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Abstract 


Presented here is an examination of the issues surrounding the analysis of lung 

sounds and their display. The project is aimed at providing a visual representation of the 

information that a physician gleans from auscultation of the lungs. Such a tool would be 

of benefit to those who are hearing impaired and also in teaching auscultation. A second 

goal is to provide a tool that will allow the examination and quantification of lung sounds 

thus permitting linkage between the acoustic events and their physical causes. 

The project is divided into two tasks. The first is the isolation of the wheezes and 

crackles; the second is their display. 

The isolation problem is difficult due to the variance in the frequency 

characteristics of the sounds; wheezes may appear anywhere in a two thousand hertz 

band and crackles also display a varying spectrum. The difficulty in separation is further 

compounded by the spectral overlap of the two. These problems preclude any 'simple' 

filter solution. In order to separate the sounds, filtering methods based on exploiting the 

statistical differences namely the stationarity of the wheeze and non-stationarity of the 

crackle are utilized. Of the several methods attempted, the most promising was the 

Adaptive Line Enhancement process when driven by the Least Mean Squares adaptive 
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algorithm. 

An important criteria for being able to display the sounds was to access their 

temporal information. Accomplishing this with the standard short time Fourier transform 

precludes adequate resolution to identify the frequency characteristics of crackles. 

Display of the crackle information was facilitated by the use of high resolution time

frequency methods based on Cohen's Class of time-frequency representations. These 

methods are able to simultaneously provide high time and frequency resolution. A 

method for automatic adjustment of the parameters involved in the process was developed 

in order to yield the best display possible. 
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1.0 Introduction 

The objective of this thesis is to enable viewing of the auscultative information 

given by lungs. The end product is not intended as a 'black box' type of analyzer that 

produces a diagnosis but rather as a mechanism that will better aid the physician in 

forming a diagnosis. Currently, this information is used much the same as 

phonocardiography (heart sounds) in only assessing the functional state of the organ 

(Des90, Ran88). This thesis tackles the creation of a system to separate and quantify lung 

sounds with the hope that further study will allow correlation between the physical 

processes of lung sound generation and the acoustic parameters of spectral and temporal 

characteristics. 

Human interpretation of lung sounds is an imprecise procedure. Large variability 

can exist in the manner in which two observers perceive the same sound. Perhaps most 

notably, age plays a large role in determining one's ability to hear. The problem of 

individual interpretation is compounded by the physical characteristics of the hearing 

process which are ill suited to auscultation. 

Human hearing mechanisms are unable to determine a split of less than 20 

milliseconds between two sounds (Fei71). In addition, logarithmic compression of sound 

intensity produces a scale where an acoustic event must contain ten times the energy of 

another in order to be perceived as twice as loud (Guy87). While this property allows 

the human ear an extremely large dynamic range, it can make subtle changes between 

sounds difficult to appreciate. As well, the ear's frequency sensitivity follows a 

logarithmic scale in the 0-1000 hertz range. This results in sounds with a higher pitch 
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being perceived as louder than a sound with the same energy but at a lower frequency. 

Since lung sounds occur between 60 and 2000 Hz (Fle90) and heart sounds between 20 

and 600 Hz (Ran88) this factor is extremely important in auscultation. Clearly, the 

human ear is not the best mechanism for discriminating in auscultation. 

Technological revolution has brought many marvellous methods to the clinical 

environment. Computing power has enabled methods such as magnetic resonance imaging 

(MRI) and computed tomography (CT) to becomes staples of modern medicine. Applied 

herein to the analysis of lung sounds is the strength of digital signal processing that has 

enabled these other techniques to flourish. The overall goal is to provide methods that 

will move lung sound analysis out of the realm of descriptive terms such as noisy, moist, 

quiet, dry, clicking, bubbly and slurpy (Des90) and into the arena where it is possible 

to quantify and classify the sounds by their physical characteristics. 

In this thesis, lung sound analysis is presented as a two-fold problem. The first 

to overcome is the separation of wheeze and crackle information. The second is to 

display the information in a meaningful manner that will support quantification of the 

sounds and provide a method for better understanding of the factors affecting lung sound 

genesis. 

2.0 Lung Sounds 

The topic of lung sounds seldom occupies more than a handful of pages in any 

medical text. Confusion and controversy surround their genesis, utility and even 
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nomenclature. The following text is a reflection of the current status of lung sound 

understanding and application in the clinical setting. 

2.1 Physiology of the Respiratory System 

On its way to the lungs, air must first pass through the trachea. Reinforcing 

hyaline cartilage rings prevent collapse of this tube when the intra-tracheal pressure falls 

below the external pressure (Gra89). The trachea bifurcates into the bronchi; one 

bronchus entering each lung. Bronchi further divide producing progressively smaller 

tubes with fewer and fewer cartilage rings. These tubes are named bronchioles when their 

diameter reaches the millimetre range. 

Subdivision continues until up to 23 levels of branching from the trachea have 

occurred. The pathways end with an alveolar duct that opens into alveolar sacs lined with 

bubble-like alveoli. These alveoli are covered by a capillary network through which gas 

exchange takes place. Because of the need to facilitate diffusion of gases, the alveolar 

and capillary walls are extremely thin. Pulmonary surfactant is necessary for the 

prevention of alveolar collapse resulting from the surface tension of the thin alveoli. This 

surfactant is secreted from within the alveoli. 

Each lung is covered by a double layer of lubricated membrane. These pleural 

membranes provide a frictionless environment for the healthy lung as it expands and 

contracts during respiration. The inner membrane, the visceral pleura, is in contact with 
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Figure 2.1a 

Figure 2.1b 

Gross Anatomical Relationships in the Thoracic Cavity 

The respiratory pathway is shown starting with the trachea and 

subdividing into the bronchi. Further sub-division occurs (up to 23 

times) but is not illustrated. The pleural membranes are also 

shown. (Mar87) 

Alveolar Structure 

A view of the bubble like alveoli found at the terminal points of 

the respiratory pathway. Their thin walls are covered with a 

network of capillaries. (Mar87) 
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Parietal pleura 

Visceral pleura 
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the lung surface making its way between the lung's lobes. The parietal pleura rests 

against the rib cage and diaphragm. Figure 2.la shows the lungs, pleural membranes and 

and respiratory pathway. A view of the alveolar structure is presented in Figure 2.lb. 

This presentation is an extremely brief overview of the macroscopic components that 

generate lung sounds. Greater detail may be found in any one of many references (Ber90, 

Gra89, Guy87). 

2.1.2 The Mechanics of Breathing 

The lung's elastic nature is due to the presence of elastin and collagen fibres 

working in conjunction with the surface tension of the fluid lining the alveoli (Guy87). 

In order to explain the process of respiration, the lung can be simply divided into two 

areas; the alveolar space (inside the lung) and the intra-pleural space (the area outside the 

lung but still inside the thoracic cavity). Inspiration occurs when the diaphragm moves 

downward and the intercostal muscles expand the circumference of the rib cage. This 

causes a decreased intra-pleural pressure followed by a decrease in the intra-pulmonary 

pressure. The end result is an influx of air. While maintaining the intra-pleural pressure 

lower than the intra-pulmonary pressure, the pressure in the alveolar space will keep the 

lung in a state of inflation. Expiration is a passive exercise relying on the elasticity of 

the tissues to return the lung to a resting position when the intra-pleural pressure is 

returned to the relaxed value. Figure 2.2 illustrates the expansion process. 
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Figure 2.2 

Figure 2.3 

The Mechanics ofBreathing. 

A decrease in the intrapleural pressure is caused by downward 

movement of the diaphragm and an upward and outward expansion 

of the rib cage by the inter-costal muscles. When this pressure 

becomes lower than the that of the alveolar space, the lung 

inflates. Expiration occurs when the diaphragm and inter-costals 

are relaxed. The elastic properties in the lung and surrounding 

structures cause the lungs to empty. This is a passive process. 

Spectral Range of Wheezes and Crackles. 

The spectral range of crackles is shown to be approximately 200 

to 1200 Hz. An individual crackle spreads its energy over this 

entire range. Wheezes occur as sharp spikes in the frequency 

domain. The spikes at A and B show wheezes at approximately 

300Hz and 800Hz. Because the wheezes are narrow band and 

their energy is concentrated, they tend to overpower the crackles 

in the frequency domain. 
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2.2 Lung Sounds of Significance in Clinical Diagnosis 

Originating with Laennec, r3.1es and crepitations were the popular terms for lung 

sounds circa 1900. These were then sub-divided by accompaniment of descriptive terms 

such as sonorous or sibilant. As more classifications and different descriptions were 

added, the nomenclature became very confusing until Robertson and Coope proposed the 

currently accepted terminology in 1957 (For78). Lung sounds used in diagnosis are now 

referred to as crackles, wheezes and breath sounds. Breath sounds are due to normal 

healthy breathing. Wheezes and crackles fall under the category of adventitious 

(abnormal) lung sounds. Throughout this thesis, the sounds will be referred to in this 

manner. Sub-divisions describing different types of wheezes and crackles will be outlined 

in their respective sections. Several other sounds exist and are explained later. 

2.2.1 The Wheeze 

Wheezes are continuous semi-stationary sounds that may be identified visually as 

a series of identical waveforms (Kos90). They are often referred to as musical sounds 

since their waveforms are periodic and stationary in nature. These waveforms can be 

differentiated into a few well defined, harmonically related frequencies. Wheeze genesis 

of these sounds has been proven to result from air rushing past a point where the walls 

of the passageway are almost in contact. The driving condition for the following 
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phenomena is the instability of the airway walls. As the velocity of the air increases 

through the narrowed passage, a vacuum is created. This draws the walls closer together. 

When they come in contact, air flow is halted and the wall's elastic recoil pulls them 

apart. This cycle is repeated and the speed with which it occurs determines the frequency 

of the wheeze (For78). Wheezes may also be caused under pathologic conditions such 

as the presence of tumours or other foreign objects in the airways (Fle90). These objects 

form a point of closure and are set into vibration in the same manner as for a point of 

closure formed by the narrowing of walls. 

Monophonic wheezes occur if only one point of closure exists. Polyphonic 

wheezes occur when multiple points of closure are present. Characteristically, wheezes 

occupy the frequency range of 60 to 2000Hz (Fle90, For78, Kos90). 

2.2.2 The Crackle 

Two types of crackles exist. Necessary for the generation of the first type, the 

fine crackle, is a closed compartment and a significant pressure differential between the 

inside of this compartment and its outside environment. The removal of the closure 

results in a rapid pressure equalization. The transition is so sharp and rapid that two to 

three rapidly fading irregular oscillations are generated. These oscillations decay 

exponentially and completely expire within a few milliseconds (For78). Fine crackles 

are high pitched. Their timing is reproducible from respiratory cycle to respiratory cycle 
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Table 2.1 	 Characteristics of Crackles for Several Conditions, (Cla81). The table 

details variations in crackles that help differentiate between lung 

conditions. 

Characteristic of crackle Obstructive chronic Bronchiectasis Fibrosing alveolitis 
bronchitis 

Timing of inspiratory Present the early phase Present in the early and Present in the latter 
crackles of inspiration mid-phase of inspiration phase of inspiration 

Number of crackles Always few Usually moderate Can be profuse 

Effect of cough No change Temporarily reduced No change 

Effect of position No change No change Modified or abolished 

Intensity Faint Loud Moderately Loud 

Pitch Low pitched Low pitched High pitched 

Expiratory crackles May be present Typically present May be present 

Transmission through Transmitted Transmitted Not transmitted 
chest cavity 
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and cannot be abolished by coughing (Des90). Another characteristic is the localization 

to their area of genesis. The second type of crackle, coarse crackles, originate from free 

fluid in the airways. Their spectral characteristics are a function of fluid viscosity 

(Ols78). They are low pitched, continuous over the entire respiratory cycle, audible over 

entire lung and vary greatly with posture or coughing (Des90). 

Crackles may be heard in both inspiration and expiration though they tend to 

occur most commonly during inspiration. The combination of timing, distribution and 

transmission of the crackles identify distinct patterns particular to certain disorders. 

Difficulty in auscultation occurs due to the spectral overlap of wheezes and 

crackles. Figure 2.3 shows the ranges for these sounds. Wheezes are narrow band and 

can spring up anywhere in the 60-2000 Hz range. Crackles are wide band and occupy 

most of the 200-1200 Hz range. Due to their wide band nature, their spectral energy is 

spread thinly. 

2.2.3 Other Sounds 

When the pleural surface is roughened by fibrin deposits or other infiltrations, the 

normal silent smooth sliding motion becomes a series of short jerks. The pulling motion 

sets the chest wall into oscillation often resulting in a continuous sound produced in much 

the same manner as the drawing of a bow across violin strings. Otherwise, a crackly 

rubbing sound is heard (Des90). Pleural friction rub is often accompanied by sharp pain 
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localized to the region rubbing. 

2.2 .4 Pathophysiological Significance of Lung Sounds 


Though simple in nature, adventitious sounds reveal a great deal about the 

pathology of a patient's condition. The following details some of the acoustic 

characteristics of lung disease. 

The nature of a wheeze is indicative of the pathology involved, as the following 

examples demonstrate (Ogi90). A fixed monophonic wheeze is typical of cicatricial 

stenosis (formation of new tissue that narrows the airway) or an intra-bronchial tumour. 

The pitch is related to mass and varies over a very narrow range. This variation is 

determined by air flow velocity. Random monophonic wheezes are characteristic of 

widespread airflow obstruction as in asthma or bronchitis. The expiratory polyphonic 

wheeze is also characteristic of widespread airflow obstruction but when accompanied 

by inspiratory wheezes is a sure sign of emphysema. Pulmonary fibrosis is characterised 

by wheezes late in inspiration. These are accompanied by inspiratory crackles. Sequential 

wheezes (squawks) are caused by the opening of areas of the lung previously apposed. 

This is typical of pulmonary fibrosis. 

Table 2.1 outlines the timing, number, effect of posture, acoustic characteristics 

and transmission of crackles for chronic bronchitis (narrowing of airways through 

inflammation), bronchiectasis (dilation of bronchi due to damage of the elastic and 
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muscular layers) and fibrosing alveolitis (stiffening of alveoli due to increase in fibrin 

content) (Nat81). 

From this discussion, it becomes apparent that different kinds of pathology are 

associated with different physical properties of the airways and their contents, thus giving 

rise to individual crackle and wheeze signatures. 

2.2.5 Sound Transmission Through the Chest 

The quality of transmission depends on many factors since the sound must pass 

through several tissues and tissue interfaces. Factors affecting transmission must be kept 

in mind during auscultation. 

Experiments on excised lungs have shown that sound energy is lost at the 

interface of the lung and chest wall. This loss is due to the mismatch of acoustic 

impedance and becomes more pronounced with increasing obesity (For78b). Lung 

consolidation, while on first thought would seem to attenuate sound energy, actually 

enhances sound transmission (Des90). Fluid collecting in the pleural cavity, attenuates 

low frequencies and if enough collects, a complete acoustic block may occur (For78b). 

By comparing lung sounds heard at the mouth and passed through the chest, it has been 

determined that the lung and associated tissues act as a low-pass filter. The associated 

high frequency loss accounts for the purity of wheezes heard through the chest when 

compared to those heard at the mouth. 
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3.0 Heart Sounds 

The analysis of heart sounds is plagued by many of the same problems as the 

analysis of lung sounds. At the forefront of this list is the ongoing debate as to the exact 

genesis of the sounds (Ran88). The signal analysis problem is similar particularly when 

compared to the analysis of crackles. However, the phonocardiogram has undergone a 

great deal more study. This is probably because the genesis of heart sounds is better 

understood than that of lung sounds and it is known that changes in heart function will 

produce abberations in acoustic properties before other symptoms are detectable such as 

modification of the electrocardiogram (Ran88). 

Frequency domain analysis has been performed by many different methods. 

Bandpass filter banks (Ado70), pole-zero modelling (Joo84) and linear prediction (Iwa79, 

Nan84) have all been attempted with varying degrees of success. The method most 

utilized is the fast fourier transform which has been used for several decades (Ado70, 

Fro74, Yog76a, Yog76b, Pin79). Many of these studies rely on pattern recognition 

techniques to classify the sounds. For reasons revealed in section 7, it would be 

interesting to revisit these studies as new methods of time-frequency analysis provide 

resolution not previously available. 

Study in the time domain has primarily focused on the analysis of the 

phonocardiogram's envelope (Kar75, Sar76). These studies have been particularly useful 

in identifying murmurs between the first and second heart sounds. 

Despite the great deal of research in phonocardiograms, the methods have only 
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been able to assist in the assement of the functional state of the heart and classify the 

condition. The procedures will not become a reliable part of the diagnostic and 

monitoring process until acoustic events can be correlated with specific mechanical events 

and methods of quantifying these relationships exist. 

4.0 Previous Work in Lung Sound Analysis 

Little improvement in auscultative techniques has occurred since the invention of 

the stethoscope by Laennec in 1885. In recent years, with the development of high 

powered computing techniques, there has been a renewed interest in auscultation. This 

interest has resulted in several attempts to better recount auditory information and to 

provide computer diagnosis. The literature can be categorized as follows; frequency 

domain, time domain, time frequency representations and signal pre-processing. 

4.1 Work in the Frequency Domain 

Early attempts at providing a system for diagnosis have centered around the fast 

Fourier transform (FFT) algorithms. This algorithm reduces a sampled waveform into 

its spectral components. The most common approach involves sampling of the lung 

sounds to yield a time series, breaking this data into blocks, performing the fast Fourier 
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transform and averaging the results from each block. Each point of this average spectrum 

is considered a feature. Identification of features that have the greatest variance between 

conditions is performed by principal component analysis (PCA). Urquhart used 200 

millisecond overlapping windows and PCA to reduce the spectrum to only two features 

for comparison (Urq81). This process resulted in dimensionless graphs that did show 

clustering but no absolute boundaries were discernable. 

The inability of this approach to produce tight clusters is partially due to the great 

variability in the methods of sound genesis. For example, the wide frequency band that 

wheezes can occupy depends on the mass and rigidity of the vibrating structure or the 

pitch of crackles is related to the amount of fluid and viscosity of fluid in the lungs. In 

addition, large variances in soma-type or lung structure can filter the same original lung 

sound to produce two dissimilar spectra. Flow rate must also be monitored closely as it 

can play a profound effect in shifting the overall lung sound spectra. Lessard and Wong 

have shown that an increase in flow rate raises the mean frequency of the overall lung 

sound spectrum (Les80). 

One severe disadvantage in studies of this nature is the complete loss of timing 

information. As seen previously, the position of an adventitious sound in the respiratory 

cycle is of clinical relevance. In the above instance, this information is completely 

ignored as the FFf is taken over the entire respiratory cycle providing only the total 

frequency content. 

While the concept of computer diagnosis using auscultation alone is 

appealing, it is not very practical. The 'black box' approach taken by the methods above 
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prevents the inclusion of many other variables in making the diagnosis. 

4.2 Work in the Time Domain 

Recently, there has been an interest in time series analysis methods. Manual 

examination of the crackle waveform has led to measures that would be useful in 

distinguishing between fine and coarse crackles. These characteristics are the initial 

deflection width (IDW), the time required for the flrst two cycles (2CD), the time 

required for the fust 114 cycle of crackles and the time required for the fust 9/4 cycle 

of crackles. Mean values of these characteristics for patients with pulmonary flbrosis 

(fme crackles) and chronic bronchitis (coarse crackles) were determined and showed 

distinct differences (Mun91). Hoevers characterized crackles based on IDW and 2CD as 

well as measurements based around the largest deflection in the crackle (Hoe90). These 

types of studies are able to classify the crackles with a high degree of precision. 

Unfortunately these processes require manual identification of crackles and often manual 

examination of the waveform resulting in time consuming and tedious work. 

More recently, investigation into the separation of crackles from the rest of the 

lung sound has been attempted with a non-linear prediction error fllter (Ono89). Based 

on the standard prediction error ffiter, the method produces two outputs; stationary and 

non-stationary. If the prediction error exceeds a preset level, the signal is shunted to the 

non-stationary output through a non-linear function. The resulting gap in the stationary 
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output is filled in with the prediction. The work has been furthered with the addition of 

a filter that identifies non-stationarities with widths comparable to those of crackles 

(Ara91). 

4.3 Time-Frequency Representations 

Pasterkamp has devised a display that simultaneously displays a spectrogram of 

breath sounds, flow information, the raw lung sound signal and the electro-cardiogram 

(Pas89). The presentation of the ECG allows one to visually compensate for the effects 

of the spectral overlap between heart and breath sounds. This system works in 

approximately 1.5 times real-time. Since a 1024 point FFT is utilized in forming the 

spectrogram, significant temporal smearing of the crackles occurs. This is more clearly 

demonstrated in section 6.1.1.1. 

Other methods have utilized image analysis techniques on the spectrogram. Edge 

detection has been applied in order to identify the wide band crackles (Cha83). 

4 .4 Signal Pre-Processing 

A significant problem to be managed is the spectral overlap between heart and 

lung sounds. The problem is quite serious since the phonocardiogram originates from the 
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same physical area as the lung sounds. This has been addressed by Iyer through the use 

of adaptive filter techniques (Iye86). Using the electrocardiogram's QRS structure as a 

timing reference for the first heart sound and a delayed version of it for the second, 

phonocardiogram reductions in the order of 70% have been reported. 

5.0 Rationale 

This body of research was launched by the need of a hearing impaired medical 

student to 'hear' the diagnostic sounds of the lungs. The only method available was to 

watch the acoustic waveform on a portable oscilloscope. Though this one problem 

provides an immediate application for a lung sound analysis device, it is not the only 

one. A unit built incorporating the algorithms developed here would also be an excellent 

teaching tool allowing a solid visual link with the acoustic phenomena of lung disease. 

Visual representations are often much easier to comprehend and could reduce the learning 

curve as a great deal of effort is required to 'train' the ear and associated processes for 

auscultation. Also, as one ages and the characteristics of their hearing change, such a 

device could still permit the use of auscultative information. Lack of quantitative 

assessment due to the individual perception of sound may be overcome by the use of a 

standardized method of analysis. One example of a useful application was cited by a 

physician during the course of this research. It is well known that chronic lung disease 

and heart failure produce different types of crackles. In order to determine whether 

treatment is having a positive effect, it is necessary to determine if the number of 
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crackles due to the heart condition are decreasing. No methodology exists for 

determining the ratio of these lung condition induced and heart condition induced 

crackles; save a subjective judgement. 

This thesis sees the application of several current sophisticated signal processing 

techniques. Although they have their origins in the field of communication where they 

have seen wide application, they are also well matched to lung sound analysis. The first 

of these techniques; adaptive filtering; exhibits its power by allowing filtering with no 

a priori information about the signal. In the case of lung sound wheezes, these stationary 

waveforms can appear anywhere in a 2000 Hz frequency band and will fluctuate slightly. 

Adaptive filters are able to detect the appearance of such signals, lock onto them and 

track their evolution. In terms of displaying lung sound information, it will be shown that 

high resolution time frequency methods are a vast improvement over the standard Fourier 

transform allowing highly non-stationary crackles to be examined with detail never before 

realized. These techniques are particularly useful in the biologic environment since noise 

is usually high. Detection of transient signals at a signal to noise ratio of -6 dB has been 

reported with these methods (Boa90). 

Perhaps the greatest accomplishment would be to re-introduce auscultation as a 

diagnostic tool. In order for this to be accomplished, the acoustic phenomena need an 

inexorable link to the physical processes creating them. With the high resolution now 

available, information that was previously hidden is now displayed providing a point of 

departure for such an investigation. The phonocardiogram could also benefit from this 

type of analysis. 



Section 2 - Theory of Methods 

6.0 Adaptive Filters 

7.0 Time Frequency Representations 

8.0 Other Methods 
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6.0 Adaptive Techniques 

The agenda of adaptive filter theory is to defme mechanisms that monitor a filter's 

output and update the tap weights accordingly. This provides a time-varying, self-

adjusting system that is able to operate in an optimum sense despite time-variations in 

filter criteria. These criteria must often be averaged and a compromise reached when 

designing a fixed parameter system. 

This discussion is limited to adaptive filters based on the single input transversal 

filter. It is often referred to as a fmite impulse response (FIR). In these filters, the 

impulse response is only as long as the filter order. Filters with feedback loops are able 

to generate impulse responses that extend to infinity and hence are called infinite impulse 

response filters (IIR). The block diagram for a FIR filter is given in figure 6.1a where 

the block operations denoted 'z-1' are unit delay operators. These delays hold the value 

of the previous sample presented at their input. Multiplications are performed at the tap 

weights, 'wmk' resulting in the output of this filter being a linear combination of the 

inputs. The subscript 't' indicates that the values are calculated for time k. The number 

of tap weights defines the filter order, 'M'. 

M-1 
(6.1)Yt = L Wink xk-m 

m={) 

From the purpose of this discussion on filters, the following notation will be 
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Figure 6.la, 6.lb Adaptive Filter Building Blocks. 

Figure 6.1a Transversal Filter. The number of delay elements (z-1
) 

is the filter order. The output is a linear combination of the vector 

held in tapped delay lines. 

Figure 6.1b The Adaptive Filter as a Closed Loop System. 

Adaptation is performed adjusting the filter weights in order to 

minimize the error between the desired response and the input. 
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adhered to: 

1) scalars will appear as lower case letters 

2) matrices will be shown as upper case letters 

3) vectors will be denoted by lower case letters with one of the following overstruck 

will only be used to annotate vectors formed by filter elements. For example, 

xis the signal segment currently in the filter. Its composition is [xk, xk-ll 

xk_2, ... , xk-M+l ] where M is the order of the filter. Similarly, w is the 

vector made of the tap weights. 

- indicates a signal vector, as an example, x is the signal itself in its entirety and 

y is its filtered version. 

v indicates an estimated vector, usually an estimation of its optimal value 

" indicates that a vector is optimal with respect to some criteria 

Equation 6.1 may be more conveniently expressed in vector notation where the 

superscript •TI denotes the matrix transpose operation. The transpose operator is used 

instead of the hermitian operator (transposition and complex conjugation) since the data 

to be used in conjunction with the adaptive algorithms presented will be real making 

complex conjugation redundant. 

(6.2) 

Filter output characteristics are determined by the values of the tap 

weights. Generally speaking, the greater the filter order, the better will be the filter's 

performance since more information is used in forming the output. 
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Adaptive systems may be conceived as a closed loop process with two functional 

blocks and two inputs. Typical adaptive system architecture is illustrated in figure 6.lb. 

The signal input, x, goes directly to the filter. The second input required is the desired 

output, a which acts as a reference in determining what the f:tlter output, y' should 

approximate. A subtraction of the filter output from the desired vector yields the error 

vector e. This vector is a measure of 'how close' the signal vector is to approximating 

the desired response and when fed to the adaptive algorithm, causes a filter adjustment 

that minimizes some criterion. The usual criterion is the average power (mean-square 

value) of the error signal. This is referred to as the mean square error (MSE) or simply 

~. Unfortunately one requires a fairly accurate reference vector, a, as the degree of 

success in filtering depends crucially on it. 

A concept that helps in visualizing the process of adaptation is the error 

performance surface (EPS). The EPS function plots~ against the f:tlter weights. Optimal 

performance is achieved when the adaptive algorithm locates the surface's minimum. For 

a f:tlter of order of two, the error performance surface takes the form of a bowl with the 

optimum value for ~ and the optimum filter weights being given by the coordinates at the 

bottom of the bowl. The geometry of the bowl is constant for a stationary environment. 

However, if the environment is non-stationary, the bowl's shape will change in time and 

the adaptation must track its minimum. Adaptive f:tlter theory is concerned with 

generating methods to locate the minimum of the error performance surface and follow 

its movements. 
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6.1 Adaptive Algorithms 

Before algorithmic development takes place, a mathematic description of the EPS 

surface is required. Filter output is very simply calculated. For a particular point in time, 

(6.3)= 

Squaring this value yields, 

(6.4) 

Assuming stationarity, the expected values are, 

It is more convenient to express equation 6.5 in matrix notation where the value 

of E[x XT] is referred to as the input correlation matrix (R). The upper limit on the 

summation, 'n' is the length of the signal vector X.. 

11 

R = E [xk xkl = :E (6.6) 
k=l 

r(O) r(l) r(M-1) 
r( -1) r(O) r(M-2) 

(6.7)R = 

r(-M+l) r(-M+2) · · r(O) 
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This square matrix is Toeplitz meaning that the values on the main diagonal are 

equal as are the elements on any diagonal parallel to the main diagonal. Another property 

of the correlation matrix is that it displays conjugate symmetry about the main diagonal 

(Wid85). A simple interpretation of the correlation matrix is that it tells 'how much' a 

data value in the future will depend on one in the past. The flrst diagonal above the main 

diagonal relates the degree of a sample's dependency upon the previous one for its value. 

For the second diagonal, the same relationship is expressed with the exception that one 

is now looking two samples into the future. As an example, the correlation matrix for 

white noise is the identity matrix; zero everywhere except along the main diagonal. This 

is due to the complete unpredictability of white noise. 

By similar argument to the formation of R, the expectation E[dx] is the cross 

correlation between the desired response and the vector held by the tapped delay line and 

is denoted p. Now the mean square error is more succinctly expressed as, 

(6.8) 

Adaptive algorithms focus on the use of the gradient to seek the minimum of the 

BPS. Designated by the symbol V, the gradient is the partial derivative of the mean-

square error taken with respect to the weight vector. 

(6.9) 
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Differentiating the expansion of equation 6. 8 with respect to the weight vector 

yields equation 6.10. Setting this equation to 0 and solving for w yields the optimal 

weight vector (w) that ensures minimum mean square error. 

(6.10)v = 2Rw- 2i 

(6.11)v = o = 2Rw- 2p 

(6.12) 

Equation 6.12 is referred to as the Wiener-Hopf equation. 

Unfortunately, in real world applications, difficulty arises in deriving the EPS 

through explicit measurement of the correlation matrix and also in R' s inversion. This 

inversion is extremely time consuming particularly if the order of the filter is high 

(Hay91). Because of this, the analytic approach outlined above is not useful for our 

purposes. It is possible, however, to determine the location of points on the EPS through 

monitoring of~ over time. In this manner, adjustments can be made to the weight vector 

moving it in the direction of zero gradient. This is the method of steepest descent 

(Wid85) which is defined mathematically as follows. 

(6.13) 

The negative sign ensures that the movement on the EPS proceeds in a 'downhill' 
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direction. Since the true gradient is not available, an estimate of it, V, must be used. 

This estimate is usually noisy and a parameter to control the size of the weight 

adjustments is used to combat the imprecise nature of the gradient estimation (Wid85). 

This parameter is called a 'forgetting factor', and is abbreviated, p.. The value of p. is 

also directly related to the algorithm's rate of convergence to wand to the stability of the 

algorithm. Attention now turns to methods of finding practical methods of generating w. 

6.1.1 The Least Mean Square Algorithm 

The simplest and computationally least expensive method of updating the adaptive 

filter's weight vector is the least mean square (LMS) algorithm. The assumption at the 

heart of this algorithm is the use ~2 as a crude but effective estimate of the mean square 

error (Wid75). 

(6.14)
= 2ek 
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Substitution of equation 6.14 into the equation for updating the filter weights by the 

method of steepest descent yields the LMS algorithm. 

(6.15) 

Convergence has been proven for the LMS algorithm (Wid85). The constraint 

placed on J.L is that it must lie between zero and the reciprocal of the largest eigenvalue 

of the correlation matrix. 

1
0 < J.l < (6.16)

.A.max of R 

However, this is only true for the case of a stationary uncorrelated input. For conditions 

other than these, analysis of convergence is extremely complex. 

6.1.2 The Recursive Least Squares Algorithm 

One of the most powerful methods of weight vector updating is the Recursive 

Least Squares (RLS) algorithm. It is an extension of equation 6.12 ·where an explicit 

solution to the Wiener-Hopf equation is derived. The correlation matrix (R) and the 

cross-correlation vector (p) are generated recursively at every point in the filtering 

process. To begin the development, the Wiener-Hopf equation is rewritten as, 
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(6.17) 

where <I>k is the approximated correlation matrix at time k formed by adding the new 

information stored in the unit delay operators. <I>k is given by, 

J: 
""' '"' , J:-i - - T (6.18)
'*'J.: = 	L.J "- xi x1 

i=l 

Because the of exponential weighting of each contribution to the overall correlation 

matrix, the algorithm is able to track statistical changes in the data. By similar argument, 

eb the cross-correlation vector is, 

J: 
-8 '"' , k-i - d T (6.19)

k = L.J "- xi ; 
i=l 

Expanding these two equations to elucidate the recursive nature of the updating 

procedure, equation 6.18 becomes, 

(6.20) 

(6.21) 
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and equation 6.19 becomes, 

(6.22) 

With an estimate of the data's correlation matrix and cross correlation vector, the 

solution to the Weiner-Hopf equation is the next step. In order to avoid the costly and 

sensitive inversion of <I>k to solve for the optimum weight vector, w, the matrix inversion 

lemma is utilized. This powerful relationship was discovered in 1950 by Woodbury 

(Ha y91) and will permit the calculation of the least squares estimate of the weight vector, 

w. The lemma is completely represented in the following two equations. 

(6.23) 

By making the following substitutions 

A= ~k 

B-t = ACl>k-t 
(6.24) 

c = xk 
D = 1 
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and letting 

(6.25) 

the RLS algorithm is realized by evaluating the following equations at each point in the 

filtering process. 

(6.26) 

The "memory" of the filter is determined by the "forgetting factor", A. For the 

special case where A= 1, the filter is said to have infinite memory. In practice, A is 

extremely sensitive to change and should be kept close to a value of one. For the 

conditions required for initiation of the algorithm and analysis of convergence, consult 

Hay91. 
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6.1.2 Comparison of the LMS and RLS Algorithms 

The LMS and RLS are at opposite ends of the spectrum in terms of cost and 

performance. Cost can easily be ascertained by comparing the number of operations 

required to perform each filtering step. These are summarized in the table below (Table 

6.1) (Hay91). 

Algorithm Multiplications Divisions Additions 
Subtractions 

LMS 2M+ 1 0 2M 

RLS 2W+7M+5 W + 4M + 3 21£2 + 6M + 4 

Table 6.1 Operations per Iteration as a Function ofFilter Order. The 
table illustrates the difference in the computational complexity of the RLS 
and LMS algorithms. Clearly, the RLS method requires a great deal more 
computation. M is the filter's order. 

The RLS converges an order of magnitude faster than the LMS (Hay91). 

However, in a non-stationary environment, the LMS algorithm often exhibits superior 

tracking performance (Hay91). 

6.2 Adaptive Line Enhancer 

The adaptive line enhancer was devised to deal with the classic problem of the 

detection of a low level sine wave in noise (Wid75). It works particularly well in 
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Figure 6.2 Block Diagram of the Adaptive Line Enhancer. 

Adaptation is accomplished by minimizing the error between the 

signal (x) and a time-delayed filtered version it itself (Y). This 

process retains signal components that result in a high correlation 

between the signal and its delayed version. The optimal filter 

impulse response is the matched filter response for the common 

signal components. 
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isolating sinusoids of narrow bandwidth. A block diagram is present in figure 6.2. At the 

heart of the adaptive line enhancer (ALE) is the comparison of the input signal, x, with 

a time delayed, filtered version of itself, y. The time-delayed filtered signal is the ALE's 

output which is forced to approximate the input. This is performed by minimization of 

the difference, e, between x and y. In performing this minimization, the filter extracts 

signal components that are common between the xand its delayed version. 

In addition to the choice of adaptive algorithm, the value selected for the delay 

controls the ALE's performance characteristics. This "decorrelation" parameter controls 

'how far back' the algorithm looks for correlation. For the purpose of wheeze and 

crackle separation, the wheezes will appear at the stationary output and the crackles at 

the non-stationary output. The wheezes are not necessarily of constant pitch. This creates 

a problem since if the delay is too long, the there will not be any significant correlation 

between the signal and its delayed version and no common components will be identified. 

Once the ALE's steady state has been reached, the ideal impulse response for the 

filter portion is the equivalent of the matched filter response for the sinusoid under 

detection (Wid85). 
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7.0 Time-Frequency Representations 

The time domain and frequency domain are two alternate ways of looking at a 

signal. In the strictest sense, time information is not accessible in the frequency domain 

and vice-versa. A joint time-frequency representation is much more revealing as it allows 

determination of frequency content at a specific time. These time-frequency 

representations will be referred to as TFRs and notated mathematically as Tx(t,j) the 

subscript 1 
x 

1 denoting the signal under analysis. Time frequency representations are 

displayed in the time-frequency plane as a three dimensional figure. Along the x-axis is 

the variable time. Frequency is plotted along they-axis and the energy for a particular 

frequency at a particular time is plotted on the z-axis. Unfortunately, achieving a high 

resolution TFR is difficult and requires a considerable amount of computation. This 

section explores the fundamentals responsible for two of the most currently favoured 

methods of time-frequency analysis; linear and quadratic. These categories differ greatly 

in the manner in which they treat multi-component signals. 

Discussion will be exclusive to the discrete forms of the representations. Formulae 

for the continuous cases may be found in many of the references cited. With discreteness 

comes the problem of resolution. It is ideal to have as many divisions in time and 

frequency as possible in the TF plane. However the different representations support 

varied levels of resolution and their computational cost is directly related to their degree 

of resolution. 

In this section, definitions are given in conjunction with graphic examples. 
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Strengths and weaknesses associated with each method will also be considered and 

demonstrated. 

7.1 Linear Time-Frequency Representations 

The linear class ofTFRs satisfy the linear superposition principle (equation 7.1). 

This principle states that the TFR of a multi-component signal is nothing more than a 

linear combination of the individual TFRs of each component. 

x(t) = c1x1(t) + czt2(t) 

l (7.1) 

T/t/) = c1TxPIJ + c2TXz(t/) 

This property, deemed 'finite support', is extremely desirable since it states that 

time-frequency elements occur only when the signal is present or the frequency 

components comprising the signal actually exist. This is not the case in all time

frequency representations as will be seen when quadratic TFRs are examined in section 

7.2. 
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7 .1.1 The Short Time Fourier Transform 

The short time Fourier transform (STFT) belongs to the linear class of time-

frequency representations. It stems from the regular Fourier transform whose definition 

is given in equation 7 .2. 

(7.2)X(/) = Jx(t) e -2i1tft dt 

Here, the magnitude of X(f) determines the signal's global frequency content. 

This results in a spectrum that is the summation of all spectral components present during 

the signal. While this may suit certain applications, such a representation does not allow 

time localization of frequency components and is primarily useful only for the analysis 

of stationary signals. Temporal information is contained in the phase spectrum, the 

argument of X(f), but it is difficult to interpret in this form (Hla92). The STFT was 

designed to induce time localization through the use of multiplicative windows. These 

windows break the signal into smaller segments on the assumption that these smaller 

units will be stationary. 

STFT:x:<tiJ = f [ x(t') y *(t1 - t)] e -p.1tft' dt1 
(7.3) 

t' 

The mathematical defmition of the STFT (equation 7.3), corresponds to the 

Fourier transform of the signal x(t') multiplied by a shifted "analysis window", ·/(t'-t), 
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Figure 7.1a-b Implementation of Short Time Fourier Transform. 

Figure 7.la Window Placement in the Short Time Fourier 

Transform. Windows move along the signal zeroing terms outside 

of their boundaries. The windows are 64 samples in length. 

Figure 7.1b Time Frequency Representation by the STFT. The 

time-frequency representation is created by fast fourier transform 

of the windowed segments. The results are stacked in matrix and 

displayed as a three dimensional plot. The resolution is set at 16 

bins on the frequency axis and 10 bins on the time axis. 
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that is centered on t. The window zeros the signal outside of the window and provides 

smooth edges that will prevent occurrence of Gibb' s phenomena (Opp75). The resulting 

signal segment is then Fourier transformed producing a local spectrum. Localization of 

individual spectral components in time is restricted by the length of the window "'. This 

results in a binning process where the time-frequency plane is broken into cells. 

The STFr may also be expressed in the frequency domain. 

STFTX(t/) = e -j2rr.tf f X(/) r·(f'-f) eflxt/ d/ 
(7.4)I 

e -i2xtf is a phase factor 

Equation 7.4 may be interpreted as passing the signal through a bank of bandpass 

filters, each filter having the frequency response r*(j'-f) and being centered around the 

frequency of analysis, f (Hla92). Since the function r, is the Fourier transform of the 

window function"', the filter's bandwidth is proportional to the window's width. In order 

for the STFr to produce a high degree of frequency resolution, a narrow filter band and 

hence, long window are required. This resolution/window length relationship is the 

reciprocal for time variable so that good time resolution results in poor frequency 

resolution. Because the STFr at time t is the spectrum of the signal x(e) pre

windowed by "'·(t' -t), all spectral features in that window are collected in the time-

frequency cell centered on time t in the STFr. This means that superior time resolution 

demands a short window, 'Y•(t'). In all cases of STFT use a compromise between 
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temporal and spectral resolution must be made since the analysis window cannot support 

high time and frequency resolution simultaneously. 

For maximum resolution and accuracy to occur, the window length should be 

optimized so that its length is related to the period of the input series (Har91). This 

requires a priori information that is difficult to obtain in a multi-component, non

stationary, environment. 

7.1.1.1 Discrete Realization of the STFT 

The STFI' is extremely easy to implement in discrete time. The general method 

is to utilize windows that overlap by 50% although Harris has derived that an overlap of 

75% is optimal (Har91). Many standard analysis windows exist. The more common ones 

are the hanning, hamming and cosine windows which have all been well studied and their 

properties examined in detail (Opp75). Fast Fourier transforming each windowed data 

segment is the next step. The resulting vectors are then stacked in a matrix where rows 

index the frequency bins and columns index the temporal center of each window. The 

values at the intersection of these indices are the energy levels for .the energy of that 

frequency bin over the window's duration. The process is illustrated in figure 7.1a where 

the sliding analysis windows are superimposed on the signal to be analyzed. Taking the 

FFT of the resulting segments and displaying them yields figure 7.1 b. 

Temporal and spectral smearing due to the time/frequency resolution trade-off are 
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Figure 7.2a-b 	 Spectral and Temporal Resolution of the Short Time Fourier 

Transform. 

Figure 7.2a Crackle Waveform. The signal exhibits three crackles. 

They occur at t E {0.35, 0.06, 0.07}. The signal is approximately 

500 samples long. 

Figure 7.2b STFf using a window of 64 samples (0.016 seconds). 

The first crackle is almost non-observable. The other two are 

identifiable though the resolution is fairly poor. The two spikes 

fuse together about half-way up their sides. If the windows were 

larger, the peaks would completely fuse. 

Figure 7.2c STFf using a window of 32 samples (0.008 seconds). 

The crackles have become separated and the first crackle begins to 

emerge due to the increased temporal resolution over figure 7.2b. 

The frequency resolution has decreased significantly. 

Figure 7.2d STFf using a window of 16 samples (0.004 seconds). 

Frequency resolution is now extremely poor. 
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demonstrated in figures 7.2a-d. Figure 7.2a shows the signal to be analyzed. The next 

three figures show the STFT calculated for three different sized windows. Time

frequency representations with resolution in time and frequency of 13x16 (fig. 7.2b), 

29x8 (fig. 7.2c) and 60x4 (fig. 7.2d) result. Of note is the increased temporal resolution 

and localization in time of the crackles and the slight emergence in figure 7. 2d of the 

small crackle at 0.03 seconds as the window's size decrease. This increase in spectral 

resolution is accompanied by a concomitant decrease in frequency resolution. 

7.2 Quadratic Time Frequency Representations 

The quadratic class is thought to be a more realistic approach for generating time

frequency representations. This stems from the definition of a signal's power and spectral 

density, both of which are squared functions. One class of quadratic TFRs has recently 

undergone a great deal of investigation. These are the so-called IIenergetic TFRs II. In this 

group, the signal's energy is given by integration over the entire time frequency plane. 

In order for this to be possible, the energetic class must satisfy certain mathematical 

conditions; the two most important being the time and frequency marginals. The 

marginals are formed by integrating out variables selectively so that values for I x(t) 12 

and IX(f) 12 are given. These relationships are expressed in equations 7.5-7.7 (Coh89). 

The integration of all frequencies at a particular time yields the instantaneous energy. 
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(7.5) 

Integrating for one frequency over the signal's duration results in the energy density 

spectrum IXCfY 1. 

(7.6)f T;cCt,J) dt = IS(Jil 

Total energy may be derived by integration over the entire frequency-time plane. 

Like the linear class of TFRs, the quadratic class also satisfies a superposition principle. 

Unfortunately, due to the quadratic nature of the TFR, this leads to a more complex 

representation. The two component signal defmed in equation 7. 8 results in a time 

frequency representation that contains terms other than those corresponding directly in 

time to the components x1 and x2• These additional components appear in the second line 

of equation 7.9. 

(7.8) 

Tit!) = la112Tx (t/) + la2 j1T.l2(t/)
1

(7.9) 

+ a1a;Tx .x,.(tf) + a2a;r.l2.:r (tf)
1 1
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The Tx1(t,f) and Ta(t,f) terms result directly from the signal terms and are referred to 

as the auto terms. The Tx,,x2(t,f) and Tx2,x1(t,f) terms are referred to as the cross terms, 

interference terms or simply, ITs. By extension of the principle leading to equation 7.9, 

it becomes obvious that the cross component problem is augmented as the number of 

signal components grows. This situation brings to light several other desirable properties 

that time frequency representations should have. 

These other properties are well summarized by ffiawatsch (ffia92). Previously 

mentioned in section 7.1 was the concept of finite support. This stated that no time

frequency components should exist when the signal or spectral components of the signal 

are not actually present. The cross terms violate this property. Although cross terms can 

provide useful information and are of benefit in some applications, they generally confuse 

the representation particularly when an accurate display of the signal is required. In 

addition, intuitively, the ideal TFR should be non-negative everywhere though there 

exists a severe lack of understanding of negative frequency terms (Coh91). 

An alternative to looking at the signal in the time-frequency domain is to move 

the signal into the dual correlative domain (DCD). The DCD combines the concepts of 

spectral and time correlation forming a joint time-frequency correlation function that 

represents all possible combinations of time and frequency shifts (Jon92). These 

representations will be denoted as Dx (r, u). Axes of the dual correlative domain are 

referred to as lag, for temporal correlation, and Doppler for frequency correlation. 

Typically, the units on the graph are normalized so that the lag is expressed in seconds 

and the Doppler in hertz. Actual values are easily computed if one knows the sampling 
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frequency. The dual correlative function displays conjugate symmetry about the origin 

(Hla92). Conversion of the signal's representation from the time-frequency domain to the 

DCD is effected by a 2-dimensional Fourier transform. 

(7.10) 

(7.11) 

The utility of displaying a signal in the DCD lies in its ability to identify which 

TFR terms are auto terms and which are cross terms. Elimination of the cross terms in 

this domain followed by a transformation back to the time-frequency plane effects a 

cleaning of the TFR leaving only the auto terms. 

When the TFR is moved to the DCD via Fourier transform, correlation in the 

time domain is mapped onto the Doppler axis (v) and correlation in the frequency domain 

is mapped onto the lag axis ( r). More importantly, the function describing the signal 

terms cluster around the origin. Functions describing the interference terms occur distal 

to the origin. Interference term elimination can be effected by designing a function that 

will retain components located close to the origin and zero those further away from it. 
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7 .2.1 Cross Term Removal 


The general approach to cross term suppression may be likened to the band pass 

filtering of a time series. Figure 7.3a shows a time series made of two sets of sinusoids. 

One group is clustered around 250 Hz, the other is clustered around 400 Hz. The 

spectrum of this signal is shown in figure 7.3b. In order to retain only the group at 250 

Hz, the group at 400 Hz could be zeroed with a boxcar function centered on 250 Hz and 

the inverse Fourier transform would yield a time series whose signal components are 

only those originally around 250 hertz. 

The same type of process can be made to work on the TFR. Figure 7 .3c shows 

a quadratic time-frequency representation of two sinusoid pulses; one at 150Hz and the 

other at 400 Hz. The structure between the two signal terms is the interference term. 

When this TFR is moved to the dual correlative domain (fig 7.3d), multiplication by a 

mask that passes the structure at the origin and eliminates the interference term structures 

at (r,v) E {(10,.2), (-10,-.2)} will result in a TFR devoid of interference terms when 

the function is transformed back to the time-frequency domain. Such a function 

corresponds to a low-pass filter and forms the basis for an entire family of time 

frequency representations named Cohen's Class. 

7 .2.2 Location of Cross Terms 
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Figure 7.3a-7.3d Interference Term Suppression through Filtering of the Quadratic 
Time Frequency Representation. A Comparison to ]-Dimensional 
Filtering. 

Figure 7.3a Time series made of sinusoids which cluster around 

either 250 Hz or 400 Hz. 

Figure 7.3b Spectrum of the signal in fig. 7.3a. Filtering to retain 

the sinusoids around 250 Hz may be accomplished by zeroing the 

components centered on 400 Hz then converting back to the time 

domain. 

Figure 7.3c Quadratic TFR of two sinusoid pulses (150Hz, 400 

Hz) occurring .01 seconds apart. The structure centered on 275hz 

.025 second is the interference term. 

Figure 7. 3d Dual correlative domain representation of TFR in 

figure c. Note how the mask will zero the ITs located around (

10,-0.2) and (10,0.2). Conversion back to the time-frequency 

domain will yield a TFR with only signal terms. 
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A general understanding of cross term location in the DCD is necessary for 

determining the type of masking function to use when zeroing ITs. For the purpose of 

illustrating their genesis and placement, the Wigner-Ville Distribution (WVD) will be 

used. The WVD is further studied in section 7.2.4.1 but for this discussion it suffices to 

know that it is the simplest member of the quadratic TFR family. A consequence of this 

fact is the WVD's propensity for cross terms. Many of the TFRs currently undergoing 

study are based on the WVD. Thus, a firm understanding ofWVD cross-terms and their 

position in the corresponding DCD representation, the Ambiguity Function (AF), is the 

precursor to the design of time-frequency representations that exhibit a reduction in 

interference terms. 

Hlawatsch has shown that cross terms are formed by every pairing of components 

in the signal. He has further shown that cross terms are formed by the interference of the 

TFR signal terms themselves and that these cross terms are located halfway in time and 

frequency between the pair of interfering terms when in the time frequency plane. At 

these co-ordinates an oscillatory term twice the amplitude of the original terms occurs. 

Its frequency is proportional to the distance between the two interfering terms and its 

direction of oscillation is perpendicular to the line joining the two interfering terms 

(Hla84). 

When the 2-dimensional Fourier transform is invoked to move the TFR into the 

dual correlative domain, the non oscillating signal terms contribute to the DC portion of 

the spectrum which maps into the origin of the AF (r=O, u=O). The DCD terms that 

correspond to the TFRs oscillating interference terms occur distal to the origin by an 
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amount proportional to their oscillatory frequency in the time-frequency domain. In the 

time frequency domain, interference term oscillation frequency is proportional to the 

separation of the signal components. The closer the components, the lower the frequency 

of oscillation and the closer the ITs will be to the origin in the AF. 

The following three presentations form an intuitively satisfying explanation of 

cross terms and their appearance in the dual correlative domain. A strict mathematical 

approach may be found in Hla84. In each example, the time series to be analyzed is bi-

component resulting in a TFR with two signal terms and one cross term. Each 

presentation consists of three plots. The first is the signal undergoing analysis, the second 

is the Wigner-Ville Distribution of the signal and the third plot is the signal's Ambiguity 

Function. The cases are as follows. 

Signal components are: 

case 1 well separated in time but not frequency 

(two 15 ms 150Hz tone bursts separated by 20 ms) 

case 2 well separated in frequency but not time 

(50 Hz and 400 Hz simultaneous 20 ms tone bursts) 

case 3 well separated in both time and frequency 

(15 ms 150Hz and 20 ms 400Hz tone bursts separated by 15 ms) 

Case one is illustrated in figures 7 .4a-c. Since the oscillation in the WVD occurs 

only in the direction of the frequency axis, the resulting Ambiguity Function shows the 

interference terms being mapped parallel to the tau axis specifically, on the plane r=O 

since there is no oscillation in the time direction in the WVD. 

Case two is illustrated in figures 7.5a-c. Oscillation of the cross term is parallel 

to the time axis in the WVD resulting in the interference term placement in the AF along 
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Figures 7.5a-c Cross Term Location for Bi-Component Signal 

Separated in Frequency but not in Time 

7.5a The signal under analysis. 

7.5b The signal's Wigner-Ville Distribution. 

7.5c The signal's Ambiguity Function. 
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the plane u=O. 

Case three is illustrated in figures 7. 6a-c. Due to the difference in both time and 

frequency of the pulses the ITs in the WVD are not perpendicular to either axis and 

therefore do not lie along the co-ordinate axes in the dual correlative domain. 

7 .2.3 The Analytic Signal 

When data are sampled, they are generally real valued. However, analysis by the 

methods presented here is more conveniently performed on a signal's complex 

representation. 

The spectrum of a real valued signal possesses symmetry about the origin 

resulting in a spectrum of negative frequencies that mirrors that of the positive 

frequencies (Opp75). These negative frequencies have no physical realization and will 

generate problems that would otherwise not exist. To eliminate these problems, a signal 

containing the same positive frequency information but without the negative frequencies 

is constructed. This process utilizes an imaginary component to cancel the negative 

spectrum and the result is referred to as the analytic signal. Cohen cites three reasons for 

using the analytic signal (Coh91). They are as follows: 

1) If the real signal were used, cross terms would evolve from the reaction 

between the positive and negative frequencies. Use of the analytic signal reduces the 

complexity of the resulting TFR. 
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2) Use of the analytic signal facilitates easy calculation of the instantaneous 

frequency as the integral of the first moment of the distribution. This relationship does 

not hold with a real signal. 

3) Use of the analytic signal results in the elimination of the requirement to 

sample at twice the Nyquist rate. 

The analytic signal may be formed by first calculating the spectrum of the real 

signal, discarding the negative frequency components and then utilizing an inverse 

Fourier transform to put the signal back into the time domain. While this procedure is 

intuitively satisfying, it is not used due to the difficulty in dealing with the phase 

information and the amount of computation required. In practice, the analytic signal is 

calculated using the Hilbert transform. The Hilbert transform x,is defined as follows. 

i(t) = _!_ J x('t) d~ (7.12) 
1t t - ~ 

Denoted x+, the analytic signal is the real signal plus an imaginary component 

that is the Hilbert transform of the real signal. 

x.(t) = x(t) + ji(t) (7.13) 

In the communication field, the analytic signal is referred to as the pre-envelope. 

The name arises from the masking of the negative frequencies. The Hilbert transform 

possesses many useful properties which are well documented (Hay78). 
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7 .2.4 Generalized Time-Frequency Representation (GTFR) 

Cohen (Coh85) has summarized a large group of time frequency representations 

under one equation. This equation (7.14) defines a group of shift invariant TFRs of the 

energetic class. Shift invariance is defmed as the property whereby a shift in time or 

frequency in the signal results in a corresponding shift in time or frequency in the time

frequency domain. Cohen's class is capable of describing the energy density of a signal 

simultaneously in time and frequency with a high degree of resolution. The most 

prominent member of Cohen's class is the Wigner Ville Distribution (Hla92) (section 

7.2.2.1). At the heart of Cohen's class is the use of a 'kernel', t/t(t,f). The kernel is 

simply a mask when in the DCD and the equivalent of a two-dimensional filter when in 

the time frequency plane. In the time frequency plane, Cohen's Class may be expressed 

as follows. 

(7.14) 

Equation 7.14 shows that a GTFR of Cohen's Class is obtained through the 

convolution in time and frequency of a kernel t/t(t,f) with the signal's instantaneous 

correlation function, (x(t+r/2) x•(t-r/2)) and a Fourier transform. An infinite number 

of quadratic TFRs may be derived from this equation. However, not all of them will 

satisfy the marginals or possess the desirable characteristics previously mentioned. It is 

the construction of the kernel t/t, that gives a particular GTFR its characteristics making 
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kernel selection based on the type of data to be worked with extremely important 

process. 

An alternate interpretation of Cohen's class can be formed by moving the TFR 

into the dual correlative domain. This results in the following expression. 

T/t,f) = JJ ("Pr('t,V) D:t('t,v)) e-jZrt(-rf-tv) dvd't (7.15) 
'tv 

Here, the convolution in the time frequency domain now becomes a multiplication 

and may be envisioned in the manner presented in figure 7.3d. The kernel 'lr(T, u) acts 

as a mask passing signal terms and zeroing the cross terms. Unfortunately, while filtering 

the TFR may significantly reduce the amplitude of interference terms, the auto-terms 

themselves may also be smoothed. Severe degrees of smoothing will adversely affect the 

information in the signal terms leading to possible misinterpretation. Also, careful 

attention must be paid to the marginals and the so-called 'nice' properties of the resulting 

TFR if it is desirable to retain them (Hla92). 

7.2.4.1 The Wigner-Ville Distribution and the Ambiguity Function 

The Wigner-Ville Distribution (WVD) is the simplest member of the GTFR 

family. It is formed by using a kernel of one ('lr(T, u) = 1) and is expressed as equation 

7.14 with the 1/t term removed. Due to its characteristically large degree of interference 
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terms, the WVD is often confusing when analyzing multi-component signals. 

The dual correlative of the WVD is the Ambiguity Function (AF) which is formed 

by the 2 dimensional Fourier transform of the WVD. At v=O for all r, the AF becomes 

the time-domain auto-correlation function and if r=O for all v, the AF becomes the 

frequency domain auto-correlation function. 

All member's of Cohen's class stem from the WVD and are produced by 

smoothing it with a kernel. If one is unable to design a low-pass kernel which totally 

isolates the signal terms one of two things will occur. Either, all the signal terms will be 

passed with some interference terms, or all the ITs will be removed along with partial 

truncation of the auto-terms. The latter situation results in a loss of time-frequency 

concentration since a smoothing causes a broadening of the WVD 's signal terms (Hla92). 

7.2.4.2 Conic Kernel GTFR 

Zhao, Atlas and Marks have utilized a cone shaped kernel in forming a GTFR of 

Cohen's class. The resulting distribution is commonly referred to as the ZAM transform. 

The ZAM transform is based on the concept of lateral inhibition. This process enhances 

spectral peaks by allowing a positive contribution by components at center of a 

neighbourhood and a negative contribution by those surrounding the area (Zha92). When 

a convolution between the kernel and signal spectrum occurs, spectral peaks due to the 

signal terms are enhanced; cross terms are suppressed. 
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Figure 7.7a, 7.7b Kernels in the Dual Correlative Domainfor the Z4M Distribution 

and the Choi-Williams Distribution. 

Figure 7.7a The ZAM Kernel. Kernel cannot be used for multi

component signals that have simultaneously occurring components 

as their interference components that lie along the plane T=O and 

will be passed. 

Figure 7.7b The Choi-Williarns kernel. Kernel cannot be used for 

multi-component signals that have simultaneously occurring 

components (see ZAM case) or components that are identical as 
this leads to cross terms that occur along the v= 0 plane and will 

be passed. 
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(7.16) 

Equation 7.16 gives the analytic form of the conic kernel when in the dual 

correlative domain. The function g1(r) is an arbitrary function generally taken to be 1. 

The variable a must have a value of 2 or greater to ensure finite time support (Zha92). 

The resulting TFR does not satisfy the marginals or result in an exclusively non-negative 

distribution but it does yield an easily understood TFR. The DCD representation of the 

ZAM transform is shown in figure 7. 7a. 

Because multi-component signals where two components occur simultaneously 

have interference terms that lie along the r axis (figure 7.4c), the ZAM transform is not 

useful for cross term suppression in this case since the kernel will pass these terms. 

7 .2.4.3 The Choi-Williams Distribution 

Choi and Williams (Cho89) have developed another popular kernel. In the DCD 

it is analytically defined as follows. 

(-21ttv)2 

(7.17)
Kcvf.:v, 't ) = e nn 
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Figure 7. 7b depicts this kernel in the dual correlative domain. By virtue of the 

same circumstance that yields the ZAM kernel ineffective for multi component signal 

with simultaneous components, the Choi-Williams kernel is also unusable in this 

situation. In addition, because a multi-component signal with identical components results 

in cross terms that lie on the u axis, the Choi-Williams distribution is problematic for this 

situation also. 

7 .2.5 Parameter Selection in Kernel Design 

The variables in the kernel formulae control the kernel's spread in the r and u 

directions as well as the roll-off on the sides of the kernel. Not all kernels possess 

individual control in these dimensions. The two kernels presented above each have only 

one parameter that will determine the final kernel shape. As seen previously, the 

proximity of the cross terms to the origin in the DCD varies according to the signal 

undergoing analysis. Therefore the spread and roll-off parameters must be adjusted 

accordingly. If the spread is too large, cross terms are retained. If it is too small, signal 

terms are excluded. 

By determining the halfway point between the ambiguity functions origin and the 

nearest cross term, a cut-off point for the kernel can be identified. Substitution of the 

values for r and u into the kernel's equation and setting it to zero will allow calculation 

of the parameters controlling a kernel's shape. The height that the cut-off point is above 
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Figure 7.8a-d Locating the Cut-off Point for Detennining Kernel Parameters. 

Figure 7.8a Wigner Ville Distribution of Two Tonebursts. The 

Interference term is located in the center of the plot. Signal terms 

are located at the outside corners. 

Figure 7.8b Absolute Value of the Ambiguity Function for 7.8a. 

Figure 7.8c Smoothed Version of 7.8b. This is necessary so that 

the peak search algorithm does not falsely identify the peak of the 

closest cross term. 

Figure 7.8d Top Half of 7.8c. This is now searched for a local 

maxima not located at the AF's origin. The point halfway between 

the origin and the maxima indicates the require cut-off point for 

the kernel. Substitution of the values for r and u at this point into 

the kernel's formula, setting it to zero and solving will yield the 

values for the parameters controlling kernel shape. 



0 .04 

0 ,03

o.oc 

••oona•
tlt'tl• 

.5 



73 

the ru plane gives an indication as to the degree of overlap between the auto and cross 

terms. 

A heuristic approach applied to determining this cut-off point entails taking the 

absolute value of the top half of the ambiguity function (permissable due to the AF's 

conjugate symmetry), using a 2-dimensional filter to create smooth sides on the auto and 

cross terms and then searching for the point closest to the origin that has eight nearest 

neighbours with values lower than its own. This point is the center of the closest cross 

term. The cut-off point is determined as the point exactly half-way between the origin 

and center of the point identified above. This method is appropriate since the largest 

component of any term, auto or cross, occurs at its center and the procedure is in essence 

an implementation of the minimum euclidean distance classifier (MED) commonly used 

in pattern recognition (DUD75). This process is demonstrated in figures 7.8a-d. 

7.3 Comparison of the Spectrogram and GTFR Methods 

The choice of spectrogram and generalized time frequency methods is directly 

dependent upon two factors; the required resolution and computational cost. While the 

spectrogram is incapable of providing high resolution in time and frequency 

simultaneously, it is incredibly inexpensive computationally. 

A comparison is made in the case of analysis of a transient, non-stationary signal 

in figures 7.9a-d. A linear chirp only 21 samples long is the signal for analysis. The 
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chirp is decreasing in frequency. Displayed in figure b is the chirp's short time Fourier 

transform with a window length of 8 samples. Extremely little detail and resolution 

result. The signal term is located between the two sets of approximately parallel lines. 

Here, the resolution is 4 frequency bins by 4 time bins. The Wigner-Ville distribution 

is displayed next (fig. c) and then the ZAM distribution (fig. d). In both of these, the 

resolution is 21 *21 bins. The resulting increase in resolution is significant as it changes 

from + 62.5 Hz and + 2.625 ms in the STFf to ± 12Hz and + 0.0238 ms for the 

GTFR. 

Despite its high degree of resolution, application of the GTFR method is 

sometimes prevented by its extreme computational overhead. There are six steps involved 

in the generation of the representation. They are: 

1) generate the discrete time instantaneous auto-correlation function 

2) Fourier transform to yield the Wigner-Ville Distribution 

3) convert the WVD to the dual correlative domain (Ambiguity Function) 

4) generate the kernel to be used 

5) multiply the kernel and Ambiguity Function 

6) convert the result back to the time-frequency plane 

In order to give an indication of the computation required for GTFR methods, the 

STFT and ZAM transform were calculated for a signal of 171 samples. The STFT used 

a window length of 32 samples and resulting in a resolution of 16x9 requiring 8216 

floating point operations (flops). The ZAM transform of the same requires 31107917 

flops. The increase in resolution is 203 fold. 
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Figure 7.9a-d 	 Comparison of Shon Time Fourier Transform and Generalized 
Time Frequency Methods. 

Figure 7.9a Linear Chirp. The signal is 21 samples in length. 

Figure 7.9b Short Time Fourier Transform of Chirp. Resolution 

is only 4*4. 

Figure 7 .9c Wigner Ville Distribution of Chirp. Resolution is now 

has been increased by a factor of 27. 

Figure 7.9d ZAM transform of the Chirp. Many of the cross terms 

have been eliminated. Computational overhead is extremely high 

(see text). 
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8.0 Other Methods 

Contained in this section are two methods that were utilized in the anaylsis of the 

lung sound signal and do not fall under the two previous categories. The first method, 

the self-tuning block filter uses a mechanism that not grounded in established theory and 

is heuristic in its approach. The second method, prediction error filtering has a rich 

history and has seen application in a variety of problems (Hay91). A brief description of 

these methods follows and each is explained in greater detail in its respective section. 

The self-tuning block filter, was designed in order to combat the wheeze artifact 

that remained in the non-stationary output of the adaptive line enhancer. It uses the 

stationary output as a reference to design local filters that operate on windowed segments 

of the non-stationary output. These band-stop filters are centered on the frequency of the 

periodic components located in the stationary output of the ALE. 

Prediction error (PE) filtering has been used previously in lung sound analysis 

(Ara91, Ono89). Here, it is developed in both fixed weight and adaptive formats. Fixed 

tap weight PE-filtering utilizes the signal's correlation matrix (R) to construct a filter that 

predicts the signal's value one sample into the future. Use of the correlation matrix 

results in a prediction based on the average statistics of the signal. The prediction value 

is compared to the actual value and the difference between the two becomes the filter's 

output. It is postulated that the crackle's contribution to the correlation matrix is minimal 

and that the PE filter's output will consist solely of the non-stationary, random crackles. 

Adaptive implementation of the PE filter uses time-varying weights whose values are 
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adjusted to minimize the prediction error. 

8.1 Self Tuning Block Filter 

As will be seen in the results section, the adaptive line enhancer does not 

perfectly isolate the stationary and non-stationary components. Some artifact of the 

wheeze occurs in the non-stationary output and vice-versa. The primary concern is to 

remove the wheeze component from the non-stationary output. The inverse problem of 

removing the crackles from the stationary output is not tackled. 

Simple subtraction of a scaled version of the stationary waveform from the non

stationary one is precluded by the phase distortions induced by the ALE's filter. Instead, 

artifact removal is performed by using the ALE's stationary output as a reference in 

designing a moving bandstop filter for the wheeze components. Since the wheeze's pitch 

is subject to some fluctuation, the filter parameters cannot be constant for the entire 

waveform. To overcome this obstacle, local filters are constructed that operate on 

windowed sections of the waveform. These sections are then summed to form the filtered 

non-stationary output. A fundamental assumption required to be true for this technique 

is that the wheeze component still contains more energy than the crackle. This is a valid 

assumption to make since the wheeze is narrowband and has its energy much more 

concentrated than the crackle. 

The STFT of the ALE's stationary output yields a matrix of column vectors. The 



79 Figure 8.1 

non-stationary 
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I I : 

I 


I 
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stationary output 

butterworth filter ~-----' 

signal with wheeze removed 

Figure 8.1 Inner Workings of the Self-Tuning Block Filter. 

The elements enclosed by the broken line comprise the adaptive line enhancer previously 

discussed in section 6.2. The non-stationary output contains mostly crackle waveforms 

though some corruption by wheezes still persists. The stationary output is mostly wheeze 

information and its short time fourier transform (STFT) tells what the center frequency 

of the butterworth filter should be. The non-stationary output is filtered accordingly and 

the wheeze artifact is removed. 
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following procedure is performed as many times as there are columns in the STFT. 

1) take a column of the STFT and perform a peak search to locate the frequency 

component with the highest energy 

2) generate a bandstop filter with its center frequency being the peak that was 

identified above, bandwidth is arbitrarily set to 40 Hz 

3) pass the windowed section of the non-stationary output that corresponds to the 

segment of the stationary yielding the peak above through the bandstop filter 

When this process is complete, the filtered segments of the non-stationary output are 

summed in the order that they were processed to produce the filtered signal. A block 

disgram of the system is shown in figure 8.1. 

8.2 Prediction Error Filtering 

Prediction error filtering may be used to detect non-stationarities in the data. A 

prediction for time (k) is made using the data from time (k-M) to data (k-1). For a fixed 

parameter system, the predictor takes the form of the transversal filter illustrated in 

figure 6.1. The predicted value will be denoted JMk where M is the order of the 

predictor. Given that the filter weights are wk where k E { 1, 2, .. , M}, the prediction 

error at time k is given by, 

(8.1) 
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This may be expressed more succinctly as, 

(8.2) 

where the prediction error fllter' s tap weights 3t: are related to the tap weights of the 

forward predictor by the following relation. 

a - 1 ' n = 0 ) (8.3) 
n- ( -w 

n ' 
n = 1,2,..,M 

A method has been devised to calculate the prediction error filter co-efficients. 

This is the Levin-Durbin recursion which simplifies to three equations (Hay91). At this 

point, another subscript is placed on the prediction error fllters tap weights so that they 

are annotated 3.m.r· Them gives the current order of the fllter. The equations are applied 

iteratively giving an increase in the order m each time until the predictor coefficients are 

given for the desired order M. 

l m-1 

rm = -- 'E am-l,k r(k-m) (8.4) 
p1rl-l k=O 

(8.5) 
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where the subscripted •B*• signifies that the vector's order is reversed. The third step is 

(8.6) 

The recursion is initiated at P 0 =r(O) and a.n.o =1. The values for r(m) come from 

the lag correlation matrix given by the top line of the correlation matrix (R) (equation 

6.7). When iteration is complete. The last M-1 values of -aM,k give the coefficients of the 

forward prediction. 

Rather than using a fixed parameter system, the tap weights may be determined 

using an adaptive algorithm. In this type of process, the PE filter is a special case of 

adaptive line enhancement where the decorrelation parameter is set to one. This is 

illustrated in figure 6.2. Filter weights are adjusted to minimize the prediction error. 
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9.0 The Experiments- Introduction 

Algorithms for adaptive line enhancement, prediction error filtering and 

generalized time frequency distributions with the Zhao Atlas and Marks and Choi

Williams kernel were developed. These were implemented on a 386 personal computer 

in the MATLAB programming environment. The data was derived form teaching tapes 

(Wil88) that were sampled at 4000 Hz. 

Display of the lung sounds is not as much of a problem when crackles and 

wheezes are isolated. However, significant difficulty arises for the case where both 

crackles and wheezes are present simultaneously. In order to study the separation of these 

sounds, a composite waveform was generated with both crackles and wheezes as signal 

components. Construction of this lung sound test signal (LSTS) is depicted in figure 9 .1. 

This signal was created by isolating a single monophonic wheeze from the tape and high

pass filtering it so that the noise was removed (trace 1). The addition of a waveform 

containing fine crackles (trace 2) made the composite signal (trace 3). The advantage 

realized in using this test signal is the ability to know exactly the components comprising 

the signal thus being able to assess the degree of separation. 

An extremely important concern is the degree of distortion that a processing 

algorithm may impart on a signal. This is particularly important as one of the major 

goals of this project is to provide a method to link lung sounds with physiologic 

processes. Distortion of the information would inhibit formation of this link. This aspect 

is considered after the presentation of any filter results. 



Figure 9.1 Construction of Test Signal LSTS 
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10.0 Separation 

Separation of crackles from wheezes was attempted with prediction error filtering 

and adaptive line enhancement. The PE ftlter methods did not perform well and were 

abandoned after brief investigation. Adaptive line enhancement showed promise 

particularly when coupled with the self-tuning block ftlter. Two different adaptive 

algorithms, the least mean squares (LMS) and recursive least squares (RLS), were tested 

in driving the tap weight vector and the algorithms' associated parameters were optimized 

by testing the ratio of wheeze artifact energy to crackle energy. What follows are the 

details of these experiments. 

10.1 Prediction Error Filtering 

The problem of extracting the crackles from the composite signal was first tackled 

with prediction error ftltering. Results for application to the test signal LSTS, using fixed 

tap weights and for the adaptive cases using the LMS and RLS algorithms are presented 

in figure lO.la,b. Figure a shows the entire signal; pre-processing (trace 1), post PE 

filtering with fixed weights (trace 2), post PE filtering with the LMS (trace 3) and RLS 

(trace 4) algorithms. By visual inspection and comparison to the crackle component 

known to be in LSTS (see figure 9.1) , the LMS routine appears to perform best at 
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removing the wheeze. The enhanced performance in the LMS when compared to the 

RLS is attributable to the LMS 's slower rate of convergence. The LMS algorithm first 

adjusts the filters weights to be able to predict the wheeze. When it encounters the 

crackle, it takes some time to adapt to the new statistics. While adjusting, the crackle is 

separated as prediction error. The RLS routine on the other hand, adapts too quickly and 

in doing so adjusts the filter to incorporate the crackle's statistics in making its 

predictions. 

Despite the apparent success of the LMS driven PE filter, closer inspection of a 

segment known to contain two crackles shows significant distortion (figure lO.lb). 

Arguably, J.l. (the 'step size' or 'forgetting factor') should have been increased to allow 

more of the crackle to be separated as prediction error. However, adaptation of the filter 

weights to those required to accurately predict the wheeze would then take longer and 

a greater amount of wheeze would show up in the output. Of the three methods, the fixed 

tap weight PE filter performed the poorest. This is attributable to the rather 'loose' 

statistics of the signal and local variations in them. Since the statistics of the entire signal 

are in effect averaged and then used to generate the predictor co-efficients, the many 

irregularities in the signal cannot be accounted for and appear as prediction error. 

10.2 Adaptive Line Enhancement 

Two tests were performed on the adaptive line enhancer. The first was to confirm 
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its operation and suitablity for the separation problem. When suitability was confirmed 

the ALE was tested on LSTS. 

10.2.1 Simulation on an Ideal Signal 


Initial testing of the adaptive line enhancer was performed on a test signal that 

mimicked a crackle superimposed on a wheeze. The results of this test are shown in 

figure 10.2 for both the LMS and RLS case. Each trace shows the one tenth of a second 

where the simulated crackle occurred. The frrst trace is the segment of the input test 

signal which in its entirety, consisted of two seconds of a constant sine wave of 50 Hz 

with a 15 sample (15 ms) tone burst of 200 hertz superimposed. The next four traces 

show the results of the ALE process. Ideally, the 50 hertz sine wave should appear at the 

stationary output and the tone burst at the non-stationary output. The decorrelation 

parameter was set at 22 samples (22 ms) for both the RLS and LMS algorithms. 

Results of the LMS tap weight adjustment are shown in traces two and three. 

While the stationary output is largely devoid of the tone burst, some distortion exists. In 

the non-stationary output which should display only the three 200 hertz cycles, distortion 

occurs while the fllter readjusts to the 50 hertz sine wave and the fllter' s impulse 

response for the 200Hz signal is slowly adapted out of the fllter weights. 

The RLS adaptation in shown in traces three and four. Performance is 

exceptional. The stationary output shows a sine wave with virtually no distortion, and the 
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non-stationary output shows perfect extraction of the three 200 hertz cycles. A small 

amount of distortion does occur but stabilizes very quickly. 

The difference in performance can be attributed to the RLS 's exploitation of the 

rigid statistics of the test signal. The pure sine wave yields a correlation matrix that 

perfectly describes the process and introduction of the tone burst is not enough to upset 

this framework. 

Performance of the LMS routine is highly dependant on the choice for J.l.· If J.l. if 

made too large, the algorithm adapts quickly and forgets the statistics it was previously 

'trained' on (the sine wave), and the tone burst is included in the stationary output. 

10.2.2 Tests on Lung Sounds 

Moving away from ideal conditions, the ALE was used to isolate a wheeze in a 

noisy lung sound signal taken from (Wil88). Figure 10.3a shows the short time Fourier 

transform of the original signal. The wheeze is easily identifiable as a long horizontal 

line. All other structures are noise. Post processing is shown in figure b. Here, the noise 

has been substantially reduced and the wheeze retained. 
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10.2.3 Criteria for Assessing ALE Performance 


Application of the ALE was made to LSTS. The results of varying the parameters 

controlling the algorithm's performance; the decorrelation parameter, the number of taps 

and f.L (in the LMS case) were studied to see their effect on the ALE's performance. In 

order to assess the filter's performance, signals were normalized to a local 'landmark'. 

All non-stationary output were scaled so that the crackle at approximately 0.475 seconds 

had a peak amplitude of one. 

Performing this normalization allows filter performance to be monitored using the 

assumption that the contribution to the signal's energy by the crackle will be the same 

from signal to signal and that the only change in energy between signals will be due to 

the contribution of the wheeze artifact. In this sense, optimal parameters are obtained by 

determining values that create a minima in the energy for the non-stationary output. This 

is the point where wheeze artifacts are at their lowest possible level with respect to the 

parameter being varied. Conversely, the stationary outputs were normalized so that the 

wheeze structure at 0.92 seconds had a peak amplitude of one. This allowed the 

contribution to the stationary output made by crackle artifact to be measured. 

10.2.4 Tests on LSTS 


The ALE (LMS) was applied to LSTS. The first parameter to be adjusted was the 
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decorrelation. A m1mma in the non-stationary signal's energy occurred when the 

decorrelation parameter was set to 8. The non-stationary and stationary outputs are shown 

in figures 10.4 and 10.5. Careful scrutiny of figure 10.5 shows that the wheeze artifact 

is indeed smallest in trace 3 where the decorrelation parameter is set to 8. This is 

confirmed in figure 10.10a which shows a minima for the signal energy for the 

normalized non-stationary output when plotted against decorrelation. 

This figure is the result of several factors. The first and the one that guides the 

baseline of the non-stationary output trace is the amount of similarity that occurs between 

the delayed and non-delayed signal. A maximum decorre1ation of 25 was attempted. With 

respect to the wheeze, the signal is stationary over this period and a decorrelation 

anywhere in this range will have little affect on the output. The experiment confrrms this 

as the energy changes little over this period. The local minima at 8 is related to the 

frequency of the wheeze. It is at this point the the filter becomes matched in the 'matched 

filter' sense to the wheeze and a slightly better performance is realized. 

The next test of the LMS (ALE) came in studying the effect of p. on the filter's 

output. In figure 10.7, as p. is increased, more wheeze appears in the stationary output 

and impulsive type components appear. The larger step sizes taken in adjusting the tap 

weight vectors by using a high value for p. resulted in large filter adjustments being made 

at each point. These jerky modifications become very prevalent at high values of p.. They 

are visible between the two large crackles around 0.33 seconds in trace 5 (p. = 1) in figure 

10.6. Although figure 10.10b shows that the energy in the non-stationary output 

decreases and the energy in the stationary output increases, this is not due to an 
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increasing separation between the crackle and wheeze. The decreasing non-stationary 

energy is due to the greater speed of adaption which places more signal components, 

including crackles, in the stationary (common component) output. 

The greater the number of ta.p weights used, the better were the results. This 

phenomena is easily attributed to the increase in information that the algorithm can use 

in order to adjust the weights. Figures 10.8 and 10.9 show the filter outputs and figure 

10.10c shows the signal energies for an increasing number of tap weights. No substantial 

improvement occurs above 10 ta.p weights. 

The LSTS was passed through the adaptive line enhancement procedure where the 

filter was controlled by the RLS algorithm. Similar results were noted as for the LMS 

case. The optimum decorrelation parameter was shown to be 6 which is close to the 

value in the LMS case (figures 10.11, 10.12, 10.15a). 

No forgetting factor analysis was performed since the algorithm is extremely 

sensitive to adjustments to this parameter and anything less than a value of .999 resulted 

in a great degree of error. A similar relationship as in the LMS case was noticed for 

increasing the number of tap weights (figures 10.13 and 10.14). 

10.2.5 Distortion 

As mentioned previously one of the major considerations for the signal processing 

is the degree of distortion a procedure imparts on the signal. From previous observations, 
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it is noted that the parameter that affects the adaptive line enhancement process the 

greatest is the decorrelation. LSTS was run through the RLS and LMS ALE algorithms 

in order to determine the best value for the decorrelation parameter in terms of the 

amount of crackle distortion. It was found that the decorrelation parameter had to be at 

least equal to the number of samples that were required to represent the crackle 

otherwise, the latter part of the crackle becomes distorted. 

This distortion occurs at low decorrelation since the latter part of the signal is 

determined to be a common component when compared to the early part of the signal and 

hence is shunted to the stationary output. Figure 10.16 shows several runs of the LMS 

and RLS ALE algorithms where the decorrelation parameter is 8, 15 and 30 samples for 

both. In this series, figure a shows a crackle before any processing takes place. For the 

other figures the title bar relays the following information. The decorrelation parameter 

is x in dcp=x. If the figure is the result of the RLS driven ALE algorithm '(RLS)' 

appears after the decorrelation parameter. Otherwise, the figure is the result of LMS 

driven ALE and the value for p. is given. All runs used 15 tap weights. After the filtering 

with the ALE, crackles should bear the same information content as in figure 10.16a. 

Clearly, figures 10b-f do not. Only figure 10.g-h bear resemblance. The time frequency 

representations for these eight signals are shown in figure 10.17a-g. As for the time 

series, figure h best resembles the original waveform. For further discussion of the use 

of time-frequency representations, see section 11. 

As the RLS and LMS algorithms perform with about the same degree of distortion 

at a decorrelation of 30, the next criteria is the amount of attenuation of the wheeze 
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waveform. Figure 10.18 shows, in succession, the test waveform, the error output from 

the RLS and LMS routine. By visual inspection, the LMS routine performs better at 

isolating the crackles. Reasons for this are the same as those given for its superior 

performance in PE filtering. 

10.3 Self-Tuning Block Filter 

The self tuning block filter was applied to the results of the LMS algorithm and 

results are presented in figure 10.19 The five traces from top to bottom are; the test 

signal, stationary output of the LMS ALE, non-stationary output of the LMS ALE, the 

non-stationary output filtered by the self-tracking block filter process according to the 

information in the stationary output and finally, the original crackle waveform for 

comparison. 

Despite the good performance of this process, some inherent difficulties exist. 

Since each block is processed individually by a filter with different parameters, each 

block and hence the resulting signal will have different phase relationships throughout. 

However, this may not be a problem for the individual study of crackles. 

The bandwidth of the local filters was set at 40 Hz. Ifpursued this method would 

require a method of varying the filter's bandwidth in order to accommodate for variations 

is wheezes. This could be performed by monitoring the bandwidth of the stationary 

output and designing the local filters appropriately. 
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10.4 	 Confounding Factors 

After viewing the results, it is felt that the methods suffered somewhat from the 

type of signal they were tested on. The sound taken from the tapes (Wi188) were almost 

certainly recorded without any monitoring of flow information. This is evidenced by the 

sharp drop in frequency of the monophonic wheeze in figure 10.3. Had the flow rate 

been kept constant, the pitch would not exhibit the large changes in frequency and or the 

I choppiness I exhibited in figure 9 .1. The elimination of these two problems would have 

facilitated better performance on behalf of the PE filter due to more stationary statistics. 

Performance of the ALE would also have been enhanced. 



Figure lO.la Prediction Error Filtering ofLSTS 
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Figure 10.2 Test ofRLS and LMS ALE on Ideal Signal 
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Figure 10.3a STFT ofMonophonic "Wheeze 
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Figure 10.3b STFT ofMonophonic "Wheeze after Adaptive Line Enhancement 
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Figure 10.4 Non-Stationary Output Variable Decorrelation (LMS) 
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Figure 10.5 Stationary Output Variable Decorrelation (LMS) 
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Figure 10.6 Non-Stationary Output Variable J1. (LMS) 
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Figure 10.7 Stationary Output Variable J1. (LMS) 
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Figure 10.8 Non-Stationary Output Variable# of Taps (LMS) 
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Figure 10.9 Stationary Output Variable #of Taps (LMS) 
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Figure 10.10 Optimal Parameter Selection for ALE (LMS) 
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Figure 10.11 Non-Stationary Output Variable Decorrelation (RLS) 
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Figure 10.12 Stationary Output Variable Decorrelation (RLS) 
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Figure 10.13 Non-Stationary Output Variable # of Taps (LMS) 
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Figure 10.14 Stationary Output Variable Decorrelation (RLS) 
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Figure 10.15 Optimal Parameter Selection for ALE (RLS) 
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Figure 10.16a Figure 10.16b 
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Figure 10.17a Figure 10.17b 
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Figure 10.18 Comparison ofLMS and RLS Performance at a Decorrelation of 30 
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Figure 10.19 Steps in Crackle Isolation using the Self-Tuning Block Filter 
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11.0 Display 

Previously demonstrated in figure 7.2, was the short time Fourier transform's 

limitation in displaying transient signals, namely an inability for good resolution 

simultaneously in time and frequency. In this section, GTFR methods are utilized to 

better display the time-frequency information contained in the crackles through an 

increase in resolution. Also, the criteria for the choice of the most appropriate kernel is 

developed. 

11.1 Mono-component Signals and Inner Interference Terms 

The first case to be considered is that of the single isolated crackle. The time 

series representation of this signal is shown in figure ll.la. Its corresponding Wigner 

Ville distribution is shown in figure ll.lb. Since this is a mono-component signal, by 

previous argument, interference terms should not exist (sec 7.2). However, they are still 

present and can be seen as the extra structures surrounding the main term that describes 

the crackle. 

Application of the ZAM and Choi-Williams (CW) kernels to the signal results in 

significantly smoothed time frequency distributions. The CW kernel used in this example 

attenuated some of the ambiguity function's signal terms (figure 11. 2b) resulting in a 

slightly distorted and enlarged TFR (fig. 11.3b). The ZAM kernel provided a better 'fit' 
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to the signal terms and a very crisp time-frequency representation (figs 11.2a & 11.3a). 

The differences between the WVD and kemelled WVD indicates that mono-component 

signals are also capable of generating cross terms. 

These cross terms are referred to as 'inner' interference terms since their genesis 

stems from the interference of signal components 'inside' a mono-component signal 

(Hla92). These inner interference terms follow the same rules of interference geometry 

that apply to the 'outer' interference terms which are due to different signal components 

interacting with each other (section 7.2.1). Although the terms in the ambiguity plane 

that are responsible for the signal terms in the TFR have previously been shown to 

cluster around the origin, it appears that there are in fact sub-classes of terms in the auto

term group. In this group, there exist terms that are strictly responsible for the structure 

describing the signal. These occur closer to the origin than those that describe the inner 

interference terms. 

To further reveal the nature of the inner ITs, a mono-component signal of a chirp 

that first increased in frequency then decreased in frequency was constructed (figure 

11.4a). When viewed in the time-frequency domain, this signal has the appearance of the 

letter C rotated so that it stands on its open face. The 'inner' interference terms appear 

as parallel 'C' s of decreasing size inside the signal term. This phenomena occurs in the 

TFR of the single crackle and may be seen in figure ll.lb at the top of the signal term. 

The use of the kemelling process is of benefit to mono-component signals since it 

smooths the inner interference terms. 
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11.2 Display of Multiple Crackles 

Utilizing the kernel approach is an absolute must for the display of multi

component signals. Figures 11.5a,b show the time series representation and the WVD 

for a signal consisting of two closely spaced crackles. The WVD exhibits a great 

number of interference terms. The CW kernel is applied to the data as shown in figure 

11. 6a. Whatever the exact scaling parameter for the kernel is, it can be seen the retention 

of some of the interference term information occurs. This will always be the case for 

displaying a signal containing multiple crackles since their similarity will produce 

interference terms that lie on the tau=O axis in the ambiguity plane. A distorted time

frequency representation is the result (fig. 11.6b). This problem is overcome with the use 

of the ZAM kernel as shown in figure 11.7a,b. Here, the kernel surgically cuts around 

the signal terms located at the origin resulting in a clean TFR with little distortion (fig. 

11.7b). Clearly, the ZAM kernel is better for displaying the crackles. 
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Figure ll.la Single Crackle 
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Figure ll.lb Wigner Distribution of 'Single Crackle' 
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Figure 11.2a Ambiguity Function of 'Single Crackle' with Z4M Kernel Superimposed 
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Figure 11.3a TFR Resulting from Figure 2a 
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Figure 1 1 .4a Time Series of a Chirp 
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Figure 11.5a Double Crackle 
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Figure 11. 6a Ambiguity Function of 'Double Crackle' with Choi- Williams Kernel Superimposed 
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Figure 11. 7a Ambiguity Function of 'Double Crackle' with Z4M Kernel Superimposed 
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12.0 Conclusion 

12.1 Separation of Lung Sounds 

Prediction Error Filtering 

Prediction error filtering did not prove to be useful for separation. In the cases 

of fixed weight and RLS adaptive prediction error filter, the predictor co-efficients are 

derived from the signal's statistics. The adaptive LMS routine was better able to 

distinguish between crackles and wheezes due to its greater freedom to track statistical 

variations. Although the wheeze component is stationary it is not stationary 'enough' to 

provide accurate predictions of the wheeze and thereby allow isolation of the crackles 

only as prediction error. However, neither one of the three methods worked with great 

accuracy. Although the literature shows success in using PE filtering for crackle 

extraction (Ara91, Ono89), these applications have been used in signal conditions where 

only crackles and noise exist. In this environment, the PE filter needs only to 

discriminate between noise and signal rather than to discriminate between signals. 

Adaptive Line Enhancement 

Of the methods for separating the wheezes and crackles, adaptive line 

enhancement proved the most successful. As mentioned, some of the problems that were 

encountered are attributable to the data used. Testing with data taken in a controlled 
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manner where flow rate is monitored would probably provide better results. 

The LMS routine performed best in driving the ALE. The reason for this is same 

as the explanation for the ALE PE filter out performing the RLS version. Stated again, 

the LMS is better able to track statistically noisy data since memory of previous statistics 

of the signal is adapted out quickly. 

The degree of signal distortion introduced by the ALE in crackles is a concern. 

It has been determined that for a crackle free of distortion to exist after the ALE process, 

a large decorrelation parameter is required. Unfortunately, this permits wheeze artifact 

to find its way in to the non-stationary output. There are most likely only four factors 

of importance in examining a crackle. These are, timing, pitch, duration and energy 

content. Timing and pitch may be determined from a filtered crackle before distortion 

occurs. Analysis of the early part of the crackle could possibly give enough of an 

indication of duration and energy. If this is the case, distortion of the later. part of the 

crackle is not an issue. Since very little is known about the physical conditions that 

produce or control a crackle and its properties, the problems introduced by crackle 

distortion is uncertain. 

Self Tuning Block Filter 

The self-tuning block filter performed well in reducing the amount of wheeze 

artifact in the non-stationary output of the adaptive line enhancer. Although some wheeze 

artifact exists widening of the filter's bandwidth would help eliminate this. The one 

problem that arises with this approach is the non-linear phase characteristics introduced 
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by the use of local filters with differing characteristics, which may also introduce 

distortion in the waveforms. 

12.2 Display 

Short Time Fourier Transform 

While suitable for the display of the stationary wheezes, the short Time Fourier 

transform performs poorly when used on crackles. This is attributed to the reciprocal 

relationship between high frequency resolution and high temporal resolution which is an 

inherent property of the STFT. 

Generalized Time Frequency Representations 

Crackle display using generalized time frequency methods, provides detail that 

was previously unavailable. Earlier attempts utilized the zero crossings of a crackle to 

determine a crackle's frequency. This necessitates isolation first and presents the 

information in a manner that is somewhat alien. Using time frequency methods crackles 

may be more easily identified in a high resolution time frequency representation and may 

be replaced with accurate visual representations of a crackle's frequency content. 
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13.0 Future Direction 

Continuation of this research can be pursued on three fronts. The first is 

implementing the algorithms on a portable system that is able to perform the processing 

in real time. With current technology, a data acquisition system can be coupled with the 

ALE, STBF algorithms in order to separate the lung sounds. Presently, the crackle 

display using the GTFR methods would need to be performed after signal collection due 

to the vast number of calculations required. In the quickly growing field of time

frequency analysis, research on real-time implementation of these processes is transpiring 

and integrated circuits to perform this have been developed. Soon the problem of the 

computational overhead will be solved. 

The second area of research is to expand the system to include detection of the 

lung sounds as well as classification through pattern recognition techniques. Analysis of 

crackles could greatly benefit from this technique since the only currently accepted 

manner is manual examination. The type of analysis leads in to the third area of research. 

The final area is to use the techniques as tools in research to establish links 

between the lung sounds and their genesis. As previously stated, auscultation is a 

technique that is waning due to other more rigorous and quantifiable procedures. With 

the tools presented here and further development, it is hoped that stronger links between 

the acoustic phenomena and the physical processes generating them may be forged 

creating a simple and reliable technique to aid in diagnosis. 
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