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Lay Abstract

The advent of quantum computing poses a serious threat to modern cryptography, as most

cryptosystems in use today are vulnerable to attacks by quantum algorithms. Recently proposed

cryptosystems based on lattices are conjectured to be resistant to attacks by quantum computers.

These cryptosystems also have a conditional security guarantee: if the cryptosystem can be broken

by an attack, then a reduction exists which uses that attack to solve variants of the shortest vector

problem (Regev, STOC 2005; Peikert, ePrint 2008). As these problems have no known efficient

solutions, breaking the cryptosystem should be hard. However this guarantee only holds if the

cryptosystem is constructed using parameters which satisfy conditions given in the reduction.

Current proposals do not do this, and so cannot claim even a conditional security guarantee. We

analyze two reductions and select parameters for a cryptosystem which satisfy these conditions.

We also investigate the runtime necessary for a reduction to give meaningful security assurances

for current cryptosystems.
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Abstract

One attractive feature of lattice-based cryptosystems is the existence of security reductions

relating the difficulty of breaking the cryptosystem to the difficulty of solving variants of the

shortest vector problem (Regev, STOC 2005; Peikert, ePrint 2008). As there are no known

polynomial-time algorithms which solve these lattice problems, this implies the asymptotic secu-

rity of the cryptosystem. However, current lattice-based cryptosystems using the learning with

errors (LWE) problem select parameters for which the reduction to the underlying lattice problem

gives no meaningful assurance of concrete security. We analyze the runtime of the algorithm con-

structed in the reductions and select parameters for a cryptosystem under which the reductions

give 128-bit security. While the resulting LWE-based cryptosystem is somewhat cumbersome, re-

quiring a dimension of n = 1460, this is less than 2 times the dimension in the recently proposed

Frodo cryptosystem (Bos et al., ACM CCS 2016), and could be implemented without catastrophic

damage to communication times. We also investigate the runtime necessary for a reduction to

give meaningful security assurances for current cryptosystems.
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Chapter 1

Introduction

Much of the world’s digital infrastructure is dependent on cryptography that is both secure

and highly efficient. While current implementations based on prime factorization [21] and discrete

logarithms [8] perform this task admirably, they are vulnerable to Shor’s quantum algorithm [22].

With large-scale quantum computers now on the horizon, it is vital that new quantum-secure

cryptosystems are developed and standardized.

At present, lattices are one of the foremost primitives proposed for building quantum-secure

cryptography. One attractive property of lattice-based cryptosystems is the existence of security

reductions which relate the hardness of breaking a cryptosystem to that of solving some well-

studied underlying problem, e.g. the shortest vector problem (SVP). These reductions—most

famously Regev’s in [20]—are non-tight and give only a conditional guarantee of security.

Informally: say we have an algorithm A with runtime run(A) that breaks a lattice-based

cryptosystem, and an algorithm W for solving SVP using runA(W ) calls to A as a subroutine.

If run(A) · runA(W ) is less than the best known running time for an SVP-solver, then we have

produced a superior algorithm for solving SVP. Defeating the cryptosystem is therefore at least

as hard as finding such an algorithm.

However, this only gives a meaningful security guarantee if the condition on run(A)·runA(W )

is met. Currently, most proposals for lattice-based cryptosystems use parameters which do not

respect this inequality for any known reduction (see [5] for more discussion of non-tight security

reductions and their significance). Chatterjee et al. [6] gave a brief analysis of the tightness gap in
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Regev’s quantum reduction, but to our knowledge there has been no serious attempt to determine

how large the gap is between a provably secure cryptosystem system and current implementations.

Our primary contribution is the selection of parameters for a lattice-based cryptosystem which

respect the reduction given by Regev. This is done by producing a runtime analysis of the

reduction and comparing against the best known runtimes for solving SVP. We discuss potential

vulnerabilities of and improvements to our results, and investigate the necessary runtime of a

reduction which could provide a security assurance for current lattice-based cryptosystems. We

also analyze a more recent reduction by Peikert [18] and demonstrate why it is unsuitable for

selecting concrete parameters.

1.1 History

The use of lattices in cryptography dates back to work by Ajtai and Dwork [1], [2] in 1996.

Although the resulting cryptosystems were unwieldy, needing public keys with size O(n4) for a

lattice of dimension n, they were the first whose security is provably implied by the difficulty of

well-studied lattice problems. A significant improvement came from Regev in 2005 [20] where he

presented the learning with errors problem (LWE) alongside a reduction of LWE to two variants

of SVP and a public-key encryption system using LWE as a framework. This work was a dramatic

improvement over the system of Ajtai and Dwork, needing public keys only of size O(n).

Further improvement came in 2010 when Lindner and Peikert [19] showed that keys could be

sampled from a small distribution without compromising security. Also in 2010 Lyubashevsky,

Peikert, and Regev [17] introduced the ring-LWE problem. This variant allows yet faster imple-

mentations by using lattices which contain additional structure, but it is so far unclear whether

the additional structure could be leveraged by attackers. Lattices have also been used to in-

stantiate richer forms of cryptography; in 2009 Gentry [11] gave a fully-homomorphic encryption

system and in 2013 Garg et al. [10] extended this work to produce functional encryption. For a

more detailed survey of lattice-based cryptography see [19]

2
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1.2 Outline

Chapter 2 covers all the necessary background to read this work, including a brief introduction

to cryptography. In chapter 3 we expand on Chatterjee et al.’s [6] analysis of Regev’s reduction,

then discuss potential vulnerabilities of and improvements to our result. Chapter 4 provides a

similar analysis and discussion for Peikert’s reduction. In chapter 5 we select a set of parameters

which respect the reduction given in chapter 3, and demonstrate that Peikert’s reduction does not

yield practical parameters. Chapter 6 considers future avenues of improvement to these results

and closes with a brief discussion of the gap between our results and current implementations.
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Chapter 2

Background

As most relevant parameters are undefined at 0, we define N to be the natural numbers

excluding 0. We also denote by ln the natural logarithm and by log the base-2 logarithm. Vectors

are written with bold lower-case (e.g. x) and matrices with bold upper-case letters (e.g. A). All

lengths are measured under the Euclidian metric. We let B(x, d) denote the set of points y ∈ Rn

such that ||x−y|| < d. A polynomial P parametrized by an integer n is said to be negligible if for

any c ∈ N, P (n) is eventually bounded above by 1
nc . Similarly P (n) is overwhelming if 1− P (n)

is negligible. Typically these notions will refer to probabilities. For functions f(n), g(n) we write

f(n) = Õ(g(n)) if f(n) = O(g(n) · logc g(n)) for some c ∈ R. We say that an algorithm A is

quantum if it can only be run on a quantum computer, and conversely we say that A is classical

if it can be run on a classical computer.

2.1 Cryptography

An encryption system is a means by which two parties can communicate securely over an inse-

cure channel. Encryption systems are broadly divided into two categories: symmetric encryption

systems and asymmetric (or public-key) encryption systems. In a symmetric system the two

parties are required to have previously agreed on some shared secret key. Common symmetric

systems such as 3DES and AES offer a high degree of security relative to the amount of compu-

tation required, but cannot be used if the two parties do not have a shared secret. Public-key
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encryption systems require significantly more computation to transmit the same amount of data,

but do not require a pre-established shared secret.

Public key encryption systems are in practice not often used to send long encrypted messages

due to the relatively high amount of computation involved. Instead, public key encryption is

primarily used to transmit a key so that highly efficient symmetric encryption algorithms can

be used. Because of this, a full-fledged public key encryption system is often overkill. A key

exchange protocol is a specialized set of public-key algorithms which, instead of encrypting arbi-

trary messages, allow two parties to efficiently agree on a shared secret key. The Diffie-Hellman

protocol [8] is a straightforward example and is the foundation of many current standards. We

will use the term “cryptosystem” as shorthand to refer to any of these constructions.

Formally, a public-key encryption system is a set of three algorithms (KeyGen, Enc, Dec)

dependent on a security parameter n:

1. Key generation (KeyGen): Given n, output a public key pk and corresponding secret key

sk.

2. Encryption (Enc): Given a public key pk and message m, output a ciphertext c.

3. Decryption (Dec): Given a secret key sk and ciphertext c, output a message d.

For this to be useful we want the decryption of a ciphertext to return the original message.

The system is therefore said to be correct if for pk and sk output by KeyGen, we have d =

Dec(sk,Enc(pk,m)) = m with overwhelming probability.

A baseline notion of security for such a system is indistiguishability under chosen plaintext

attack (IND-CPA), first introduced in [12]. Informally, suppose that an adversary chooses two

messages and is then shown a ciphertext which is the encryption of one of the two messages.

An attack is said to break indistinguishability if the adversary is able to determine which of two

chosen messages corresponds to the given ciphertext. If it is infeasible for an adversary to do so,

then the encryption algorithm leaks no information about any message it encrypts and is said to

be IND-CPA secure. More formally, this definition uses the following experiment:
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1. Generate a public key pk and secret key sk from KeyGen, and give pk to the adversary.

2. The adversary chooses any two messages m0,m1 of the same length.

3. Choose b ∈ {0, 1} with equal probability and let c = Enc(mb). Give the resulting ciphertext

c to the adversary.

4. The adversary guesses whether b = 0 or b = 1.

If the adversary makes a random guess then they succeed with probability 1/2. The advantage

generated by an algorithm A used by an adversary is therefore defined as:

Adv(A) = Pr[A succeeds in the IND-CPA experiment]− 1/2.

We also denote by run(A) the number of operations required to execute A. Similarly for an

algorithm W using A as a subroutine, we denote by runA(W ) the number of calls made by W to

A. This is the notion of security we will use, but we emphasize that IND-CPA security is a baseline

and does not alone guarantee that a system is suitable for practical application. In particular

many applications require security against active adversaries, modelled by the indistinguishability

under chosen ciphertext attack (IND-CCA) security notion.

Definition 1 (Security). Let t, k ∈ N and ε ∈ [0, 1]. A cryptosystem C is (t, ε) secure if for all

algorithms A with run(A) ≤ t, Adv(A) ≤ ε. C is said to have k-bit security if it is (t, ε) secure

for all t
ε ≤ 2k.

It will also be useful to consider the negation of the above definition: a cryptosystem C is

k-bit insecure if there exists an A and t
ε ≤ 2k such that run(A) < t and Adv(A) ≥ ε. The

current standard for security is 128 bits, as 2128 operations is still considered infeasible even for

large networks. An increase to 256-bit security in the near future may be needed if quantum

computers capable of executing Grover’s algorithm [13] are developed.

It has historically been difficult to prove that an encryption system actually attains a desired

level of security. In some cases however, we can relate the difficulty of breaking indistinguishability

to the difficulty of solving some other well-known problem. Such a relation is called a security
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reduction, and offers a guarantee of security given that the related problem remains difficult to

solve efficiently. A reduction is given as an algorithm W for solving the related problem which

uses as a subroutine a hypothetical algorithm A capable of breaking distinguishability of the

cryptosystem. The reduction is said to be tight if runA(W ) = 1, and otherwise is said to be

non-tight. These notions are formalized as follows:

Definition 2 (Reduction). Let A be an algorithm which solves some problem P1 (with over-

whelming success rate). We say problem P2 reduces to P1 if there exists an algorithm W which

solves P2 with overwhelming success rate using A as an oracle.

Definition 3 (Tightness gap). Let P1 and P2 be problems, A be an algorithm which solves P1, and

W be an algorithm that reduces P2 to P1. We say that W has tightness gap k if runA(W ) = k.

We note in the above definitions that the algorithms are assumed to succeed essentially always

and that the tightness gap is purely a function of runtime. A more nuanced view of tightness gap

can be taken as in (t, ε)-security, where the reduction of P2 to P1 causes potential degredation

in both running time and success probability, but quantifying this adds significant complication

to the analysis. This however presents us with a difficulty: some of the algorithms we analyze

here have negligible but non-zero failure rates. When an algorithm’s failure rate can only be

made arbitrarily small, in the abstract there is no reason to prefer one small failure rate over

another. We chose 2−32 to be an acceptable failure rate in these cases, but this choice is essentially

arbitrary. If a practical application requires a particular failure rate, the appropriate calculations

are easily modified. Moreover, because we are considering algorithms with negligible failure rates,

even a drastic reduction (say to 2−256) ultimately produces only a small change in overall runtime.

2.2 Learning with errors

Cryptographic assumptions—difficult mathematical problems such as factorization which un-

derlie cryptosystems—can be loosely thought of as problems which obscure information. Consider

the following toy problem: given that 2x = 42, compute x. With only one unknown, this is triv-

ially solved. Now consider the following modification: given that 2x = 41 ± 1, compute x. The

addition of a small error term makes it impossible to determine with certainty what the correct

7
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value of x should be. The learning with errors problem, first formalized by Regev [20], is a more

sophisticated application of this idea.

Definition 4 (Learning with errors). Let n,m, q ∈ N and χ be a probability distribution on

Zmq . Generate A ∈ Zm×nq , s ∈ Znq uniformly at random, and e ∈ Zmq sampled from χ. Define

b = A ·s+e. The goal of (search) LWE is, given (A,b), recover s. The goal of (decision) DLWE

is, given (A,v), determine whether v = b or v was sampled uniformly at random from Zmq .

In the case of decision LWE, an algorithm is said to accept an input if it guesses that the

input was generated as b = A · s + e. For fixed A, s these inputs are said to be generated from

the LWE distribution, where the randomness is over the sampling of e. Similarly an algorithm

is said to reject if it guesses that the input was generated from the uniform distribution on Zmq .

We then define the avantage against decision LWE analogously to advantage in the IND-CPA

experiment, and we also define (t, ε) hardness and k-bit hardness analogously to (t, ε) security

and k-bit security.

In principle χ can be any distribution, but for cryptographic purposes we want the error

term sampled from χ to be small relative to q. As seen in the toy example even a small error

term is sufficient to obscure s, but error terms too large relative to q make it difficult to reliably

recover the correct message during decryption. The standard choice of distribution is the discrete

Gaussian distribution.

Definition 5 (Discrete Gaussian distribution). Let Gα be a Gaussian distribution with mean 0

and standard deviation σG = α√
2π

. Let Nα be the probability distribution defined on the interval

[0, 1) given by sampling from Gα and reducing modulo 1. Then the discrete Gaussian distribution

Dα defined on Zq is obtained by sampling from Nα, multiplying by q, and rounding to the nearest

integer modulo q. Also let Dn
α denote the distribution on Znq obtained by individually sampling

each coordinate from Dα.

More recently, Applebaum et al. [3] showed that s can be sampled from Dn
α (or more generally

from χ) without compromising security. Since recovering e is sufficient to recover s, the intuition

is that additional variance in the sampling of s beyond that in the sampling of e should not

contribute additional security.

8
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To avoid a potential source of confusion, notice that this formulation of LWE differs slightly

from the one originally given by Regev. In [20, Section 2], the problem is given in terms of vectors

a and scalars e, b = a · s + e. The challenge then is to recover s (or to distinguish b from random)

using an arbitrary number of samples from the resulting distribution, where in our formulation

only a fixed number m of samples are given. For our purposes the fixed choice of m is appropriate;

in a cryptosystem using LWE m will be determined by the size of a public key and an attacker

will not be able to request an arbitrary number of samples.

2.2.1 Constructing cryptography from LWE

Here we give two examples demonstrating how cryptosystems can be constructed from the

LWE problem. The first is a public-key encryption system given by Regev in [20, Section 5]. The

second is a simple implementation of Frodo, the key exchange protocol given in [4] by Bos et al.

We emphasize that these are primitive examples; practical implementations would contain many

additional optimizations to deliver improved runtime and additional security features.

Let n, q ∈ N where q is prime and n2 < q < 2n2. Also let Dn
α be the discrete Gaussian

distribution with α = 1/(
√
n log2 n). These parameters define the cryptosystem and are public

knowledge. To have a rough idea of scale assume n ≈ 1000; the exact choice of n would be

determined by the desired security level. The system is as follows:

1. Alice chooses s ∈ Znq , A ∈ Zn×nq uniformly at random and samples e ∈ Znq from Dn
α. Let

b = A · s + e. Alice’s secret key is s, and her public key is (A,b).

2. Bob chooses x ∈ Zn2 uniformly at random. To encrypt the bit 0, Bob sends (xTA,x · b).

To encrypt the bit 1, Bob sends (xTA,x · b + b q2c).

3. Alice receives (a, b) and computes d = b− a · s. The decryption of (a, b) is 0 if d is closer to

0 than to b q2c modulo q, and otherwise the decryption is 1.

In the decryption algorithm we have a = xTA and b = xT (A · s + e) + b q2c ·m for a message

bit m ∈ {0, 1}. Therefore d = b − a · s = e + b q2c ·m ≈ b
q
2c ·m, so the decryption algorithm is

correct with high probability as the error distribution is small relative to q.

9
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The security of this system follows from the hardness of LWE. If search LWE is difficult

then an adversary cannot recover Alice’s secret key s from her public key (A,b). Similarly, an

adversary who can solve decision LWE can trivially break indistinguishability as encryptions of

0 are close to the LWE distribution while encryptions of 1 are not.

We note that there is a wrinkle here: if the adversary can determine the binary vector x

then they can trivially determine whether the encrypted bit is 0 or 1. The security of this

system therefore also relies on the difficulty of the subset sum problem rather than following

immediately from the hardness of decision LWE (see [9] for a discussion of the subset sum problem

in cryptography). This is a quirk of this particular implementation and is not a general feature of

lattice-based cryptosystems. Regev’s system is still IND-CPA secure; see [20, Section 5] for the

full proof. For comparison we also give a slightly simplified version of the Frodo key exchange

protocol, based on the Lindner-Peikert cryptosystem [16].

Let n, q, n̄, m̄ ∈ N and Dn
α be the discrete Gaussian distribution. Here n, q,Dn

α are LWE

parameters as before, and m̄, n̄ are chosen so that m̄ · n̄ is at least the number of bits required

for the shared secret key. Again the exact parameters depend on the desired security level, but

for sake of example take n = 750, q = 215, α = 1.75.

1. Alice generates A ∈ Zn×nq uniformly at random and S,E ∈ Zn×n̄q sampled from Dn
α. Alice

also computes B = A · S + E and sends (A,B) to Bob.

2. Bob generates S′,E′ ∈ Zm̄×nq sampled from Dn
α and computes B′ = S′ ·A + E′. Bob also

samples E′′ ∈ Zm̄×n̄q from Dn
α and computes V = S′ ·B+E′′. Lastly Bob computes C = 〈V〉

and sends (B′,C) to Alice.

3. Alice computes r(B′ · S,C) = K and Bob computes bVe = K to arrive at a shared secret.

The matrices B′ · S computed by Alice and V computed by Bob are approximately equal

modulo q, but not identical. The rounding functions 〈·〉, b·e run by Bob and the reconciliation

function r run by Alice allow both parties to extract the same key K. We will not present the

details of these functions here, but they can be found in [4].

10
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2.3 Lattices

An n-dimensional lattice L is the set of all integer linear combinations of a set of n linearly

independent vectors in Rn. L is therefore also a discrete additive subgroup of Rn. The prototypical

example of a lattice is Zn ⊂ Rn. Lattices can be fully described by a basis set B, and as with

real vector spaces this basis representation is not unique. The minimum distance of L, denoted

λ1(L), is the shortest nonzero length of a vector in L. Correspondingly λn(L) is the shortest

length of a set of n independent vectors in L, where the length of a set of vectors is the length

of the longest vector in the set. Finding these lengths, and the vectors they represent, constitute

the majority of standard lattice problems.

It is important to note that a given basis is not guaranteed to contain a vector of length λ1(L).

As an example, consider the lattice in L ⊂ R2 given by the basis B = {(10, 0), (10, 1)}. This gives

λ1(L) = 1 but the shortest basis vector has length 10. These highly non-orthogonal bases make

lattices difficult to work with in high dimension and are the source of most cryptographically

useful lattice problems. The LLL algorithm [14] (and more recently the BKZ algorithm [7]) can

find a reasonably orthogonal basis for a given lattice in polynomial time, but these algorithms

are slow to run in high dimensions and are not guaranteed to produce a sufficiently short basis

to make lattice problems efficiently solvable.

The dual of an n-dimensional lattice L, denoted L∗, is defined to be the set of all y ∈ Rn

such that x ·y ∈ Z for all x ∈ L. Notice that this set is discrete and closed under addition, so L∗

is also a lattice. If {x1, ...,xn} is a basis for L, the dual basis of L∗ is the set {x∗1, ...,x∗n} where

xi · x∗i = 1 and xi · x∗j = 0 for i 6= j.

Definition 6 (Smoothing parameter). Let L be an n-dimensional lattice and ε > 0 be a real

number. The smoothing parameter ηε(L) is the smallest s ∈ R+ such that

∑
x∈L∗\{0}

exp(−π||sx||2) ≤ ε.

Informally, ηε(L) measures the necessary width of a discrete Gaussian distribution on L so

that the distribution behaves like a continuous Gaussian distribution to within an approximation

11
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factor ε. We do not make extensive use of dual lattices or the smoothing parameter, but they are

used in Regev’s reduction and so will be needed for a complete description. A useful result is the

following bound on ηε, which ensures that ηε is roughly proportional to λn(L).

Lemma 1 ( [20], Lemma 2.12, Claim 2.13). For any n-dimensional lattice L and any ε > 0,

√
ln 1/ε

π
· λn(L)

n
≤ ηε ≤

√
ln (2n(1 + 1/ε))

n
· λn(L)

Regev [20] (and more recently Peikert [18]) showed that the existence of an algorithm which

solves LWE implies the existence of algorithms which solve hard lattice problems. This makes

LWE attractive for cryptography; lattice problems are well-studied, so one can hope that they are

unlikely to admit major improvements in the foreseeable future. While this does not constitute

an absolute guarantee of security, cryptosystems based on LWE enjoy a more solid theoretical

foundation than many other potential constructions.

Here we present some of the standard lattice problems, all of which are conjectured to be

hard. There are both exact and approximate versions for some problems; in the approximation

problems, γ ∈ R+ is the approximation factor. Ultimately, our goal is to relate the difficulty of

solving these problems to the difficulty of solving LWE.

Definition 7 (Shortest vector problem). Let L be a lattice. The goal of SVP is to output a vector

in L with length λ1(L). The goal of SVPγ is to output a vector in L with length at most γ ·λ1(L).

Definition 8 (Shortest independent vectors problem). Let L be a lattice. The goal of SIVP is to

output a set of n independent vectors in L with length at most λn(L), where n is the dimension

of L. The goal of SIVPγ is to output a set of n independent vectors in L with length at most

γ · λn(L).

Definition 9 (Gap shortest vector problem). Let L be a lattice and d > 0. The goal of GapSVP

is to determine whether λ1(L) ≤ d or λ1(L) > d. The goal of GapSVPγ is to determine whether

λ1(L) ≤ d or λ1(L) > γ · d

Definition 10 (ζ-to-γ Gap shortest vector problem). Let L be a lattice given by a basis B where

every Gram-Schmidt vector b̃i has length at least 1. Also let d ≥ 1 and ζ ≥ γ ≥ 1 with γ · d ≤ ζ.

The goal of GapSVPζ,γ is to determine whether 1 ≤ λ1(L) ≤ d or γ · d < λ1(L) ≤ ζ.

12
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This variant of GapSVP was introduced as part of Peikert’s classical reduction [18]. For ζ >

2n/2, GapSVPζ,γ is equivalent to the more standard GapSVPγ . For smaller (polynomial) values

of ζ the additional promise that λ1(L) ≤ ζ makes the problem potentially easier to solve. The

best known algorithms are however unable to leverage this information, and still have exponential

running time even for very small ζ.

Definition 11 (Closest vector problem). Let L be a lattice and x /∈ L be a vector in Rn. The

goal of CVP is to output a vector y ∈ L such that ||x− y|| ≤ ||x− z|| for all z ∈ L.

We also use the notation CVPφ to refer to a CVP instance (L,x) with the additional promise

that there exists y ∈ L with ||x− y|| < φ. This is a less common formulation, but is used in the

iterative step of Regev’s reduction. Note that a CVP instance (L,x) which does not satisfy the

above condition may still be given as input to an algorithm which solves CVPφ, but the algorithm

will not necessarily return the true closest vector.

Definition 12 (Gap closest vector problem). Let L be a lattice, x /∈ L be a vector in Rn, and

d > 0. The goal of GapCVP is to determine whether there exists a vector y ∈ L such that

||x − y|| ≤ d. The goal of GapCVPγ is to determine whether there exists a vector y ∈ L such

that ||x− y|| ≤ d or whether ||x− y|| > γ · d for all y ∈ L.

Regev also gives a modified version of GapCVPγ , denoted GapCVP′γ , which additionally

promises that if ||x− y|| > γ · d for all y ∈ L then also λ1(L) > γ · d.

In 2.2 we defined the discrete Gaussian distribution Dn
α over the lattice Znq . The discrete

Gaussian distribution can also be defined more generally as DL,r over an arbitrary lattice for

some width parameter r; this is the definition used in the iterative step in Regev’s quantum

reduction. Informally, if x ∈ L is a lattice point and Gr is the probability density function of a

continuous Gaussian distribution with standard deviation r, then DL,r samples x with probability

proportional to Gr(x). We also note that r is close to but not exactly the standard deviation of

DL,r, but for visualization purposes the reader can think of the lattice as being Znq and the width

parameter r as being a standard deviation. The details of the more general definition are not

necessary to understand this work but can be found in [20, Section 2].

Definition 13 (Discrete Gaussian sampling). Let L be a lattice and r > 0 be a width parameter.

The goal of DGSr is to output samples x ∈ L which are distributed according to DL,r.

13
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Note that if one can efficiently generate samples from DL,r for arbitrary r then one can also

trivially solve SVP by choosing successively smaller values for r and generating samples from

each DL,r. Eventually r will be sufficiently small that DL,r assigns all its weight to the origin, so

once 0 has been sampled many times consecutively one can halt and output the smallest non-zero

vector generated by the sampling algorithm. With high probability this vector will have length

λ1(L). Other standard lattice problems can be solved similarly, so solving DGSr for small r is at

least as hard as other lattice problems.

14



Chapter 3

Analysis of Regev’s reduction

In [20, Sections 3, 4], Regev gives a chain of reductions from SIVPγ to decision LWE, with

each reduction invoking some polynomial number of calls to the algorithm output by the previous

reduction. Chatterjee et al. [6] give a brief analysis of Regev’s reduction, which we expand upon

here. As the DGSr to LWE reduction is extremely technical we only give a brief overview of its

structure here. All other reductions are presented fully.

Theorem 1. Let n,m ∈ N, q ∈ N be prime, α ∈ (0, 1) with αq >
√
n, and x, y ∈ R+ with

x ≥ 2 and y ≥ 1. Also let D = Dα be the discrete Gaussian distribution on Zq centered around

0 with standard deviation σ = αq/
√

2π. Let W be an algorithm for solving decision LWE given

m LWE samples and with errors sampled from D. Suppose that on some proportion 1/y of all

possible keys s ∈ Znq , W accepts with probabilities aLWE, aU ∈ [0, 1] on inputs from the LWE and

uniform distributions respectively, and that these acceptance rates differ by at least 1/x . Then

there exists a quantum algorithm W ∗ which solves SIVPγ for γ = Õ(n/α) with tightness gap

276x2yn8mq log (αq/
√
n)−1.

Proof. We consider the following sequence of reductions:

Worst-case to average-case decision LWE. Regev gives the following: for t ∈ Znq , define

the function ft : Zm×nq × Zmq → Zm×nq × Zmq by ft(A,b) = (A,b + A · t). Repeat the following

process ny times: choose t ∈ Znq uniformly at random, then estimate the acceptance probability

of W on the uniform distribution and on the modified input data ft(A,v) using the Chernoff
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bound. This estimate requires calling W O(nx2) times on each distribution. If the two estimates

differ by at least 1/2x then halt and return accept, otherwise continue. If W does not accept in

any of the ny repetitions, then return reject.

Notice that if b = A·s+e, then ft(A,b) = (A,A·(s+t)+e) is still an LWE sample but using

the new key s + t. The choice of ny repetitions is to ensure that with overwhelming probability

at least one of the uniformly random translated keys s + t is in the 1/y portion of “good” keys

on which W achieves meaningful advantage. In fact ny is needlessly large; with ky repetitions,

the probability of never finding a good key is (y−1
y )ky < 1/ek. Choosing k = 23 already yields a

failure rate less than 2−32, which we consider sufficient for practical purposes.

Lastly we would like to evaluate the O(nx2) term. We need to take enough samples to estimate

both acceptance probabilities to within 1/8x of their true values. The (additive) Chernoff bound

allows us to estimate the likelihood that a given number of samples produce an estimate that is

not within the desired margin.

Lemma 2 (Chernoff bound). Suppose X1, ..., Xk are independent and identically distributed ran-

dom variables taking values in 0, 1. If µ = E[Xi] and ε > 0 then

Pr
(1

k

∑
Xi ≥ µ+ ε

)
≤
(( µ

µ+ ε

)µ+ε( 1− µ
1− µ− ε

)1−µ−ε
)k
.

So we want to choose k large enough that this probability is negligible for µ = aU and

ε = 1/8x. While the inequality is difficult to evaluate algebraically, Regev gives O(nx2) as a

sufficient sample size. In fact testing a range of reasonable values for aU ∈ [0, 1] and x ≥ 2 shows

that in each case taking k = nx2 samples of each distribution is sufficient to achieve a failure

rate less than 2−32, which we consider sufficient. The tightness gap for this reduction is therefore

23y · 2 · nx2 = 46nx2y; let W1 denote the resulting algorithm.

Search LWE to worst-case decision LWE. Let (A,b) be an LWE instance, and fix some

k ∈ Zq and choose l ∈ Zq uniformly at random. For a single LWE sample (a, b), consider the

transformation gk,l : Znq × Zq → Znq × Zq by gk,l(a, b) = (a + (l, 0, ..., 0), b + k · l). If k = s1, the

first coordinate of s, then gk,l(a, b) is also an LWE sample using the key s. Otherwise, if k 6= s1

then k · l is uniform on Za (since Zq is a field) and therefore b+ k · l is also uniform. By running

W1 on each of g0,l, ..., gq−1,l, we can determine the correct value of s1. Repeating this procedure
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on each coordinate therefore recovers s with a tightness gap of at most nq; let this algorithm be

W2. We also note that this is the only reduction which requires q to be prime.

Continuous search LWE to discrete search LWE. Given W2 which solves LWE with

errors sampled from D we can also solve LWE with errors are sampled from Nα, the equivalent

continuous Gaussian distribution reduced modulo 1. Let (A,b) be such an LWE instance. We

can produce an LWE instance (A,b′) with errors from D by taking the fractional part of each

coordinate of b, multiplying by q and rounding to the nearest integer. Since this only changes

the error term, we can recover s for (A,b) by running W2 on (A,b′). This requires only a single

call so the reduction is tight; let this algorithm be W3.

DGSr to LWE. From W3, [20, Thm 3.1] gives an iterative quantum algorithm for solving

DGSr, where r =
√

2n · ηε(L)/α and L is any n-dimensional lattice. Let ri = r · (αq/
√
n)i. For

ri sufficiently large, [20, Lemma 3.2] shows how to efficiently sample from DL,ri . Then given m

samples from DL,ri , the iterative step produces m samples from the smaller distibution DL,ri−1 .

The algorithm repeats until we have produced samples from DL,r0 = DL,r.

Regev gives the condition αq > 2
√
n, under which the iterative part of the reduction runs 3n

times to produce a sufficiently small sample. However the lower bound on αq can be relaxed;

the algorithm still produces successively smaller samples as long as αq >
√
n. This will allow us

to choose a smaller value for σ at the cost of needing an increasingly large number of iterations

as this relation approaches equality. With the relaxed condition, we iterate 3n · log (αq/
√
n)
−1

times to produce one sample.

The iterative step of the reduction contains two parts. Given samples from DL,ri , Regev

constructs an algorithm which solves CVPαq/(
√

2ri)
on L∗ with tightness gap n2 [20, Lemma

3.4]. Then given a CVPαq/(
√

2ri)
solver for L∗ Regev produces a quantum algorithm to produce

samples from DL,ri
√
n/(αq) = DL,ri−1 , and this reduction is tight [20, Lemma 3.14]. To produce

the required m samples, this reduction then has total tightness gap 3n3m · log (αq/
√
n)
−1

; let

this algorithm be W4.

SIVPγ to DGSr. Let L be a lattice. Applying the LLL algorithm [14] to L yields a set of

linearly independent basis vectors of length at most 2nλn(L); let λ̃n be the length of the longest
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Reduction Tightness gap Parameters Restrictions

Worst-case to average-case dLWE 46nx2y n, q, σ = αq/
√

2π none

Search to decision LWE nq n, q, σ = αq/
√

2π q prime

Continuous to discrete LWE 1 n, q, σ = αq/
√

2π none

DGSr to LWE 3n3m log (αq/
√
n)
−1

r =
√

2n · ηε(L)/α αq >
√
n

SIVPγ to DGSr 2n3 γ = Õ(n/α) none

Figure 3.0.1: Summary of Regev’s SIVPγ to average-case decision LWE reduction

resulting basis vector. Now for i ∈ {0, ..., 2n} call W4 n
2 times with input (L, ri) for ri = λ̃n2−i

and let Si be the resulting set of vectors. By [20, Corollary 3.16] each Si contains a set of n

independent vectors with overwhelming probability and by [20, Lemma 2.12] at least one of the

sets Si contains a basis set with length at most Õ(n/α) · λn(L). The resulting algorithm W ∗

therefore solves SIVPγ for γ = Õ(n/α) and the construction of W ∗ from W4 has tightness gap

2n3.

By chaining these reductions we can constructW ∗ using 46nx2y·nq·1·3n3m log (αq/
√
n)
−1·2n3

calls to W . Therefore the tightness gap of Regev’s reduction is 276x2yn8mq log (αq/
√
n)−1.

The tightness gap, relevant parameters, and any additional restrictions in each reduction are

summarized in figure 3.0.1.

3.1 Discussion

With the above analysis, we can now compare the tightness of the reduction with the best

known runtimes for solving underlying lattice problems to achieve the desired security guarantee.

However this presents a problem; while the basic lattice problems (SVP and CVP) are well-

studied and have known runtime estimates, the same is not true for some of the more obscure

lattice problems. In particular, Regev’s reduction uses SIVPγ as its underlying lattice problem.

As solving SIVP trivially also solves SVP, any SIVP solver will have runtime at least as bad as

the best known SVP solvers. Consequently we can use the known runtimes for SVP, and at worst

we will have overestimated the necessary dimension.
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More worryingly, the approximation problem SIVPγ is potentially easier to solve than SIVP.

To the best of our knowledge the only known efficient algorithms for solving SIVPγ require an

exponential approximation factor while Regev’s reduction only gives γ = Õ(n/α) ≈ Õ(n1.5), so

we might hope that no algorithm exists to abuse the weakening of the underlying problem. None

the less, this presents a vulnerability in our result. Further runtime analysis of algorithms solving

SIVPγ would allow for a more accurate computation and could potentially leverage the greater

difficulty of SIVP to achieve smaller parameters.

Regev also gives a reduction of DGS to GapSVPγ . This could yield a potentially better result,

but presents two additional problems. While we believe there is no known GapSVPγ solution

better than solving the equivalent SVP problem, GapSVPγ is a potentially easier problem and

so using SVP runtimes in our analysis would yield an underestimate of the required parameters

rather than an overestimate. The reduction to GapSVPγ is also less straightforward than the

reduction to SIVPγ ; Regev actually gives a reduction to GapCVP′γ using a polynomial number

of calls to a DGS oracle, then invokes a known polynomial-time reduction from GapSVPγ to

GapCVP′γ . Using this result would therefore require computing the exact number of calls and

the runtime of the GapSVPγ to GapCVP′γ reduction.

Another potential area for improvement lies in the worst-case to average-case decision LWE

reduction. Regev’s formulation allows an adversary to request an arbitrary number of LWE sam-

ples, and the reduction requires the adversary to have at least nx2 samples to make a sufficiently

accurate estimate. In practice an attacker would only have access to the m samples provided in a

public key (A,b), and nx2 � m unless W achieves a very large advantage. Since Regev’s reduc-

tion guarantees security even with a much larger number of samples revealed, implementations

with m ≈ n will likely have more security than guaranteed by the reduction. Quantifying this

gap might allow for the selection of smaller parameters.
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Chapter 4

Analysis of Peikert’s reduction

One clear limitation of Regev’s reduction is that it is inherently quantum, and so cannot offer

security guarantees based on the classical hardness of lattice problems. This would be irrelevant

if we were only interested in quantum security, but as it seems unlikely that powerful quantum

computers will be available in the immediate future we are also interested in the classical security

of lattice-based cryptosystems. In [18] Peikert gives a purely classical reduction from average-case

decision LWE to ζ-to-γ GapSVP. Here we analyze the tightness gap of Peikert’s reduction.

Intuitively speaking, Peikert’s reduction works by using Regev’s CVPφ solver to construct a

ζ-to-γ GapSVP solver. If a lattice L has a large minimum distance λ1(L) relative to the GapSVP

parameter d then the CVPφ solver, given an input x near a lattice vector l, should always correctly

return l. If on the other hand λ1(L) is small relative to d, then there is some other lattice point

l′ close to l. With some non-negligible probability, generating an input x near l will yield an x

which could also have been generated from l′. The CVPφ solver will therefore return a lattice

vector other than the original l on a non-negligible portion of its possible inputs. If we run the

CVPφ solver many times on uniformly random inputs and one of the inputs returns an incorrect

output, we can conclude that the λ1(L) must be small. Similarly, if the CVPφ solver never returns

an incorrect vector then we can conclude that λ1(L) must be large.

To formalize this, for a given lattice L we need to know how many instances (L,x) to generate

so that, if λ1(L) is small, the CVPφ solver returns a lattice vector other than l in at least one

instance with overwhelming probability.
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Theorem 2. Let n ∈ N, d ∈ R with d > 1, and define d′ = d ·
√
n/(4 log n). Suppose that L is

an n-dimensional lattice with λ1(L) ≤ d and W ′ is an algorithm for solving CVPφ for φ > 2d′.

For l ∈ L and x ∈ B(l, d′) both sampled uniformly at random, calling W ′ on (L,x) returns l′ 6= l

with probability at least

Γ(n2 + 1)
√
πΓ(n+1

2 )

(
2 ·

arccos
(√

logn
n

+ 1
2

)∫
0

sinn (t)dt−

arccos
(

2
√

logn
n

+ 1
2

)∫
0

sinn (t)dt

)
.

Proof. Under the condition λ1(L) ≤ d, we want to generate such a lattice L which minimizes

the probability that W ′ returns some l′ 6= l. Since x ∈ B(l, d′) is chosen uniformly it suffices

to minimize the number of lattice points inside B(l, d′). For simplicity assume that L has an

orthogonal basis with |b1| = d and |b2|, ..., |bn| � d. We want to find the portion of B(l, d′) which

does not overlap with B(l + b1, d
′) or B(l − b1, d

′). Let V be the volume of B(l, d′). First we

compute the volume V1 of overlap between B(l, d′) and B(l + b1, d
′). The volume of an n-sphere

S is given by:

VS =
πn/2rn

Γ(n2 + 1)

Definition 14 (Spherical cap, [15]). Let S be an n-dimensional sphere with radius r and P be

an (n− 1)-dimensional plane bisecting S. A spherical cap T is the lesser volume in S sectioned

off by P . The height h of T is measured along the radius of S perpendicular to P . In particular,

0 < h ≤ r. The volume of a spherical cap T is given by

VT =
π

n−1
2 rn

Γ(n+1
2 )

arccos r−h
r∫

0

sinn (t)dt.

Now V1 is comprised of two n-spherical caps in B(l, d′), each with height (d′− d)/2. Thus we

have

V1 = 2 · π
n−1
2 d′n

Γ(n+1
2 )

arccos d′+d
2d′∫

0

sinn (t)dt.

Then by symmetry, for V2 the volume of overlap between B(l, d′) and B(l − b1, d
′) we have

V1 = V2. Since d′ > d we know that B(l + b1, d
′) and B(l − b1, d

′) overlap, so we have V3 the
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volume of overlap between B(l + b1, d
′) and B(l− b1, d

′) which is again a pair of spherical caps

with height (d′ − 2d)/2. This gives

V3 = 2 · π
n−1
2 d′n

Γ(n+1
2 )

arccos d′+2d
2d′∫

0

sinn (t)dt.

Now by inclusion-exclusion we compute V ′ the volume of overlap between B(l, d′) and B(l +

b1, d
′) ∪B(l− b1, d

′)

V ′ = V1 + V2 − V3 = 2 · π
n−1
2 d′n

Γ(n+1
2 )

(
2 ·

arccos d′+d
2d′∫

0

sinn (t)dt−

arccos d′+2d
2d′∫

0

sinn (t)dt

)
.

Lastly we compute the portion V ′/V of B(l, d′) contained within B(l + b1, d
′) ∪B(l− b1, d

′)

and substitute d′ = d ·
√
n/(4 log n) to simplify:

V ′/V = 2 ·
π

n−1
2 d′n

Γ(n+1
2

)

πn/2d′n

Γ(n
2

+1)

(
2 ·

arccos d′+d
2d′∫

0

sinn (t)dt−

arccos d′+2d
2d′∫

0

sinn (t)dt

)

=
2Γ(n2 + 1)
√
πΓ(n+1

2 )

(
2 ·

arccos
d·
√

n/(4 logn)+d

2d·
√

n/(4 logn)∫
0

sinn (t)dt−

arccos
d·
√

n/(4 logn)+2d

2d·
√

n/(4 logn)∫
0

sinn (t)dt

)

=
2Γ(n2 + 1)
√
πΓ(n+1

2 )

(
2 ·

arccos
(√

logn
n

+ 1
2

)∫
0

sinn (t)dt−

arccos
(

2
√

logn
n

+ 1
2

)∫
0

sinn (t)dt

)
.

Since l ∈ L and x ∈ B(l, d′) are sampled uniformly at random, any x in the volume of overlap

can be generated in at least two equally likely ways. Therefore the probability that W ′ returns l

given x is at most 1/2, and we have

Pr [W ′(L,x) 6= l] ≥
Γ(n2 + 1)
√
πΓ(n+1

2 )

(
2 ·

arccos
(√

logn
n

+ 1
2

)∫
0

sinn (t)dt−

arccos
(

2
√

logn
n

+ 1
2

)∫
0

sinn (t)dt

)
.

Note that this bound is independent of the ζ-to-γ GapSVP parameter d. This is natural,
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as we chose d = λ1(L) when constructing L and the geometric argument given holds under any

scaling of L by a constant factor. From now on we denote this lower bound by P (n). We now

have the primary result for Peikert’s reduction.

Theorem 3. Let n,m ∈ N, q ∈ N be prime, α ∈ (0, 1) with αq >
√
n, and x, y ∈ R+ with x ≥ 2

and y ≥ 1. Also let D = Dα be the discrete Gaussian distribution on Zq centered around 0 with

standard deviation σ = αq/
√

2π. Suppose that W is an algorithm for solving decision LWE given

m LWE samples with errors sampled from D, and suppose that W has acceptance rates on some

portion 1/y of secret keys which differ by at least 1/x. If γ ≥ n/(α
√

log n) and ζ ≥ γ then there

exists a classical algorithm W ∗ which solves ζ-to-γ GapSVP with overwhelming probability and

has tightness gap 46n5qx2yN , for N ∈ N chosen so that N ≥ 32 ln(2) · P (n)−1.

Proof. Peikert’s reduction proceeds in two parts. From W we construct an algorithm W3 for

solving continuous search LWE as in Theorem 1 and use W3 to construct an algorithm W ′ for

solving CVPφ. The tightness gap in constructing W3 is 46n2qx2y. Now we choose r = q
√

2/dγ

and generate m samples from DL∗,r (this can be done efficiently by [18, Prop 2.13]). Invoking

the CVPφ-to-DGSr reduction from the iterative step in Theorem 1 using W3 and these samples

gives an algorithm W ′ which solves CVPφ for φ = αq/r = dαγ/
√

2 ≥ dn/ log n > 2d′ (where

d′ = d ·
√
n/(4 log n) as before). From Theorem 1 the tightness gap in constructing W ′ from W3

is n2.

Now let W ∗ be the following algorithm: for i = 1, ..., N , select li ∈ L and xi ∈ B(li, d
′) both

uniformly at random, and run W ′ on (L, xi). If the output is any l′ 6= li halt and conclude that

1 ≤ λ1(L) ≤ d, otherwise continue. If all N repetitions run without halting, then conclude that

γ ·d < λ1(L) ≤ ζ. If γ ·d < λ1(L) ≤ ζ, then since φ > 2d′ we are guaranteed that (L,x) is a valid

CVPφ instance and W ′ will correctly return l. Otherwise suppose 1 ≤ λ1(L) ≤ d. Then W ∗ will

halt with probability at least 1/2 when given an input (L,xi) such that there exists an l′ 6= li

with ||xi − l′|| ≤ d′) . By Theorem 2 the probability of sampling such an xi is at least P (n), so

23



Master’s Thesis - F. Gates McMaster University - Mathematics and Statistics

to achieve an error rate less than 2−32 over N repetitions we have

Pr[W ∗ fails to halt] ≤ [1− P (n)]N

≤ [1− P (n)]32 ln(2)·P (n)−1

=
(

[1− P (n)]P (n)−1
)32 ln(2)

<
(1

e

)32 ln(2)

= 2−32.

4.1 Discussion

The most attractive feature of Peikert’s reduction is that it is entirely classical. The best

known runtimes for solving SVP classically are significantly slower than for quantum solutions;

this would allow us to choose a smaller n for implementations where classical security is the

primary concern. Only when quantum computers become sufficiently powerful to carry out

attacks would we need to revert to the larger quantum-secure values for n. Another difference

from Regev’s reduction is that the underlying lattice problem is ζ-to-γ GapSVP rather than

SIVPγ . Since we will ultimately select parameters based on the best known runtime for an SVP

solver and a solution to SVP trivially implies a solution to ζ-to-γ GapSVP, parameters selected

according to Peikert’s reduction would be potentially more vulnerable to future breakthroughs

than Regev’s reduction.

Unfortunately, Peikert’s reduction is of little use when it comes to selecting concrete param-

eters for a cryptosystem. While the reduction runs in polynomial time, it is not faster than the

best known runtimes for SVP even in very large dimensions (n ≈ 4000). The difficulty arises in

the N term; the portion of B(l, d′) which is within distance d′ of another lattice point becomes

extremely small in large dimensions necessitating a correspondingly large number of repetitions.

We will discuss this in more detail in Section 5.2.
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Chapter 5

Implementation results

Before we can select parameters for a cryptosystem, we need to refine our desired notion of

security. An attacker can make tradeoffs between the runtime of their algorithm, the advantage it

achieves, and the number of secret keys against which it achieves that advantage. While we want

it to be difficult for an attacker to succeed meaningfully in any of these capacities, demanding that

it be difficult to achieve even a negligible improvement in any capacity is extremely conservative

and will result in a much slower cryptosystem.

Ultimately we want to construct an inequality of the form run(A) · runA(W ) < 2l for a

reduction W making runA(W ) calls to an algorithm A, where 2l is the best known runtime

for a solution to the lattice problem used by W . We therefore need to express the maximum

allowable runtime of an attack given all other security parameters. Expanding on the definition

of (t, ε)-security, we have the following lemmas:

Lemma 3. Let A be an algorithm for solving average-case decision LWE. Suppose that A achieves

advantage at least 1/a on a portion 1/y of all secret keys and no advantage on the remaining secret

keys. Then A breaks k-bit hardness of decision LWE if run(A) < 2k

ay .

Proof. Let S be the set of all possible keys and T ⊆ S be the portion of keys against which A

achieves advantage at least 1/a. Denote by AdvT (A) the advantage achieved by A on T . Then

Adv(A) = 1
y · AdvT (A) ≥ 1

ay . Let ε = 1
ay and t = 2k

ay . Then we have ε ≤ Adv(A) and t > run(A)

such that t
ε ≤ 2k, so A breaks k-bit hardness for decision LWE.
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If secret keys are sampled uniformly at random from S then we have |T | = 1
y |S|, but it is

more generally correct to think of T as being a subset of S such that the distribution from which

secret keys are drawn samples from T with probability 1/y.

Lemma 4. Let A be an algorithm for solving average-case decision LWE. Suppose that on some

set T of secret keys A accepts with probabilities aLWE, aU ∈ [0, 1] on inputs from the LWE

and uniform distributions respectively. Also suppose that aLWE − aU ≥ 1/x. Then A achieves

advantage 1/2x on T .

Proof. Let (A, t) be an arbitrary decision LWE instance. Recalling the definition of advantage,

we have

Adv(A) = Pr[A wins the decision LWE experiment]− 1

2

=
1

2
Pr[A wins | t = A · s + e] +

1

2
Pr[A wins | t sampled uniformly at random]− 1

2

=
1

2
aLWE +

1

2
(1− aU )− 1

2

=
1

2
(aLWE − aU )

≥ 1

2x
.

Note that the implicit assumption aLWE > aU is without loss of generality, since if aLWE < aU

then A achieves negative advantage and we can immediately create a better algorithm by reversing

the outputs of A. From these lemmas we have the immediate corollary:

Corollary 1. Let k ∈ N, A be an algorithm for solving average-case decision LWE, and W be a

reduction from average-case decision LWE to a lattice problem P . Suppose that A has acceptance

rates on some portion 1/y of secret keys which differ by at least 1/x, so 1/a = 1/2x is the

advantage attained by A on the portion of keys. Lastly suppose that run(A) < 2k

ay . Then W solves

P using A as a subroutine with run(W ) < 2k

ay · runA(W ) ≤ 2k−1

xy · runA(W ).
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5.1 Parameter Selection from Regev’s Reduction

By using the above corollary and the best known running times for solutions to SVP, we

can derive parameters for a cryptosystem under which a reduction will guarantee that breaking

the cryptosystem is at least as hard as solving SVP. From [4, Section 4.1] we have a runtime of

2l·n for an SVP solver in dimension n, with l = log
√

3/2 for the best known classical runtime,

l = log
√

13/9 the best known quantum runtime, and l = log
√

4/3 as a plausible worst case

runtime anticipating future improvements. Note that Regev’s reduction itself is quantum, so we

should be considering quantum solvers. The values listed for a classical solver would be applicable

if Regev’s reduction could be made classical, and would constitute a significant improvement. This

brings us to our main result.

Theorem 4. Let n,m ∈ N, q ∈ N be prime, α ∈ (0, 1) with αq >
√
n, and x, y ∈ R+ with x ≥ 2

and y ≥ 1. Also let D = Dα be the discrete Gaussian distribution on Zq centered around 0 with

standard deviation σ = αq/
√

2π. Let A be an algorithm for solving average-case decision LWE

and suppose that on some proportion 1/y of all possible keys s ∈ Znq , A has acceptance rates which

differ by at least 1/x. Let l ∈ {log
√

3/2, log
√

13/9, log
√

4/3} be an SV P runtime parameter.

Then there exists an algorithm W ∗ which solves SIVPγ for γ = Õ(n/α) with run(W ∗) < 2l·n if

run(A) < 2k

2x·y and

2k−1 · 276xn8mq log (αq/
√
n)
−1

< 2l·n. (5.1.1)

Proof. By Theorem 1 Regev’s reductionW has tightness gap runA(W ) = 276x2yn8mq log (αq/
√
n)−1,

and so this is an immediate consequence of Corollary 1.

This tells us that, for a set of parameters which satisfy the conditions of Theorem 4, if we

assume that there is no solution to SIVPγ with running time less than 2l·n then there is no

algorithm which breaks 128-bit hardness of decision LWE. There remains one obvious problem:

we have produced a guarantee for the hardness of decision LWE, but ultimately what we want is a

guarantee of security for a cryptosystem. An algorithm which achieves non-negligible advantage

in decision LWE trivially wins the IND-CPA experiment, but it is not clear that the reverse

holds. We omit this concern for two reasons: the reduction from IND-CPA to decision LWE

would depend on the particular implementation of the cryptosystem in question, and regardless
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Setting Sample Parameters

Best known classical, l = log
√

3/2 n = 1310, q ≈ 220, σ = 15

Best known quantum, l = log
√

13/9 n = 1460, q ≈ 221, σ = 15.5

Worst case quantum, l = log
√

4/3 n = 1870, q ≈ 222, σ = 17.5

Figure 5.1.1: Sample parameters derived from Regev’s reduction

of the implementation the tightness gap should be extremely small. As an example, a reduction

for the public-key encryption scheme presented in section 2.2.1 can be found in [20, Lemma 5.4]

and is tight.

To give sample parameters which satisfy these contraints, we will make some simplifications.

For 128-bit security we have run(A) ≤ 2127

xy so the most conservative choice of parameters is

x = 2127, y = 1. This corresponds to an algorithm which achieves a small advantage against

any possible secret key, with a tradeoff between advantage and runtime. With regard to D

the parameter of interest for practical implementations is σ, so we can make the substitution

αq = σ
√

2π. This yields the constraint σ >
√
n/2π which ensures that the iterative step in the

reduction functions properly. Most constructions have m ≈ n and q ≈ n2 so we use these as

approximations. This gives us the simplified constraint

2255 · 276n11 log (σ
√

2π/n)
−1

< 2l·n. (5.1.2)

We note that, other than being prime, the only condition on q is that αq >
√
n. Since q is

only a linear factor in the reduction it has only a small effect on the inequality. Rather than

the above condition, the approximate value of q will ultimately be determined by the correctness

requirements of a cryptosystem, as q must be large enough relative to σ that samples from Dσ

are small relative to q. Figure 5.1.1 gives a set of LWE parameters derived from the runtimes of

best known classical, best known quantum, and hypothetical worst-case quantum SVP solvers.

Values for n were searched for in increments of 10 and values of σ were searched for in increments

of 1/2 due to the approximations already made.
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5.2 Parameter Selection from Peikert’s Reduction

Unfortunately Peikert’s reduction does not yield a useful concrete security guarantee. Recall

from Theorem 3 that N ∈ N is the number of samples that must be drawn from a ball centered at

l ∈ L of radius d′ so that with overwhelming probability at least one sample lies within distance

d′ of a lattice point other than l. For a given sample, the probability of this occurring is bounded

below by P (n) as defined in Theorem 2. Even for dimensions as small as n = 800 we have

P (n) < 2−250 with N inversely proportional to P (n). N remains larger than the best known

runtimes for SVP as high as dimension n = 4000, at which point even computing P (n) becomes

difficult.

We might hope that this is a result of a particularly bad lower bound, as we only considered

a worst possible lattice when computing P (n). However, consider the argument from Theorem 3

on the lattice L = Zn for a ball centred on 0. For n = 800, as an example, we have d = 1 and

d′ =
√
n/(4 log n) ≈ 4.6. To get a rough estimate of the number of vectors within d′ of 0, we

have:

Lemma 5. Let n, k ∈ N. Zn has 2k ·
(
n
k

)
vectors of length

√
k with coordinates in {1, 0,−1}.

Proof. Let v ∈ Zn have coordinates in {1, 0,−1}. If v has length
√
k, then v must have k non-

zero coordinates where each non-zero coordinate may be either 1 or −1. There are 2k ·
(
n
k

)
ways

to choose such a vector.

These are not the only short vectors in Zn, but for d′ ≈ 4.6 it yields a reasonable portion of

the vectors closest to 0. Notice that if v ∈ Zn is such a vector and u = k · v for k > 1, then

B(u, d′) ∩ B(0, d′) ⊂ B(v, d′) ∩ B(0, d′), so any such u may be ignored. Now the number of

{1, 0,−1} vectors of length less than d′ ≈ 4.6 is less than

21∑
i=1

2i ·
(

800

i

)
≈ 2160.

So even assuming that each pair B(v, d′), B(−v, d′) produces pairwise disjoint overlaps with

B(0, d′), by Theorem 2 the total portion of B(0, d′) overlapping with some B(v, d′) is at most
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2160 · 2−250 = 2−90, which means that the number of needed samples is still too large to produce

useful parameters under Peikert’s reduction. This also assumes that all overlaps are equally sized,

when in fact the amount of overlap created by any B(v, d′) will be significantly smaller if ||v|| > 1.

We emphasize that these calculations were extremely rough, and intended only to demonstrate

that even a very well-behaved lattice produces a large running time.
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Chapter 6

Future considerations

In section 3.1 we discussed several considerations which might impact the security guaranteed

by Regev’s reduction. Here we instead consider possible improvements to the reduction itself,

in particular considering how small the tightness gap would have to be to give a meaningful

guarantee of security for current implementations. As an example, Bos et al. [4] recommend

n = 752, q = 215, σ =
√

1.75 as parameters for a quantum-secure implementation of the Frodo

key exchange protocol.

While we focus primarily on improving n, the parameters q and σ are also potential areas for

improvement. Regev’s search LWE to worst-case decision LWE reduction requires q to be prime,

and Regev’s DGSr to search LWE reduction requires σ >
√
n/(2π). Ideally we would like to take

q to be a power of 2, as reducing integers modulo 2k in binary can be done very efficiently. The

condition on σ yields values much larger than in current implementations, and the larger error

distribution will necessitate a corresponding larger value of q to maintain correctness.

Now we want to consider hypothetical improvements to Regev’s reduction. While a reduction

W could in principle use any standard lattice problem, we will assume that W solves SVP for

ease of notation. Suppose that A is an algorithm for solving decision LWE with acceptance rates

differing by 1/x on a portion 1/y of secret keys. Then for a W to imply k-bit hardness of decision

LWE assuming a best known runtime of 2l·n for SVP, from Corollary 1 we have

2127

xy
· runA(W ) < 2l·n

31



Master’s Thesis - F. Gates McMaster University - Mathematics and Statistics

Runtime exponent Classical setting Quantum setting Worst-case quantum setting

t = 0 n = 1040 n = 1150 n = 1470

t = 1 n = 1080 n = 1190 n = 1530

t = 2 n = 1110 n = 1230 n = 1580

t = 3 n = 1150 n = 1270 n = 1630

t = 4 n = 1180 n = 1310 n = 1690

Figure 6.0.1: Secure dimensions for an SVP to search LWE reduction with tightness gap nt

where as before n ∈ N is a dimension and l ∈ {log
√

3/2, log
√

13/9, log
√

4/3} is a runtime

parameter based on the desired setting. From Regev’s reduction we will consider three possible

forms for W , and in each case we will let nt be a tightness gap for t ∈ R.

The weakest possibility we consider is an improvement to the reduction from SVP to search

LWE. This is the most complex part of Regev’s reduction, and so might reasonably be considered

the most likely place to find improvements. By comparison the reduction from search LWE to

average-case decision LWE is well known and relatively straightforward. From Theorem 1 the

search LWE to average-case decision LWE reduction has tightness gap 276x2yn2q, so W gives a

concrete security guarantee if

2127 · 276xqn2+t < 2l·n. (6.0.1)

By taking q ≈ n2 and x = 2128 as in section 5.1 we can compute the smallest dimension under

which W gives a concrete guarantee. However even a tight SVP to search LWE reduction still

yields n > 1000 in every setting. To get a better result, we can instead consider improving the

entire SVP to average-case decision LWE reduction. Because of the tradeoff between runtime

and advantage we expect that any reduction to average-case decision LWE will include an xy

term, but the extra factor of x in Regev’s reduction significantly inflates the overall runtime of

the reduction. We therefore consider two cases: an SVP to average-case decision LWE reduction

with tightness gap x2ynt, and one with tightness gap xynt. These yield the following inequalities:

2127 · xnt < 2l·n. (6.0.2)

2127 · nt < 2l·n. (6.0.3)
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Runtime exponent Classical setting Quantum setting Worst-case quantum setting

t = 0 n = 880 n = 970 n = 1230

t = 1 n = 910 n = 1000 n = 1280

t = 2 n = 940 n = 1040 n = 1330

t = 3 n = 980 n = 1080 n = 1380

t = 4 n = 1010 n = 1120 n = 1440

t = 5 n = 1040 n = 1160 n = 1490

t = 6 n = 1070 n = 1200 n = 1540

Figure 6.0.2: Secure dimensions for an SVP to average-case decision LWE reduction with tightness
gap x2ynt

Runtime exponent Classical setting Quantum setting Worst-case quantum setting

t = 0 n = 440 n = 490 n = 620

t = 1 n = 470 n = 510 n = 660

t = 2 n = 500 n = 550 n = 710

t = 3 n = 530 n = 590 n = 750

t = 4 n = 560 n = 620 n = 800

t = 5 n = 600 n = 660 n = 850

t = 6 n = 630 n = 700 n = 900

Figure 6.0.3: Secure dimensions for an SVP to average-case decision LWE reduction with tightness
gap xynt

While we do not expect the values in 6.0.2 or 6.0.3 to correspond to actual reductions for

small values of t, the extreme results in figure 6.0.3 suggest that it is unlikely that we can both

remove the additional factor of x while also significantly improving the overall reduction. For a

final set of values, we consider the case where Regev’s reduction is improved only by removing

the additional factor of x. Restating 5.1.2 with the factor of x = 2128 removed gives

2127 · 276n11 log (σ
√

2π/n)
−1

< 2l·n (6.0.4)

where σ >
√
n/(2π) as before. This change alone brings the quantum-secure dimension down to

only n = 900, and would constitute a significant improvement over the values from section 5.1.
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Setting Sample Parameters

Best known classical, l = log
√

3/2 n = 820, q ≈ 219, σ = 12

Best known quantum, l = log
√

13/9 n = 900, q ≈ 220, σ = 13

Worst case quantum, l = log
√

4/3 n = 1170, q ≈ 221, σ = 14.5

Figure 6.0.4: Sample parameters derived from Regev’s reduction with a factor of x removed

In particular we observe that the improvement from removing x is comparable to replacing the

entire reduction with one of tightness gap x2y, which we expect to be impossible. We propose

that the worst-case to average-case reduction is therefore of significant interest for future work,

either producing a reduction with smaller tightness gap or proving that no such reduction exists.

6.1 Conclusions

In summary, Regev’s reduction guarantees that breaking a lattice-based cryptosystem is at

least as hard as solving SIVPγ in dimensions as low as n = 1460 for q and σ chosen appropriately.

Moreover there are several potential improvements to this result which could bring this number

closer to those being used in practice, currently n ≈ 750. Peikert’s reduction, while entirely

classical, unfortunately has tightness gap too large to give a concrete security assurance in any

practical dimension.

Ultimately we do not expect that the parameters we propose here will become common in

everyday use. While the resulting cryptosystems would not be unusable, they would be signifi-

cantly slower than current implementations. Instead we view this work as a worst-case security

assurance; even if efficient attacks against current implementations are found, lattice based cryp-

tosystems will still be viable as long as SVP remains hard. This assurance partially mitigates the

risk of new attacks being discovered, which is particularly welcome as lattice-based cryptography

is still a relatively new field.
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