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Lay Abstract 

The stability of slopes is a challenging subject in geotechnical engineering. Geotechnical 

engineers are often interested in the factor of safety (FS), which is a quantitative measure 

of the stability of a slope. In this thesis, the effectiveness of the Kinematic Element Method 

(KEM) is evaluated by comparing its solutions to the Limit Equilibrium Method (LEM). 

The KEM was shown to predict similar potential failure mechanisms and values for the 

factor of safety. A simplified version of the KEM (KEMv) was developed based on LEM 

formulations. In KEMv, an alternate iterative scheme to determine the FS is proposed, in 

which the boundaries between elements are vertical. The KEMv provided similar values 

for the factor of safety and element forces as Gussmann’s KEM for vertical interelement 

boundaries. In a parametric study, KEM displayed similar trends in the change in FS and 

critical slip surface as the LEM.  
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Abstract 

In this thesis, the effectiveness of the Kinematic Element Method (KEM), developed by 

Dr. Gussmann at the University of Stuttgart, was evaluated by comparing the solutions 

with the Limit Equilibrium Method (LEM), specifically the Morgenstern-Price method. 

The KEM was evaluated using a variety of problems, ranging from homogeneous slopes 

to retaining walls. The KEM was shown to predict similar potential failure mechanisms 

and values for the factor of safety (FS) as the Morgenstern-Price method. The FS were 

generally within the ±6% which is the range of variance for rigorous limit equilibrium 

methods. A simplified version of KEM (KEMv) was developed based on limit equilibrium 

formulations. In KEMv, an alternate iterative scheme to determine the FS is proposed, in 

which boundaries between elements are vertical. The KEMv provided similar values for 

the factor of safety and interelement forces as Gussmann’s KEM for vertical interelement 

boundaries given similar element locations. The KEM was assumed by Gussmann to be an 

upper bound solution. However, given the similarities in the solutions between KEM and 

KEMv, it may be a limit equilibrium method. The interelement forces from the KEM and 

KEMv were found to be sensitive to the location of the elements. Elements in the upper 

part of the slope often had small normal forces relative to shear forces, possibly being 

negative as well. Sensitivity analysis regarding the number of elements showed that a 5-

element solution predicts the appropriate failure mechanism and provides a reasonably 

accurate FS. In a parametric study, slope geometry and soil properties were varied and 

comparisons were made between KEM and the Morgenstern-Price method. The KEM 
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displayed similar trends in factor of safety as the Morgenstern-Price method but predicted 

slightly larger values. The change in KEM critical slip surfaces with soil properties was 

consistent with trends predicted by Janbu’s dimensionless parameter.  

 

 

 

 

 

 

 

 

 

 

 

 



  

vi 

 

Acknowledgements  

In presenting this thesis, the author would like to express his gratitude to the following:  

• My family for their support 

• My supervisor, Dr. Stolle, for his guidance, support, and patience 

• Dr. Gussmann, for allowing my supervisor the use of his Kinematic Element 

Method program 

• McMaster University and the supervisor’s NSERC Discovery grant for providing 

the funding that made this possible 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

vii 

 

Table of Contents 

Lay Abstract ....................................................................................................................... iii 

Abstract .............................................................................................................................. iv 

Acknowledgements ............................................................................................................ vi 

List of Figures ..................................................................................................................... x 

List of Tables .................................................................................................................... xii 

List of Abbreviations and Symbols.................................................................................. xiii 

Declaration of Academic Achievement ........................................................................... xvi 

Chapter 1 Introduction ................................................................................................... 1 

Chapter 2 Literature Review.......................................................................................... 3 

2.1 Limit Equilibrium Method ................................................................................... 3 

2.1.1 Single Free-Body Methods ........................................................................... 5 

2.1.2 Method of Slices ........................................................................................... 6 

2.2 Limitations of the Limit Equilibrium Method.................................................... 16 

2.3 Accuracy of the Limit Equilibrium Method ....................................................... 17 

2.4 Methods for Locating Critical Failure Surface .................................................. 17 

2.5 Three-Dimensional Limit Equilibrium Methods................................................ 18 

2.6 Finite Element Method ....................................................................................... 19 

2.6.1 Comparison of LEM and FEM ................................................................... 20 

2.7 Kinematic Element Method ............................................................................... 21 

2.7.1 Kinematics .................................................................................................. 24 

2.7.2 Statics .......................................................................................................... 24 

2.7.3 Numerical Solution for Slope Stability Analysis ........................................ 26 

2.7.4 Comparison of KEM Solutions with LEM and FEM ................................. 27 

2.8 Specialized Modes of Slope Failure ................................................................... 28 

2.8.1 Landslides ................................................................................................... 28 

2.8.2 Progressive failure ...................................................................................... 29 

Chapter 3 Slope Stability Example Problems.............................................................. 31 



  

viii 

 

3.1 Homogeneous Slope ........................................................................................... 32 

3.2 Multi-Layered Slope .......................................................................................... 34 

3.3 Slope with a Weak Layer and Water Table ........................................................ 36 

3.3.1 Case 1: Homogeneous Slope ...................................................................... 37 

3.3.2 Case 2: Addition of a Weak Layer .............................................................. 38 

3.3.3 Case 3: Addition of a Piezometric Line ...................................................... 39 

3.4 Cohesive Slope ................................................................................................... 40 

3.5 Cohesionless Slope ............................................................................................. 42 

3.6 Foundation .......................................................................................................... 43 

3.7 Retaining Wall.................................................................................................... 45 

Summary ....................................................................................................................... 47 

Chapter 4 Kinematics .................................................................................................. 48 

4.1 Homogeneous Slope ........................................................................................... 49 

4.2 Slope with a Weak Layer ................................................................................... 51 

4.3 Retaining Wall.................................................................................................... 52 

Chapter 5 Derivation of a Kinematic Element Method Formulation with Vertical 

Interelement Boundaries ................................................................................................... 54 

5.1 Statics ................................................................................................................. 55 

5.2 KEMv Solution for a 3-Element Failure Mechanism ........................................ 58 

5.2.1 Element 1 .................................................................................................... 60 

5.2.2 Element 3 .................................................................................................... 61 

5.2.3 Element 2 .................................................................................................... 61 

5.3 Proposed Iteration Scheme ................................................................................. 62 

Chapter 6 Vertical Interelement Boundary Assumption ............................................. 64 

6.1 Homogeneous Slope ........................................................................................... 64 

6.2 Cohesive Slope ................................................................................................... 66 

6.3 Cohesionless Slope ............................................................................................. 67 

Summary ....................................................................................................................... 68 

Chapter 7 Examination of Interelement Forces ........................................................... 70 

7.1 Homogeneous Slope ........................................................................................... 71 

7.2 Cohesive Slope ................................................................................................... 74 



  

ix 

 

7.3 Cohesionless Slope ............................................................................................. 78 

Summary ....................................................................................................................... 80 

Chapter 8 Sensitivity Analysis .................................................................................... 82 

8.1 Number of Elements........................................................................................... 82 

8.1.1 Homogeneous Slope ................................................................................... 83 

8.1.2 Slope with a Weak Layer ............................................................................ 84 

8.1.3 Retaining Wall ............................................................................................ 86 

8.2 Parametric Study ................................................................................................ 89 

8.2.1 Cohesion ..................................................................................................... 91 

8.2.2 Friction Angle ............................................................................................. 92 

8.2.3 Unit Weight ................................................................................................. 95 

8.2.4 Slope Height................................................................................................ 96 

8.2.5 Slope Angle ................................................................................................. 98 

8.3 Compilation of Slope Stability Analysis Results ............................................. 100 

Summary ..................................................................................................................... 101 

Chapter 9 Case Study: Embankment Failure Mitigation ........................................... 103 

Chapter 10 Concluding Remarks and Recommendations ........................................... 107 

References ....................................................................................................................... 111 

Appendix: MATLAB Code for a 3-Element KEMv Solution ........................................ 116 

Driver Program for kem2............................................................................................. 116 

Driver Program for kem............................................................................................... 117 

Function for Storing Geometry and Element Information .......................................... 119 

Solver Function ........................................................................................................... 120 

 

 

 

 

 

 

 



  

x 

 

List of Figures 

Figure 2.1. Infinite slope procedure (Duncan et al., 2014) ................................................ 5 

Figure 2.2. Swedish method (Duncan et al., 2014) ............................................................ 6 

Figure 2.3. Method of slices failure surface with forces. Adapted from Fredlund et al. 

(1981) .................................................................................................................................. 7 

Figure 2.4. Slice with forces considered in the Ordinary Method of Slices. Adapted from 

Duncan et al. (2014) ............................................................................................................ 8 

Figure 2.5. Slice with forces considered in Bishop’s method ............................................ 9 

Figure 2.6. Janbu's method correction factors (Duncan et al., 2014) ............................... 11 

Figure 2.7. Slice with forces considered in Spencer's method. Adapted from Spencer 

(1967) ................................................................................................................................ 12 

Figure 2.8. Slice with forces considered in the Morgenstern-Price method .................... 14 

Figure 2.9. Slice with forces considered in the GLE formulation ................................... 16 

Figure 2.10. Assumed failure domain discretized with a KEM mesh ............................. 22 

Figure 2.11. Definition of the problem for a simplified mesh: a) Geometry and element 

numbering, b) Kinematics and c) Statics for element 2 .................................................... 23 

Figure 3.1. Possible KEM mesh refinements ................................................................... 32 

Figure 3.2. Critical failure surfaces of the homogeneous slope ....................................... 33 

Figure 3.3. Critical failure surfaces of the multi-layered slope ....................................... 35 

Figure 3.4. Cross-section of the slope with a weak layer and piezometric line. Adapted 

from Fredlund & Krahn (1977)......................................................................................... 36 

Figure 3.5. Critical slip surfaces, Case 1.......................................................................... 38 

Figure 3.6. Critical slip surfaces, Case 2.......................................................................... 39 

Figure 3.7. Critical slip surfaces, Case 3.......................................................................... 40 

Figure 3.8. Critical failure surfaces of the cohesive slope ............................................... 41 

Figure 3.9. Critical failure surfaces of the cohesionless slope ......................................... 43 

Figure 3.10. Critical failure surfaces of the foundation problem ..................................... 44 

Figure 3.11. Critical failure surfaces of the foundation problem with 10 KEM elements 

(horizontal subdivision) .................................................................................................... 45 

Figure 3.12. Critical failure surfaces of the retaining wall problem ................................ 46 

Figure 4.1. Active and passive pressures in slope stability. Adapted from Berry & Reid 

(1987) ................................................................................................................................ 48 

Figure 4.2. Kinematics of the homogeneous slope failure ............................................... 50 

Figure 4.3. Block sliding mechanism. Adapted from Terzaghi et al. (1996) ................... 51 

Figure 4.4. Kinematics of a block sliding failure ............................................................. 52 

Figure 4.5. Kinematics of the retaining wall failure ........................................................ 53 

Figure 5.1. Sample KEMv slip surface with 3 elements .................................................. 55 



  

xi 

 

Figure 5.2. Forces acting on KEMv elements (3-element solution) ................................ 56 

Figure 5.3. Forces and unit vectors for element 2 ............................................................ 57 

Figure 5.4. (a) Error function and (b) Mobilized shear forces for a sample slope stability 

problem ............................................................................................................................. 63 

Figure 6.1. Critical slip surfaces of the homogeneous slope for different boundary 

orientations ........................................................................................................................ 65 

Figure 6.2. Critical failure surfaces of the cohesive slope for different boundary 

orientations ........................................................................................................................ 66 

Figure 7.1. (a) Critical slip surfaces, (b) interelement normal forces and (c) interelement 

force ratios for the homogeneous slope ............................................................................ 72 

Figure 7.2. (a) Critical slip surfaces, (b) interelement normal forces and (c) interelement 

force ratios for the cohesive slope .................................................................................... 75 

Figure 7.3. Critical slip surfaces for the cohesive slope with vertical boundaries and 

varying cohesion ............................................................................................................... 76 

Figure 7.4. (a) Interelement normal forces, (b) interelement shear forces and (c) 

interelement force ratios for varying values of cohesion .................................................. 77 

Figure 7.5. (a) Critical slip surfaces, (b) interelement normal forces and (c) interelement 

force ratios for the cohesionless slope .............................................................................. 79 

Figure 8.1. Variation of factor of safety and critical failure surface with increasing 

number of elements for the homogeneous slope............................................................... 83 

Figure 8.2. Variation of factor of safety and critical failure surface with increasing 

number of elements for the slope with a weak layer ........................................................ 84 

Figure 8.3. Variation of (a) critical failure surface and (b) factor of safety with further 

mesh refinement for the slope with a weak layer ............................................................. 85 

Figure 8.4. Variation of factor of safety and critical failure surface with mesh refinement 

for the retaining wall problem........................................................................................... 87 

Figure 8.5. Variation of (a) critical failure surface and (b) factor of safety with further 

mesh refinement for the retaining wall problem ............................................................... 88 

Figure 8.6. Critical slip surfaces for the base case of the parametric study ..................... 90 

Figure 8.7. (a) Critical failure surfaces and (b) Factors of safety with variation in 

cohesion ............................................................................................................................ 92 

Figure 8.8. (a) Critical failure surfaces and (b) Factors of safety with variation in friction 

angle .................................................................................................................................. 93 

Figure 8.9. Variation of tan𝜙 with 𝜙 over the parametric study range ........................... 94 

Figure 8.10. a) Critical failure surfaces and b) Factors of Safety with variation in unit 

weight ................................................................................................................................ 95 

Figure 8.11. Critical slip surfaces with different slope heights: (a) H= 5 m, (b) H= 10 m

........................................................................................................................................... 97 

Figure 8.12. Variation of factor of safety with slope height ............................................ 98 

Figure 8.13. Critical failure surfaces with different slope angles: (a) β= 30º, (b) β= 60º 99 

Figure 8.14. Variation of factor of safety with slope angle ............................................. 99 



  

xii 

 

Figure 8.15. Compilation of factors of safety from analyses ......................................... 100 

Figure 9.1. Cross-section of the bridge embankment; adapted from Thompson & Emery 

(1977) .............................................................................................................................. 104 

Figure 9.2. Critical failure surfaces of the bridge embankment ..................................... 105 

Figure 9.3. Kinematics of the embankment failure ........................................................ 106 

List of Tables 

Table 3-1. Reference factors of safety (Deng et al., 2014) .............................................. 34 

Table 3-2. Slope material properties, (Donald & Giam, 1989) ........................................ 35 

Table 3-3. Slope material properties (Fredlund & Krahn, 1977) ..................................... 36 

Table 3-4. Summary of slope stability cases .................................................................... 36 

Table 3-5. Computed and reference factors of safety (Fredlund & Krahn, 1977) ........... 37 

Table 3-6. Material properties (Duncan et al., 2014) ....................................................... 44 

Table 3-7. Soil material properties (Karchewski, 2012) .................................................. 46 

Table 8-1. Summary of parametric study variables ......................................................... 90 

Table 9-1. Embankment material properties (Thompson & Emery, 1977) ................... 104 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

xiii 

 

List of Abbreviations and Symbols 

Abbreviations 

 

FEM Finite Element Method 

FS Factor of Safety 

GKEMv Gussmann’s Kinematic Element Method- Vertical 

KEM Kinematic Element Method 

KEMv Vertical Kinematic Element Method- Vertical 

LEM Limit Equilibrium Method 

M-P Morgenstern-Price 

OMS  Ordinary Method of Slices  

PSO  Particle Swarm Optimization  

RFEM Rigid Finite Element Method 

SRM Strength Reduction Method 

SSP  Slope Stability Program  

 

Symbols 

 

Notation 

  

𝒃 width of a slice 

𝒄 cohesion  

𝒄′ effective cohesion  

𝒄𝒎 mobilized cohesion  

𝒄𝒎
′  effective mobilized cohesion  

𝑪𝒊,𝒎
𝒉  mobilized cohesive resistance along an interelement boundary   

𝑪𝒊,𝒎
𝒍  mobilized cohesive resistance along slip surface of an element 

𝑬 interslice or interelement normal force corresponding to the 

limit equilibrium method and kinematic element method, 

respectively 



  

xiv 

 

𝑭𝒉 forces acting in the horizontal direction 

𝑭𝑺 factor of safety 

𝑭𝑺′ updated value for the factor of safety 

𝑭𝑺𝟎 initial assumption for the factor of safety 

𝑭𝑺𝒇 factor of safety corresponding to global horizontal force 

equilibrium 

𝑭𝑺𝒎 factor of safety corresponding to global moment equilibrium 

𝑭𝒗 forces acting in the vertical direction 

𝒇(𝒙) interslice force function for the Morgenstern-Price method or 

General Limit Equilibrium formulation 

𝒉 height of a slice or interelement boundary 

𝑯 height of the slope from its crest to its toe  

𝒍 length of a slice or element base  

𝑳 horizontal distance from the crest of the slope to the toe 

𝒎𝜶 term used to simplify calculations for some method of slices 

𝒏 unit vector of the normal to the slip surface 

𝑵 basal normal force 

𝑵′ basal effective normal force  

𝑶 point about which the critical failure surface originates and 

moment equilibrium is taken in methods of slices 

𝑷 normal force acting on the surface of a slope in the kinematic 

element method 

𝑷𝒃 external load for KEM computations 

𝒒 load acting on a foundation in a bearing capacity problem 

𝒒𝒖𝒍𝒕 ultimate bearing capacity of a foundation 

𝑸 normal force acting on the surface of a slope in the kinematic 

element method 

𝑹  moment arm associated with 𝑆𝑚 

𝑺 actual shear strength in a slope 

𝑺𝒎 mobilized basal shear force for methods of slices  

𝑺𝒖 undrained shear strength 

𝒕 unit vector of the tangent to the slip surface 

𝑻  basal shear force for KEM elements 

𝑻𝒎 mobilized basal shear force for KEM elements 

𝒖 pore water pressure 

𝑼 force due to pore water pressure 

𝒗 velocity of a KEM boundary 

𝑾 weight of a slice or element 



  

xv 

 

𝑿 interslice or interelement shear force corresponding to the limit 

equilibrium method and kinematic element method, 

respectively  

𝒁 interslice force for Spencer’s method 

 

Greek 

 

𝜶 inclination of the base of a slice or element with respect to the 

horizontal  

𝜷 inclination of the slope with respect to the horizontal 

𝜸 unit weight of the soil 

𝚫 𝒙 distance from the midpoint of a slice to the origin (𝑂) in methods 

of slices procedures  

∆𝑻 imbalanced basal shear force  

𝜽 angle of the interslice force with respect to the horizontal in 

Spencer’s method 

𝝀 scaling factor for the Morgenstern-Price method or General 

Limit Equilibrium formulation interslice force function 

𝝀𝝓𝒄 Janbu’s dimensionless parameter 

𝝈 normal stress or total stress 

𝝈′ effective stress  

𝝉 mobilized shear strength in a slope 

𝝓 friction angle  

𝝓′ effective friction angle  

𝝓𝒎 mobilized friction angle 

𝝓𝒎
′  effective mobilized friction angle  

𝝍 dilation angle  

 

 

 

 



  

xvi 

 

Declaration of Academic Achievement  

All of the work contained in this thesis was carried out by the student. The thesis was 

written by the student with editing done by the supervisor, Dr. Stolle. The slope stability 

analyses using the KEM and Morgenstern-Price method were carried out by the student 

with some suggestions from the supervisor regarding possible problems. The development 

of the thesis, including the organization of the chapters, was carried out by the student with 

some input from the supervisor. The KEMv formulation along with its MATLAB code for 

5 and 3-element solutions were developed in collaboration with the supervisor. 

 

 

 

 

 

 

 

 

 

 

 

 

 



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

1 

 

Chapter 1 Introduction 

Slope stability analysis in geotechnical engineering is a complex and challenging problem. 

It is a necessary step for the design of potentially unstable soil masses formed through 

human activity or natural processes (Knappett & Craig, 2012). Slopes can fail due to 

multiple factors, including: geometry of the slope, geological conditions, groundwater 

conditions, soil strength and loading (Kassim et al., 2012). Currently, the two most popular 

methods of analyzing the stability of slopes are the Limit Equilibrium Method (LEM) and 

the Finite Element Method (FEM).  

The limit equilibrium method assumes that the slope fails along a pre-determined 

surface and the equations of equilibrium are applied to obtain a factor of safety (Stolle & 

Guo, 2008). The finite element method discretizes the slope into small elements and 

calculates displacements, strains and stresses for a given loading (Ahmed, 2017). For both 

cases, an appropriate constitutive law must be introduced, which relates the stresses to 

failure parameters. The Kinematic Element Method (KEM) is a compromise between the 

aforementioned methods where deformation and static equilibrium are separated (Stolle & 

Guo, 2008). 

The primary objective of this thesis is to assess the effectiveness of the KEM in 

slope stability analysis. The KEM solutions are compared to those obtained via 

Morgenstern-Price method. In the analysis, the minimum factors of safety and 
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corresponding failure surfaces, also known as critical failure surfaces or critical slip 

surfaces, are compared. Various problems ranging from simple homogeneous slopes to 

slopes with weak layers will be utilized. Of interest is the ability of the KEM to locate the 

appropriate failure mechanism for each problem. To demonstrate the KEM solution 

methodology, a simplified version with vertical interelement boundaries is presented by 

the author. 

This thesis consists of 10 chapters. Chapter 2 presents a literature review of the 

limit equilibrium method, finite element method and kinematic element method in regard 

to slope stability analysis. Chapter 3 contains various example problems where the KEM 

and Morgenstern-Price method solutions are compared. Chapter 4 displays the kinematics 

of slope failures of varying complexity in the KEM, with Chapter 5 presenting the 

derivation of the simplified version of the KEM with vertical boundaries. Chapter 6 

explores the effect of forcing vertical interelement boundaries on KEM solutions, with 

Chapter 7 examining the computed interelement shear and normal forces in the KEM with 

vertical boundaries. Chapter 8 contains a sensitivity analysis regarding the number of 

elements in a KEM solution and a parametric study where the slope geometry and soil 

properties are varied to observe their effects on factors of safety and critical slip surfaces. 

Chapter 9 applies the KEM to a case study regarding the mitigation of a potential 

embankment failure. Finally, Chapter 10 presents the concluding remarks and 

recommendations for further study.  

 



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

3 

 

Chapter 2 Literature Review 

In this literature review, the application of the limit equilibrium method, finite 

element method and kinematic element method to slope stability analysis is discussed. 

Also, some cases where conventional methods of slope stability analysis are insufficient, 

are briefly addressed.   

2.1 Limit Equilibrium Method 
 

In the limit equilibrium method, equations of statics are applied to assumed failure surfaces 

and the factor of safety, a measure of the stability of the slope, is determined. The factor of 

safety (𝐹𝑆) is defined as the ratio of the shear strength in the slope (𝑆) to the mobilized 

shear strength (𝜏) of the slope (Fang & Mikroudis, 1991): 

 𝐹𝑆 = 𝑆/𝜏 (2.1) 

 

Essentially, the factor of safety is the value by which the shear strength in the soil 

must be reduced in order to bring the slope to a state of limiting equilibrium. Alternatively, 

it may be viewed as the ratio of stabilizing forces with respect to forces driving instability. 

In the limit equilibrium method, the Mohr-Coulomb equation is used to express the shear 

strength of the soil, with 𝑐 being the cohesion of the soil, 𝜙 representing the internal friction 

angle of the soil and 𝜎 denoting the normal stress acting along the failure surface. In 

general, the mobilized shear strength can be represented by 
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𝜏 =

𝑐

𝐹𝑆
+
𝜎𝑡𝑎𝑛𝜙𝑚
𝐹𝑆

 →  𝑐𝑚 + 𝜎 tan𝜙𝑚 (2.2) 

 

where 𝑐𝑚 and 𝜙𝑚 correspond to the mobilized cohesion and friction angle acting along the 

failure surface, respectively. 

 𝜙𝑚 = tan
−1 (

tan𝜙

𝐹𝑆
)  𝑐𝑚 =

𝑐

𝐹𝑆
 

 

(2.3) 

For soils, eq. (2.2) should be written in terms of effectives stress, where 𝑐′𝑚 and 𝜙′𝑚 

represent cohesion and friction angle for drained conditions, respectively, and 𝑢 is the pore 

water pressure. Given the definition of effective stress, 𝜎′ = 𝜎 − 𝑢: 

 𝜏 = 𝑐′𝑚 + 𝜎
′ tan𝜙′

𝑚
  →   𝜏 = 𝑐′𝑚 + (𝜎 − 𝑢) tan𝜙

′
𝑚

 (2.4) 

 

For many of the formulations that follow, the equations are presented in terms of 

total stress with the understanding that they must be modified when pore water pressure is 

important. The equations of statics are applied to an assumed failure surface or mechanism 

to write the conditions for horizontal force, vertical force and moment equilibrium. The 

equilibrium conditions satisfied can vary between limit equilibrium procedures.  

There are two types of limit equilibrium methods: single free-body procedures and 

the methods of slices. In single free-body procedures, the equations of equilibrium are 

written for the entire failure surface and solved while for the methods of slices, the failure 

domain is divided into vertical sections, “slices”, and the equations of equilibrium are 

written and solved. For both types of procedures, multiple potential failure surfaces must 

be evaluated with the failure surface corresponding to the minimum factor of safety being 



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

5 

 

considered the critical failure surface. The minimum acceptable value for the factor of 

safety varies with the uncertainty in the design and the consequences of failure (Duncan, 

1996). 

2.1.1 Single Free-Body Methods 
 

Single free-body methods are simple procedures that are limited in applicability and unlike 

the methods of slices do not require an iterative solution. Also, these methods satisfy all 

conditions of equilibrium. Two such procedures are: 

• Infinite slope method- The failure surface is assumed to be a sliding block parallel 

to the slope face, see Figure 2.1. It explicitly satisfices force equilibrium and 

implicitly satisfies moment equilibrium (Duncan et al., 2014). 

• Swedish circle method- The failure surface is assumed to be circular, see Figure 

2.2. It is limited to cohesive soils. Moment equilibrium is satisfied explicitly and 

force equilibrium is satisfied implicitly (Duncan et al., 2014).  

 

Figure 2.1. Infinite slope procedure (Duncan et al., 2014) 
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Figure 2.2. Swedish method (Duncan et al., 2014) 

 

2.1.2 Method of Slices 
 

As previously mentioned, for the method of slices, a potential failure domain is divided 

into vertical slices and the equations of equilibrium are applied at the slice level. The 

method of slices is a statically indeterminate problem, so assumptions must be made 

regarding the interslice forces (Zhu et al., 2003). A schematic of the failure surface along 

with forces acting on each slice is presented in Figure 2.3, where:  

• 𝑂 is the point about which the critical failure surface originates and moment 

equilibrium is taken 

• 𝑏 is the width of a slice 

• Δ 𝑥 is the distance from the midpoint of a slice to the origin (𝑂)  

• 𝑆𝑚 is the mobilized shear force along the base of a slice  

• 𝑅 is the moment arm associated with 𝑆𝑚 

• 𝐿 is the length of the slope from crest to toe 

• 𝐻 is the height of the slope from crest to toe  

• 𝛼 is the inclination of the base of a slice with respect to the horizontal  

• 𝛽 is the inclination of the slope with respect to the horizontal 

• 𝛾 is the unit weight of the soil 

• 𝐸 is the interslice normal force 
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• 𝑋 is the interslice shear force   

• 𝑊 is the weight of a slice 

• 𝑙 is the length of a slice  

• ℎ is the height of a slice 

• 𝑁′ is the effective normal force acting on the base of the slice  

• 𝑈 is the force due to pore pressure corresponding to 𝑢𝑙  

 

Figure 2.3. Method of slices failure surface with forces. Adapted from Fredlund et al. 

(1981) 

 

Assuming that the normal stress acting on the base of a slice is consant, the normal force, 

𝑁, can be written as 𝑁 = 𝜎𝑙. So the mobilized shear force along the base of the slice is  

 
𝑆𝑚 =

𝑙

𝐹𝑆
{𝑐′𝑙 + (𝑁 − 𝑢𝑙) tan𝜙′  } (2.5) 

 

The factor of safety is obtained from the equations of equilibrium and is assumed to be 

constant along the failure surface. The various methods of slices differ in terms of the 
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assumptions regarding the interslice forces and the conditions of equilibrium that are 

satisfied. When written in terms of total stresses  

 
𝑆𝑚 =

𝑙

𝐹𝑆
(𝑐𝑙 + 𝑁 tan𝜙) (2.6) 

 

2.1.2.1 Ordinary Method of Slices 

 

The Ordinary Method of Slices (OMS), also known as the Swedish method or the Fellenius 

method, is one of the earliest method of slices procedure. In this method, the interslice 

shear and normal forces are assumed to be zero, see Figure 2.4. One possible interpretation 

of this method is that for thin slices, the changes in interslice forces are much smaller than 

the corresponding basal shear (𝑆𝑚) and normal forces (𝑁). 

 

Figure 2.4. Slice with forces considered in the Ordinary Method of Slices. Adapted from 

Duncan et al. (2014) 

 

The forces perpendicular to the base of the slice can be resolved to determine the normal 

force. 
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 𝑁 = 𝑊 cos 𝛼 (2.7) 

 

Taking moment equilibrium about the origin (O) and substituting in the expression for the 

mobilized shear, 𝑆𝑚, using eq. (2.6), an expression for the factor of safety is developed: 

 
𝐹𝑆 =

∑(𝑐𝑙 +𝑊 cos 𝛼 tan𝜙)

∑𝑊 sin 𝛼
 (2.8) 

 

The Swedish method provides more conservative results for the factor of safety compared 

to those of more general formulations and depending on the pore pressure conditions, can 

underestimate the factor of safety by 50-60% (Lei et al., 2011). Owing to these concerns, 

the use of the Swedish method is not recommended (Knappett & Craig, 2012).   

2.1.2.2 Bishop’s Method 

 

Bishop (1955) developed a method of slice where the interslice shear forces are neglected, 

with moment equilibrium being satisfied, see Figure 2.5.  

 

Figure 2.5. Slice with forces considered in Bishop’s method  
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Using vertical force equilibrium, the normal force can be determined.  

 

𝑁 =
𝑊 −

𝑐𝑙 sin 𝛼 
𝐹𝑆

𝑚𝛼
 (2.9) 

 
𝑚𝛼 = cos 𝛼 +

sin 𝛼 tan𝜙

𝐹𝑆
 (2.10) 

Taking moments about the origin, the factor of safety is calculated.  

 

 
𝐹𝑆 =

∑[𝑐𝑙 + 𝑁 tan𝜙]𝑅

∑𝑊Δ𝑥
 (2.11) 

 

The equations for the factor of safety for Bishop’s method and the OMS are identical 

(Fredlund & Krahn, 1977). However, the two methods differ in the definition of the 

normal force.  

2.1.2.3 Janbu’s Simplified Method 

 

Janbu’s simplified method assumes that the interslice forces are horizontal (i.e. interslice 

shear forces are neglected), with horizontal and vertical force equilibrium being satisfied 

(Duncan et al., 2014). The interslice force assumption is identical to Bishop’s method. The 

reader is referred to Figure 2.5. As the interslice force assumption is identical and the 

normal force is determined through vertical force equilibrium, the same equation for the 

normal force (𝑁) is obtained as for the Bishop method, see eq. (2.9). The factor of safety 

is effected through global horizontal force equilibrium to yield (Fredlund & Krahn, 1977) 

 
𝐹𝑆0 =

∑{𝑐𝑙 + 𝑁 tan𝜙} cos 𝛼

∑𝑁 sin 𝛼
 (2.12) 
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 𝐹𝑆 = 𝐹𝑆0𝑓0 (2.13) 

 

𝐹𝑆0 is underestimated compared to methods that satisfy all conditions of 

equilibrium. This led Janbu et al. (1956) to develop correction factors (𝑓0). The correction 

factor is a function of the soil type (cohesive, cohesionless or mixed) and the ratio of the 

depth of the failure to its length, see Figure 2.6. 

 

Figure 2.6. Janbu's method correction factors (Duncan et al., 2014) 

 

2.1.2.4 Spencer’s Method 

 

Spencer (1967) developed a method where the relation between the interslice shear and 

normal forces is constant. This method satisfies all conditions of equilibrium. The interslice 

force (𝑍) is assumed to act at an angle (𝜃) with respect to the horizontal, see Figure 2.7.   
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Figure 2.7. Slice with forces considered in Spencer's method. Adapted from Spencer 

(1967) 

 

The relation between the interslice force components are shown in eq. (2.14). 

 𝐸𝑖
𝑍𝑖
=
𝐸𝑖+1
𝑍𝑖+1

= cos 𝜃        
𝑋𝑖
𝑍𝑖
=
𝑋𝑖+1
𝑍𝑖+1

= sin 𝜃       
𝑋𝑖
𝐸𝑖
=
𝑋𝑖+1
𝐸𝑖+1

= tan 𝜃 (2.14) 

 

With Spencer’s method, two factors of safety are introduced, one corresponding to 

moment and the other to horizontal force equilibrium. There exists a certain 𝜃 value where 

the factors of safety from moment and horizontal force equilibrium are identical, which is 

assumed to correspond to the sought solution. The normal force can be obtained at the 

slice-level by summing forces perpendicular to the interslice force (Fredlund & Krahn, 

1977).  

 

𝑁 =
𝑊 − (𝐸𝑖+1 − 𝐸𝑖) tan 𝜃 −

𝑐𝑙 sin 𝛼
𝐹𝑆

𝑚𝛼
 (2.15) 
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Following the calculation of the normal force, the horizontal interslice shear force, 𝐸𝑖, 

can be calculated by taking horizontal force equilibrium (Fredlund & Krahn, 1977). 

 ∑𝐹ℎ = 0  →    −(𝐸𝑖+1 − 𝐸𝑖) + 𝑁 sin 𝛼 − 𝑆𝑚 cos 𝛼 = 0 (2.16) 

 

As the interslice forces cancel out, the factor of safety for moment equilibrium, 𝐹𝑆𝑚, is 

identical to that for Bishop’s method (Fredlund & Krahn, 1977).  

 
𝐹𝑆𝑚 =

∑[𝑐𝑙 + 𝑁 tan𝜙]𝑅

∑𝑊Δ𝑥
 (2.17) 

 

The equation for the factor of safety for horizontal force equilibrium (𝐹𝑆𝑓) can be 

determined using the following equation (Fredlund & Krahn, 1977). 

 
𝐹𝑆𝑓 =

∑{𝑐𝑙 cos 𝛼 + 𝑁 tan𝜙 cos 𝛼}

∑𝑁 sin 𝛼
 (2.18) 

 

 

2.1.2.5 Morgenstern-Price Method  

 

Morgenstern & Price (1965) developed a method where a relation between the interslice 

normal and shear forces is assumed, see Figure 2.8.  
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Figure 2.8. Slice with forces considered in the Morgenstern-Price method  

 

Similar to Spencer’s method, this procedure satisfies all conditions of equilibrium. The 

interslice shear and normal forces are related by the following equation where 𝑓(𝑥) is an 

interslice force function and 𝜆 is a scaling factor (Morgenstern & Price, 1965).  

 𝑋 = 𝜆𝑓(𝑥)𝐸 (2.19) 

 

Factors of safety are obtained for both horizontal force equilibrium and moment 

equilibrium and there exists a unique 𝜆 value such that both are identical. The function can 

be determined from elastic theory, field measurements or assumed (Morgenstern & Price, 

1965). Fan et al. (1986) carried out finite element analyses to calculate stresses in 

homogeneous soil to determine force functions. The authors discovered that homogeneous 

slopes generally have a bell-shaped interslice force function. According to Morgenstern & 

Price (1965), the factor of safety is relatively insensitive to the assumed interslice force 

function. The normal force at the base is derived from vertical force equilibrium (Fredlund 

& Krahn, 1977) 
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𝑁 =
{𝑊 − (𝑋(𝑖+1) − 𝑋𝑖) −

𝑐𝑙 sin 𝛼 
𝐹𝑆 }

𝑚𝛼
 (2.20) 

 

The factor of safety from moment equilibrium is identical to that for Bishop’s method 

(Fredlund & Krahn, 1977).  

 
𝐹𝑆𝑚 =

∑(𝑐𝑙 + 𝑁 tan𝜙)𝑅

∑𝑊Δ𝑥
 (2.21) 

 

The horizontal interslice forces are obtained via vertical and horizontal force equilibrium.  

 
(𝐸𝑖+1 − 𝐸𝑖) = {𝑊 − (𝑋𝑖+1 − 𝑋𝑖)}tanα −

𝑆𝑚
cos 𝛼

 (2.22) 

 

The equation for the factor of safety for horizontal force equilibrium is identical to that of 

Spencer’s method (Fredlund & Krahn, 1977).  

 
𝐹𝑆𝑓 =

∑(𝑐𝑙 + 𝑁 tan𝜙) cos 𝛼

∑𝑁 sin 𝛼
 (2.23) 

 

2.1.2.6 General Limit Equilibrium (GLE) 

 

Fredlund et al. (1981) developed a General Limit Equilibrium (GLE) formulation for the 

method of slices that builds on the formulation derived by Morgenstern & Price (1965).  
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Figure 2.9. Slice with forces considered in the GLE formulation 

 

The GLE assumes that the interslice shear and normal forces are related once again by the 

equation 𝑋 = 𝜆𝑓(𝑥)𝐸. The GLE was developed in a manner such that all methods of slices, 

except for the Fellenius method, can be incorporated as special cases of the GLE. For 

example, Spencer’s method can be considered for the case where 𝑓(𝑥) = 1 and 𝜆 = tan𝜃 

where 𝜃 is the inclination of the interslice force, 𝑍 (Fredlund et al., 1981). 

2.2 Limitations of the Limit Equilibrium Method 
 

One of the limitations of the limit equilibrium methods is that there is “missing physics” in 

the limit equilibrium method (Krahn, 2003). There is a lack of knowledge regarding the 

strains and displacements in the slope (Krahn, 2003). The factor of safety in the slope is 

assumed to be constant throughout. According to Krahn (2003), this assumption is known 

to be untrue but is still applied as it ensures that the unrealistic forces/stresses calculated 

using these methods provide a realistic “average” factor of safety.  Krahn (2003) calculated 

stresses using the finite element method and imported the results into a limit equilibrium 

program to solve for the factor of safety. He presented the variation of the factor of safety 
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along the failure surface for both toe and deep-seated failures. Stolle & Guo (2008) applied 

the Rigid Finite Element Method (RFEM) to the method of slices. They assumed that the 

slices are rigid and a non-linear failure criterion relates the stresses and displacements along 

the interslice boundaries. The local factors of safety, which are determined from the 

displacements, were shown to vary along the failure surface.  

2.3 Accuracy of the Limit Equilibrium Method 
 

The factors of safety calculated using methods which satisfy all conditions of equilibrium 

are considered to be within ±6% of the “correct” answer (Duncan, 1996). He states that it 

is difficult to know what the absolute “correct” answer is, but it can be determined with 

sufficient accuracy for practical applications. This was concluded based on the observation 

that various methods of slices, finite element methods and the log-spiral method, which are 

different approaches, give similar values for the factor of safety. Uzielli et al. (2006) 

presented typical values of variance for various geotechnical parameters. For example, they 

found that drained friction angle of soils and undrained shear strength of clays can vary by 

5-15% and 10-30%, respectively. Considering the greater possible variance in the 

parameters involved in the analysis, the accuracy of ±6% can be considered to be quite 

good (Duncan, 1996).   

2.4 Methods for Locating Critical Failure Surface  
 

Originally, grid-and-radius methods were utilized to locate the critical circular failure 

surface (Duncan, 1996). In this procedure, a grid is created with multiple origins (𝑂) and 

the radius of the circle is varied to delineate potential failure surfaces to calculate factors 
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of safety (McCarthy, 1982). The objective is to locate the origin (𝑂) and the corresponding 

radius (𝑅) that provides the minimum factor of safety.  

Often, critical failure surfaces may not be circular and algorithms using 

optimization techniques were developed to identify the critical failure surfaces (Duncan, 

1996). Nguyen (1984) applied the simplex reflection method to determine the minimum 

global factor of safety, as well as the critical failure surface. Cheng et al. (2007) applied 

particle swarm optimization (PSO) in combination with Spencer’s method. The procedure 

mimics social models, such as bird flocking, to locate the critical failure surface. 

Karchewski et al. (2011) and Zolfaghari et al. (2005) optimized the critical failure surface 

obtained from the Morgenstern-Price method using genetic algorithms that mimic the 

production of chromosomes in genetics. The reader is referred to these papers for further 

details.  

2.5 Three-Dimensional Limit Equilibrium Methods 
 

Three-dimensional limit equilibrium is more useful for slopes with more complex 

geometries or are highly inhomogeneous or anisotropic (Naderi, 2013). These limit 

equilibrium methods often utilize the method of columns which is an extension of the 

method of slices used in two-dimensional analysis (Hungr et al., 1989).  Xing (1988) 

developed a three-dimensional limit equilibrium method for concave slopes and Hungr et 

al. (1989) extended Bishop’s and Janbu’s methods to three-dimensional columns. As these 

limit equilibrium methods are beyond the scope of this thesis, the reader is referred to a 

comprehensive list presented in a paper by Duncan (1996).  



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

19 

 

2.6 Finite Element Method 
 

In the finite element method, the slope is discretized into elements and the virtual work 

method is applied to effect the global equilibrium equation of a domain to determine the 

displacements at the nodes as well as the distribution of strains and stresses within the 

domain (Stolle et al. 2004).  

When applying virtual work, assumptions must be made with respect to the 

variation of displacements within each element. Also, appropriate constitutive laws 

expressing the relation between stress and strain, as well as failure, must be included. Given 

the nonlinear nature of the equilibrium equation, an iterative algorithm is required to 

develop a solution. This procedure attempts to take into account all the physics associated 

with the boundary value problem. The reader is referred to Zienkiewicz & Taylor (2000) 

or Logan (2012) for further details on finite element methodology. 

The Strength Reduction Method (SRM) is currently the most commonly used 

algorithm for the finite element method to determine the factor of safety of a slope. In the 

SRM, the failure properties 𝑐 and 𝑡𝑎𝑛𝜙 of the soil are reduced until a failure mechanism 

develops (Matsui & San, 1992). The definition of the factor of safety is similar to that used 

in the LEM. In the strength reduction method, a shear strain failure criterion is often utilized 

to delineate the critical failure surface (Matsui & San, 1992). Cheng et al. (2013) used 

maximum shear strains and maximum shear strain increment to locate critical failure 

surfaces.  
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In the finite element method, the stresses and strains are computed in the domain 

and transferred to the nodes via a smoothening algorithm. Thereafter, the stresses are 

inserted into the Mohr-Coulomb failure criterion to identify which points in space 

correspond to failure, see e.g. Griffiths & Lane (1999). Cheng et al. (2007), Lui et al. (2015) 

and Griffiths & Lane (1999) applied the Mohr-Coulomb failure criterion in the SRM. They 

assumed the soil to be linear elastic-perfectly plastic. The adopted stress-strain relation was 

found to provide reasonable results for stresses and factors of safety. For the accurate 

prediction of deformation, it is recommended to utilize correct values for the Poisson ratio 

and the elastic modulus (Duncan, 1996). According to Griffiths & Lane (1999), failure of 

the slope numerically occurs where there is non-convergence in the solution which is 

accompanied by massive increases in nodal displacements. 

2.6.1 Comparison of LEM and FEM 
 

Cheng et al. (2007), Lui et al. (2015) and Griffiths & Lane (1999) compared the results of 

the FEM to the LEM and found that generally both methods provided similar values for 

the factor of safety and similar failure surfaces.  

The FEM has some advantages compared to the LEM (Griffiths & Lane, 1999):   

• There is no need to assume the failure surface and interslice force functions.  

• The FEM more accurately predicts the stresses in the slope and if correct values for 

compressibility (Poisson’s ratio and modulus) are provided, deformation as well.  

• The finite element method is also capable of modeling progressive failure of the 

slope.  
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The following are some disadvantages of using the FEM compared to the LEM: 

• The criteria of non-convergence is used to determine when failure occurs, but this 

may be caused by other factors, such as initial stresses in the slope, gravity loading 

procedures, and the incremental load step-size (Krahn, 2003).  

• The FEM is more challenging to apply as it requires more time to learn and more 

effort and cost (Duncan, 1996). Also, the choice of the correct constitutive model 

and parameters can be challenging (Cheng et al., 2007). 

2.7 Kinematic Element Method 
 

In the kinematic element method, virtual displacements are determined to identify potential 

failure mechanisms and equations of equilibrium are applied to calculate the factor of 

safety. According to Stolle et al. (2004), the kinematic element method developed by 

Gussmann (1982), is a compromise between finite element methods and limit equilibrium 

methods. Gussmann (1982) suggests that the KEM provides an upper bound solution in 

plasticity theory, so the computed loads are on the unsafe side. Similar to the limit 

equilibrium method, the failure domain is assumed. It is generally discretized into rigid 

triangular and quadrilateral elements, see Figure 2.10.  
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Figure 2.10. Assumed failure domain discretized with a KEM mesh  

 

The method only allows for interelement sliding to occur (i.e. the relative normal 

displacements between elements is 0) and failure is governed by the Mohr-Coulomb failure 

criterion where 𝜏 is the mobilized shear stress.  

To simplify the presentation in this section, equations are written in terms of total stress. 

Effective stress analysis can be carried out by also taking into account the forces due to 

pore water pressure (𝑢) perpendicular to the failure surface at the same point as the 

normal force. As before, the mobilized shear stress  

 𝜏 = 𝑐𝑚 + 𝜎 tan𝜙𝑚 (2.24) 

 

Virtual displacements along the element boundaries are calculated based on the 

assumption of non-associated flow with the dilatancy angle ψ = 0  so velocity jumps 

between elements must be parallel to the interelement boundary (Linnweber et al., 2002). 

For the sake of simplicity, the details of the KEM will be discussed using only 1 row of 
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elements. Also, based on experience, the use of 1 row of elements usually provides 

reasonable results for the factor of safety for slope stability problems (Gussmann, 2000).  

 

 

 

Figure 2.11. Definition of the problem for a simplified mesh: a) Geometry and element 

numbering, b) Kinematics and c) Statics for element 2 

(a) 

(b) 

(c) 
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2.7.1 Kinematics 
  

The kinematics are required to determine in which direction the shear forces act along an 

interface. The velocities can also be used to compare the energy dissipated to the work rate 

of external forces. For slope stability problems in KEM, the failure mechanism is 

discretized as shown in Figure 2.11(a) where the velocities along the failure surface for the 

𝑖𝑡ℎ element is 𝒗𝑖. As the flow rule is non-associated, only shear velocities parallel to the 

failure surface along the boundary 1-3-5-7-9 occur. The material outside of the failure 

surface is perfectly rigid (i.e. velocity vanishes). As stated previously, the normal velocity 

jumps between elements (perpendicular to the interelement boundary) is zero. So, between 

elements 𝑖 and 𝑖 + 1, 𝑣𝑛,𝑖 − 𝑣𝑛,𝑖+1 = 0. This constraint allows for the kinematics to be 

solved.  

Gussmann (1982) solved the kinematics using a linear system of equations 

containing the direction cosines and Linnweber et al. (2002) solved the kinematics using 

hodographs. For example, assuming element 1 has a velocity parallel, to the failure surface 

with the magnitude, |𝑣1| = 1, and knowing that the normal velocity difference is 0, the 

orientation of 𝑣2 and its magnitude can be calculated. Once 𝑣2 is known, this procedure 

can be repeated for the elements that follow. For details regarding the original formulation 

of the KEM, the reader is referred to Gussmann (1982) and Gussmann (1988).  

2.7.2 Statics 
 

The kinematic element method satisfies horizontal and vertical force equilibrium explicitly 

and moment implicitly. As the equations only satisfy force equilibrium, the forces acting 
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on the element boundaries can act at any point and thus at infinite locations. There exists a 

certain set of locations for the forces where moment equilibrium is satisfied for each 

element. A similar assumption is also made for the Swedish method, except for force 

equilibrium. The statics for element 2 are observed in Figure 2.11(c), where 𝑇 and 𝑁 are 

the shear force and normal force along the failure surface, 𝑋 and 𝐸 are the shear and normal 

forces between elements, 𝑃 and 𝑄 are shear and normal forces acting on the surface of the 

slope, the light numbers are the local node numbers, and the bolded numbers represent the 

local boundary numbers, 𝑖 where 𝑖 = 1 to 4.  

Failure along the failure surface and interelement boundaries is according to the 

Mohr-Coulomb criterion, see eq. (2.24). Assuming that the stresses are constant along the 

boundaries; eq. (2.25) provides the relation between shear and normal force along the basal 

boundary for the 𝑖𝑡ℎ element. It is understood that these forces correspond to mobilized 

values. 

 𝑇𝑖 = 𝑁𝑖 tan𝜙 + 𝑐𝑙𝑖 (2.25) 

 

This process can be repeated for the interelement boundaries as well. The only information 

from the kinematics utilized in the static analysis of the problem is to identify the direction 

of the boundary shear forces. For example, referring to Figure 2.11(b), we observe that 

while element 1 moves down, element 2 moves upwards relative to it. Thus, the shear force 

of element 2 acting on 1 is upward, with the opposite being true for 1 acting on 2. Assuming 

that there are no external loads where 𝑃2 = 𝑄2 = 0, the following is the vector equation 

for force equilibrium for element 2 
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 −𝑁2𝒏2 − 𝑇2𝒕2,1 − 𝐸3𝒏2,2 + 𝑋3𝒕2,2 − 𝐸2𝒏2,4 + 𝑋2𝒕2,4 +𝑊2(0, −1) = 0 (2.26) 

 

where 𝒏2,1 and 𝒕2,1 are the normal and tangential unit vectors for boundary 1 for element 

2, respectively. This procedure can be repeated for all elements and a system of linear 

equations can be assembled.   

2.7.3 Numerical Solution for Slope Stability Analysis 
 

The procedures given in the previous sections can be applied to general kinematic element 

problems. To apply the kinematic element method for slope stability analysis, an objective 

function is required. In the case of slope stability analysis, the Fellenius definition of the 

Factor of Safety (used in the limit equilibrium method) is applied to the problem, where 

𝜙𝑚 and 𝑐𝑚 are the mobilized friction angle and cohesion, respectively. Gussmann (2000) 

developed a matrix solution procedure to the slope stability problem analogous to the finite 

element method. As the procedure is non-linear similar to what we have for general limit 

equilibrium methods, an iterative procedure is required. There are two levels of nonlinear 

analysis in the KEM: 

1. Identify the factor of safety for a given failure mechanism 

2. Identify the mechanism leading to the minimum factor of safety 

One way to identify the factor of safety for a given mechanism is to introduce a fictitious 

force (𝑃𝑏,1) acting at the crest of the slope which drives instability. The objective function 

then is to find the factor of safety consistent with 𝑃𝑏,1= 0. Engel & Lauer (2017) presented 

a similar procedure where a fictitious force (∆𝑇) acts along the failure plane of the largest 
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element (often the middle) that drives failure. The factor of safety is derived in terms of 

the fictitious force and the value where ∆𝑇 = 0 corresponds to the solution. The reader is 

referred to articles by Gussmann (2000) and Engel & Lauer (2017) for details. 

Gussmann (2000) presented a limited number of example problems wherein the 

method was shown to be quite effective for a small number of elements. He calculated the 

factor of safety of slope with a mixed soil using 2 and 8 elements. An increase in the 

number of elements from 2 to 8 only improved the factor of safety by 4%. In a more recent 

version of his program, 4 points are required to start an analysis for a given slope geometry: 

the minimum entry point of the failure surface (laterally), the maximum exit point of the 

failure surface (laterally), the crest of the slope, and the lowest point of the failure surface. 

Particle swarm optimization is utilized to locate the critical failure surface and the 

associated minimum factor of safety. The reader is referred to Cheng et al. (2007) for the 

description of a PSO algorithm.  

 

2.7.4 Comparison of KEM Solutions with LEM and FEM 
 

There is a little literature available on the comparison of the kinematic element method to 

more established methods, such as the limit equilibrium method and the finite element 

method. Nevertheless, Stolle et al. (2004) compared the results of a finite element program, 

Spencer’s method and the KEM in the analysis of a slope with a weak clay layer. They 

obtained factors of safety similar to Spencer’s method and the finite element program, 

however the failure surface obtained using the KEM did not pass through the weak layer. 
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Upon forcing the failure surface through the weak layer, they obtained a significantly 

higher factor of safety that was in agreement with classical wedge analysis. This 

demonstrates the non-uniqueness of solutions and the dependence on the method of 

analysis. 

2.8 Specialized Modes of Slope Failure 
 

In the previous sections, the slope stability analyses considered the shear failure of soil 

slopes associated with gravitational loading. There are other non-traditional modes and 

mechanisms of failure that cannot fully be explained using these types of models. In this 

section, situations where simply considering the shear strength of the slope may be 

insufficient in design and analysis are briefly addressed.  

2.8.1 Landslides 
 

A landslide is defined as the downward movement of soil and rock along a slope until 

equilibrium with shear strength and or gravity is reached (Toprak & Korkmaz, 2017).  

Cruden & Krahn (1973) investigated a landslide consisting of 90 million tons of rock and 

soil in the town of Frank in southwestern Alberta. Their investigation concluded that the 

failure was caused by joint sets in the rock mass perpendicular to the bedding plane and 

slip along the planes. Numerous landslides in marine clays have occurred in Eastern 

Canada, see e.g. La Rochelle et al. (1970). One of the contributing factors was the leaching 

of salt from the marine clays. A reduction in the salt content in marine clays decreased the 

shear strength of the marine clay and caused it to become more sensitive (La Rochelle et 
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al., 1970).  Panthi & Nilsen (2006) modeled the rockslide in the village of Tafjord in 

Norway using the finite element method. They determined that high stress anisotropy 

caused displacement in the slope that led to the creation of joints and a reduction in the 

shear strength of the soil. An additional mode of failure is associated with slope creep. 

Slope creep is the slow slow, continuous flow or deformation of slopes over time (Emery, 

1978). With regard to this form of failure, the undrained shear strength appears to decrease 

with time. More sophisticated analysis indicates the effective stress in soil decreases due 

to a deformation-dependent increase in excess pore pressure (Vermeer et al., 1997). These 

are a few examples where the geology and fabric of the soil had greater impact on the 

stability of slopes than the shear strength in the classical sense. 

2.8.2 Progressive failure 
 

In all limit equilibrium methods, the shear strength of the soil is assumed to be mobilized 

simultaneously along the failure surface. However, this assumption does not hold true 

when progressive failure takes place. In progressive failure, the slope may fail at a certain 

location and the shear strength may decline below its peak value (Duncan et al., 2014). 

This causes the local unbalanced load to be transferred to other areas of the slope leading 

to the zone of failure spreading. According to Duncan et al. (2014), progressive failure is 

common in brittle soils with high horizontal stresses, such as stiff fissured clay. Progressive 

failure can be modelled using the FEM, but few LEM models exist to capture this 

behaviour. Law & Lumb (1978) developed a model for progressive failure that required 

two processes: local failure and propagation of local failure. In local failure, the slice is in 
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limiting equilibrium with the post-peak strength being mobilized. After local failure of an 

individual slice, its strength decreases to a lower post-peak strength and neighbouring slices 

are subject to an increase in loading resulting in local failure propagation. The reader is 

referred to their paper for further details.  
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Chapter 3 Slope Stability Example Problems 

This chapter evaluates the effectiveness of the kinematic element method for slope stability 

analysis. Various slope conditions are tested, ranging from basic homogeneous slopes to 

retaining walls. The critical failure surfaces and associated minimum factors of safety 

obtained using the KEM are compared to those predicted by the Morgenstern-Price 

method. A summary of the two programs is provided below: 

• The Slope Stability Program (SSP) developed by Karchewski (2012) employs the 

Morgenstern-Price (M-P) method and a genetic algorithm to locate the critical 

failure surface and the corresponding factor of safety. The SSP generates critical 

slip surfaces without user input regarding the required number of slices. However, 

the number of slices has been observed to vary from 30 to 40, based on experience. 

According to Spencer (1967), there is minimal improvement in the factor of safety 

beyond 32 slices. Thus, the number of slices used in SSP seems to be sufficient. 

• The Kinematic Element Method (KEM) developed by Gussmann (2017), uses rigid 

body elements to predict a critical failure mechanism and the corresponding factor 

of safety. The solutions presented in this section are for 5 elements, unless 

otherwise stated. The KEM program allows for the mesh to be refined vertically or 

horizontally. To demonstrate this, the division of a single element vertically and 

horizontally is shown in Figure 3.1.  
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Figure 3.1. Possible KEM mesh refinements 

 

A subdivision both vertically and horizontally produces 2 elements each. It is possible for 

the subdivided elements to differ in size. The most significant difference is in the 

interelement boundaries. Thus, the computed interelement shear and normal forces will 

differ depending on the type of mesh refinement.  

In the following examples, the factors of safety and critical failure surfaces obtained 

from the SSP and KEM are compared as well as to solutions presented in literature. Ideally, 

the difference in the factors of safety between the KEM and the SSP are within ±6% of 

solutions observed for limit equilibrium solutions that satisfy all conditions of equilibrium. 

It is assumed that if the KEM factors of safety are within the expected range of variance, a 

reasonably accurate solution has been found.  

3.1 Homogeneous Slope  
 

In this first example, the stability of a homogeneous slope with a height of 20 m and length 

of 30 m is analyzed. This problem is presented in a paper by Arai & Tagyo (1985). The 

soil has a friction angle 𝜙 = 15°, cohesion 𝑐 = 41.65 𝑘𝑃𝑎 and unit weight 𝛾 =
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18.82 𝑘𝑁/𝑚3. Janbu (1954) carried out dimensionless analysis to create stability charts 

for homogeneous slopes and defined a dimensionless parameter, 𝜆𝜙𝑐: 

 
𝜆𝜙𝑐 =

𝛾𝐻(tan𝜙)

𝑐
 (3.1) 

 

The value of 𝜆𝜙𝑐 can be used to predict the failure mechanism of the slope. A value greater 

than 2 indicates a toe failure (Duncan & Wright, 1980). The 𝜆𝜙𝑐 value for this slope is 2.42, 

indicating a toe failure, as observed in Figure 3.2.  

 

Figure 3.2. Critical failure surfaces of the homogeneous slope 

 

The critical failure surfaces obtained from the SSP and the KEM are observed to be nearly 

identical. The factor of safety obtained using the KEM is 6% greater than that determined 

by SSP. This is not unexpected as KEM is said to provide an upper bound solution. We 

observe, unlike the method of slices, that the transverse optimum interfaces are not 
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necessarily vertical. The orientations of the interfaces are determined as part of the solution. 

The factor of safety obtained using the SSP, which is based on the Morgenstern-Price 

method, is approximately 4% less than the reference value presented by Deng et al. (2014). 

Reference factors of safety presented by Deng et al. (2014) are summarized in Table 3-1. 

Table 3-1. Reference factors of safety (Deng et al., 2014) 

Method Circular Slip Surface Arbitrary Slip Surface 

Bishop’s 1.415 ----- 

Spencer’s 1.410 1.425 

Morgenstern-Price 1.408 1.429 

 

The specific slope stability program, optimization algorithm or relation between interslice 

forces utilized by Deng et al. (2014) is not stated. Nevertheless, we observe that there can 

be some difference in the factors of safety obtained using similar LEM formulations. The 

factor of safety obtained using the KEM is approximately 2% greater than that of the 

reference values. This is well within the expected variation for the factor of safety for 

methods that satisfy all conditions of equilibrium. An important observation when referring 

to Figure 3.2 is that KEM is not restricted to using slices. The element boundaries adopt 

orientations that contribute to minimizing the factor of safety, as indicated previously.  

3.2 Multi-Layered Slope 
 

In this example, the stability of a slope with three distinct soils and complex layering is 

evaluated. The material properties of the various soil layers are summarized in Table 3-2. 
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Table 3-2. Slope material properties, (Donald & Giam, 1989) 

Material φ (°) c (kPa) γ (kN/m3) 

Layer 1 38 0 19.5 

Layer 2 23 5.3 19.5 

Layer 3 20 7.2 19.5 

 

KEM and SSP predict similar critical failure surfaces and both indicate a toe failure, see 

Figure 3.3. The factor of safety obtained using the KEM is 4% higher than that of the SSP. 

Once again, the SSP provides a more conservative estimate for the factor of safety. 

 

Figure 3.3. Critical failure surfaces of the multi-layered slope 

 

Donald & Giam (1989) presented a factor of safety of 1.39 for this problem. The factors of 

safety provided by the KEM and SSP deviate from the reference value by 1.2% and 2.5%, 

respectively. The difference between the reference factor of safety and the KEM is minor, 

thus the result is considered to be acceptable.  
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3.3 Slope with a Weak Layer and Water Table 
 

In a classic paper, Fredlund & Krahn (1977) evaluated the change in factor of safety caused 

by the addition of a weak layer (Soil 2) and pore pressure in the form of a piezometric line. 

The cross-section of the slope is presented in Figure 3.4.  

 

Figure 3.4. Cross-section of the slope with a weak layer and piezometric line. Adapted 

from Fredlund & Krahn (1977) 

 

The material properties of the soil layers and the various slope conditions are summarized 

in Table 3-3 and Table 3-4, respectively. The saturated unit weight of Soil 2 is assumed 

to be equal to the dry unit weight.  

Table 3-3. Slope material properties (Fredlund & Krahn, 1977)  

Material φ’ (°) c’ (kPa) γ (kN/m3) 

Soil 1 20 28.7 18.85 

Soil 2 10 0 18.85 

 

Table 3-4. Summary of slope stability cases 

Case no. Weak Layer Water Table 

1 No No 

2 Yes No 

3 No Yes 
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The reference factors of safety given by Fredlund & Krahn (1977) and the computed 

factors of safety using the SSP and KEM are summarized in Table 3-5. 

Table 3-5. Computed and reference factors of safety (Fredlund & Krahn, 1977)    

Case no. 
Computed Reference 

SSP (M-P) KEM Spencer’s M-P 

1 1.916 1.967 2.073 2.076 

2 1.222 1.353 1.373 1.378 

3 1.751 1.814 1.834 1.833 

 

It is interesting to note that for all cases, the SSP gives factors of safety 4.7%-11% less 

than the reference values even though both methods employ the Morgenstern-Price 

method. The reference solutions correspond to circular failure surfaces, except for the case 

of the slope with a weak layer. This indicates that for limit equilibrium methods, there are 

variations in the solution when accommodating non-circular failure surfaces and applying 

different optimization algorithms.  

3.3.1 Case 1: Homogeneous Slope 
 

The stability of a homogeneous slope consisting entirely of Soil 1 is analyzed in this 

section. The critical slip surfaces are shown in Figure 3.5.  
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Figure 3.5. Critical slip surfaces, Case 1 

 

The slope configuration and soil properties provide a 𝜆𝜙𝑐 of 3, indicating a toe failure. Both 

methods provide similar critical failure surfaces with the KEM predicting a greater factor 

of safety than predicted by SSP. The KEM solution gives a more conservative estimate for 

the FS than the reference value of 2.076. This deviation in the factor of safety is within the 

expected variation for rigorous limit equilibrium methods.  

3.3.2 Case 2: Addition of a Weak Layer 
 

The stability of the slope with the addition of a weak clay layer is examined in this section. 

The critical slip surfaces are shown in Figure 3.6. It demonstrates that if a weak layer exists 

in a slope, failure is likely to occur along it in a block sliding mechanism (Terzaghi et al., 

1996).  
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Figure 3.6. Critical slip surfaces, Case 2 

 

With the addition of the weak layer, the factor of safety obtained using each method is 

reduced by approximately 30%. The objective of analyzing this slope was to determine 

whether the KEM is capable of locating the block sliding mechanism, which is assumed to 

be the correct failure mechanism for this slope. The KEM does in fact locate the block 

sliding mechanism and provides a critical failure surface similar to that predicted by the 

Morgenstern-Price method. However, the block sliding failure along the weak layer 

extends over a greater distance in the Morgenstern-Price method. The KEM provides a 

lower estimate of the FS (2.5% difference) when compared to the reference value of 1.378.  

3.3.3 Case 3: Addition of a Piezometric Line 
 

The stability of the slope with the addition of a piezometric line in an otherwise 

homogeneous slope is analyzed next. As expected, the addition of a water table reduces 

the effective stress in the soil, thereby reducing the factor of safety by approximately 

10% for both methods as shown in Figure 3.7.  
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Figure 3.7. Critical slip surfaces, Case 3 

 

The failure mechanism is altered from a toe failure to a deep-seated failure, with the critical 

failure surface obtained using the KEM being deeper. The factor of safety obtained by the 

KEM is nearly identical to the reference value with only 1% difference.  

3.4 Cohesive Slope 
 

In this example, the stability of a hypothetical cohesive slope with a height of 5 m and 

length of 10 m is analyzed. The clay has a cohesion of 25 kPa and a unit weight of 18 

kN/m3. As 𝜙 = 0, this is essentially an undrained total stress analysis, with cohesion being 

equal to the undrained shear strength, 𝑠𝑢. A 𝜆𝜙𝑐 value of less than 1 indicates a deep-seated 

or base failure (Duncan & Wright, 1980). The soil has a friction angle 𝜙 = 0°, thus  𝜆𝜙𝑐 =

0. A deep-seated failure is to be expected as confirmed in Figure 3.8. 
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Figure 3.8. Critical failure surfaces of the cohesive slope 

 

The KEM and the SSP provide nearly identical values for the factor of safety and similar 

slip surfaces, except near the toe. To verify the solution provided by the KEM, the stability 

charts developed by Janbu (1968) and Taylor (1948) were used to determine the factor of 

safety of the slope, both providing a value of 1.55. The difference in the factor of safety 

between the KEM and the stability charts is 1.3%, which is relatively small.  

The mechanism shown in Figure 3.8 seems to resemble a bearing capacity failure. 

The ultimate bearing capacity of a foundation (𝑞𝑢𝑙𝑡) on a clay for 𝜙 = 0 conditions is given 

by (Duncan et al., 2014): 

 𝑞𝑢𝑙𝑡 = 5.53𝑐 (3.2) 

 

In the case of slope stability, the load causes failure (𝑞) is the weight of soil above the toe 

of the slope (𝛾𝐻) (Duncan et al., 2014). Thus, the factor of safety is  
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𝐹𝑆 =

5.53𝑐

𝛾𝐻
 (3.3) 

 

Applying eq. (3.3) given the geometry of the slope and the soil properties, the factor of 

safety is 1.536. The factor of safety found from the bearing capacity equation is nearly 

identical to that obtained using the KEM. Thus, it appears that the slope failed through 

bearing capacity. It should be noted that lower and upper bound factors of safety are given 

by 
4𝑐

𝛾𝐻
 and 

6𝑐

𝛾𝐻
. These correspond to a mechanism consisting of 2 triangular elements, in 

which there is no shear interaction and shear interaction between the triangular elements, 

respectively. We should keep in mind that an undrained total stress analysis was completed 

here. If the slope were to develop over a long period of time, some consolidation could take 

place, thus increasing the factor of safety 

3.5 Cohesionless Slope 
 

In this example, the stability of a hypothetical cohesionless slope with a height of 5 m 

and length of 10 m is examined. The soil has a friction angle 𝜙 = 30° and a unit weight 

𝛾 = 18 𝑘𝑁/𝑚3. As stated in the previous example, Janbu’s dimensionless parameter, 

𝜆𝜙𝑐, can be utilized to predict the failure mechanism in a homogeneous slope. For slopes 

where cohesion 𝑐 = 0, 𝜆𝜙𝑐 approaches infinity and the failure surface is parallel to the 

surface of the slope (Duncan & Wright, 1980). Translational failures occur where soil is 

displaced along a planar surface, such as a weak layer. For cohesionless slopes, this 

translational failure occurs parallel to the surface of the slope. The KEM locates the 
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translational failure and provides the same factor of safety as the Morgenstern-Price 

method. 

 

Figure 3.9. Critical failure surfaces of the cohesionless slope 

 

For 𝑐 = 0 where failure is parallel to the slope face, the factor of safety can be 

calculated using the friction angle of the slope and the slope angle (Duncan & Wright, 

1980); i.e.   

 
𝐹𝑆 =

tan𝜙

tan𝛽
  (3.4) 

 

For a slope where 𝜙 = 30° and 𝛽 = 26.5°, a factor of safety of 1.155 is obtained, which 

agrees with the KEM and SSP solutions.  

3.6 Foundation 
 

In this example, the stability of a hypothetical embankment consisting of clay overlain by 

sand is analyzed (Duncan et al., 2014). The clay is assumed to consolidate over time, so 

only the short-term stability of the embankment is of concern (i.e. the clay’s undrained 
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shear strength is adopted as the appropriate failure parameter). The material properties of 

both soils are summarized in Table 3-6.  

Table 3-6. Material properties (Duncan et al., 2014) 

Material φ (°) su (kPa) γ (kN/m3) 

Sand 40 0 22 

Clay 0 119.7 22 

 

The critical slip surfaces obtained using the KEM and M-P are shown below in Figure 3.10.  

 

Figure 3.10. Critical failure surfaces of the foundation problem 

 

The SSP solution indicates that the failure surface is a circular failure tangent to the base 

of the clay layer, which is typical for embankments. The KEM (5-element solution) 

provides a similar failure surface and tangential point, except the exit point of the failure 

surface is at a greater distance. Duncan et al. (2014) computed a FS of 1.20 for this problem 

utilizing Geo-Slope’s SLOPE/W and Spencer’s method. The SSP (Morgenstern-Price) 

solution agrees well with the reference factor of safety, while the KEM significantly 

overestimates it by 17%.  

According to Duncan & Wright (1980), force equilibrium methods generally 

overestimate the factor of safety of embankment problems, often up to 30%. To determine 
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whether a finer mesh was required for this problem, the analysis was repeated with a finer 

vertical mesh using 10 and 20 elements. Increasing the number of elements leads to higher 

factors of safety of 1.435 and 1.460 for the 10-element and 20-element solutions, 

respectively. The 5-element mesh was also subdivided horizontally and a reasonable factor 

of safety corresponding to an expected failure mechanism was found, as shown in Figure 

3.11.  

 

Figure 3.11. Critical failure surfaces of the foundation problem with 10 KEM elements 

(horizontal subdivision) 

 

The horizontally subdivided mesh provides a FS of 1.17 which differs slightly from 

the reference factor of safety of 1.20. This example demonstrates that the KEM can 

sometimes requires horizontal mesh refinement. When carrying out analysis of more 

complex slopes, such as embankments, using the KEM, it is recommended to check the 

solution against robust limit equilibrium methods. For the case when similar solutions are 

not found, vertical and horizontal mesh refinement is recommended.    

3.7 Retaining Wall 
 

In this example, the stability of a hypothetical retaining wall structure created by 

Karchewski (2012) is studied. The retaining wall, which is made from concrete, lies on a 
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clayey silt layer with the backfill being a sandy silt. The material properties are summarized 

in Table 3-7. The saturated unit weights are assumed to be equal to the dry unit weights. 

Table 3-7. Soil material properties (Karchewski, 2012) 

Material φ’ (°) c’ (kPa) γ (kN/m3) 

Sandy silt 30 5 17 

Concrete 50 1000 22 

Clayey Silt 10 30 18 

 

Typical analyses of retaining walls considers overturning, sliding and bearing capacity 

failures. However, these structures can also fail by global instability where the retaining 

wall itself is a part of the slope. The critical slip surfaces obtained using the SSP and KEM 

are shown below in Figure 3.12. 

 

Figure 3.12. Critical failure surfaces of the retaining wall problem 
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The critical slip surfaces provided by the Morgenstern-Price method and the KEM are 

similar with the factor of safety differing by 2%. The effect of mesh refinement for this 

problem is discussed in Section 8.1.3. 

Summary  
 

• The kinematic element method is capable of locating the critical failure surface for 

a variety of conditions, ranging from homogeneous slopes to block sliding along a 

weak layer. 

• The KEM generally provides FS similar to those obtained using rigorous limit 

equilibrium procedures that satisfy all conditions of equilibrium.  

• The KEM was shown to be sensitive to mesh refinement for the embankment 

problem. The 5-element KEM solution overestimated the FS significantly. Vertical 

mesh refinement was carried out, but the factor of safety did not improve. 

Horizontal mesh refinement was carried out and factor of safety agreed well with 

rigorous limit equilibrium methods.  
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Chapter 4 Kinematics 

One of the advantages of the kinematic element method is that virtual displacements of the 

rigid elements can be calculated, and the user is easily able to visualize the failure 

mechanism. The problem of slope stability can be thought of in terms of active and passive 

pressures (Berry & Reid, 1987). In the active condition, the soil fails by moving away from 

the failure surface and along the slope (Knappett & Craig, 2012). In the passive condition, 

the soil is compressed due to the displacement caused by the active earth pressure. A similar 

approach can be taken with regard to the methods of slices to identify which zone is active 

and which is passive.  

 

Figure 4.1. Active and passive pressures in slope stability. Adapted from Berry & Reid 

(1987) 
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Referring to Figure 4.1, for a failure surface with an entry Point A and exit Point B there 

exists a line along the slope, CD, where the failure in the slope transitions from the active 

condition to the passive. At the tangent of the failure plane at Point C that corresponds to 

the transition from active to passive, the angle of the base of the slice (𝛼) is equal to the 

mobilized friction angle, 𝜙𝑚. An alternative approach is to identify where the slope appears 

to move upwards; in other words where the gravity loading is doing negative work.  

The observations made regarding the applications of earth pressure theory can be 

utilized to assist in interpreting the results for the kinematic analysis of slope failures. 

However, unlike the method of slices where 20 or more slices are used to model slope 

failures, the KEM often uses as few as 3 to 5 elements, so that the exact point of the 

transition from active to passive failure may be difficult to locate. In the figures presented 

in this section, the potential failure mechanism is given by the gray solid lines and the 

corresponding deformed elements following failure are given by the red, dotted lines.  

4.1 Homogeneous Slope 
 

The kinematics of the failure for the homogeneous slope from Section 3.3.1 is provided in 

Figure 4.2. As expected, the direction of soil movement is left to right and along the failure 

surface. As the soil from elements 1, 2, and 3 move downwards along the slope, the soil in 

elements 4 and 5 are forced to move upwards. This can be thought of in terms of pressure 

theory where elements 1 through 3 undergo active behavior with element 5 responding to 

passive pressure. Elements 1 and 5 display the greatest amount of movement. The lowest 
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amount of movement in the vertical direction can be observed in element 4, which has a 

nearly horizontal base. 

 

Figure 4.2. Kinematics of the homogeneous slope failure 

 

Based on the stability analysis results of Section 3.3.1 (𝜙 = 20° and 𝐹𝑆 = 1.967) 

the mobilized friction angle of the slope is 10.5°. The base inclination angle of element 3 

is 15°, indicating that the soil is still in the active condition at that point along the slope. 

Element 4 has a nearly horizontal base inclination (much lower than the mobilized friction 

angle) indicating that it should be responding passively. This is confirmed by the minor 

positive displacement in the vertical direction relative to the slope surface observed in the 

element.  
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4.2 Slope with a Weak Layer 
 

As discussed in Section 3.3.2, failure of slopes, which contain weak layers, is often 

governed by the block sliding mechanism. A diagram displaying the mechanism in terms 

of active and passive earth pressure is illustrated in Figure 4.3.  

 

Figure 4.3. Block sliding mechanism. Adapted from Terzaghi et al. (1996)  

 

Failure is initiated by the displacement of the soil along the active wedge forcing 

the block to slide horizontally along the weak layer. The strength along the weak layer in 

the block and the passive earth pressure to the right of the block resist the failure of the 

slope (Terzaghi et al., 1996). The kinematics of the sliding block failure shown in Section 

3.3.2 are provided in Figure 4.4. The selected problem is that of the previous homogeneous 

slope with the addition of a weak layer. The factor of safety of the slope is 1.353 which is 

significantly lower than the previous case due to the presence of the weak layer. 
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Figure 4.4. Kinematics of a block sliding failure 

 

The mechanism defined in Figure 4.4 is similar to that displayed in Figure 4.3 with 

the active condition represented by elements 1, 2, and 3. Element 5 represents the passive 

wedge and element 4 is the sliding block which in addition to the passive pressure provided 

by element 5 resists failure. Elements 1 to 3 move downwards along the slope causing 

element 4 to slide along the weak layer. Element 5 is forced to translate towards the right 

and the soil in it is displaced and forced to move upwards due to the slip surface at the base.  

4.3 Retaining Wall 
 

The kinematics of the retaining wall from Section 3.7 is discussed next. The retaining wall 

potentially undergoing general shear failure is more complex than a simple homogeneous 

slope. The capability of the KEM in presenting the kinematics of this problem accurately 

is of interest. The retaining wall itself is much stronger than the soil, thus forcing failure to 
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occur in the soil below. The kinematics of the global failure of the retaining wall is shown 

in Figure 4.5.  

 

Figure 4.5. Kinematics of the retaining wall failure 

 

Observations similar to the previous examples can be made regarding the active and 

passive earth pressure regions. Elements 1 through 4 move downwards along the slope, 

forcing element 4 to translate to the right and upwards. Elements 1 through 4 clearly 

represent the active condition of the slope failure and element 5 represents the passive 

condition. It is interesting to note that element 4 consists of the retaining wall and the active 

wedge below it.  
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Chapter 5 Derivation of a Kinematic Element 

Method Formulation with Vertical Interelement 

Boundaries 

As previously discussed, in the kinematic element method, force equilibrium is solved for 

assumed failure mechanisms associated with rigid blocks. To introduce failure and 

determine the factor of safety, the actual failure parameters are reduced in magnitude until 

a failure mechanism can be attained. An important assumption is that moment equilibrium 

takes care of itself by having the resultant forces on each boundary shifting appropriately. 

The kinematics of the failure are required in order to ascertain the directions of the shear 

force along each boundary. In this section, we consider a KEM procedure similar to the 

method of slices where the interelement boundaries are vertical. This method will be 

referred to as Kinematic Element Method-Vertical (KEMv). A homogeneous, isotropic 

slope with a typical KEMv failure surface (given by the dotted lines) defined by three 

elements is illustrated in Figure 5.1. The KEMv for 3 and 5-element solutions were 

programmed in MATLAB. The MATLAB code for the 3-element solution is presented in 

the Appendix. 
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Figure 5.1. Sample KEMv slip surface with 3 elements 

 

The interelement boundaries of the original KEM can be in any orientation. To 

simplify the mathematics and apply a procedure similar to the method of slices, the 

interelement boundaries in KEMv are vertical. In order to further simplify the derivation, 

the program was designed such that there must be interelement boundaries at the crest and 

toe of the slope. This restriction is not applied in the KEM developed by Gussmann (1982).  

5.1 Statics 
 

The forces acting on each element for the assumed deformation mechanism are shown in 

Figure 5.2, where 𝑊 is the weight of an element, 𝑁 and 𝑇 denote the normal and shear 

force acting on the element along the failure plane, respectively, 𝐸 and 𝑋 represent the 

interelement normal and shear forces, respectively, and 𝑛 and 𝑡 are the unit vectors for the 

normal and tangent to the shear plane, respectively.  



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

56 

 

 

Figure 5.2. Forces acting on KEMv elements (3-element solution) 

 

The directions of all forces, excluding the failure plane normal and shear forces 

have been predetermined graphically assuming that the movement of the slope is left right. 

For example, as Element 1 is assumed to move downwards and to the right, the 

interelement shear force (𝑋2), must act in the positive y-direction. Following this 

observation, the direction of the remaining interslice shear forces are readily determined. 

Since the geometry of each element is known, it is a straightforward task to determine the 

unit vectors. For example, if we consider surface AB, Δ𝑥2 = 𝑥𝐴 − 𝑥𝐵 and Δ𝑦2 = 𝑦𝐴 − 𝑦𝐵 

yielding a length of 𝑙2 = √Δ𝑥2
2 + Δ𝑦2

2 and direction cosines (𝑛2,𝑥, 𝑛,2,𝑦 ) = (
Δ𝑥2

𝑙2
,
Δ𝑦2

𝑙2
). 

Noting that 𝑛 and 𝑡 are perpendicular, the following is a key observation that can be made: 

𝑛2,𝑥 = 𝑡2,𝑦 and 𝑛2,𝑦 = −𝑡2,𝑥. This simple observation allows for less quantities to be 

calculated and simplifies the equations.  
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Figure 5.3. Forces and unit vectors for element 2 

 

In the original KEM, the shear forces acting along the failure plane and between 

elements are described by the Mohr-Coulomb failure criterion and the same assumptions 

are made herein. The potential failure mechanism for a given geometry corresponds to a 

situation where the failure parameters are reduced via the factor of safety to the point where 

a sliding mechanism can develop:   

 𝐹𝑆 = 𝑇/𝑇𝑚     →      𝑇𝑚 = 𝑇/𝐹𝑆 (5.1) 

with 𝑇𝑚 being the mobilized shear along the failure surface, 𝐹𝑆 denotes the value that 

reduces the shear strength (𝑇). Utilizing the above relation, the equations for the mobilized 

shear force along the failure plane can be calculated where 𝑖 is the element number.  

 𝑇𝑖,𝑚 =
𝑁𝑖 tan𝜙+𝑐𝑙𝑖

𝐹𝑆
   → 𝑇𝑖,𝑚 = 𝑁𝑖 tan 𝜙𝑚 + 𝑐𝑚 𝑙𝑖 (5.2) 
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The same procedure can be applied to derive the interelement shear force equation where 

ℎ is the height of the interelement boundary and 𝑖 is the interelement boundary number: 

 𝑋𝑖,𝑚 = 𝐸𝑖 tan𝜙𝑚 + 𝑐𝑚ℎ𝑖 (5.3) 

 

Applying the failure condition reduces the number of unknown quantities. By beginning 

with Element 1, we can calculate 𝑁1 and 𝐸2. The corresponding shear components are 

obtained by applying eqs. (5.2) and (5.3). We can then move to element 3 and repeat the 

process. Application of these equations reduces the number of unknown quantities 

significantly. For each element, the two unknowns which need to be solved, are the 

interelement normal force and the failure plane normal force. To simplify the presentation 

of the derivation, the following terms are introduced: 

 𝑡𝑚 = tan𝜙𝑚 (5.4) 

 𝐶𝑖,𝑚
𝑙 = 𝑐𝑚𝑙𝑖 (5.5) 

 𝐶𝑖,𝑚
ℎ = 𝑐𝑚ℎ𝑖 (5.6) 

 

where 𝐶𝑖,𝑚
𝑙  and 𝐶𝑖,𝑚

ℎ  are the mobilized cohesive force along the failure plane and 

interelement boundary, respectively.  

5.2 KEMv Solution for a 3-Element Failure Mechanism 

The solution algorithm for the KEMv using 3 elements is presented in this section. The 

proposed methodology can be extended to solutions with larger number of elements. In the 



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

59 

 

solution for KEMv, an initial factor of safety (𝐹𝑆0) is assumed for all interelement 

boundaries and failure planes, except for the failure plane of the middle element (Element 

2). At the failure plane of element 2, an updated factor of safety (𝐹𝑆′) is calculated along 

with the associated error. If the absolute value of the error is greater than 0.0005, the 

solution iterates until convergence, i.e. |𝐸𝑟𝑟𝑜𝑟| ≤ 0.0005.  

 𝐸𝑟𝑟𝑜𝑟 = 𝐹𝑆′ − 𝐹𝑆𝑜 (5.7) 

 

The following steps are required to calculate the factor of safety for a 3-element failure 

mechanism: 

1. Calculate the unknown forces acting on elements 1 and 3: 𝑁1, 𝐸2, 𝑁3, 𝐸3. The only 

remaining unknowns are 𝑁2 and 𝑇2,𝑚 while two equations of equilibrium are 

available.  

2. Calculate 𝑁2 and the mobilized shear force 𝑇2,𝑚.  

3. Calculate 𝑇2 which is the shear force associated with a FS of 1 (eq. (5.8).  

4. Recalling the Fellenius definition of the factor of safety, calculate the updated factor 

of safety (𝐹𝑆′) using eq. (5.9).  

5. Calculate the associated error using eq. (5.7).  

 𝑇2 = 𝑁2𝑡𝑎𝑛𝜙 + 𝑐𝑙2 (5.8) 

 
𝐹𝑆′ = (

𝑇2
𝑇2,𝑚

) (5.9) 
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This solution is similar to the method presented by Engel & Lauer (2017). In the KEMv 

formulation, the fictitious driving force (∆𝑇) is not calculated but is readily determined 

where ∆𝑇 = 𝑇2 − 𝑇2,𝑚. In the proposed formulation, the values of the mobilized and 

required shear forces are computed and compared to determine the error associated with 

each assumed value of 𝐹𝑆0. In the following sections, the equations for determining the 

unknown forces are presented.  

5.2.1 Element 1 
 

The equations for horizontal and vertical force equilibrium can be written for element 1 

and the unknown forces (𝑁1 and 𝐸2) can be calculated.  

 Σ𝐹ℎ = 0  →    𝑁1𝑛1,𝑥 + 𝑇1𝑡1,𝑥 − 𝐸2 = 0 (5.10) 

    Σ𝐹𝑣 = 0 →   𝑁1𝑛1,𝑦 + 𝑇1𝑡1,𝑦 + 𝑋2 −𝑊1 = 0 (5.11) 

 

Substituting the known relations between the normal and tangential unit vectors and the 

normal and shear forces, 𝑁1 and 𝐸2 can be calculated  

 
𝑁1 =

−𝐶1,𝑚
𝑙 𝑡𝑚𝑡1,𝑥−𝐶1,𝑚

𝑙 𝑡1,𝑦 − 𝐶2,𝑚
ℎ +𝑊1

𝑡𝑚2 𝑡1,𝑥 + 2𝑡𝑚𝑡1,𝑦 − 𝑡1,𝑥
 (5.12) 

 
𝐸2 =

𝐶2,𝑚
ℎ 𝑡𝑚𝑡1,𝑥−𝐶1,𝑚

𝑙 𝑡1,𝑥
2 −𝐶1,𝑚

𝑙 𝑡1,𝑦
2 +𝑊1𝑡𝑚𝑡1,𝑥 − 𝐶2,𝑚

ℎ 𝑡𝑚𝑡1,𝑦 +𝑊1𝑡1,𝑦

𝑡𝑚2 𝑡1,𝑥 + 2𝑡𝑚𝑡1,𝑦 − 𝑡1,𝑥
 (5.13) 
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5.2.2 Element 3 
 

The procedure used to determine the unknown forces for element 1 can be applied to the 

element 3, as well.  

   Σ𝐹ℎ = 0   →     𝑁3𝑛3,𝑥 + 𝑇3𝑡3,𝑥 + 𝐸3 = 0 (5.14) 

 Σ𝐹𝑣 = 0    →   𝑁3 ∗ 𝑛3,𝑦 + 𝑇3𝑡3,𝑦 − 𝑋3 −𝑊3 = 0 (5.15) 

 
𝑁3 =

−𝐶3,𝑚
𝑙 𝑡𝑚 ∗ 𝑡3,𝑥 − 𝐶3,𝑚

𝑙 𝑡3,𝑦 + 𝐶3,𝑚
ℎ +𝑊3

𝑡𝑚2 𝑡3,𝑥 + 2𝑡𝑚𝑡3,𝑦 − 𝑡3,𝑥
 (5.16) 

𝐸3 =
−𝐶3,𝑚

ℎ 𝑡𝑚𝑡3,𝑥 − 𝐶3,𝑚
𝑙 𝑡3,𝑥

2 − 𝐶3,𝑚
𝑙 𝑡3,𝑦

2 +𝑊1𝑡𝑚𝑡3,𝑥 + 𝐶3,𝑚
ℎ 𝑡1,𝑦 +𝑊3𝑡3,𝑦

𝑡𝑚2 𝑡3,𝑥 + 2𝑡𝑚𝑡3,𝑦 − 𝑡3,𝑥
 (5.17) 

 

5.2.3 Element 2 
 

Following the calculation of the unknown forces acting on elements 1 and 3, 𝑁2 and 𝑇2,𝑚, 

can be calculated. Once again, the equations for vertical and horizontal force equilibrium 

are written. It must be noted that in the calculation of the forces for the final element, the 

mobilized shear force is not a function of the normal force (i.e. the relation in eq. (5.2) is 

not applied).  

 Σ𝐹ℎ = 0    →   𝑁2𝑛2,𝑥 + 𝑇2𝑡2,𝑥 + 𝐸2 − 𝐸3 = 0 (5.18) 

 Σ𝐹𝑣 = 0    →    𝑁2𝑛2,𝑦 + 𝑇2𝑡2,𝑦 − 𝑋2 + 𝑋3 −𝑊2 = 0 (5.19) 

 𝑁2 = −𝑋2𝑡𝑚𝑡2,𝑥 + 𝑋3𝑡𝑚𝑡2,𝑥 − 𝐶2,𝑚
ℎ 𝑡2,𝑥 + 𝐶3,𝑚

ℎ 𝑡2,𝑥 −𝑊3𝑡2,𝑥 − 𝑋2𝑡2,𝑦
+ 𝑋3𝑡2,𝑦 

(5.20) 

 𝑇2,𝑚 = 𝑋𝑓𝑡𝑚𝑡2,𝑦 − 𝑋3𝑡𝑚𝑡2,𝑦 + 𝐶2,𝑚
ℎ 𝑡2,𝑦 − 𝐶3,𝑚

ℎ 𝑡2,𝑦 +𝑊2𝑡2,𝑦 − 𝑋2𝑡2,𝑥
+ 𝑋3𝑡2,𝑥 

(5.21) 



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

62 

 

Once 𝑁2 is found, 𝑇2 can be calculated using eq. (5.8). Following the calculation of 𝑇2,𝑚, 

the updated factor or safety (𝐹𝑆′) and the associated error (𝐸𝑟𝑟𝑜𝑟) can be obtained using 

eqs. (5.9) and (5.7), respectively.  

5.3 Proposed Iteration Scheme 
 

The KEMv requires an iterative solution, thus a root-finding scheme is required. The 

bisection method, which is a relatively simple method, was applied to determine the factor 

of safety. The factor of safety was defined as a function of the error. The bisection method 

requires an upper and lower bound estimate (i.e. a range where the value of the error 

function changes from positive to negative or vice versa). In utilizing this algorithm, it 

must be noted that the updated factor safety (𝐹𝑆′) is not explicitly part of the solution. The 

error is a function of the updated factor of safety, thus 𝐹𝑆′ is implicitly utilized (see 

Appendix).  Initially, there were issues with this method as the applicable range for the 

method was unknown. To locate an appropriate search range, the factor of safety was 

increased incrementally, and the error was calculated. The error function and mobilized 

shear forces for the problem in Section 3.1 are presented in Figure 5.4(a) and Figure 5.4(b), 

respectively. The shear forces and error function shown in Figure 5.4 correspond to the 5-

element solution.  
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Figure 5.4. (a) Error function and (b) Mobilized shear forces for a sample slope stability 

problem 

 

The error function indicates that there are two possible solutions to the problem at 

factors of safety of 0.970 and 1.520. This issue was found for all of the simulated problems. 

After analyzing the computed values for all forces from various analyses, we find that the 

value of the mobilized shear force along the failure plane of the middle element indicated 

the correct solution. The mobilized shear force of the middle element (T3) is approximately 

0 at a FS of 0.970. This is an unfeasible solution as it is impossible for the mobilized shear 

force to be zero during failure. Thus, the appropriate solution to this problem is 1.520. For 

all KEMv solutions, manual verification of the computed mobilized shear forces is required 

to select the correct root.  
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Chapter 6 Vertical Interelement Boundary 

Assumption  

The interelement boundaries in KEM can take any orientation and in combination with the 

particle swarm optimization algorithm adopted by Gussmann (2017), the failure surface as 

well as the corresponding mesh associated with the minimum factor of safety can be 

obtained. In this section, the effect of restricting the elements to having vertical 

interelement boundaries is explored. This provides an opportunity to determine the 

effectiveness of the KEMv formulation derived in Chapter 5 as it is applicable for elements 

with vertical interelement boundaries. The location of some of the points along the failure 

surfaces are different as the KEMv program has the added requirement of interelement 

boundaries at the toe and crest of the slope. In Chapters 6 and 7, the KEM solution obtained 

using Gussmann’s program with  the vertical interelement boundary restriction will be 

referred to as Gussmann’s Kinematic Element Method- Vertical (GKEMv) to avoid 

confusion with the formulation derived in Chapter 5. Also, the KEM solution determined 

using Gussmann’s program without boundary restrictions will be referred to as GKEM for 

Chapters 6 and 7.  

6.1 Homogeneous Slope  
 

The effect of the vertical boundary restriction on homogeneous slopes with mixed soils is 

discussed using the example from Section 3.1. Figure 6.1 shows the slip surfaces obtained 
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using the KEM for vertical and optimal interelement boundaries. Also, the slip surface 

from the GKEMv was entered into the KEMv program with the coordinates of the 

interelement boundary along the failure plane given by red diamonds. There is a minor 

difference in the failure surfaces given by KEMv and GKEMv caused by the KEMv 

requirement for an interelement boundary at the crest. Applying the vertical boundaries 

provided a higher FS (3.5%) and a shallower failure surface.  

 

 

Figure 6.1. Critical slip surfaces of the homogeneous slope for different boundary 

orientations 

 

For the homogeneous slope examined here, the KEMv program provides a factor 

of safety similar to that obtained by GKEMv. The difference in the computed values (1%) 

is likely caused by the minor difference in the slip surfaces. A check was made to determine 

if the difference in the FS between the optimal orientation and the vertical boundary case 
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is due to the difference in the failure surface created by the PSO algorithm. This was 

accomplished by using the failure surface obtained using GKEM to determine the factor of 

safety with KEMv. The corresponding factor of safety was found to be 1.550 which leads 

us to conclude that the PSO algorithm did not have a significant impact on the FS and that 

the variance in the solutions was caused by the orientation of the boundaries. The factor of 

safety given by the SSP was 1.372 while the reference factor of safety was 1.429.   

6.2 Cohesive Slope 
 

The effect of vertical boundary restrictions on cohesive slopes is addressed using the 

problem from Section 3.4. The GKEM provides a larger failure surface than the restricted 

case as observed in Figure 6.2.  

 

Figure 6.2. Critical failure surfaces of the cohesive slope for different boundary 

orientations 
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Applying vertical interelement boundaries changed the shape of the failure surface 

from a pseudo-circular shape to a triangle. This indicates that the GKEM (KEM without 

restrictions placed on element orientations) provides a more flexible and realistic failure 

surface. As observed for the case of the homogeneous slope in Section 6.1, the factor of 

safety is overestimated. 

We also observe that the KEMv provides a similar factor of safety as the GKEMv. 

The 0.5% difference between the two values was likely caused by the minor difference in 

the failure surfaces. As for the homogeneous case, the domain corresponding to the 

minimum factor of safety for GKEM was used to determine the FS using the KEMv 

program. A factor of safety of 1.882 was obtained, which is 13% larger than the FS 

corresponding to the GKEMv and KEMv slip surfaces. This supports the conclusion made 

in Section 6.1 that the vertical boundary restriction leads to higher factors of safety and a 

modification of the failure surface.  

6.3 Cohesionless Slope 
 

Next, we address the effect of the vertical interelement boundary assumption on the 

cohesionless slope from Section 3.5. For this particular case, the internal boundaries are 

short, thus they have a limited impact on the failure surface. Regardless of interelement 

boundary orientations, the factor of safety was found to be 1.155.  

The GKEM displays failure which extends farther down the slope, but the failure 

mechanism is identical. The lack of variance in the factor of safety was likely due to the 

shallow nature of the failure. As the lengths of the boundaries were so minute, the 
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interelement surfaces were effectively points. The expression given for the factor of safety 

for translational failure in cohesionless slopes, eq. (3.4), is derived from a special case of 

the infinite slope failure mechanism, eq. (6.1), where 𝑐 = 0.  

 
𝐹𝑆 =

𝑐 + 𝛾𝑍 cos2 𝛽 tan𝜙

𝛾𝑍 cos 𝛽 sin 𝛽
    
𝑐=0
→      

tan𝜙

tan𝛽
 (6.1) 

 

The expression for factor of safety becomes independent of the height of the failure 

surface. Thus, it is not unexpected that the factor of safety of cohesionless slopes is 

independent of the orientation of the interelement boundaries. 

Summary 
 

• Restricting the interelement boundary orientation to be vertical overestimates the 

FS and provides a shallower failure surface.  

• The KEMv formulation provides nearly identical values for FS as GKEMv. The 

KEM may not truly be an upper limit solution as thought by Gussmann (1982) as 

the GKEMv solutions are nearly identical to that of KEMv, which is based on 

limit equilibrium principles.  

• With KEM, we determine, as part of the solution, an optimal discretization for a 

given number of elements, as well as the minimum factor of safety. The results of 

the analyses in this section indicates that the use of non-vertical boundaries 

provides a more flexible failure surface and a more accurate estimate for the 

factor of safety.  



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

69 

 

• It would be interesting to modify the KEMv program to be capable of analyzing 

surfaces with various interelement boundary orientations to see if it provided the 

same factors of safety as Gussmann’s KEM. 
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Chapter 7 Examination of Interelement Forces 

In this chapter, the interelement shear and normal forces along the failure surface obtained 

using KEMv and GKEMv are compared to the interslice forces from the Morgenstern-

Price solution (SSP) developed by Karchewski (2012). The kinematic element method only 

preserves horizontal and vertical force equilibrium. It is assumed that moment equilibrium 

is satisfied implicitly, but the location where the shear forces act is not determined as part 

of the solution. As such, the variation of interelement shear and normal forces along the 

failure plane (i.e. in the horizontal direction) cannot be studied for the optimal orientation. 

However, when the interelement boundaries are restricted to vertical lines, the location of 

the shear and normal forces in the horizontal direction are known. Thus, the interelement 

forces can be compared to that obtained using the Morgenstern-Price method. For the 

purposes of this discussion, the interelement forces from GKEMv and KEMv and the 

interslice forces from the SSP will be referred to as “interelement forces”.  

In addition to comparing the values of the interslice and interelement forces, the 

ratio of the interelement interslice shear and normal forces are also compared. In the SSP, 

the ratio of the interslice shear and normal forces is a predetermined half-sine function 

multiplied by a scaling factor, 𝜆. According to Morgenstern & Price (1965), the ratio of the 

interslice shear to normal force can be represented by any function, so long as it is 

reasonable. The most accurate functions can be found through measurements of in-situ 

stress or calculated using the finite element method (Morgenstern & Price, 1965). The 
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Mohr-Coulomb failure criterion utilized to represent the shear failure along the boundaries 

of the elements in KEMv can also be thought of as an interelement shear force function 

that relates the interelement shear and normal forces. In this discussion, the ratio of the 

interslice and interelement shear to normal forces (i.e. 𝑋/𝐸) will be referred to as 

interelement force ratios.  

7.1 Homogeneous Slope 
 

In this section, the interelement forces for the homogeneous slope with the mixed soil 

presented in Section 3.1 is analyzed. The soil has a friction angle 𝜙 = 15°, cohesion          

𝑐 = 41.65 𝑘𝑃𝑎 and unit weight 𝛾 = 18.82 𝑘𝑁/𝑚3. The variations of the interelement 

forces and force ratios along the failure surface are shown in Figure 7.1.  

Figure 7.1(b) shows that the interelement shear and normal forces for all methods 

increase to a maximum value near the middle of the failure surface and decrease to 0 at the 

end of the failure surface. The peak magnitude of the interelement normal forces are similar 

but the peak magnitude of the GKEMv and KEMv shear forces are approximately 200 kN 

greater than those of SSP. The interelement shear and normal forces for all methods are 

nonlinear. The SSP and KEMv display negative shear and normal forces in the upper part 

of the slope.  
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Figure 7.1. (a) Critical slip surfaces, (b) interelement normal forces and (c) interelement 

force ratios for the homogeneous slope 
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The variation of the interelement force ratios are shown in Figure 7.1(c). For 

KEMv, the ratio decreases to approximately -11 at the crest and increases to approximately 

0.5 where it remains constant. The interelement force ratio for GKEMv increases to a 

maximum of 1.1 at its first boundary and similar to KEMv, decreases to approximately 0.5 

where it remains constant. The value of the interelement shear force is generally lower than 

the normal force, so this was unexpected. It seems apparent that the interelement force ratio 

in the KEM and KEMv are largest in magnitude at the first interelement boundary. Stolle 

& Guo (2008) applied the RFEM to the method of slices and computed interslice normal 

and shear stresses. They also observed that the ratio between the interslice shear and normal 

stress was high at the upper end of the sliding surface for mixed and especially for cohesive 

soils. The cohesive component of the shear force term in KEMv and GKEMv is 

independent of the normal force and is dependent on the height of the interelement 

boundary and the value of cohesion. The computed normal force for KEMv is low (in 

magnitude) and negative at the first interelement boundary. Thus, the computed 

interelement force is a relatively large (in magnitude) negative number. The primary 

difference between the GKEMv and KEMv was the location of the first element. It is likely 

that for this slope geometry and material properties, the selection of the element at the crest 

results in the development of negative normal interslice forces. The algorithm developed 

by Gussmann (2017) properly accommodates potential mechanisms wherein tensile forces 

develop. This likely resulted in the mechanism predicted by the GKEMv in which the first 

interelement boundary was located 15 m from the beginning of the slope.  
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7.2 Cohesive Slope 
 

In this section, the interelement forces for the 5 m high cohesive slope from Section 3.4 

(𝑐 = 25 𝑘𝑃𝑎) are examined. The variations of the interelement and interslice forces along 

the failure surfaces are shown in Figure 7.2.  

Similar trends are observed for the distribution of the interelement forces for the 

cohesive slope. This time, peak normal forces are nearly identical for all methods. The 

GKEMv and KEMv peak shear forces are greater than that predicted by SSP. In KEMv 

and GKEMv, the shear and normal forces are related by the Mohr-Coulomb failure 

criterion whereas the SSP assumes a half-sine function. The interelement shear forces are 

higher in KEMv and GKEMv because of the cohesive strength term (𝑐ℎ) where 𝑐 and ℎ 

are the cohesion of the soil and height of the interelement boundary, respectively. The 

normal forces for GKEMv and KEMv increase monotonically to the peak and decrease 

approximately linearly. The apparent linear decrease in the interelement normal force was 

likely due to the lack of elements. 

The interelement shear and normal forces obtained using GKEMv and KEMv are 

nearly identical. This was not observed for the case of the homogeneous slope as there is a 

greater difference in the location of the interelement boundaries and thus the failure 

surface. High interslice force ratios found in the upper parts of the slope agreed well with 

the conclusions made by Stolle & Guo (2008). Given that the interelement shear forces are 

higher in the KEMv and GKEMv for the cohesive slope, interelement force ratios are 

higher than those of the SSP.  
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Figure 7.2. (a) Critical slip surfaces, (b) interelement normal forces and (c) interelement 

force ratios for the cohesive slope 
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The analysis was carried out with the cohesion of the soil being 15 kPa and 20 kPa. 

The critical failure surfaces for the different cohesion values are shown in Figure 7.3 and 

the interelement forces and force ratios are shown in Figure 7.4. 

 

Figure 7.3. Critical slip surfaces for the cohesive slope with vertical boundaries and 

varying cohesion 
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Figure 7.4. (a) Interelement normal forces, (b) interelement shear forces and (c) 

interelement force ratios for varying values of cohesion 
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The interelement force ratios in Figure 7.4(c) vary for the different values of 

cohesion, indicating that the greatest difference lies in the computed normal forces. The 

force ratios for all values of cohesion display a maximum at the first element followed by 

a decrease to a stable value. Generally, GKEMv and KEMv give similar values for 

interelement forces and force ratios, except for the case where 𝑐 = 15 𝑘𝑃𝑎 as there is a 

significant difference in the element locations between GKEMv and KEMv. Based on the 

similarities in the computed interelement forces and factors of safety, we can conclude that 

the KEMv formulation derived in Chapter 5 provides solutions as accurate as Gussmann’s 

KEM with vertical boundaries. 

7.3 Cohesionless Slope  
 

In this section, the interelement and interslice shear forces for the 5 m high cohesionless 

slope from Section 3.5 (𝜙 = 30°) is examined. The variations of the interelement and 

interslice forces along the failure surface are presented in Figure 7.5. 

Unlike the cases of the mixed and cohesive slopes, the interelement forces from the 

SSP are greater than those of GKEMv and KEMv (by 6 orders of magnitude). While the 

absolute values of the interelement forces from the KEMv and GKEMV are lower, the 

force ratios are similar to that of the SSP. The force ratios for KEMv and GKEMv are 

identical and have a similar peak value as the SSP. The KEMv and GKEMv force ratios 

are somewhat parabolic whereas the SSP force function is a half-sine. 
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Figure 7.5. (a) Critical slip surfaces, (b) interelement normal forces and (c) interelement 

force ratios for the cohesionless slope 
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As discussed previously in Section 6.3, translational failure in cohesionless slopes is 

independent of the height of the failure. The average interslice height from the SSP 

program was 1x10-2 m while those of the KEMv and GKEMv were 4x10-8 m. Thus, the 

difference in the interelement forces between the methods was due to the discrepancy in 

heights.  

Summary  
 

• GKEMv and KEMv provide nearly identical values for interelement forces when 

slip surfaces are identical and the interelement boundary locations are similar. 

• For the case when the interelement boundaries are different, GKEMv and KEMv 

generally give similar distributions for the interelement normal and shear forces, 

including the peak values. However, they may differ in the location and magnitude 

of the maximum of the interelement force ratio. 

• In the case of the slope with the mixed soil, the peak values for KEMv and GKEMv 

were similar to that of SSP. However, that was not the case for the cohesive and 

cohesionless soil. Because shear resistance in interelement boundaries for KEMv 

and GKEMv is a function of cohesion, the computed interelement shear forces and 

thus, force ratio, were higher. All methods provided similar distributions and peak 

values for the interelement force ratio.  

• The distribution of forces and force ratios in KEMv and GKEMv was shown to be 

sensitive to the location of the interelement boundaries. For mixed and especially 

cohesive soils, the interelement force ratio encounters a maximum in the upper part 
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of the slope (at the first interelement boundary) caused by low, possibly negative 

values for the normal force. Following the maximum, the force ratio decreases to a 

constant value. These observations were also made by Stolle & Guo (2008) for the 

RFEM.   
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Chapter 8 Sensitivity Analysis 

Limited information is available in the English-speaking literature regarding the sensitivity 

of the kinematic element method to the selection of the number of elements required for 

the solution and changes in material properties. In this section, the solutions provided for 

the various slope problems utilizing different numbers of elements are compared. A simple 

parametric study was carried out to determine the change in the factor of safety and location 

of the critical failure surface with changes in material properties and slope orientations. 

The results of the parametric study will be compared to the predictions by the Morgenstern-

Price method obtained using the Slope Stability Program developed by Karchewski (2012).  

8.1 Number of Elements 
 

The variation in the solution from the KEM due to the refinement of the mesh is explored 

in this section for 3 different problems: a simple homogeneous slope, a slope with a weak 

layer, and a retaining wall. The analyses were carried out using 3, 5 and 10 elements where 

the mesh was refined with more elements. Horizontal mesh refinement was carried out for 

all problems with the division of the 5-element solution into two rows of elements (i.e. 10 

elements in total). Horizontal mesh refinement was found to have a marginal effect on the 

factors of safety with on average a 0.1% change, so it is not discussed in this section. 
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8.1.1 Homogeneous Slope 
 

For the case of a simple homogeneous slope, the example presented in Section 3.1 is 

examined. The soil has cohesion 𝑐 = 41.65 𝑘𝑃𝑎, friction angle 𝜙 = 15° and unit weight 

𝛾 = 18.82 𝑘𝑁/𝑚3. As observed in Figure 8.1, increasing the number of elements has a 

small effect on the critical slip surface. For the case of the 5-element and 10-element 

solutions, the critical slip surfaces are nearly identical. 

 

Figure 8.1. Variation of factor of safety and critical failure surface with increasing 

number of elements for the homogeneous slope 

 

An increase in the number of elements corresponded to improved accuracy in the factor of 

safety. The factor of safety obtained using 3 elements had a 4% difference relative to the 

reference value (1.429) presented in Table 3-1 while less than 1% difference was found 

using 10 elements. 
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8.1.2 Slope with a Weak Layer 
 

The effect of increasing the number of elements for a block sliding failure mechanism is 

discussed in this section using the example from Section 3.3.2 with the critical slip surfaces 

shown in Figure 8.2. The silt (Soil 1) has a cohesion 𝑐 = 28.7 𝑘𝑃𝑎, friction angle 𝜙 = 20° 

and unit weight 𝛾 = 18.85 𝑘𝑁/𝑚3. The weak layer (Soil 2) has a friction angle 𝜙 = 10° 

and the same unit weight as Soil 1.  

 

Figure 8.2. Variation of factor of safety and critical failure surface with increasing 

number of elements for the slope with a weak layer 

 

Both the 5-element and 10-element solutions display the block sliding mechanism 
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12 and 15 elements to determine if the solution converged with a higher number of 

elements, see Figure 8.3.   

 

Figure 8.3. Variation of (a) critical failure surface and (b) factor of safety with further 

mesh refinement for the slope with a weak layer 
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monotonically, which leads to the conclusion that KEM does not provide a bounding 

solution. It is possible that the factor of safety oscillates, in which case a reasonable 

estimate is approximately 1.3. The 5-element solution estimates a reasonably accurate 

factor of safety and an appropriate failure mechanism and surface. Fredlund & Krahn 

(1977) obtained a factor of safety of 1.378 for this problem using the Morgenstern-Price 

method, see Table 3-5. As stated previously in Section 3.3.2, the SSP provides a much 

lower factor of safety (1.207) for this problem even though it employs the Morgenstern-

Price method with the discrepancy caused by differences in the optimization algorithm and 

assumptions regarding the interslice forces. The 5-element solution and estimate of 1.3 

deviate from the reference value by approximately 2% and 5.6%, respectively. This margin 

of error is within the accepted range of the assumed rigorous limit equilibrium methods.  

8.1.3 Retaining Wall 
 

Next, we look at the influence of mesh refinement on the solution of the retaining wall 

problem from Section 3.7. The failure surfaces are shown below in Figure 8.4.  
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Figure 8.4. Variation of factor of safety and critical failure surface with mesh refinement 

for the retaining wall problem 

The 3 and 5-element solutions located similar mechanisms that includes a wedge 

behind the retaining wall and another below it. Both provided nearly identical factors of 

safety. Meanwhile, the 10-element solution was unable to locate the correct critical slip 

surface. Instead, it predicts a significantly larger global failure of the slope. Multiple 

attempts were required to find a feasible solution for the 10-element mesh as other solutions 

displayed tensile forces. The side of the retaining wall is essentially the surface of the slope, 

which has an inclination of 79º (i.e. sub-vertical). The KEM algorithm appears to 

experience difficulties when encountering tensile forces. This behavior was observed for 

the case of the homogeneous slope in Section 7.1 as well. The refinement of the mesh from 

5 to 10 elements likely made the analysis more sensitive to the presence of tension. There 

may not have been a configuration of the elements within the critical slip surface defined 

by the 3 and 5-element solutions for which tensile forces did not appear. An attempt was 

made to subdivide the 5-element solution vertically and horizontally to produce 10-element 

solutions in a roundabout manner. However, the solutions were found to be inadmissible 

due to tensile forces.  

The problem was also solved with 7 and 12 elements to determine if the solution 

converged with a higher number of elements, see Figure 8.5. Owing to the complexity of 

the problem (multiple materials, inclined crest), the maximum number of elements in a 

solution where the iterative scheme converged was 12.  
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Figure 8.5. Variation of (a) critical failure surface and (b) factor of safety with further 

mesh refinement for the retaining wall problem 
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the KEM was 40 m and the exit point of the 12 element solution is at approximately 34.5 

m, so the problem boundary likely has little influence on the solution. The solution clearly 

does not converge with further mesh refinement. However, it must be noted that increasing 

the number of elements from 3 to 5 decreased the factor of safety from 1.594 to 1.582 and 

had a marginal effect on the critical failure surface. The 5-element solution also compares 

well with the SSP (see Section 3.7), predicting a similar critical surface and a factor of 

safety within 2%. when refining the mesh from 3 elements to 5 elements. A 5-element 

solution for this retaining wall problem in terms of predicting an appropriate failure surface 

and factor of safety appears to be appropriate.  

8.2 Parametric Study 
 

As part of the sensitivity analysis, a parametric study was carried out to determine the 

change in the factor of safety and critical slip surface caused by varying soil properties 

(friction angle, cohesion, unit weight), as well as the slope geometry (slope height and 

angle). In this section, KEM solutions using 5 elements is presented. The slip surfaces in 

the SSP are automatically generated with the number of slices varying from 30 to 40. The 

base case for the study is a homogeneous slope with a height of 10 m and angle of 45º. The 

soil for the base case has a friction angle  𝜙 = 20°, cohesion 𝑐 = 20 𝑘𝑃𝑎 and unit weight 

𝛾 = 19 𝑘𝑁/𝑚3. In the parametric study, the results obtained using the KEM are compared 

to that obtained by the SSP. 
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Figure 8.6. Critical slip surfaces for the base case of the parametric study 

 

There is a slight difference (5%) in the FS between the two solutions. The factor of 

safety of the slope was also obtained using Janbu’s slope stability charts. A factor of safety 

of 1.3 was obtained, indicating only a 3.6% difference compared to the KEM solution. As 

observed in Figure 8.6, the KEM and SSP provide similar critical slip surfaces. The critical 

failure surfaces and corresponding minimum factors of safety presented for KEM are for 

5-element solutions as indicated previously. Table 8-1 summarizes the variation of the 

parameters. 

Table 8-1. Summary of parametric study variables 

Parameter Variance Increment 

Cohesion, c (kPa) ±10 5 

Friction Angle, φ (°) ±10 5 

Unit Weight, γ (kN/m3) ±2 1 

Slope Height, H (m) ±5 5 

Slope Angle, β (°) ±15 15 
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Janbu’s dimensionless parameter (𝜆𝜙𝑐 = 𝛾𝐻 tan𝜙 /𝑐) for this slope is 3.46, which 

indicates that a toe failure should develop as observed in Figure 8.6. As mentioned 

previously in Section 3.1, the value of 𝜆𝜙𝑐 can be used to predict the failure mechanism of 

the slope. It can also be used qualitatively to describe the change in the failure surface with 

soil properties. An increase in 𝜆𝜙𝑐 corresponds to the critical slip surface becoming 

shallower while a decrease corresponds to a deeper surface (Duncan & Wright, 1980).  

8.2.1 Cohesion 
 

The cohesion of the soil was varied from 10 kPa to 30 kPa while the unit weight, friction 

angle and geometry of the slope were held constant. The variation of the factor of safety 

and failure surface for some values is presented in Figure 8.7(a).  

As the cohesion of the soil increases the failure surface of the soil becomes larger. 

Janbu’s dimensionless parameter (𝜆𝜙𝑐) is inversely related to cohesion and as it increases, 

the failure surface becomes shallower. This trend is observed in Figure 8.7(a), where the 

failure surface becomes deeper with a rise in cohesion and factor of safety. 

The factor of safety obtained using both the KEM and SSP was found to increase 

linearly with cohesion as observed in Figure 8.7(b). Naderi (2013) carried out sensitivity 

analysis of the factor of safety for a general limit equilibrium formulation with a half-sine 

interslice force function using Geo-Slope’s SLOPE/W software. In the sensitivity analysis, 

the soil properties and slope geometry are varied. He observed a similar trend for the factor 

of safety where it increased linearly with cohesion. In the equation for shear failure, eq. 

(2.25), the cohesive component varies linearly with cohesion. Given that the shear force 
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varies linearly with cohesion, a linear variation in factor of safety with cohesion is not 

surprising.  

 

 

Figure 8.7. (a) Critical failure surfaces and (b) Factors of safety with variation in 

cohesion 

 

8.2.2 Friction Angle 
 

The friction angle of the soil was varied from 10º to 30 º while the unit weight, cohesion 
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corresponding to the selected values. The friction angle of the soil is positively correlated 

to 𝜆𝜙𝑐. Thus, an increase in 𝜙 should result in a shallower failure surface.  This behavior 

is confirmed by examining Figure 8.8 with the failure surface becoming shallower as 𝜙 

increases.  

 

Figure 8.8. (a) Critical failure surfaces and (b) Factors of safety with variation in friction 

angle 
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Similar to the results for a variation in cohesion, the factor of safety increases 

linearly with friction angle as observed in Figure 8.8(b). Increasing the friction angle 

improves the shear resistance along the slip surface, thus causing an increase in the factor 

of safety. Naderi (2013) made similar observations regarding the variation in FS with 

friction angle. This was unexpected as the frictional component for shear failure in eq. 

(2.25) is given by 𝑁 tan𝜙 which is a non-linear expression. To investigate this issue, the 

variation of tan𝜙 with 𝜙 was plotted in Figure 8.9. 

 

Figure 8.9. Variation of tan𝜙 with 𝜙 over the parametric study range 

 

 Figure 8.9 shows that while the tangent function is non-linear, it appears to be 
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8.2.3 Unit Weight 
 

In this section, the influence of unit weight on the factor of safety of the soil is addressed. 

The unit weight of the soil was varied from 17 to 21 kN/m3 while the cohesion, friction 

angle and geometry of the slope were held constant. Given that the unit weight of a soil 

varies far less than the friction angle or cohesion, the range of values tested was smaller.   

 

Figure 8.10. a) Critical failure surfaces and b) Factors of Safety with variation in unit 

weight 
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An increase in the unit weight of the soil causes the critical slip surface to become 

shallower as shown in Figure 8.10(a) although the change appears to be small. Similar to 

the friction angle, unit weight of the soil is positively correlated to 𝜆𝜙𝑐. Thus, an increase 

in 𝛾 results in a shallower failure surface, confirming the observations made previously.  

Figure 8.10(b) shows that the factor of safety of the slope varies linearly with the 

unit weight of the soil with the two quantities being negatively correlated. Since the weight 

of the soil is the driving force, a reduction in the unit weight of the failed mass increases 

the factor of safety, assuming the shear resistance is held constant. The results presented 

by Naderi (2013) corroborate those of this study.  

8.2.4 Slope Height 
 

This section examines the variation of the factor of safety with slope height. The height of 

the slope was varied from 5 m to 15 m while the slope angle and material properties were 

held constant. The critical failure surfaces for the different cases are provided in Figure 

8.11. 

The KEM and SSP provide nearly identical critical slip surfaces and factors of 

safety for both slopes. With an increase in the slope height, the factor of safety decreases 

non-linearly as shown in Figure 8.12.   

Both methods give nearly the identical values for the factor of safety. As the slope 

height rises, the effect of the increased volume of the failed mass has a greater effect on 

the stability of the slope than the larger failure surface and shear resistance. As the growth 
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in the driving force is greater than the resisting force, the factor of safety decreases. Also, 

this is not unexpected given that the shear stress in the soil increases as the steepness of the 

slope increases. 

 

 

Figure 8.11. Critical slip surfaces with different slope heights: (a) H= 5 m, (b) H= 10 m 
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Figure 8.12. Variation of factor of safety with slope height 

 

8.2.5 Slope Angle 
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the slope angles of 30º and 60º are shown in Figure 8.13.  

The critical failure surfaces and factors of safety obtained using KEM and SSP are 

similar. With an increase in the slope angle, the factor of safety obtained using both 

methods decreases, as one might expect. The variation is approximately linear as shown in 

Figure 8.14.  
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Figure 8.13. Critical failure surfaces with different slope angles: (a) β= 30º, (b) β= 60º 

 

 

Figure 8.14. Variation of factor of safety with slope angle 
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If we consider one of the factor of safety equations for Spencer’s method, eq. (2.18), 

we observe that the denominator consists of a sin 𝛼 term (component of the weight of the 

soil driving failure) while the numerator consists of a cos 𝛼 term (component of the weight 

of the soil resisting failure). As the slope angle (𝛽) increases, there is a corresponding rise 

in the base slice angle (𝛼) as well. As 𝛼 increases, the cos 𝛼 term (the resisting force) 

decreases while the sin 𝛼 term (driving force) increases. Thus, an increase in slope angle 

corresponds to a decrease in the factor of safety.  

8.3 Compilation of Slope Stability Analysis Results 
 

It was of interest to know how the KEM compares to the Morgenstern-Price method for 

various conditions. Thus, the factors of safety from the example problems in Chapter 3 and 

the parametric study in Section 8.2 were plotted in Figure 8.15.  

 

Figure 8.15. Compilation of factors of safety from analyses 
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The factors of safety in the blue dots correspond to the 5-element KEM solution. The red 

diamond corresponds to the 10-element solution (5-element solution with a horizontal 

subdivision) for the foundation problem in Section 3.6. Generally, the KEM predicts higher 

values for factor of safety than SSP. The average differences in the computed factors of 

safety is approximately 4%. As mentioned previously, the SSP provides lower values for 

the factor of safety compared to other limit equilibrium formulations, including other 

Morgenstern-Price method solutions. This difference is caused by the application of non-

circular critical slip surfaces along with different optimization algorithms. In some 

examples, such as the slope with a weak layer in Section 3.3.2, the KEM predicted a lower 

value for the factor of safety than the reference Morgenstern-Price solution. Thus, we can 

conclude that the KEM generally provides solutions as accurate as rigorous limit 

equilibrium formulations. 

Summary 
 

• For homogeneous slopes, a 3-element solution is sufficient to delineate the critical 

failure surface and obtain a reasonably accurate factor of safety. 

• Convergence issues were observed for more complex problems, such as the 

retaining wall. It is possible for the KEM algorithm to overestimate the factor of 

safety and critical failure surface for more complex problems when tensile forces 

appear in the solution. For more complex failures, the use of 5 elements is 

recommended to locate a reasonable failure mechanism and a reasonably accurate 

factor of safety.  
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• The kinematic element method provided results similar to those of the 

Morgenstern-Price method. The KEM displayed the expected trends in the 

variation of factor of safety with the parameters, such as linear relation between FS 

and cohesion, unit weight and friction angle. The change in failure surface with 

material properties displayed by KEM agrees with the empirical relations suggested 

by Janbu (1954).  

• These observations along with the results of Chapter 3, indicate that the KEM is a 

useful and accurate tool in slope stability analysis. The KEM seems to provide the 

same critical failure surface as the Morgenstern-Price method with the only 

difference being the use of vertical interslice boundaries. When used simply to 

locate the critical failure surface and corresponding minimum factor of safety, the 

kinematic element method is on par with the limit equilibrium method.  
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Chapter 9 Case Study: Embankment Failure 

Mitigation 

Thompson & Emery (1977) presented a case study of a bridge embankment where cracks 

were observed along with movement at the toe of the slope. The cracks and movement in 

the embankment were observed once its height was 9.8 m. This was a significant issue as 

the original planned height of the embankment was 14.3 m. The embankment was located 

in an area consisting of layers of lake clays overlain by glacial till with bedrock consisting 

of Queenston shale. The fill material was obtained from another construction site and 

consisted of a mixture of silt, clay, sand, silty sand, and clayey silt. In the original design 

of the embankment, slope stability analysis had been carried out, in which the critical 

failure surface was expected to be circular. The inclination of the slope was designed such 

that the factor of safety during construction (i.e. short-term stability) was 1.8. Based on the 

initial stability analysis, the slope should not have shown signs of potential failure. A site 

investigation was carried out and a weak layer, likely inadvertently created during 

construction, was located below the fill. Finite element analyses were subsequently 

performed, which predicted that high shear stresses should develop in the weak layer below 

the fill, indicating that the slope could potentially fail along the weak layer. Various 

mitigation measures were considered, and the final decision was to construct a berm 

consisting of the same material as the fill with a width of 12.2 m and height of 5.5 m. The 

material properties of the embankment layers are summarized in Table 9-1.  
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Table 9-1. Embankment material properties (Thompson & Emery, 1977) 

Material su (kPa) γ (kN/m3) 

Fill 143.7 21.36 

Weak Layer 38.32 21.36 

Clayey Silt (very stiff) 143.7 19.95 

Clayey Silt (firm) 35.95 20.42 

Silt Till 431.1 21.84 

 

The cross-section of the embankment at its final height along with the berm is 

shown in Figure 9.1. 

 

Figure 9.1. Cross-section of the bridge embankment; adapted from Thompson & Emery 

(1977) 

 

The critical failure surfaces obtained using the SSP and the KEM are presented in 

Figure 9.2. The critical failure surface provided by the KEM shows a block sliding 

mechanism along the weak layer below the fill.  

0

5

10

15

20

25

30

0 10 20 30 40 50 60

y
 (

m
)

x (m)

Fill

Berm

Silt Till

Clayey Silt (very stiff)

Weak Layer

Clayey Silt (firm)

Bedrock



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

105 

 

 

Figure 9.2. Critical failure surfaces of the bridge embankment 

 

The function of the berm was to decrease the shear stresses in the slope and to 

provide additional weight to resist the failure (Duncan, et al., 2014). The SSP displays the 

same mechanism with a similar critical failure surface. The results of the KEM agree with 

those of the FEM carried out by the authors and confirms their suspicions. The KEM 

provides a factor of safety of 2.480 for the slope which is slightly higher than what was 

obtained using the SSP. As observed previously in Section 3.1 and 3.3.2, the SSP 

underestimates the factor of safety for failure in slopes with mixed soils and especially in 

the case of the block sliding mechanism. Thus, the factor of safety of 2.48 provided by the 

KEM is reasonable and significantly larger than the preferred FS of 1.8. This indicates that 

the slope was safe during construction and the objective of the designers was clearly met.  

The kinematics of the slope movement are presented in Figure 9.3. The active 

condition is represented in elements 1 and 2 with element 5 representing the passive wedge. 
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Figure 9.3. Kinematics of the embankment failure 
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the weak layer. Element 5 is forced to translate towards the right and the soil in it is 

displaced and forced to move upwards. One of the benefits of the KEM is that the potential 

failure mechanisms can be clearly observed. It is interesting to observe that the entire berm 

is incorporated into the sliding block. It is quite clear that with the addition of the berm, 

the active wedge pushes against a significantly larger block, leading to a higher factor of 

safety.  
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Chapter 10 Concluding Remarks and 

Recommendations 

The kinematic element method was shown to be effective for a wide range of slope stability 

problems. KEM is a powerful technique for experienced engineers that requires some, a 

priori, insight with regard to the most likely failure mechanism. It is more versatile but 

does not lend itself to simple automation that LEMs based on the method of slices enjoys. 

The kinematic element method generally located the appropriate failure mechanism, 

whether it be a circular failure for an embankment or a block sling mechanism for a slope 

with a weak layer. Generally, the KEM provided similar critical failure surfaces as the 

Morgenstern-Price method. The differences in the computed factors of safety between the 

two methods were within the range expected for limit equilibrium methods that satisfy all 

conditions of equilibrium. The KEM had difficulties with the foundation problem, where 

it located the appropriate failure mechanism and provided a similar critical slip surface as 

the Morgenstern-Price method, but significantly overestimated the factor of safety. 

Horizontal mesh refinement of the 5-element KEM critical slip surface provided a factor 

of safety which was similar to that of the Morgenstern-Price method solution and the 

reference Spencer’s method solution.  

The sensitivity of the KEM solution (critical slip surfaces and minimum factor of 

safety) to the number of elements was investigated. A 5-element solution was found to be 

ideal in terms of locating the appropriate failure mechanism and providing a reasonably 
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accurate estimate of the factor of safety. For more complex problems, the KEM algorithm 

had convergence issues. In the retaining wall problem, the factor of safety and critical 

failure surface continued to increase. This was attributed to tensile forces being produced. 

For a lower number of elements, the location and values of tensile forces were not identified 

due to the procedure calculating “best” average values. The option of inserting a tension 

crack should be included in the KEM program to relieve tensile forces in the solution and 

to ensure the appropriate critical failure surface and corresponding minimum factor of 

safety is obtained. In the sensitivity analysis, for the given problems, horizontal mesh 

refinement had little impact on the factor of safety. However, this was not the case for the 

foundation problem where it reduced the factor of safety by 16%.  It is recommended that 

more embankment problems should be analyzed using KEM to find if the factor of safety 

is overestimated. For the cases where the factor of safety is overestimated, horizontal and 

vertical mesh refinement should be carried out to determine their impact. It is further 

recommended to carry out horizontal mesh refinement for a variety of slope problems, 

similar to those in Chapter 3.   

In Chapter 4, the KEM appeared to accurately display potential failure kinematics. 

Slope failure was also discussed in terms of earth pressure theory and related to the KEM 

solution. Elements in the KEM which are in active pressure display downward movement, 

while elements in passive pressure move upwards. The transition from active to passive 

pressure in a 5-element solution is abrupt. For further study, it would be interesting to 

produce a 20-element solution to delineate a smoother slip surface and better determine 

where the transition from active to passive pressure occurs.  
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In Chapter 5, the derivation of the KEMv showed a simplified version of how the 

KEM mechanism. In Chapter 6, the effect of restricting the interelement boundaries to 

vertical lines was explored. This restriction generally overestimated the factors of safety 

and resulted in more rigid failure surfaces. The KEMv solution was compared to GKEMv 

and was found to predict similar values for the factor of safety for a given slip. Generally, 

the interelement forces and force ratios for KEMv and GKEMv were similar. For the cases 

where the interelement boundaries were identical, nearly identical values were computed. 

The KEM was originally defined by Gussmann (1982) to be an upper bound solution while 

the KEMv was based on limit equilibrium principles. Given the similarities between the 

computed factors of safety and interelement forces, the KEM may be a limit equilibrium 

solution. To confirm this, the KEMv should be extended for inclined interelement 

boundaries and the factors of safety for similar slip surfaces should be compared. The 

extension of KEMv for inclined boundaries may help better define the KEM solution. The 

KEMv should also be modified to include multiple soil layers, remove requirements of 

interelement boundaries at the toe and crest, and add the option for effective stress analysis 

with pore water pressures (i.e. a piezometric line).  

In Chapter 7, the interelement forces in KEMv and GKEMv were shown to be 

sensitive to the location of the elements. For mixed and cohesive soils, smaller normal 

forces were computed in the upper parts of the slope while shear forces were relatively 

high due to the cohesive strength. Thus, large interelement force ratios are computed in the 

upper parts of the slope. To further investigate the sensitivity of the interelement forces, 

the boundary locations should be varied. The locations of interelement boundaries cannot 
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be specified in GKEMv, but it is possible in KEMv.  The location of the interelement 

boundaries for a given slip surface should be varied in KEMv to compare interelement 

forces and force ratios.  

In Chapter 8, a parametric study was carried out to determine the effect of varying 

soil parameters and slope geometry on the critical slip surfaces and minimum factors of 

safety. The change in critical slip surfaces predicted by KEM was consistent with empirical 

relations suggested by Janbu’ dimensionless parameters. The trends in factors of safety 

paralleled that of the Morgenstern-Price method. The factors of safety computed by KEM 

were approximately 4% higher than those of the Morgenstern-Price method. As stated 

previously, this variance is within the tolerance for rigorous limit equilibrium methods.  
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Appendix: MATLAB Code for a 3-Element 

KEMv Solution 

The KEMv solution requires the use of two driver programs. As discussed in Section 5.3, 

the factors of safety and error function are determined by incrementally increasing the 

factor of safety. The driver program associated with this is kem2.m. Once the factors of 

safety, error function and mobilized shear forces are computed, the appropriate range for 

application of the bisection method is determined. The driver program which executes the 

bisection program is kem.m.  

Driver Program for kem2 
 

%  kem2.m 

%----------------------------------------------------------------

------------ 

  

%   xg,yg  = global coordinate values of each node 

%   ico = nodal connectivity of each element 

                                         

%----------------------------------------------------------------

------------             

  

clear; 

idata; 

ER = []; 

F0 = 0.28; 

Forces= []; 

 

for iter = 1:101   

  F0 = 0.02 + F0; 

  [err,N1,N2,N3,E2,E3,X2,X3,T1,T2,T3] = 

solver(F0,phif,cf,tx(1),ty(1),tx(2),ty(2),tx(3),ty(3),l(1),l(2),l

(3),h(2),h(3),W(1),W(2),W(3)); 
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  ER = [ER; F0, err]; 

  Forces= [Forces; F0,N1,N2,N3,E2,E3,X2,X3,T1,T2,T3]; 

end 

  

plot(ER(:,1),ER(:,2)); 

  

fileID = [fname, '.out']; 

fileIDx = fopen(fileID,'w'); 

fprintf(fileIDx,'%6s %6s\r\n','FS','Error'); 

fprintf(fileIDx,'%6.3f %6.2f\r\n',ER'); 

  

fprintf(fileIDx,' \r\n','FS','Error'); 

fprintf(fileIDx,' \r\n','FS','Error'); 

  

fprintf(fileIDx,'%6s %6s %6s %6s %6s %6s %6s %6s %6s %6s 

%6s\r\n','FS','N1','N2','N3','E2','E3','X2','X3','T1','T2','T3'); 

fprintf(fileIDx,'%6.3f %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f 

%6.1f %6.1f %6.1f \r\n',Forces'); 

fclose(fileIDx);  

  

file_id= [fname, '.xlsx']; 

xlswrite(file_id,'FS','Error','B1'); 

xlswrite(file_id,ER,'Error','B2'); 

xlswrite(file_id,Forces,'Forces','B2'); 

warning('off','MATLAB:xlswrite:AddSheet'); 

 

Driver Program for kem 
 

%  kem.m 

%----------------------------------------------------------------

------------ 

  

%   xg,yg  = global coordinate values of each node 

%   ico = nodal connectivity of each element 

                                         

%----------------------------------------------------------------

------------             

  

clear; 

idata; 

ER = []; 

Forces= []; 

 

a= input('Enter lower bound of FS: ');  

b= input('Enter upper bound of FS: '); 
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%for iter = 1:100 

% a = 0.02*iter+0.5; 

 [fa,N1a,N2a,N3a,E2a,E3a,X2a,X3a,T1a,T2a,T3a] = 

solver(a,phif,cf,tx(1),ty(1),tx(2),ty(2),tx(3),ty(3),l(1),l(2),l(

3),h(2),h(3),W(1),W(2),W(3)); 

 [fb,N1b,N2b,N3b,E2b,E3b,X2b,X3b,T1b,T2b,T3] = 

solver(b,phif,cf,tx(1),ty(1),tx(2),ty(2),tx(3),ty(3),l(1),l(2),l(

3),h(2),h(3),W(1),W(2),W(3)); 

 ER = [ER; a, fa; b fb]; 

 Forces= [Forces; a,N1a,N2a,N3a,E2a,E3a,X2a,X3a,T1a,T2a,T3a]; 

 Forces= [Forces; b,N1b,N2b,N3b,E2b,E3b,X2b,X3b,T1b,T2b,T3b]; 

%end 

  

if fa*fb > 0  

  disp('Wrong choice') 

else 

  p = (a + b)/2; 

  [fp,N1,N2,N3,E2,E3,X2,X3,T1,T2,T3] = 

solver(p,phif,cf,tx(1),ty(1),tx(2),ty(2),tx(3),ty(3),l(1),l(2),l(

3),h(2),h(3),W(1),W(2),W(3)); 

   ER = [ER; p, fp]; 

  err = abs(fp); 

  Forces= [Forces; p,N1,N2,N3,E2,E3,X2,X3,T1,T2,T3]; 

  while err > 0.00005 

  if fa*fp<0  

    b = p; 

  else 

    a = p;           

  end 

    p = (a + b)/2;  

   [fp,N1,N2,N3,E2,E3,X2,X3,T1,T2,T3,F_v,F_h] = 

solver(p,phif,cf,tx(1),ty(1),tx(2),ty(2),tx(3),ty(3),l(1),l(2),l(

3),h(2),h(3),W(1),W(2),W(3)); 

    ER = [ER; p, fp]; 

    err = abs(fp); 

    Forces= [Forces; p,N1,N2,N3,E2,E3,X2,X3,T1,T2,T3]; 

  end 

end 

  

plot(ER(:,1),ER(:,2)); 

  

fileID = [fname, '.out']; 

fileIDx = fopen(fileID,'w'); 

fprintf(fileIDx,'%6s %6s\r\n','FS','Error'); 

fprintf(fileIDx,'%6.3f %6.2f\r\n',ER'); 

  

fprintf(fileIDx,' \r\n','FS','Error'); 

fprintf(fileIDx,' \r\n','FS','Error'); 
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fprintf(fileIDx,'%6s %6s %6s %6s %6s %6s %6s %6s %6s %6s 

%6s\r\n','FS','N1','N2','N3','E2','E3','X2','X3','T1','T2','T3'); 

fprintf(fileIDx,'%6.3f %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f 

%6.1f %6.1f %6.1f \r\n',Forces'); 

fclose(fileIDx);  

  

file_id= [fname, '.xlsx']; 

xlswrite(file_id,'FS','Error','B1'); 

xlswrite(file_id,ER,'Error','B2'); 

xlswrite(file_id,Forces,'Forces','B2'); 

warning('off','MATLAB:xlswrite:AddSheet'); 

 

Function for Storing Geometry and Element Information 
 

The idata.m function reads the nodal information from the input file to determine the 

geometry of the elements and the unit vectors for the shear forces. Also, the soil material 

properties (unit weight, cohesion and friction angle) are read from the command window 

following prompts. Given the geometry of the elements and the unit weight, the weight of 

each element is calculated.  

 

%  idata.m 

%  Input data 

  

nnodel=4;                   % number of nodes per element 

nnodlb=2;                   % number of nodes per element on 

boundary 

nvar=2;                     % number of dofs per element 

  

fname = input(' Enter the name of file .... ','s');  

file1 = [ fname '.nnd']; 

  

gama= input('Enter Unit Weight: '); % unit weight of material 

phif= input('Enter Friction Angle: ');%% friction angle of 

material 

cf= input('Enter Cohesion: ');    % cohesion of material 

 

%--------------------------------------------- 

%  input data for nodal coordinate values 

%  xg,yg - global coordinates 
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%--------------------------------------------- 

  

innodes = fopen(file1,'r'); 

[a] = fscanf(innodes,'%g %g',[2,inf]); 

a = a'; 

nnod = size(a,1);       % total number of nodes in system   

fclose(innodes); 

xg(:,1) = a(:,1); 

yg(:,1) = a(:,2); 

a = []; 

  

nel = nnod/2-1; 

  

%  determine the element numbering and 

%  the geometric characteristics of the elements, 

%  and weights of the elements  

 

h(1) = 0.0; v = 1.0; 

  

for i = 1:nel 

  i0 = 2*i-1; 

 ico(i,1) =  i0; ico(i,2) =  i0+2; ico(i,3) =  i0+3; ico(i,4) =  

i0+1; 

 nd = ico(i,:); x = xg(nd(:));  y = yg(nd(:)); 

 h(i+1) = y(3)-y(2);  

 dx(i) = x(1) - x(2); dy(i) = y(1) - y(2); 

 l(i) = sqrt(dx(i)^2+dy(i)^2);  

 tx(i) = dx(i)/l(i); ty(i) = dy(i)/l(i);  

 area(i) = abs(dx(i)*(h(i+1)+h(i))/2);   

 W(i) = gama*area(i); 

end 

  

Solver Function 
 

The main driver programs kem.m and kem2.m call the same solver program, solver.m. The 

primary value of interest to the driver programs from the solver function is the 𝐸𝑟𝑟𝑜𝑟. The 𝐸𝑟𝑟𝑜𝑟 

values from kem2.m are utilized to determine the appropriate range for the solution. In the kem.m 

program, the bisection method algorithm is a function of 𝐸𝑟𝑟𝑜𝑟. 

 

 



M.A.Sc. Thesis – A. Kader; McMaster University – Civil Engineering 

121 

 

%solver.m 

 

function [ErrorF,N1,N2,N3,E2,E3,X2,X3,T1,T2,T3] = 

solver(F0,phif,cf,tx1,ty1,tx2,ty2,tx3,ty3,l1,l2,l3,h2,h3,W1,W2,W3

) 

% solver determines that factor of safety for a given failure 

mechanism 

% Must enter with an initial guess for the factor of safety F 

  

tm = tand(phif)/F0; cm = cf/F0;  

det1 = tm^2*tx1+2*tm*ty1-tx1;   

det3 = tm^2*tx3+2*tm*ty3-tx3;  

%det2 = tx2^2+ty2^2=1; 

  

% slice 1 (first) 

N1 = (-cm*l1*tm*tx1-cm*l1*ty1-cm*h2+W1)/det1;  

E2 = (-cm*h2*tm*tx1-cm*l1*tx1^2-cm*l1*ty1^2+W1*tm*tx1-

cm*h2*ty1+W1*ty1)/det1; 

T1= N1*tm+ cm*l1; 

X2= E2*tm+ cm*h2; 

  

% slice 3 (last) 

N3 = (-cm*l3*tm*tx3-cm*l3*ty3+cm*h3+W3)/det3;  

E3 = -(cm*h3*tm*tx3-cm*l3*tx3^2-

cm*l3*ty3^2+W3*tm*tx3+cm*h3*ty3+W3*ty3)/det3; 

T3= N3*tm+ cm*l3; 

X3= E3*tm+ cm*h3; 

  

% slice 2  (middle) 

% det2 = (tx2^2+ty2^2) 

N2 =  -(E2*tm*tx2-E3*tm*tx2+cm*h2*tx2-cm*h3*tx2+W2*tx2+E2*ty2-

E3*ty2);  %/det2;  

T2 = (E2*tm*ty2-E3*tm*ty2+cm*h2*ty2-cm*h3*ty2+W2*ty2-

E2*tx2+X3*tx2);  %/det2; 

 

 

% in the MATLAB code, FS’ is not explicitly calculated as only   

% the Error value is required for the bisection method algorithm 

 

ErrorF = (N2*tand(phif) + cf*l2)/T2 - F0; 

end 

  

 

 

 

 


