

vector[j] = histCy1];
>

maxi =0.;
for (h=0; h<VECSIZ; h++)

<
if (vector[h] > maxi)
maxi = vector Eh] ;

/* printf("\n%3.2f",vector Eh]); */

for (h=0; h<VECSIZ; h++)
<
if (vector[h] •= 0.)

vector Eh] = vector[h]/max1;

temp = (vector[h]*10) + 0.5; /* this is to ensure proper round off */
vectorlEh] = floor(temp);

matrix[vectorlEh]][h] = 1.0; /* use 1.0 to define the point on curve */
/* matrix[vectorlEh]]Ch] = vector Eh]; */

> /* end of cmap */

130

y**************************************i
* this is the main driver of the program
***************************************/

void main (argc, argv)
int argc;
char **argv;
<

FTYPE amax, tsserror, num;
int nit, n, i, j, maxunit;
int cmax, val, par, nopar;
char namet100];

int wtfil = 0, wormfil = 0, sec = 0; /♦ flags and number of sections */

if (argc == 4)
<
wtfil = atoi (argvCU);
wormfil = atoi (argvt2]);
sec = atoi (argv[31);

if (wtfil < 0 [J wtfil > 99)
errmsg ("weight file # must be between 0 and 99");

if (wormfil <0 J J wormfil > 99)
errmsg ("worm file # must be between 0 and 99");

if (sec <= 0)
errmsg ("number of sections must be greater than 0");

>
else

errmsg ("Usage: histest <#for weight file> <#for cod image file> <# sections in image>");

strcpy (name, WT);
strncat (name, argv[1], 2);

if ((inp = fopen (name, "rb")) == 0)
errmsg ("Error opening weight file for weights");

strcpy (name, CODFIL);
strncat (name, argv(2], 2);

if ((datp = fopen (name, "r")) == 0)
errmsg ("Error opening cod image file for image patterns");

fread (&nit, sizeof (int), 1, inp);

fread (Slayers, sizeof (int), 1, inp);
if ((units = (int *) malloc (layers * sizeof (int))) == 0)

errmsg ("units malloc error");

fread (units, sizeof (int), layers, inp);

maxunit = 0;
for (n = 0;n < layers;n++)

if (unitstn] > maxunit)
maxunit = unitstn];

/* allocate memory */
input = (FTYPE **)caltoc(2,sizeof(FTYPE));

for (i=0; i<2; i++)
< /* get the memory for input nodes */
inputti] = (FTYPE *)calloc(units(0]+1,sizeof(FTYPE));
if (inputti] == 0)
<
printf("\nNot enough memory for inputs");

131

exit(O);
y /* end of if */

y /* end of for */

output = (FTYPE **)calloc(layers+1,sizeof(FTYPE));

for (i=0; i<layers; i++)
< /* get memory for the activations for layers after the first */
outputti] = (FTYPE *)calloc(units[i3+1,sizeof(FTYPE));
if (outputti] == 0)

<
printf("\nNot enough memory for activations");
exit(0);

y /* end of if */
y /* end of for */

w = (FTYPE ***)calloc(layers, sizeof(FTYPE));

for (i=0; i<layers - 1; i++) /* loop thru the # of layers */
< /* get the wts from a node to nodes in the next layer */
wti] = (FTYPE **)calloc(units[i+1] + 1,sizeof(FTYPE));
for (j=0; j<units[i+1]; j++) /* loop thru nodes of next layer */
<
wti] [j] = (FTYPE *)calloc(units(i]+1,sizeof(FTYPE));
if (wti] tjl == 0)

<
printf("\nNot enough memory for weights");
exit(0);

> /* end of if */
> /* end of 2nd for */

y /* end of 1st for */

for (n = 0;n < layers - 1;n++)
for (i = 0; i < unitstn + 1]; i++)

fread (wtnlti], sizeof (FTYPE), unitstn], inp);

fread (Stsserror, sizeof (FTYPE), 1, inp);

for (n = 0; n < sec; n++) /* go through the windows sections */
<

for (i=0; i<ARRSIZ; i++) /* initialise the hist array */
hist ti]=0;

for (i=0; i<1024; i++) /* compute the cum freq of the 32x32 */
<
val = fgetc(datp); /* input data of the image */
hist tval]++;

> /* if at end of file then stop */

for (i=0; i<ARRSIZ; i++)
printf("\n%d ",histti]); */

cmapO; /* compute the features of the curve */
i = 0;
for (i = 0; i < CORD; i++) /* read the input */

for (j =0; j < VECSIZ; j++)
input tone]ti++] = matrixti]tj];

input tone]turntstO] - 1] = 1.; /* assign act for the threshold */

compute_out(one); /* calculate the activations */

/* find most active output neuron */
amax = outputtlayers - 1]t0];
cmax =0;

132

for (i = 1; i < units[layers - 1]; i++)
if (output[layers - 1] [i] > amax)

<
amax = output[layers - 1] [i];
cmax = i;

>

if ((cmax +1) == 1)
par++; /* if a par is found then increase par counter */

else
nopar++; /* otherwise increase the no parasite counter */

/♦ display the section # and its classification */
/*printf(M\npattern %d. target %d. amax %lfAn",n+1,cmax+1,amax);*/

>
/* display the number of parasite and non parasite sections */

printf("\n Parasites = %d. No parasites = %d.\n",par,nopar);

fclose(inp);
fclose(outp);
fclose(datp);

> /* end of histest.c */

133

y***
* Department of Computer Science and Systems
* McMaster University, Hamilton, Ontario, Canada

* This file contains the classification program for the smoothed
* curve format.
*
* By: Emmanuel B. Aryee
*
* Date: September, 1990
*********************★********************★**★************★***/

y**********************
* smthtest.c this is a production program that classifies the sections
* of a cod image into parasitic sections and non parasitic
* sections using the smoothed curve format
★★★★★★★★★★★★★★★★★★★★★★★★★★if j

#include “prod.h"

#define ARRSIZ 255
#define VECSIZ 32
#define CODFIL "worms.da"
#define WT "weight.fiI"

FTYPE ***w, **output, **delta, **input, vector[VECSIZ], smooth[VECSIZ];
int layers, sec, one=1, *units;
int hist[ARRSIZ];
FILE *inp, *outp, *datp;

y***
* smoothedO: this is used to compute the cumulative freq of an image
* and extract the normalised features of the curve which
* is then smoothed to remove the spikes.
**y

void smoothed()
<
int h=0,11=0,12=0,1=0,j=0,m=0,y1=0, vail;
FTYPE scale=0., y=0., k=0., max1=0.,temp=0.;

h=0;
while (hist[h++] <= 0) /* find the start of the curve */
11 = h;

for(h=255; h>=0; h--) /* find the end of the curve */
if (hist[h] != 0)

<
12 = h;
break;

>

I = 12 - 11; /* compute the spread of the curve */

if (I > 32) /* case of the spread greater than 32 */
< /* get the scale for enlargement and the first position */
scale =(FTYPE)1/32;
y = 11; m = 11; j = 0; /* of the curve */
while (y <= (FTYPE)12) /* process till the end of the curve */
< /* get the number of points in that section */
k=0; va 11 = 0;
y += scale; /* get the border of the next section */
for (h=m; h<= y; h++,k++)

va11 += hist[h]; /* compute the total y values */
if (j >= VECSIZ) /* stop if overflow */

134

break;
vector[j++] = (FTYPE)val1/k; /* find the mean value */

m = h; /* get the x-cordinates for the section */
> /* end of the while */

} /* end of the if */
else if (I < 32) /* case of the spread less than 32 */

< /* get the scale for reduction and the first position */
scale = 32/(FTYPE)(1+1); y1 = 0; y = 0; j = 11; /* of the curve */
while (j <= 12) /* process till the end of the curve */
<
y += scale; /* move to the next section of the divided 32 array */
if (y1 >= VECSIZ) /* stop if overflow */
break;

vector[y1] =(FTYPE)hist [j]; y1++; /* get the value for the first cor */
if (y1 >= VECSIZ)

break;
if ((FTYPE)y1 <= y) /* if not end of the section */
<
vector[y1] =(FTYPE)(histCj] + hist [j+1])/2; /* interpolate for the next value */
y1++;

>
j++; /* move to the next section in the original array*/

> /* end of the while */
> /* end of the second if */

else
< /* transfer the points to the vector array */
for (j=0, y1=l1; j<VECSIZ; j++,y1++)

vector[j] = hist[y1];

maxi = 0.;
for (h=0; h<VECSIZ; h++)

<
if (vector[h] > maxi)
maxi = vectorCh];

/* printf("\n%3.2f",vectorCh]); */

for (h=0; h<VECSIZ; h++)
<
if (vector[h] != 0.)

vector[h] = vector[h]/max1;
>

/* smoothing of the curve begins */
for (h=0; h<(VECSIZ - 1); h++)

<
temp = vectorCh+1] - vector[h]; /* get the difference */
if (temp >= 0.045) /* if next point is greater */

smooth[h+1] = smooth[h] +0.1; /* increase that point by 0.1 */
else if (temp <= -0.045) /* if less */

smooth[h+1] = smooth[h] - 0.1; /* decrease that point by 0.1 */
else /* if same */

smooth[h+1] = smooth[h]; /* assign the same value */
>

> /* end of smoothed */

/**************************************y
* this is the main driver of the program

ink 4r ****** ***************************** y

void main (argc, argv)
int argc;
char **argv;
<

FTYPE amax, tsserror, num;

135

int
int
char

nit, n, i, j, maxunit;
cmax, val,
namet100];

par, nopar;

int wtfil = 0, wormfil = 0, sec = 0; /* flags and number of sections */

if (argc == 4)
<
wtfil = atoi (argvtl]);
wormfil = atoi (argvt2]);
sec = atoi (argvt3]);

if (wtfil < 0 jj wtfil > 99)
errmsg ("weight file # must be between 0 and 99");

if (wormfil < 0 jj wormfil > 99)
errmsg ("worm file # must be between 0 and 99");

if (sec <= 0)
errmsg ("number of sections must be greater than 0");

>
else

errmsg ("Usage: smthtest <#for weight file> <#for cod image file> <# sections in image>");

strcpy (name, WT);
strncat (name, argv[1], 2);

if ((inp = fopen (name, "rb")) == 0)
errmsg ("Error opening weight file for weights");

strcpy (name, CODFIL);
strncat (name, argv[2], 2);

if ((datp = fopen (name, "r")) == 0)
errmsg ("Error opening cod image file for image patterns");

fread (&nit, sizeof (int), 1, inp);

fread (Slayers, sizeof (int), 1, inp);
if ((units = (int *) malloc (layers * sizeof (int))) == 0)

errmsg ("units malloc error");

fread (units, sizeof (int), layers, inp);

maxunit = 0;
for (n = 0;n < layers;n++)

if (unitstn] > maxunit)
maxunit = unitstn];

/* allocate memory */

input = (FTYPE **)calloc(2,sizeof(FTYPE));

for (i=0; i<2; i++)
< /* get the memory for input nodes */
inputti] = (FTYPE *)calloc(unitst0]+1,sizeof(FTYPE));
if (inputti] == 0)

<
printf("\nNot enough memory for inputs");
exit(0);

> /* end of if */
> /* end of for */

output = (FTYPE **)calloc(layers+1,sizeof(FTYPE));

for (i=0; i<layers; i++)
< /* get memory for the activations for layers after the first */

136

outputti] = (FTYPE *)calloc(unitsti]+1,sizeof(FTYPE));
if (outputti] == 0)

<
printf("\nNot enough memory for activations1');
exit(0);

> /* end of if */
> /* end of for */

w = (FTYPE ***)calloc(layers, sizeof(FTYPE));

for (i=0; i<layers - 1; i++) /* loop thru the # of layers */
< /* get the wts from a node to nodes in the next layer */
wti] = (FTYPE **)calloc(unitsti+1] + 1,sizeof(FTYPE));
for (j=0; j<unitsti+1]; j++) /* loop thru nodes of next layer */
<
wti]tj] = (FTYPE *)calloc(unitsti]+1,sizeof(FTYPE));
if (wti] tj] == 0)

<
printf("\nNot enough memory for weights");
exit(0);

> /* end of if */
> /* end of 2nd for */

> /* end of 1st for */

for (n = 0;n < layers - 1;n++)
for (i = 0; i < unitstn + 1]; i++)

fread (w(n](i], sizeof (FTYPE), unitstn], inp);

fread (&tsserror, sizeof (FTYPE), 1, inp);

/* go through the windows sections */

/* initialise the hist array */

/* initialise the vector array */

/* and the smooth array */

for (n = 0; n < sec; n++)
<

for (i=0; i<ARRSIZ; i++)
hist ti]=0;

for (i=0; i<VECSIZ; i++)
<
smoothti] =0.;

vectorti]=0.;
>

for (i=0; i<1024; i++) /* compute the cum freq of the 32x32 */

val = fgetc(datp); /* input data of the image */
histtval]++;

> /* if at end of file then stop */

smoothedO; /* compute the features of the curve */
for (i = 0; i < unitstO] - 1; i++) /* read the input */

input tone] ti] = smoothti];

input tone]tunitstO] - 1] = 1.; /* assign act for the threshold */

compute_out(one); /* calculate the activations */

/* find most active output neuron */
amax = outputtlayers - 1]tO];
cmax = 0;

for (i = 1; i < unitstlayers - 1]; i++)
if (outputtlayers - 1]ti] > amax)

<
amax = outputtlayers - 1]ti];
cmax = i;

>

137

if ((cmax +1) == 1)
par++; /* if a par is found then increase par counter */

else
nopar++; /* otherwise increase the no parasite counter */

/* display the section # and its classification */
/♦printf("\npattern %d. target %d. amax %lf.\n",n+1,cmax+1,amax);*/

>
/* display the number of parasite and non parasite sections */

printf("\n Parasites = %d. No parasites = %d.\n’*,par,nopar);

fclose(inp);
fclose(outp);
fclose(datp);

> /* end of smthtest.c */

