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Lay Abstract

Many applications involve potentially noise-corrupted when collecting and trans-

mitting data. It is generally needed to compress the collected data in order to

reduce the transmission cost. In this work, we study a new and innovative way to

compress noise corrupted data.
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Abstract

Take into account a symmetric multivariate Gaussian source with ` components,

which are corrupted by independent and identically distributed Gaussian noises;

these noisy components are compressed at a certain rate, and the compressed

version is leveraged to reconstruct the source subject to a mean squared error dis-

tortion constraint. We analyze rate-distortion performance for both centralized

encoding (where the noisy source components are jointly compressed) and dis-

tributed encoding (where the noisy source components are separately compressed).

Among other things, it is indicated that the gap between the rate-distortion func-

tions associated with these two scenarios admits a simple characterization in the

large ` limit.[1]
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Chapter 1

Introduction

1.1 Motivation

Data compression is one of the oldest and most important signal processing ques-

tions. A famous historical example is the Morse code, created in 18,38, which gives

shorter codes to letters that appear more frequently in English ( such as letter ‘e’

and ‘t’).

The original source information is represented by a sequence of bits. Classi-

cally, all the information to be compressed was available in one place, leading to

centralized encoding problems. However, with the advent of multimedia, sensor

and ad-hoc networks, there is a new problem called distributed encoding. The

source information appears at serval separate encoding terminals.

In many of the most source coding scenarios, the encoders do not get to ob-

serve directly the information that is of interest to the decoder. Rather, they may

observe a noisy function thereof. This occurs, for example, in camera and sensor

1
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networks. This such source coding problem called remote source coding. While in

the remote compression problem, the encoders only access that information indi-

rectly through a noisy observation process. There is a famous example called CEO

problem. A chief executive officer is interested in estimating a random process. M

agents observe noisy versions of the random process and have noiseless bit pipes

with finite rate to the CEO. Under the assumption that the agents cannot commu-

nicate with one another, one wants to analyze the fidelity of the CEO’s estimate

of the random process subject to these rate constraints.

An interesting insight discussed in this thesis concerns rate distortion perfor-

mance difference of symmetric remote Gaussian source coding between centralized

encoding and distributed encoding.

1.2 Introduction

In this paper, we learn a quadratic Gaussian version of the remote source coding

problem, where compression is performed on the noise-corrupted components of a

symmetric multivariate Gaussian source.

A prescribed mean squared error distortion constraint is imposed on the recon-

struction of the noise-free source components; furthermore, it is pretended that

the noises across different source components are independent and obey the same

Gaussian distribution. We need to consider both scenarios: centralized encoding

(Figure 1.1) versus distributed encoding (Figure 1.2). It is worth noting that the

2
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distributed encoding scenario is firmly related to the CEO problem, which has

been studied extensively. [1-19].

The present paper is primarily devoted to the analysis of the rate-distortion

functions associated with the aforementioned two scenarios in the asymptotic

regime where the number of source components, denoted by `, is sufficiently large.

Indeed, it will be seen that the gap between the two rate-distortion functions ad-

mits a relatively simple characterization in the large ` limit, yielding useful insights

into the fundamental difference between centralized encoding and distributed cod-

ing, which are hard to obtain otherwise.

The rest of this paper is organized as follows. We state the problem definitions

and the main results in Chapter 2. The proofs are provided in Chapter 3. We

conclude the paper in Chapter 4.

Figure 1.1: Symmetric remote Gaussian source coding with cen-
tralized encoding

Notation: The expectation operator and the transpose operator are denoted by

E[·] and (·)T , respectively. An `-dimensional all-one row vector is written as 1`.

We use W n as an abbreviation of (W (1), · · · ,W (n)). The cardinality of a set C is

3
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Figure 1.2: Symmetric remote Gaussian source coding with dis-
tributed encoding

denoted by |C|. We write g(`) = O(f(`)) if the absolute value of g(`)
f(`) is bounded for

all sufficiently large `. Throughout this paper, the base of the logarithm function

is e, and log+ x , max{log x, 0}.

4
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Chapter 2

Problem Definitions and Main

Results

Let S , (S1, · · · , S`)T be the sum of two mutually independent `-dimensional

(` ≥ 2) zero-mean Gaussian random vectors, source X , (X1, · · · , X`)T and noise

Z , (Z1, · · · , Z`)T , with

E[XiXj] =


γX , i = j,

ρXγX , i 6= j,

E[ZiZj] =


γZ , i = j,

0, i 6= j,

where γX > 0, ρX ∈ [ 1
`−1 , 1], and γZ ≥ 0. Moreover, let {(X(t), Z(t), S(t))}∞t=1 be

i.i.d. copies of (X,Z, S).

5
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2.1 Definition 1(centralized encoding)

A rate-distortion pair (r, d) is said to be achievable with centralized encoding if,

for any ε > 0, there exists an encoding function φ(n) : R`×n → C(n) such that

1
n

log |C(n)| ≤ r + ε,

1
`n

∑̀
i=1

n∑
t=1

E[(Xi(t)− X̂i(t))2] ≤ d+ ε,

where X̂i(t) , E[Xi(t)|(φ(n)(Sn)]. For a given d, we denote by r(d) the minimum

r such that (r, d) is achievable with centralized encoding.

2.2 Definition 2(Distributed encoding)

A rate-distortion pair (r, d) is said to be achievable with distributed encoding if,

for any ε > 0, there exist encoding functions φ(n)
i : Rn → C(n)

i , i = 1, · · · , `, such

that

1
n

∑̀
i=1

log |C(n)
i | ≤ r + ε,

1
`n

∑̀
i=1

n∑
t=1

E[(Xi(t)− X̂i(t))2] ≤ d+ ε,

where X̂i(t) , E[Xi(t)|(φ(n)
1 (Sn1 ), · · · , φ(n)

` (Sn` ))]. For a given d, we denote by r(d)

the minimum r such that (r, d) is achievable with distributed encoding.

6
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Suppose we want to transmit information about a source to the user with a

distortion not exceeding d. Rate–distortion theory tells us that at least r(d)

bits/symbol of information from the source must reach the user. We will re-

fer to r(d) as the rate-distortion function of symmetric remote Gaussian source

coding with centralized encoding, and r(d) as the rate-distortion function of sym-

metric remote Gaussian source coding with distributed encoding. It is clear that

r(d) ≤ r(d) for any d since distributed encoding can be simulated by centralized

encoding. Moreover, it is easy to show that r(d) = r(d) = 0 for d ≥ γX (since the

distortion constraint is trivially satisfied with the reconstruction set to be zero)

and r(d) = r(d) =∞ for d ≤ dmin (since dmin is the minimum achievable distortion

when {S(t)}∞t=1 is directly available at the decoder), where (see Chapter 3.1 for a

detailed derivation)

dmin ,
1
`
E[(X − E[X|S])T (X − E[X|S])] =



(`−1)γXγZ

`γX+(`−1)γZ
, ρX = − 1

`−1 ,

(`ρXγX+λX)γZ

`(`ρXγX+λX+γZ) + (`−1)λXγZ

`(λX+γZ) , ρX ∈ (− 1
`−1 , 1),

γXγZ

`γX+γZ
, ρX = 1,

with λX , (1− ρX)γX . Henceforth we shall focus on the case d ∈ (dmin, γX).

7
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2.3 Lemma 1

For d ∈ (dmin, γX),

r(d) =



`−1
2 log `(`−1)γ2

X

(`γX+(`−1)γZ)((`−1)d−γX) , ρX = − 1
`−1 ,

1
2 log+ (`ρXγX+λX)2

(`ρXγX+λX+γZ)ξ + `−1
2 log+ λ2

X

(λX+γZ)ξ , ρX ∈ (− 1
`−1 , 1),

1
2 log `γ2

X

(`γX+γZ)d−γXγZ
, ρX = 1,

where

ξ ,


d− dmin, d ≤ min{ (`ρXγX+λX)2

`ρXγX+λX+γZ
,

λ2
X

λX+γZ
}+ dmin,

`(d−dmin)
`−1 − (`ρXγX+λX)2

(`−1)(`ρXγX+λX+γZ) , d > (`ρXγX+λX)2

`ρXγX+λX+γZ
+ dmin,

`(d− dmin)− (`−1)λ2
X

λX+γZ
, d >

λ2
X

λX+γZ
+ dmin.

See Chapter 3.1.

The following result can be deduced from ([20] Theorem 1) (see also [12,16]).

2.4 Lemma 2

For d ∈ (dmin, γX),

r(d) = 1
2 log `ρXγX + λX + γZ + λQ

λQ
+ `− 1

2 log λX + γZ + λQ
λQ

,

where

λQ ,
−b+

√
b2 − 4ac

2a

8
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with

a , `(γX − d),

b , (`ρXγX + λX)(λX + 2γZ) + (`− 1)λX(`ρXγX + λX + 2γZ)− `(`ρXγX + 2λX + 2γZ)d,

c , `(`ρXγX + λX + γZ)(λX + γZ)(dmin − d).

The expressions of r(d) and r(d) as shown in Lemma 1 and Lemma 2 are quite

complicated, rendering it difficult to make analytical comparisons. Fortunately,

they become significantly simplified in the asymptotic regime where `→∞ (with

d fixed). To perform this asymptotic analysis, it is necessary to restrict attention to

the case ρX ∈ [0, 1]; moreover, without loss of generality, we assume d ∈ (d(∞)
min , γX),

where

d
(∞)
min , lim

`→∞
dmin =


λXγZ

λX+γZ
, ρX ∈ [0, 1),

0, ρX = 1.

2.5 Theorem 1 (Centralized encoding)

1. ρX = 0: For d ∈ (d(∞)
min , γX),

r(d) = `

2 log γ2
X

(γX + γZ)d− γXγZ
.

9
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2. ρX ∈ (0, 1]: For d ∈ (d(∞)
min , γX),

r(d) =



`
2 log λ2

X

(λX+γZ)d−λXγZ
+ 1

2 log `+ α +O(1
`
), d < λX ,

1
2 log `+ 1

2 log ρXγX(λX+γZ)
λ2

X
+ γ2

Z

2λ2
X

+O(1
`
), d = λX ,

1
2 log ρXγX

d−λX
+O(1

`
), d > λX ,

where

α ,
1
2 log ρXγX(λX + γZ)

λ2
X

+ γ2
Z

2((λX + γZ)d− λXγZ) .

See Chapter 3.2.

2.6 Theorem 2 (Distributed encoding)

1. ρX = 0: For d ∈ (d(∞)
min , γX),

r(d) = `

2 log γ2
X

(γX + γZ)d− γXγZ
.

2. ρX ∈ (0, 1]: For d ∈ (d(∞)
min , γX),

r(d) =



`
2 log λ2

X

(λX+γZ)d−λXγZ
+ 1

2 log `+ α +O(1
`
), d < λX ,

(λX+γZ)
√
`

2λX
+ 1

4 log `+ 1
2 log ρX

1−ρX
− (λX+γZ)(λX−ρXγZ)

4ρXλ
2
X

+O( 1√
`
), d = λX ,

1
2 log ρXγX

d−λX
+ (λX+γZ)(γX−d)

2ρXγX(d−λX) +O(1
`
), d > λX ,

10
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where

α ,
1
2 log ρXγX(λX − d)

λ2
X

+ (λX + γZ)d2

2(λX − d)((λX + γZ)d− λXγZ) .

See Chapter 3.3.

2.7 Remark 1

One can readily recover ([21] Theorem 3) for the casem = 1 (see [21] for the defini-

tion of parameter m) and Oohama’s celebrated result for the quadratic Gaussian

CEO problem ([4] Corollary 1) by setting γZ = 0 and ρX = 1, respectively, in

Theorem 2.

The following result is a simple corollary of Theorem 1 and Theorem 2.

Corollary 1(Asymptotic gap)

1. ρX = 0: For d ∈ (d(∞)
min , γX),

r(d)− r(d) = 0.

2. ρX ∈ (0, 1]: For d ∈ (d(∞)
min , γX),

lim
`→∞

r(d)− r(d) = ψ(d) ,



1
2 log λX−d

λX+γZ
+ γZ+d

2(λX−d) , d < λX ,

∞, d = λX ,

(λX+γZ)(γX−d)
2ρXγX(d−λX) , d > λX .

11
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2.8 Remark 2

When ρX = 0, we have ψ(d) = γZ(γX−d)
2γXd

, which is a monotonically decreasing

function over (0, γX), converging to ∞ (here we assume γZ > 0) and 0 as d → 0

and γX , respectively. When ρX ∈ (0, 1), it is clear that the function ψ(d) is

monotonically decreasing over (λX , γX), converging to ∞ and 0 as d → λX and

γX , respectively; moreover, since ψ′(d) = γZ+d
2(λX−d)2 > 0 for d ∈ (d(∞)

min , λX), the

function ψ(d) is monotonically increasing over (d(∞)
min , λX), converging to τ(γZ) ,

1
2 log λ2

X

(λX+γZ)2 + 2λXγZ+γ2
Z

2λ2
X

and ∞ as d → d
(∞)
min and λX , respectively. Note that

τ ′(γZ) = 2λXγZ+γ2
Z

λ2
X(λX+γZ) ≥ 0 for γZ ∈ [0,∞); therefore, the minimum value of τ(γZ)

over [0,∞) is 0, which is attained at γZ = 0. See Figures 2.1 and 2.2 for some

graphical illustrations of ψ(d).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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2
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4
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Figure 2.1: Illustration of ψ(d) with γX = 1 and γZ = 0.1 for
different ρX .
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Figure 2.2: Illustration of ψ(d) with γX = 1 and ρX = 0.5 for
different γZ .
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Chapter 3

Proofs

3.1 Proof of Lemma 1

It is known [22] that r(d) is given by the solution to the following optimization

problem:

(P1) min
pX̂|S

I(S; X̂) (3.1)

subject to E[(X − X̂)T (X − X̂)] ≤ `d, (3.2)

X ↔ S ↔ X̂ form a Markov chain. (3.3)

Let X̃ , ΘX, Z̃ , ΘZ, and S̃ , ΘS, where Θ is an arbitrary (real) unitary

matrix with the first row being 1√
`
1`. Since unitary transformations are invert-able

14
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and preserve the Euclidean norm, we can write (P1) equivalently as

(P2) min
pX̂|S̃

I(S̃; X̂)

subject to E[(X̃ − X̂)T (X̃ − X̂)] ≤ `d,

X̃ ↔ S̃ ↔ X̂ form a Markov chain.

For the same reason, we have

`dmin = E[(X̃ − E[X̃|S̃])T (X̃ − E[X̃|S̃])]. (3.4)

Denote the i-th components of X̃, Z̃, and S̃ by X̃i, Z̃i, and S̃i, respectively,

i = 1, · · · , `. Clearly, S̃i = X̃i + Z̃i, i = 1, · · · , `. Moreover, it can be verified that

X̃1, · · · , X̃`, Z̃1, · · · , Z̃` are independent zero-mean Gaussian random variables with

E[(X̃1)2] = `ρXγX + λX , (3.5)

E[(X̃i)2] = λX , i = 2, · · · , `, (3.6)

E[(Z̃1)2] = γZ , i = 1, · · · , `.

Now denote the i-th component of Ŝ , E[X̃|S̃] by Ŝi, i = 1, · · · , `. We have

Ŝi = E[X̃i|S̃i], i = 1, · · · , `,

15
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and

E[(Ŝ1)2] =


0, ρX = − 1

`−1 ,

(`ρXγX+λX)2

`ρXγX+λX+γZ
, ρX ∈ (− 1

`−1 , 1],
(3.7)

E[(Ŝi)2] =


λ2

X

λX+γZ
, ρ ∈ [− 1

`−1 , 1),

0, ρX = 1,
i = 2, · · · , `. (3.8)

Note that

E[(X̃ − Ŝ)T (X̃ − Ŝ)] =
∑̀
i=1

E[(X̃i)2]−
∑̀
i=1

E[(Ŝi)2],

which, together with (3.4)–(3.8), proves

dmin = 1
`
E[(X̃ − Ŝ)T (X̃ − Ŝ)] =



(`−1)γXγZ

`γX+(`−1)γZ
, ρX = − 1

`−1 ,

(`ρXγX+λX)γZ

`(`ρXγX+λX+γZ) + (`−1)λXγZ

`(λX+γZ) , ρX ∈ (− 1
`−1 , 1),

γXγZ

`γX+γZ
, ρX = 1.

Clearly, Ŝ is determined by S̃; moreover, for any `-dimensional random vector X̂

jointly distributed with (X̃, S̃) such that X̃ ↔ S̃ ↔ X̂ form a Markov chain, we

have

E[(X̃ − X̂)T (X̃ − X̂)] = E[(Ŝ − X̂)T (Ŝ − X̂)2] + E[(X̃ − Ŝ)T (X̃ − Ŝ)2]

= E[(Ŝ − X̂)T (Ŝ − X̂)2] + `dmin.

16
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Therefore, (P2) is equivalent to

(P3) min
pX̂|Ŝ

I(Ŝ; X̂)

subject to E[(Ŝ − X̂)T (Ŝ − X̂)] ≤ `(d− dmin).

One can readily complete the proof of Lemma 1 by recognizing that the solution to

(P3) is given by the well-known reverse water-filling formula ([23] Theorem 13.3.3).

3.2 Proof of Theorem 1

Setting ρX = 0 in Lemma 1 gives

r(d) = `

2 log γ2
X

(γX + γZ)d− γXγZ

for d ∈ ( γXγZ

γX+γZ
, γX). Setting ρX = 1 in Lemma 1 gives

r(d) = 1
2 log `2γ2

X

`(`γX + γZ)d− γXγZ

for d ∈ ( γXγZ

`γX+γZ
, γX); moreover, we have

1
2 log `2γ2

X

`(`γX + γZ)d− γXγZ
= 1

2 log γX
d

+O(1
`

),

and γXγZ

`γX+γZ
→ 0 as `→∞.
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It remains to treat the case ρX ∈ (0, 1). In this case, it can be deduced from

Lemma 1 that

r(d) =


1
2 log (`ρXγX+λX)2(λX+γZ)

λ2
X(`ρXγX+λX+γZ) + `

2 log λ2
X

(λX+γZ)(d−dmin) , d ∈ (dmin,
λ2

X

λX+γZ
+ dmin],

1
2 log (`ρXγX+λX)2(λX+γZ)

(`ρXγX+λX+γZ)(`(λX+γZ)(d−dmin)−(`−1)λ2
X) , d ∈ ( λ2

X

λX+γZ
+ dmin, γX),

and we have

dmin = (`ρXγX + λX)γZ
`(`ρXγX + λX + γZ) + (`− 1)λXγZ

`(λX + γZ)

= λXγZ
λX + γZ

+ ρXγXγ
2
Z

(`ρXγX + λX + γZ)(λX + γZ) (3.9)

= λXγZ
λX + γZ

+ γ2
Z

(λX + γZ)` +O( 1
`2 ). (3.10)

Consider the following two subcases separately.

• d ∈ ( λXγZ

λX+γZ
, λX ]

It can be seen from (3.9) that dmin is a monotonically decreasing function of

` and converges to λXγZ

λX+γZ
as `→∞. Therefore, we have d ∈ (dmin,

λ2
X

λX+γZ
+

dmin] and consequently

r(d) = 1
2 log (`ρXγX + λX)2(λX + γZ)

λ2
X(`ρXγX + λX + γZ) + `

2 log λ2
X

(λX + γZ)(d− dmin) , (3.11)

when ` is sufficiently large. Note that

1
2 log (`ρXγX + λX)2

`ρXγX + λX + γZ
= 1

2 log `+ 1
2 log(ρXγX) +O(1

`
) (3.12)
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and

1
2 log(d− dmin) = 1

2 log
(
d− λXγZ

λX + γZ
− γ2

Z

(λX + γZ)` −O( 1
`2 )
)

(3.13)

= 1
2 log (λX + γZ)d− λXγZ

λX + γZ
− γ2

Z

2((λX + γZ)d− λXγZ)` +O( 1
`2 ),

(3.14)

where (3.13) is due to (3.10). Substituting (3.12) and (3.14) into (3.11) gives

r(d) = `

2 log λ2
X

(λX + γZ)d− λXγZ
+ 1

2 log `+ 1
2 log ρXγX(λX + γZ)

λ2
X

+ γ2
Z

2((λX + γZ)d− λXγZ) +O(1
`

).

In particular, we have

r(λX) = 1
2 log `+ 1

2 log ρXγX(λX + γZ)
λ2
X

+ γ2
Z

2λ2
X

+O(1
`

).

• d ∈ (λX , γX)

Since dmin converges to λXγZ

λX+γZ
as `→∞, it follows that d ∈ ( λ2

X

λX+γZ
+dmin, γX)

and consequently

r(d) = 1
2 log (`ρXγX + λX)2(λX + γZ)

(`ρXγX + λX + γZ)(`(λX + γZ)(d− dmin)− (`− 1)λ2
X) (3.15)
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when ` is sufficiently large. One can readily verify that

1
2 log (`ρXγX + λX)2

(`ρXγX + λX + γZ)(`(λX + γZ)(d− dmin)− (`− 1)λ2
X)

= 1
2 log ρXγX

(λX + γZ)(d− λX) +O(1
`

). (3.16)

Substituting (3.16) into (3.15) gives

r(d) = 1
2 log ρXγX

d− λX
+O(1

`
).

This completes the proof of Theorem 1.

3.3 Proof of Theorem 2

One can readily prove part one of Theorem 2 by setting ρX = 0 in Lemma 2. So

only part two of Theorem 2 remains to be proved. Note that

b = g1`
2 + g2`,

c = h1`
2 + h2`,
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where

g1 , ρXγX(λX − d),

g2 , λ2
X + 2γXγZ − 2(λX + γZ)d,

h1 , ρXγX(λX + γZ)(d(∞)
min − d),

h2 , ρXγXγ
2
Z + λXγZ(λX + γZ)− (λX + γZ)2d.

We shall consider the following three cases separately.

• d < λX

In this case g1 > 0 and consequently

λQ =
−b+ b

√
1− 4ac

b2

2a (3.17)

when ` is sufficiently large. Note that

√
1− 4ac

b2 = 1− 2ac
b2 −

2a2c2

b4 +O( 1
`3 ). (3.18)

Substituting (3.18) into (3.17) gives

λQ = −c
b
− ac2

b3 +O( 1
`2 ). (3.19)
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It is easy to show that

− c

b
= −h1

g1
− g1h2 − g2h1

g2
1`

+O( 1
`2 ), (3.20)

− ac2

b3 = −(γX − d)h2
1

g3
1`

+O( 1
`2 ). (3.21)

Combining (3.19), (3.20) and (3.21) yields

λQ = η1 + η2

`
+O( 1

`2 ),

where

η1 , −h1

g1
,

η2 , −g
2
1h2 − g1g2h1 + (γX − d)h2

1
g3

1
.

Moreover, it can be verified via algebraic manipulations that

η1 = (λX + γZ)d− λXγZ
λX − d

,

η2 = − λ2
Xd

2

(λX − d)3 .

Now we write r(d) equivalently as

r(d) = 1
2 log `ρXγX + λX + γZ + λQ

λX + γZ + λQ
+ `

2 log λX + γZ + λQ
λQ

. (3.22)
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Note that

1
2 log `ρXγX + λX + γZ + λQ

λX + γZ + λQ
= 1

2 log `+ 1
2 log ρXγX

λX + γZ + η1
+O(1

`
)

= 1
2 log `+ 1

2 log ρXγX(λX − d)
λ2
X

+O(1
`

)

(3.23)

and

1
2 log λX + γZ + λQ

λQ

= 1
2 log λX + γZ + η1

η1
− (λX + γZ)η2

2(λX + γZ + η1)η1`
+O( 1

`2 )

= 1
2 log λ2

X

(λX + γZ)d− λXγZ
+ (λX + γZ)d2

2(λX − d)((λX + γX)d− λXγZ)` +O( 1
`2 ).

(3.24)

Substituting (3.23) and (3.24) into (3.22) gives

r(d) = `

2 log λ2
X

(λX + γZ)d− λXγZ
+ 1

2 log `+ 1
2 log ρXγX(λX − d)

λ2
X

+ (λX + γZ)d2

2(λX − d)((λX + γX)d− λXγZ) +O(1
`

).

• d = λX

In this case g1 = 0 and consequently

λQ =
−g2 +

√
g2

2 − 4(γX − λX)(h1`+ h2)
2(γX − λX) . (3.25)
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Note that

√
g2

2 − 4(γX − λX)(h1`+ h2) =
√
−4(γX − λX)h1`+O( 1√

`
). (3.26)

Substituting (3.26) into (3.25) gives

λQ = µ1
√
`+ µ2 +O( 1√

`
),

where

µ1 ,

√
− h1

γX − λX
,

µ2 , − g2

2(γX − λX) .

Moreover, it can be verified via algebraic manipulations that

µ1 = λX ,

µ2 = (1− ρX)2γX − 2ρXγZ
2ρX

.

Now we proceed to derive an asymptotic expression of r(d). Note that

1
2 log `ρXγX + λX + γZ + λQ

λX + γZ + λQ
= 1

4 log `+ 1
2 log ρXγX

µ1
+O( 1√

`
)

= 1
4 log `+ 1

2 log ρX
1− ρX

+O( 1√
`
) (3.27)
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and

1
2 log λX + γZ + λQ

λQ
= λX + γZ

2λQ
− (λX + γZ)2

4λ2
Q

+O( 1
`

3
2

)

= λX + γZ

2µ1
√
`
− (λX + γZ)(λX + γZ + 2µ2)

4µ2
1`

+O( 1
`

3
2

)

= λX + γZ

2λX
√
`
− (λX + γZ)(λX − ρXγZ)

4ρXλ2
X`

+O( 1
`

3
2

). (3.28)

Substituting (3.27) and (3.28) into (3.22) gives

r(λX) = (λX + γZ)
√
`

2λX
+ 1

4 log `+ 1
2 log ρX

1− ρX
− (λX + γZ)(λX − ρXγZ)

4ρXλ2
X

+O( 1√
`
).

• d > λX

In this case g1 < 0 and consequently

λQ =
−b− b

√
1− 4ac

b2

2a (3.29)

when ` is sufficiently large. Note that

√
1− 4ac

b2 = 1 +O(1
`

). (3.30)

Substituting (3.30) into (3.29) gives

λQ = − b
a

+O(1). (3.31)
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It is easy to show that

− b
a

= ρXγX(d− λX)`
γX − d

+O(1). (3.32)

Combining (3.31) and (3.32) yields

λQ = ρXγX(d− λX)`
γX − d

+O(1).

Now we proceed to derive an asymptotic expression of r(d). Note that

1
2 log `ρXγX + λX + γZ + λQ

λX + γZ + λQ
= 1

2 log ρXγX
d− λX

+O(1
`

) (3.33)

and

1
2 log λX + γZ + λQ

λQ
= λX + γZ

2λQ
+O( 1

`2 )

= (λX + γZ)(γX − d)
2ρXγX(d− λX)` +O( 1

`2 ). (3.34)

Substituting (3.33) and (3.34) into (3.22) gives

r(d) = 1
2 log ρXγX

d− λX
+ (λX + γZ)(γX − d)

2ρXγX(d− λX) +O(1
`

).

This completes the proof of Theorem 2.
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Chapter 4

Conclusion

We have learned the problem of symmetric remote Gaussian source coding and

made a systematic analysis, with asymptotic rate-distortion, for centralized en-

coding and distributed encoding. We can extend our work by considering the

more general source and noise models in future.
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