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Abstract

The major objective of the research is to assess the risk of preterm birth associated with
maternal proximity to hazardous waste and pollution from the Sydney Tar Pond sites in
Nova Scotia, Canada. The design is spatial modelling of risks of preterm birth in population
living in the Cape Breton regional municipality in 1996. The subjects are: 1604 observed
cases of preterm birth out of total population of 17559 at risk in 1996. The analysis was
done using both the frequentist and the Bayesian approaches. In the frequentist approach,
the Poisson model for aggregated data was fitted using the quasi-likelihood approach to
accommodate over-dispersion. Weighted regression was also used. In order to accommodate
both the random effect and the anticipated spatial effects, Bayesian hierarchical modelling
was also used to fit the Poisson model. The result of the Bayesian modelling shows that
there is no significant spatial association of risk in the area studied. All the models also
show that there is no decrease in risk of preterm birth as we move from the Tar Pond site
to other region. None of the other covariates in the model show any significant association
with increase risk of preterm birth either. There was no obvious clustering of risk in any

region or part.
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Chapter 1

Research Background and Context

1.1 Introduction

Reproductive health is defined “as a condition in which the reproductive process is accom-
plished in a state of complete physical, mental and social well being: it is not merely the
absence of disease or disorders of the reproductive process” (Michal et al., 1993: page 1).
This definition is rooted in the World Health Organization definition of health (cited in
Rootman and Raeburn, 1994: page 58). Public awareness about potential environmental
hazards has continued to grow in recent years. This concern has led to an increased demand
for public health authorities to investigate potential clustering of diseases around putative
sources of hazards. The attention given to this topic by the mass media has necessitated
research on the possible effects of hazardous waste on the people living near the waste sites
(Dolk et al., 1997; Dolk et al., 1998; Elliot et al., 1996).

An assessment of the effect of human exposure to particular substances may be a very
difficult task for two reasons: firstly because multiple chemicals are usually involved so it is
very difficult to discern the specific agent responsible for a particular health concern; and
secondly extraneous factors, like cultural and socioeconomic, may confound the effect of
direct exposure to a waste site. Michal et al. (1993), provide a summary of some of the

environmental factors that may affect reproductive health. They say:

Chemical Pollutants are considered to be the greatest threat to reproductive

health in developed countries. However, as a global problem, the major factors in
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descending order of importance are infection, malnutrition, chemicals, radiation,
and stress. In less developed countries, the added effects of socioeconomic and

cultural influences become more evident (Michal et al., 1993: page 2).

Deriving from the works of two theorists of society, Beck (1992) and Giddens (1991), ‘risk’ is
not only perceived in late/high modern societies, it is ‘real’. For Beck (1992), modernity is
constituted by ‘risks’, most especially risks emanating from “pollution, nuclear and chemical
productive forces” (Beck, 1992: page 22). Risk in late modernity, from the perspective of
Beck (1992), does not only manifest at the ‘material’/‘physical’ level, but also at the psychic

realm. According to him:

Risks such as those produced in the late modernity differ essentially from wealth.
By risks I mean above all radioactivity, which completely evades human percep-
tive abilities, but also toxins and pollutants in the air, the water and foodstuffs,
together with the accompanying short-and long term effects on plants, animals
and people. They induce systematic and often irreversible harm, generally re-
main invisible, are based on causal interpretations, and thus initially only exist in
terms of the (scientific or anti-scientific) knowledge about them. They can thus
be changed, magnified, dramatized or minimized within knowledge, and to that
extent they are particularly open to social definition and construction. Hence
the mass media and the scientific and legal professions in charge of defining risks

become key social and political positions (Beck, 1992: page 22-23).

What is central to the ‘risk society thesis’ of Giddens (1991) and Beck (1992) is the source
of ‘anxiety’ around environmental issues in modern industrial societies. Thus, exposure to
chemical and byproducts of industrialization in Sydney, Nova Scotia may have constituted
a danger to reproductive activities in the area. As Beck (1992) indicates, the mass media as
a major source of information in modern society play an important role in making people
become aware of risks and danger. Not only this, the media can also construct a problem

around medical issues to incite panics and anxieties in the public (Seal, 2002).



1.2 The Research Problem

The history of the Tar Pond site in Sydney, Nova Scotia, and the health consequences are
well documented (Tara, 2002; Nova Scotia Department of Health and the Cape Breton
District Health Authority, 2001). The Tar Pond is a tidal estuary of 33 hectares in the Cape
Breton regional municipality of Nova Scotia. This site, considered to be the most toxic site
in Canada, is a result of 100 years of steel manufacturing and other allied industries in the
area. The byproducts from these industries include BTEX (benzene, toluene, ethylbenzene,
and xylene), PAH (polycyclic aromatic hydrocarbons), PCB (polychlorinated biphenyl) and
particulate laden with toxic metals, such as arsenic, lead, and other heavy metals. This led
to the contamination of soil and other sources of natural water in the surrounding areas.
Studies have shown that exposure to these kinds of contaminants (in particular PCB) may
have constitute a danger to reproductive outcomes in the area (Baibergenova et al., 2003;
Rylander et al., 2000).

This study examines how proximity to the Tar Pond site affects one of the reproductive
outcomes: preterm birth. This current project was undertaken at the Department of Math-
ematics and Statistics of McMaster University as one part of a large multi-phased research
project to investigate the association between preterm birth and other adverse reproductive
outcomes in Sydney and proximity to Tar Pond site. Other groups involved are: The Cen-
ter for Spatial Analysis at McMaster University, McMaster Institute of Environment and

Health, and St. Joseph’s Health Care Center in Hamilton.

1.3 Research Questions

1. Is maternal proximity to hazardous waste and pollution from the Sydney Tar Pond

sites associated with increased risk of preterm birth?

2. How much of the variation in preterm birth can be explained by socioeconomic in-

equalities across the study region?



1.4 Research Objectives

The research objectives are:

1. To explore the spatial distribution of preterm birth among women of childbearing ages

in Cape Breton Regional Municipality of Nova Scotia. The hypothesis of interest is

e H,: maternal proximity to the Tar Pond sites does not influence the risk of
preterm birth in Cape Breton municipality of Nova Scotia, Canada. This will be

tested against

e H;: maternal proximity to the Tar Pond sites does influence the risk of preterm

birth in Cape Breton municipality of Nova Scotia, Canada.

2. To investigate the presence of clusters of health outcomes that may be of significance

in testing the above hypothesis; and

3. To compare different methods for the analysis of aggregated spatial data.

1.5 Data Description

Cape Breton Regional Municipality is made up of 158 enumeration districts but aggregated
counts of preterm birth are only available for 144 enumeration districts in the Municipality
based on the 1996 census data. This data are not available for various reasons and throughout
our analysis we shall be working with information from 144 enumeration districts. There are
1604 observed cases of preterm birth out of a total population of 17559 at risk of preterm
birth. Other covariates include: population in 1996; the proportion of persons who have no
high school diploma; the rate of unemployment to population; average income; the proportion
of persons who are separated, divorced or widowed; the proportion of single-parent families
and the proportion of people living alone. All these variables were extracted from the 1996

census data. The data is summarized in Table 1.1:



Table 1.1: Table of variables

variables meaning
d The distance from the Tar Pond
x1 The rate of unemployment to population
T The proportion of persons who are separated, divorced or widowed
Z3 The proportion of persons who have no high school diploma
x4 The proportion of people living alone
T5 The proportion of single-parent families

1.6 Methods of Analysis

e From the given data, the centroid of each enumeration districts will be calculated. The
distance of each centroid from the Tar Pond centroid will be measured. This variable

will be labelled “distance (d;)”.

e The analysis will start with an exploratory data analysis to examine the first order
variations in attribute values. Choropleth maps of the aggregated data will be drawn
using all the important variables like population in 1996, counts of preterm birth,

standardized incidence ratios and so on to see if there is large scale variation within.

e The next stage is to examine second order properties, which involves spatial depen-
dency i.e., test for spatial autocorrelation. Two ways of doing that are to use the

Moran’s I spatial correlogram or Geary’s C correlogram.

e The third stage is to model the data. At this stage, both the frequentist and Bayesian
approaches will be employed. Spatial weighted regression models or generalized least
squares models will be fitted to the data to examine whether there are covariates that
can explain the spatial variations in preterm birth. Various transformations will be

made accordingly.



1.7 Computer Packages

The analysis will be done using the following packages: Arcview, Spacestat, S-plus, WIN-
BUGS and R. Arcview has features that allow among other things conversion of data into
maps (Choloropleth maps) for easy visualization of patterns and exploratory data analysis.
It also has extensions for easy integration of other packages like Spacestat and S-plus. The
Spacestat has features designed to speed up exploratory data analysis; detect spatial auto-
correlation; and fit spatial regression models. S-plus and R allow flexible coding, which make

it possible for other programs/routines to be developed or written.

1.8 Chapter Outlines

e Chapter 2 will contain a detailed review of some relevant literature to this research.

This will be divided into two parts

1. A review of relevant literature on the geographical approaches used in the analysis

2. A review of spatial statistics literatures and methods from statistical point of

view,

e Chapter 3 will examine detailed exploratory data analysis of all covariates used in the

model,
e Chapter 4 will contain the resuit of the Bayesian analysis,

e Chapter 5 will examine detailed analysis of the frequentist approaches used in the

project,

e Chapter 6 will discuss summary of our findings and possible directions for further work.

1.9 Definition of Key Terms

Gestational age: the interval between the first day of the mother’s last normal menstrual

period and the date of delivery



Preterm birth: a gestational age less than 37 completed weeks (less than 259 days).
Preterm birth rate: the number of preterm births per 100 live births in any given year.
Low birth weight: a birth weight less than 2500g.

Congenital Anomalies: these are structural abnormalities inborn errors of metabolism,
physiological disturbances, mental retardation, and cellular and molecular abnormalities that

are present at birth.



Chapter 2

Literature Review

2.1 Introduction

In this chapter, we will review some of the work done in relation to maternal proximity
to waste landfills and risk of adverse reproductive outcomes. We will also review some of
the methodological and theoretical background of these studies. Relevant English-language
papers published between 1980 and 2003 were found using computerized literature searches
on the Medline database. In addition, articles were traced using references cited in previous
reviews (Morris and Wakefield, 2000; Tara, 2002; Upon, 1989; Vrijheid, 2000), and some
unpublished and ongoing research works were also examined. All the studies relating to
adverse reproductive outcomes were critically appraised with respect to the study design,
exposure measure, source of health data, control for confounders, and reported findings.

These searches identified a number of studies in relation to maternal proximity to haz-
ardous waste sites and risk of adverse reproductive outcomes. While some of the studies
reviewed have reported a statistically significant association between maternal proximity to
hazardous waste sites and risk of having low birth-weight births (see Berry and Bove, 1997;
Elliot et al., 2001; Goldberg et al., 1995; Goldman et al., 1985; Vianna and Polan, 1984),
some other studies have reported otherwise (Baker et al., 1988; Fielder et al., 2000; Kharazi
et al., 1997; Shaw et al., 1992).

A lot of studies have also reported a significant association between congenital anomalies

and maternal proximity to waste sites (see Dolk et al., 1998; Elliot et al., 2001; Fielder



et al., 2000; Geschwind et al., 1992; Gilbertson and Brophy, 2001; Goldman et al., 1985).
Nevertheless, these studies have been criticized by a lot of authors on the basis that they
have failed to consider the chemical composition of the waste site and failure to identify
which chemicals are responsible for the observed health effects (Baibergenova et al., 2003;
Vrijheid, 2000; Rylander et al., 2000).

In response to the shortcomings identified in previous studies, further studies have been
done to assess the association between adverse reproductive outcomes and maternal prox-
imity to sites contaminated by polychlorinated biphenyls (PCB) or other volatile organic
compounds (Baibergenova et al., 2003; Rylander et al., 2000). In particular, recent studies
by Baibergenova et al. (2003) and Rylander et al. (2000) have shown that women exposed
to PCB are at increased risk of giving birth to an infant with low birth weight.

All in all, general weaknesses in the literature studied can be stated as follows: First, a
lack of direct exposure measurements can increase bias. Second, in some of the literature
reviewed, residents near waste sites have reported cases of adverse reproductive outcomes
or symptoms associated with it. However, it is difficult to conclude whether these cases or
symptoms are effects of direct exposure to waste sites, stress and fear, or reporting bias.
Third, the use of surrogate or indirect measures of exposure measurements in most of the
studies can lead to misclassification of exposure, which may decrease the sensitivity of the
study for finding a true effect (Vrijheid, 2000). This situation is a major source of bias in
some of the case-controlled studies reviewed, especially the ones done by Dolk et al. (1998);
Geschwind et al. (1992); and Shaw et al. (1992).

Fourth, the strength of a cross sectional design is enhanced if the survey is administered
in both the population of interest and a control community. The difficulty of finding an
appropriate control community limits the strength of most of the cross-sectional studies
reviewed in this literature. Finally, socio-economic factors may be a major confounder in
the study of reproductive health (Michal et al., 1993; Sullivan, 1993), but have not been
properly accounted for in some of the studies reviewed in the literature (Berry and Bove,
1997; Shaw et al., 1992). In order to correct some of these shortcomings, a lot of work has
also been done on the improvement of methodologies and the theoretical aspects of studies

involving proximity to waste landfills and risk of adverse health. We will now review some



of them in more details.

2.2 Theoretical Background and Context

2.2.1 Poisson Model for Aggregated Data

Let Y; denote the number of observed cases of the disease, and N; the population at risk
in area A;, i = 1,...,n. Let E; denote the expected number of cases in area A; obtained
by multiplying the population at risk, N;, by the national rate (r). The national rate is
a measure of the probability that a healthy person will develop a disease during a specific
period of time. This is usually calculated by dividing the number of new cases of a disease
over a period of time by the population at risk at that time. In most cases, these rates are
age-standardized to adjust for differences in age composition of various populations. This
is because age has a marked effect on mortality and morbidity. One of the most common
methods for adjusting these rates is to stratify them by age-group. So that E; is calculated
using the age-specific rates.

Following Clayton and Kaldor (1987), we assume that for observed count, Yj, in the
area A;.

Yi|\; ~ Poisson(E;\;) i=1,...,n, (2.1)

where )\; denotes the relative risk of the disease for the study region A; compared to the
whole country (or a chosen reference region). Based on this assumption, the distribution of

Y; can be written as

—Ei\i) (EiA)Y
in(y;Ai)=eXp( y')(E)\); y=0,1,...; 0<X<o0

Hence, the maximum likelihood estimator of the relative risk ();) in area A; is given by

3 Yi
)\i =
E;

with Var()\;) = \;/E; which can be estimated by v;/ E?. This quantity is generally referred
to as the standardized morbidity ratio (SMR) or standardized incidence ratio (SIR). It is an
unbiased estimator of ); and one of the most widely used in measures of incidence of diseases

in spatial epidemiology.
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Recently, a number of authors (Datta et al., 2000; Morris and Wakefield, 2000; Lawson
et al., 2000; Best et al., 1999) have argued against the use of crude SIR without making
adjustments. One of the disadvantages of the use of crude SIR is that it tends to be unstable
and may not reveal the underlying structure in the data when the population at risk is
small. This is because the standard error of S\i is proportional to E;! and so for very rare
events and/or small areas (and hence a small E;) the SIR may be very unstable. Alternative
approaches have also been proposed for adjusting the crude SIR to improve its stability.
These include smoothing models, linear Bayes methods, Bayesian models and empirical

Bayes models.

2.2.2 Hypothesis Testing

Morris and Wakefield (2000) represent the null hypothesis that proximity to source does not
influence risk by

Hy:\ij=n for ¢=1,...,n.

This definition is based on the assumption that all other sources of variability in risk have
been accounted for. Let (zo,yo) denote the centroid of the putative source, (z;,y;) the
centroid of area A; and d; the distance from the source to the centroid of area A;. In the
absence of an exposure measure that may be attached to each A;, Morris and Wakefield

(2000) define a natural additive distance/risk model by

Mio=1n {1+ f(d;6)}

where 7 is the background relative risk and f(d;;0) is a function of distance, such that

f(di;8) — 0 as d; — co. We will use a reparameterization of the form

X =1 g(di;6) (2.2)

so that this model will be consistent with Bithel (1995) which will be discussed later. With
this reparameterization, g(d;;#) — 1 as d; — oo.
Now suppose a g x 1 vector of area-level risk factors which may be denoted by z; is

available. This may be incorporated through a regression model of the form

A =1 g(di; 0) exp(z] ¢).

11



Morris and Wakefield (2000) note that a regression approach will correctly adjust standard
errors of estimated relative risks but may be inefficient due to sparsity of data.

One of the problems is that of over-dispersion (actual variance exceeding the nominal vari-
ance under the assumed probability model) which is common when using Poisson regression
to account for both distance/risk and known covariates. One of the methods for accommo-
dating this extra poisson variability is the use of the quasi-likelihood approach proposed by
McCullagh and Nelder (1989) which specifies E(Y;|\;) = E;\; and Var(Y;|\;) = cE(Y|\),
the overdispersion parameter k is then estimated. The most common method, however, is
to follow a hierarchical modelling approach and to model the spatial dependence between

the A;. This method will be explained in more detail later.

2.3 Conventional Epidemiological Methods

In this section, we review some of the conventional methods proposed for cluster detection
and clustering analysis. We will also review some of the work done in relation to the assess-
ment of disease risk for putative sources of hazard. While acknowledging the difficulties of
defining “clustering”, Wakefield et al. (2000: page 129) refers to it as “the pattern of the
location of disease cases, relative to the pattern of the non-cases”. They further describe
spatial clustering as “residual spatial variation in risk”. Wakefield et al. (2000) note that
cluster detection has to start with a simple exploratory data analysis to see whether the data

exhibits overdispersion. They define overdispersion in terms of
1. heterogeneity: independent Y; with Var(Y;|\;,) > E(Y;|\;) fori=1,...,n and

2. spatial dependence or clustering: dependence between Y; and Y} that is related to the

geographical position of areas ¢ and j for¢,j =1,...,nand i # j

and described methods for detecting it. We will now describe some of them in more detail.

2.3.1 Tests of Heterogeneity

Before carrying out a formal test to assess whether there is increased risk in any region, it

Is important to test whether the rates of disease differ from one Enumeration District to

12



another. To test this, Wakefield et al. (2000) define the null hypothesis (H,) as
Hy: Mi=X=...=X =7
and Hy : \; # \; for ¢ # j and describe two methods for testing this hypothesis.
Pearson’s Chi-squared Statistic
The test statistic can be calculated from
T = Z (¥ = E*) where E! = E; X 5:1;;1'
i=1 45

so that under H,, the distribution of T is asymptotically a chi-square with n-1 degrees of

freedom. Hence, large values of T' will result if there is heterogeneity. Wakefield et al. (2000)
also explain that the significance of the test statistic can also be assessed by computing
the empirical p-values based on a Monte Carlo test. This method starts with the random
simulation of observations Y; under the null hypothesis. Next, the test statistic is calculated
under each simulation and this procedure is repeated a large number of times. Finally, the
calculated test statistic is compared with the observed test statistic from original data. The

drawbacks of this method were also identified as:

1. The test does not give any information about the location of the cluster but large

Y, — E} may be examined for clues.

2. The power of the test against any realistic alternatives is not very clear.
Potthoff and Whittinghill’s method

The second method described by Wakefield et al. (2000) for detecting heterogeneity was
based on the work by Potthoff and Whittinghill (1996). The test statistic was defined as

_ <¥E> im;— )

i=1

where Y;(Y; — 1) is the number of unordered pairs of observed cases in each area. Hence, an
area will contribute to T if two or more cases occur. Under H,, T hasamean Y} 1, Y;(> 1, Yi—
1) and variance 2(n—1)(3 L, (3o, Y;—1)) with large values of T indicating heterogeneity.
The distribution of 7' may be taken to be asymptotically normal but the empirical p-values
based on a Monte Carlo test discussed in the previous section is more straight forward and

preferable (Wakefield et al., 2000).
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2.3.2 Distance/adjacency Method

After testing for heterogeneity, the next step is to test whether Y; exhibits some spatial struc-

ture. Wakefield et al. (2000) describe some of the methods for testing spatial dependency:
Autocorrelation Statistics

These statistics are based on a chosen measure of closeness, W;;, between areas ¢ and j.
In the simplest form, a binary coefficient is used, such that W;; = 1 if areas 7 and j share
a common boundary, and W;; = 0 otherwise. In general, W;; may be selected based on
the kind of spatial dependency that is anticipated (Wakefield et al., 2000). Let Z; = Y;/E;
denote the standardized incidence ratio of area i. Wakefield et al. (2000) describe three
statistics for assessing spatial autocorrelation. These are Moran’s I, Geary’s C and D. Walter

Test (Walter, 1993).
Moran’s 1

One of the most popular measure of spatial autocorrelation is Moran’s I statistic defined as

_ X T Wiy(Zi - Z)(Z; - Z)
(X X1 Wiy) 252 — 2)?

This statistic is closely related to the conventional correlation coefficient and it is an approx-

I

imate measure of the spatial dependence. When Z; does not exhibit any spatial pattern, [

will be close to zero and values of I close to 1 indicate clustering.
Geary’s C

Another measure of spatial autocorrelation is the Geary’s C statistic which is based on the
weighted sum of square difference between observations and defined as:

(n = 1) X X5 Wil Zi - Z;)°

2T Xy W) ks (Zk — 2)?

When there is spatial dependence, the term in the numerator will be small and the value

C =

of the statistic will be close to zero. The absence of spatial dependence will result in large

value for the numerator and hence, C will be close to 1.
D. Walter Test (Walter 1993)
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This is a non-parametric rank-based method, denoted by D. The statistic is obtained by
ranking Z; and denoting the ranks by Z7. The non-parametric measure of spatial dependence

can be calculated from
i1 gy Wil Z7 = Z7|
?:1 2?:1 Wij

with small values of D indicating positive dependence. The major drawback of all the

D =

three statistics is that they do not allow for unequal variance of the SIR and hence may be

misleading.

2.3.3 ‘Near Versus Reference’ Comparisons

This is one of the simplest approaches of assessing the risk in relation to a point source.
It involves the direct comparison of risk in the exposed population (i.e. lying within a
certain distance of the point source) to that in the reference population (e.g the national
rate). This approach suffers from the same problems as the use of crude SIR. Morris and
Wakefield (2000) advise that the approach must be used with other confirmatory methods

since it is rather exploratory. Two drawbacks were identified:

1. The problem of identifying the exposed population is not a clear one and may be very

crucial in the analysis.

2. A significant increase in risk cannot be attributed to the exposure alone, since there
is a very high likelihood that the two populations also differ in respects other than

exposure.

In order to solve these problems a near versus far comparison was proposed.

2.3.4 ‘Near Versus Far’ Comparisons

This involves dividing the study region into ‘near’ and ‘far’ regions which correspond to
the exposed and unexposed population respectively. This method may be unreliable if the
population at risk is small. In such cases, some of the methods used for adjusting the crude
SIR may be applicable. In the study of disease rate, it is common to adjust for age/social

economic status because of their effects on mortality and incidence of disease. One of the
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most common methods of doing this is to stratify the population by age-group or social
economic status. Now, suppose we stratify the population at risk (IV;) by age-group into J
strata. Then, N;; is the population at risk in age-group j in area i and Yj; is the observed
number of cases of disease in age-group j in area <.

Based on this stratification, Morris and Wakefield (2000) consider a rare disease in which
the number of cases observed and population at risk in stratum j in the near region are
denoted by Yj; and Nyj, respectively. The corresponding numbers in the far region are
denoted by Y3; and Ny;, respectively. Furthermore, they use Z; and M; to denote the
number of observed cases and population at risk in stratum j in a standard population. The

direct standardized rate was defined by

J N
M;ps; ,
, 1=1,2
2y

and the indirect standardized rate by

0.<

i y Z
Yo Nyg; - M

i=1,2

where pi; = Y /Ny, §; = Z;/M;, Yy = ¥,;Yy, Z = ¥;Zy and M = 35; M;. The directly
standardized rate corresponds to a ‘counter-factual’ argument in which the estimated rates
within the area of interest are applied to the standard population. The indirectly standard-
ized rate applies the estimated relative risk to the rate in the standard population (Morris
and Wakefield, 2000). Simple summaries of the rate ratios in the near or far regions are
compared to the standard population by taking the ratios of the direct and indirect stan-

dardized rates to Z/M to give the comparative mortality figure (CMF) or the standardized

incidence ratio (SIR), respectively:

J -~
| Mipi/M Y, .
_M_/___7 and SIR%':T for 7/=172-
j=19j

A comparison of the near and far regions is provided by the ratios CMF; /CMF; or SIR; /SIR,.
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2.4 Semi-parametric Tests

2.4.1 Besag and Newell’s method

Morris and Wakefield (2000) describe a version of the method proposed by Besag and Newell
(1991) that is appropriate for cluster detection in relation to a pre-specified point source.
The null hypothesis is that the cases are distributed at random over the population at risk
in region A. They assume that the region A is divided into n disjoint areas as in the basic
Poisson model. The area containing the centroid of the source (zo,yo) was labelled A; and
all other areas A,..., A, by increasing distance from A; based on the area centroid. With
the assumption that there is no clustering, they defined the aggregated number of observed

cases (D;) and population within the nearest ¢ areas (u;) as

i i
Di=Zyl and Ui:ZNl i=1,...,n.
=1

1=1
The test statistic is M = min{i : D; > k}, the number of areas required to accrue at least
k cases. A small observed value of M indicates that there is clustering around (zg, o).
Suppose m is the observed value of M, then the significance level of the test is Pr(M < m)
under the null hypothesis. Besag and Newell (1991) note that M will only be greater than
m if and only if fewer than £k individuals among u,, have the disease. Hence, under H,,
the hypergeometric probability that exactly s individuals among u,, have the disease can be
closely approximated by the Poisson term if the disease is rare (Besag and Newell, 1991). It

follows that the significant level for each potential cluster can be calculated from

Pr(M<m)=1- kz—:l —__exp(—Ei)Ef7 (2.3)

= s!
where E; = N;q and ¢ is an estimate of risk obtained through internal or external standard-
ization. Each term in the sum represents the probability of observing s cases from a Poisson
distribution with mean E;. Morris and Wakefield (2000) note that a small p-value may result
if the risk in the whole study region is high relative to the reference region from which ¢ is
derived and propose internal standardization or replacement of E; by E} = E; X Y/N, where

Y and N represent the total number of cases and the population at risk in the study region

respectively.
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In order to adjust for known risk factors, Morris and Wakefield (2000) consider the
cumulative number at risk in stratum j within the nearest i areas defined by u;; = Si_; N;.
For this adjustment to work, they propose replacing E; = N;q in (2.3) by E; = ¥ ; Ny;q;
where g; are a set of stratum-specific reference probabilities. Alternatively, E; may also be
replaced by E} where

Ef=E; xY/E (2.4)

where Y = Y, Y, and F = Y, E; so that the overall difference between the risks in the
study and reference areas have been removed. The method of Besag and Newell is simple
to apply but its major drawback, as pointed out by Morris and Wakefield (2000), is that
it may produce many false positives and does not provide an estimate of the risk around
the putative source. This problem is a direct consequence of the fact that the method was
originally designed for detection of clusters by detecting discrepancies between numerators

and denominators due to differences in risk or data inaccuracies.

2.4.2 Stone’s Test

Stone’s test (Stone, 1988) is based on the following assumptions
1. Y; ~ Poisson(E;\;) fori=1,...,n
2. The risk is a non-increasing function of distance.

3. Areas are ordered by increasing distance from the putative sources so that ¢ = 1

corresponds to the closest area
The null hypothesis for the unconditional test is
Hy,>\=...=\, =1
An alternative is to estimate \; subject to the order restriction:
Hi M2 ...2 M\

with at least one strict inequality holding. The estimation of parameters under this restric-

tion is achieved analytically using the theory of isotonic regression (regression with order

18



restriction) and implementation is carried out using either the min-max formulae (Stone,
1988) or “the pooled adjacent violators” (PAV) algorithm described by Stone. The hypothe-
sis is tested using a generalized likelihood ratio test statistic based on the Poisson likelihood
under the null and alternative hypotheses. The observed significance level of the test is
calculated via Monte Carlo simulation.

One of the limitations of the unconditional test is that Hy may be rejected simply because
the study region as a whole has elevated or lowered risk compared to the reference (or
national) rate used to compute E; (Morris and Wakefield, 2000). To solve this problem,
Bithel and Stone (1989) suggest a replacement of E; by EY as in (2.4) which allow for
adjustment in known risk. Alternatively, Shaddick and Elliot (1996) suggest a conditional
test with the null hypothesis defined as

Hy:M=...=X\=n

so that the method of significance level estimation in Stone’s test can be modified to allow
for the unknown constant 7.

As a way of avoiding the Monte Carlo test, the Poisson maximum test originally designed
by Stone is always used. The Stone test has been applied widely in epidemiological literature,
in particular those studies conducted by Small Area Health Statistics Unit (SAHSU) (Elliot
et al., 1992). Its major advantage is that it avoids the need to assume a fully specified

distance/risk relationship.

2.4.3 Score Tests

With the assumption that w; denote an ‘exposure’ associated with area A; and E} is as
defined in (2.4), Morris and Wakefield (2000) define a test statistic which may be used
to compare the null hypothesis of constant risk in all areas versus the general monotonic

alternative by
(X wi(Y; — Ef)}?

n *\2
n e Ol wiB})
joy Wi B — ~=i=——

The distribution of this statistic under Hy is approximately chi-squared with a single degree

(2.5)

of freedom. In the absence of specific quantitative exposure they assume that w; = 7 (with

the areas ranked according to distance from (z,,¥,)).
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Lawson (1993) and Waller et al. (1992) suggest the use of a class of locally most powerful

tests based on the likelihood score. These tests are based on the additive excess risk model:
)\u =] + &g

where g; represents a surrogate for exposure and may be prespecified constants or may be

modelled using a parametric function of distance (Bithel, 1995).

2.5 Regression Methods

Regression is one of the most widely used methods in spatial epidemiology. In this section,

we will discuss various models and methods of estimation.

2.5.1 Poisson Regression Models

In general for rare diseases and aggregated data where Y; denotes the observed counts of
diseases. The most widely used model is to assume Equation (2.1), where A; are the area-
specific rate ratios and F; are expected counts of events. It should be noted that if )\; are
not equal, then the data Y; will display extra-poisson variation. In modelling disease rates
in relation to a point source, we may assume the generalized linear model that incorporates
both area-specific covariates and a measure of the spread of the risk from source. This model

may be written as

log \; = logn + log g(di;0) + 27 (2.6)

where z; is a ¢ X 1 vector of area-specific covariates, n is a measure of the overall inflation of
risk in the region under study and g(d;) is a decreasing function of distance. The parameters

of the model may be estimated using the likelihood or the Bayesian approach.

2.5.2 Choice of g(d;)

As explained earlier g(d;) must be defined such that as d; — oo, g(d;) — 1. Bithell (1995)

further clarify most of the controversies surrounding the choice of g(d;). Bithell proposes the
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following distance functions as suitable forms for g(d;).

91(di) = exp(a/d) (2.7)
go(di) = (1+&exp(—di/B)) (2.8)
g3(di) = (1+&exp(—(di/7)?)) (2.9)
ga(di) = (1+&/(1+di/5)) (2.10)

where d; may be the distance of the centroid of the subregion from the origin, or may denote
any surrogate measure of inverse risk e.g. rank of distance. He further defines «, 3,7, and ¢
to represent decay rate. For go(d;) to g4(d;), 1 + £ is a measure of the ratio of relative risk

at source to that at infinity. Setting
a, = log 7, (2.11)

equation (2.6) becomes

log A\ = a, + log g(di; 0) + 2] ¢

Some functions g(d;; #) are very worthy of mention. Diggle (1990) defines g(d;; ) as
9(di;0) = 1+ ¢ exp(=0, df)

where 6 = (£, 3,). Diggle et al. (1997) propose an extension to the model by including a
disc around the source of unknown radius ¢, within which the risk remains constant. They

1/2

also reparameterize the model by using 8 = ;"/¢ so that 3 is measured in the same units

as distance. This leads to
1+¢ di <6
g(di; 0) = \
14 expl—(di — 6)/6%) di >
where 6 = (£,0,6). Here, 1 + ¢ is used as a measure of the proportion of elevated risk at

source, ¢ is the radius of the plateau of maximal risk and 3 represents the distance from the

rim of plateau at which the risk has decreased by a factor of exp(—1) =~ 0.36.

2.5.3 Area-specific Covariates

One of the most effective methods for measuring the socio-economic status of a community is

the use of deprivation index. The importance of some socio-economic factors in the prediction
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of disease incidence and mortality has been emphasized by a lot of researchers (Jolley et al.,
1992; Pampalon and Raymond, 2000; Townsend, 1987). Townsend defined deprivation as “a
state of observable and demonstrable disadvantage relative to the local community or the
wider society or nation to which the individual, family or group belongs” (Townsend, 1987:
page 125). In modelling disease risk in relation to a point source, socio-economic variables
have to be taken into account because of confounding effects (Jolley et al. 1992). A lot of
methods based on some socio-economic variables have been proposed and used as a measure
of deprivation in the community. We describe some of these in more detail

The Townsend index (Townsend, 1987) involves four variables: unemployment; absence
of a car; housing tenure; and overcrowding. These variables are standardized and log trans-
formation is done to ensure normality, unit weights are then attached to the standardized
variables to obtain the combined index. Carstairs and Morris (1991) developed another in-
dex for measuring deprivation based on the following variables: persons in households with
more than one person per room; persons in households where the head is economically active
and from social class IV or V (semi-skilled and unskilled laborers); economically active male
seeking work, and persons in private households without access to a car. These variables are
standardized and unit weights are then attached to the standardized variables to obtain the
combined index.

Some of the variables used in Townsend’s index and Carstairs’ index are not readily
available in the Canadian census data, so Pampalon and Raymond (2000) propose one for
health and welfare planning in Quebec. The index is based on the following socio-economic
variables: the proportion of persons who have no high school diploma; the rate of unemploy-
ment to population; average income; the proportion of persons who are separated, divorced
or widowed; the proportion of single-parent families; and the proportion of people living
alone. Using principal component analysis (with varimax rotation), they are able to derive
two independent scores (material and economic), which shows a very significant association

with life expectancy at birth among men and women in Quebec.
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2.6 Parameter Estimation

The parameters of the model (2.6) can be estimated using the likelihood approach or Bayesian
Hierarchical modelling. The likelihood method will be explained in detail in Chapter 5. We

will now introduce the Bayesian approach and leave the full discussion for Chapter 4:

2.6.1 Bayesian Hierarchical Modelling

Following Wakefield and Morris (2001), Wakefield et al. (2000), Datta et al. (2000), Best et
al. (1999) and Besag et al. (1991) we define the stages as

First-stage Model
log A\ = a, + log g(di;0) + 27 ¢ + Vi + U (2.12)

where V; and U; denote the non-spatial and spatial random effects respectively which are
generally assumed to be independent.

The function g(d;; 6) is a function of distance d; from the center of the point source such
as those defined earlier. Different form of g(d;; #) have been used in modelling of diseases

risk in relation to point source. For example Datta et al. (2000) define g(d;; ) as

g(di; 0) = exp(a/d;)

where § = a. Wakefield and Morris(2001) define g(d;; #) in terms of g2(d;) to give

g(dii8) = 1+ ¢ exp [— (%ﬂ

where § = (£,03). It should be noted that £ = 0 corresponds to no relationship between

distance and risk.
Second-stage Model

At the stage we try to address some of the problems of instability of MLE A=Y, /E; when the
data is sparse. The usual approach is to allow the estimates of each of A; to ‘borrow strength’
from the remaining estimates of A;, j # ¢ by specifying a joint model for A = (A1,..., An).
This is achieved by specifying a multivariate probability distribution for A (Wakefield et al.,
2000).
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Third Stage: Prior Distributions

At this stage we specify prior distributions for all the parameters in the first and second
stages. In general for all parameters in the model normal priors with large variance are
usually specified to represent vague beliefs. Another possibility is to specify improper uniform

priors (Datta et al., 2000; Wakeficld et al., 2000).
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Chapter 3

Exploratory Data Analysis

3.1 Introduction

In this chapter, exploratory data analysis of all the covariates will be carried out. Maps of
each of these variables will be plotted to see if there are any obvious clusters. A confirmation
of these patterns will be done using some of the methods discussed in chapter 2. Areas that

are not shaded on the maps show the 14 missing values explained earlier in section 1.5.

3.2 Standardized Incidence Ratio

Preterm births only occur in females within the child bearing age and the condition is not
infectious. Hence, it is reasonable to assume that each case occurred independently, so that
the distribution of observed counts, Y;, ¢ = 1,...,144 is as defined in Equation (2.1). The
expected counts (E;) for each enumeration district was calculated from the Canada preterm
birth rate of 7.1 per 100 live births in 1996 (source: Population and Public Health Branch,
Health Canada).

This rate is assumed fixed for 1996 and might have been calculated by including data
from the Cape Breton Regional Municipality, but we will assume that the effect of this can be
ignored. The expected counts for each enumeration district were calculated by multiplying
the population at risk in each enumeration district by the national rate of 7.1% and this is

denoted by E;. Hence, E; is the expected number of preterm birth from all other sources
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Figure 3.1: Mazimum likelihood estimates of the relative risks (SIR) for preterm birth

of risk other than pollution from the Sydney Tar Pond. Figure 3.1 shows the map of the
maximum likelihood estimators of the relative risk (SIR), ):z- =Y;/E;. From the map, areas
with A; < 1 indicate no risk or absolute risk reduction while A; > 1 indicate high risk of
preterm birth compared to the rest of Canada. But as explained earlier, care has to be taken
when interpreting the crude map of SIRS. To illustrate this, we will plot the SIR against the
population at risk (see Figure 3.2). This graph clearly shows that areas with low population
at risk tend to show high variability in SIR. This can be adequately accounted for using the

Poisson model for aggregated data. This will be explained in the next two chapters.

3.3 Area-specific Risk

Following Pampalon and Raymond (2000), the following area-specific variables were consid-
ered for the analysis: The proportion of persons who have no high school diploma, the rate of

unemployment to population, average income, the proportion of persons who are separated,
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Figure 3.2: Plot of SIR against population at risk
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Figure 3.3: Plot of SIR versus distance in km from the centroid of the Tar Pond and other

area-specific covariates.

divorced or widowed, the proportion of single-parent families and the proportion of people
living alone.

Only five of the variables are available at all the 144 EDs with average income available
only in 130 EDs. So we could not compute an adequate measure of deprivation based on
the method proposed by Pampalon and Raymond, we decided to assess the effect of each of
the variables separately leaving out average income. Distance from the Tar Pond site and
all the area-specific variables were plotted against SIR to assess the effect of each. The plots
are given in Figure 3.3.

As explained earlier, points below the doted line indicates no risk or absolute risk reduc-
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Figure 3.4: The percentage of people living alone

tion and vice versa. All the high values of SIR occurred within the 20 km distance from the
Tar Pond. There is a slight evidence of decrease in risk from source as we move further away
but this will be tested statistically in the next chapter.

The plot of SIR and the rate of unemployment to population show an upward trend with
high unemployment rates associated with high SIR. A similar pattern is displayed by the
plot of SIR and proportion of persons with no high school diploma. In the plot of the SIR
and proportion of separated, divorced and widowed; areas with low proportion of separated,
divorced and widowed tend to have low SIR. A similar pattern is seen in the plot of SIR
and proportion of people living alone. There is no obvious pattern in the plot of SIR and

proportion of single parent families.
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Figure 3.5: The rate of unemployment to population

3.4 Test for Spatial Dependency

One of the objectives of this study is to check for any obvious clustering of events around
the Tar Pond that may be significant in explaining the variation in preterm birth rates. This
can be done by plotting the maps of all the variables and visually assessing whether there
is any cluster or carrying out a formal test using some of the methods discussed in the last
chapter like Moran I or Geary C statistics.

From the map of SIR in Figure 3.1, we would expect a cluster of high SIR around the
Tar Pond or a decrease in the SIR as we move further away from the Tar Pond but neither
of the two is obvious from Figure 3.1. The maps of all the area-covariates were plotted to see
whether there is any spatial pattern . The plots are displayed in Figures 3.4 to 3.8. Figure 3.4
shows a pattern with the highest proportion of people living alone occurring within the 20km
radius of the Tar Pond site.

Figure 3.5 also shows that the unemployment to population ratio decreases as we move

further away from the Tar Pond. From Figure 3.6 we can see a small cluster of proportion
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Figure 3.6: The percentage of persons who are separated, divorced or widowed

of separated, Divorced of widowed. Figure 3.7 show that the proportion of single parent
family is relatively spread except for three noticeable clusters of which two are close to the
Tar Pond site. Finally, we can see that the proportion of persons who have no high school
diploma shown in Figure 3.7 displays some spatial pattern with some of the area close to
the Tar Pond having high proportion.

Existence of spatial autocorrelation was also tested formally using the Moran I test. This
test was carried out using the S-Plus extension in Arcview which allow coordinates of these
maps to be exported to S-Plus. Results of the spatial autocorrelation analysis are given in
Table 3.1 with variables defined as in Table 1.1. These results show the correlation, variance,
normal statistic and p-value. The only variable that is not significant based on the associated

p-value is SIR. This confirms the result of the visual examination of maps.
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Figure 3.7: The percentage of single-parent families

Table 3.1: Results of Spatial Autocorrelation Analysis using Moran I statistics

B Tar pond site

Variables Correlation Variance Std. Error Normal statistic Normal p-value

SIR -0.03798  0.002541  0.05041 -0.6148 0.5387
o) 0.348 0.002541  0.05041 7.043 1.888e-12
T2 0.4582 0.002541  0.05041 9.229 2.732e-20
Z3 0.1924 0.002541  0.05041 3.955 7.659e-5
T 0.4051 0.002541  0.05041 8.174 2.984e-16
Zs5 0.2932 0.002541  0.05041 5.9955 2.607e-9
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Figure 3.8: The percentage of persons who have no high school diploma
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Chapter 4

Bayesian Hierarchical Modelling

4.1 Introduction

In order to model the data while accommodating the expected over dispersion and also in-
cluding the spatial components (location or relative position of data values) of the data,
Bayesian hierarchical modelling was used. The implementation of this modelling was done
with WINBUGS and GeoBugs software for modelling aggregated data with plots and con-
vergence diagnostic test done with coda package in R (Plummer et al., 2004). One of the
major advantages of this method of modelling disease risk is that it combines information
from the data (likelihood) with the prior distribution of the disease risks. The mean or the
median of the posterior distribution is used as a point estimate of disease risk for each area.
The two basic assumptions underlying the use of this method for aggregated data are: First,
disease in each enumeration district is assumed rare and non-infectious. Hence, occurrences
are independent. Second, the risk is assumed to be constant in each enumeration district.

The modelling is explained in the following three stages:

4.2 Description of the Model

First-stage Model
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Following Datta et al. (2000) and Bithel (1995), we defined
g(ds; 0) = exp(ar/di)
so that equation (2.12) becomes
log\i = ap +a/d; + 25 o+ Vi + U; (4.1)

where d; is the distance of the ith enumeration district (ED) from the centroid of the Tar
Pond, n = exp(a,) is a measure of the overall inflation of risk in the region under study, «
represents the decay rate and ¢ is a vector of parameters of the area-specific covariates. V;
are unstructured random effects included in the model to capture the effects of unknown or
unmeasured area level covariates. Hence, exp(V;) will be equal to the residual or unexplained
relative risk in area A; after adjusting for known area-specific covariates. We have included U;
in the model to capture our belief that the unstructured random effects (V;) may exhibit some
spatial structure. The second stage of our analysis is to model the expected overdispersion
in the model by defining appropriate structured and unstructured random effects for the

model.
Second stage: overdispersion model

As discussed earlier in Chapter 2, there are two types of over-dispersion: heterogeneity and
spatial dependence. In this section, we assume that the unstructured random effects which

is a measure of heterogeneity is of the form
V, ¥ N(0,62) i=1,...,n

where o2 is a measure of the between-area variability of the V;. Next, we specify the spatial
random effect to model the anticipated spatial dependence of the log of relative risk. For a
detailed review on the modelling of the spatial variability we turn to Wakefield et al. (2000).
The problem of accounting for spatial dependence is a bit more complex than that of het-
erogeneity. This is because we are interested in modelling an n-dimensional random vectors
U = (Uy,...,U,)T while making allowance for dependence between U; and U; for ¢ # j.
One way of doing this modelling is by specifying the joint distribution of U. The second,
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which will be discussed, is the use of univariate conditional distributions of U;|U; = u;,

j#i,i=1,...,n. Wakefield et al. (2000) define
U ~ N,(0,,02%) (4.2)

where ¥ is an n x n positive definite correlation matrix. The parameter o2 is a measure of
the overall variance of the U;. They also define a matrix Q = X! and denote element (3, 7)
of this matrix by @;; fori,j =i=1,...,n.

Following Besag and Kooperberg (1995) and the standard properties of the multivariate
normal, Wakefield et al. (2000: page 124-125) give a detailed derivation of the conditional
distribution of U;|U; from equation (4.2). The general form is given by

n

UlUj =uj,j #i~N (JZ:I Wiju;, aiDii) (4.3)
where Wy, = 0, W;; = —Qi;/Qu, and D;; = Q;'. This equation defines a Markov ran-
dom field (MRF) model because spatial dependency is modelled through the conditional
distribution of U;|U; (Wakefield et al., 2000; Wakefield and Morris, 2001). The use of equa-
tion (4.3) always starts with the specification of a spatial weight (W;;) which defines the set

of neighbours that contributes positive weights to the conditional expectation of U;.
One of the most common methods of specifying the MRF model is the use of intrinsic

conditional autoregressive (CAR) proposed by Besag et al. (1991) and defined by

02

UilUj = uj,5 # i ~ N(i, —T—n%)
where 4; = ¥, u;/m; and m; is the number of neighbours. Comparing this with equa-
tion (4.3) shows that D;; = 1/m; and W;; = 1/m; for neighbours and zero otherwise. The
most challenging aspect of this modelling is in how to define neighbours and choose W;;. In
our case, we have defined areas ¢ and j as neighbours if they share a common boundary (see
Wakefield et al., 2000; Clayton and Kaldor, 1987; Besag et al., 1991). We have also defined
the spatial weights {W;; : ¢ = 1,...,n} as a 0-1 contiguity matrix in which W;; = 1 for
neighbours and W;; = 0 otherwise. Furthermore, W; = 0 and the constraint ;- , U; = 0 is

imposed for identifiability.
Third Stage: Prior Distributions
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Table 4.1: Priors

Authors o %priors o2 priors
v u

Wakefield et al., 2000 Gamma (0.5,0.0005) | Gamma (0.5,0.0005)

Wakefield and Morris 2001 | Gamma (0.5,0.0005) | Gamma (0.5,0.0005)
Gamma (0.5,0.0005) Gamma (0.1,0.1)

Best et al., 1999 Gamma (0.001,0.001) | Gamma (0.1,0.1)

At this stage all the parameters (a,, a, ¢, 0,2 and o,?) of the model are assigned a prior
distribution. «a, was assigned a flat prior which corresponds to a uniform distribution over
the whole real line. «, and ¢; were assigned a normal (0,107%). In WINBUGS, a normal
distribution is always specified in terms of its mean and precision. Hence a normal (0, 1075)
is another way of making a uniform distribution out of normal by specifying a large variance.

2 is a very challenging one and it has to be done

The choice of prior for 0,2 and o
carefully. Also, sensitivity test has to be done with these priors. Many authors have favoured
the use of gamma(a,b) for both ¢;2 and 0,2 because it is a conjugate prior to the normal
but the choice of a and b is what they have not agreed on (Wakefield et al., 2000; Wakefield
and Morris, 2001; Clayton and Kaldor, 1987; Besag et al., 1991; Best et al., 1999; Datta et
al., 2000). In the Table 4.1, we give some of these priors. In our case, we have assigned

Gamma (0.1,0.1) to both ¢,2 and o2 and carry out sensitivity analysis with all the priors

given in Table 4.1.

4.2.1 Relative Risk Estimates

What is the true relative risk (A;) of preterm birth in each enumeration districts for 1996
compared with the reference population? In order to answer this question, we define the

general form of the relative risk function ();) from equation (4.1) as
Ni =1 g(di; 0) exp{z]'¢ + Vi + Ui} (4.4)
Wakefield and Morris (2000) advise that this general form should be used to estimate area-

level relative risk when doing model checking and also to factor in our belief that the random
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effects V; and U; are contributing significantly to );. An alternative form is
Xi =1 g(d;; 0) exp{z] ¢}.

which is preferred when we believe that V; and U; are mainly accounting for data anomalies.

In our case, we have estimated A; from equation (4.4).

4.3 Implementation

Let us define a parameter vector 6 = (a,, @, ¢,02,02)T and denote the prior distribution of
6 by m(0) and the likelihood for data D given 6 by L(D|6). Then, the posterior distribution
of 8 and D which is the “object of all Bayesian inference” (Gilks et al., 1996) is defined as

7(0|D) « =(6) L(D|6) (4.5)

The next step is to generate a sample from the posterior distribution 7(8|D). This may be a
bit complex because the normalization constant of equation (4.5) defined by f7(6) L(D|0)df
is high dimensional and may not be easy to evaluate analytically. One way of doing effective
sampling from this posterior distribution is to use the Markov chain Monte Carlo (MCMC)
simulation. Roberts (1996: page 41) defines a Markov chain X as

a discrete time stochastic process {Xy, X1,...} with the property that the dis-
tribution of X; given all previous values of the process, Xy, X1,... X;—1 only

depends upon X; ;. Mathematically, we write
P[Xt S AIXO,XI; e Xt—l] = P[Xt € A!Xt__l]
for any set A, where P[.|.] denotes a conditional probability.

Roberts (1996) further gives three important properties that must be satisfied by the distri-

bution of X; before it can converge to a stationary distribution. These are:

1. It must be “irreducible”. This means that the ability of the Markov chain to reach
any non-empty set with positive probability, in some number of iterations should not

be influenced by the starting position.
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2. The chain must be “aperiodic”. This is a condition that will make it impossible for
the Markov chain to oscillate between different sets of states in a regular periodic

movement.

3. The last and most important condition is that the chain must be “positive recurrent”.
This means that if the initial value Xy is sampled from 7(.), where 7(.) is a stationary

distribution, then all subsequent iterates will also be distributed according to 7(.).

Applying this concept to our case, we need to construct a Markov chain with state space 6.,

where 6 € 8, C R*. This process is then used to generate random samples from the joint

posterior distribution of 7(8|D). Suppose we denote these samples by 81 2 ... R
The next step is to use Monte Carlo integration to approximate the expectation of a

function f(#). This is defined as

BIf6)] ~ = 3 £09).

i=1

The main idea here is that the population mean of f(6) is been estimated by a sample mean.
One of the methods of constructing the needed Markov chain is the use of the Metropolis-
Hastings algorithm. Another method is the use of the Gibbs sampling algorithm. This second
approach is a special case of the single-component Metropolis-Hastings algorithm and it can
be implemented in the WINBUGS statistical software. Output from the MCMC is usually
summarized in terms of ergodic averages, which provide an estimate of the posterior means
of 8, {k = 1,...,1}, where [ is the number of parameters. Hence, the posterior mean can
be estimated by the sample posterior mean 6 = &, 9,(:) /R. The posterior variance is

estimated by the sample posterior Monte Carlo variance 0§ = fil(ﬁ,(:) - 0;)%/R.

4.3.1 Methods of Sampling from Posterior Distribution

There are basically two approaches agreed on by a lot of authors on how to sample from the
posterior distribution. One approach involves running one long chain for a long period and
assessing the convergence of the chain to the required expectation (posterior distribution).
This method is considered more efficient but assessment of convergence may be difficult. The

second approach involves running more than one chain and starting from different points in
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the parameter space. This method is very good for convergency assessment. Gelman and
Rubin (1992) suggest running 3 to 5 chains starting from “overdispersed” positions in the
posterior distribution and drawing inference from all the chains. This is to avoid a situation

in which one is stuck around 1 local posterior mode.

4.3.2 Convergence diagnostics

In this section we will discuss some of the methods of assessing convergence of chain(s)
in MCMC analysis to the target distribution. Theoretically posterior means can only be
obtained at infinity. In practise however, a reasonable approximation is good enough. The
main question is that, at what point can we say that a chain or chains have converged? We
have answered this question by running five independent chains starting at different initial
values. Assessment of convergence in WINBUGS can be done informally by checking the
time series plots. This can then be confirmed formally with the Gelman and Rubin’s method
(Gelman and Rubin, 1992). Once convergence is reached, we expect the samples to look like
a random scatter plot about a stable mean value. This can easily be seen in the time series
plots. Gelman and Rubin’s method monitors convergence by estimating the factor by which
the scale parameter might shrink if sampling were continued indefinitely. This is defined as

\/E:\/(ngl_m+1B) af

mn W df —2

where B is the variance between the means from m parallel chains, W is the average of the m

within-chain variances, and df is the degrees of freedom of the approximating ¢ distribution.

4.3.3 Autocorrelation function

This is a measure of how the values within the chains are related. High autocorrelation may
occur if the parameters in our model are highly correlated. This is a very serious problem
because it may slow down the Gibbs sampling process and increase the time needed to fully
explore the entire posterior distribution. A very simple diagnosis of the autocorrelation is

the use of the autocorrelation plots which is available in WINBUGS. The presence of high
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Figure 4.1: Gelman Rubin Plots from five parallel chains. Convergence is suggested when

the medians and the 97.5 percentiles approach 1
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Figure 4.2: Kernel density plots of sampled values for parameters of model  based on five

pooled chains.
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Table 4.2: Posterior median (95% credible interval) for parameters of each model and sum-

maries of model fit (DIC) and complezity (pp)

Nodes

Model 1

Model 2

Model 3

Model 4

(67
Q
d)l
o
¢3
P4
s
¥

U]
Oy
oy

DIC

Pp

0.246 (0.188,0.305)

0.557 (0.428,0.676)
1.279 (1.207,1.356)
0.187 (0.125,0.281)
0.149 (0.109,0.204)
727.934
38.419

-0.097 (-0.326,0.120)
0.268 (0.193,0.343)

0.559 (0.434,0.679)
1.307 (1.212,1.409)
0.189 (0.127,0.283)
0.149 (0.110,0.204)
728.672
39.208

0.241 (0.182,0.300)
-0.019 (-0.108,0.070)
-0.001 (-0.080,0.077)
0.051 (-0.091,0.195)
0.008 (-0.102,0.118)
-0.002 (-0.093,0.090)
0.555 (0.426,0.677)
1.272 (1.200,1.349)
0.1847 (0.124,0.282)
0.1486 (0.108,0.204)
732.164
42,915

-0.087 (-0.317,0.130)
0.260 (0.1834,0.336)
-0.019 (-0.107,0.072)
0.001 (-0.079,0.080)
0.049 (-0.092,0.189
0.008 (-0.101,0.116
-0.002 (-0.092,0.090)
0.558 (0.430,0.682)
1.297 (1.201,1.400)
0.187 (0.126,0.287)
0.149 (0.108,0.203)
734.653
41.004

)
)

autocorrelation indicates that the sample needs to be larger in order to fully explore the pos-

terior distribution. It should be noted that low autocorrelation or absence of autocorrelation

does not indicate convergence of the chains.

4.4 Bayesian analysis result

Using the prior distributions of the previous section, the analysis of incidence of preterm

birth in the proximity of the Tar Ponds was carried out. The following models were fitted

using the five area covariates available at all the 144 EDs and a measure of proximity (d;):

1. model with no covariates which corresponds to the null model,

2. model with only distance measure alone,

3. model with only deprivation covariates alone, and
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Figure 4.9: Posterior mean of the relative risk of preterm births for model 4

4. finally, model with distance and deprivation covariates.

The models were fitted using MCMC simulation method discussed earlier. Five separate
chains starting from different initial values were run for each model. Convergence was as-
sessed by visual examination of time series plots for each parameter and by carrying out the
Gelman and Rubin diagnostic based on the ratio of between to within chain variances for
each model. The time series plots with all the five chains superimposed were examined to
see whether the chains were mixing well. Figure 4.1 shows the Gelman Rubin Plots with the
“shrinking factor”. This clearly shows that “shrinking factor” for each parameter approaches
1. Hence, all chains have escaped the influence of their starting points. Figure 4.2 and 4.3
show the posterior density of each parameter after convergence. The autocorrelation plot
shown in Figures 4.4-4.8 show that autocorrelation decreases very fast from lag 1. All the
plots were produced with the coda package for R (Plummer et al., 2004). On this basis, the
first 2000 samples of each chain were discarded as ‘burn-in’; each chain was run for a further

10000 iterations, and posterior estimates were based on pooling the 5 x 10000 samples for
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Figure 4.10: Posterior median of the relative risk of preterm births for model 4

each model. This gave Monte Carlo standard errors that are less than 1% of the posterior
standard deviation for each parameter in the models.

Table 4.2 gives the summaries of the posterior distribution under each model. From
Table 4.2, we can see that estimates of o in both models 2 and 4 is negative, and the 95%
credible interval contain zero which is evidence that there is no increase in risk from source.
The 95% credible interval for ¢; (i = 1,...,5) in models 3 and 4 also contain zero which
shows that the risk cannot be explained by any of the socio-economic covariates. For each of
the models 1 which is a measure of the overall risk was found to be greater than 1 which is
evidence that there is an increased risk of preterm birth in each of the enumeration districts
compared to the rest of Canada.

The parameters, o, and o, only change slightly over the 4 models. Following Best et
al. (1999), we defined a quantity ¢ = 0,/(0, + 0,) as a measure of the relative contribution
of U; and V; to the total overdispersion. So that as ¢» — 1, spatial variation dominates, while

as ¢ — 0, spatial variation becomes negligible. From Table 4.2, the 95% credible intervals
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for ¢ for each model contain 0.5. Hence, there is no clear evidence that the spatial structure

dominates the random effect in any of the model.
Goodness of Fits

Spiegelhalter et al. (1998) proposed the use of Deviance Information Criterion (DIC) which
consists of two terms, one is a measure of goodness of fit and the other is a penalty for
increasing model complexity so that smaller values of DIC indicate a better-fitting model.
From the result of Table 4.2, the DIC increases as more variables are added into the model.

Hence, Model 1 is better than all the three other models.

Predicted Relative Risk

Finally, the posterior median and mean of the relative risk of preterm birth were plotted.
These plots are shown in Figures 4.9 and 4.10. We can now compare this figures with the
crude SIR plot in Figure 3.1. The plot shows that high relative risk of preterm birth in
almost all the enumeration districts. However, the risk is not as high as shown in Figure 3.1.
Also the posterior median was plotted against distance from the Tar Pond in Figure 4.11.

There is no clear distance risk relationship.
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Chapter 5

Frequentist Methods

5.1 Introduction

In this chapter, two frequentist methods will be used to fit the models in Chapter 4. First,
Poisson models will be fitted using the quasi-likelihood approach. This method will be
used to accommodate the expected over dispersion while excluding the spatial component
of the data. Second, weighted linear regression will be fitted and the residuals of the fit
will be tested for spatial autocorrelation. If these residuals exhibit spatial properties then
a spatial linear regression will be fitted. We will expect the result to be very close because

quasi-likelihood is a special case of weighted least squares (McCullagh and Nelder, 1989).

5.2 Poisson Regression

For Y; ~ Poisson(y;), where u; = NE; (4 = 1,...,n), we assume the generalized linear
model (McCullagh and Nelder, 1989). Four models were fitted for the log relative risk
(log \; = log u; — log E;) in terms of a constant, area-level covariates (see Table 1.1) and the

reciprocal of distance. The fitted models are:

loghi = a, (5.1)
log\i = a,+a/d; (5.2)
loghi = oo+ 0171 + P2T2 + P3T3 + PuTy + P5T5 (5.3)
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log >‘i = @, -+ Ot/di + ¢1£E1 + ¢25€2 + ¢3.’E3 -+ ¢4.’E4 + ¢5$5 (54)

These are the same model as used in Chapter 4 except no random effects or spatial effects.
This is also called a log-linear model, because the log of the mean is assumed to be a linear
function of covariates. In each of the fitted models, logE; is used as an offset to account
for variations in A; over the study region. An offset is a covariate in linear predictor whose
coefficient is not estimated, but assumed to be equal to 1. The results of the fit obtained by
using the quasi-likelihood approach in SAS package are summarized in Table 5.1.

The quasi-likelihood approach is used to account for the overdispersion that might occur
in the data set. This is implemented by specifying E(Y;|\;) = u; and Var(Yi|\) = sy
and estimating , using a hierarchical modelling approach with the assumption that \; are
random variables from a probability distribution. Where & is the dispersion parameter with
value greater than 1 for overdispersion. The conventional estimate of x is the mean Pearson
x? statistic. We have explained the use of the Pearson x? for goodness-of-fit in detecting
heterogeneity of relative risk in section 2.3.1. This statistic compares the fit of the current

model to that of a saturated model and it is defined by
W = 2": (yi — pi)*
i—1 M
Hence, & = x?/(N — p) where N and p respectively denotes the number of observation
(length of Y;) and parameters in the model. For each of the fitted model x was estimated to
be approximately equal to 1 (see Table 5.1), a condition that shows that there is no evidence

of overdispersion.

5.2.1 Analysis

The results of all the four models are displayed in Table 5.1. The Wald confidence intervals
shown in Table 5.1 are based on the asymptotic normality of the parameter estimators.
They are sometimes called the normal confidence intervals. The 95% Wald interval for any
unknown parameter () is given by g+ 1.96645. Where 6 is the maximum likelihood estimate
of § and 6 is the standard error estimate of 6. From the table, we can see that the estimated
o in both model 2 and 4 is negative, and the 95% Wald confidence intervals contain zero

which is evidence that there is no increase in risk from source.
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Table 5.1: Parameter

estimates (95% Wald C.1.), residual deviance, and over-dispersion

parameter

parameter | Model 1 Model 2 Model 3 Model4
o - -0.0878(-0.2519,0.0763) - -0.075 (-0.239,0.089)
0 0.2520 | 0.2707 (0.2111,0.3303) | 0.2163 (-0.3427,0.7753) 0.226 (-0.334,0.785)
ol - - -0.0034 (-0.0103,0.0035) | -0.003 (-0.010,0.004)
b2 - - -0.0008 (-0.0099,0.0083) | -0.0005 (-0.0096,0.0086)
o3 - - 0.0115 (-0.0074,0.0305) 0.011 (-0.008,0.030)
G4 - - 0.0007 (-0.0128,0.0142) | 0.0006 (-0.0129,0.0141)
o5 - - -0.0011 (-0.0079,0.0057) | -0.0010 (-0.0078,0.0058)

Deviance 132 130.56 122.9983 122.18
Df 143 142 138 137
K 0.99 0.9942 0.9887 0.9906

The 95% confidence intervals for ¢; (i = 1,...,5) in models 3 and 4 also contain zero
which shows that the covariates are not significant factors in risk of preterm birth. This
result is confirmed by the Wald Chi-square test, the square ratio of each, parameter estimate
divided by its standard error is a measure of the individual effects in the fitted models. The
results of the test are given in Table 5.2. This result shows that none of the variables

has significant contributions to the explanation of the variation in risk. Now combining

equations (5.1) and (2.11), we have
log \; = logn

therefore n = A; = p;/E;. This is referred to as the overall mean of the relative risk. For
each of the models, Table 5.3 gives the estimates of the overall risk together with its 95%
confidence intervals. The overall mean of the relative risk is greater than 1 for each model
which indicates that there is elevated risk of preterm birth across the whole of Cape Breton

Municipality.
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Table 5.2: Type III (Wald) Tests

Models | Effect | DF | Wald x? | Pr > x?
Model 2 d; 1 1.0993 0.2944
Model 3 T1 1 0.9435 0.3314
T 1 0.0310 0.8603
Z3 1 1.4209 0.2333
T4 1 0.0093 0.9232
Ts5 1 0.0971 0.7554
Model 4 1 1 0.9306 0.3347
Zo 1 0.0110 0.9164
x3 1 1.3270 0.2493
T4 1 0.0083 0.9274
Ts 1 0.0802 0.7771
d; 1 0.8058 0.3694

Table 5.3: Overall mean of the relative risk (n) and its 95 % Confidence intervals

Parameter

Model 1

Model 2

Model 3

Model 4

n

1.287 (1.225, 1.351)

1.311 (1.235, 1.391)

1.241 (0.710, 2.171)

1.254 (0.716, 2.192)
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Table 5.4: Summary of Yisa. x; are in percents

A

Yi| N} A di | x| T2 T3 | T4 zs

16 | 382 1 0.59 | 14.37 | 55 | 24.26 | 9.66 | 3.27 | 11.29

5.2.2 Description of Plots

For each model, the following plots were produced in S-plus package: Deviance residuals
versus fitted values; observed counts versus fitted values; predicted values versus the square
roots of the absolute values of the deviance residuals; and Pearson Residuals of the fitted

model versus Quantiles of Standard normal. The plots are shown in figures (5.1)-(5.4).
Deviance Residuals Plots

Deviance residuals is a measure of fit in a generalized linear model. They are defined as

rp = sgn(y; — /ii)\/gi;

where §; is the contribution of the ith observation to the deviance. Hence, rp increase (or

decreases) with y; — p;. For the Poisson distribution,

6 = 2(ys In(ys/pa) — i + pa).

This residuals are useful for detecting observation(s) that are having undue effects on the
fitted models. A look at the plots of Deviance Residuals versus fitted for each model shows

no systematic trend except for one observation, y;3», that is far away from the rest.
Other Plots

With the exception of y;32, the plot of observed counts versus fitted values for each model
did not show any great departure from the model. Pearson Residuals of the fitted model
versus Quantiles of Standard normal for each model does not show any instability. It should
be noted that observation, y;32, needs to be investigated. The observed value of ;35 is 16
and the minimum fitted values of 30.63 is almost twice the observed. The summary of y;32
is given in Table 5.4 This shows that Y)3; is 14.37 km away from the Tar Ponds and has
a low relative risk of preterm birth (SIR = 0.59). It has a high rate of unemployment to
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Figure 5.1: Diagnostic plots for model 1

population and a high proportion of persons who are separated, divorced or widowed. This
ED also has one of the lowest proportion of persons with no high school and proportion of

people living alone.

5.3 Weighted Linear Regression

Here we have fitted a modified version of Model 4, equation (5.4) using the weighted re-
gression approach. This was done to account for the dispersion that might result from the
violation of the constant variance assumption in the least squares approach. The weight (w;)

was set equal to E;/ Y1 | E; and \; was replaced by the SIR (/A\z =Y;/E;) so that the error
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Table 5.5: Weighted regression result

Parameters | Value | Std. Error | ¢ value | Pr(> |¢])
o 0.2180 0.2708 0.8052 | 0.4221
o -0.0878 0.0758 -1.1582 | 0.2488
P -0.0045 0.0033 -1.3817 | 0.1693
0o -0.0001 0.0044 -0.0252 | 0.9800
O3 0.0106 0.0094 1.1330 0.2592
P4 0.0025 0.0067 0.3751 0.7081
o5 -0.0011 0.0034 -0.3194 1 0.7499

sum of squares (Q) of the weighted linear regression can be written as
n ~
Q= 1_21 wi{log \i — (0o + &v/di + d121 + dom2 + G323 + PaTs + P575) .
Here, we have not included the spatial component of the model because, we have seen in
Chapter 3 that the SIR does not exhibit spatial dependency.

The result of the fit is given in Table 5.5. From the ¢-value and the associated p-value, it
appears that none of the variables is significant in the explanation of increase risk of preterm
birth. The residual standard error of the model was estimated to be 0.02347 on 137 degrees
of freedom. Multiple R-Square is 0.09795 which shows that the variables in the model are
only able to explain less than 10% of the total variation in the risk. The F-statistic for the
regression relationship was estimated to be 2.479 on 6 over 137 degrees of freedom and the
associated p-value is 0.0262. This shows that at least one of the parameters (¢, and ¢;)
does not equal zero. Hence, there is an existence of a regression relationship between the

dependent variable (Y;) and the Independent variables (X;).

5.3.1 Weighted Regression Diagnostic Plots

The diagnostic plot are shown in Figure 5.5. The residual plots (first row, first plot) does
not show any obvious trend. Three observations are identified as outliers. These are Y14,
Yss and Yg,. The plot of residuals versus quantiles of standard normal (second row, first

plot) shows a slight deviation from normality but not sufficient to reject the assumption of
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normality.

Residual and fit spread plot (Second row, second plot) shows some weakness in the model
because the spread of the residual is greater than the spread of the fitted values. We actually
expect the opposite to happen, if the model is fitting perfectly well. The Cook’s distance
plot (second row, last plot) shows that the three observations (Ya2, Yo7 and Yi3;) are having
great influence on the regression coefficient. It should be noted here that observation Yis;

was also identified as outlier in the quasi-likelihood Poisson model fitted earlier.

5.3.2 Test for Autocorrelation

Next, Moran’s I test was also carried out to examine whether there is spatial autocorrelation
in the residuals. The result gave a correlation of -0.01628, variance of 0.002541 and standard
error of 0.05041. In addition, the normal test statistic was -0.1843 with associated 2-sided
p-value equal to 0.8538. These results are sufficient to conclude that there is no spatial

autocorrelation in the residuals. Hence, there was no need to use spatial regression modelling.

5.3.3 Where there is Autocorrelation

In practice, a typical spatial regression modelling will start with the examination of the
dependent variable for spatial dependency. This can be done with Moran’s I statistics or
Geary C statistics. If there is no spatial pattern, then ordinary least square or weighted least
square is sufficient to model the data.

On the other hand if the dependent variable shows spatial patterns. Then, the first order
spatial pattern can be incorporated at the beginning of the modelling using adjacency matrix
described in Chapter 4. The major question is: what will happen if a spatial modelling
was carried out when in fact there was no justification? We actually carried it out. It
produced a different result but what is actually interesting is that when test of autocorrelation
was carried out on the residual after fitting the model, it produced the following results:
correlation of 0.02341, variance of 0.002541 and standard error of 0.05041. In addition, the
normal test statistic was 0.6031 with associated 2-sided p-value equal to 0.5465. Comparing

this with our last result shows that the correlation only shifted and the p-value reduced.
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This shows that great care has be taken when using spatial modelling.
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Chapter 6

Conclusion

This research is part of a big project done to assess the effect of maternal proximity to the
hazardous waste from the Sydney Tar Pond, Nova Scotia. Two question have been addressed

in this project:

1. Is maternal proximity to hazardous waste and pollution from the Sydney Tar Pond

sites associated with increased risk of preterm birth?

2. How much of the variation in risk of preterm birth can be explained by socioeconomic

inequalities across the study region?

In addressing these questions frequentist and Bayesian methods were employed. In the fre-
quentist approach, Poisson regression for aggregated data and weighted least squares were
fitted using distance from the Tar Pond and the following area specific-covariates: the pro-
portion of persons who have no high school diploma; the rate of unemployment to population;
the proportion of persons who are separated; divorced or widowed; the proportion of single-
parent families; and the proportion of people living alone. The same models were fitted using
a Bayesian Hierarchical modelling incorporating both structured and unstructured random
effects to account for model overdispersion.

Our intention was to combine all of the area covariates to form the deprivation index, but
income data was not available in 14 of the 144 enumeration districts included in the study.
So the effect of each variable was assessed independently. The overall estimate of relative

risk of preterm birth was found to be greater that 1 for almost all the enumeration districts.
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Also, none of the area covariates in the model is significant in the explanation of the risk of
preterm births.

There was no evidence of any decrease in risk as we move away from the Tar Pond. The
result of both the weighted least square and the quasi-likelihood Poisson regression agrees
with the result from the Bayesian Hierarchical modelling which incorporates the spatial
effects. The result of the Bayesian modelling shows that there is no significant spatial
association of risk in the area studied. There was no obvious cluster of outcome around the
Tar Pond significant enough to explain an association between maternal proximity to the

Sydney Tar Ponds and risk of preterm birth.

6.1 Threats to Internal Validity

The following are some of the limitations of this research

e Data are not available for 14 of the Enumeration districts. Hence, they are omitted
from our analysis but the effects of this on spatial dependency or our conclusion are

not known;

e We have based our analysis on the 1996 data but we do not have any evidence of

whether the exposure from the Tar Pond has decreased before 1996;

e The problem of imprecise geographical matching and data aggregation may have cre-

ated a source of bias during data collection;

¢ Ecological bias which can occur due to the differences between individual and group-
level estimates of disease risk. This is a major limitation of all studies based on

aggregated data;
¢ Under-ascertainment/duplication of cases may have occurred; and

e Migration of women between exposure and pregnancy outcome may be a source of bias

which may lead to underestimation of the risk.
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6.2 External Validity

The methodology can be generalized but the result may not be easy to generalize. This is
because landfill sites differ enormously in the conditions that render them hazardous; and
conditions that determine the exposure to and resulting health risks posed by any waste
site are likely to be unique to that particular site. Hence, the results of this study are not
intended for direct use in decision-making with respects to other landfill sites. Rather they

are to serve as a guide.

6.3 Ethical Considerations

Unlike observational and experimental studies where human beings are involved, as subjects
of study, this study only makes use of aggregated data. Aggregated data by their nature
do not reveal the identities of individuals involved. Therefore, confidentiality of the cases

involved is automatically guaranteed.

6.4 Future Research Plans

The future plans are:
e To aggregate the data for up to ten years and model using other forms of g(d;6)

e To work more on the statistical properties of most of the estimators used in the cluster

analysis of outcomes

e Further research in this area is needed to improve our understanding of the impact
of social factors, fear and risk perceptions on both actual and perceived ill health by
people living in the vicinity of waste sites. The use of mixed model, incorporating both

qualitative and quantitative methods may be very good approach for future studies.

e There is an elevated risk of preterm births, which appears to be uniform across the
whole of Cape Breton regional municipality as shown by all the methods used. This

shows that the pollution may be occurring at a wider scale and overtime may have
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affected the ability to differentiate the EDs in terms of amount of exposure. A direct
comparison of Cape Breton regional municipality with other close municipalities may

help answer some of the remaining questions.

70



BIBLIOGRAPHY

Baibergenova, A., Kudyakov, R., Zdeb, M. and Carpenter, D.O., (2003). Low birth weight
and residential proximity to PCB-contaminated waste sites, Environmental Health Per-

spectives, 111, 1352-1357.

Baker, D. B., Greenland, S., Mendlein, J. and Harmon, P. (1988). A health study of
two communities near the Stringfellow waste disposal site. Archives of Environmental

Health 43: 325-334.
Beck, U. (1992). Risk Society: Towards a New Modernity, London: Sage.

Berry, M., and Bove, F., (1997). Birth weight reduction associated with residence near a

hazardous waste landfill. Environmental Health Perspectives 105, 856-861.

Besag, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems .
Journal of Royal Statistical Society, Series B, 36, 192-236.

Besag, J. and Kooperberg, C. (1995). On conditional and intrinsic autoregressions. Biometrika,

82, 733-746

Besag, J. and Newell, J. (1991). The detection of clusters in rare diseases . Journal of the

Royal Statistical Society, Series A, 154, 143-55

Besag, J., York, J., and Mollie, A. (1991). Bayesian image restoration with two applications
in spatial statistics. Annals of the institute of Statistics and Mathematics, 43, 1-59.

Best, N. G., Arnold, R. A., Thomas, A., Waller, L. A., and Conlon, E. M. (1999). Bayesian
Models for Spatially Correlated Disease and Exposure Data. In Bayesian Statistics

71



6 (J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith eds.), New York:
Oxford University Press, pp 131- 156.

Bithell, J. F.(1995). The choice of test for detecting raised disease risk near a point source.
Statistics in Medicine, 14, 2309-22

Bithell, J. F., and Stone, R. A. (1989). On statistical methods for analysing the geographical
distribution of cancer cases near nuclear installations. Journal of Epidemiology and

Community Health, 43, 79-85

Carstairs, V. and Morris, R. (1991). Deprivation and Health in Scotland. Aberdeen Uni-
versity Press, UK.

Clayton, D.G. and Kaldor, J.(1987). Empirical Bayes estimates of age-standardized relative

risks for use in disease mapping, Biometrics, 43, 671-82
Cressie, N. A. C. (1993). Statistics for spatial data. Wiley, New York.

Datta, G., Ghosh, M. and Waller, L. A. (2000). Hierarchical and Empirical Bayes Methods
for Environmental Risk Assessment. In Handbook of Statistics (P.K. Sen and C.R.
Rao, eds.), 18, 223-245, Elsevier Science B.V.

Diggle, P. J. (1990). A point process modelling approach to raised incidence of a rare
phenomena in the vicinity of a prespecified point. Journal of the Royal Statistical

Society, series A, 153, 340-362.

Diggle, Morris, S., Elliot, P. and Shaddick, G. (1997). Regression modelling of disease risk
in relation to point sources. Journal of the Royal Statistical Society. Series A, 160,

491-505.

Dodds L. and Sevoiur R. (2001). Congenital anomalies and other birth outcomes among
infants born to women living near a hazardous waste site in Sydney, Nova Scotia.

Canadian Journal of Public health 92, 331-334

72



Dolk, H., Shaddick, G., Walls, P., and Thakrar, B. (1997). Cancer incidence near radio
and television transmitters in great Britain : All high power transmitters. American

Journal of Epidemiology, 145, 10-17

Dolk, H., Vrijheid, M., Armstrong, B., Abramsky, L., Bianchi, F., Garne, E., Nelen, V.,
Robert, E., Scott, J. E .S., Stone, D., and Tenconi, R., (1998). Risk of Congenital
anomalies near hazardous waste landfill sites in Europe: the EUROHAZCON study.
The Lancet 352, 423- 427.

Elliot, P., Briggs, D., Morris, S., de Hoogh, C., Hurt, C., Jensen, T.K., Maitland, I,
Richardson, S., Wakefield, J. and Jarup, L. (2001). Risk of adverse birth outcomes in
populations living near landfill. British Medical Journal 323, 363-68.

Elliot, P., Cuzick, J., English, D. and Stern, R. (1992). Geographical and environmental

epidemiology: methods for small-area studies. Oxford University Press.

Elliot, P., Shaddick, G., Kleinschmidit, I., Jolley, D., Walls, P., Beresford, J. and Grundy,
C. (1996). Cancer incidence near municipal solid waste incinerators in Great Britain.

British Journal of Cancer, 73, 702-770.

Fielder, H. M. P., Poon-King, C. M., Palmer, S, R., Moss, N. and Coleman, G. (2000).
Assessments of impact on health of residents living near the Nant-y-Gwyddon landfill

site: retrospective analysis. British Medical Journal 320,19-23.

Gelman, A. and Rubin, D. B., 1992. Inference from iterative simulation using multiple

sequences. Statistical Science, T, 457-511.

Geschwind, S. A., Stolwijk, J. A. J., Bracken, M., Fitzgerald, E., Stark, A., Olsen, C.
and Melius, J., 1992. Risk of congenital malformations associated with proximity to

hazardous waste sites. American Journal of Epidemiology 135, 1197-1207.

Giddens, A. (1991). Modernity and Self-Identity: Self and Society in the Late Modernity
Age, Cambridge: Polity.

73



Gilbertson, M. and Brophy, J., 2001. Community health profile of Windsor, Ontario,
Canada: Anatomy of a Great Lakes Area of Concern. Environmental Health Perspec-

tives 109(suppl 6), 827-43.

Gilks, W. R., Richardson, S., and Spiegelhater, D. J., (1996). Introducing Markov chain
Monte Carlo. In Markov Chain Monte Carlo in Practice (eds W. R. Gilks, S.Richardson
and D.J. Spiegelhalter), London: Chapman & Hall, pp. 1-17

Goldberg, M. S., Goulet, L., Riberdy, H. and Bonvalot , Y., (1995). Low birth weight
and preterm births among infants born to women living near a municipal solid waste

landfill site in Montreal, Quebec. Environmental Research 69, 37--50.

Goldman, L. R., Paigen, B., Magnant, M. M. and Highland, J. H. (1985). Low birth weight,
prematurity and birth defects in children living near the hazardous waste site, Love

Canal. Hazardous Waste and Hazardous Materials 2, 209-223.

Jolley, D., Jarman, B., and Elliot, P.(1992). Socio-economic Confounding. In Geographical
and Environmental Epidemiology: Methods for Small-Area Studies (P. Elliot, J. Cuzick,
D. English and R. Stern,eds.), New York: Oxford press, pp 115-124.

Kharrazi, M., von Behren, J., Smith, M., Lomas, T., Armstrong, M., Broadwin, R., Blake,
E., Mclaughin, B., Worstell, G. and Goldman, L. (1997). A community-based study
of adverse pregnancy outcomes near a large hazardous waste landfill in California.

Tozicology and Industrial Health 12, 211-224.

Lawson, A. B.(1993). On the analysis of Mortality events associated with a prespecified
fixed point. Journal of the Royal Statistical Society, Series A, 56, 363-77

Lawson, A. B., Biggeri, A. B., Boehning, D, Lesaffre, E., Viel, J-F., Clark, A., Schlattmann,
P., Divino, F.(2000). Disease mapping models: an empirical evaluation, Statistics in

Medicine, 19, 2217-2241.

McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models (2nd edn.). Chapman
and Hall, London.

74



Michal, F., Grigor, K. M., Negro—Vilar, A. and Skakkebaek N. E.(1993). Impact of the
Environment on Reproductive Health: Executive Summary. Fnvironmental Health

Perspectives 101(Suppl. 2), 159-167.

Morris, S. E. and Wakefield J. C. (2000). Assessment of disease risk in relation to a pre-
specified source. In Spatial Epidemiology: Methods and Application (P. Elliot, J.C.
Wakefield, N.G. Best and D.J. Briggs, eds.) New York: Oxford University press, pp.
153-184.

Nova Scotia Department of Health and the Cape Breton District Health Authority, 2001.
Lead and Arsenic Biological Testing Program in Residential Areas Near the Coke Ovens
Site[online]. Available :

http://www.muggah.org/site/projects/reports/archives/10.pdf

Pampalon R. and Raymond G. (2000). A Deprivation Index for Health and Welfare Plan-
ning in Quebec, Chronic Diseases in Canada , 21(3), 104-113.

Plummer, M., Best, N. G., Cowles, M. K. and Vines, S. K. (2004). Output analysis
and diagnostics for Markov chain Monte Carlo: wversion 0.7-1 (available at http: //

www.fis.iarc.fr/coda)

Potthoff, R. F. and Whittinghill, M. (1996). Testing for homogeneity in the Poisson distri-
bution. Biometrika, 53, 183-190.

Roberts, G. O. (1996). Markov chain concepts related to sampling algorithms. In Markov
Chain Monte Carlo in Practice (eds W. R. Gilks, S.Richardson and D.J. Spiegelhalter),
London: Chapman & Hall, pp. 45-58

Rootman, I., and Raeburn, J.(1994). The Concept of Health. In A. Pederson, M. O’Neill
and I. Rootman(Eds.). Health Promotion in Canada: Provincial, National and Inter-

national Perspectives. Toronto: W. B. Saunders, pp. 56-71.

Rylander, L., Stromberg, U., Hagmar, L., (2000). Lowered birth weight among infants
born to women with a high intake of fish contaminated with persistent organochlorine

compounds. Chemosphere 40, 1255-1262.

75



Seal, C. (2002). Media and Health, London: Sage Publications.

Shaddick, G. and Elliot, P.(1996). Use of stone’s method in studies of disease risk around

point sources of environmental pollution. Statistics in Medicine, 15, 1927-34.

Shaw, G, M., Schulman, J., Frisch, J.D., Cummins, S. K., Harris, J. A.; (1992). Congenital
malformations and birth weight in areas with potential environmental contamination.

Archives of Environmental Health 47, 147-154.

Spiegelhalter, D. J., Best, N. G., and Carlin, B. P. (1998). Bayesian deviance, the effective
number of parameters, and the comparison of arbitrarily complex models (available at

http://www.med.ic.ac.uk/divisions/60/biostat /dic.ps).

Spiegelhalter, D. J., Thomas, A., and Best, N. G. (1998), “WINBUGS User Manual” version
1.2, Cambridge, UK (available at http://www.mrc-bsu.cam.ac.uk/bugs)

Stone, R. A.(1988). Investigation of excess environmental risks around putative sources:

Statistical problems and a proposed test. Statistics in Medicine, 7, 649—60.

Sullivan, F.M. (1993). Impact of the environment on reproduction from conception to

parturition. Environmental Health Perspectives 101(suppl 2), 13-18

Tara A. R. Burra (2002). Reproductive and Psychological Health of Women living in the
vicinity of the Tar Ponds, Sydney, Nova Scotia. M.sc. project, Dept. of Geography
and Geology, McMaster University.

Townsend P. (1987) Deprivation. Journal of Social Policy, 16(2), 125-146

Upton, A. C., (1989). Public health aspects of toxic chemical disposal sites. Annual review
of Public health 10, 1-25.

Viana, N. J., and Polan, A. K. (1984). Incidence of low birth weight among Love Canal
Residents. Science 226, 1217-1219.

Vrijheid, M., (2000). Health effects of residence near hazardous waste landfill sites: a
review of epidemiologic literature. Environmental Health Perspectives, 108 (suppl.1),

101-112.

76



Wakefield, J. C., Best, N. G. and Waller, L.(2000). Bayesian approaches to disease mapping.
In Spatial Epidemiology: Methods and Application (eds. P. Elliot, J.C. Wakefield, N.G.
Best and D.J. Briggs) New York: Oxford University press, pp. 105-126.

Wakefield, J. C., Kelsall, J. E. and Morris, S. E.(2000). Clustering, cluster detection, and
spatial variation in risk. In Spatial Epidemiology: Methods and Application (eds. P.
Elliot, J.C. Wakefield, N.G. Best and D.J. Briggs) New York: Oxford University press,
pp. 129-152.

Wakefield, J. C. and Morris, S. E. (2001). The Bayesian modelling of disease risk in relation

to a point source. Journal of the American Statistical Association, 96, 77-91

Waller, L. A., Turnbull, B. W, Clark, I.C., and Nasca, P. (1992). Chronic disease surveil-
lance and testing of clustering of disease and exposure: application to leukaemia in-

cidence and TCE-contaminated dump sites in upstate New York. Environmetrics, 3,

281-300.

Walter, S. D.(1993). Assessing spatial patterns in disease rates. Statistics in Medicine, 12,
1885-1894

7



Appendix A

Model Specification in WINBUGS

model; {

#poisson regression model
for (i in 1:N) {
obs_count [i] ~ dpois(mu(i])
#Model 1: model with no covariates
log(mu[i]l)<- log(E[i]) + alphaO + V[i] + U[i]
#Model 2: model with only distance covariate
log(mulil)<- log(E[i])+ alphaO + alphax(1/d[i]) + V[i] + U[i]
#Model 3: model with only area-level covariate
log(muli]l)<- log(E[i])+ alphaO + phil*x1[i] + phi2*x2[i]
+ phi3*x3[i] + phid*x4[i] + phib*x5[i] + V[i] + U[i]
#Model 4: full model
log(mu[i])<- log(E[i])+ alphaO + alpha*(1/d[i]) + phii*x1[i]
+ phi2*x2[i]+ phi3*x3([i] + phid#*x4[i] + phi5*x5[i] + V[i] + U[i]
# Predicted area-specific relative risk
lambda[i] <- mu([il/ E[i]
# Unstructured random effects
V[i] “dnorm(0,tau.V)
}
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#CAR prior distribution for spatial random effects:
U[1:N] ~ car.normal(adj(],weights(],num(],tau.U)
for(k in 1:sumNumNeigh){

weights[k]l<- 1
}

# other priors:
alpha~dnorm(0,1.0E-5)
alpha0~dflat()
phil~dnorm(0,1.0E-5)
phi2~dnorm(0,1.0E-5)
phi3~dnorm(0,1.0E-5)
phi4~dnorm(0,1.0E-5)
phi5~dnorm(0,1.0E-5)
tau.V~dgamma(0.1,0.1)
tau.U"dgamma(0.1,0.1)

# variance and standard deviation of unstructured random effect
var.V<-1/tau.V
sigma.V<- sqrt(1l / tau.V)

# variance and standard deviation of spatial random effect
var.U<-1/tau.U
sigma.U <- sqrt(l / tau.U)

# other estimates
eta<-exp(alpha0) # scale parameter

psi<-sigma.U/(sigma.U+sigma.V)

Each of the models was run separately
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