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Abstract 


Speech enhancement in multi-speaker babble remains an enormous challenge. In this 

study, we developed a binaural speech enhancement system to extract information 

pertaining to a target speech signal embedded in a noisy background for use in future 

hearing-aid systems. The principle underlying the proposed system is to simulate the 

perceptual auditory segregation process carried out in the normal human auditory 

system. Based on the spatial location, pitch and onset cues, the system can identify 

and enhance those time-frequency regions which constitute the target speech. 

The proposed system is capable of dealing with a wide variety of noise intru­

sions, including competing speech signals and multi-speaker babble. It also works 

under mild reverberation conditions. Systematic evaluation shows that the system 

achieves substantial improvement on the intelligibility of target signal, while it largely 

suppresses the unwanted background signal. 
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Chapter 1 

Introduction 

1.1 Motivation 

1.1.1 Hearing Loss 

Hearing loss is one of the most prevalent chronic health conditions, affecting about 

500 million people world-wide. According to many surveys, one out of ten people 

suffers from hearing loss and would benefit from using hearing aids (Hear-it 2004). 

The most common type of hearing impairment is sensorineural hearing loss, which 

is typically associated with a dysfunction of the cochlea. People with this kind of 

hearing loss not only suffer from an increased hearing threshold but also from the 

reduction of speech intelligibility in noisy environments, which is mainly caused by 

the loss of temporal and spectral resolution in the processing of the impaired auditory 

system. To achieve the same intelligibility in a noisy listening condition, hearing­

impaired people require an approximate 5-10 dB higher signal-to-noise ratio (SNR) 

than people with normal hearing (Moore 2003). 

1.1.2 Noise Reduction for Hearing Aid Applications 

Conventional hearing aids include an amplification stage to compensate for the 

lifted hearing threshold and optional dynamic compression to compensate for a re­
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duced dynamic range in one or more frequency channels. They provide almost com­

plete restoration of speech intelligibility in quiet conditions to the level of normal 

hearing, but they are not able to restore speech intelligibility in noise (Marzinzik and 

Kollmeier 1999). It is one of the most common complaints made by hearing-aid users 

that speech in noise is particularly difficult to understand. This can be explained 

by the fact that the hearing aids currently in use amplify noise as well as speech 

and thus do not compensate for any kind of distortion process due to hearing loss. 

Advanced signal processing techniques for noise reduction can increase the SNR and 

thereby increase the speech intelligibility, lowering the listening effort and improving 

the perceived quality of the acoustic environment. Because of the particular damag­

ing effects of background noise on speech intelligibility for people with hearing loss, it 

is of critical importance to integrate efficient noise reduction techniques into digital 

hearing aids. 

So far, many single-microphone as well as multi-microphone noise reduction algo­

rithms have been proposed in the literature for the application of hearing aid products. 

In the last decades, the majority of noise reduction systems proposed for hearing 

aids have been algorithms for single-microphone input based on spectral subtraction 

(Ghoreishi and Sheikhzadeh 2000, Wolfe and Godsill 2000). With spectral subtrac­

tion, the power spectral density of the clean speech signal is estimated by subtracting 

the estimated power spectral density of the noise signal from the power spectral den­

sity of the corrupted signal. However, single-microphone noise reduction techniques 

can only differentiate between signals that have different temporal and spectral char­

acteristics. It works well when noise signal is reasonably stationary (e.g., white noise). 

However, for most of the everyday noises, the frequency spectrum is identical to the 

spectrum of speech, which makes it difficult for single-channel noise reduction schemes 
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to effectively eliminate the noise without reducing speech intelligibility at the same 

time. 

To overcome the limitations of spectral subtraction, spatial information can be 

exploited by use of microphone arrays combined with a beamforming processing al­

gorithm. This technique aims to preserve a target arriving from a known direction 

while minimizing jammers, which are independent of the target and emitted from 

other directions (see an overview by Zurek et al. 1999). Multi-microphone arrays are 

reported to produce considerable directivity, but large microphone arrays are gen­

erally required to achieve a good performance. The physical size and the required 

additional head-worn devices make such an application, as everyday-life hearing aids, 

very difficult. 

As an alternative, recently developed blind source separation (BSS) algorithms can 

drastically reduce the number of microphones (Bell and Sejnowski 1995, Parra and 

Spence 2000). BSS relies on the availability of several differing source mixtures and 

attempts to invert the mixing process in order to recover each individual stream. But 

the application of BSS is limited by its relatively strict assumptions on the properties 

of the sources, such as, statistically independent, linear non-singular mixing, known 

and fixed number of sources, etc. 

All these enhancement techniques have difficulty in dealing with the unpredictable 

nature of general environments such as a "cocktail-party" environment, where a target 

sound is mixed with a number of acoustic interferences. The interferences could be 

competing speech sounds or a variety of nonstationary noises. It remains a challenge 

for a machine (i.e. hearing aid) to extract the desired sound from a multi-source 

acoustic environment. In contrast, human beings can communicate effectively by 

sounds in noisy and reverberant environments. This ability stems from the remarkable 

capacity of human auditory system to separate the sound source of interest from 
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the complex, composite signal that is received at the ears. This process is called 

sound stream segregation. We believe that by modelling the neural computational 

mechanisms involved in sound stream segregation, we will be able to produce a more 

flexible and more stable speech enhancement algorithm. The model must be built on 

our understanding of the sound stream segregation carried out by the human auditory 

system. In the next section, we will briefly introduce the auditory foundation of this 

process. 

1.1.3 Auditory Scene Analysis 

One way of explaining auditory sound segregation is to consider the auditory en­

vironment as a complex scene containing multiple objects and to hypothesize that the 

normal auditory system is capable of grouping these objects into separate perceptual 

streams based on distinctive perceptual cues. The process is often called "auditory 

scene analysis" . A great variety of research relating to auditory scene analysis has 

been reviewed by Bregman (1990). It can be summarized as follows. 

The peripheral auditory system acts as a frequency analyzer, separating the differ­

ent frequency components in a complex sound. Somewhere in the brain, the internal 

representations of these frequency components have to be assigned to their appro­

priate sources. If the input comes from two sources, A and B, then the frequency 

components must be split into two groups; the components emanating from source A 

should be assigned to one stream and components emanating from source B should 

be assigned to another. 

The formation and segregation of auditory objects are governed by Gestalt group­

ing principles of perceptual organization (Bregman 1990): 
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1. 	 Proximity: Elements are more likely to be grouped into a single perceptual 

stream, if they are in close proximity of time and frequency. 

2. 	 Similarity: Elements tend to be grouped together, if they are similar in terms 

of the intensity, pitch, source localization and other properties of grouping cues. 

3. 	 Continuity: We should take into account the fact that natural speech articula­

tion is a continuous process. Speech signals of a single stream tend to appear 

smoothly and continuously evolving properties in intensity, pitch, location and 

other perceptual cues. Any abrupt change along time or frequency indicates 

segregation. 

4. 	 Closure: The percept of streams can be completed even when some parts are 

actually missing. For example, when the sound from one source is masked 

by another sound, it still can be perceived as a continuous stream, if there is 

evidence showing the continuity surrounding the masked segment. The masked 

partials are filled out according to the continuity principle. 

5. 	 Common fate: Elements tend to be grouped if they undergo coherent variation 

along time or frequency, e.g., having the same timing event or modulated at 

the same rate. On the other hand, both onset asynchrony and difference in the 

pattern of modulation (AM or FM) lead to segregation. 

Bregman distinguishes two types of mechanism that can be used to determine 

which components belong to a particular source: Primitive grouping mechanism 

(bottom-up) partitioning of the input on the basis of simple perceptual cues, whereas 

schema governed mechanisms (top-down) can exploit prior knowledge with the source 

and patterns of language to recover the masked or distorted signal. The attraction 

of primitive mechanism is that it can exploit the general properties of sound sources 
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without knowing what is going to be heard. Its context-independent nature makes 

this kind of mechanism particularly very straightforward, hence well suited to be 

implemented in a machine. 

Over the last decade, several researchers have attempted to build computational 

frameworks that perform auditory scene analysis; the resulting field has been called 

computational auditory scene analysis (Rosenthal and Okuno 1998). Typically, these 

computational auditory scene analysis models involve implementation of some small 

subset of the strategies suggested by Bregman, often in a manner functionally con­

sistent with the early stages of human auditory periphery (as they are currently 

understood). 

1.2 Purpose of The Study 

The objective of this work is to develop an adaptive hearing system that extracts 

a target voice of interest from other interferences. The system is primarily targeted 

for application in hearing aids with two microphones. As the front-end processor for 

hearing aids, it helps make up for the perceptual grouping process missing from the 

auditory system of hearing-impaired person. 

As a hearing system for practical application, we aim to design a system which 

is capable of solving the following three challenges: 1. It must be effective over 

a wide variety of conditions of interference. For example the interference may be 

one competing voice, or multiple competing voices; it may be environment noise 

or a mixture of noise and competing voices under normal reverberation conditions. 

Usually such a condition is unknown in advance. 2. The total processing time of 

the algorithm must be very short to avoid the perception of asynchronies between 

processed sound and bone-conducted sound when monitoring one's own speech, or 
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between vision and hearing when monitoring the speech of another talker. 3. It must 

be computationally efficient and ultimately suitable to be implemented on a digital 

signal processing (DSP) chip for real-time processing. 

1.3 Approach 

When the input to the system consists of a signal embedded in a complex back­

ground of interesting sounds, we can make the reasonable assumption that the spec­

trum of the foreground and background sounds are different, in which case, some of 

our channels will be dominated by the foreground and some by the background sound 

source. If we can determine which channels are dominated by the target sound source, 

we may seek to enhance our signal-to-noise ratio by selecting (or merely emphasizing) 

those channels which are dominated by the target signal (foreground sounds source). 

Conversely, we may attenuate the output of those channels that are dominated by 

the background (non-target sound source). 

In a "cocktail party" environment, people can selectively focus on a primary 

stream at a time. Consequently, the acoustic properties of the attended speech stream 

will be enhanced and appear to be more prominent than the background. By con­

trast, a computational system must rely on some prior knowledge about the target 

stream in order to distinguish the target stream from the background. Since the hear­

ing aid user can flexibly steer his/her head to the desired source direction (actually, 

even normal hearing people need to take advantage of directional hearing in a noisy 

listening environment), it is reasonable to assume that the desired signal comes from 

the frontal centre direction, while the interference comes from off-centre. To ensure 

that the extracted target signal is intelligible, we also assume the interference will be 

lower in energy than target over a significant portion of the time-frequency plane. 
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The architecture of the system, illustrated in Figure 1.1, is psychophysically moti­

vated by the primitive segregation mechanism used in human auditory scene analysis. 

Specifically, the model performs bottom-up segregation of an incoming signal as fol­

lows: 

1. 	The function of the cochlea is approximated to generate a time-frequency rep­

resentation of the incoming signal. The output from the cochlear filterbank is 

processed by a simple model of the inner hair cells, which simulates the nonlin­

ear neural transduction in inner hair cells. 

2. 	 For each elementary time-frequency unit, a set of perceptual cues is extracted to 

reveal its particular acoustic properties. The cues used in the current model are 

interaural intensity difference (liD), interaural time difference (lTD), onset and 

pitch (FO). The multiple cue extractions are preformed in a parallel fashion. 

3. 	 Information from multiple cues are integrated and time-frequency units that 

correspond to coherent auditory objects are grouped by exploiting the corre­

lation of the cues. Knowing the direction of the target signal of interest, the 

target auditory objects can be identified and enhanced. The other elements 

belonging to interference stream are suppressed. 

4. 	 Once a time-frequency representation of the target sound is obtained, it can be 

inverted in order to reconstruct a time waveform for the enhanced target. 

1.4 Thesis Organization 

Chapter 1 starts with an introduction of the motivation and objectives driving 

the current research, then presents an overview of the proposed model along with a 

summary of the component parts. 
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The second part of the thesis, consisting of Chapters 2 to 4, presents the individual 

sections of the model. In Chapter 2, implementation of the auditory peripheral model, 

including the cochlear filterbank and the inner hair cell model, is described in detail. 

For the purpose of real-time resynthesis at the end of processing, we also present a low­

delay filter bank inversion method in this chapter. Chapter 3 discusses the property 

and estimation algorithm for each auditory perceptual cue. Chapter 4 describes the 

strategy to combine the evidence from different kinds of cues and make a grouping 

decision. 

Chapter 5 presents evaluation results of the system. Finally, Chapter 6 summa­

rizes the conclusions of the current work and provides some suggestions for future 

research. 

9 
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T argetVoice Interference Interference 

-- ·~~ --· 

Microphone L 

Cochlear f lltemank 

liD estimation 

Segregated 
T arget V oi oe 

Microphone R 
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Segregated 
Target Voice 

(Left Channel) (Right Channel) 

Figure 1.1: Block diagram of the system. 
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Chapter 2 

Auditory Periphery Model and Its 

Inversion 

Sounds from several sources arrive at the ear as a complex mixture. They are 

largely overlapping in the time domain. In order to organize sounds into their inde­

pendent sources, it is often more meaningful to transform the signal from the time 

domain to an internal time-frequency representation. The time-frequency analysis 

at the first stage of our system is auditory-motivated, which mimics the frequency 

selectivity of the human cochlea. Specifically, the input signal is passed through a 

bank of bandpass filters, each of which simulates the frequency response associated 

with a particular position on the basilar membrane. The output from the cochlear 

filterbank is processed by a simple model of the inner hair cell, which simulates the 

nonlinear neural transduction in the inner hair cell. The implementation details of 

the cochlear and inner hair cell model will be given in Section 2.1. The auditory 

periphery model will introduce a phase lag into the output signal. In addition, this 

phase lag is frequency-dependent. To give a synchronous representation of auditory 

event, an explicit phase alignment is required to compensate for the phase lag, which 

will be described in Section 2.2. At the end of processing, the enhanced sound need to 

be resynthesized from its time-frequency representation. In Section 2.3, we describe 

a low-delay filterbank inversion method to facilitate real-time reconstruction. 
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2.1 Auditory Periphery Model 

2.1.1 	Cochlear Filterbank 

The frequency decomposition performed by the cochlea is simulated using a bank 

of Gammatone filters (Slaney 1993). The impulse response of a Gammatone auditory 

filter is 

(2.1) 

where a, b are constants, </> is a phase shift, n = 4 is order of the filter, fc is the centre 

frequency, and ERB(fc) is the equivalent rectangular bandwidth (ERB) correspond­

ing to its centre frequency. ERB is determined by the bandwidth of the human 

auditory filter at different characteristic frequencies along the cochlea. In our imple­

mentation, the ERB value at the centre frequency fc follows the following formula 

(Slaney 1993) 

ERB(fc) = 24.7 + /c/9.26 	 (2.2) 

In the human auditory system, there are around 3000 inner hair cells along the 35mm 

length of the cochlea. Each hair cell could resonate to a certain frequency within a 

suitable critical bandwidth. This means that there are approximately 3000 bandpass 

filters in the human auditory system. This resolution of filters can not be implemented 

practically using computational modelling techniques. However, we can approximate 

this density of channels. It can be achieved by specifying the number of filters and a 

certain frequency range to be covered. Centre frequencies of filters are spaced so that 

each filter overlaps its neighbors by the same amount. The summation of all filter 

frequ~ncy responses would result in a flat magnitude across frequency. Logarithmic 
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spacing was used for computational convenience. The Equation 2.2 can then be solved 

to find the proper centre frequency spacing. 

The particular implementation of Gammatone filters is based on the work of 

Slaney (1993). It is simply a cascade of four second-order IIR filters. Equation 

2.3 gives the form of each second-order IIR filter, whose structure is illustrated in 

Figure 2.1. 

(2 .3) 

Figure 2.1: Structure of a second-order IIR filter in the implementation of Gammatone 
filter. 

The sampling rate of the original sounds specific for this implementation was fixed at 

16 kHz, thus the Nyquist frequency for these filters is at 8 kHz. There are 32 filters 

used starting from 100 Hz to the highest centre frequency at 7596 Hz , just below the 

Nyquist frequency. The composite frequency response of the Gammatone filterbank 

is show in Figure 2.2. 

Generally, having a greater number of frequency bands leads to better frequency 

resolution. In Chapter 5, we will evaluate the effect of increasing the number of 

frequency bands. 

Note that Gammatone filter provides a linear and impulse-invariant transform. 

Although it does not exactly reflect the nonlinear, dynamic function of the cochlea, it 
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10° 
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Figure 2.2: Magnitude of frequency responses of a 32-channel Gammatone filterbank. 

has the advantage of simple structure and efficient computation. In addition, linearity 

of analysis filterbank is a very important property to make the inversion (resynthesis) 

possible at the end of processing. 

)
2.1.2 Inner Hair Cell Transduction Model 

The signal at the output of the Gammatone filterbank is half-wave rectified and 

low-pass filtered at 1 kHz. This processing roughly simulates the transduction in the 

inner hair cells. Basically, the inner hair cell model performs envelope extraction in 

the high-frequency band, while passing the signals in the low-frequency band. 

As an example, Figure 2.3 shows the output of cochlear filterbank and inner hair 

cell model in response to an impulse train of repetition rate 200/ s. This stimulus has 

a fundamental frequency of 200 Hz and contains all the harmonics in the series. At 

the output of the low-frequency Gammatone filters, because the resolution of filters 

is sufficient to separate the harmonics, the output of each individual filter is approx­
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Figure 2.3: Time responses of Gammatone filters and inner hair cell model to an 
impulse train of repetition rate 200/ s. 

imately a sinusoidal waveform. These harmonics are so called "resolved harmonics". 

As the bandwidth of the filters becomes broader at the higher frequencies, several 

adjacent harmonics will pass through the same filter, called "unresolved harmonics". 

The output in this kind of frequency channel is not simply a sinusoid. Beating be­

tween the adjacent harmonics will cause an amplitude-modulated filter output. The 

modulation frequency corresponds to the fundamental frequency. Then through the 

inner hair cell model, the low-pass filtering essentially preserves the envelope of the 

signal at those high-frequency channels. 
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2.2 Phase Alignment 

From Figure 2.3, we can see there is a strong rightward skew at the output of 

an auditory peripheral filter. This can be interpreted as a wave that starts at the 

high-frequency side of cochlea and travels down to the low-frequency side with a finite 

propagation speed. The low-frequency side shows a 10 ms or even longer phase lag 

compared to the high-frequency side. Information carrying by natural speech signals 

are non-stationary, especially during the rapid transition (e.g., onset). A form of phase 

alignment is thus required to compensate for the phase difference and thereby align the 

frequency channel responses to give a synchronous representation of auditory events. 

Normally, this is done by time-shifting the response with the value of a local phase 

lag, so that the impulse responses of all the frequency channels reflect the moment 

of maximal excitation at approximately the same time. This approach entails that 

the response of high-frequency channels at time t is lined up with the response of 

low-frequency channels at t + 10 ms or even later. A real-time system for hearing aid 

applications obviously cannot afford such a long delay. In our implementation, each 

channel is only advanced by one cycle of its centre frequency. Given the lowest centre 

frequency 100Hz, the maximum phase lag compensation is 10 ms. With this phase 

compensation scheme, the onset timing is nearly aligned across frequencies. 

The low-pass filter of the inner hair cell model produces an additional 2 ms group 

delay in the auditory peripheral response. Unlike the phase lag in the cochlear filter­

bank, this delay is constant across frequency channels, and hence it does not cause 

asynchrony across frequencies. Still we cannot ignore this group delay in resynthesis. 
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2.3 Resynthesis 

In the auditory peripheral model, frequency decomposition is applied on the in­

coming sound signal. Subsequent grouping and segregation will be performed on the 

time-frequency plane. As a result, a group of sound elements will be assigned to the 

target stream. Due to the fundamental requirement of hearing-aid application, at the 

end of processing the desired waveform must be reconstructed and conducted to the 

ears. 

Because of the linearity of Gammatone filters, the cochlear filterbank used in our 

system is completely invertible. Hair cell model inversion is hard due to its nonlinear 

nature. Though the perceptual cue will be estimated from the output of inner hair 

cell model, segregation is intended to be performed on the output of cochlear model 

so that the enhanced waveform can be faithfully recovered. In this section, a scheme 

of low-delay cochlear filter bank resynthesis is described for our particular application. 

The framework of Gammatone analysis/synthesis filterbank is illustrated in Figure 

2.4. 

Analysis Filter 1 
H 1(z) 

Y1 (t) Synthesis Filter 1 
G,(z) 

Analysis Filter 2 1------o!Synthesis Filter 2 
H2(z) G2(z) 

Analysis Filter K 1-----o!Synthesis Filter K 
HK(z) GK(z) 

Figure 2.4: Gammatone filterbank analysis/resynthesis. 
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Let K be the number of channels in auditory peripheral model, and Hk(z), k = 

1, 2, ... , K, be the transfer function of the individual analysis filter. Equation 2.4 gives 

an ideal choice for the transfer function of synthesis filter: 

(2.4) 


Using this definition, the overall analysis/synthesis system approximates an all pass 

filter. The synthesis filterbank produces an exact reconstruction of the original input 

signal x(t). Since Gammatone filters are distributed on the ERB scale, summation of 

the transfer functions across all the frequency channels is approximately a constant: 

K K

L Hk(z)HZ(z) = L !Hk(z)!2 ~ c (2.5) 
k=l k=l 

The constant c is a value dependent on the number of frequency bands. The estimated 

relationship is listed in Table 2.1. 

Table 2.1: Scaling factor c in resynthesis 
Number of frequency bands K Scaling factor c 

32 
64 
128 

0.96 
0.472 
0.236 

Therefore, in the time domain the impulse response of the synthesis filter is equiv­

alent to the time-reversed impulse response of its corresponding analysis filter. By 

noting that Hk(z) is implemented as an IIR filter and HZ(z) is equal to Hk(~), Gk(z) 

must be noncausal and unstable filter. Hence, a direct implementation of this solu­

tion is not practical. An alternative approach (Lin, Holmes, and Ambikairajah 2001) 

is to make the synthesis filters exactly the same as the IIR analysis filters, while 

time reversing both the input signal of each synthesis filter Yk (t) and the output x(t) 

to achieve a linear phase response. Due to the causality of Gammatone filter, the 
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output :i: at time t depends on the future values of the input signal Yk(t). Thanks 

to the limited effective duration of impulse response of Gammatone filter, for real­

time application, this time reversal process can be implemented in a frame-by-frame 

fashion as illustrated in Figure 2.5. In the following, we summarize the synthesis 

implementation algorithm developed for our system: 

Frame] 1 

Framej+1 

Frame) 1 

y,(t) 

Framej+1 

Frame)l I 
Frame j+1 I 

Y2(t) 

YK(t) 

Figure 2.5: Resynthesis. 

1. 	 The input signal Yk (t) of each synthesis filter is decomposed into a sequence of 

frames. The choices of window size and the frame rate will be discussed later. 

2. 	 For each channel, the data of j-th frame is time reversed. 

3. 	 The reversed signal is filtered through the Gammatone synthesis filter, whose 

transfer function is exactly the same as in the analysis filter. 

4. 	 The output signals are summed up across the channels and then time reversed 

to produce one frame estimate of :i:(t). 

5. 	 Given a long enough window size, the beginning segment (black colored in 

Figure 2.5) of the output :i: (t) is concatenated with the same segment from the 
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previous frame to form the final reconstructed signal. The second segment of 

output data represented in grey color is discarded without enough future data 

available to give an accurate estimation. 

6. Repeat step 2 to continue processing of the next frame. 

Given a fixed window size, increasing frame rate leads to better reconstruction 

and a lower average delay. However it also increases the computational load of the 

system. In this implementation, the frame rate is chosen as 1000 frames/s. 

The window length plays a very important role in the performance of resynthesis. 

The signal-to-noise (SNR) is one of the most simple and common objective measures 

for evaluating the accuracy of reconstruction. This is given by 

(2.6) 


where x(t) is the original signal and x(t) is the reconstructed signal. The SNR in 

terms of window size is plotted in Figure 2.6. With a window length longer than 15 

ms, the distortion is perceptually inaudible. For a window length less than 15 ms, 

the reconstruction accuracy is highly sensitive to the window length. This can be 

explained by examining the impulse response of the Gammatone filter. Within the 

low frequency range, most of the impulse responses last up to 15 ms. If the window 

length is reduced to be less than 15 ms, the accuracy of reconstruction is degraded. 

On the other hand, the maximum delay of this algorithm is directly determined by 

the window length. Therefore, the choice of window length is a trade off between 

reconstruction distortion and algorithm delay. In order to preserve the reconstructed 

speech quality, a window length of 15 ms is adopted in the current implementation. 

An example of a resynthesized signal is displayed in Figure 2.7. The distortion is 

defined as the difference between the original signal x(t) and the reconstructed signal 
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Figure 2.6: Reconstruction accuracy in t erms of synthesis window size. 

i(t). In this particular case, an SNR of 20.11 dB is achieved. Informal listening 

test shows that the reconstructed signal is perceptually indistinguishable from the 

original. 
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Figure 2.7: Comparison of reconstruction result. 
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Chapter 3 

Acoustic Cues Selection and Extraction 

Many different sorts of acoustic cues may be used to derive separate perceptual 

streams corresponding to the individual sources. This chapter concentrates on those 

cues used in our model to achieve perceptual segregation and grouping. These are 

pitch, onset, and binaural spatial cues. For each cue, we will first explain why listeners 

can use this cue in auditory grouping from the psychoacoustic perspective. Then we 

will review the existing computational models to extract the cue and describe the 

specific extraction mechanism employed in our system. After that, we will verify the 

extraction algorithm both on clean and noisy signals. In the last section, we will 

further discuss the effects of reverberation on each of these cues. 

3.1 Pitch and Harmonic Relationship 

3.1.1 Psychoacoustic Evidence 

Pitch is the perceptual attribute related to the periodicity of a sound waveform. 

For a periodic complex sound, pitch is the fundamental frequency ( F0 ) of a harmonic 

signal. 

The common fundamental period across frequencies provides a basis for associat­

ing speech components originating from the same larynx and vocal tract (Bregman 

1990; Langer 1992; Meddis and Hewitt 1992). Compatible with this idea, psycholog­
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ical experiments have revealed that components that are harmonics of a common Fo 

tend to fuse together. Periodicity cues in voiced speech contribute to noise robust­

ness via auditory grouping processes. When pairs of synthesized vowels are presented 

simultaneously, listeners are able to identify them more accurately if they are synthe­

sized with different F0 s, compared to the cases where 

1. both have the same fundamental (Assmann and Summerfield 1994) 

2. one is voiced and the other is noise-excited (Scheffers 1983) 

3. both are noise-excited (Scheffers 1983) 

Similarly, Bird and Darwin (1997), and Assmann (1999) have shown that synthesized 

target sentences are easier to understand in the presence of a continuous speech masker 

if targets and maskers are synthesized with different F0s than with the same Fo. 

3.1.2 Existing Models of Pitch Extraction 

Robust pitch extraction from noisy speech is a nontrivial process. Numerous 

computational models have been proposed to account for the periodicity of pitch 

perception. They can be generally divided into two broad classes: spectral models 

and temporal models (Moore 2003). 

Spectral models assume that the pitch of a complex stimulus is derived from its 

spectral profile defined along the tonotopic axis of the cochlea. This class of models 

normally involves two stages. In the first stage, a frequency analysis is performed 

to determine the frequencies of individual components contained in the input. The 

second stage is a pattern matching process, where the frequencies of harmonics are 

compared to internally stored spectral templates. These templates consist of the 

harmonic series of all possible fundamentals. The model tries to find the template with 
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an Fo whose harmonics give a closest match to the spectrum. Therefore, the spectral 

model is also called the "pattern-match" model in the literature. However, this model 

is dependent on the spectral resolution of individual components in the stimulus and 

therefore incapable of explaining the residue pitch associated with the unresolved 

high-frequency harmonics. To address this difficulty, an alternative mechanism is 

required. 

Temporal models derive a pitch estimate by pooling timing information taken 

across auditory nerve fibers without regard to the spectral profile. The timing in­

formation can be encoded by first or higher order intervals ( Cariani and Delgutte 

1996a, 1996b; Rhode 1995), or measured by the auto-correlation of the responses 

(Licklider 1951, Lyon 1984; Slaney and Lyon 1990; Meddis and O'Mard 1997). The 

auto-correlation analysis is adopted in our model for pitch estimation. Full details of 

this approach will be given in the next section. Compared with the spectral models, 

the temporal models provide a unified mechanism to account for a diverse range of 

pitch phenomena (Meddis and O'Mard 1997), including the residue pitch associated 

with high order, spectrally unresolved harmonics, as well as the periodicity pitch 

evoked by low order, resolved harmonics. 

3.1.3 Pitch Extraction 

The specific type of analysis we use to measure pitch is auto-correlation. It is 

a process whereby the output at each channel of the auditory-periphery model is 

correlated with a delayed version of the same signal. At each time instance, the results 

are visually displayed in a two-dimensional (centre frequency x lag) representation, 

named the correlogram. For a periodic signal, similarity is greatest at lags equal to 
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integer multiples of the period. This results in peaks in the auto-correlation function 

(ACF) that can be used as a cue to periodicity. 

Different definitions of the ACF can be used. For dynamic signals, we are inter­

ested in the periodicity of the signal within a short window. This short-time ACF is 

defined as: 

(3.1) 

where xi(j) is the jth sample of the signal at the ith frequency channel, T is the 

lag, K is the integration window length and k is the index inside the window. This 

function is normalized by the instantaneous channel energy 'L,{f=--;} x~(j - k). With this 

normalization, the dynamic range of results is restricted to [-1,1], which facilities an 

easier thresholding decision. Normalization can also equalize the peaks in channels 

whose absolute energy might be quite low compared to other frequency channels. 

Note that all the minus signs in Equation 3.1 ensure this implementation is causal. 

The discrete correlation theorem (Proakis and Manolakis 1995) says that discrete 

correlation of two real signals g and h is one member of the discrete Fourtier transform 

pair: 

Corr(g(n), h(n)) # G(k)H(k)* (3.2) 

where G(k) and H(k) are the discrete Fourier transforms of g(n) and h(n), and 

the asterisk denotes complex conjugation. Based on this theorem, we can compute 

correlation more efficiently using fast Fourier transform (FFT). The particular imple­

mentation of the numerator of Equation 3.1 is as follows: FFT a window of signal, 

xi(n),n = j -K +1,j -K +2, ... ,j, multiply the resulting transform by the complex 

conjugate of itself, then inverse transform the product. Normally, the result will be a 

complex vector. However, it will turn out to have all the imaginary parts zero since 
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the original signal is real. Meanwhile, the normalization term in the denominator is 

simply the auto-correlation value at zero lag. 

Theoretically, the correlogram should be updated at every sample instance. Con­

sidering that the sampling rate of the incoming signal is 16 kHz, updating the value 

of the correlogram at each sample instance would be computationally inhibitive. In­

stead, we subsample the correlogram to a more tractable rate of 100 frames per 

second. Choosing a proper auto-correlation window length is critical. First, the win­

dow must span more than one fundamental period to get an accurate estimate. The 

voiced speech of a typical adult male has a fundamental frequency from 85 to 155 

Hz, and the value for a typical adult female ranges from 165 to 255Hz (Baken 1987). 

Therefore, the window size must be longer than 11 ms. On the other hand, when we 

compute the short-time auto-correlation and FFT of a speech signal, a shorter window 

is required to satisfy the quasi-stationary assumption. Otherwise, the periodicity can 

be distorted by fast frequency transitions within the frame. In our implementation, 

we choose a 20 ms rectangular window, which is twice as long as the frame sampling 

interval. Due to the limited pitch range of speech signals, the interested ACF lag can 

be narrowed down to 3.1"'12.5 ms, which covers a large pitch range from 80 to 322 

Hz. 

The top panel of Figure 3.1 shows a correlogram for a synthesized vowel /a/ with 

its Fo centred at 200 Hz. Because the properties of synthesized sounds are generally 

well-defined in comparison to natural voices, the properties of the auto-correlation 

analysis can be clearly demonstrated by applying it to a synthesized sound. 

The auto-correlation function reaches the maximum value at zero lag. This value 

is usually normalized to unity. 
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Figure 3.1: Auto-correlation functions (ACFs) (top panel) and summary auto­
correlation function (SACF) (bottom panel) for a synthesized vowel /a/ with 200 
Hz fundamental frequency. 

In the correlogram, the vertical structure at T0 = 5 ms represents the common 

periodicity across the frequency channels, which is an indication of a 200 Hz funda­

mental. Since a given fundamental period of T0 will result in peaks at lags of 2To , 3To, 

etc., this vertical structure is repeated at lags of multiple periods with comparatively 

lower intensity. 

For resolved harmonics, generally, the nth harmonic displays peaks at a lag of 

T0 jn and its integer multiplies. This explains the hyperbolic contours shown in the 

lower half of the correlogram. It also explains the larger number of ACF peaks with 

increasing centre frequency. 

The ACFs for unresolved harmonics are very different in shape from the ACFs 

for resolved harmonics. Due to the low-pass filtering in the inner hair cell model, the 

fine structure is removed from high-frequency channel outputs. As a result, the fine 
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structure information is removed from these high-frequency channel outputs. Only 

the temporal envelopes are reserved. Therefore, the peaks in ACFs for unresolved 

harmonics mainly reflect the periodicities in the temporal modulation, not the peri­

odicities of subharmonics. As we already mentioned in Section 2.1.2, this modulation 

rate is associated with the pitch period, which is represented as a vertical structure 

at pitch lag across high-frequency channels in the correlogram. 

In the correlogram, a common fundamental period across frequencies is repre­

sented as common peaks at the same lag. In order to emphasize the vertical structure 

in the correlogram, a conventional approach is to sum up all the ACFs across the fre­

quency channels. In the resulting summary ACF (SACF), a large peak should occur 

at the period of the fundamental. Since the ACF peaks have widths proportional to 

the period, the ACF peaks of very low-frequency channels and unresolved harmonics 

are generally very broad. As a result, the SACF is inevitably flattened out and unable 

to provide an accurate estimate of pitch lag. In addition, when multiple competing 

acoustic sources are present, the SACF may fail to capture the pitch lag of each indi­

vidual stream. The simplest case is two concurrent vowels: vowel A with fundamental 

frequency FoA and vowel B with fundamental frequency FoB (FoA =I FoB). In the cor­

relogram, the frequency channels dominated by vowel A display common peaks at the 

lag of 1 j FoA. However, the other channels dominated by vowel B may display valleys 

at the same lag. Summarizing the ACFs, these negative valleys introduced by vowel 

B can cancel out the peaks at lag 1/FoA, and therefore impair the pitch perception 

of vowel A. To reduce these undesired effects, we select all the local maxima in each 

ACF as well as their two immediate neighbors along the lag and sum them up across 

frequency channels. The SACF obtained in this way displays sharper and more salient 

peaks indicating the common period of the signal. This implementation also allows 

for slight peak deviation across frequencies, which often occurs in real signals. Back 
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to the example of synthesized vowel /a/ in Figure 3.1, the SACF is displayed in the 

lower panel. In this plot, the common periodicity across frequencies manifests itself 

as a prominent peak at the lag of 5 ms. 

The temporal pitch model was also tested against different noise conditions to 

verify its robustness. In the three tests, the target periodic signal, a synthesized vowel 

/a/ with fundamental frequency of 200Hz, was mixed with three types of masking 

noises, i.e., white Gaussian noise, concurrent vowel and cocktail-party babble noise. 

The correlogram of the clean target signal was plotted in Figure 3.1. The left column 

of Figure 3.2 shows the correlograms of the three maskers: 

1. 	 White Gaussian noise: it is a typical aperiodic signal. The correlogram of white 

Gaussian noise is completely different from the correlogram of a vowel. In each 

low frequency channel, the ACF response to the narrow-band signal displays 

peaks characterizing its centre frequency. The peaks vary continuously with 

increasing centre frequency and do not agree on a common periodicity. As can 

be seen from Figure 3.2 (a), there is no vertical structure in the correlogram of 

white Gaussian noise. At high frequency channels, the ACFs reflect repetition 

in the temporal envelope. Since white Gaussian noise has a fiat spectrum, each 

channel has an equal contribution to the summation of ACFs. Except for the 

maximum value at zero lag, there are no other prominent peaks shown in the 

SACF of white Gaussian noise. 

2. 	 Concurrent vowels: in this case, the masker is a synthesized vowel /u/ with a 

fundamental frequency of 150 Hz. Figure 3.2( c) demonstrates the correlogram 

in response to this masker. It is identical to the correlogram of the vowel 

/a/ shown in Figure 3.1 except the position of the vertical structure, which is 

determined by the fundamental period. 
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Figure 3.2: ACFs and SACFs computed for (a) white Gaussian Noise; (b) vowel /a/ 
with a pitch of 200 Hz contaminated by white Gaussian noise (SNR = 5 dB) (c) 
vowel /u/ with a pitch of 150Hz; (d) double-vowels: target vowel /a/ with a pitch 
of 200Hz mixed with masking vowel /u/ with a pitch of 150Hz (SNR = 5 dB); (e) 
cocktail-party babble noise , (f) vowel /a/ with a pitch of 200 Hz contaminated by 
cocktail-party babble noise (SNR = 5 dB) . 
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3. 	 Cocktail-party babble noise: Figure 3.2(e) demonstrates the correlogram of 

cocktail-party babble noise. Babble noise is highly nonstationary in spectrum. 

As a consequence, its correlogram is quite random. There is no common fun­

damental period that can be detected across frequencies. 

The right column of Figure 3.2 illustrates the effect of adding maskers to the target 

signal. Due to the nonlinear processing in the hair cell model, the correlogram of the 

mixed signal is not simply a superposition of the correlograms of individual signals, 

even though the input signals are uncorrelated. Generally, only those frequency 

components dominated by the target signal show strong peaks at the corresponding 

pitch lag. This forms the basis of sound separation using the correlogram. Given 

enough channels dominated by the target signal, the common fundamental period of 

these channels still manifests itself as a prominent peak in SACF. 

3.2 Common Onset 

3.2.1 Psychoacoustic Evidence 

Onset refers to the beginning of a discrete event in an acoustic signal, which is 

caused by a sudden increase in energy. The rationale behind onset grouping is that the 

energy in different frequency components excited by the same source usually starts 

at the same time. Hence common onsets across frequencies are interpreted as an 

indication that these frequency components originated from the same sound source. 

On the other hand, asynchronous onsets enhance the separation of acoustic events. 

For example, artificially introducing a certain amount of onset asynchrony can even 

decompose a harmonic stimulus into several partials and dramatically change the per­

ception of the timbre (Mellinger and Mont-Reynaud 1996). This effect is illustrated 
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Figure 3.3: The effect of onset asynchronies on fusion. Each horizontal represents a 
sinusoidal tone. At left, all sinusoids fuse together to a single auditory object. At 
right, successive tones begin at intervals of ls and stand out briefly before merging 
with the rest of the complex (after Mellinger and Mont-Reynaud 1996). 

in Figure 3.3. If a short tone is played with all harmonics starting synchronously, a 

single pitch is perceived. If a delay of one second is introduced between the onset of 

successive partials, each harmonic stands out briefly as a separate tone before merging 

with the existing sound. 

Since every sound source has attack time, the onset cue does not require any par­

ticular kind of structured sound source. It assumes only that the spectral components 

have reasonably synchronous onsets and tolerably short attack times. In contrast to 

the periodicity cue, the onset cue will work equally well with periodic and aperiodic 

sounds. However, when concurrent sounds are present, it is hard to know how to 

assign an onset to a particular sound source and the system could be prone to switch 

indiscriminately between emphasizing foreground and background objects. Even for 

a clean sound stream, it is difficult to distinguish genuine onsets from the gradual 

changes and amplitude modulations during the sound. Therefore, a reliable detection 

of sound onsets is a very challenging task. 
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Sometimes a common offset is also taken into account as a cue. But offset is 

extremely sensitive to masking noise. As a consequence, offset is not as perceptually 

important as onset and is not exploited in our current model. 

3.2.2 Existing Models of Onset Detection 

Most onset detectors are based on the first-order time difference of the amplitude 

envelops (Bilmes 1993; Goto and Muraoka 1996; Scheirer 1998), whereby the max­

imum of the rising slope of the amplitude envelops is taken as onset. According to 

Moore (1995), the smallest detectable change in intensity is approximately propor­

tional to the intensity of the signal. In light of this fact, Klapuri (1999) proposed to 

detect onset based on the relative difference function instead of the absolute differ­

ence function. Recently, a neural model has been proposed by Fishbach and Yeshurun 

(2001), which can account for numerous physiological and psychoacoustic phenom­

ena. In this model, the first-order time derivative of the amplitude envelope is viewed 

as an analog to the visual brightness gradient, so that auditory onset can be detected 

in a way similar to visual edge detection. 

3.2.3 Onset Detection 

The onset detection model utilized in our system is adapted from the neural model 

described in Fishbach et al. 2001. First, the auditory periphery response in each fre­

quency band is progressively delayed by an array of neurons with ascending membrane 

time constants. The kernel of each neuron is characterized by an a-function 

1k(n) = -ne-n/r (3.3)
T2 
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where T is the time constant. Then, the first-order time derivative of the amplitude 

envelope is calculated by differentiating the stimulus along the delay line. This oper­

ation is approximated by connecting the outputs of the delay layer to a single onset 

neuron with excitatory and inhibitory connections. The combination of associated 

weights forms a first-order derivative of Gaussian function. 

In the current model, the delay layer consists of only two neurons. The onset 

neuron receives the two delayed stimuli, one excitatory and the other inhibitory. The 

excitatory input has a shorter time constant than the inhibitory input. The overall 

model can be simply described as 

h(n) = k1(n)- k2(n) (3.4) 

where k1(n) and k2 (n) are the kernel functions of the two delay neurons, given by 

(3.5) 


The time constants r 1 and r2 are selected to be 6 ms and 15 ms respectively in order 

to obtain a bandpass filter H(z). The passband of H(z) covers from 4 to 32 Hz. 

These frequencies are within the most important range for speech perception for the 

human auditory system (Drullman et al. 1994a; Drullman et al. 1994b). Figure 3.4 

shows the temporal and frequency responses of delay neurons and the whole onset 

model respectively. 

Figure 3.5(a) shows the onset maps for a clean speech sentence. The clean speech 

says "Don't ask me to carry an oily rag like that". The waveform of the clean speech 

is plotted in the upper panel. The onset map produced by the onset neurons is 

plotted in the lower panel. As visible from the result, the onset model can detect 

the onset of every phoneme, in spite of the intensity and duration of the phoneme. 

Generally, vowel sounds have much higher intensity and take more time to build 
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Figure 3.4: Time and frequency responses of two delay neurons (top and centre) and 
overall onset model (bottom) 

up than stop consonants. Compatible with this fact, the detected onset of a vowel 

sound is comparatively stronger and lasts for longer time. The onset model was 

also verified under different noise conditions. Figure 3.5(b) shows the onset map 

for speech corrupted by white noise. The same speech signal was used. The SNR 

of the mixture is 5 dB. Due to the masking effect of white noise, the onsets of the 

target speech are largely reduced or completely missing. Only those strong onsets are 

preserved. Meanwhile, the fluctuations in the amplitude of white noise are sometimes 

misidentified as false onset detection. Especially when the background noise is turned 

on at the beginning of the utterance, a strong onset across the frequency bands is 

produced. Figure 3.5(c) shows the onset map for the same speech mixed with a 

competing speech signal. The onsets of both speech streams are detected. Therefore, 

synchronous onsets across frequency bands provide evidence to partition the set of 

simultaneous spectral components into an active stream, but onset information cannot 

be used to distinguish the alternative streams. Figure 3.5( d) shows the onset map 
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Figure 3.5: Onset maps for a speech "Don't ask me to carry an oily rag like that. " 
under different noise conditions: clean speech (a); corrupted by white noise (b); mixed 
with competing speech (c); corrupted by babble noise(d). SNR of the noisy speech is 
5 dB. 

for the same speech mixed with multi-speaker babble noise. Again, the SNR of the 

mixture is 5 dB. Since the energy of babble noise is mostly distributed over low-

frequency bands and the envelope variations of babble noise can be much stronger 

than white noise , the masking effect reflected from the onset map is pronounced for 

lower frequencies. But for higher frequencies , the onset map remains undistorted. 
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3.3 Binaural Spatial Cues 

3.3.1 Psychoacoustic Evidence 

The cues used in sound spatial localization may also help in the analysis of complex 

auditory inputs. 

Sounds reaching the farther ear are delayed in time and are less intense than at the 

nearer ear. There are thus two possible spatial cues: interaural time difference (lTD) 

and interaural intensity difference (liD). Owing to the physical nature of sounds, 

ITDs and liDs are not equally effective at all frequencies. 

Figure 3.6: Illustration of the method for calculating the difference in arrival time at 
the two ears. 

lTD can be calculated from the path difference between the two ears, as illustrated 

in Figure 3.6. When the sound source is at an incidence angle() and the head radius 

is R, the difference in path length between the two ears is given by 6.D, which follows 

the simple law 

6.D = RB + Rsin(B) (3.6) 
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Figure 3.7: lnteraural Time Differences (lTDs) as a function of azimuth. Radius of 
head R is 9 em. 

Knowing that the speed of sound is about 343 meters per second, we can calculate the 

time difference for the sound reaching opposite ears. Assuming 9 em head radius, the 

lTD is plotted as function of azimuth() in Figure 3.7. lTDs range from 0 (for a sound 

straight ahead) to about 690J.Ls for a sound at 90° azimuth (directly opposite one ear). 

For low-frequency sounds with a period larger than twice the maximum possible lTD, 

the lTD provides effective and unambiguous information about the location of the 

sound. However, sounds at higher frequencies present ambiguity in determining the 

correct time delay, which may be greater than the signal period. 

The liD arises from the "shadow" effect cast by the head. Low-frequency sounds 

have wavelengths which are long compared with the size of the head, and thus, these 

sounds "bend" very well around the head. Therefore, low-frequency sounds are barely 

affected by liD. For sound sources that are distant from the listener, liD is negligible 

below 500 Hz, but may be as large as 20dB at high-frequencies. For sound sources 

that are very close to the head of the listener, liD can occur even at low frequen­
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cies (Brungart and Rabinowitz 1999). Although it is hard to derive a mathematical 

formula for calculation of liD, we can still empirically measure the relationship be­

tween liD and sound incidence azimuth. The method and results will be described 

in Section 3.3.4. 

In summary, the cue of lTD is more reliable at low frequencies, while the cue of 

liD is more useful at high frequencies. The combination of these two cues has come 

to be known as the "duplex" theory of localization (Moore 2003). 

3.3.2 Existing Models of Binaural Spatial Estimation 

A number of binaural models have been developed over the last half century 

(Jeffress 1948; Lindemann 1986; Gaik 1993). Most of them could be considered a 

variant of the Jeffress's (1948) neural coincidence mechanism to detect interaural 

time difference. Essentially, these models have a generic structure including a series 

of peripheral auditory processing, comparison of interaural timing information using 

a correlation or coincidence mechanism, computing interaural intensity differences at 

the outputs of monaural processors, and a subsequent decision-making mechanism. 

Models of binaural spatial processing are already built into cocktail-party processor 

and demonstrate particular effectiveness in source separation when the sound sources 

are spatially separated (Lyon 1983; Bodden 1995; Grabke and Blauert 1998; Roman 

et al. 2003). 

3.3.3 Interaural Time Difference Estimation 

In the current model, lTD is determined on the basis of cross-correlation between 

hair cell channel outputs at opposite ears. This processing is essentially very similar to 
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the auto-correlation mechanism involved in pitch analysis. Specifically, the interaural 

cross-correlation function ( CCF) is computed as follows 

(3.7) 


where CCF(i,j, r) is the cross-correlation at lag T for the ith frequency channel at 

jth time instance; l and r are the auditory periphery outputs at the left and right ear; 

K is the integration window length and k is the index inside the window. As in the 

definition of ACF, CCF is also normalized by local channel energy estimated over the 

integration window. This normalization can equalize the contribution from different 

channels. Again, all the minus signs in Equation 3.7 ensure this implementation to 

be causal. 

The cross-correlation defined in Equation 3. 7 is identical to the auto-correlation in 

Equation 3.1 used for pitch estimation. The correlation theorem discussed in Equation 

3.2 also applies to the computation of cross-correlation. Hence, the normalized CCF 

in Equation 3. 7 can be implemented more efficiently as follows: FFT the two data 

sets, li(n),n = j- K + l,j- K + 2, ... ,j and ri(n),n = j- K + l,j- K + 2, ... ,j, 

multiply one resulting transform by the complex conjugate of the other, and inverse 

transform the product. The normalization term is determined by the auto-correlation 

of li at zero lag and the auto-correlation of ri at zero lag. Note that these two values 

are already computed in ACF. Repeated computation can be avoided. 

As the correlogram in pitch analysis, the CCFs are visually displayed in a two 

dimensional (centre frequency x lag) representation, termed the cross-correlogram. 

The cross-correlogram and correlogram are updated synchronously. For the sake 

of simplicity, the frame rate and window size are selected exactly the same as the 

correlogram computation in pitch perception, i.e., 100 frames per second and 20 ms 

rectangular window. As a result, the FFT values can be reused in both the pitch 
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model and the binaural model. Lag T is limited to the range -1 < T < 1 ms, which 

includes the range of ITDs encountered in natural listening conditions, as depicted in 

Figure 3.7. 

For a signal without any interaural time disparity, the CCF reaches its maximum 

at zero lag. In this case, the cross-correlogram is a symmetrical pattern with a vertical 

stripe in the centre. As the sound moves laterally, the interaural time difference 

results in a shift of CCF along the lag axis. Hence, for each frequency channel, lTD 

is computed as the lag corresponding to the position of the maximum in the CCF. 

Finally, in the same way as the processing in pitch model, all the local maxima as well 

as their two immediate neighbors in each CCF are picked out and integrated across 

frequency to produce a summary CCF. The global peak in the final presentation 

indicates the perceived lTD. 

Binaural acoustic signals are required to test the binaural model. The details 

about how the binaural data are generated will be described in Chapter 5. As an 

example, the cross-correlograms of a synthesized vowel fa/ and white Gaussian noise 

signal are plotted in Figure 3.8. Both of the two signals have 30° incidence azimuth. 

(a) (b) 

Figure 3.8: CCFs and summary CCFs computed for (a) synthesized vowel fa/ with 
30° incidence azimuth, (b) white Gaussian noise with 30° incidence azimuth. 
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At low-frequency narrow-band channels, we see that the CCF is nearly periodic 

in lag, with a period equal to the reciprocal of the centre frequency. By limiting lTD 

to the range -1 < T < 1 ms, the repeated peaks at lags outside this range can be 

largely eliminated. But for channels with centre frequency within 500rv3000 Hz, it is 

still probable to have multiple peaks fall inside this range. This quasi-periodicity of 

cross-correlation makes an accurate estimation of lTD a difficult task. At the output 

of channels with centre frequency higher than 3000 Hz, the fine structure information 

is removed as a result of low-pass filtering in the inner hair cell transduction model. 

Only the temporal envelope is reserved. Cross-correlation analysis in these channels 

gives an estimation of the inter aural envelope difference (lED) instead of lTD. In 

comparison to the CCFs of a vowel, the CCFs of white Gaussian noise contain a lot 

of disturbance in the high frequency channels due to the aperiodic nature of the input 

signal. 

In both of the two summary cross-correlograms, the maximum is found at a lag of 

0.3 ms. According to the lTD-azimuth mapping plotted in Figure 3.7, this lTD gives 

an accurate prediction of azimuth angle. It is clear that the cross-correlation model 

works well for either periodic or aperiodic sounds. 

To demonstrate the spatial grouping using lTD information, we further tested 

the cross-correlation model on multiple source scenarios. Figure 3.9 gives the results 

for two cases. For the left panel, the input signal is a mixture of two concurrent 

vowels. The target vowel fa/ originating from 0° azimuth mainly dominates in the 

high frequencies; the interference is a vowel juj originating from 30° azimuth, whose 

energy is mainly distributed in the low frequencies. These two signals are mixed 

to produce 5 dB SNR. As can be seen from the cross-correlogram in Figure 3.9(a), 

the high-frequency components show a common peak at zero lag. Meanwhile, some 

of the low-frequency components show another common peak at a lag of 0.3 ms. 
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(a) (b) 

Figure 3.9: CCFs and summary CCFs computed for noisy speech. The target signal is 
a synthesized vowel /a/ with 0° incidence azimuth. (a): The masker is a synthesized 
vowel /u/ with -30° incidence azimuth. (b): The masker consists of four streams of 
babble noises originating from 40°, -30°, 60° and -60° azimuth. The overall SNR is 
5 dB in both cases. 

Therefore, the two groups of frequency components can be clustered, based on the 

lTD estimation. In the summary cross-correlogram, the lTD of target signal results 

in a dominant peak around zero lag. In the second case, the same target is used. 

The interference is much more complicated. It is a combination of four streams of 

babble noises originating from 40°, -30°, 60° and -60° azimuth respectively. Again, 

the overall SNR is 5 dB. In this case, the cross-corrrelogram is greatly disturbed 

by the spatially distributed interference signal. Only the centre frequency channels 

(500rvl500 Hz) show common lTD peaks at zero lag. The lTD peaks in the other 

frequencies are rather random due to the interaction of multiple streams. As a result, 

the maximum peak in the summary CCF is not as salient as the two-sources case. 
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3.3.4 Interaural Intensity Difference 

liD is defined as the log ratio of the local energy at the opposite ears . For the ith 

frequency channel and jth time instance, liD can be computed as in Equation 3.8, 

that is, 

liD(i J.) = lOlog ('E,~,:;/ r[(j- k)) (3.8) 
, 10 '£~=01 l[ (j - k) 

where l and r are the auditory periphery outputs at the left and right ear respectively; 

K is the integration window size, and k is the index inside the window. Again, the 

frame rate and window size utilized in liD measurement are selected to be exactly 

the same as in the correlogram computation for pitch perception, i.e., 100 frames per 

second and 20 ms rectangular window. 

As we already mentioned, no simple mathematical formula can describe the re­

lationship between liD and azimuth. However, given a complete binaural sound 

database, we can empirically evaluate the liD-azimuth mapping. Figure 3.10 is a 

graphical representation of the liD-azimuth mapping measured from our own data. 

Note that liD is a frequency dependent value. Therefore, frequency is considered as 

a variable in the liD-azimuth mapping. From this graphical representation of the 

mapping function, we can see that sound received at the ear on the farther side is 

generally less intense. 

Now, given an incoming signal, we can calculate the liDs for each frame of data 

and then convert them to azimuth based on the liD-Azimuth mapping. Again the 

performance of liD-based localization model was verified for both single-source and 

multi-source scenarios. For a single source scenario, two types of signals were tested: a 

synthesized vowel fa/ with 30° azimuth and a white Gaussian noise presented at -20° 

azimuth. We find that, for single fixed source, the liD values remain constant along 

the time axis. The estimation results for one frame are given in the Figure 3.11. The 
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Frequency {Hz) 3000 
180 

-180 

Figure 3.10: lnteraural Intensity Differences (liDs) as a function of azimuth and 
frequency. 

upper panel clearly shows that liD greatly varies with frequency. Once converted to 

azimuth, a consistent localization estimation across frequencies is obtained, especially 

in high-frequency channels. In low-frequency channels, as we expect, the liD-based 

azimuth estimation is not so reliable. 

The model was also tested on multi-source scenarios to demonstrate the spatial 

grouping using liD information. We used exactly the same data as that tested for 

lTD model. In the first case, the input signal is a mixture of two concurrent vowels. 

The target vowel j a j originating from 0° incidence azimuth mainly dominates in the 

high-frequency range . The interference is a vowel j uj originating from 30° azimuth, 
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Figure 3.11: liDs and azimuth estimation for (a) synthesized vowel /a/ with 30° 
incidence azimuth, (b) white Gaussian noise with -20° incidence azimuth. 

whose energy is mainly distributed in the low-frequency components. These two 

signals were mixed to produce 5 dB SNR. In the second case, the same target signal 

is masked by multi-speaker babble noise. Again, The target signal is originating from 

oo. The babble noise is a composition of four streams originating from 40°, -30°, 

60°, -60°. The overall SNR remains 5 dB. Figure 3.12 gives the liD and azimuth 

estimation results for these two cases. In the double-vowel case, the two vowels in 

the mixture are both synthesized with stationary intensity, common onset and offset. 

Therefore the liD values do not vary with time. Figure 3.12(a) displays typical result 

from one frame of data. Overall, despite its unreliable estimate at low-frequency 

channels, liD gives a very accurate estimate of the target source location, especially 

at high frequencies. But for the multi-source babble noise, the result is quite random 

as can be seen from Figure 3.12(b). This result can be explained by noting that 

liD is obtained by comparison of the overall intensity received at left and right ears. 

The intensity difference caused by one stream can be cancelled out by the difference 

caused by another stream originating from the opposite side. Hence, in the presence 

of multiple spatial-separated streams, IID information becomes unreliable. 
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Figure 3.12: IIDs and azimuth estimation for noisy speech. The target signal is a 
synthesized vowel fa/ with 0° incidence azimuth. (a): The masker is a synthesized 
vowel j uj wit h - 30° incidence azimuth. (b) : The masker consists of four streams of 
babble noises originating from 40°, -30°, 60° and -60° azimuth. The overall SNR is 
5 dB in both cases . 

3.4 Effect of Reverberation 

Most everyday listening sit uations not only consist of mult iple sources of sound, 

but also consist of multiple paths (reflections) that the sounds can take to reach the 

listener. When the listener wishes to attend to sounds from a particular source and 

ignore sounds from other sources in a reverberant condition , the acoustic reflections of 

both signal and masker(s) complicate the listening task even more and adversely affect 

t he signal reception. Recently, some psychoacoustic experiments have been conducted 

on the effects of reverberation on multi-talker communication (Culling et al. 2002; 

Culling et al. 2003 ; Darwin and Hukin 2000). All these works imply reverberation 

has a variety of destructive influences on listeners 's ability to cope with multiple 

concurrent voices. In this section, we will investigate the effect of reverberation on 

the acoustic cues. 
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3.4.1 Pitch 

Figures 3.13 (a) and (b) compares the spectrograms of the sentence "The candy 

shop was empty." spoken in anechoic (upper panel) and reverberant (lower panel) 

conditions, respectively. Where the FO contour is relatively flat (e.g. , vowel I rei in 

t he word "candy", denoted as area "A" in the spectrogram) , the harmonic structure 

is still evident and little affected by reverberation. However, the harmonic structure, 

where there is fast variation in FO (e.g. , vowel IoI in the word "shop" , denoted as 

area "B" in the spectrogram), is visibly damaged by reverberation, because each part 

of the reverberant sound is delayed and superimposed on the following sound. 
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Figure 3.13: Spectrogram of sentence "The candy shop was empty" in anechoic (upper 
panel) and reverberant condition (lower panel). 
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This effect is confirmed in the results of autocorrelation pitch analysis. Figure 

3.14 shows the correlograms of two reverberant vowel / aj. Both of them have pitch 

centred at 200 Hz. They are manipulated to have different vibrato, which refers to 

the pitch modulation. The stimuli used for the right panel has 30 Hz vibrato, which 

is 3 times faster than the vibrato of the stimuli used for the left panel. For the vowel 

with relatively stead FO, the correlogram shows that its harmonic structure remains 

almost intact under reverberation condition. While, for the vowel with a fast varying 

FO, reverberation makes its harmonic structure completely missing. 

Therefore, in the reverberant conditions, the FO-difference between target and 

masker would no longer benefit the segregation, if the target and masker have fast 

varying pitch. Similar findings have been reported in Culling et al. 1994. 

ni~~~~A-
0 125 2.5 375 5 825 7.5 875 10 \1.2! t2.5 

l..og(rnol 

(a) (b) 

Figure 3.14: ACFs and SACFs computed for reverberant sounds: (a) vowel /a/ with 
its pitch centred at 200 Hz and a 10 Hz vibrato; (b) vowel /a/ with its pitch centred 
at 200 Hz and a 30 Hz vibrato. 

3.4.2 Onset 

Reverberant energy of the proceeding sound can fill the spectral-temporal dips , 

hence make the onset transients less distinctive. For example, the onsets of two stop 
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consonants / p/ and /t/ in word "empty" (area C in Figure 3.13) are blurred by the 

lagging sound of previous phone / m/. 

Generally, the signal from the direct path arrives first with relatively strong in­

tensity. It is followed by secondary and multiple subsequent reflections with rapidly 

decreasing intensity. Overall , onsets are more resistant to reverberation compared 

with the other cues. 
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Figure 3.15: Onset maps for a reverberant speech "Don't ask me to carry an oily rag 
like that. " under different reverberant noise conditions: clean speech (a ); corrupted 
by white noise (b); mixed with competing speech (c); corrupted by babble noise (d ). 
SNR of the noisy speech is 5 dB. 

Figure 3.15 shows some examples of onset maps of reverberant speech, in which 

the stimuli are exactly the reverberant counterpart of the stimuli used in Figure 3.5. 
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Comparing the onset maps of each reverberant-anechoic pair, we come to the same 

conclusions: although onsets are occasionally masked by the reflection of proceeding 

sounds, reverberation does not have a substantial impact on onset detection. 

3.4.3 Spatial cues 

Reverberation introduces potentially an infinite number of sources due to the re­

flections against the surrounding surfaces. Therefore, the beneficial effect of spatial 

separation between the target and interfering sources is expected to be largely abol­

ished in the presence of reverberation. 

Studies of directional localization in rooms generally show that the localization 

ability of human auditory system is reduced for a short time following the onset of 

the leading sound (known as the "precedence effect"). Since the spatial informa­

tion about the echoes (the lagging sound) is partially suppressed, single sounds with 

abrupt onsets can be well localized in naturally reverberant environments. Never­

theless, localization of sounds that lack abrupt onsets is seriously impaired by re­

verberation, because of distortion to both interaural time and intensity differences. 

As a consequence, reverberation can adversely affect signal separation based purely 

on directional information. Even modest amounts of reverberation, which do not re­

duce listener's ability to localize speech presented alone, can reduce listener's ability 

to exploit localization cues in identifying the target sound presented with spatially 

separated masking noise. 

Compatible to the psychoacoustic results, our simulation results also show that 

reverberation physically distorts steady-state "directional" cues like lTD and liD. 

The two localization cues were examined both at the onset and during the steady­

state position of the target stimulus. Figure 3.16(al) shows the cross-correlogram and 
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Figure 3.16: CCFs and summary CCFs computed for reverberant sounds: the 1st 
frame (a1) and the 5th frame (a2) of vowel /a/ with 45° incidence azimuth; the 1st 
frame (b1) and the 5th frame (b2) of vowel /a/ with oo incidence azimuth mixed with 
vowel juj with -45° incidence azimuth (SNR of the mixture is 5 dB). 

summary CCF at the onset of the reverberant vowel j aj. The stimulus is incident 

from 45° azimuth. For a reverberant vowel, the common amplitude modulation at 

unresolved harmonics is inevitably distorted by its own reflection. Therefore, the 

CCFs of reverberant vowel display much broader and non-periodic peaks in the high­

frequency range in comparison to the CCFs of an anechoic vowel plotted in Figure 

3.8(a). However, the CCFs of most of the low-frequency channels generally show 

peaks centring around 0.4 ms. Consequently, a prominent lTD of approximately 

0.4 ms is shown in the summary CCF. Figure 3.16(a2) shows the cross-correlogram 
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and summary CCF at the 5th frame (50 ms after the start of stimulus) of the same 

stimulus. At this time frame, the stimulus is already in its steady state. The lTD 

is largely distorted by the echo of proceeding sounds. The random variation in CCF 

across frequencies makes the peak of summary CCF less prominent and makes the 

localization estimation less accurate. In Figure 3.16(bl) and (b2), a competing vowel 

is presented as a masker in reverberant condition. At the onset of stimulus, the 

correlogram (see panel bl) shows two separated groups of lTD: one group of peaks 

around 0 ms associated with the target from 0° and the other group of peaks around 

-0.4 ms associated with the masker from -45°. As the sound continues, the lTD 

grouping becomes less evident (see panel b2). 

Similarly, Figure 3.17 examines the liD azimuth estimation for the same set of 

stimuli. Note that the resolution of liD to azimuth mapping in this implementation 

is 10°. Due to the quantization error, for a stimulus originating from 45°, azimuth 

estimation of either 40° or 50° is acceptable. The simulation results show that the 

azimuth estimation obtained at the onset of stimulus is basically more accurate and 

more consistent across frequency channels than the estimation obtained at the steady 

state of sound. 

In summary, spatial localization and pitch, the most effective cues to help listener 

to maintain attention to a particular sound source, are susceptible to the degrading 

effects of reverberation, especially during steady state portions of stimuli. Meanwhile, 

the onset cue is more resistant to the effects of reverberation than the other cues. 

In this sense, the conclusion obtained from our model analysis is compatible with 

reported psychoacoustic experimental results. 
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Figure 3.17: liDs and azimuth estimation for reverberant sounds: the 1st frame (a) 
and the 5th frame (b) of vowel / a/ with 45° incidence azimuth; the 1st frame (c) and 
the 5th frame (d) of vowel / a/ with 0° incidence azimuth mixed with vowel / u/ with 
- 45° incidence azimuth (SNR of the mixture is 5 dB ). 

54 


II 

30 



M.A.Sc Thesis ---- Rong Dong ---- McMaster University - ECE ---- 2005 

Chapter 4 

Grouping and Segregation 

In this chapter, we will further analyze the strength and weakness of each of the 

cues. Then we will address how to integrate the information conveyed by multiple 

cues and how to make a grouping decision. 

4.1 Motivation for Cue Fusion 

Each of the cues we identified for auditory scene analysis has its own limitations, 

and it becomes unavailable or unreliable in certain scenarios. 

Spatial Cues, as long as they can be exploited, have the advantage that they 

exist all the time, irrespective of whether the speech is voiced or not. There are 

however some problems in exploiting the spatial cues: 

1. The two spatial cues utilized in the current model are unable to separate the 

sound sources localized in the same vertical (elevation) plane. Even in a horizontal 

plane, sound localization based on lTD and liD is not strictly accurate, especially for 

complex sounds. In our implementation, the azimuth resolution is 10° in the vicinity 

of the horizonal plane. 

2. The interaction of multiple concurrent sound streams can produce a false 

localization estimate. As illustrated in Equation 4.1, lt and r 1 are the auditory · 

periphery responses to a sound stream at the two ears. Here the frequency channel 

index is omitted for the sake of simplicity. Likewise, l2 and r 2 are the auditory 
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periphery responses to another concurrent stream. As long as these two streams are 

uncorrelated with each other, the interaural cross-correlation of the mixed signal can 

be viewed as a linear combination of the cross-correlation of each individual stream. 

Therefore the maximum peak in CCF is determined by the lTD of the dominant 

stream: 

E [(lt(n) + l2(n)) (r1(n- r) + r2(n- r))] 
(4.1) 

~ E [l1(n)r1(n- r)] + E [l2(n)r2(n- r)] 

However, the measurement of liD depends solely on the overall intensity of the sounds 

received at the opposite ears. Suppose, for example, there are the two uncorrelated, 

competing sound streams. One stream presents at 40° from the right side, whose au­

ditory peripheral responses at opposite ears are denoted as l1(n) and r1(n); the other 

stream originates from -40° azimuth from the left side with its auditory peripheral 

responses denoted as l2(n) and r2(n) respectively. So we have 

E [(rl(n))2] > E [(l1(n))2] 
(4.2)

2 2E [(r2(n)) ] < E [(l2(n)) ] 

From Equation 4.3, we can see the intensity difference at the two ears is cancelled out 

and the resulting liD is approximately zero in this case. This could lead to a false 

perception that there is one stream presented along the centre direction. 

3. Reverberation is another big problem with spatial cues. Multipath echoes from 

room surfaces inevitably distort the direction information, which was demonstrated 

in Chapter 3. 

Pitch information is particularly effective during the voiced sound segments. Un­

fortunately pitch detection can be very difficult in the presence of multiple sounds 
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streams. Similar to the cross-correlation computation, the auto-correlation of a mixed 

signal is approximately a linear combination of the two auto-correlations of each in­

dividual stream, as illustrated in Equation 4.4. 

E [(r1(n) + r2(n)) (r1(n- 7) + r2(n- 7))] 
(4.4) 

~ E h(n)rl(n- 7)] + E h(n)r2(n- 7)] 

Here we give an example when ACF is not reliable as a cue for sound segregation. 

Suppose stream 1 is a voiced signal, while stream 2 is unvoiced speech or noise at 

the same time, and the energy of stream 2 is dominant in the local time-frequency 

(T-F) component. Its uncorrelated nature determines that E h(n)r2(n- 7)] ~ 0. 

Thus the combined auto-correlation still shows a maximum peak at the pitch lag of 

stream 1, although the height of the peak is much lower than the peak at zero lag. 

As a result, this portion of T-F components will be falsely allocated to stream 1. 

Onset has the advantage that it will work equally well with periodic and aperiodic 

sounds. However, when concurrent sounds are present, it is hard to know how to 

assign an onset to a particular sound source and the system could be prone to switch 

indiscriminately between emphasizing foreground and background objects. Even for 

a clean sound stream, it is difficult to distinguish genuine onsets from the gradual 

changes and amplitude modulations during the sound. Therefore, a reliable detection 

of sound onsets is very challenging. 

4.2 Cue Fusion Algorithms 

The above analysis shows that there is no single predominant cue, from which the 

grouping decision can be made. The fusion of information conveyed by multiple cues 

will certainly produce better performance. 
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On the other hand, the cues are not independent. For example, psychoacoustical 

experiments have reported that onset asynchrony can affect the pitch perception 

(Darwin and Ciocca 1992) and lateralization (Wood and Colburn 1992; Stellmack 

and Dye 1993). In some circumstances, different cues lead to conflicting decisions. 

They have to work in a competitive way in order to achieve a correct interpretation 

of a complex input. 

For a computational system aiming to account for various cues as in the human 

auditory system, a strategy for cue-fusion must be incorporated to dynamically re­

solve the ambiguities of segregation based on multiple cues. The simplest solution 

to the fusion problem is called winner-take-all competition. This method requires an 

analysis to quantitatively identify the confidence on each of the cues. The detailed 

mathematical definitions of confidence values depend on the specific model used to 

extract the acoustic cue. When different cues are in conflict, the decision is made 

exclusively by the dominant cue. Woods (1996) applied weighted-sum mechanism to 

integrate the estimation arising from pitch and spatial cue. In Kashino et al. (1998), 

a Bayesian network framework is proposed for the application of music scene analysis, 

whereby multiple sources of information are integrated in a statistically optimal sense. 

Neural oscillator is an alternative model to explain the feature binding in auditory 

organization (Wang 1996; Brown and Cooke 1998). It assumes that the auditory 

object is represented by synchronously firing neurons in the cortex. 

In the current model, we adopt a simple information fusion approach to solve the 

multi-cue fusion problem. The grouping principle is described as follow: 

If all the perceptual cues suggest that a T-F component is dominated by a target 

signal, we accept this T-F component into the target stream. Otherwise, group it into 

the interference stream and suppress it. 
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The fusion rule is performed in a hierarchical process as illustrated in Figure 4.1. 

In the first stage, given the information from liD, we group the T-F components 

into two streams (target stream and interference stream). The grouping result is 

represented by a binary map whose value is one for a T-F unit where the target 

energy is greater than the interference energy and is zero otherwise. Likewise, lTD 

segregation can produce another binary map. These two binary maps are combined 

by the "AND" operation to obtain a spatial segregation map , which is further utilized 

to estimate the pitch of the target signal or the pitch of the interference. Similarly, 

a binary map can be produced according to the pitch segregation. If the target is 

detected as an unvoiced signal, onset cue is also incorporated to group the components 

into separate streams. At the last stage, all these binary maps are pooled together by 

the "AND" operation to arrive at the final segregation decision. In the next section, 

we will describe the detailed implementation of initial segregation by the four acoustic 

cues individually. 

li D Segregation 

TD Segregation 

Figure 4.1: Flow chart of cue fusion process. 
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4.3 Implementation of Segregation Algorithm 

1. liD segregation is very straightforward. Given the azimuth estimation using 

liD cue, we simply select those T-F units which have an azimuth within a range of 

[-10, 10] degrees as the target components and assign one to the corresponding values 

in the liD binary map. 

2. 	 lTD segregation consists of three steps. 

• Step 1: at ith (i=1, 2, ... , 32) frequency channel, search for a global maximum 

value MAXCCFi in CCF. 

• Step 2: compare the cross-correlation at zero lag CCFi(O) with the global max­

imum value MAXCCFi. 

• Step 	3: group those T-F units satisfying the inequality CCFi(O) > 0.9 * 
MAXCCFi into the target stream. 

3. Pitch segregation is much more complicated. The flowchart of the complete 

pitch segregation process is illustrated in Figure 4.2. The ACFs peaks of very low 

frequency channels and unresolved harmonics are generally very broad. As a result, 

the SACF is inevitably fiat and unable to provide an accurate estimate of pitch lag. 

To reduce these undesired effects, in each ACF we only preserve all the values of local 

maxima as well as their two immediate neighbors along the lag axis and replace the 

other values by zero (Block 1). ACFs modified in this way have local peaks at most 3 

samples wide, which are significantly narrower but still allow for slight peak deviation 

across channels. Then we detect the common periodicity in the two categories (the 

interference channels and the target channels) of frequency channels separately. From 

the correlogram analysis discussed in Chapter 3, we find that the vertical structure 

as a representation of common periodicity is more evident in the ACFs of resolved 
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harmonic frequency channels than the unresolved frequencies. Here resolved harmonic 

frequency channels are defined as those channels with centre frequencies less than 1700 

Hz. To obtain a reliable pitch estimate, we must pool the ACFs across a number of 

frequency channels. Only if there is a significant portion (quantitatively more than 

1/3) of resolved harmonic frequency channels dominated by the interference signal, 

we can further detect the predominant pitch in the interference signal. Otherwise, 

the detection is viewed to be unreliable, and therefore not to be proceeded with. 

Summing ACFs across all the interference frequency channels, we get an SACFinf 

as a function of autocorrelation lag. Searching for the maximum of the SACFinf 

within a possible pitch lag interval [M inPL, M axPL], we can get an estimation of 

common period across interference channels. The search range [MinPL,MaxPL] is 

determined from the pitch frequency range of human adults, 80"'320 Hz. So we have 

MinPL = 1/320 ~ 3.1 msandMaxPL = 1/80 ~ 12.5ms. Thegreaterthemaximum 

SACFint is, the stronger the periodicity of the interference signal. ACF is already 

normalized to [0, 1] and reaches the global maximum value of 1 at the zero time lag. 

For a quasi-periodic signal, a salient peak of the SACFinf indicates that the signal 

is more periodic and less noisy. If the global maximum value is above the dynamic 

threshold 0.25SACFinJ(O), the estimation of pitch lag appearing in the interference 

signal is accepted. Then we select those frequency units, showing a local peak around 

this pitch lag, to be grouped into interference stream (Block 7a). Likewise, if an 

adequate number of frequency units are initially grouped as target, we repeat this 

pitch estimation process in the target channels to refine the frequency segregation. 

The ACFs of target channels are pooled together to get a pitch estimation of the 

target signal. As we discussed above, an autocorrelation peak around the target 

pitch lag is not adequate as evidence that this unit is dominated by the target signal. 

On the contrary, if the target is detected as a voiced signal but the ACF does not 
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show a peak around this pitch lag, this frequency unit is certainly not dominated by 

the target signal. Therefore, we do not attempt to select target channels using the 

periodicity cue. Instead, we use it to exclude those frequency units which are clearly 

dominated by interference signal. 

We define the dominant pitch period in frame j to be the lag corresponding to 

the maximum of SACF(j, T) in the plausible pitch range of target speech [3.1 ms, 

12.5 ms], or from 80 Hz to 320 Hz. For those channels where target voiced speech 

dominates, their ACFs have peaks consistent with the pitch of target speech and 

the summation of these ACFs generally shows a dominant peak corresponding to the 

pitch period. 

4. Onset segregation is only applied when no common periodicity is detected 

from the target channels. If this is the case, it is probably an unvoiced consonant 

uttered in the target stream. An unvoiced consonant has the characteristics of a 

strong onset at the beginning. The consistent onsets across frequency channels are 

demonstrated as a prominent peak in the summary onset map. By summing up the 

onset map across the target frequency channels, the common onset can be detected 

where a peak is find to be higher than 0.5 in the summary onset map. Again, a 

positive value in onset map is not adequate as evidence that this unit is dominated 

by the target signal. It could be an onset of the concurrent interference. On the 

contrary, if an onset time is detected in the target channel but the onset map does 

not show a positive value at that time, this frequency unit is certainly not dominated 

by the target signal and should therefore be ignored. 

The reader should note that all the threshold values used in the current imple­

mentation are determined experimentally. 
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Figure 4.2: Flow chart of pitch segregation. 
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Chapter 5 

Performance Evaluation 

In the previous three chapters, we presented a model for speech enhancement 

using perceptual binaural sound segregation, and described an implementation of a 

system based on this model. In this chapter, we will examine the performance of this 

system. 

The first part of this chapter is devoted to the background of the evaluation. 

We will discuss the choice of monoaural sound dataset and describe the binaural 

spatializing approach to simulate the complex auditory scene. Then we overview the 

two types of performance measurement. The ideal binary mask is also considered as 

an upperbound to the capacity of the system. 

In the second part of the chapter, a set of systematic testing results will be dis­

cussed. First, we will investigate the proper number of frequency bands. Then, we 

will analyze the robustness of the system against different types of intrusions, differ­

ent number of intrusions, and reverberation. We will also discuss the contribution of 

the individual cue in various noise conditions in the last section. 

5.1 Testing Corpus 

Aiming to compare the performance of our system with other similar studies (Ro­

man et al. 2003; Hu and Wang 2004; Brown and Cooke 1994; Cooke 1993; Drake 2001; 

Ellis 1996), a corpus collected by Cooke (1993) is utilized to simulate two-competing­
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source scenario. The corpus (denoted as Corpus I) consists of a combination of ten 

speech sentences and ten noise intrusions. In our evaluations, we only selectively 

tested our model against six noise intrusions including white noise, "cocktail party" 

babble noise, rock music, telephone ring, female speech and male speech. These intru­

sions are generally more realistic than the other intrusions, e.g. pure tone, noise burst, 

siren. Notice that there are two female speech sentences among the ten intrusions. 

We only tested one of them to avoid repetition of the same type of noise. 

Corpus I is useful for comparison with the published results, but it only contains 

voiced utterances. Here we introduce the second corpus (denoted as Corpus II in 

the following text), which is composed of natural speech including both voiced and 

unvoiced speech. Corpus II contains ten natural speech utterances from ten speakers 

(five females and five males) randomly selected from the TIMIT database. The six 

intrusions are speech utterances from another six speakers (three females and three 

males). They are also randomly selected from the TIMIT database. All these target 

utterances and intrusions have very similar time duration (average duration is 3.172 

seconds for a target signal and 3.346 seconds for intrusions) to ensure a significant 

amount of overlapping in the mixed signal. Corpus II was used to evaluate the model 

in the multiple-speaker intrusions and reverberant cases. 

A full description of the contents of these two datasets can be found in Appendix 

A. 

5.2 Binaural Spatial Synthesis 

Binaural acoustic signals are required for testing of the model in this thesis. 

Recording an extensive test set, which covers a broad range of locations, is unre­

alistic. An alternative approach is to measure the binaural head-related transfer 
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function (HRTF) or binaural room impulse response (BRIR) and convolve them with 

monoaural anechoic signal to simulate binaural recording. 

The HRTF characterizes how an impulse arriving at a person's (dummy's) head 

is smeared out by the diffraction from head and body of the person (dummy). It 

is used to synthesize anechoic binaural data. HRTF is usually measured by using a 

dummy head with a microphone mounted at the entrance of each ear. A KEMAR 

(Knowles Electronics Mannequin for Acoustics Research) HRTF data set is obtained 

from MIT media lab (Gardner and Martin 1995). In this dataset, the HRTFs were 

measured every 5° of azimuth in the horizontal plane (0° elevation). The HRTFs were 

measured at a 44.1 kHz sampling rate. 

The BRIR is a set of impulse responses detected at the left and right entrances of 

the ear channels of a dummy head placed in a room. Unlike the HRTF, which only 

describes the listener's geometry, the BRIR should include all the information on 

receiver positions and orientations, source positions and orientations, room geometry, 

surface materials as well as the listener's geometry (described by the HRTFs). BRIR 

is used to synthesize binaural reverberant data. A library of KEMAR BRIR data 

is measured in a mild reverberant room (Infant Auditory Lab with drapes closed) 

described in Wiklund's thesis, 2003. For each recording session, KEMAR was located 

in the approximate centre of the room. A single speaker was moved to different 

locations around the room. There were 12 azimuthes (0°, 22.5°, 45°, 67.5°, 90°, 135°, 

180°, -135°, -90°, -67.5°, -45°, -22.5°) measured. The height measured from the 

floor to the centre of the speakers diaphragm is 5'5", which is exactly the same as the 

height of microphones in KEMAR mannequin. The distance between the speaker to 

the microphones is 3'. The waveform of a typical measured room impulse response is 

plotted in Figure 5.1. 
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Figure 5.1: A typical room impulse response for Infant Auditory Lab with drapes 
closed. 

In the experiments, each sound stream contained in the input mixture can be 

binauralized in a certain direction by convolving a monaural signal with an impulse 

response. For anechoic data the impulse response is obtained from the HRTF data 

set, while for reverberant data the impulse response is obtained from the BRIR data 

set. To simulate a complex auditory scene, the input sound is produced by simply 

adding the waveforms of multiple binaural sound streams. 

5.3 Objective Performance Measurement 

In this section, the performance measurements considered in this thesis are dis­

cussed. The goal for noise reduction in hearing aids is to produce speech that is 

perceived by the impaired auditory system to be natural and free of degradation. 

Obviously, a subjective quality measure is the preferable means of quality assess­

ment. However, administrating subjective speech quality tests requires significant 

time and personal resources. And the results are not exactly reproducible. As alter­
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natives, many objective measurements have been developed (reviewed in Deller et al. 

2000). Ideally, an objective measure should replicate human performance. In this 

work, our system is assessed via two objective quality measurements: signal-to-noise 

ratio, and articulation index. 

5.3.1 Signal-to-Noise Ratio 

Signal-to-noise ratio (SNR) is probably the simplest and the most widely used 

measure for assessing noise reduction algorithms. Let s(n) be the clean speech signal 

and s(n) be the enhanced speech extracted from the incoming noisy signal. The error 

signal can be written as e-(n) = s(n)- s(n). The error energy is then 

00 00 

E" = 2:: e-2 (n) = 2:: [s(n)- s(n)]2 (5.1) 
n=-oo n=-oo 

The energy contained in the clean speech signal itself is 

(5.2) 

n=-oo 

The resulting SNR (in dB) is obtained as 

E8 ( n=~oo 82 
(n) )SNR = 10log10 (E) = 10log10 _oo____ (5.3) 

€ I: [s(n)- s(n)] 2 

n=-oo 

It is important to note that SNR-based measurements are appropriate for noise re­

duction systems that seek to reproduce the original input waveform. However, SNR 

only characterizes the audibility of the speech; it is not adequate to measure the 

intelligibility of speech. 
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5.3.2 Articulation Index 

The other widely accepted speech quality metric is the articulation index (AI). 

AI predicts speech intelligibility performance as judged by a human listener. AI was 

originally proposed by French and Steinberg in 1947 for quality assessment of analog 

signals. Other researchers (Kryter 1962; Steeneken and Houtgast 1980) subsequently 

developed the AI measure. AI assumes that the intelligibility of a processed signal is 

the sum of the component intelligibility losses across a set of frequency bands that 

span the speech spectrum. The frequency limits for each band are normally associated 

with the critical bands for the human auditory system. AI assumes that distortion in 

one band is independent of losses in other bands. Another underlying assumption of 

AI is that the distortion present in the noisy speech results from either additive noise 

or signal attenuation. All these independent, linear assumptions are satisfied in our 

model. 

Specifically, the way to measure AI in this thesis is to compute the SNR in five 

octave bands with centre frequencies of 0.25, 0.5, 1, 2 and 4 kHz, then average the 

SNRs across these bands to come up with a prediction of intelligibility. Calculation 

of the AI consists of four basic steps: 

1. Decompose the signal into five octave frequency bands. 

2. For each octave band, calculate the SNR over the entire waveform. 

3. Clip the SNR to ensure a contribution within -12""18 dB: 

+18 SNRi > +18dB 

SNR o.w. (5.4) 

-12 SNRi < -12dB 

SNR= 
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4. 	 Calculate the weighted average of normalized SNR. 


= ~ SNRi + 12
AI 	 (5.5)L.., Wt 30 
t=l 

The weight Wi represents the importance of the i-th octave band for speech 

intelligibility as listed in the following Table (Marsh 1999). 

Centre Frequency (Hz) Weighting Factor ( wi) 

250 0.072 

500 0.144 

1000 0.222 

2000 0.327 

4000 0.234 

The resulting AI score is a value ranging from 0.0 to 1.0. 

5.4 Ideal Binary Mask 

The objective of the model is to segregate a target signal from the mixture. From a 

practical standpoint, what constitutes the target is task-dependent. Ideal binary mask 

estimation is used in some of the computational auditory scene analysis works (Roman 

et al. 2003, Hu and Wang 2004), which gives an upperbound on the performance of 

auditory segregation. In the ideal binary mask, value one is assigned if the target 

energy is greater than the intrusion energy in the local T-F unit and zero otherwise. 

The use of ideal masks is supported by the auditory masking phenomenon: within a 

critical band, a weaker signal is masked by a stronger one (Moore 2003). An ideal 

binary mask can produce a high-quality reconstructed target for a variety of sounds 

unless the mixture SNR in the mixture is very low. The other properties of the ideal 

binary mask are summarized in Wang (2004). 
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Assuming the original target signals are available, we can construct the ideal mask 

in the same way as we estimate liD: at the output of each auditory peripheral channel, 

the energy ratio E is calculated for each 20-ms time frame with 10 ms overlap between 

adjacent time frames. For the jth frame of the signal at the ith frequency channel, 

this energy ratio is defined as 

"'K-1 2( · k)E(i .) = wk=O si J ­ (5.6),J "'K-1 ~( · _ k)
wk=O x, J 

where s is original target signal and the x is the corresponding mixed noisy signal, K 

is the integration window size and k is the index inside the window. E(i,j) >= 0.5 

means that the target is dominant in this local T-F unit; thus the value of this unit 

in the ideal mask is assigned to be 1. By contrast, E(i,j) < 0.5 means that the 

interference is dominant in this local T-F unit, therefore the value is set to zero. 

After obtaining this ideal mask, we need to apply the phase delay which is cancelled 

out at the end of auditory peripheral model and then resynthesize to generate an 

ideally segregated sound. We calculate the SNR and AI scores after applying this 

ideal mask and compare them with the performance of our model. 

5.5 Simulation Results 

5.5.1 Experiment 1: number of frequency bands 

An experiment was performed to determine the number of frequency bands utilized 

in our model. In this experiment, each of the voiced speech (VO to V9 from Corpus I) 

is presented at 0° as the target signal. The interference is a female speech (N9 from 

Cooke's corpus) presented at -30°. The amplitude of interference was scaled to give 

a desired range of SNR. 
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Figure 5.2: Compare the SNR results of enhancement with respect to a varying 
number of frequency bands (i.e. , 32, 64, 128) . 

Figure 5.2 compares the SNR value of the original mixture and the improved 

SNR using the proposed model with a varying number of frequency bands. We 

varied the intensity of noise to obtain three different SNRs (represented as three 

groups of tests) in the original mixture. Each point in this figure represents the 

average SNR value calculated across the 10 target signals. The spatial separation 

between the target and interference makes the SNR values largely different at the 

opposite ears. For clarity, we only plot the SNR results at the right ear . However, 

examining the results at the left ear, we arrive at the same conclusion. As can be 

seen from this figure , processing in 32 frequency sub-bands, our model produces a 

substantial SNR gain over the original mixture. However, further increasing the 

number of frequency bands from 32 to 64 , the average SNR improvement is only 0.61 

dB. From 64 to 128, the performance is indistinguishable. These results imply that 

the frequency resolution after splitting frequency range into 32 bands is good enough 

for acoustic cue estimation and auditory segregation purpose. Although a higher 
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resolution produces slightly better performance, this increment does not justify the 

much increased computational complexity. Since a fast-operating system is desired 

for hearing-aid applications, the number of frequency bands is fixed to 32 bands in 

the following experiments. 

5.5.2 Experiment 2: noise type 

In the second experiment, the system is assessed against six different types of 

noise/interference. They are white noise, babble noise, rock music, telephone ring, 

male speech and female speech from Corpus I. These noises are mixed with each 

of the ten target utterances from the same corpus. For all the tests, the target 

speech is fixed at 0° azimuth and the noise is presented at -30° azimuth. We varied 

the intensity of noise to obtain three different SNRs (represented as three groups of 

tests). Because the noise intrusion is received from the left-hand side of the target, 

the SNR at the left ear is always worse than the right ear. In all of the following tests, 

we evaluate the performance on the two ears separately. The ten target utterances 

share very similar acoustic characteristics in terms of spatial localization, intensity 

and duration. Therefore all the SNR and AI performance presented in the following 

sections, if not specified, is an average value calculated across the ten target signals. 

Figure 5.3 shows the performance of our proposed model and compares with the 

results using the ideal mask. Basically, the AI value of the input signal indicates 

the difficulty of the segregation task. The variation in performance over the different 

types of noise is mainly attributed to the energy distribution of the noise in the time­

frequency plane and the amount of time-frequency overlapping between the target 

signal and the noise. For example, the energy of telephone ring is concentrated on a 

compact area in the time-frequency plane and can be easily distinguished. Therefore, 
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Figure 5.3: Comparison of SNR and AI before and after enhancement in presence of 
different type of noises. 74 
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at the same SNR, speech corrupted by the telephone ring is the most intelligible 

one. As a result, the enhancement performance is best with the telephone ring. In 

contrast, acoustic mixtures which are distributed and significantly overlapping in the 

time-frequency plane present the greatest challenges to the segregation. Consequently, 

the performance with continuous and broad-band noise intrusions is comparatively 

poorer. Overall, the proposed model gives a substantial improvement in terms of SNR 

and AI. Especially at the worse ear (left ear in this experiment), the intelligibility 

performance after processing is very close to the performance by using ideal binary 

mask. While at the better ear (right ear in this experiment), our model is inferior to 

the enhancement by ideal binary mask. 

When the SNR of the original mixture is very low, the noise is stronger than the 

target speech in most of the time-frequency units. Either ideal mask or estimated 

mask suppresses most of the input signal; hence the output SNR is also low. There­

fore, at low SNR conditions, a lower threshold should be utilized to preserve much of 

the target energy at the expense of increasing the residual noise. 

We compare the results with other sound segregation systems using computational 

auditory scene analysis techniques. All these models are evaluated on Cooke's corpus, 

which facilitates our comparison. 

Table 5.5.2 compares the SNR results of our proposed model with a variety of 

monoaural segregation models. Each value in the table represents the average SNR 

gain across all the testing data in a two-competing-source simulation. As can be seen 

from the table, our system produces a gain of 12.61 dB (left ear, i.e., the worse ear) 

and 6.64 dB (right ear, i.e., the better ear) over the original mixture, which is much 

higher than the performance of monoaural system and very close to the performance 

produced by using binaural ideal mask. 

75 




M.A.Sc Thesis ---- Rong Dong ---- McMaster University - ECE ---- 2005 

Table 5.1: SNR comparison with monoaural enhancement models 
Model Average SNR gain (dB) 

Proposed model 
Binaural ideal mask 

12.61(Left) 6.64(Right) 
12.94(Left) 8.31(Right) 

Pitch-and-AM-based model 
Pitch-labeled mask 

AE-based mask 
True pitch 

Narrow band 
Comb filter 

Wang-Brown system 
Spectral subtraction 

Monoaural ideal mask 

7.73 
5.24 
5.98 
8.43 
5.21 
4.65 
4.45 
3.08 
10.72 

We also compare the evaluation results with another binaural speech segregation 

model proposed by Roman et al. (2003). Her model is based on sound localization 

cues (i.e., lTD and liD) without using monoaural cues. In her tests, the reported av­

erage SNR gain is 11.31 dB at the better ear, which is nearly equal to the performance 

produced by the ideal mask. One reason is that she uses sophisticated statistical de­

cision rules to distinguish the target and intrusion components at very high expense 

of computational cost. 

5.5.3 Experiment 3: number of intrusions 

In the third experiment, the simulated auditory scene is complicated by gradually 

increasing the number of concurrent intrusions. Again, each of the 10 target signal 

from Corpus II is presented at 0° azimuth. There are another six intrusions from 

Corpus II. All these targets and intrusions are natural human speech signals spoken 

by different speakers. 

Figure 5.4 illustrates the spatial configuration of these sound sources. In total, 

four scenes were simulated with different combinations of sources: 
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Target (0°) 

FNO (-45o)§·······------!------- ...... •. MN1 (45°) 
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FN2 (-65°) ~ ~ MN3 (65°) 

i L R \ 
------1----- ---------------------- --------------·i··-­

\ Microphones : 

...... ./
'. ,' 

FN4 (-135°; .--·~N5 (135o) 
~ ~.... 

Figure 5.4: Spatial configuration. 

• Scene 1: target in presence of FNO; 

• Scene 2: target in presence of FNO and MNl ; 

• Scene 3: target in presence of FNO, MNl , FN2 and MN3; 

• Scene 4: t arget in presence of FNO, MNl , FN2, MN3 , FN4 and MN5. 

Comparing the SNR and AI values of the original mixtures, we see that the case of 

multiple sources scenarios (in Figure 5.5(b, c, d)) is more challenging than the two 

competing sources t ests (in Figure 5.5 (a)). According to the analysis in the previous 

chapter, binaural spatial cue estimation is less reliable when multiple concurrent in­

trusions are presented from both sides of the target signal. As expected, the estimated 

mask for multiple intrusions tests is less effective in comparison to the ideal mask. 

However, after mixing with four or six intrusions, the intelligibility of the input signal 

is even higher than the two-intrusion case. This can be explained by noting that , in 

the presence of multiple intrusions , the interference energy is more evenly distributed 

77 




M.A.Sc Thesis-~--- Rang Dong----- McMaster University - ECE ----2005 

- Unprocessed (left ear) Unprocessed (right ear) 

Enhanced by estimated mask (left ear) - Enhanced by estimated mask (right ear) 

Enhanced by ideal mask (left ear) Enhanced by ideal mask (right ear) 

15 ,---~----------~----------~----, 

mil I 
Input SNA at left ear (dB) 

15 

10­

iii' 5 ­
:E. 
a: 
~ 

-· 

10 

II II I ~=11 :•• m1. - D0
-· 0 

1~1 SNA at lett ear (dB) 

< < 0 

0 

Input SNR at le1t ear (dB) I'W4 SNR ot lolt oor (dB) 

(a) (b) 
15· 

i 
I If ::1 oil Ioil 0 

i ·:1 .· 
-5 0·· -·-5 -5 5 

l rpu~ SNR 111MMI Mr (dB) 1'1M SNA AI lett M r (dB~ 

0 

< 

I~ SNA al lell ear (dB) lnpuo SNR ftl lolt oor (dB) 

(c) (d) 

Figure 5.5: Comparison of SNR and AI before and after enhancement with different 
number of intrusions in anechoic condition: (a) with 1 intrusion; (b) with 2 intrusions; 
(c) with 4 intrusions; (d) with 6 intrusions. 
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over the time-frequency place; hence more time-frequency regions are dominated by 

the target signal. Consequently, more target energy can be grouped and extracted. 

Therefore, the performance is not degraded due to the increasing number of intru­

sions. On the other hand, the intelligibility gain after enhancement is even higher 

than the single intrusion case. This result confirms that our proposed model has no 

constraints on the number of concurrent intrusions. 

5.5.4 Experiment 4: effect of reverberation 

All the testing data in the first three experiments were synthesized by convolv­

ing the monaural signals with HRTFs, which do not take room effects into account. 

Therefore, the simulated scene is equivalent to that in an anechoic environment. As 

we know, room reverberation can severely degrade the performance of speech en­

hancement algorithms, and reported results often neglect this important measure. In 

this experiment, we repeat the third experiment on reverberant data. The monaural 

target and noise data remain the same as in the third experiment. The spatial con­

figuration of target and intrusion is the same as illustrated in Figure 5.4. The only 

difference is that the binaural signals tested in this experiment are synthesized using 

reverberant room impulse response. The results of our reverberation tests, shown in 

Figure 5.6, reveal the following: 

• 	The listening task is obviously more challenging when increasing the intrusion 

number from one to two. From two to six intrusions, the difficulty remains 

nearly the same. 

• 	 The mask estimated by proposed model becomes less accurate when multiple 

intrusions occur. 
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Figure 5.6: Comparison of SNR and AI before and after enhancement with differ­
ent number of intrusions in reverberant condition: (a) with 1 intrusion; (b) with 2 
intrusions; (c) with 4 intrusions; (d) with 6 intrusions. 
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• 	 Reverberation degrades the performance of the proposed model. While the ideal 

mask is not sensitive to the room effect. 

5.6 Discussion 

In the previous section, we have only examined the system performance in terms 

of the two objective measurements. In this section, we will use typical experimental 

results to explain the contribution of the individual cue in various noise conditions. 
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Figure 5. 7: Enhancement result for competing speech segregation. The left column 
shows the waveform of the original target , corrupted and reconstructed speech signals. 
The right column shows the spectrograms of these signals. 
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The first experimental example is segregation of two competing speech streams. 

The results are plotted in Figure 5.7. In this case, the sound input is a mixture of two 

speech streams coming from 0 and 30 degrees. We suppose the one from the center 

direction is the target and the other one is interference. The SNR of the mixture 

signal is 0 dB. After processing, a 10.96 dB SNR gain is achieved. In this competing 

stream segregation task, the spatial segregation based on the lTD and liD cues is 

particularly effective in comparison to the pitch and onset cues. As discussed in the 

pitch extraction analysis, the autocorrelation function defined within the possible 

pitch lag is highly periodic. The ambiguity inherent in the periodicity of narrow­

band auto-correlation functions makes the pitch segregation generally less reliable in 

comparison to the spatial segregation. On the other hand, since the two streams have 

similar sound pressure levels, the onset information in both streams can be detected 

and it is hard to tell which stream the onsets belong to. Therefore, the spatial cues 

are generally more robust than the monoaural cues when the target and interference 

sources are sufficiently separated in the space domain. 

However, the benefit of spatial cues would disappear if the target source is spa­

tially close to the interference source. Figure 5.8 demonstrates the experimental result 

of an extreme case. In this experiment, the input signal is target speech corrupted by 

white noise. The SNR of the mixed signal is 0 dB. Both the target source and noise 

source are localized at 0 degrees. Since the two streams have the same directional 

information, they are unable to be segregated by use of lTD and liD cues. Hence, 

both the target signal and the noise will pass through the spatial segregation. Nev­

ertheless, due to the relatively stationary and statistically uncorrelated property of 

white noise, both of the two monoaural cues (pitch and onset) are effective in distin­

guishing the target speech components from the noise. After processing, the overall 

SNR is increased by 7dB. Still, some speech information is lost in the high frequency 
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Figure 5.8: Enhancement result for speech corrupted by white noise. The left column 
shows the waveform of the original target , corrupted and reconstructed speech signals. 
The right column shows the spectrograms of these signals. 

bands because energetic masking occurs in those partials. The reconstructed signal 

sounds somewhat muffled. 

Supposing the auditory scene is further complicated by replacing the white noise 

with a nonstationary speech interference, it is impossible for the model to distinguish 

the target speech stream from the interference stream solely based on the monoaural 

cues. In that situation, the model may fail to produce an acceptable performance. 
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Chapter 6 

Conclusions and Future Work 


6.1 Summary 

Sensorineural-impaired persons experience a hard time listening to a speech signal 

in a noisy "cocktail-party" environment. In the current study, we have developed an 

adaptive hearing system to extract information pertaining to a target speech signal 

in a noisy background and solve the cocktail party problem. 

The model is built on our deep understanding of auditory scene analysis, which 

is a general process carried out by humans to extract information pertaining to a 

target speech signal in a noisy background. In a generic sense, the auditory environ­

ment may be viewed as a complex scene containing multiple objects. The normal­

functioning human auditory system groups the sounds received from these objects 

into separate perceptual streams based on distinctive acoustic cues. Using advanced 

signal processing techniques to simulate this grouping process carried out in normal 

human auditory system, our proposed model appears to be able to make up for the 

perceptual grouping process missing from the auditory system of a hearing-impaired 

person. 

Our model performs bottom-up segregation of an incoming signal, which is closely 

related to Bregman's conceptual model of the auditory scene analysis mechanism. In 

the first stage, the input mixture is decomposed into time-frequency elements through 

an auditory peripheral model. For each elementary unit of the representation, the 
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perceptual acoustic cues are estimated. A subsequent grouping process is operated 

on these acoustic cues in order to identify time-frequency components that are likely 

to have originated from the same sound source. The components dominated by inter­

ference are suppressed. The auditory representation of the target source is preserved 

and then inverted to resynthesize a time-domain waveform of the target signal. 

In Chapter 2, we described the implementation of the auditory peripheral model 

to obtain a time-frequency representation of the incoming signal. We also proposed a 

low-delay filterbank inversion method to make a real-time resynthesis feasible at the 

end of processing. In Chapter 3, we discussed the property and estimation algorithm 

for each of the important auditory perceptual cue. In light of the experimental results, 

we analyzed the robustness of each individual cue against various noise conditions and 

room reverberation. In Chapter 4, we provided theoretical analysis to point out the 

strength and weakness of each individual cue. To dynamically resolve the ambiguities 

of segregation, we described a strategy to combine the evidence from multiple cues and 

thereby make a better grouping decision. The model was systematically evaluated, 

and the experimental results are presented and discussed in Chapter 5. 

6.2 Conclusions 

The model exhibits a number of interesting features: 

• 	 As we know, the human auditory system is the best-performing sound separation 

system in existence in terms of both performance and efficiency. Our model is 

motivated by the mechanisms involved in human perceptual processing. 

• 	 Both objective speech quality measurements (i.e., SNR and AI) and informal 

listening tests show that the proposed model achieves substantial improvement 
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on the intelligibility of a target signal, while it largely suppresses the unwanted 

background noise/interference. 

• Superior to the monoaural noise reduction algorithms used in the current hear­

ing instruments, our binaural model can deal successfully with a wide variety of 

noise intrusions, including competing speech signal and multi-speaker babbles, 

by exploiting the localization information. 

• In comparison to the multi-microphone noise reduction techniques (e.g., beam­

forming, blind source separation), the simulation results confirm that our model 

has no constraints on the number of intrusions. Furthermore, the binaural sys­

tem is good for a compact design of hearing instruments. 

• Simulation results show that our model has the capacity of working in a mild 

reverberant environment, though the performance is slightly degraded by the 

reverberation distortion, which is to be expected. No special effort was made 

to deal with the reverberation phenomenon. 

• The implementation is optimized to make it computationally efficient and low­

processing delay, so that the model is suitable for implementation on a DSP 

chip for real-time processing. 

6.3 Future Work 

Our model does have some deficiencies, which need to be improved in its future 

development. Suggestion for future work can be summarized as fowllows: 

• 	We have identified some important cues and shown the effectiveness of the cues. 

But we still need to improve the methods for the cue-extraction that will be 

more robust. 
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• 	The importance of different cues is dependent on the environment. A uniform 

cue-integration strategy is inadequate. We may need a scene analysis mecha­

nism as the front-end processing of the model. From such a mechanism, we may 

then determine the confidence on each of the cues and thereby choose the right 

strategy to combine the cues. 

• 	 The benefit of new acoustic cues, namely those based on modulation effects in 

speech signals (particularly frequency modulations) deserve serious attention. 

Here, we may look to current work being done by Kan (2005). 

• 	With regards to degradation in model performance due to reverberation, we 

need a scheme to overcome the effect of reverberation and make the system 

work equally well in a reverberant environment. 

• In the current implementation, because the target signal is assumed to be arriv­

ing straight ahead, we apply exactly the same segregation mask to the signals 

received at the two ears. But in a real scenario, when the target signal is off­

centre, there will be a time delay between the target signals received at the two 

ears. If this is the case, separate segregation masks should be applied to the 

two ears. 

• In the current model, we aim to completely suppress the interference and pro­

duce a maximal SNR improvement by using the binary mask. However, unde­

sirable distortions can occur as a result of the quick on-off switching controlled 

by the binary mask. The most notable distortion is "musical noise" in which 

statistical fluctuations in the frequency components of noise lead to random 

tonal artifacts in the processed signal. To reduce the musical noise, we need 

to smooth the change in the gain coefficients of the segregation mask. Conse­

quently, the distortion to the target signal will be reduced at the expense of 
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more residual interference. As long as the model is still able to compensate the 

SNR loss of the impaired auditory system, the smoothed mask can produce a 

more pleasant sounding output. 
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Appendix A 

Testing Corpus 

Corpus I is collected by Cooke (1993). This corpus consists of a combination of 

ten speech sentences and ten noise intrusions. These speech sentences only contain 

voiced sound. In our evaluation, we only selectively tested against six noise intru­

sions: white noise, "cocktail party" babble noise, rock music, telephone ring, female 

speech, and male speech. These intrusions are generally more realistic than the other 

intrusions, e.g. pure tone, noise burst, siren. Note that there are two female speech 

sentences among the ten intrusions. We only tested one of them to avoid repetition 

of the same type of noise. This corpus is mainly utilized to simulate the case of a 

two-competing-source scenario. 

Table 6.1: Target Signals of Corpus I 
ID Speaker Utterance 
vo 
V1 
V2 
V3 
V4 
V5 
V6 
V7 
V8 
V9 

1 
1 
1 
1 
1 
2 
2 
2 
2 
2 

I'll willing marry Marilyn. 
Why were you away a year, Roy? 
Why were you weary? 
Why were you all weary? 
Our lawyer will allow your rule. 
I'll willing marry Marilyn. 
Why were you away a year, Roy? 
Why were you weary? 
Why were you all weary? 
Our lawyer will allow your rule. 

Corpus II consists of ten target signals and six intrusions. The ten targets are 

nature speech utterances from ten speakers (five females and five males) randomly 
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Table 6.2: Noise Intrusions of Corpus I 
ID Description Characteristics 
Nl 
N3 
N4 
N6 
N8 
N9 

white noise 
babble (teaching laboratory noise) 

rock music 
telephone 

male TIMIT utterance 
female TIMIT utterance 

wideband, continuous, unstructured 
wideband, continuous, partly structured 

wideband, continuous, structured 
wideband, interrupted, structured 
wideband, continuous, structured 
wideband, continuous, structured 

selected from the TIMIT database. The six intrusions are speech utterances from 

other six speakers (three females and three males). They are also randomly selected 

from the TIMIT database. All these target utterances and intrusions have very similar 

time durations (average duration is 3.172 seconds for the target signal and 3.346 

seconds for the intrusions) to ensure a significant amount of overlap in the mixed 

signal. This corpus is mainly used in multiple-speaker intrusions and reverberant 

testing. 

Table 6.3: Target Signals of Corpus II 
ID Speaker ID Utterance 
so 
Sl 
S2 
S3 
S4 
S5 
S6 
S7 
S8 

S9 

MRJSO 
MRJRO 
MPAMl 
MJDHO 
MESDO 
FMGDO 
FCMHO 
FDRWO 
FPKTO 

FKMSO 

She had your dark suit in greasy wash water all year. 
That diagram makes sense only after much study. 
Only the most accomplished artists obtain popularity. 
Cliff was soothed by the luxurious massage. 
The tooth fairy forgot to come when Roger's tooth fell out. 
The morning dew on the spider web glistened in the sun. 
Before Thursday's exam, review every formula. 
The causeway ended abruptly at the shore. 
To further his prestige, he occasionally reads the Wall Street 
Journal. 
The nearest synagogue may not be within walking distance. 
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Table 6.4: Noise Intrusions of Corpus II 
ID Speaker ID Utterance 
FNO 

MNl 
FN2 
MN3 
FN4 
MN5 

FLNHO 

MJFCO 
FADGO 
MDRMO 
FDACl 
MSJSl 

If people were more generous, there would be no need for 
welfare. 
Her wardrobe consists of only skirts and blouses. 
She slipped and sprained her ankle on the steep slope. 
Please take this dirty table cloth to the cleaners for me. 
Husky young man, he said with mock distaste. 
The idea of a central tank with lines to each house is not in 
itself a novelty. 
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