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Abstract
The ma jor  object ive  of the rese arch  is to assess the risk of pre term bi rth  associated with 

mate rnal pro xim ity  to  haz ard ous  was te and  pollu tion from the Sydn ey Tar Pond  sites  in 

Nova Scotia, Canad a. The design is spa tia l modelling of risks of pr ete rm  b irt h in populat ion  

living  in the Cape Breto n regional  munic ipa lity  in 1996. The subje cts  are: 1604 observed 

cases of prete rm  bi rth  out of to ta l populat ion  of 17559 at  risk  in 1996. The analysis was 

done  using bo th  the frequent ist and the  Bayesian approaches.  In the frequent ist app roach, 

the Poisson model for agg regated da ta  was fit ted  using the quasi-likelihood app roach to 

accommodate over -dispersion. Weighted regression  was also used. In order to accommodate 

bo th  the ran dom  effect and the an tic ipa ted  spati al effects, Bayesian hierarc hica l modelling  

was also used  to  fit the Poisson model . The result  of the Bayesian modelling shows th at  

the re is no signi fican t spati al associatio n of risk in the are a studie d. All the models also 

show th at the re is no decrease in risk  of p ret erm  bi rth  as we move from the Ta r Pond site 

to othe r region. None of t he  oth er covaria tes in the model show any signi fican t asso ciat ion 

wi th increase  risk of prete rm  bi rth  either. There  was no obvious clustering of risk  in any 

region or pa rt.
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Chapter 1

Research Background and Context

1.1 In tr od uc tion

Repro ductiv e health is defined “as a con dition in which  the rep rod uct ive  process is accom­

plished in a stat e of com plete phys ical,  menta l and  socia l well being: it is no t merely the  

absence of disease or diso rders of the rep rod uct ive  process” (Michal et al., 1993: page  1). 

Thi s definition is roo ted  in the World He alth  Org ani zat ion  def inition of healt h (cited in 

Ro otm an and  Raebu rn,  1994: page  58). Pub lic  awareness ab ou t po ten tia l env iron menta l 

hazar ds has  con tinu ed to grow in recent years.  Thi s concern has  led to  a n increased dem and  

for pub lic healt h au thor ities  to  invest iga te po ten tia l clustering of diseases aro und pu tat ive 

sources of hazards. The at tent ion given to th is top ic by the mass media  has  nec ess itat ed 

research  on the possible effects of haza rdo us was te on the peop le living  nea r the was te sites  

(Dolk et al., 1997; D olk et al., 1998; E lliot  et al., 1996).

An assessment of the effect of hum an exposure to  pa rti cu lar  sub stance s may be a very 

difficu lt task  for two reasons: first ly because  multip le chemicals are  usually  involved so it is 

very difficu lt to discern the specific  agent resp onsible for a pa rti cu lar  healt h concern; and  

secondly  ext ran eou s factors,  like cu ltu ral  and  socioeconomic, may confound the effect of 

direct  exposure to  a was te site. Michal et al. (1993), prov ide a sum ma ry of some of the  

env ironmental fac tors  th at may  affect rep rod uct ive  h eal th.  They say:

Chemical Po llu tan ts are cons idered to be the gre ate st th re at  to reprod uct ive  

he alt h in developed  co untr ies.  However, as a  global p roblem,  the ma jor  factors in
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desc ending ord er of imp ort ance  a re infec tion, ma lnu trit ion , chemicals, rad iat ion , 

and  stres s. In less deve loped countries, the add ed effects of socioeconom ic and  

cu ltu ral  influences become more  evid ent (Michal et al., 1993: page 2).

Der iving f rom the works  of tw o theori sts  of society, Beck (1992) and Giddens (1991), ‘risk’ is 

no t only perceived in la te /h ig h modern socie ties, it is ‘real ’. For Beck (1992), mo derni ty is 

co ns tituted  by ‘risks ’, most especial ly risks em anating  from “pollu tion, nuc lear  a nd chemica l 

pro ductive forces” (Beck, 1992: page 22). Risk  in lat e modern ity,  from the perspectiv e of 

Beck (1992), does  n ot only  manifest  a t the ‘mater ia l’/ ‘physical’ level, bu t also at  the  psychic  

realm . According to him:

Risks  such as those pro duc ed in the lat e mo derni ty differ esse ntia lly from wealth .

By risks  I m ean  above  all rad ioactiv ity,  which  com pletely evades hum an percep ­

tive  abil ities, bu t also toxins  and po llu tan ts in the air, the wa ter  and foodstuffs,  

tog eth er wi th the acco mpany ing short -an d long ter m effects on pla nts , anim als 

and people . Th ey  indu ce systema tic  and often irreversib le har m,  general ly re­

main invisible, are  based  on causa l interp ret ati ons, and thu s init ial ly only  ex ist in 

ter ms  of t he  (scientif ic or anti- scien tific ) knowledge ab ou t them. Th ey  can  thu s 

be chan ged,  magnified , dra ma tized  or minimized wi thin knowledge, and to  th at  

ex ten t the y are pa rticu lar ly open to social def inition and  const ruc tion. Hence 

the mass media  a nd t he  sc ientific  a nd legal professions  in  charge of defining  risks 

become key socia l and pol itic al pos itions (Beck, 1992: page 22-23 ).

W ha t is cen tra l to  the ‘risk soci ety  the sis ’ of Giddens (1991) and  Beck (1992) is the  source  

of ‘anxiet y’ aro und  env ironmental issues in modern ind ustria l societ ies. Thus,  exposure to 

chemical and  bypro ducts  of ind ustria lization  in Sydney, Nova Sco tia may  have co ns tituted  

a dan ger  t o rep rod uctive act ivi ties in the area . As Beck (1992) ind ica tes , the mass med ia as 

a ma jor  source of inform atio n in modern society play an im po rta nt  role in making people 

become aware  of risks  and  danger . Not  only this, the med ia can  also cons tru ct a prob lem 

aro und med ical  issues to  inci te pan ics and  anx ieties in the public (Seal, 2002).
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1.2 The Research Problem

The history of the Tar Pond site in Sydney, Nova Scotia, and the health consequences are 

well documented (Tara, 2002; Nova Scotia Department of Health and the Cape Breton 

District Health Authority, 2001). The Tar Pond is a tidal estuary of 33 hectares in the Cape 

Breton regional municipality of Nova Scotia. This site, considered to be the most toxic site 

in Canada, is a result of 100 years of steel manufacturing and other allied industries in the 

area. The byproducts from these industries include BTEX (benzene, toluene, ethylbenzene, 

and xylene), PAH (polycyclic aromatic hydrocarbons), PCB (polychlorinated biphenyl) and 

particu late laden with toxic metals, such as arsenic, lead, and other heavy metals. This led 

to the contamination of soil and other sources of na tural  water in the surrounding areas. 

Studies have shown tha t exposure to  these kinds of contaminants (in part icular  PCB) may 

have constitute  a danger to reproductive outcomes in the area (Baibergenova et al., 2003; 

Rylander et al., 2000).

This s tudy examines how proximity to the Tar Pond site affects one of the reproductive 

outcomes: preterm birth. This current project was undertaken at the Department of Math­

ematics and Statistics of McMaster University as one par t of a large multi-phased research 

project to investigate the association between pre term birth and other adverse reproductive 

outcomes in Sydney and proximity to Tar Pond site. Other groups involved are: The Cen­
ter for Spatial Analysis at McMaster University, McMaster Insti tute of Environment and 

Health, and St. Joseph’s Health Care Center in Hamilton.

1.3 Research Questions

1. Is maternal proximity to hazardous waste and pollution from the Sydney Tar Pond 

sites associated with increased risk of preterm birth?

2. How much of the variation in preterm birth  can be explained by socioeconomic in­

equalities across the study region?

3



1.4  Res ea rc h O bj ec tiv es

The research objectives are:

1. To explore the spa tial distribution of preterm birth  among women of childbearing ages 

in Cape Breton Regional Municipality of Nova Scotia. The hypothesis of in terest is

• Ho: materna l proximity to the Tar Pond sites does not influence the risk of 

preterm birth in Cape Breton municipality of Nova Scotia, Canada. This will be 

tested against

• Hi. maternal proximity to the Tar Pond sites does influence the risk of preterm 

birth  in Cape Breton municipality of Nova Scotia, Canada.

2. To investigate the presence of clusters of health outcomes th at may be of significance 

in testing the above hypothesis; and

3. To compare different methods for the analysis of aggregated spatial data.

1.5 D at a Des cr ip tion

Cape Breton Regional Municipality is made up of 158 enumeration districts but aggregated 

counts of p reterm birth  are only available for 144 enumeration districts in the Municipality 

based on the 1996 census data. This data are not available for various reasons and throughout 

our analysis we shall be working with information from 144 enumeration dist ricts. There are 

1604 observed cases of preterm birth out of a total  population of 17559 at risk of preterm 

birth. Other covariates include: population in 1996; the proportion of persons who have no 

high school diploma; the ra te of unemployment to population; average income; the proportion 

of persons who are separated, divorced or widowed; the  proportion of single-parent families 

and the proportion of people living alone. All these variables were extracted from the 1996 

census data. The dat a is summarized in Table 1.1:
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Table 1.1: Table of  variables
variables meaning

d The distance from the Tar Pond

Xl The rate of unemployment to population

The proportion of persons who are separated, divorced or widowed

X3 The proportion of persons who have no high school diploma

X4 The proportion of people living alone

X5 The proportion of single-parent families

1.6 Methods of Analysis

• From the given data,  the centroid of each enumeration dis tricts will be calculated. The 

distance of each centroid from the Tar Pond centroid will be measured. This variable 

will be labelled “distance (d i)".

• The analysis will sta rt with an exploratory data analysis to examine the first order 

variations in a ttrib ute  values. Choropleth maps of the aggregated data will be drawn 

using all the important variables like population in 1996, counts of preterm birth, 

standardized incidence ratios and so on to see if there is large scale variation within.

• The next stage is to examine second order properties, which involves spatial depen­

dency i.e., test for spatial autocorrelation. Two ways of doing tha t are to use the 

Moran’s I spatial correlogram or Geary’s C correlogram.

• The third stage is to model the data. At this stage, both the frequentist and Bayesian 

approaches will be employed. Spatial weighted regression models or generalized least 

squares models will be fitted to the data  to examine whether there are covariates that  

can explain the spatial variations in preterm birth. Various transformations will be 

made accordingly.
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1.7 Computer Packages

The analysi s will be done  using the following packages: Arcview, Spacest at,  S-plus, WIN- 

BUGS and  R. Arcview has  fea tures th at allow among oth er things conversion of da ta  into  

maps (Ch olorop leth  maps) for easy  v isualiz atio n of p at te rns and exp lorato ry da ta  analysis. 

It also has  exte nsio ns for easy int egrat ion  of o the r packages like Spacest at and S-plus. The  

Spacest at has  fea tures desig ned to  spee d up exp lorato ry da ta  analy sis; de tec t spati al au to­

cor rela tion ; and fit spati al regre ssion  models. S-plus a nd R  allow flexible coding, which  make 

it possible for oth er prog ram s/r ou tin es  to  be deve loped or wr itte n.

1.8 Chapter Outlines

• Ch ap ter 2 will con tain  a de tai led  review of some rele van t lit erature to th is research. 

This will be div ided into  two pa rts

1. A review of relevan t lit eratu re  on the g eograph ical  ap proaches used  in the analysis

2. A review of spati al sta tis tic s literatu res and  me tho ds from sta tis tic al  point of  

view,

• Ch ap ter  3 will examine detai led  explo ratory  d at a analysis of al l covaria tes used  in the  

model,

• Ch ap ter  4 will con tain  the result  of t he  Baye sian analysis,

• Ch ap ter  5 will exam ine det aile d analysis of the  frequent ist app roaches used  in the  

pro jec t,

• Ch ap ter  6 will discuss sum ma ry of our  findings and  possible d irec tion s for  fu rth er  work.

1.9 Definition of Key Terms

G es ta tion al  age:  the inte rval betw een the first day  of the  mothe r’s la st normal me nst rua l 

per iod  and the da te  of de livery
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P re te rm  bi rt h:  a gestational  age less than  37 completed weeks (less than 259 days). 
P re te rm  b ir th  ra te : the number of preterm births per 100 live births in any given year. 
Lo w  b ir th  w ei gh t: a birth weight less than 2500g.
C o n g e n it a l A nom al ie s:  these are structural abnormalities inborn errors of metabolism, physiological disturbances, mental retardation, and cellular and molecular abnormalities that are present at birth.

7



Chapter 2

Literature Review

2.1 Introduction

In thi s chapt er,  we will review some of the work done  in relation  to  mate rnal proxim ity 

to  was te landf ills and risk of adve rse rep rod uct ive  outcomes. We will also review some of 

the methodological and the ore tical background of thes e stud ies.  Relevant Eng lish-language 

papers pub lish ed betw een 1980 and  2003 were found using com puterized  l ite ra tu re  searches 

on the  Medl ine da tab ase . In add itio n, arti cles were tra ced using references  c ited  in prev ious  

reviews (Morris and Wakefield, 2000; Tar a, 2002; Upon, 1989; Vrijheid, 2000), and some 

unp ubl ished and  ongoing rese arch  works were also exam ined . All the studie s relating to 

adve rse rep rod uct ive  outcom es were cri tica lly app raised  wi th respec t to the stud y design , 

exposure measure , source of h ea lth  da ta , control  for confound ers, and rep ort ed  findings .

These searches  iden tified a num ber  of studie s in relation to mate rnal pro xim ity to  haz ­

ard ous  waste sites and risk of adve rse rep rod uct ive  outcomes. While some of the studies 

reviewed have repo rte d a sta tis tic all y signi fican t associatio n betw een mate rnal proxim ity to 

haz ard ous  was te site s and  risk of h avin g low b irth -we igh t birth s (see Berry  and  Bove, 1997; 

Elliot et al., 2001; Goldbe rg et al., 1995; Goldman et al., 1985; Vianna  and Polan,  1984), 

some othe r studie s have  rep or ted  o therwise  (Bak er et al., 1988; F ield er et al., 2000; Kharazi 

et al., 1997; Shaw et al., 1992).

A lot of stu die s have also rep or ted  a  sign ificant associatio n betw een cong enit al anom alies  

and  mate rnal proxim ity to waste  sites  (see Dolk et al., 1998; Elliot et al., 2001; Fielder
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et al., 2000; Geschwind et al., 1992; Gilber tson and  Brophy, 2001; Goldm an et al., 1985). 

Neverthe less,  these studie s have been crit icized by a lot of au thors on the bas is th at  the y 

have  failed  to consider the  chemical com posi tion  of the was te site  and failu re to iden tify 

which  chemicals are  respons ible  for the observed health effects (Ba ibergenova et al., 2003; 

Vrijheid, 2000; Ry lan der  et al., 2000).

In resp onse to the sho rtco min gs iden tified in prev ious  studies, fur ther studie s have been 

done  to assess the  associatio n betw een adverse  rep rod uct ive  outcom es and  mate rnal prox ­

imi ty to sites  conta mi nated  by polych lorinated biph enyls (PC B) or othe r vola tile  organic 

com pounds  (Baibergenova et al., 2003; Ry lan der  et al., 2000). In pa rti cu lar , recent  studies 

by Baiberg enova et al. (2003) and  Rylander  et al. (2000) have shown th at women exposed 

to PCB are  at  increased risk of g iving b irt h to an infant  wi th low b irt h weight.

All in all, gene ral weaknesses  in the lit eratu re  studie d can be stat ed  as follows: First , a 

lack of direct  exposur e measu rem ents can  increase  bias. Second,  in some of the literatu re  

reviewed, res idents  near was te site s have repo rte d cases of adverse rep rod uctive outcomes 

or sym ptoms associated wi th it. However, it is difficul t to conc lude  wh eth er these cases or 

sym pto ms  are effects of dire ct exposure to was te sites , stre ss and fear, or rep ort ing  bias. 

Th ird , the use of surrogat e or ind irect measures of exposure measu rem ent s in mos t of the 

studie s can  lead to  misc lassi ficat ion of e xposure , which may decrease the sensiti vity of the  

stu dy  for finding a tru e effect (Vrijheid, 2000). Thi s sit ua tion is a majo r source of bias  in 

some of th e case -con troll ed studie s reviewed, especially the ones done by Dolk et al. (1998); 

Geschwind et al. (1992); and Shaw et al. (1992).

Fourt h, the str en gth of a  cross section al design is e nha nced if th e survey is adm inistered  

in bo th  the populat ion  of int ere st and  a control  comm unity . The difficulty of finding an 

ap prop ria te control  com munity  limits the str en gth of most of the cross-sectional studies 

reviewed in thi s lit era ture.  Fina lly, socio-economic factors  may  be a ma jor  confounder in 

the stud y of rep rod uctive healt h (Michal et al., 1993; Sullivan, 1993), bu t have  not been  

pro per ly acc oun ted for in some of the studie s reviewed in the  lit erature (Be rry and  Bove, 

1997; Shaw et al., 1992). In ord er to  cor rect some of t hese shortco min gs, a lot of w ork has 

also been done on the improvement of m ethodologies  and the the ore tical asp ect s of s tudies 

involving proxim ity to  was te landf ills and  risk of adve rse hea lth . We will now review some
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of t hem in more  deta ils.

2.2 Theoretical Background and Context

2.2 .1 Poisson Mo del for Aggregated Data

Let Yi den ote  the  num ber  of obse rved  cases of the disease, and  Ni  the popu lat ion  at  risk 

in area Aj, i = 1 ,. ..  , n.  Let Ei  den ote  the exp ected num ber  of cases in are a Ai  obtained  

by multip lying the populat ion  at  risk, Ni , by the national ra te (r). The na tiona l ra te  is 

a measure of the  pro babil ity  th at a healthy  person  will develop a disease during a specific 

per iod  of t ime . This is usually  calcul ated by dividing  the num ber  of new cases of a disease 

over a period of t ime by the popu lat ion  at  risk  at  th at  time . In most cases, the se ra tes  are 

age-s tan dar diz ed to ad just for differences in age com posi tion  of various pop ula tions.  This 

is because age has  a marked effect on mo rta lity and  morb idity . One  of the most common 

me tho ds for ad jus tin g these ra tes  is to  str at ify  t hem by age-group. So t hat E t is calculated 

using the age-specific rates.

Following Cla yton and  Kaldor (1987), we assume th at  for obse rved  cou nt, Yi, in the 

are a Ai.

y,|A; ~  Poisson(£'.(Ai) i = (2-1)

where Aj den otes  the rela tive  risk  of the disease for the stu dy  region Ai  com pared to  the  

whole country  (or a chosen reference region). Based on thi s assumption,  the dis tribu tio n of 

Yi can be wr itt en  as

ex p(—£ ,jA,)(E jAj) !/ 
y! 5 0 <  Ai < ooA /y iA i)

Hence, the maxim um likelihood est im ato r of the  rela tive risk  (Ai) in are a Ai  is given by

with Var(Aj) =  \ i /E i  which  can  be est im ate d by yi /E ?.  Thi s qu an tit y is general ly referred  

to as the standard ize d mo rbidity ra tio  (SMR) or standard ize d incidence  r ati o (SIR). It  is an 

unb iase d es tim ato r of Aj and one of th e most widely  used in measures of incidence of diseases 

in spati al epidemiology.
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Recently, a number of authors (Datta et al., 2000; Morris and Wakefield, 2000; Lawson 

et al., 2000; Best et al., 1999) have argued against the use of crude SIR without making 

adjustments. One of the disadvantages of the use of crude SIR is tha t it tends to be unstable 

and may not reveal the underlying struc ture in the data when the population at risk is 

small. This is because the standard error of is proportional to E~ Y and so for very rare 

events and/or small areas (and hence a small E J the SIR may be very unstable. Alternative 

approaches have also been proposed for adjusting the crude SIR to improve it s stability. 

These include smoothing models, linear Bayes methods, Bayesian models and empirical 

Bayes models.

2. 2. 2 H ypoth es is  Tes ting

Morris and Wakefield (2000) represent the null hypothesis th at proximity to source does not 

influence risk by

H q : Aj =  rj for i =  1 ,. .. , n.

This definition is based on the assumption tha t all other sources of variability in risk have 

been accounted for. Let (x0 ,y 0) denote the centroid of the putative source, (zj,j/j) the 

centroid of area Aj and di the distance from the  source to the centroid of area Aj. In the 

absence of an exposure measure tha t may be attached to each Aj, Morris and Wakefield 

(2000) define a na tural  additive distance/risk model by

Xi = g {1 + f(d i;0 )}

where y is the background relative risk and /(di-jd) is a function of distance, such tha t 

f(di-,Q) —> 0 as di —> oo. We will use a reparameterizat ion of the form

A = g g(di,Q) (2.2)

so tha t this model will be consistent with Bithel (1995) which will be discussed later. With 

this reparameterization, g(di, $) —> 1 as dj —> oo.

Now suppose a q x 1 vector of area-level risk factors which may be denoted by Zi is 

available. This may be incorporated through a regression model of the  form

Ai = g g^O ^e xp ^z T^) .
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Morris and  Wakefield (2000) note th at a regre ssion  app roach will cor rec tly  ad just sta nd ard 

erro rs of e stima ted  rela tive risks bu t may  b e inefficient due  to spars ity  of d ata .

One of the  pro blem s is t hat o f over-d ispersion  ( ac tua l va riance exceeding the  nominal vari­

ance under the assume d pro babil ity  model)  which  is comm on when  u sing  Poisson regression 

to  accoun t for bo th  dista nc e/ ris k and  known covariates. One of t he  me tho ds for accommo­

da tin g thi s ex tra  poisson var iab ility is the use of the  quasi-likelihood  app roach proposed by 

McC ullagh and  Nelder (1989) which  specifies £ ,(yi |Ai ) = E ^  and Var(yj|Aj) =  KE( Yi \\i ),  

the overdispersion pa ramete r k  is then  est imated. The mos t common me tho d, however, is 

to follow a hierarc hica l modelling app roach and  to model the  spati al dependence between 

the Aj. This meth od  will be exp lained in more  det ail  late r.

2.3 Conventional Epidemiological Methods

In this sect ion,  we review some of t he  convent iona l me tho ds proposed for clu ste r detec tion 

and  clustering analysis.  We will also review some of th e work done in relation  to the  assess­

ment of disease risk  for pu ta tiv e sources of haz ard . While acknowledging the difficulties of 

defining “clus ter ing ” , Wakefield et al. (2000: page  129) refers  to it as “the  pa tter n of the  

locatio n of disease cases, rela tive  to the  pa tte rn  of the  non-case s” . They furth er  desc ribe  

spati al clustering as “residual  spati al varia tion in risk” . Wakefield et al. (2000) note th at  

clu ster det ect ion  has to  s ta rt  w ith  a  simple exp lorato ry da ta  analys is to see w hethe r the  d at a 

exh ibi ts overd ispersion . They define overdispersion in terms  of

1. heterog eneity:  ind epe nde nt Yj, with Var(yj|Aj) > J57(T |̂AJ for i =  1 ,. ..  ,n  and

2. spati al dependence or clus terin g: dependence betw een Yj and Yj th at  is rel ate d to  the 

geograp hica l pos itio n of areas i and j  for i, j  =  1 , . . . ,  n and i j

and  describ ed me tho ds for det ect ing  it. We will now describe some of them in more  deta il.

2.3 .1 Tests  of  Heterogeneity

Before car rying out a form al test to assess wh eth er the re is increased risk in any  region , it 

is im po rta nt  to  test wheth er the ra tes  of disease differ from one Enum era tion Distr ict  to

12

 



another. To test this, Wakefield et al. (2000) define the null hypothesis (Ho) as 

Ho : Ai =  A2 = .. . = = 77

and H\ ■. \ j  for i j  and describe two methods for testing this hypothesis.

Pears on’s Chi-squared Sta tis tic

The test statis tic can be calculated from

where =
i= l

so th at under Ho , the distribut ion of T is asymptotically a chi-square with n-1 degrees of 

freedom. Hence, large values of T will result if there is heterogeneity. Wakefield et al. (2000) 

also explain tha t the significance of the test statist ic can also be assessed by computing 

the empirical p-values based on a Monte Carlo test. This method star ts with the random 

simulation of observations Yt under the null hypothesis. Next, the  test statis tic is calculated 

under each simulation and this procedure is repeated a large number of times. Finally, the 

calculated test statis tic is compared with the observed test statist ic from original data. The 

drawbacks of this method were also identified as:

1. The test does not give any information about the location of the cluster but large 

Yi — E* may be examined for clues.

2. The power of the test against any realistic alternatives is not very clear.

Po tth off  and Whittinghill’s method

The second method described by Wakefield et al. (2000) for de tecting heterogeneity was 

based on the work by Potthoff and Whittinghill (1996). The test statis tic was defined as

E W  -  1)
< j= l /  i= l

where ^(Kj — 1) is the number of unordered pairs of observed cases in each area. Hence, an

area will contribute  to T if two or more cases occur. Under Ho , T has a mean SF=i K(Sr= i 

1) and variance 2(n — l)(ZX=i ^i(S"=i K — 1)) with large values of T indicating heterogeneity. 

The distribut ion of T may be taken to be asymptotically normal but the empirical p-values

based on a Monte Carlo test discussed in the previous section is more stra ight forward and

preferable (Wakefield et al., 2000).
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2.3 .2 Distanc e/ad jace nc y Meth od

Afte r t es tin g for heterogeneity, the nex t step is to  te st wheth er Yt e xhibi ts some spa tia l str uc ­

ture. Wakefie ld et al. (2000) describe some of t he  me tho ds for tes tin g spati al dependency:

Autocorrelation Statistics

The se sta tis tic s are  based on a chosen mea sure of closeness, W y,  betw een areas i and  j.  

In the sim plest form, a bin ary  coefficient is used, such  th at =  1 if areas i and j  share

a common bou nda ry, and  W y — 0 otherwise. In general, may  be selected  based on

the kind  of s pa tia l dep end enc y th at is an tic ipa ted  (Wakefield  et al., 2000). Let  Z t = Yi fE i 

den ote  the sta ndard ize d incidence  ra tio  of are a i. Wakefield et al. (2000) describe thr ee  

sta tis tic s for a ssessing s pa tia l a uto cor relation.  These are  M ora n’s I, G eary’s C and  D. Wa lter 

Test  (Walte r, 1993).

Moran’s I

One of the  mos t popu lar  measure of spa tia l aut ocorr ela tion is Mora n’s I stat ist ic  defined as

G X x S ”,!  IV«) S ( Z ,  -  Z y  '

Thi s stat ist ic  is closely rel ate d to the convent iona l c orrela tion coefficien t and  i t is an app rox ­

imate  measure of t he  spati al dependence. Wh en Z t  does  not exh ibi t any spati al pa tte rn , I  

will be close to  zero and  values of I  close to  1 ind ica te clus tering.

Geary ’s C

An oth er measure of s pa tia l au toc orr ela tion is the Ge ary ’s C stat ist ic  w hich is based on the 

weighted sum of s qua re difference betw een observations and  defined as:

-  z y

Wh en the re is spati al dependence, the  ter m in the nume rat or will be  smal l and  the  value  

of the  stat ist ic  will be close to  zero. The absence of spati al dependence will res ult  in large 

value  for the nume rat or and hence , C will be close to  1.

D. Walter Test (Walter 1993)
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This is a non-parametric rank-based method, denoted by D. The statis tic is obtained by 

ranking Zi and denoting the ranks by Z*. The non-parametric measure of spatial dependence 

can be calculated from

£ U  £?=1
with small values of D indicating positive dependence. The major drawback of all the 

three statist ics is that they do not allow for unequal variance of the SIR and hence may be 

misleading.

2.3.3 ‘Near Versus Reference’ Comparisons

This is one of the  simplest approaches of assessing the risk in relation to a point source. 

It involves the direct comparison of risk in the exposed population (i.e. lying within a 

certain distance of the point source) to tha t in the reference population (e.g the  national 

rate). This approach suffers from the same problems as the use of crude SIR. Morris and 

Wakefield (2000) advise th at the approach must be used with other confirmatory methods 

since it is rather exploratory. Two drawbacks were identified:

1. The problem of identifying the exposed population is not a clear one and may be very 

crucial in the analysis.

2. A significant increase in risk cannot be attr ibuted to the exposure alone, since there 

is a very high likelihood tha t the two populations also differ in respects other than  

exposure.

In order to solve these problems a near versus far comparison was proposed.

2.3.4 ‘Near Versus Far’ Comparisons

This involves dividing the study region into ‘near’ and ‘far’ regions which correspond to 

the exposed and unexposed population respectively. This method may be unreliable if the 

population at risk is small. In such cases, some of the methods used for adjusting the crude 

SIR may be applicable. In the study of disease rate, it is common to adjust for age/social 

economic s tatus because of their  effects on mortality and incidence of disease. One of the
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mos t common me tho ds  of doing th is is to  str at ify  the populat ion  by age-group or social 

economic sta tus. Now, suppose  we str ati fy  the populat ion  at  risk  (Nj/) by age-grou p into J  

st ra ta . Then,  N tj is the popu lat ion  at  risk in age-group j  in are a i and  Yy is the observed 

num ber  of cases of d isease in age-group j  in are a i.

Based on thi s strati fication , Morris and  Wakefield (2000) cons ider  a  ra re disease in which 

the num ber  of cases observed  and populat ion  at  risk  in st ra tu m  j  in the near region are 

den oted by and  N ^ ,  respec tively . The cor resp ond ing  num bers in the far region are 

den oted by y 2j- a n d respec tively . Furtherm ore , they  use Zj and  M j to den ote  the 

num ber  of  observed cases and  p opula tion at  risk in st ra tum j  in a s tand ard pop ula tion. The 

direct  sta ndard ize d ra te  was defined by

and the ind irect standard ize d ra te  by

M jP i 

j'= i
i = 1,2M

Y x i = 1,2

where Pij = Y^ /N ij,  qj = Zj /M j, Yt = J^jY ij, Z  — E j  Z j and M  = The dire ctly

sta ndard ize d ra te  corresp ond s to  a ‘coun ter -factu al’ a rgu me nt in which the est im ate d rat es  

wi thin the are a of inte res t are app lied  to the stan da rd  popul ation.  Th e ind irectly stan da rd ­

ized ra te  applies  the es tim ate d rela tive risk  to  the ra te  in the stan da rd  popu lat ion  (Morri s 

and  Wakefie ld, 2000). Simple sum maries  of the ra te  rat ios  in the near or far regions are 

com pared to the stan da rd  populat ion  by tak ing  the  rat ios  of the direct  and ind irect stan ­

dardiz ed rat es  to Z /M  to give the com parativ e mo rta lity figure (CM F) or the sta ndard ize d 

incidence  ra tio  (SIR ), respectively:

Y
CMF ; - Z/M and  SIRj

E j= i Qj
for 1,2.

A comparison of the  near and  far regions is pro vide d by  the ra tios C MF i / CM F2 or SIRi / SIR 2 .
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2.4 Semi-parametric Tests

2.4.1 Besag  and New ell’s method

Morris and Wakefie ld (2000) describ e a  vers ion of th e me tho d proposed by Besag and  Newell 

(1991) th at  is approp ria te for clu ster det ect ion  in relation to a pre-specified po int  source.  

The null hyp othesis is th at the cases are distr ibuted  at  ran dom over the popu lat ion  at  risk 

in region A.  They assu me th at  the region A  is divided  into n dis join t areas as in the  basic  

Poisson model. The are a con tain ing  the cen troid of t he  source (x 0 ,y 0 ) was labelled A x and  

all oth er areas A2 . . . ,  A n  by increasing dis tan ce from A± based on the are a cen troid. W ith  

the  ass um ption th at the re is no cluster ing , they  defined  the agg regated numb er of observ ed 

cases and populat ion  wi thin the nea res t i area s (n J as

i i

D i  =  ^ 2 v i  a n d  u i =  ISNi i =
i= i i= i

Th e te st  sta tis tic  is M  =  min{z : Di > k} , the num ber  of areas required to  accrue at  leas t 

k cases. A smal l obse rved  value  of M  ind ica tes  th at there  is clu stering aro und (xo,yo) . 

Suppose  m  is the obse rved  value  o f M , then  the significance level of the  test is P r(M  < m)  

under  the null hypothesis . Besag  and Newell (1991) note th at M  will only be gre ate r than  

m  if and only if fewer th an  k ind ivid uals amo ng um  have  the disease . Hence, under  H o , 

the hyp ergeom etric pro babil ity  that exactly  s ind ivid uals among um  have  th e disease can be 

closely appro xim ate d by the  Poisson ter m i f th e disease is r are  (Besag and  Newell, 1991). It 

follows t hat the signi fican t level for each po ten tia l clu ster can be calcu lated from

fc-i
P r(M  <  m) =  1 —

s= 0

e x p (- E i) £ f
(2-3)

where Ei — N zq and  q is an est im ate  of ris k obt ain ed thr ou gh  i nte rna l or external  stan da rd ­

izat ion. Eac h term  in  the  sum rep resent s t he  prob abilit y of observing s cases from a Poisson 

dis tribu tio n wi th mean Ei. Morris and  Wakefield (2000) note th at  a  sma ll p-value  may result 

if the  risk in the whole  stu dy  region is high  rela tive to  the reference region from which  q is 

derived a nd propose  in ternal sta nd ardiza tio n or rep lace ment of Aj by E* = Ei x Y / N , w here 

Y  and N  rep resent  the to ta l num ber  of cases and the populat ion  at  risk  in the stu dy  region 

respec tively .
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In order to adjust for known risk factors, Morris and Wakefield (2000) consider the cumulative  number at risk in stratum  j  within the nearest i areas defined by N[j .For this adjustment to work, they propose replacing Ej, =  N zq in (2.3) by Ei  =  where qj are a set of stratum-specific reference probabilities. Alternatively , Ei  may also be replaced by F* where
E*  =  Ei  x Y / E  (2.4)where Y  =  Yi and E  =  Y/iEi  so that the overall difference between the risks in the study and reference areas have been removed. The method of Besag and Newell is simple to apply but its major drawback, as pointed out by Morris and Wakefield (2000), is that it may produce many false positives and does not provide an estimate of the risk around the putativ e source. This  problem is a direct consequence of the fact that  the method was originally designed for detection of clusters by detecting discrepancies between numerators and denominators due to differences in risk or data inaccuracies.

2.4 .2 Stone’s TestStone ’s test (Stone, 1988) is based on the following assumptions1. Yi ~  Poisson(-EjAj) for i =  1 ,. ..  ,n2. The risk is a non-increasing function of distance .3. Areas are ordered by increasing distance from the putative sources so that i =  1 corresponds to the closest areaThe null hypothesis for the unconditional test is
H o • Ai — • • • — 1

An  alternative is to  estimate A, subject  to the order restriction:
TFi : Ax >  A2 . . .  >  A„

with at least one strict inequality holding. The  estimation of parameters under this restric­tion is achieved analy ticall y using the theory of isotonic regression (regression with order18

 



res tric tion) and  imple me nta tion is car ried  out using either  the min-m ax form ulae  (Stone, 

1988) or  “the  poole d ad jacent vio lators ” (PAV) algori thm  descr ibed  by Stone. The hypothe ­

sis is tes ted  using  a  ge nera lized  l ikelih ood ra tio  t es t stat ist ic  based on the Poisson likelihood 

under the null and alt ern ati ve  hypothe ses.  The obse rved  signif icance  level of the test is 

calcu lated via  M onte Car lo simulation .

One of th e lim ita tions of the  unco ndi tional  te st is th at H q m ay be rejected simply beca use 

the stu dy  region as a whole has  elevated  or lowered risk  com pared to the reference  (or 

na tional) ra te  used  to comp ute  Ei (Morris and  Wakefield, 2000). To solve th is prob lem,  

Bithel  and  Ston e (1989) sugg est a rep lacement  of Ei by E* as in (2.4) which  allow for 

ad justm ent in known risk. Alternativ ely , Shaddic k and  Elliot (1996) suggest a conditiona l 

te st  wi th the null hyp othesis defined as

Ho '. — . ..  ~  Xn  == t/

so th at the me tho d of s ignificance  level est imation  in Sto ne’s test can be modified  to allow 

for the  unknown constan t rj.

As a way of avoid ing the Mon te Car lo tes t, the Poisson maxim um tes t orig inally designed 

by S tone is always used. Th e S tone tes t h as been appl ied wide ly in  epidemiological lite rat ure , 

in pa rti cu lar those studie s con duc ted  by Small Are a He alth  Stati sti cs Un it (SAHSU) (Ell iot 

et al., 1992). Its  ma jor  adv antage  is th at  it avoids  the need  to assu me a fully specified 

dista nc e/ ris k rela tion ship .

2.4 .3 Score Tests

With  the assum ption  th at Wj den ote  an ‘exposur e’ associated  with are a Ai and E* is as 

defined in (2.4), Morris and  Wakefield (2000) define a test stat ist ic  which  may  be used 

to com pare the null  hyp oth esis of const ant risk in all areas versus the gene ral monoto nic 

alt ern ati ve  by

( 2 '5 ’

The dis tribu tio n of th is sta tis tic  under  Ho is a ppr oximate ly chi- squared  w ith a single  degree  

of freedom. In the absence of specific qu an titati ve  exposure they  assu me th at = i (with 

the areas ranked  according to  dis tan ce from (x o ,y oy).
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Lawson (1993) and Waller et al. (1992) suggest the use of a class of locally  most powerful tests based on th e likelihood score. These tests are based on the  additive excess risk model:
Aii — 1 +  egt

where represents a surrogate for exposure and may be prespecified constants or may be modelled using a parametric function of distance (Bithel,  1995).
2.5 Regression Methods

Regression is one of the most widely used methods in spatial epidemiology. In this section, we will discuss various models and methods of estimation.
2.5 .1 Poisson Regression ModelsIn general for rare diseases and aggregated data  where Yi denotes the observed counts of diseases. The  most widely used model is to assume Equation (2.1), where Xi are the area- specific rate ratios and Ei are expected counts of events. It should be noted that if A, are not equal, then the data  Yi will display extra-poisson variation. In modelling disease rates in relation to a point source, we may assume the generalized linear model that incorporates both area-specific covariates and a measure of  the spread of the risk from source. This model may be written as logAj  =  log?7 +  log g(di -,0') +  zf(j) (2.6)where Z{ is a q x 1 vector of area-specific covariates, g is a measure of th e overall inflation of risk in the region under study and g(di) is a decreasing function of distance. The parameters of the model may be estimated using the likelihood or the Bayesian approach.
2.5 .2 Choice of  g(cQAs explained earlier g(di) must be defined such that as di —> oo, g(d{) —> 1. Bithe ll (1995) further clarify most of the controversies surrounding the choice of g(di).  Bithe ll proposes the
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following dis tan ce functio ns as sui tab le forms  for g(di) .

gi(di') =  exp (a /d .t ) (2.7)

p2 (di) =  (1 + C ex p( -d i/ /3 ))  (2.8)

g3 (di) = (1 +  £ex p( —(d j/y)2 )) (2.9)

9 ^ )  = (l  +  £ /( l +  d ,/d )) (2.10)

where d$ m ay be the dis tan ce of th e cen troid of th e subregion from the origin , or may  de note 

any  sur rog ate  measure of inverse risk e.g. ran k of di stan ce. He fur ther defines  a, (3,7, and  5 

to rep resent  deca y rate. For <72 (dj) to <74 (dj), 1 +  £ is a mea sure of the ra tio  of rela tive  risk 

at  source to th at  at  infinity.  Se ttin g

a 0 =  log 77, (2.11)

equat ion  (2.6) becom es

log A; =  a 0 +  log g(di -d) +  z f  0

Some functio ns g(di,  d) are  very  w orthy of m ention. Diggle (1990) defines g(di; d) as 

g(di-, d) =  1 +  £ exp( —d0 d2 )

where d =  (£,/3o ). Diggle et al. (1997) propose an extension to  the model by includin g a 

disc aro und the source of unknow n rad ius  5, wi thin which  the risk  rem ains con stant.  They 

also rep ara me ter ize  the model by using  (3 = ( 3 ^ ^  so th at  (3 is measu red  in the same units  

as dis tance.  This leads to

^(d i;d ) =
1 + £ di < 5

1 +  £ ex p[ -(dj  -  d )//32] di > 5 

where d — (£,(3 ,5).  Here, 1 +  £ is used  as a mea sure of the pro portion  of elev ated  risk at  

source, 5 is t he  rad ius  o f th e plate au  o f ma xim al risk and (3 r epr ese nts  the  d ista nce  from the  

rim  of p lat eau at  which  the risk  has  decreased by a fac tor  of exp( —1) «  0.36.

2.5.3 Area-specific Covariates

One of the  most  effective me tho ds for measuring  th e socio-economic s ta tu s of a com munity  is 

the use of  depr iva tion index.  The imp ort anc e of some socio -economic f actors  in the  pre dic tion
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of di sease  incidence  a nd mo rta lity has  been emphasize d by a lot of resear chers (Jol ley et al., 

1992; P am palon  a nd  R aym ond , 2000; Townsend,  1987). Townsend defined  dep rivatio n as “a 

st at e of observab le and  demo nst rab le disadv antage  rela tive to the local  com munity or the  

wide r soci ety  or na tion to which  the ind ivid ual , family or group belo ngs” (Townsend, 1987: 

page 125). In modelling disease risk in relation to a point  source, socio-economic variables 

have  to be tak en into accoun t beca use of confounding  effects (Jol ley et al. 1992). A lot of 

me tho ds based on some socio-economic variable s have been p ropo sed  and  used  as a mea sure  

of d epr iva tion in the comm unity . We describe some of t hese in more det ail

The Townsend index (Townsend , 1987) involves four variables:  unemploym ent ; absence 

of a  ca r; housing  tenure ; and  overcrowding. The se var iables are sta ndard ize d and  log t ra ns ­

formation is done  to ensure  norm ality , un it weights are then  at tach ed  to  the standard ize d 

vari able s to  ob tain the combined index . Ca rst air s and Morris (1991) deve loped anoth er in­

dex for measuring  dep rivation based on the following variables: per sons in househo lds with 

more  tha n one person  per room; pers ons  in  ho useholds  where the hea d is eco nomically  active  

and  from socia l c lass IV or V (semi-skilled  a nd unsk illed  laborers);  economically active male  

seeking work, and  p erso ns in priva te househo lds wi tho ut access to a car. The se variable s are 

standard ize d and  un it weights are  t hen att ache d to the standard ize d variable s to  ob tain the  

combined index.

Some of the var iables used  in Tow nsen d’s index and  Ca rs ta irs ’ index are  not read ily 

available  in the Ca nadia n census da ta , so Pamp alo n and Ray mond (2000) propose one for 

health and  welfare planni ng in Queb ec. The index is based on the following socio-economic 

variables:  the pro portion  of per sons who have no h igh school diploma; the ra te  of unemploy­

ment to  popul ation; average income; the pro portion  of p ersons who are  sep ara ted , divorced 

or widowed; the pro portion  of single-parent families; and the pro portion  of peop le living 

alone. Using principal  com pon ent  analysis  (with var ima x rotat ion) , they  are  able  to derive  

two ind epe ndent  scores (m ate ria l and  economic),  which  shows a very  signi fican t asso ciat ion 

wi th life exp ectanc y at  bi rth  amo ng men and women in Quebec.
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2.6 Parameter Estimation

The p ara me ter s of th e m odel  (2.6)  c an b e estima ted  using th e likelihood appro ach  or Bayesian 

Hierarchica l modelling.  The likel ihood me tho d will be explained in det ail  i n Ch ap ter  5. We 

will now int rod uce  the Bayesian app roach and  leave the  full discussio n for Ch ap ter  4:

2.6.1 Bayesian Hierarchical Modell ing

Following Wakefie ld and Morris (2001), Wakefield et al. (2000), D at ta  et al. (2000), Bes t et 

al. (1999) and Besag et al. (1991) we define the stag es as

First-stage Model

log Xi = a o +  log g(di', 0) +  z f  (/) + Vi + Ui (2.12)

where Vi and Ui denot e the non -spatial and  spati al ran dom effects respec tive ly which  are 

general ly assume d to  be indepe nde nt.

The functio n g(di', O') is a functio n of di stance  dt from the cen ter of th e po int  source such 

as those defined earlier. Diffe rent form of g(di] 9) have  been used  in modelling of diseases 

risk in relation to  po int  source. For exam ple D at ta  et al. (2000) define  g(di- O') as

g(di',9) = e xp (a /d j)

where 0 = a.  Wakefie ld and  Morr is(2001) define g(d i,9 ) in ter ms  of ^ (^ i)  to  give

g(di ,9)  =  1 +  £ exp

where 9 = (£ , (3). It should  be noted  th at  £ =  0 cor resp onds to no relations hip  between 

dis tan ce and risk.

Second-stage Model

At the s tage we t ry  to  address some of the  pro blem s of  inst ab ilit y of M LE A =  Yi/E i when the  

da ta  is sparse . Th e u sua l app roach is to  allow th e e stima tes  of each of Aj to  ‘borrow s tre ng th ’ 

from the rem ain ing  est imate s of Aj, j  i by speci fying  a joi nt model for A =  (A i,. . . ,  A„). 

This is achieved by spec ifying a mu ltiv ari ate  p rob ability dis tribu tio n for A (Wakefie ld et al., 

2000).
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Third Stage: Prior Distributions

At thi s stage we specify prio r distr ibu tions  for all the param ete rs in the first and second 

stages. In general  for all pa ram ete rs in the model nor mal prio rs wi th large var iance are 

usually  specif ied to  rep resent  vague beliefs. An oth er poss ibil ity is to specify  impro per  uniform 

prio rs (D at ta  et al., 2000; Wakefie ld et al., 2000).
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Chapter 3

Exploratory Data Analysis

3.1 Introduction

In this chapter, exploratory data analysis of all the covariates will be carried out. Maps of 

each of these variables will be plotted to see if there are any obvious clusters. A confirmation 

of these pat terns  will be done using some of the methods discussed in chapter 2. Areas tha t 

are not shaded on the  maps show the 14 missing values explained earlier in section 1.5.

3.2 Standardized Incidence Ratio

Preterm births only occur in females within the child bearing age and the condition is not 

infectious. Hence, i t is reasonable to  assume tha t each case occurred independently, so tha t 

the distribution of observed counts, Yi} i = 1 ,. .. , 144 is as defined in Equation (2.1). The 

expected counts (£)) for each enumeration district  was calculated from the Canada preterm 

birth rate of 7.1 per 100 live births in 1996 (source: Population and Public Health Branch, 

Health Canada).

This rate  is assumed fixed for 1996 and might have been calculated by including data  

from the Cape Breton Regional Municipality, but we will assume that  the effect of this can be 

ignored. The expected counts for each enumeration district were calculated by multiplying 

the population at risk in each enumeration district by the national rate  of 7.1% and this is 

denoted by Ei- Hence, Ei is the expected number of preterm birth  from all other sources
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Figure 3.1: Maximum likelihood estimates of the relative risks (SIR) for  preterm birth

of risk other than  pollution from the Sydney Tar Pond. Figure 3.1 shows the map of the 

maximum likelihood estimators of the relative risk (SIR), A, =  Y^E^. From the map, areas 

with Aj < 1 indicate no risk or absolute risk reduction while Aj > 1 indicate high risk of 

preterm birth  compared to  the rest of Canada. But as explained earlier, care has to be taken 

when interpreting the crude map of SIRS. To illustrate this, we will plot the SIR against the 

population at risk (see Figure 3.2). This graph clearly shows th at areas with low population 

at risk tend to show high variability in SIR. This can be adequately accounted for using the 

Poisson model for aggregated data. This will be explained in the next two chapters.

3.3  A re a- sp ec if ic  R is k

Following Pampalon and Raymond (2000), the  following area-specific variables were consid­

ered for the analysis: The proportion of persons who have no high school diploma, the  rate  of 

unemployment to population, average income, the proportion of persons who are separated,

26



Figure  3.2: Plo t of SI R against popu lation at risk
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Figure  3.3: Plo t of  S IR  versu s distance in km  fr om  the centroid of  the  Tar Pond and other 

area-specific covariates.

divorced  or widowed, the pro portion  of s ingle-p aren t families and the  pro portion  of people 

living  alone.

Only five of  th e vari able s are avail able  at  all the  144 EDs wi th average incom e available 

only in 130 EDs. So we could  not com pute an adequate mea sure of dep rivatio n base d on 

the me tho d proposed by Pamp alo n and  Ray mond, we decided to  a ssess the effect of each of 

the var iables sep ara tely leaving ou t average income.  Dis tanc e from the Tar Pond site  and  

all the area-speci fic variable s were plot ted  a gainst  SIR  to  assess the effect of each. The plot s 

are  given in Figure  3.3.

As exp lain ed earl ier, points  below the doted  line ind ica tes  no  risk or absolu te risk  re duc-
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Figure  3.4: The percentage of people living alone

tion and  vice versa.  All the high  values  of S IR occ urre d wi thin the 20 km dis tan ce from the  

Tar  Pond. There  is a s ligh t evidence of dec rease in  risk from source as we move fur ther away 

bu t thi s will be tes ted  sta tis tic all y in the next chapte r.

The plot of SIR and  the  r at e of unemployment  t o populat ion  show an upw ard tre nd  w ith 

high une mployment rat es  associated with high SIR. A similar pa tte rn  is disp layed by the  

plot of SIR  and  pro portion  of p erso ns with no high school diploma. In the plot of the SIR 

and pro portion  of se parat ed , divorced  and  widowed; areas with low prop or tion of se parated, 

divorced  and widowed ten d to  have low SIR. A similar  pa tte rn  is seen in the plot of SIR 

and  pro portion  of peop le living  alone. There  is no obvious pa tte rn  in the plo t of SIR and  

pro portion  of s ingle pa ren t families.
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Figure 3.5: The rate of unemplo yment  to popu lation

3.4 Test for Spatial  Dependency

One of the objectives of this study is to check for any obvious clustering of events around 

the Tar Pond th at may be significant in explaining the variation in preterm bi rth rates. This 

can be done by plotting the maps of all the variables and visually assessing whether there 

is any cluster or carrying out a formal test using some of the methods discussed in the last 

chapter like Moran I or Geary C statistics.

From the  map of SIR in Figure 3.1, we would expect a cluster of high SIR around the 

Tar Pond or a decrease in the SIR as we move further away from the Tar Pond but neither 

of the two is obvious from Figure 3.1. The maps of all the area-covariates were plotted to see 

whether there is any spatial pa ttern  . The plots are displayed in Figures 3.4 to 3.8. Figure 3.4 

shows a pattern  with the highest proportion of people living alone occurring within the 20km 

radius of the Tar Pond site.

Figure 3.5 also shows tha t the unemployment to population ratio decreases as we move 

further away from the Tar Pond. From Figure 3.6 we can see a small cluster  of proportion
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Figure 3.6: The percentage of persons who are separated, divorced or widowed

of separated, Divorced of widowed. Figure 3.7 show tha t the proportion of single parent 

family is relatively spread except for three noticeable clusters of which two are close to the 

Tar Pond site. Finally, we can see that the proportion of persons who have no high school 

diploma shown in Figure 3.7 displays some spatia l pattern with some of the area close to 

the Tar Pond having high proportion.

Existence of spatial autocorrelation was also tested  formally using the Moran I test. This 

test was carried out using the S-Plus extension in Arcview which allow coordinates of these 

maps to be exported to S-Plus. Results of the spatial autocorrelat ion analysis are given in 

Table 3.1 with variables defined as in Table 1.1. These results show the correlation, variance, 

normal stati stic and p-value. The only variable that  is not significant based on the associated 

p-value is SIR. This confirms the result of the visual examination of maps.
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Figure  3.7: The percentage of  single-parent fam ilie s

Table 3.1: Results  of  Spa tial Auto correlation Analysis using  Moran I  st ati stic s
Variables Corre lati on Variance Std. Error Normal  sta tis tic Normal  p-value

SIR -0.03798 0.002541 0.05041 -0.6148 0.5387

0.348 0.002541 0.05041 7.043 1.888e-12

0.4582 0.002541 0.05041 9.229 2.732e-20

0.1924 0.002541 0.05041 3.955 7.659e-5

x 4 0.4051 0.002541 0.05041 8.174 2.984e-16

x 5 0.2932 0.002541 0.05041 5.955 2.607e-9
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Figure  3.8: The percentage of persons who have no high school diploma
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Chapter 4

Bayesian Hierarchical Modelling

4.1 Introduction

In ord er to  model the da ta  w hile acc ommodat ing  the exp ecte d over dispersion and  also in­

clud ing the spati al com pon ents (locatio n or rela tive  pos ition of da ta  values) of the da ta,  

Bayesian hie rarc hical mode lling  was used. The imp lem ent ation of thi s mod ellin g was done  

wi th WIN BUG S and  GeoB ugs software for mode lling  agg regated da ta  with plo ts and  con­

vergence diagnostic  te st  done  wi th c o d a  package in R (Plum mer et al., 2004). One of the 

ma jor  adv antage s of thi s me tho d of modelling disease risk is th at it combines inform atio n 

from the da ta  (likel ihood) with the prio r dis tribu tio n of the  disease risks. The mean or the  

median of th e poste rio r dis tribu tio n is used  as a point  est imate  of di sease  risk for each area. 

The two basic assum ptions  un der lying th e use of th is me tho d for agg regated dat a are: Fir st,  

disease in each  enu merat ion  d ist ric t is a ssum ed rare and  non- infectiou s. Hence, occu rrences 

are  indepe nde nt.  Second , the risk  is assumed  to  be constan t in each enum era tion dis tric t. 

The mod ellin g is explain ed in the following three  stages :

4.2 Description of the  Model

F ir s t -s ta g e  M o d e l
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Following D atta  et al. (2000) and Bithel (1995), we defined

= ex p( a/ dj

so tha t equation (2.12) becomes

log Aj =  a0 + a/di  -t- zf(/> + Vi + Ui (4.1)

where di is the  distance of the ith  enumeration district (ED) from the centroid of the Tar 

Pond, rj = exp(ao) is a measure of the overall inflation of risk in the region under study, a 

represents the decay rate and 0 is a vector of parameters of the area-specific covariates. Vi 

are unstructured random effects included in the model to capture  the effects of unknown or 

unmeasured area level covariates. Hence, exp(Vj) will be equal to the residual or unexplained 

relative risk in area Ai after adjusting for known area-specific covariates. We have included Ui 

in the model to capture our belief that the unst ructured random effects (V)  may exhibit some 

spatial structure. The second stage of our analysis is to model the expected overdispersion 

in the model by defining appropr iate structured and unstructured  random effects for the 

model.

Second stage: overdispersion model

As discussed earlier in Chapter 2, there  are two types of over-dispersion: heterogeneity and 

spatial dependence. In th is section, we assume tha t the unstructured  random effects which 

is a measure of heterogeneity is of the form

V i^ N ( 0 ,a 2
v ) i = l , . . . , n

where a2 is a measure of the between-area variability of the Vi. Next, we specify the spatial 

random effect to model the  anticipated spatial dependence of the  log of relative risk. For a 

detailed review on the modelling of the spatial variability we turn  to Wakefield et al. (2000). 

The problem of accounting for spat ial dependence is a bit more complex than tha t of het­

erogeneity. This is because we are interested in modelling an n-dimensional random vectors 

U = (U i,. . . ,Un ) T  while making allowance for dependence between Ui and Uj for i j.  

One way of doing this modelling is by specifying the joint distribution of U. The second,
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which  will be discussed, is the use of univa ria te con dit ional distr ibu tions  of Ui\Uj = Uj, 

j  i , i  =  1 , . . . ,  n. Wakefie ld et al. (2000) define

U ~ A y o n , ^ E )  (4.2)

where S  is an n x n pos itive definite  cor relatio n ma trix . Th e pa ramete r a? is a mea sure of 

the overall var iance of the  Ui. Th ey  also define a matr ix  Q =  E _ 1  and den ote  elem ent (i ,j )  

of this matrix  by Qij for i, j  = i =  1 , . . . ,  n.

Following Besag and Kooperberg  (1995) and  the stan da rd  p rop ert ies  o f th e mu ltiv ariate  

normal, Wakef ield et al. (2000: page 124-125) give a det aile d der iva tion of the conditiona l 

distr ibut ion of Ui\Uj from equat ion  (4.2). The gene ral form is given by

Ui\Uj = U j,j  N  (4.3)

where Wu  =  0, W y  =  —Q i j / Q u ,  and  Du = Q ^1 . Thi s equat ion  defines a Markov ran­

dom field (MRF) model because  spati al depend enc y is modelled  thr ou gh  the conditiona l 

dis tribu tio n of Ui\Uj (Wakefield  et al., 2000; Wakefield and Morri s, 2001). The use of equa ­

tion (4.3) always st ar ts  w ith  t he  speci fica tion of a  spa tia l weight (Wjj) which defines  t he  s et 

of n eigh bours th at contr ibu tes  positive weights to the con ditiona l expecta tion of Ui.

One of the most common me tho ds of speci fying  the MR F model is the use of intr insic 

con dit ional autoreg ress ive (CAR) proposed by Besag et al. (1991) and defined by
2

Ui\Uj = U j , j  i N (u i, — )

where Ui = and rrii is the numb er of neighbou rs. Comparing th is wi th equ a­

tion (4.3) shows th at Du =  l/m ,j and  W tj = 1/m.i for neighbours  and zero othe rwise. The 

mos t chall enging asp ect of this  modelling is in  how to define neighbours and choose . In 

our  case, we have defined area s i a nd  j  as neig hbours if th ey  share a common b oundary  (see 

Wakefie ld et al., 2000; Cla yton and  Kaldor , 1987; Besag et al., 1991). We have  also defined 

the spati al weights {W ^ : i =  1 , . . . ,  n} as a 0-1 con tiguity matr ix  in which  W ^ =  1 for 

neig hbours  and =  0 otherwise. Fur the rmore , Wu = 0 and  the constra int  Z)"=i Ui =  0 is 

imposed  for ident ifiab ility .

Third Stage: Prior Distributions
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Table 4.1: Priors

Au tho rs cr~2pr iors cr u 2 prio rs

Wakefie ld et al., 2000 Ga mm a (0.5,0.0005) Ga mm a (0.5 ,0.00 05)

Wakefield and Morris 2001 Ga mm a (0.5,0.0005)

Ga mm a (0.5,0.0005)

Ga mm a (0.5 ,0.00 05)

Ga mm a (0.1 ,0.1)

Best et al., 1999 Ga mm a (0.001,0.001) Ga mm a (0.1 ,0.1 )

At thi s stage all the param ete rs (a 0 , a,  (p, cr~ 2 and <r“2 ) of the mod el are  assigned  a prio r 

dis tribu tion. a o was assig ned a flat prior which  cor resp onds to a uniform  dis tribu tio n over 

the whole real  line, a , and  (pi were assigned  a normal (0 ,10~5 ). In WIN BUG S, a normal  

distr ibut ion is always  specified in terms  of it s mea n and  precision. Hence  a nor mal (0 ,10~5 ) 

is ano the r way of  mak ing a  uniform dis tribu tio n out of no rma l by specifying  a  large variance.

Th e choice of prior for <7_2 and a ”2 is a very  chal lenging one and it has  to  be done  

carefully . Also, sen siti vity t es t has  to  be  don e w ith  these  priors. Many a utho rs have favoured 

the use of gam ma (a,b) for bo th  a~ 2 and  (j~2 because  it is a con jugate  prio r to the normal 

bu t the choice of a and  b is wh at they  have not agre ed on (Wakefield et al., 2000; Wakefield 

and  Morris, 2001; Cla yton and Kaldor , 1987; Besag et al., 1991; Bes t et al., 1999; D at ta  et 

al., 2000). In the Tab le 4.1, we give some of these prior s. In our  case, we have assigned 

Ga mm a (0.1 ,0.1 ) to  bo th  cr“ 2 and cr“ 2 and car ry out sen siti vity analysis  wi th all the prio rs 

given in Tab le 4.1.

4. 2. 1 R el ati ve R isk E st im ate s

W ha t is the tru e rela tive risk (A;) of pre term bi rth  in each enu merat ion  distr ict s for 1996 

com pared wi th the reference pop ula tion? In order to  answ er th is que stion, we define the  

general form of the  rela tive risk functio n (AJ from equat ion  (4.1) as

\ i  = r] g(di -0) e xp {z f (p + Vi + U i}. (4.4)

Wakefie ld and Morris (2000) advi se th at  thi s gene ral form shou ld be used  to  est imate  area- 

level rela tive r isk when doing  model checking and also to fac tor in o ur belie f th at the random
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effects Vi and Ui are contributing significantly to Aj. An alternative form is

A =  rj

which is preferred when we believe tha t V. and Ui are mainly accounting for data  anomalies. 

In our case, we have estimated Aj from equation (4.4).

4.3 Im pl em en ta tion

Let us define a parameter vector 9 = and denote the prior distribution of

9 by 7r(0) and  the likelihood for data  D given 9 by L(D\9). Then, the posterior distribution 

of 9 and D which is the “object of all Bayesian inference” (Gilks et al., 1996) is defined as

tt(0|£>) (X tt(0) L(D\9)  (4.5)

The next step is to generate a  sample from the posterior d istribution 7r(0|TA). This may be a 

bit complex because the normalization constant of equation (4.5) defined by f  7r(0) L(D\9)d9 

is high dimensional and may not be easy to evaluate analytically. One way of doing effective 

sampling from this posterior distribution is to use the Markov chain Monte Carlo (MCMC) 

simulation. Roberts (1996: page 41) defines a Markov chain X  as

a discrete time stochastic process {AC), X i , . ..} with the property tha t the dis­

tribution of X t given all previous values of the process, X o,X-l,. ..  Xt _i only 

depends upon Xt _i. Mathematically, we write

P[X t e A|X0 , X , , . . . Xt_x] = P[X t e A|X f_x]

for any set A, where P[.|.] denotes a  conditional probability.

Roberts (1996) further gives three  importan t properties tha t must be satisfied by the distri­

bution of X t before it can converge to a stationa ry distribution. These are:

1. It must be “irreducible”. This means tha t the ability of the Markov chain to reach 

any non-empty set with positive probability, in some number of iterations should not 

be influenced by the starting position.
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2. The chain must be “aperiodic”. This is a condition tha t will make it impossible for 

the Markov chain to oscillate between different sets of s tates in a regular periodic 

movement.

3. The last and most important condition is th at the chain must be “positive recurrent” . 

This means tha t if the initial value A o is sampled from %(.), where %(.) is a sta tionary  

distribution, then all subsequent iterates will also be distributed according to %(.).

Applying this concept to  our case, we need to construct a Markov chain with state  space 8C, 

where 8 G 8C C . This process is then used to generate random samples from the joint 

posterior distribution of 7r(0|/?). Suppose we denote these samples by 8 ^ , 8 ^ , . . . , 8 ^ .

The next step is to use Monte Carlo integration to approximate the expectation of a 

function f(8 ). This is defined as

£ W ) I «
71 t=l

The main idea here is that the population mean of f(8 ) is been estimated by a sample mean. 

One of the methods of constructing the needed Markov chain is the  use of the Metropolis- 

Hastings algorithm. Another method is the use of the Gibbs sampling algorithm. This second 

approach is a special case of the single-component Metropolis-Hastings algorithm and it can 

be implemented in the WINBUGS sta tistical  software. Output from the  MCMC is usually 

summarized in terms of ergodic averages, which provide an estimate of the posterior means 

of 8  ̂ {k — 1 ,. .. , I}, where I is the number of parameters. Hence, the posterior mean can 

be estimated by the sample posterior mean 8k = The posterior variance is

estimated by the  sample posterior Monte Carlo variance a# — ~ 9k)2/R-

4.3 .1 Methods of Sampling from Posterio r Distribution

There are basically two approaches agreed on by a lot of authors on how to sample from the 

posterior distribution.  One approach involves running one long chain for a long period and 

assessing the convergence of the  chain to  the required expectation (posterior distribution) . 

This method is considered more efficient but assessment of convergence may be difficult. The 

second approach involves running more than one chain and starting from different points in
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the pa ramete r space. This me tho d is very good  for convergency assessment. Gelman  and  

Rubin  (1992) suggest run nin g 3 to  5 chains star tin g from “overd ispe rsed ” pos itions in the  

posterio r distr ibut ion and  d rawing inference from all the chains . This is t o avoid a sit ua tio n 

in which  one is s tuck aro und 1 local poste rio r mode.

4. 3. 2 C on ve rg en ce  dia gn os ti cs

In thi s sect ion we will discuss some of the me tho ds of assessing convergence of chain (s) 

in MCM C analysis to  the ta rg et  dis trib ution . Theoretic ally  poste rio r mea ns can only be 

obtained at  infinity. In pra ctise however,  a reasonable  appro xim ation is good enoug h. The 

main que stio n is t ha t,  at  wh at point  can  we say th at  a chain or chains have converged? We 

have answ ered  th is que stio n by run nin g five i ndepe ndent  chains sta rti ng  at  diffe rent ini tial  

values. Asse ssment of convergence  in WIN BUG S can be done info rmally by checking the 

time series  plots.  Th is can then  be confi rmed formally with the  G elm an and Ru bin’s me tho d 

(Ge lman and Rubin , 1992). Once  convergence is reached,  we expe ct the samples  to look like 

a ran dom scat te r plo t ab ou t a stable  mea n value. Thi s can  easily  be seen in the tim e series 

plots . Gelman  and  Ru bin’s meth od  m oni tors convergence  by est im ating  the  factor by which  

the scale pa ramete r mig ht shr ink  if samp ling  were con tinu ed indefinitely . This is defined as

n  — 1 m +  1 B  d f 
n  m n  W  d f — 2n

where B  is the var iance betw een th e means from m  para llel  chains, W  is the  average of the  m  

within -chain  v arian ces, and  d f is t he  degrees o f freedom of th e appro xim ating t dis trib ution .

4. 3. 3 A uto co rr el ati on  fu nct io n

Thi s is a mea sure of how the values within  the chains are related. High au toc orr ela tion may 

occur if the pa ram ete rs in our  model are high ly cor rela ted.  Thi s is a very serious prob lem 

because  it may  slow down the  Gibbs sam pling process and increase  t he  t ime need ed to  fully 

explore the ent ire  poste rio r dis trib uti on . A very simp le diagnosis of the  au toc orrel ation  is 

the use of the autoc orr ela tio n plo ts which is avail able  in WIN BUG S. Th e presence of high
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Figure  4.1: Gelm an Rub in Plots fro m five  parallel chains . Convergence is suggested when 
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Density of alpha

N = 10000 Bandwidth -  0.01381

Den sity of  eta

N = 10000 Bandwidth = 0.006088

Density of  phi1

N = 10000 Bandwidth = 0.00556

Density  of phi3

Density of  ph i2

N = 10000 Bandwidth = 0.008731

Density of  phi4

N = 10000 Bandwidth = 0.006723N = 10000 Bandwidth = 0.004935

Figure  4.2: Kerne l den sity  plots of  sampled 

pooled chains.

values fo r parameters of  model 4 based on five
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Density of  phi5
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Figure  4.3: Kerne l den sity  plots of  sam pled values fo r parameters of  model f  based on five  

pooled chains.
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Figure 4.4: Autocorrelation for chain 1
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Figure 4.5: Autocorrelation fo
r chain 2
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Figure 4.6: Autocorrelation for chain 3
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Figure 4.7: Autocorrelation for chain 4
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Figure 4.8: Autocorrelation for chain 5
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Table 4.2: Posterior med ian (95% credible inter val)  fo r paramete rs of each mode l and sum- 

maries of  model fi t (DIC) and complexity (pD )

Nodes Model 1 Model 2 Model 3 Model 4

a - -0.097 (-0.326,0.120) - -0.087 (-0.317,0.130)

CX.Q 0.246 (0.188,0.305) 0.268 (0.193,0.343) 0.241 (0.182,0.300) 0.260 (0.1834,0.336)

<h - - -0.019 (-0.108,0.070) -0.019 (-0.107,0.072)

<fa - - -0.001 (-0.080,0 .077) 0.001 (-0.079,0.080)

<j>3 - - 0.051 (-0.091,0.195) 0.049 (-0.092,0.189)

04 - - 0.008 (-0.102,0.118) 0.008 (-0.101,0.116)

05 - - -0.002 (-0.093,0.090) -0.002 (-0.092,0.090)

0 0.557 (0.428,0 .676) 0.559 (0.434,0.679) 0.555 (0.426,0.677) 0.558 (0.430,0.682)

9 1.279 (1.207,1.356) 1.307 (1.212,1.409) 1.272 (1.200,1.349) 1.297 (1.201,1.400)

Ou 0.187 (0.125,0.281) 0.189 (0.127,0.283) 0.1847 (0.124,0.282) 0.187 (0.126,0.287)

G V 0.149 (0.109,0.204) 0.149 (0.110,0.204) 0.1486 (0.108,0.204) 0.149 (0.108,0.203)

DIC 727.934 728.672 732.164 734.653

Pd 38.419 39.208 42.915 41.094

au toc orr ela tion ind ica tes  that  t he  sample n eeds  to  be  la rger in  o rde r t o fully explore the  po s­

ter ior  d ist ribution . It should  be noted  that low au toc orr ela tion or absence of autoc orr ela tion 

does  not ind ica te convergence  of the  chains.

4.4 Bay es ia n an alys is  re su lt

Using  the prior distr ibu tions  of the prev ious  section, the analysi s of incidence  of pre term 

bi rth  in the pro xim ity of the Tar Pon ds was car ried out . The following models were fitt ed 

using the five a rea  c ovariate s avail able  at  all the 144 EDs and a measure of p rox imi ty (d j:

1. model wi th no covaria tes which corr esponds to the  null model,

2. model wi th only  dis tan ce mea sure alone,

3. mod el wi th only deprivat ion  covaria tes alone, and
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Figure  4.9: Posterior mean of  the relative  risk  of preterm  births fo r mode l f

4. finally, model wi th dis tan ce and  dep rivatio n covariates.

The models were fitt ed using MCMC sim ula tion me tho d discussed earlier. Five sep ara te 

chains sta rti ng  from diffe rent ini tia l values  were run  for each model. Convergence was as­

sessed by visual exam ina tion of time  series plo ts for each pa ramete r and by car ryin g out the  

Gelman  and  Rubin  diagno stic  based on the rat io of betw een to wi thin cha in variances for 

each model . The tim e series plo ts with all the  five c hain s superimposed were examin ed to 

see w het her  t he  chains were mixing well. Figure  4.1 shows the Gelman  R ubin Plo ts wi th the  

“shrinking fac tor” . This clearly shows th at  “shrinking fac tor” for each pa ramete r a pproaches  

1. Hence, all chains have escaped the influence of t he ir star tin g points.  Figure  4.2 and  4.3 

show the  poste rio r den sity  of each pa ramete r aft er convergence. The au toc orr ela tion plot  

shown in Figu res 4.4-4.8 show th at  aut ocorr ela tion decreases very fas t from lag 1. All the  

plo ts were p rod uce d wi th the c o d a  package for R  (Plu mm er et al., 2004). On th is basis , the  

first 2000 samples of each chain were disc arded as ‘burn -in ’; each chain was run  for a fur the r 

10000 ite rat ion s, and  poste rio r est imate s were base d on pool ing the 5 x 10000 samples  for
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Figure 4.10: Posterior median of the relative risk of preterm births for  model f

each model. This gave Monte Carlo s tandard errors t ha t are less than  1% of the posterior 

standard deviation for each parameter in the models.

Table 4.2 gives the summaries of the posterior distribut ion under each model. From 

Table 4.2, we can see tha t estimates of a in both models 2 and 4 is negative, and the 95% 

credible interval contain zero which is evidence th at there is no increase in risk from source. 

The 95% credible interval for (fa (i = 1 ,. .. , 5) in models 3 and 4 also contain  zero which 

shows that the risk cannot be explained by any of the socio-economic covariates. For each of 

the models rj which is a measure of the overall risk was found to be greater than 1 which is 

evidence th at there is an increased risk of preterm birth  in each of the enumeration districts 

compared to the rest of Canada.

The parameters, cru and crv only change slightly over the 4 models. Following Best et 

al. (1999), we defined a quantity  ip — cru /(<7u + &v) as a measure of the relative contribution 

of Ui and Vi to the total over dispersion. So that as ip —> 1, spatial  variation dominates, while 

as ip —> 0, spatial variation becomes negligible. From Table 4.2, the  95% credible intervals
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Figure  4.11: Plo t of the pos terior  m edians of  relative  risk  against distance fro m Tar Pon d in 

km
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for -0 for each model contain 0.5. Hence, there is no clear evidence that the spatial structure 

dominates the random effect in any of the  model.

Goodness of Fits

Spiegelhalter et al. (1998) proposed the  use of Deviance Information Criterion (DIC) which 

consists of two terms, one is a measure of goodness of fit and the other is a penalty for 

increasing model complexity so tha t smaller values of DIC indicate a better- fitting  model. 

From the result of Table 4.2, the  DIC increases as more variables are added into the model. 

Hence, Model 1 is be tter than  all the three other models.

Predicted  Relative Risk

Finally, the posterior median and mean of the relative risk of preterm birth  were plotted. 

These plots are shown in Figures 4.9 and 4.10. We can now compare this figures wi th the 

crude SIR plot in Figure 3.1. The plot shows tha t high relative risk of preterm birth in 

almost all the enumerat ion distric ts. However, the risk is not as high as shown in Figure 3.1. 

Also the posterior median was plo tted against distance from the Tar Pond in Figure 4.11. 

There is no clear distance risk relationship.
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Chapter 5

Frequentist Methods

5.1 Introduction

In thi s chapter , two freque ntist me tho ds will be used  to fit the models in Ch ap ter  4. Fir st,  

Poisson models will be fit ted  using the quas i-likeliho od approach. Thi s me tho d will be 

used  to  accommodate the exp ected over dispersion while excluding the spati al com ponent 

of the da ta . Second , weighted  line ar regression  will be fitt ed and  the residua ls of the fit 

will be teste d for spati al au toc orr ela tion. If these residua ls exh ibi t spati al pro pertie s the n 

a spati al line ar regression will be fitte d. We will exp ect  the result  to be  very  close beca use 

quasi-likelihood is a spec ial case of weighted least squares  (McCull agh and  Nelder, 1989).

5.2 Poisson Regression

For Yi ~  Poisson( /q) , where =  AiE; (i = l , . . . , n ) ,  we assume the generalized linear 

model (McCull agh and Nelder, 1989). Four  models were fitt ed for the log rela tive risk 

(log Xi =  log m  — log Ei)  in ter ms of a  c onsta nt,  area- level  c ovariates (see Tab le 1.1) and  the 

reciprocal of d istance . Th e fit ted  models are:

log Aj =  a 0

logAi =  a o + a/ di

log Xi = a 0 + (faXi +  < 2̂̂ 2 +  <t>3x 3 +  04^4 +  ^5^5

(5-1)

(5-2)

(5-3)
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log Aj = a o + a/di  +  (/qay +  <̂ 2̂ 2 +  As2'3 +  04 4̂ + 05̂ 5 (5-4)

These are the same model as used in Chapter 4 except no random effects or spatial effects. 

This is also called a log-linear model, because the log of the mean is assumed to be a linear 

function of covariates. In each of the  fitted models, logEj is used as an offset to account 

for variations in Aj over the  study region. An offset is a  covariate in linear predictor whose 

coefficient is not estimated,  but assumed to be equal to 1. The results of the  fit obtained by 

using the quasi-likelihood approach in SAS package are summarized in Table 5.1.

The quasi-likelihood approach is used to account for the over dispersion that might occur 

in the data set. This is implemented by specifying F(4^|Aj) = /ij and Var(l^|Ai) = npi 

and estimating k, using a hierarchical modelling approach with the assumption tha t Aj are 

random variables from a probability distribution.  Where n is the  dispersion parameter with 

value greater than  1 for overdispersion. The conventional estimate of n is the mean Pearson 

y2 statistic . We have explained the use of the Pearson y2 for goodness-of-fit in detecting 

heterogeneity of relative risk in section 2.3.1. This statis tic compares the  fit of the current 

model to tha t of a sa turated model and it is defined by

2 _  A  ( f / i  -  M 2
x  n 'i=l

Hence, k = y2/(A r — p) where N  and p respectively denotes the number of observation 

(length of Yi) and parameters in the model. For each of the fit ted model n was estimated to 

be approximately equal to 1 (see Table 5.1), a condition that shows that there is no evidence 

of overdispersion.

5.2 .1 Analysis

The results of all the four models are displayed in Table 5.1. The Wald confidence intervals 

shown in Table 5.1 are based on the asymptotic normality of the parameter estimators. 

They are sometimes called the normal confidence intervals. The 95% Wald interval for any 

unknown parameter (0) is given by 0 ±  1.96d .̂ Where 6 is the  maximum likelihood estimate 

of 0 and dg is the standard error estimate of d. From the table, we can see tha t the estimated 

a in both model 2 and 4 is negative, and the 95% Wald confidence intervals contain zero 

which is evidence tha t there is no increase in risk from source.
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Table 5.1: Param eter est ima tes (95% Wald C.I .), residual deviance, and over-dispersion  

parame ter 
pa ram ete r Model 1 Model 2 Model 3 Model4

a - -0.0878(-0.2519,0.0763) - -0.075 (-0.239,0.089)

CVq 0.2520 0.2707 (0.2111,0.3303) 0.2163 (-0.3427,0.7753) 0.226 (-0.334,0.785)

</>l - - -0.0034 (-0.0103,0.0035) -0.003 (-0.010,0.004)

fa - - -0.0008 (-0.0099,0.0083) -0.0005 (-0.0096,0.0086)

fa - - 0.0115 (-0.0074,0.0305) 0.011 (-0.008,0.030)

fa - - 0.0007 (-0.0128,0.0142) 0.0006 (-0.0129,0.0141)

fa - - -0.0011 (-0.0079,0.0057) -0.0010 (-0.0078,0.0058)

Deviance 132 130.56 122.9983 122.18

Df 143 142 138 137

n 0.99 0.9942 0.9887 0.9906

The 95% confidence inte rvals for fa (i = 1 , . . . ,  5) in models 3 and  4 also con tain  zero 

which  shows th at the covaria tes are not signi fican t fac tors  in risk  of prete rm  bir th.  This  

result  is conf irmed by t he  Wa ld Chi-square tes t, the square  r ati o of each,  pa ramete r est imate  

divided  b y its  stan da rd  e rror  is a mea sure of th e ind ivid ual  effects in the fit ted  models. The 

results of the test are  given in Table 5.2. This result shows th at none of the variables 

has  signi fican t contr ibu tions  to  the expla nat ion  of the varia tion in risk. Now combining 

equ ations (5.1) and (2.11),  we have

log Xi = log p

the refore  r/ = Xi = Hi/E i- Th is is referred  to as the overall mea n of the relative risk. For 

each of the models, Tab le 5.3 gives the est imate s of the overall  risk  tog eth er wi th its  95% 

confidence intervals. The overal l mea n of t he  rela tive risk  is greater  th an  1 for each model 

which ind ica tes  th at  there  is elev ated risk  o f pret erm  bi rth  across the whole of C ape  Bre ton  

Municipa lity.
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Table 5.2: Type I I I  (W al d)  Te sts

Models Effect DF Wald x 2 Pr > x 2

Model 2 d-i 1 1.0993 0.2944

Model 3 Xl 1 0.9435 0.3314

X2 1 0.0310 0.8603

x 3 1 1.4209 0.2333

X4 1 0.0093 0.9232

X5 1 0.0971 0.7554

Model 4 Xl 1 0.9306 0.3347

X2
1 0.0110 0.9164

x 3 1 1.3270 0.2493

X4 1 0.0083 0.9274

x 5 1 0.0802 0.7771

d-i 1 0.8058 0.3694

Table 5.3: Ov erall  m ea n o f the re la tiv e ri sk  (q ) an d it s 95  % Co nf iden ce  in te rv al s

Pa ram ete r Model 1 Model 2 Model 3 Model 4

9 1.287 (1.225, 1.351) 1.311 (1.235, 1.391) 1.241 (0.710, 2.171) 1.254 (0.716, 2.192)
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Table 5.4: Summ ary o f Y w  %j are in percen ts

Yi Ni A di Xl X2 X3 a?4 x5

16 382 0.59 14.37 55 24.26 9.66 3.27 11.29

5.2 .2 Description of  Plots

For each model, the following plo ts were produc ed in S-plus package: Deviance residuals 

versu s fit ted  values; observed cou nts  v ersus  fit ted  va lues; pre dic ted  v alues  versus the square 

roo ts of the abs olu te values of the deviance residuals;  and Pea rson Res idua ls of the  fitt ed 

model versus Quant iles  of Stan da rd  norm al. The plo ts are shown in figures  (5.1 )-(5 .4).

Deviance Residuals Plots

Deviance res iduals is a measure of fi t in a generalized linear model . They are  defined as

rD  = sgn(j/j -

where 8i is the contr ibu tion of the ?th observation to the  deviance.  Hence,  Td  increase  (or 

decreases) wi th yi — /ij . For the Poisson dis tribu tion,

5i = 2(yi ln(y i//A ) -  + /y ).

Thi s res iduals are  usefu l for det ect ing  observation (s) th at  are hav ing und ue effects on the  

fitt ed models. A look at  the plo ts of D eviance Res idua ls versus fitt ed for each  mod el shows 

no sys tem atic tre nd  except  for one observation, j/13 2, th at  is far away from the rest .

Other Plots

With  the except ion of j/i3 2 , t he  plo t of observed counts versu s fit ted  values  for each model 

did  not show any gre at de pa rtu re  from the model. Pearson Res iduals of the fit ted  model 

versu s Quant iles  of S tan da rd  n orm al for each model does not show any  insta bili ty. It should 

be noted  th at observation, 2/132, needs to  be investigate d. The obse rved  value  of y]32  is 16 

and the min imu m fit ted  values of 30.63 is alm ost  twice  the observed. Th e sum ma ry of y i32 

is given in Table 5.4 This shows th at  Y132 is 14.37 km away from the Tar Pon ds and  has  

a low rela tive risk  of prete rm  bi rth  (SIR  =  0.59). It  has  a high  ra te  of une mployment to
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Fit te d: offset( l)

o

Pre dicted : o ffset(l)

□8
.0O

Fitted : offset(l) Quantiles o f S tandard Normal

Figure  5.1: Diag nost ic plots f or  model  1

populat ion  and a high pro portion  of p erso ns who are  sep ara ted , divo rced  or widowed. This 

ED also has  one of the lowest pro portion  of persons wi th no high  school and pro portion  of 

people living alone.

5.3 Weighted Linear Regression

Here we have fit ted  a modified version of Model 4, equ atio n (5.4) using the weighted re­

gression app roach.  Thi s was done to accoun t for the dispersion th a t mig ht result  from the 

vio lation of the cons tan t v aria nce  a ssu mp tion in t he  least squares  ap proach . The weight (w j 

was set equal to E i/  Z)”=i Ei  and At was replace d by the SIR (A$ =  Yi /E i)  so th a t the error
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Fitted : offset(l) + inv.distance
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Predicted : offset(l) + inv.distance

Fitted : otfset(l) + inv.distance Quantiles of Standard Normal

Figure  5.2: Diag nost ic plots f or  model  2
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Fitted : offse t(l) + x1 + x2 +  x3 + x4 + x5 Predicted : offse t(l) + x1 + x2 + x3  + x4 + x5

0 10 20 30

Fitted : offse t(l) + x1 + x2 + x3  + x4 + x5 Quantiles o f Standard Normal

Figure  5.3: Diagnosti c plots fo r mode l 3

61



O
bs

.c
ou

nt
 

D
ev

ia
nc

e 
R

es
id

ua
ls

Fitted : o ffset(l) + inv.d istance  + x1 + x2  + x3 + x4  + x5 Pred icted : o ffset(l) + inv.distance  + x1 + x2  + x3 + x4  + x5

Fitted : o ffset(l) + inv.d istance  + x1 + x2  + x3 + x4  + x5 Quantiles o f Standard Norma l
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Table 5.5: Weighted regression result

Param ete rs Value Std.  Error t value P r( >  lf|)

0.2180 0.2708 0.8052 0.4221

a -0.0878 0.0758 -1.1582 0.2488

<t>i -0.0045 0.0033 -1.3817 0.1693

<t>2 -0.0001 0.0044 -0.0252 0.9800

<̂3 0.0106 0.0094 1.1330 0.2592

<t>4 0.0025 0.0067 0.3751 0.7081

<f>5 -0.0011 0.0034 -0.3194 0.7499

sum of squa res  (Q) of t he  weighted  line ar regression  can  be wr itt en  as

n

Q  = XL Wd lo§ -  ( a 0 +  a / d i +  (faX),  +  (f)2 X 2  +  +  &4X4 +  <t> 5X s)} 2 -
1= 1

Here, we have not  include d the spati al com ponent of the model because , we have  seen in 

Ch ap ter  3 t hat the SIR  does not exh ibi t spati al dependency.

The result  of th e fit is given in Table 5.5. From the t-va lue and the associated p-value, it 

appea rs th at  none of th e var iables is signific ant in the expla nat ion  of  increase  ris k o f prete rm  

bir th.  The res idual stan da rd  error of th e model was est im ate d to  be 0.02347 on 137 degrees 

of freedom. Mu ltip le R-S qua re is 0.09795 which  shows th at the var iables in the model are 

only able  to explain  less th an  10% of the to ta l var iat ion  in the risk. The F- stat is tic for the 

regression  relations hip  was est im ate d to be  2.479 on 6 over 137 degrees  of f reedom and the  

associated p-va lue is 0.0262. This shows th at at  least one of the pa ram ete rs (a , and  </>j) 

does no t equa l zero. Hence, the re is an exis tence of a regression relations hip  betw een the  

dependent var iable (Yj) and the Ind epe nde nt variable s (X J.

5.3.1 Weighted Regression Diagnostic Plot s

Th e diagno stic  plo t are  shown in Figure  5.5. The res idual plo ts (firs t row, first  plo t) does 

not show any  obvious trend . Th ree  observa tions are  iden tified as outl iers . These are  Tr i , 

y64 and y 6 2 . The plo t of residua ls versu s qua nti les  of stan da rd  nor mal (second row, first 

plo t) shows a slight dev iati on from normali ty bu t not sufficient to  reje ct the ass um ption of
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normality.

Residual and fit spread plot (Second row, second plot) shows some weakness in the model 

because the spread of the residual is greater than the spread of the f itted values. We actually 

expect the opposite to happen, if the  model is fitting perfectly well. The Cook’s distance 

plot (second row, last plot) shows th at the three observations (y22 , y27 and Y ^ )  are having 

great influence on the regression coefficient. It should be noted here tha t observation Y132 

was also identified as outlier in the quasi-likelihood Poisson model fi tted earlier.

5.3 .2 Test for Auto correlation

Next, Moran’s I tes t was also carried out to examine whether there is spatial autocorrelation 

in the residuals. The result gave a correlation of -0.01628, variance of 0.002541 and standard 

error of 0.05041. In addition, the normal test statis tic was -0.1843 with associated 2-sided 

p-value equal to 0.8538. These results are sufficient to conclude tha t there is no spatial 

autocorrela tion in the residuals. Hence, there was no need to use spatial regression modelling.

5.3 .3 Where there is A utocorrelation

In practice, a typical spatial regression modelling will sta rt with the examination of the 

dependent variable for spatial dependency. This can be done with Moran’s I statistics or 

Geary C statis tics. If there is no spatial  pat tern,  then ordinary least square or weighted least 

square is sufficient to model the data.

On the other hand if the dependent  variable shows spatial pat terns. Then, the first order 

spatial pattern can be incorporated at  the beginning of the modelling using adjacency matrix 

described in Chapter 4. The major question is: what will happen if a spatial modelling 

was carried out when in fact there was no justification? We actually carried it out. It 

produced a different result bu t what is actually interesting is that when test of autocorrelation 

was carried out on the residual after fitting the model, it produced the following results: 

correlation of 0.02341, variance of 0.002541 and standa rd error of 0.05041. In addition, the 

normal test statis tic was 0.6031 with associated 2-sided p-value equal to 0.5465. Comparing 

this with our last result shows tha t the correlation only shifted and the p-value reduced.
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Thi s shows th at  gre at care  has  be tak en when  using  spati al model ling.
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Ch apter  6

Co nclus ion

Thi s rese arch is pa rt  of a  big pro jec t done  to assess the effect of m ate rnal pro xim ity to the  

hazar dous was te f rom the Sydn ey Tar  Po nd,  Nova Scotia . Two que stio n have been  addressed 

in thi s pro ject:

1. Is mate rnal pro xim ity to hazar dou s was te and  pol lution from the Sydn ey Tar Pon d 

sites associated wi th incr eased risk of p ret erm  bir th?

2. How much of th e varia tion in risk  of  prete rm  bi rth  c an be exp lain ed by socioeconomic 

inequa litie s across the stud y region?

In add ress ing  these que stions freque ntist and  Bayesian me tho ds were employed. In the fre- 

quentis t app roach,  Poisson regression for agg regated  da ta  and  weighted  least squares  were 

fitt ed using dis tan ce from the Tar Pond and  the following are a specif ic-covariates: the pro ­

portion  of per sons who hav e no high  school  diploma; the r ate of unem ployment  to  populatio n; 

the propor tion of perso ns who are  separa ted ; divorced or widowed; the pro portion  of sing le­

pa ren t families;  and  th e pro portion  of people living  alone. The s ame  models  were fit ted  using 

a Bayesian Hie rarchica l modelling inc orp ora ting bo th  str uc tured and  un str uc tured random  

effects to  accoun t for mod el overdispersion .

Our intention was t o combine all of  the are a covariate s to form th e deprivat ion  index, bu t 

income da ta  was not avail able  in 14 of the 144 enum era tion distr ict s include d in the  study . 

So the effect of each  variable was assessed inde pendently.  The overall est im ate  of rela tive  

risk of pr ete rm  b irt h was found to be gre ate r th at 1 for almost all the enu me rat ion  d istr icts .
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Also, none of the  area  covariates in the model is signi ficant in the exp lan ation  of the  risk of 

pre term bir ths .

There  w as no evidence  of an y decrease  in risk  as we move away from the  Tar Pon d. The 

res ult  of bo th  the  weighted  leas t square  and the quasi -like lihood Poisson regression agrees  

with the result  from the Bayesian Hierarch ical  modelling which inc orp ora tes  the spa tia l 

effects. The res ult  of the Bayesian modelling shows th at the re is no significant spati al 

associatio n of ri sk in the are a studied. There  was no obvious clu ste r of o utcome aro und the 

Tar Pond signi fican t enough to  exp lain  an associatio n betw een mate rnal proxim ity to the 

Sydn ey Tar Pon ds and risk  of p reter m b irth.

6.1 Threats to Internal Validity

Th e following are some of the  lim ita tions of this resea rch

• Data are  not avail able  for 14 of the Enum era tion dis tric ts. Hence, they  are  om itte d 

from our  analysi s bu t the effects of th is on spati al dep end enc y or our conclusion  are 

not known;

• We have based our  analysis  on the 1996 da ta  bu t we do not have any evidence of 

wh eth er the  exposure from the Tar  Pon d has  decreased before 1996;

• Th e prob lem of imprecise  geog raph ical  ma tch ing  and da ta  agg regatio n may  have cre­

ated  a source of b ias during da ta  collection;

• Ecological bias which  can  occur due  to  the differences betw een ind ividua l and group- 

level est imate s of disease risk. Thi s is a ma jor  lim ita tio n of all studie s based on 

agg regated da ta;

• Un der-a scert ain me nt/dup lic ati on  of cases may  have occu rred ; and

• Migra tion of women betw een exposure  and preg nan cy outcom e m ay be a source  of b ias 

which may lead  to  underes tim ation  of the  risk.
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6.2 External Validity

Th e me tho dolog y can be general ized  but the  resu lt ma y not be easy to generalize. Th is is 

because landfill sites differ enormo usly  in the  conditions th at  render them hazardou s; and 

conditions that  determine the  exposure to and resu lting hea lth risks  pose d by  any  waste 

site  are likely  to be  uniq ue to th at  particul ar site. Hence,  the  results  of this stu dy  are not 

intended for direct  use in decision -making  wit h resp ects  to other land fill sites.  Ra ther the y 

are to serve  as a guide.

6.3 Ethical Considerations

Unlike observatio nal  and exp erimenta l studies  where human bein gs are involved,  as subje cts  

of stud y, this  stu dy  only makes use of agg reg ated dat a. Ag gregate d da ta  by  their nature  

do not reve al the  identit ies of individ uals involved. The refo re, con fident iali ty of the  cases 

involved is au toma tic all y guaranteed.

6.4 Future Research Plans

Th e future  plans are:

• To aggre gat e the  da ta  for up to ten years and mod el using  other forms of g(d', 6)

• To work more on the  sta tis tic al pro perties  of m ost of the  esti mators  used  in the  clus ter 

ana lysi s of outcom es

• Fur ther research in this  area is needed to impr ove our und erstanding of the  imp act  

of social factors , fear and risk  perception s on both actua l and perceiv ed ill hea lth by 

people liv ing  in the  vic ini ty of w aste sites. Th e use of m ixed model, inc orp ora ting both 

qu ali tat ive  and qu an titati ve  met hods ma y be very goo d approach for future  studies.

• There  is an elevated risk  of preterm  births, whic h app ears to be uniform across  the 

whole of Ca pe  Breto n regional mu nic ipa lity  as shown by all the  methods used. This 

shows that  the  pol lut ion  ma y be occurring  at a wider scale  and over time ma y have
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affected the ability to differentiate the EDs in terms of amount of exposure. A direct 

comparison of Cape Breton regional municipality with other close municipalities may 

help answer some of the remaining questions.
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A ppe ndix  A

M od el  Sp ec ifi ca tio n in  W IN B U G S

mo del ; {

#pois so n re g re ss io n  model 

fo r  ( i  in  1:N) {

obs_ co unt[ i]  ~ d p o is (m u [i ])

#Model 1: model w ith no c o v a r ia te s

lo g (m u [i ]) < - lo g (E [i] )  + alphaO  + V[i]  + U[i]

#Model 2: model w ith on ly  d is ta n c e  c o v a ri a te

lo g (m u [i ]) < - lo g (E [i ]) +  alph aO + a lp h a* ( 1 /d [ i ] ) + V[i]  + U[i]  

#Model 3: model w ith  on ly  a re a - le v e l c o v a ri a te

lo g (m u [i ]) < - lo g (E [i ]) +  alphaO  + p h i l* x l[ i ]  + phi2 *x2[i ]

+ ph i3 *x3[i ] + phi4 *x4[i ] + phi5 *x5[i ] + V[i]  + U[i]

#Model 4: f u l l  model

lo g (m u [i ]) < - lo g (E [i ]) +  alphaO  + a lp ha* ( 1 /d [ i ] ) + p h i l* x l[ i ]

+ ph i2 *x2[i ]+  ph i3 *x3[i ] + phi4 *x4[i ] + ph i5 *x5[i ] + V[i]  + U[i]

# P re d ic te d  a re a -s p e c if ic  r e la t iv e  r i s k

lam bda  [i ] <- m u [i ]/  E [i ]

# U nst ru c tu re d  random e f f e c ts  

V [i ]~ dn or m (0 ,tau .V )
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#CAR p r io r  d is t r ib u t io n  fo r  s p a t i a l  random e f f e c ts :

U[1:N ] ~ car .n ormal  (ad j [] .w ei ghts  [] ,num[] , ta u. U ) 

fo r (k  in  1 :sumNumNeigh){

w ei gh ts  Ek]<-  1 

}

# o th e r p r io r s :

alph a~ dn or m (0 ,1 .OE-5) 

a lp haO ~ dfl a t( ) 

ph il~dno rm (0 ,1 .OE-5) 

ph i2~d no rm (0 ,1 .OE-5) 

ph i3~d no rm (0 ,1 .OE-5) 

ph i4~d no rm (0 ,1 .OE-5) 

ph i5 ~d no rm (0 ,1 .OE-5) 

tau .V~d gamm a(0 .1 ,0 .1 ) 

tau .U~dgam ma (0. 1 ,0 .1 )

# v a ri an ce  and  s ta n d ard  d e v ia ti o n  of  u n s tr u c tu re d  random e f f e c t

v a r .V <-l /t au .V

sig ma .V<- s q r t ( l  /  ta u. V )

# va ri an ce  and  s ta ndard  d e v ia ti o n  of  s p a t ia l  random e f f e c t

v a r. U < -l /t a u .U

sigma .U <- s q r t ( l  /  ta u. U )

# o th e r e s ti m a te s

et a< -e xp (a lp ha O ) # sc a le  par am et er  

p s i< -s ig m a .U /( si gm a. U+s igm a. V)

}

Each of t he  models was run  sep ara tely
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