
\
\

\
\

A NEW COMPUTER PROGRAflll'11ING LANGUAGE

A NEW COMPUTER PROGRAMMING LANGUAGE

FOR THE

PARALLEL PROCESSING ENVIRON~ffiNT

By

JOHN N, WOLKOVISKI~ Be Enge

A Thesis

Submitted to the School Of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Engineering

McMaster Universi~y

(May) 1972

MASTER OF ENGINEERING (1972) McMASTER UNIVERSITY
(Electrical Engineering) Hamiltonf OntarioG

TITLE: 	 A New Computer Programming Language for the
Parallel Processing Environment

AUTHOR: 	 Johno Nc Wolkowski, B. Enge (McMaster University)

SUPERVISOR~ Dre Eo Della Torre

NUMBER OF PAGES s v 149

ii

A new high-level~ high-order computer programming

la guage designed to complement multi~processor, parallel

co,puting systems is presented, These systems permit a high­

or4er of operation by performing many instructions simultane­

ou~ly, thus producing significant increases in computing

The proposed language is so constructed as to give

the user a free and natural formatv to express problems

which exhibit natural or inherent parallelism® In order to
I

I

demlonstrate some of the main features, a small subset of the

language has been writtene and implemented as a sequential

sim~lationa

In order to relate the language to hardware schemes~

a p~rallel processing array computer is briefly examinede
I

A core language to communicate with parallel comput­

ing systems may be constructed from the concepts developede

iii

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to

the Department of ·Electrical Engineering for providing

its facilities and assistance and to Dr. E. Della Torre

for his guidance and encouragement.

Thanks are given to Karl Siemens, Bob Tiernay and

the other graduate students in the department for many

and useful discussions.

The author also wishes to thank Mrs. J. Wolkowski

for her assistance and long hours in typing this manuscript.

iv

TABEL OF CONTENTS

Chapter -1­

Chapter -2...,

Chapter -3-=

Chapter =4""'

Chapter -5­

Chapter co6­

Appendix I

Appendix II ...

Appendix III

Appendix IV

INTRODUCTION e e • • • • • • • • • e o -1­

PARALLEL PROCESSING
AND PALTRAN •~o••••••·~~· =8­

THE PALTRAN PROGRAMIVIING
LANGUAGE • e 11 e·o • • • • • e e IJ -46­

PALTRAN IMPLEMENTATION

THE MATR.IX
PROCESSOR ~ e • e e e e • • • o • •

CONCLUSIONS

The Paltran Character Set
and Key VIOrds 0 ~ ••• el li) Ill e 11 • f) 0 -83­

The SET Statement
• • • • • 0 • • • • • • • -88­

References and
Bibliography • • e • e o • • e • • e o -98­

The Paltran - 8 Users

Handbook ••••••••••••• -102~

v

CHAPTER ONE

INTRODUCTION

This thesis describes the basis on which the pro­

positions for a new programming language, to communicate

with parallel computing systems, are founded. For purposes

of discussion, the acronym PALTRAN (PAralleL TRANslation)

will be adopted as a name for the language.

Parallel Processing and the basis for Paltran will

be discussed in the next chapter. Chapter three describes

the proposed statement forms and syntax of the language.

The version of the language written for a Digital Equipment

Corporation PDP-8 minicomputer is discussed in Chapter four.

A general model of an array processor, on which Paltran

commands are based, is presented in the next section.

The remainder of this chapter is devoted to the

motives and needs for parallel processing and generally

· related language descriptions.

- 1 ­

2

Motivation for Parallel Processing

Several reasons can be cited for justifying

interest in parallel processing organizations, namely,

functional and hardware or economicc Even if application

or functional requirements cannot justify a parallel organi­

zation, the economics of new hardware technologies may

still do so.

Functional reasons for parallel processing may be

divided into four areas. These include, very large compu­

tational problems, problems with inherent parallelism,

multi-programming and simultaneous use by many users, and

reliability and graceful degradation. The latter two areas

are somewhat divorced from high-level language considera­

tions, while the former are directly dependent on efficient

communications with the hardware.

History has shown that, at any given point, very

large processing and computation problems place require­

ments on a system that exceed those which can be implemented

with conventional compute~ organization using state-of-the­

art circuit and memory speeds available at that point.

In spite of the increasing speeds of logic circuits,

memories and input/output equipment, requirements for

processing and computation capabilities have increased at

a somewhat comparable rate. As computer power increases,

there is a continuing pressure to solve problems for which

I 3

solutions have been impossible in the past. Examples of

such problems include the global weather problem, nuclear

physics problems, economic planning, traffic management,

and others in which an array of data points are processed.

Problems, or parts of problems, may contain struc­

tures that are inherently parallel, Such parallelism may

result from the presence of several data streams which can

be processed simultaneously under the control of'.a single

instruction stream. Row or column operations on matricies

are typical examples. Another type of inherent parallelism

results from the requirement to perform several relatively

independent processing operations and different sets of

data be~veen two·points in the program.

Hardware and economic reasons for parallel process­

ing may sometimes outweigh functional ones. Some of the

new developments and technologies, such as large-scale

integrated circuits, LSI semiconductor memories,

nondestructive-read out plated wire memories, optical

techniques, etc., may be used more effectively in some

form of parallel organization. A highly parallel organi­

zation or functional organization provides an approach to

the repetitive use of large arrays. In a parallel system

implemented with LSI arrays, a few chips may be unique,

but a large percentage could be identical, thus providing

design and manufacturing economies.

4

Recent advances in LSI memory techniques also

tend to make parallel organizations attractive, It is no

longer economically necessary to design around a large

central memory. The total internal memory capacity can

be distributed over a number of smaller memory modules

which can be accessed in parallelQ

5

Programming Languages in the Parallel Environment

Computer programming languages have evolved con­

siderably; however, they share the problems encountered

with natural languages. While there are many rules and

regulations to be observed, there exists no formal defini­

tion or means of constructing them.. The exception to this

is ALGOL1 , which was the first language in which the syn­

tax was defined with a formal notations It is interesting

however, that a large class of users found the notation

difficult to read. The very value of the formal definition

contributed to a lesser usage of the language simply because

it discouraged people. The view has been taken that tlle

only complete definition of a language is a compiler for

that languageG This is justified in some respects since

the rule and regulations are well-documented and a program

can be written and executed rather than be limited to

abstract discussion.

Since parallel processing is in its formative

stages, with many eventualities still unexplored, a formal

definition for Paltran will not be attempted at this time.

Rather, the language will be described in terms of its

technical characteristics with the view that future com­

pilers will be based on them. Since parallel processing

systems will tend to be somewhat unique and have their own

individual language requirements, a detailed description

of Paltran will not be given. The various forms of

6

input/output statements, compiler directivesp etc. will

be determined by the needs of individual installations.

Before discussing parallel processing further,

certain general obj~ctives as to the proposed form of

the language may be statede The first languages to gain
~

wide acceptance were those that enabled problems in the

scientific and engineering fields to be solved. FORTRAN2

is the best example of thise It is also interesting to

note that the first electronic digital computers were

"number crunchers•e rather than list, string or character

processorso Existing computers that are organized in a

parallel fashion are·all primarily designed for mathemati­

cal computationo In this regardg Paltran is to be a

procedure-orientedf problem-oriented, and problem solving

language, designed primarily for numeric, scientific

calculationCl As experience with parallel processing in

general is gained, list and string, as well as business

data processing capabilities, may be addeda This implies

that Paltran is to be a general purpose computer programming

language and is not to be restricted to specific machines

or applicationsg

Experience with other languages has shown that

certain types of operations or commands tend to be common

to these languages. In general, some means of expressing

mathematical problems (equations, :formulae, etc.) are

7

provided. The results of calculations performed during

these operations can usually be tested or examined, and

decisions to alter data or program flow can be made,

Some method of repe.ating portions of programs many times

in the form of loop control commands are provided as well

as means for effecting data transmission (I/O), data

naming, memory allocation, etc. Some languages also

have ·provisions for error checking and debugging.

In addition to these standard features, certain

mathematical operations with inherent parallelism should

be incorporated in Paltran. Such operations include,

matrix operations, numerical integration and differentia­

tion, sum and continued product operations, simultaneous

evaluation of functions over given ranges, etc. Since

data involved in these operations tend to be grouped in

large structures, suitable means for shaping or manipu­

lating the physical form of the data would be desirable.

With these preliminaries in mind, we see that

Paltran is to be a new language with capabilities of

describing mathematical operations that have natural parallel

· structureso

The next chapter further discusses parallel pro­

cessing; in light of this, a preliminary outline of Paltran

is described.

CHAPTER TWO

PARALLEL PROCESSING AND PALTRAN

8

9

Introduction

Computing speed can increase by several orders of

magnitude by permitting many operations to be done at the

same time. It will be generally agreed that increases in

computation speed is a good thing; in some instances, the

objective of having faster computers may be seriously

questioned~ The long-standing problem has been that of

idling processors while INPUT/OUTPUT equipment and other

peripherals took their time. The earliest and most common

form of parallel processing was (and still is) in fact

simultaneous I/O computation. Numerous satellite com~

puters 11 connected to data channels would process all input

and output {ieee formattinge conversion@ peripheral con­

trol, etc.) perhaps through a.s many as three or more

buffering stages. These satellite computers were relatively

slow, while a fast central processor was reserved exclu­

sively for calculation. However, as new and larger pro~

blems are tackled (where I/O is relatively unimportant)~

the age of the processor-bound computer is fast approachinge

Virtually every computer made to this day incor­

porates only one central processor and runs in a sequential

mode when executing instructions. There are configurations

of two central processor machines that run in a foreground­

background mode, as well as configurations with many

10

peripheral processors in addition to the one central pro­

cessor. These are attempts to reduce the time needed to

execute a sequence of instructions, but still only one

major operation at a time is actually done. In order to

decrease the time taken to do a given problem, two solu­

tions are apparent. One way (the most obvious up to now)

is to increase the operating speed of the hardware. How­

ever,- there are limitations to this solution which are

finite in nature. The switching times of electronic com­

ponents are now comparable to the time taken by pulses to

propagate (i.e., at approximately the time taken by light

to travel a similar distance) along wiring between these

components. Since there is a limit on how small compon­

ents (and systems) can be made, a maximum possible operating

speed will be reached. In fact, mode~n 4th-generation

computers are faced by these problems. The other way of

increasing through-put is to do more things at once.

11

Forms of Parallel Processing

Certain problems lend themselves more to parallel

execution than others. If arrays or vectors of many ele­

ments are involved,. the savings are very large. For

examples If one processor is available and it is required

to multiply an n x n matrix by a scalar, then n2 sequential
2multiplications must occur. If n or more processors are

available, the multiplications can be carried out all at

the same time and a speed factor of n2 is gained. For some

problems, it may be possible to segment the program into

parts which can be run independently and, at the same time,

combining results at the end.

On a smaller scale, parallel processing can take on

slightly different forms. Loops like Fortran. DO and

Algol FOR can sometimes be eliminatedt arithmetic strings

can be decomposed into independent substrings and calculated

in parallel.

The analysis of existing programs in order to dis­

cover parallelism in the algorithm has received considerable

attention in the literature). When two successive opera­

tions reference distinct variables, they may be performed

simultaneously or in either order. Subexpression analysis

has been performed to discover parallelism within arithmetic

expressions. As an example, consider the two statementsc

12

X =A+B + C*D

Y =E/G + F*H

The input sets for the expressions are disjoint and each

statement may be calculated independently and at the same

time. On a smaller scale, the subexpressions A+B, C*D,

E/G, and F*H can also be calculated in parallel. Numerous

software and hardware4 algorithms have been developed to

implement this aspect of parallel processing. In general,

the programmer has no control over how a given program will
I

be broken down for execution.

Scope of Parallel Processing

System organization as found in existing or pro­

posed hardware can be examined in the light of the pre­

viously discussed forms of parallel processing. Parallel

processing is interpreted broadly to include any type of

system organization in which multiple operations are

accomplished simultaneously, or multiple hardware control

or processing units are working simultaneously. This

includes multicomputer systems, multiprocessors, associ­

ative processors, array or network processors, and

13

functionally partitioned systems. Parallel processors

have been broadly classified into three categories5 which

consist of general purpose network computers, special

purpose· network computers characterized by global parallel­

ism, and nonglobal computers where each module is only

semiindependent or locally parallel.

General purpose network computers can be further

divided into parallel networks with a common central

control and parallel networks with many identical process­

ing elements, each capable of independent execution.

Special purpose network computers can be divided into

pnttern processo~s and associative processors.

Another approach to classification is to consider

classes of units capable of parallel operation, namely:

control functions, functional processing units and data

streams.

Parallel control units can simultaneously provide

independent instruction streams, either operating on parts

of the same problem or on different problems. Parallel

functional processing units, which may be identical or

which may differ, can simultaneously operate on either a

single or multiple data stream under control of a single

or multiple control unit. Parallel data streams may be

operated upon under the control of an identical instruction

sequence performing the same operation on each data stream

simultaneously, or by independent instruction sequences

14

operating independently on each data stream. Although

this approach to classification is relatively clear cut

from the conceptual standpoint, many of the parallel

processing systems that have been developed or proposed

do not fall neatly into one or the other of these cate­

gories. In fact, some of them involve parallel control

units, parallel functional processing units, and parallel

data streams in the same system.

If existing parallel systems are grouped together,

the following four categories can be established.

1. Multicomputers and Multiprocessors

These systems consist of several complete computers

interconnected in a manner which facilitates the transfer

of data and the assignment of processing tasks between

them. This permits individual units to work on different

parts of the same problem or on different programs in an

overall problem. Other systems include several processing

units sharing common memory and common I/O equipment. A

high level control unit may be used to control the transfer

of data and to assign tasks and sequences of operations

between the different processors. The IBM 90206 is an

example of such a system.

2. Associative Processors

An associative processor utilizes associative memory

techniques but with the inclusion of additional processing

1.5

logic at each cel-l or word location to permit actual

processing operations on each word of datam As associ­

ative memory is a device capable of retrieving stored

data by means of testing part or all of the contents of'

each word simultaneously (by hardware means) in order to

find one or many desired wordsv An associative processor

performs one operation on N operands simultaneously. An

example of such a system is the Goodyear Associative

Processor7
o

)e Network or Array Processors

Network or array processors involve a large number

of processing units interconnected in some form of network,

frequently a matrixe Some array processors have completely

distributed control functions, although recent designs

include a central control in addition to the local control
8within each processing unit. The ILLIAC rv system and

Litton's Block Oriented Computer9 (BOC) are examples.

4. Functional Organizations

A functional organization is one in which a number

of functional modules are provided to permit performing

different types of operations concurrently on a different

data item within a single program or on different programs.

This type of organization is an extension of the multi­

processor organization in which several different types of

processors are used. The processors are smaller and are

16

functionally organized. The further distinction is that

each of the functional organizations in this type of machine

may not have an internal programmable control unit. In

other words, each o.f the functional units is hard-wired
10

to perform a specific type of operation. The CDC 66oo

is typical of these systemso

The choice of programming languages to complement

the above systems is not an easy one. Multicomputer and

functionally organized systems support virtually all of

the common high~level languages as well as several levels

of assembly and macro languages. Associative processors

and array processors are restricted almost entirely to

machine languages at this point in time. A general purpose

language to satisfy the needs of all these systems, in

an efficient manner, is not likely to be foundQ The

practicality of designing one may be questioned since

various types of hardware cannot accommodate divergent

· classes of problemas

If Paltran is to be a general purpose language, a

problem written in another, similar language (eeg. FOR­

. 	 TRAN), must also be capable of solution in Paltran~

Conversely, any high-order mathematical operations found

in Paltran should be expressible as subroutines or sub­

programs in other languagese A ·parallel computing system

17
suitable for Paltran operation should have a default

ttsequential mode... This mode can be entered whenever a

high-order operation cannot run efficiently on the

principle hardware, however, the effect should be com­

pletely transparent· to the user. As with any computing

system, the user should be aware of the machine's capa­

bilities and make suitable alowances.

Paltran Objectives

The primary objective of Paltran is to give the

user a free and natural forn1at for expressing problems that

exhibit natural parallelism. These problems are to be of

a mathematical nature and will be array-oriented, hence

the basic data structure will be the array (vectors,

matricies, etc.)*. Paltran will therefore tend to be asso­

ciated with network or array processing systems, although

this is not a hard-and-fast rule. Simulations of Pal­

tran compilers on sequential machines may in fact be­

come quite popular until more experience with parallel

An. interesting historical notes A~ early as 1957,* there existed the Matrix Compilerl which ran on the
UNIVAC machines. It provided users with lan~uage and
facilities for perfonning a number of operations on
matricies including addition, multiplication, inversion
and transposition.

18

processing is made.

It is not necessarily a function of Paltran com­

pilers to recognize parallel structures in sequentially

written programs, nor to optimize existing code so as to

take advantage of the given hardware. In general, the

programmer is not free to initiate his own parallel

structures by use of such operations as FORK and JOIN12 •

The popularity of time-sharing and interactive

terminals indicates that Paltran should be formulated as

an on-line language. A batch version presents little

problem since this would be a proper subset of on-line

Paltran and somewhat less restrictive in format.

Mathematical Objectives

The mathematical objectives sought in the Paltran

language are two-fold; standard arithmetic operations must

be available as exemplified in other programming languages,

and a special set of operations dealing with parallel

structures must be included. The problem then becomes

one of finding these operations and determining their

feasibility for inclusion in a general purpose programming

language. The requirement that these operations be of a

19

general nature is important, othe~vise, the ensuing language

will become extremely complex, replete with specific and

particular operations, and have a cumbersome and perhaps

unreadable notation.

The availability of hardware in the form of array

processors strongly suggests that operations on arrays

be included in the language. Linear arrays (vectors) and

rectangular arrays (matricies) are the most common and

parallel operations such as vector addition and multiplica­

tion of a matrix by a scalar are readily visualized and

straightforward to implement. Matrix multiplication and

in,rersion consists of row and column operations which can

be done in parallel. Similarly, the determinant, ei~en~

values, and eigenvectors of a square matrix can be found

in a similar manner.

Operations on higher order arrays (i.e.)-dimen­

sional and greater) can be performed in terms of matrix

and vector operations.

Experience has shown that two other classes of
1

mathematical operations should be included in Paltran.

These include numerical integration and differentiation,

and sum and continued product operations.

Integration

In some cases, functions can be integrated by

I 20

direct analytical means, in others, it may be profitable

to use numerical techniques due to the complexity involved.

Some functions have no analytic solution and must be inte­

grated numerically; the same applies to experimental data.

Numerical integration consists of dividing a function

into small increments, over a given range, and summing

the areas bounded by the function in these intervals.

The time-consuming step in numerical integration involves

evaluating the function repeatedly, especially if the

function is complex (i.e. consisting of many terms).

The availability of many processors enables these evalu­

ations to take place simultaneously, greatly reducing the

time needed to calculate the integral~~ If the range of

integration is large (or the function changes rapidly in

the range), it may be subdivided and the process carried

out in several passes. Infinite integrals can be tackled

in this manner-- the range of integration can be split,

for example.

00 2a (n+l)aJ f(x)dx = { f(x)dx f(x)dx +•••• + f(x)dx+•••Ja na

When the value of the integral for an interval (an, a(n+1))

changes by less than some given amount from the previous inter­

val (a(n-1), a(n-2)), the process may be terminated.

The Trapezoidal Rule or Simpson's Rule can be used

21

effectively in the parallel environment, however, some

reservation is neededQ While it is possible to divide

the function (or data) into increasingly small intervals

while maintaining good speed, a point will be reached

where further subdivision will actually impair accuracy

due to accumulation of round-off error and loss of pre~

cisione While integration will be included as a Paltran

operation, the accuracy expected and actual methods used

will be determined by the individual compiler and programming

systeme

The availability of a successful integral operator

makes possible the convenient formulation and solution of

a very large class of problemsy however~ the inclusion of

explicit statements for solutions to Exponential, Fresnel,

Elliptic, etc~ integrals would overly complicate the

language. The following do occur frequently enough to

merit inclusion in the language as functionsa

The Gamma Function

::;; Joo tz-1 I

e-t dt z>O

0

noting l<z+l) = Z!

The Error Function

j) J.. z
erf(z) = (24T2

) Jr exp(-t2) dt

0

22

Bessel Functions of the First Kind

Jv(z) 2v
cos(zsin~)(cos~) d~

Differentiation

The derivative of some function f(x) at x0 is

definedc

= lim f(x)-f(xo)
x+xo x-xo

An approximation to the derivative may be defineds

f(x,xo) = f(x) - f(x 0)

x-x 0

where f(x,x 0) is termed the first finite divided difference

relative to the arguments (x,x0). The first finite divided

difference is related to the first derivative provided

that the continuity and differentiability restrictions of

the mean value theorem are met. The concept of second,

.third, etc., differences can be extended to permit approxi­

mations to higher derivat~ves. As an example, the table

below lists the divided differences for the function

f(x) = x3 - 2x2 + 7x - 5.

2J

i Xi f(Xi)

0 0 -5
1 1 1 6

2 3 25 12 2

3 4 55 JO 6 1

4 6 181 63 11 1 0

5 7 289 108 15 1 0 0

Divided Differences for

x3 = 2x2 + 7x = 5

A vector of n elements will yield n-1 first differences&

n=2 second differences 0 etc. A lower triangular matrix

(or upper triangular matrix) of dimensions (n=l) containing

the (n=1) divided differences can be generated from the

vectors (of length n) of the functional values and their

respective spacinge It should be noted that if f(x) is

a polynomial of degree n and m data points are taken where

m) n, there will appear zero entries for differences of

order greater than no This is also illustrated in the

above table. As with integration, functional evaluations

can take place in parallel~ and thus shorten the time

needed to evaluate the divided difference matrix.

When ba~e-point values are equally spaced so that

X!-XQ = X2~x1 ~ ee~e~ = Xn-Xn-1 = h, some simplification

24

of the divided-difference table (and corresponding matrix)

is possible. This enables the finite forward, central,

and backward differences of the function to be calculated,

these are identical except for subscripts of the base

points, and the forward differences can be related to the

divided differences by f(x,xo) = Af(x0)/h. The forward

difference operator is represented by£, notinga

A r(x) = r(x+h) - t(x) etc.

Finite differences appear in many areas such as

interpolation, solution of differential equations, boundary

value problems, etc.

Extreme care must be taken where any operations

involving differentiation is performed as errors tend to

be magnified rather than smoothed as with integration~

While proper analysis is necessary before any computer

solution is attempted, this need is even greater with

Paltran. High-order operations used indiscriminately can

create more problems rather than solve them.

25

Integration and Differentiation of Polynomials

Consider as an example the polynomial, p(x) =
3x3 + 2x + 5. Integration and differentiation of this poly­

nomial yield: Jrp(x)dx = 4•3x4 + 2•2x2 + 1•5x + a constant

and Dxp(x) = 1/3 • Jx2 + ix noting thatJrxndx = 1 x<n+l)
(n + 1)

If vectors containing the coefficients of poly­

nomials are available, integration or differentiation can

take place directly. Thus, if all polynomials are represent­

ed by the series

the integral polynomial is, to an arbitrary constant

p'(x) = a 0x + ta1x2 + •••••• + _!_ ~xn+l
· n+l

and the differential polynomial is

p"(x) = o + a1 + 2a 2x + •••••e + n~xn-1 •

Thus the vectors

ao
al

a2

•

•

Bn

ao

a 1/2

az/.3

•

•

an/(n+l)

0

al

2a2

•

•

n·~

represent the .polynomial and its integral and derivative res­

pectively, taking account of the shifts in the powers of x.

Since polynomials are used extensively in scientific

work, these fonns of integration and differentiation should

also be included in Paltran.

26

Sum and Continued Product Operations

As an introduction to sum and continued product oper=

ations let us consider the factorial functiono The factorial

of some number n is defined as~ n: = n(n-1)(n-2)o•=J·2•1

and 0! = le Normally this operation requires (n-1) sub~

tractions and (n-1) multiplications to be performed, how­

ever if n/2 processors are available the factorial can be

computed as followsJ

- An indexed LOAD instruction generates the vector

whose elements are 1~2,), ••••n and each pair of

n is odd,· is assigned storage to a single proces­

sor.

- The product of each pair is determined simultan­

eously and the results are again paired and mult­

iplied until only a single number remainss

Expressions of the form

t e.=
i=O 1

and

can be evaluated in this manner, noting that the factorial

function is simply a specific case of the continued product

27

operation. The savings are increased with the complexity

of the expression, since all e1 or Ej are evaluated sim=

ultane~usly.

The availability of the sum and product ·operators

make possible the generation and solution of many functions;

the following examples occur frequently and will be includ~

ed in 	Paltran:

The product operation permits the factorial func­

tion to be calculated; as a direct consequence, the number

of combinations and permutations of n (dissimilar) things

taken 	r at a time nCr= (~) = n~/(n-r)~r: and

nPr =n:/(n-r): 	 can be foundo

Combining the preceeding operation and the swn op~

eration the Bernoulli Numbers can be readily found by using

the recursive definition:

n

En .. 	 L <~> ~ and B0 =1, B1 = -!
k=O B2n+l = 0 for all integral

n)o.·

The same techniques can be used for determining the

coefficients of, or solving orthogonal polynomials. Any set

of polynomials (fn(x)) with the property

Jr: w(x)fn(x)fm(X)dx = 0 for min

= hn for m=n

28

is called a set of orthoganol polynomials on the interval

(a,b) with respect to the weighting function w(x)o The

four most common are the Chebyshev, Hermite, Laguerre and

Legendre polynomials~ as an example the Laguerre Polynomial

has explicit expressiona
Ln(x) "' (-l)m (:) tD/mlt

m=O
which is a combination of the sum operation, factorial

operation and binomial coefficient (~)e

It should be noted that these polynomials can also

be determined from a general recursive definition and this

may be the better method if a family of polynomials is re=

quirede

Finally' the sum and product operations can be com­

bined to determine interpolating polynomials~ that is the

polynomial of lowest degree which passes through n points

is given by:

n n
p(x) = ~ (yi llf (x-xk)/(xi-xk))

1=1 k=l

where ~ xk for k ~ i 6x1

29

Functional Analysis

The proce~s to be described may be considered too

specific to be included in a general purpose programming

language, however it is a good example of how parallel pro­

cessing can make possible methods which have been impract­

icle in the past6

The availability of many processing units makes pos­

sible a somewhat unusual technique of analyzing functions

for the_ occurence of zeros, maxima or minima. Let f(x) = y

be some function defined over the range (xmax 9 xmin) in

which at least one xero, maximum or minimum is assumed to

exist~ The ob,jective is then to find the value x
~r

for which

f(x*) = Q, where Q is the required condition. In operation,

the function is evaluated over (xmax, xmin) in n steps (as­

suming n processors) and the resulting array searched for

the required condition~ noting the value of x for which this

occurs. If n is sufficiently large, the answer may be found

on the first pass,. if not, new values of (xmax,xmin) are es­

tabl i shed a~ound x for wh~ch f x = Q and the process re­* . (*> ~
peated until sufficient accuracy has been attained. In gen­

eral there may be any number of zeros or extrema in the giv­

en range.

The speed at which the answer is found is quite con­

siderable since only one effective function evaluation is

performed per iteration. If a large number of processors

JO

are available the value of x* approaches the final value by

several orders of magnitude for each pass, thus necessitat ­

ing only a few iterations. It should ~e noted however, that

new ranges (xmax, xmin) cannot be set arbitrarily close to

* .the approximation x , since round-off and truncat~on error

can accumulate and create problems of overshoote Programs

simulating one hundred processors configured linearly, have

shown that usually less than ten iterations are needed to

solve any arbitrary equation (f(x) = 0), to accuracies of

order lo-5 or better, even when the initial range chosen is

very wide·(l An example of such a simulation appears in the

Paltran - 8 manuals (Appendix IV)

The power of this method becomes even more appar­

ent if a rectangular configuration of processors is used to

investigate functions of two variables. The method of sol­

ution is similar, however additional considerations as to

locating extrema must be made. Consider t~e following table

which lists values for y2+x = z over the ranges -J ~ x,y ~ +3 :

X -2 -1 0 1 2
y

-3
-2
-1

0
1
2
3

6
1
-2
-J
-2
1
6

7
2
-1
-2
-1
2
7

8
3
0
-1
0
J
8

9
4
1
0
1
4
9

10
5
2
1
2
5
10

11
6
J
2
J
6
11

12
7
4
3
4
7
12

VALUES OF
2 y +X

31

The function describes a parabolic surface, and

for any value of x there always occurs a minimum value of y

in the z - direction. For any value of y there is no maxi­

mum or minimum value of x, other than at the end.points of

the range. The search for extrema must now be made in three

ways. The rows and columns of the corresponding matrix must

be individually tested and each point Zij (= f(xi•Yj))

must be compared to its nearest non-diagonal neighbours,

z(:i, j)r Z(i, ~j) or to its nearest diagonal neighbours,

z(!i, ~j), excluding the peripheral elements. The latter

method will reveal any global or local extrema for values of

both x and Y•

Functio~s of three variables (or more) can be handled

in a similar mannerJ however, problems of visualization

occur. For this reason, it is perhaps advantageous to decom­

pose all higher order arrays into matricies and perform analy­

sis at this level.

A specific statement or command to implement this

technique will not be incorporated in Paltran due to the

many possible variations of handling different arrays. It

will be seen in succeeding chapters, however, that other

Paltran statements can very easily be grouped in subrou­

tine form to perform this analysis; as experience is gained,

this technique may be incorporated as a single statement.

32

TECHNICAL CHARACTERISTICS OF PALTRAN

The technical characteristics of Paltran may

now be examined in light of the proposed mathematical

operations. These will include data organization,

arithmetic expressions, the character set, and auxil­

liary statements.

Data Organization

As stated in Chapter One, the basic Paltran

data structure will be the array. In general, any arith­

metic operation that can be performed on a simple vari­

able can also be performed automatically, on any size

array, on an element-by-element basis~

Simple variables or scalars are the least struc­

tured data, being zero-dimensional. Vector variables

can be of two types. The numeric vector holds only

floating point (or integer, etc.) numbers and all arith­

metic operations apply. Numeric vectors are always con­

sidered to be column vectors and print (on output) in this

fashion. A character vector may hold alphanumeric-data

as well as any character in the Paltran set. This is

literal data and has no numeric value, except where cer­

tain operations result in a null character vector, which

has the value zero. Character vectors are always con­

sidered to be row vectors and print in this fashion.

JJ

Higher-order -arrays are all· restricted to numeric

data. Special operations may be performed on vectors and

matricies (i.e., matrix multiplication, inversion, etc.)J

operations on higher-order arrays (for example, vector

multiplication of 3-d arrays) will not at this time be

given explicit definition. They may be easily formulated

with the basic statements in the language and called as

subroutines.

Data may be generated by the user or incorporated

directly in the program. In general, data will be written

on same external medium (tapes, disks, etc.) and be pro­

cessed by the program.

Arithmetic Expre$sions

Since arithmetic expressions form the basis of

all the operations described under Mathematical Objectives,

it is important to define what is meant by this term

as well as describe the different types of arithmetic

likely to be implemented.

An arithmetic expression will be defined as any

set of variables or constants combined by the binary or

didactic operators: (in order of precedence), (1', *• /,
+, -) that is, exponentiation, multiplication, division,

addition and subtraction. Evaluation will take place

left-to-right with exponentiation being performed first,

34

followed by multiplication, etc. Parenthesis may be used

to change the order of evaluation; square and angle

brackets,may be used interchangeably with parenthesis to

improve readability. Functions may be included in arith­

metic expressions and have precedence equal to or greater

than that of exponentiation, hence, they are evaluated

first. A function may have another arithmetic expression

as its argument, since an expression can always be reduced

to a single number (or group of numbers, in the case of

arrays). The unary operators (+, -, !) may also appear

in arithmetic expressions. The factorial operator(!)

is really a function and treated as such. When applied

to an array, the factorial of each element would be calcu­

lated. No two operators may appear together except for

the factorial operator.

Numeric constants may be used in any arithmetic

expression. While they are zero-dimensional, they may be

combined with any array regardless of its size or dimensions.

Arithmetic expressions along with the equal sign

(=) form the simple assignment statement: v=e where !

is a variable and ~ is any legal expression. The variable

~ and all variables present in ~ must be of the same

dimensions.

The type of variables used in arithmetic expres­

35

sions will reflect the five possible means of performing

arithmetic, namely, in integer, floating-point, complex,

octal and logical format. Details as to naming variables

and determining their type will be found in Chapter Three.

The possibility of performing arithmetic in five

ways results in problems that can occur when different

types of variables appear in the same expression. The

handling of mixed modes is usually tackled in different

ways by individual compilers for a given installation, but

the following guidelines will be proposed.

A diagnostic is given to inform the user that

a mixed mode expression has occurred. Each variable in

the expression is then converted to an equivalent float­

ing point quantity (e.g. absolute value of complex quantity

found, logical jj:o.ooo, etc.) and the expression is evalu­

ated in floating-point format. The resulting value is

then converted to the mode of the replacement (left-hand)

variable.

The safest rule to follow when dealing with mixed

mode expressions is simply to avoid them.

The mathematical operations in Paltran are funda­

mental to ·the intended usage in numeric computation, how­

ever, these must be supported by auxilliary commands to

shape, test, modify and prepare the data. In addition, .

36

considerations must be given to the physical form in

which the language will appear. These consist of the

choice of a character set, punctuation characters employed,

the manner in whicp key words or statements are delimited,

the possible inclusion of subprograms or programs in

other languages, execution sequence, etc. The remainder

of this chapter is devoted to these considerations.

Before discussing the auxilliary statements, it

is useful to examine the requirements for a character

set, since all Paltran statements will be constructed

from it.

The Character Set

The Paltran character set will be defined as that

set of symbols needed to clearly and conveniently express

the statements of the language. The definition is in­

tentionally broad. Input/Output equipment is becoming

sufficiently sophisticated, so that the user should not

be limited to the capital alphabetic characters, the

numeric characters and a few special symbols such as *,

=, /, etc. A string of alphanumeric characters can be

replaced by a corresponding special symbol whenever its

usage is common and unambiguous. It is clearly better

to use f ,]and1Trather than "INTEGRATE", "SUM OVER",
ox.'~ .

and .. DETERMINE THE CONTINUED PRODUCT". On the other hand,

it is more meaningful to use alphanumerics whenever there

37

does not exist a special symbol to denote the process

or operation. For example, s = MAX (v) is intuitively

closer to "Set the scalar s, equal to the maximum element

of vector v", than s =Qv or s =A.v.

The availability of lower case letters is a desir­

able feature. Variable, subroutine, or function names

oan be restricted to lower case letters (and numbers),

while key words such as commands, in-line functions, etc.,

are capitalized. This permits immediate identification

of non-variables and makes compilation (lexical and

syntax analysis) somewhat less difficult. This scheme

also alleviates the need of having reserved words in the

language or deciphering key words from contexte It is

also desirable to provide the more common Greek letters,

as many quantities in scientific and engineering work

bear these designations.

Display generators, plotters, light-pens, etc.,

are special devices which can produce arbitrary characters

and must be treated separately. The proposed Paltran

Character Set and key words of the language are described

and listed in Appendix I.

The elements of the character set may be classified

into three groups: Delimiters~ Identifiers and Key ~tlfords G

A delimiter is any character which is not a letter

or a number. All key words, identifiers and numbers are

terminated by delimiters.

38

An identifier (variable, subroutine, or function

name) may consist of up to ten lower case letters or

numbers, the first of which must be alphabetic.

Key words a·re the commands such as READ, SET,

FOR, etc., of which statements are composed, In-line

(or system defined) functions such as SIN, COS, etc., are

also considered to be key words. Key words consist of

upper case letters only.

Delimiters, identifiers and key words are com­

bined along with labels to form statements.

Statements and Program structure

Paltran statements will consist of up to three

fields. The first is a label field which consists of a

STATEMENT NUMBER and is optional. In the batch mode, the

label field may be omitted, however, statement numbers

must be present in the on-line mode for indirect execu­

tion. A blank label field indicates the direct (or desk

calculator) mode and results in immediate execution upon

receipt of a statement delimiter.

The statement number consists of two parts: a

group number x, and a number y denoting a line within

the group. A period is used to separate these two parts;

however, a statement number is not to be interpreted as a

decimal or fixed point number, but rather as two integers.

The lowest possible statement number is, therefore, 1.1,

39

that is, line one in group one. There may be any number

of lines in a given group. Execution starts at the lowest

numbered line and continues with the next highest, regard­

less of physical order; in the batch mode, unnumbered lines

are executed consecutively.

Field two is the command field which identifies

the type of statement, e.g., READ, WRITE, SET, etc. If

field.two is blank, it is assumed to be an assignment

statement.

Field three is the data (or operand) field which

contains information (i.e. variable names) relating to the

command. A statement is terminated by a carriage-return,

line-feed, or semi-colon(;), and, in the case of punched

card I/0, a semi-colon may be used to separate individual

statements on one card~ Statement fields are interpreted

in context, and commas and blanks may be used freely to

improve readability.

A program is composed of several Paltran state­

ments with the possible inclusion of subroutines or user­

defined functions. A subroutine is simply a separate set

of statements which can be compiled independently and can

accept or.pass on more than one argument. A function is

essentially a subroutine that has only one argument and

is called by name rather than by an explicit statement.

Propositions for the auxilliary statements can

now be examined.

40

Conditional Statements

The ability to test or compare the results of

numeric calculations has manifested itself in most pro­

gramming languages in the form of an "IF" statement.

These .come in two varieties a the arithmetic IF compares

the results of some calculation to zero and the execution

sequence subsequently changes, depending on whether the

number tested was less than, equal to, or greater than

zeroa the logical IF compares two expressions by means of

logical and relational operators, and execution sequence

is dependent on the TRUE or FALSE outcome of the test.

In languages dealing with sequential processing,

these tests always took place on simple variables or

expressions of simple variables. The Paltran IF state­

ment, must, however, make provision for arrays (or parts

of arrays) to be tested; this will be effected by comparing

arrays on an element-by-element basis. The arithmetic IF

will be constructed so that simple variables or arrays

may be tested for sign or, against zero, the proviso-

being that if all elements of an array are similar, the

action of the IF statement is the same as that for simple

variables. If any one or more elements of an array do

not satisfy the requirements (as for simple variables),

a default or alternative action occurs. As an example,

consider the IF statement:

IF (e) nl, n2, nJ, n4

41

The ni refer to statement numbers and (e) is

any arithme-tic expression composed of simple variables or

arrays of identical dimensions. The expression is evalu­

ated and if it consists of arrays, all elements are

tested• if all are negative, control passes to statement

nl; if all zero, control passes to n2, and, if positive,

to nJ. If at least one element does not fall into the

same categories, control passes to n4. Obviously, if

the statement consists only of simple variables, control

can never pass to n4.

If the case of the logical IF statement, all

elements of an array must satisfy the comparison for the

result to be TRUE. If any one corresponding element, of

the expressions being compared, does not meet the criterion,

the FALSE condition occurs.

Error Condition Detection

All of the high order Paltran operations are sub­

ject to errors of one so,rt or another. In general, each

Paltran compiler will ha~dle differently depending on the

hardware of the target computer. A machine with many pro­

cessors, but poor precision may not integrate as well as

one with fewer processors but can accomodate high precision

arithmetic. A matrix can be inverted by direct, iterative

or random (Monte Carlo) methods, each of which can fail

depending on the matrix or algorithm used. The user of

42

high order Paltran commands must be aware of the al­

gorithms his particular compiler uses and the limita­

tions of such. Details pertaining to errors and applic­

ability of data sets to the implementing algortithms would

normally constitute a large part of the user's manual for

a given compiler.

In practice, however, the user cannot always be

trusted to take account of possible errors. The problem is

compounded by errors occuring even when data sets and al­

gorithms have been correctly matched and formulated. It

is possible to detect many user errors at compilation time

while certain others can be detected by hardware means at

object time. In order to give the user some measure of

success on the outcome of high order operations, the fol­

lowing is proposed. An internal vector variable called

FLAG will be associated with each Paltran statement and

its status may be tested by means of an IF statement. The

elements of FLAG will be set equal to zero or FALSE if no

error conditions are present, or set to one or TRUE if some

error occurs. The individual elements can represent such

conditions as incompatible dimensions, convergence fail­

ure, mixed modes, singular matrix on inversion, divide by

zero, etc. Since compile time and object time are indis­

tinguishable on most on-line sy-stems, FLAG can be ut=fed to

warn the user of errors detected during compilation, how­

ever for more elaborate systems, an actual error message

4J

is warranted. It should be noted that FLAG = 0 does not

imply accurate or acceptible answers, but only that the

possible error conditions have not been detected.

Composition and Decomposition

The majority of Paltran operations can be perform­

ed on vectors and matricies. Similar operations can usual~

ly be defined on three dimensional and greater arrays but

no explicit definition of these will be given at this time.

Operations on multi-dim@nsional arrays can always be for­

mulated in terms of matricies or vectors and some means of

breaking up (or building) large arrays are needede Pal­

tran provides two classes of statements for this use.

The first consists of only a single bi-directional

statement (called the PROJECT statement) by which hyper­

planes can be projected into planes, planes into rows or

columns and so on. Conversely planes can be projected into

hyperplanes and hyperplanes into the next highest dimen­

sion etc.
,

The second class consists of the PARTITION and

BUILD statements which will operate only on matricies. The

PARTITION statement is used to split large matricies into

smaller submatricies, while the BUILD is used to construct

large matricies from small ones. These statements find use

in constructing augmented matricies which occur quite often

in linear programming techniques or solutions of simultan­

44

eous equations. A second application is hardware and sys­

tems oriented. Normally, any size matrix comensurate with

memory capacity can be operated on irregardless of the

type of hardware. If partitioning occurs, this effect

should be transparent to the user. Certain efficiencies

can be gained however, if a network or array processor is

being used and the user is aware of the number and dimen­

sions of the processors available. He is then at liberty

to use these statements to shape data to conform to the

dime~sions of the hardware.

Loop and Execution Control

There is still a need for indexing and repeated cal~

culation in the parallel enviroment as defined by Paltran.

The FOR and DO statements will be used to generate repeat­

able segements of code.

The DO is a form of execute statement which causes

a line or group of lines in the program to be performed. A

group of lines when called by a DO therefore form a type

of subroutine.

The FOR statement is analgous to the ALGOL-FOR and

FORTRAN-DO loops. Statements in the body of the FOR range

are repeatedly.executed, based on the value of an index var­

iable which varies according to preset parameters. The

mechanics of the Paltran FOR-DO statements will be detail­

ed in the next chapter.

45

Input/Output

The input/output systems of most computers tend

to be very complex, sometimes being computer subsystems

themselves. The parallel computing system will undoubt­

edly incorporate very elaborate I/O equipment to maximize

throughput and utilize resources efficiently. While means

of accessing tapes,disks,mass memory, etc. are needed,

these will not be discussed, instead only two I/O state­

ments, geared to simplicity will be proposed. The Pal­

tran I/O statements will be READ and WRITE and will handle

simple variables and arrays in pre-determined formats in

order to simplify data transmission, These statements will

also be discussed in detail in the next chapter.

Miscellaneous Statements

Grouped in this category are statements and com­

mands which are somewhat standard and found in many other

languages. These include GOTO statements to change program

flow, HALT or STOP statements to terminate execution, SUB­

ROUTINE and FUNCTION statements to construct user-defined

subprograms and functions and the various forms of de­

claratives such as dimension and · type statements. Only

these latter statements will be discussed further in de­

tail, in the next chapter, which describes the proposed

statement forms of the Paltran Language.

Chapter Three

THE PALTRAN PROGRAMMING LANGUAGE

46

4?

Introduction

This section takes the concepts developed in

Chapter Two and builds on them the various forms of pro­

posed Paltran Statements. Extreme details as to the

various forms of input/output state~ents, declarations,

arithmetic performed and program structure will not be

given as these do not directly relate to parallel process­

ing and tend to be oriented to a particular machine. The

language, as described, is considered to be the on-line

version; however, text-editing and control statements

will not be discussed since these are somewhat standard

for any on-line language. A batch version would be a

proper subset of on-line Paltran and would be somewhat

less restrictive with regard to statement numbering and

input/output methods.

The key words and functions normally to be incor­

porated into a Paltran system are listed in Appendix I.

The statements to be discussed in this chapter

form the basic Paltran system and includes

The dimension statement and declaratives.

The Simple assignment.

The SET Statement.

The LOAD Statement.

The ROTATE Statement.

48

The PROJECT Statement.

The IF Statement.

The FOR and DO Statements.

The PARTITION. and BUILD Statements.

The READ and WRITE Statements.

The Dimension Statement and Declaratives

The status of all variables must somehow be

defined so that appropriate measures may be taken during

compilation. The size and dimensions, as well as the

precision and type of arithmetic to be performed on a

variable, must be declared explicitly; otherwise, default

values will be assumed.

All arrays in Paltran must be declared via a

dimension statementa

*v(n), v(n,m), v(n,m,r), v(n,m,r, •••••)

or

**c(n), •••••

The first statement defines a numeric vector vari ­

able with n elements, a matrix with n rows and mcolumns,

a rectangular prism with£ planes~ etc. The second state­

ment defines a character vector which may contain up to

n characters.

The dimension statement is unnumbered and non­

executable and may appear anywhere in the source program,

49

any number of times, although some compilers may require

that it appear before the first executable statement.

Variables which appear in the source program

that have not been dimensioned are assumed to be simple

numeric variables or scalars. Operations on arrays defined

by the dimension statement may be global or local, and

subscripts or partial subscripting may be used to access

individual elements, rows (columns), planes, etc. of an

array, as necessary.

In addition to the dimension statement, the

following signal the compiler as to variable types

REAL Vi vi = v or v(m) or v(n,m) etc.
INTEGER v·1 REAL refers to floating
COMPLEX V·1 or fixed point variables.
OCTAL vi

LOGICAL V•1

Dimensional information may be included in declara­

tions, however, these statements must precede any execut­

able statements.
,

The precision of all variable types is assumed to

be single, but may be extended by including DOUBLE or

TRIPLE with any of the above declaratives.

Examples:

REAL a, b , ·c ,mat (5, 5)

DOUBLE al,v(lO)

TRIPLE COMPLEX Z(4,5,6)

50

It is convenient to assign the following default

modes for variables. All variables are assumed to be

single precision and REAL, unless the name begins with

an i,j,k,l,m,n, in which case an integer variable is

assumed.

The Simple Assignment Statement

The simple assignment statement is the •work-horse'

of any numeric scientific programming language, as it

conveniently and naturally expresses simple arithmetic

operations. This statement consists of a left-hand or

replacement variable which is set equal to some arithmetic

expression as defined in Chapter Two. The form is quite

straightforward: v=e where v is the replacement vari­

able and e is any expression. The only restrictions that

apply to the simple assignment statement are that dimen­

sions of all variables must be the same and due considera­

tion must be given to mixed modes. Operations are global

when arrays are involved, although subscripts may be used

when simple variables are present. Partial subscripts

may not be used.

Limited operations on character strings are also

a part of the simple assignment statement. Literals or

alphanumeric data may be assigned only to 'Character

Vectors' which hold non-numeric data and must be declared

apart from the numeric vector variable. Operations include

51

assignment, concatenation, extraction, expansion and inter­

section. The following examples illustrate their usea

ASSIGNMENT

x=abc y=123 KING ST. g=?'''* w=string v=trn

CONCATENATION

q=x+y • • • q=abc123 KING ST •

EXTRACTION
Ip=w-v p=sig• 0

EXPANSION (by a scalar factor)

•r=2*x I e r=abcabc

s=2*(x+z) •
I s=abc?'''*abc?'''*
I

INTERSECTION

Let sl=AEIOU and s2=COMPUTER

and sJ=sl:s2

then sJ=CUE or EUC or UEC etc.

The size of s3 must be at least that of one of the

vectors on the right. The null character (printing as,

but not equal to the character BLANK) would fill the

remaining (if any) spaces in the vector. If the vectors

are disjoint, the result would print as a blank vector

and have the numeric value %. Note, this is the only

numeric value a character vector can have1 a vector full

of blanks has no numeric value.

The extraction operation can also result in a

null vector, All character vectors are considered row

52

vectors and print (or plot, display, etc.) across the

'page' which makes use of these vectors valuable in I/O

formatting. The hierarchy of operations area

* Expansion

+,- Concatenation, Extraction

: Intersection

Further examples:

x=E y=EACH z=COMPUTE

q=y! (2*x+y) noting 2*x+z=EECOMPUTE

q=EAC or CAE or AEC, etc.

-Other character handling facilities will be added

to Paltran as need and use dicta.te.

The SET Statement

The SET statement is the most powerful of the

Paltran statements, as integration, differentiation, sum

and continued product operations, and the maxtrix operations

(multiplication, inversion, etc.) are defined by it.

There are a large number of individual SET state­

ments, and these are listed in Appendix II along with a

brief explanation.

The SET statement is unique in that there are two

operator or command fields. It has the general format:

SET v=OPR,a,b,c •••••

"SET" itself indicates that a high-order parallel operation

takes place. The variable ~ is a general replacement

http:dicta.te

53

variable and can be a scalar, vector, matrix, etc., depend­

ing upon the individual statement. The second command,

OPR, consists of a symbol or alphanumeric string to indi­

cate operations such as integrate, sum over, invert a

matrix, etc. The remaining field consists of other vari ­

ables or constants ~,b,£••••••

Variables in any SET statement may be referenced

globally by name only, or by partial or complete sub­

scripts. As an example, the matrix a(n,m) may be useds

OPR a - operate on a globally

OPR a (I , "'-") - operate on row I only

OPR a(*,J) - operate on column J only

OPR a(I,J) - operate on element (if j)

The LOAD Statement

It is often necessary to evaluate functions over

some given range. This can be done by using the LOAD

Statement.

LOAD a= (f(x,y,z, ••••)),x(xmax,xmin),y(ymax,ymin), ••••••

The array~ is filled with values of the function

f(x,y,z, •••) over the ranges inn steps (xmax,xmin),

(ymax,ymin), •• e. in increments of~x = (xmax-xmin)/n etc.,

hence the function is evaluated from xmin to xmax -t~x, etc.

54

As an example consider the function f(x) = x4'2

*v(5)

LOAD v = (X 1' 2) , x (1 0, 0)

Hence xmax-xmin = 10 - 0 = 2
n 5

n X v
I 0 0
2 2 4
3 4 16
4 6)6
5 8 64

The ROTATE Statement

The ROTATE statement may be used to shift data in

arrays. This can be quite useful in generating displays

and other graphical presentations. Rotation or shifting

is always circularr the following examples illustrates

*b(J,J), c(1,5)

ROTATE C,2,L - that is, rotate the elements

of C 2 places left.

e.g. c = 1,2,),4,5-

c' = 3,4,5,1,?

ROTATE b(*,J),2,U - Rotate column J of b

2 places up.

b = 11 12 13 (the other possible

21 22 23 directions are right

Jl 32 33 (R) and down (D).)

b ' = 11 12 33

55

b
t

= 	 21 22 13

31 32 2)

Rotations in)-dimensional arrays are somewhat

more complex since there are· six possible directions to

move rows, columns ~ planes. In 4 or greater dimensional

arrays, rotations tend to be extremely difficult to

visualize due to the number of units and directions.

For this reason, the ROTATE statement is defined

only for vector or matrix variables. The PROJECT state­

ment can be used to decompose multi-dimensional arrays

into matricies and rotation performed at this level.

The PROJECT Statement

As discussed in Chapter Two, the PROJECT state­

ment may be used for transferring data between arrays in

one, two, or more dimensional blocks. The units to be

transferred are denoted by asterisks in the variable

names. The statement form iss

PROJECT vl(i,j, ••••• ,*,*, •••••) INTO v2(k,m, ••••• ,*,*, •....)
The following examples illustrate use of the

PROJECT statement:

*a(5),b(5,5),c(5,5,5)

PROJECT a INTO b(*,2)

PROJECT b INTO c(*,2,*)

)

The narrow rectangle represents the elements of ~ which

is projected into column 2 of the square representing

matrix ~· The previous contents of column 2 are lost.

The matrix is then projected into plane 2 of the cube £•

*box(5,5,5), square(5p5)

PROJECT box(*,*,2) INTO square.

I I l
I !

I I
 t; ·~
!
• l

_:. __ ') --- ­ > n·_/..~
i

I

L'~.::_ -.:_:-:._- ~

;

L__,____

square

The diagram shows plane 2 of variable box which becomes

the matrix square.

57

The IF Statement

There are two forms of IF statement in Paltran.

The arithmetic IF statement has the form:

IF (e)n1,n2,nJ,n4

and has been described in Chapter Two,

The logical IF statement has a slightly different

format:

IF (el op e2)S1 ELSE S2

and are any arithmetic or logical expressions.e1 e2
Sl and S2 are any executable Paltran statements, ex­

cep~ for another IF.

op stands for any one of the relational operators:

= (equal to)

~ (not equal to)

>(greater than)

> (greater than or equal to)

< (less than)

< (less than or eq':lal to)

or any one of the logical operators:

.A. (And) (This is one instance where

.o. (Or) alphanumerics are favoured

.N. (Not) over .special symbols, in

order to avoid ambiguity.)

In operation the two expressions e1 and e 2 are ev­
aluated and the resulting relational or logical expression

is tested. If the result is TRUE statement Sl is performed,

otherwise (ELSE) statement S2 is executed, indicating a FALSE

58

result. Control passes to the next executable statement after

Sl or S2 has been performed, unless a GOTO transfer is made.

If arrays are involved, the comparison takes place

on an element by element basis and dimensional integrity

must be maintained. If all elements in the evaluated expres­

sion result in a TRUE condition, statement Sl is performed.

If any one element produces a FALSE Qutcome, Statement S2

is executed.

A second form of logical IF statement may be used to

test portions of arrays by means of partial subscripting, on

an element by element basis1

IF 	(a op c)Sl ELSE S2

-~ is any array which may be referenced globally or

by means of partial subscripts.

-op is any nne of the relational operators

-£ is a conditional expression which can be any

arithmetic expression containing relational or

logical operators whose dimensions are compatible

with those of the array being tested.

Examples1

IF (a(*,2) = 0.0) SET a(*,2) = -1.0 ELSE GOTO 1.1

The above statement tests column 2 of the matrix ~ against

zero. If column 2 equals zero, it is changed to -1.0, if

not, transfer is made to line 1.1.

59

*time(lO,lO,lO), mat{10,10)

IF (time(*,*,10)~ mat) HALT ELSE DO 5

In this case the tenth. plane of array time is

compared to the matrix ~· If all elements in plane 10

of time are greater than the corresponding elements in

~ the program HALTS otherwise group 5 statements are

performed.

The FOR and DO Statements

The FOR and DO statements may be used to generate

repeatable segments of code.

The DO statement causes execution of a single

line or a group of lines ~d has forma

DO X or

DO x.y

60

where x is a group number and x.y is a number of an

individual statement. Upon completion of the line or

group, control passes to the next highest-numbered

statement after· the DO, or the next sequential state­

ment.

The DO statement must not reference its own line

or group.

The FOR statement has the simple format:

FORi= x,y,z; sl;s2;s3; •••••

The index variable is the scalar i and is initially

set equal to~· The group of statements sl,s2,s), •••••.

are then executed at least once. The index variable is

then incremented by~ and tested. If it is greater or

equal to ~· the loop is finished and control passes to

the next statement; if not, sl,s2,sJ, ••••• are again

executed. The variables (or constants) i,x,y, and z

may be integers or floating point quantities.

The body of the FOR loop is limited to one line;

however, its range may be extended indefinitely by means

of the DO statement. FOR loops may be nested, the inner­

most being performed first. Since all FOR loops are

limited to one line, transfer into a FOR loop is impossible.

Example of a FOR loop:

1.10 FOR i=1,1,10; FOR j = -106,25.9,-ll; DO 2; WRITE a,b,c.

61

The PARTITION and BUILD Statements

The PARTITION statement is used to split large

matricies into smaller, submatricies. It has the forma

ROWS
PARTITION (x) INTO (x1,x2,x), •••••) BY

COLUMNS

Examples:

*a(100,100), a1(50,75),a2(50,25),a3(25,75)

PARTITION (a) INTO (al,a2) BY ROWS

e.g. 	 1

al

so
a <a2

100 . .
1 25 50 75 100

PARTITION (a) INTO (a2,aJ) BY COLUMNS

e.g. 1

25

50

100

' aJ

I ~

a

i • •
1 25 50 100

62

The BUILD statement is the converse of the PARTI­

TION statement and is used to construct large matricies

from smaller ones:

ROWS
BUILD (v) FROM (v1tv2,vJ, ••• ~e) BY

COLUMNS

The PARTITION and BUILD statements may be used for matrix

variables only.

The READ and WRITE Statements

The aim of Paltran input/output statements is

simplicity and convenience for the user~ hence only the

READ and WRITE statements will be formally proposed®

The format for these statements is~

READ/WRITE n VAR1, VAR2,

The appropriate I/O device is represented by the integer

n• If~ is omitted, the system device is selected. For

purposes of discussion, this is assumed to be a teletype­

like ter.minale VAR1 refers to any numeric variableG

Simple variables are written across the 'page 9 as usual,

while vector variables are automatically written in

column-wise fashion~ down the page, along with an index

denoting the elements of the vector. b~trix variables

are also automatically printed. The numbers of rows in

a matrix presents no problem, since the 'page' of most

printers can be infinitely long0 The width, however, is

usually limited from 72 to 130 characters, and a large

6J

number of columns cannot be accommodated on a single page.

As many columns as possible are printed across the page,

taking into account field width, intra-column spacing

and indicies. Remaining columns of the matrix variable

are printed on succeeding pages. Higher-order arrays can

be printed in terms of matricies. Suitable indicies are

automatically supplied to identify rows, columns, planes,

hyperplanes, etc. (Refer to the Paltran-8 Manual for

examples.)

The input format is less restrictive. Vector and

matrix variables are always read column-wise. Higher­

order arrays are read in terms of matricies. An index is

supplied to guide user input for on-line systems.

VAR2 is any collection of character vectors, which

are always printed as rows. Text may also be enclosed in

quotation marks, (" •••••• ")and any character except (")

may be used. The (:)produces a carriage-return, line­

feed (line-advance on a printer), and (~) produces a

carriage-return only (re.set left margin on a printer),

and ($) produces a form feed (skip page). On input,

these commands may be used for on-line systems; if card

readers, paper tape readers, etc., are being used, they

will have no meaning except as delimiters.

Numeric output format may be set by using (#).

The format is initially set to "E" --format and the field

64

width is the maximum number of significant digits that

single precision allows. The occurrence of the first (#)

changes this toa

#X.Y -"F" - format with X digits and Y decimal places.

#X -"I" - format, X integers.

#EX.Y -''E" - format with X digits and Y decimals.

.;.nEtt - format, full precision

#CX,Y -complex output format, real and imaginary

parts are written in succession; an i or j

is automatically supplied to denote the

imaginary part.

#OX.Y -Octal output.

The format remains the same for succeeding numbers until

the occurrence of another #.

On input, format is self-adjusting according to

the variable type.

Chapter Four

PALTRAN IMPLENffiNTATION

65

66

The basic Paltran statements have been developed in

the last two chapters, however additional software is need­

ed to make a truely effective programming system.

This can consist of up to four parts which can be

assembled to put Paltran "on the air". The system includes

the Basic Instruction Gene-rator (BIG), the Macro Instruc­

tion Generator (MIG), the Paltran Operating System-EDitor

(POSED), and the Parallel Task Analyzer (PTA).

The Basic Instruction Generator implements the

statements of the Reference Language. The formidable

problem of determinacy must be handled at this stage. A

given hardware system may not be large enough to accommodate

the size of data sets requested, nor may it be well suited

to handle array arithmetic. Algorithms which ensure that

a given parallel structure is determinate {executable)

regardless of the number of processors, their speed,

interconnection etc., must be normally included in the BIG.

For some systems execution efficiency may be very low and

Paltran should not be considered as a core language. The·

user must be aware of what the hardware limitations are and

make suitable allowances to ensure efficiency, as in any

language.·

The BIG may be a sequential simulation consisting,

for example, of a Fortran compiler, a subroutine library and

an interpreter acting as a subroutine caller.

67

The Macro Instruction Generator is a mechanism to

give the user access to the system hardware. High level

macros can be incorporated in a program to implement paral­

lel structures that are suitable for execution by the given

hardware, but do not have a direct Paltran description. In

this manner efficient hardware use can be achieved while

retaining the convenience and power of the BIG. The MIG

however, is optional and need not appear in all Paltran

systems; it would not be useful for example, in sequential

simulatl:ons.

The Paltran Operating ·system-Editor can be added to

the BIG and MIG in order to permit on-line operation, most

likely in a stand-alone mode. POSED consists of a text

editor to generate and correct source programs, a load and

go compiler-assembler and a dynamic error detection and

handling routine.

Finally, if system resources are large enough (or

Paltran programs small enough) programs may be subjected

to a Parallel Task Analyzer (chapter two) and run in a

doubly parallel mode. The PTA is optional and would be

useful only in very large installations where high pro­

gramming bandwidth is essential.

It is possible to write a Paltran simulator con­

sisting only of the Basic Instruction Generator; this has

been done and is discussed in the remainder of this chapter.

68

Paltran ""' 8

A Paltran system has been written for the Digital

Equipment Corporation PDP - 8 series of minicomputersf and

is called appropriately, Paltran ~ B.

The configuration for which Paltran - 8 was written

consists of only 4096, 12 - bit words of central memory, and

a single teletype and high speed paper tape reader-punch

for input/output equipment~ The small amount of memory

available necessitates that Paltran ~ 8 be a small subset

of Paltran, however most of the major features are illustra­

ted$ The Statements in the subset are as follows$

The SET Statement

All arithmetic in Paltran - 8 is handled by the SET

statement, including simple assignment. The standard arith~

metic operators are available as well as eight basic func­

tions (sine, cosine, etc~) and operations are done on arrays

(vectors and matricies only) on an element by element basis.

An extension to the SET statement permits matrix multipli ­

cation, inversion, and transposition to be performed. The

determinant of a square matrix may be found, and the main

diagonal extracted as well!B There is also a provision for

setting a rnatrix equal to the i_denti ty matrix.

The LIBRARY Statement

The Library statement simply groups together several

69

vector variable operations and is reserved for future

expansiono The five possible vector operations are:

- Plot a vector of co-ordinates

-:Set a vector equal to a function evaluated over a

given range

Find the global minimum and maximum element in a

vector

- Numerical Integration, which produces a vector of

individual area calculations, as well as the

accumulated sum

- Differentiationj which produces vectors contain­

ing the first forward differences, etco

The IF Statement

The Paltran - 8 arithmetic IF statement has form and

action identical to that described in chapters two and three~

The DO - CONTINUE Statements

The Paltran FOR ~ DO statements as used in looping,

have been contracted to the DO - CONTINUE pair in Paltran ~ 8~

and resemble the Fortran Do loop. There is no execute state­

ment (in the form of the DO), nor is there a FOR statement.

Input/Output Statements

The READ and WRITE are the two I/O statements, and

70

they work only with the teletype as a data transmission

medium. They are similar to the READ/VIRITE pair describ­

ed in chapter three, however the notation has been altered

somewhat to resemble other PDP - 8 software.

Miscellaneous Statements

These include the GOTO which causes unconditional

program transfers and the HALT which terminates execution.

It is interesting to note the features that Paltran-8

does.not have. Sum and Continued Product operations, charac­

ter vector representation, and full or partial subscripting

are not availablec Likewise, the PARTITION, BUILD, and

PROJECT statements have not been implemented& Considering

the limited memory available, the Paltran - 8 system is quite

remarkable for providing the operations it does.

The Paltran - 8 User's Manual in Appendix IV should

be consulted for full operational details and several ex­

amples of parallel processing applications.

Chapter Five

THE MATRIX PROCESSOR

71

I 72

The Matrix Processor

One of the characteristics of high level program­

ming languages is machine independence. In this regard,

Paltran is not a language designed to be restricted to

any one type of parallel processing scheme. It is use­

ful, however, to relate Paltran commands to some particu­

lar hardware configuration in order to demonstrate the

straightforward implementation of some high-level opera­

tions. A large class of Paltran computations take place

on arrays of data and the lMTRIX PROCESSOR is well-suited

to handle these. This particular scheme takes its name

both from the physical arrangement of processing elements

comprising it, and the ease with which matrix operations

may be implemented.

The heart of the system is a rectangular array

of processing elements or cells (ref. Fig. 1). For pur­

poses of discussion, the array will be considered square,

containing n x n cells with the following properties:

several words of local memory.

the ability to ADD, SUBtract, MuLTiply and

DIVide.

Other operations such as shifting, masking,

logical operations on individual bits, etc. will not be

considered, but would, in fact, be included in an actual

I

I

73

I

Processing Elements

6 B • • • l,n A Base c• • •
' 8~t\l1Tlll 1

0
1
u
m

B EJ n
'• • • • • • 2,n 4 2

"''Il

A

I c
• • • c
• • • u
• • • m ~
• • • u
• • • l
• • •

r
a

• • • t
0
r

n,l n,2 n,n tl n• • • • • • '

, ~ ~

~ ~ ~

Base
Row ~·~
Cell ~ -

1 2 n

'

Row Accumulator /

'
~

'lit

Fig. -1- Schematic Representation of the Matrix
Processor

hardware implementation.

In addition, a collection of cells which we will

call a ROW ACCUMULATOR and a COLIDAN ACCUMULATOR are added

to the array; the term, 'accumulator•, should not be taken

too literally. This 'super-register• serves as a com­

munications device to and from the array, as well as

holding intermediate results. The accumulator (referring

to either one or both) has properties which can be exa­

mined by looking at what might be a partial instruction

set for this 'device'.

The first cell in either accumulator will be

termed the base cell. It is assumed that data will be

fetched (or stored) from central memory one word at a

time. The instructions•

LOAD X, R/C

UNLOAD X, R/C

will cause a transfer to or from central memory word X,

to the base cell. R/C determines whether transfer is

made to the ROW or COLUMN base cell.

SHIFT n, U/D/R/L

will shift the data n cells UP, DOWN, RIGHT or LEFT

from the base cell. Shifts are assumed to be circular.

U/D affects only the column accumulator; R/L affects

only the row accumulator.

75

SWAP

will interchange ROW and COLm~rn data.

The following instruction has both local and

global action:

INSTRUCTION

SET R=C Set ROW=COL, COL unaffected

SET C=R Set COL=ROW, ROW unaffected

SET R=~ Clear entire ROW

SET C=f$ Clear entire COLUMN

SET R(i)=C(j} Data interchange between

SET C(j)=R(i) individual cells.

SET R(i=x,y)=C(j=W,&) Set ROW cells x to y equal

SET C(j=w,D)=R(i=x,y) to column cells w to 6 etc.

NOTE: 	 An indexed, micro-programmed LOAD/UNLOAD-SHIFT

instruction can be used to bring data into the

entire ROW or COL accumulator, from central memory.

In a more elaborate shceme, central memory can be

re-organized in n-word blocks to make n-word

transfers to the accumulators possible.

The actual physical location of these super­

registers or accumulators poses an interesting question.

Since the instructions mentioned apply to either one, the

ROW and COLUMN accumulators can be one physical unit; it

is only a matter of proper gating to obtain the results.

76

In fact, it will be convenient to let word (or location)

~ of each cell be called the accumulator. This effectively

gives each cell capabilities for inter-cell communication

as well as for central memory data transfer. Note,

although the accumulator is accessible as word ~ of each

cell, this does not imply there are n x n "accumulator

cells

Instructions that operate on a cell-to-cell basis

can now be examined. The general format is:

OPR FIELD 1 FIELD 2

where

OPR = ADD/SUB/MLT/DIV

FIELD 1 =x,y,ft

-FIELD 2 = BLANK/(i, j)/(i,)/(, j)

OPR designates the arithmetic instruction to be performed.

FIELD 1 defines the words in local memory on which OPR

is done in)-address format. FIELD 2 defines the scope

of the operation; if it is blank, the operation is global;

if two parameters are present, the operation is local to

a single cell; if one parameter is present, the operation

is performed on a row or column. Examples,

ADD 1,2,3 means add word #2 to word #1 and leave

the result in word .#3 of all cells.

SUB ~,1,$(6,) means subtract word #1 from the

accumulator and leave the result in

77

the accumulator of all cells in

row 6e

Note, operations involving the accumulator cannot be

done globally, only on a row, column or single cell

basis,;

In addition, the transfer operation:

DEPOSIT SOURCE,DEST (i~j) is provided@

Example,

deposit the accumulator

in word 3 of column #2 cellse

The accumulator and cell-to-cell instructions may

be micro-programmed and indexed to form a set of high=

level macrosfj

. The LOADP SHIFT, and DEPOSIT instructions can

be combined to generate the macro:

LOAD 'VI, (N ,M) ,X

which can be interpreted as: Place in word W of each

cell the N x M array, as read from central memory (by

rows or columns) starting at word X (inCM)e

Other useful macros arez

MACRO 	 ACTION

TRANS POSE \'f TRANSPOSE rows and columns,
word w. w;io

OPR (x,y,z) 	 Example: ADD wordy to word
x and leave re.::;ul t 1n ,.·rord
z of all cells. xlyFziO

?8

,p'R () ROW (~ •)O x,y~z r COL leJ9k 	 Exampleg ADD wordy of ROW j
to word x of ROW i and store
in word z of ROW k

ROW
OPR WJ COL i~ 	 Examples ADD together all

words w in ROW i and leave
result in word .0 of the
base ROW cell

ROW
SHIFT w; COL i9k 	 Shift word w from ROW/COL

i to k

Some of the higher Paltran commru1ds can now be re=

lated to these macros, The Paltran statement SET a=TRAN(b)

is simply a combination of s

LOAD 1 (n j m) , b (bring the matrix b(n,m) into location 1)

TRANSPOSE 1 (transpose rows and columns)

UNLOAD 1 (m,n),a (put the transpose into central memory

as a (m."'n))

Addition, subtraction, etco of matricies is similar; the

macros

LOAD l (n,m), a

LOAD 2 (n,m)~ b

ADD 1,2,3

UNLOAD 3 (n,m),c

simply mean *a{n,m),b(n,m),c(n,m)

c=a+b

Matrix multiplication involves bringing the two

matricies into the array and transposing one of themg Row

by column multiplication can now occur en masse and results

79

added to form a column (or row) of the resultant matrix.

One of the matricies is circularly rotated and the row by

column multiplication and addition occurs again to form.

the second column of the product and so on.

Other matrix and vector operations can be handled

in a similar manner. If some form of associative memory

techniques are given to the matrix processor such as the

ability to test the sign of a word in all cells simultan­

eously, the arithmetic IF statement becomes very easy to

implement. The logical IF is·an extension of these tech­

niques.

The ROTATE statement is simply the SHIFT macro,

while the PARTITION and BUILD as well as the PROJECT

statements are combinations of LOAD-SHIFT-UNLOAD macros.

The matrix processor can also run in the default

'sequential' mode making use of only the base accumulator

cell and one processor cell. Depending on the capabili ­

ties of the accumulators a Foreground-Background mode is

possible using the row and column base cells plus two

processors or it may be possible to run n processors

simultaneously and independently.

The matrix processor is a complex hardware scheme

but is certainly within the realm of possibility with LSI

technology. In overall scope, some 4-th generation mult­

and •super' computers are every bit as complex if r:ot nore so.

The advent of the matrix processor combined with a language

such as Paltran will result in a very powerful! analytic tool.

Chapter Six

CONCLUSIONS

80

81

The conceptual basis for a new computer programming

language for the parallel processing enviroment has been de­

veloped in this thesis. Various aspects of existing and

proposed hardware schemes and forms of parallel processing

have been investigated to determine the objectives for the

language. Available hardware, in the form of array and as­

sociative processors and mathematical operations displaying

inherent, array-oriented, parallelism, together with pre­

vious language experience, has suggested that the language

be of the type suitable for mumeric, scientific calculations

with an array-based data structure.

Several mathematical operations have been discussed

in light of these requirements and statements for the lang­

uage have been developed to accomodate them. The syntax

and semantics of the language have been chosen to express

high-order operations concisely and to maximize user con­

venience. An extensive character set has been proposed to

incorporate common, well-used symbols and special characters

in order to simplify the notation. The absence of special

purpose mathematical operations also tend to keep the nota­

tion uncomplicated.

Various software schemes have been proposed to im­

plement the language as it might appear on a large, fully

parallel system. A small subset of the language has been

82

written as a sequential simulation and very effectively

demonstrates the major technical characteristics.

Finally, a possible hardware configuration in the

form of an array processor is examined in the light of the

language requirements.

A core language to communicate with parallel

computers may be constructed from the concepts developed

and form the basis of a powerful analytical toolo

APPENDIX I

The Paltran Character Set

and Key Words

83

84

The following is the proposed Paltran Character Set,

which includes:

The 8-bit ASCII (ANSCII, etc.) character set.

(Upper and lower case letters, numerals, punctua­

tion characters, and other "characters .. such as

carriage return, line feed, rubout, etc.)

The special characters

LJ1T ArAvr<><>=l=

The upper and lower case Greek alphabet if possible.

The availability of special characters on I/O

equipment makes possible the equivalence of the Reference,

Publication, and Hardware descriptions of the Language.

The following table lists the key words in Paltran:

KEY WORD ABBREVIATION IF SYMBOL IF
APPLICABLE APPLICABLE

BUILD

COLUMNS COL

COMPLEX

DETERMINANT* DET

DIAGONAL* DIAG

DIFFERENTIATE* DEL A
DO*

DOUBLE

85

I

EIGENVALUE EVAL

EIGENVECTOR EVTR

ELSE

END

FLAG

FOR

FROM

GO*

GOTO

HALT*

*
IF *
INTEGER

INTEGRATE INT* J
INTO

INVERSE INVR*
LOAD *
LOGICAL

MAXIMUM MAX*
MINIMUM MIN*
OCTAL

PARTITION PART

PRODUCT RRD 1T
PROJECT PRO

READ *

86

REAL

REVERSE REV

ROTATE ROT

ROWS

SET *

SORTDOWN SRTDWN

SORTUP SRTUP

SUM

TRACE

TRANSPOSE *

TRIPLE

WRITE *

The standard function~:

SIN * (sine)

COS * (cosine)

· ATN * (arctangent)

EXP * (exponential)

LGE * (natural log)

· 	LOG (common log)

SQT * (square root)

ABS * (absolute value)

FLT (float an integer)

ITR * (fix a floating point quantity)

Functions such as tangent, hyperbolic cosine, arc

hyperbolic cosecant, etc., can all be constructed from the above.

87

The following functions are all based on the defini­

tions given in chapter two. These functions are also con­

sidered to be key words.

C(n,r) (number of combinations)

P(n,r) (number of permutations)

B(n) (Bernoulli number)

r (z·) (Gamma function)

ERF(z) (Error function)

T(n,x) (Value of Chebyshev polynomial n, for argument x)

H(n,x) (Hermite· polynomial)

L(n:,x) (Laguerre polynomial)

G(n~;x) (Legendre polynomial)

J(n, x) (Bessel function of the first kind)

In addition, functions that supply random numbers,

time of day, etc. are usually provided, as defined by

system parameters.

*Statements or functions marked with an ast~risk are part
of the Paltran - 8 subset and have been implemented.

I

APPENDIX II

The SET Statement

88

89

There are five catagories of operations which are defined

in the SET statement. These area Integration, Differentia­

tion, Sum· and Continued Product Operations, Matrix Opera­

tions and Miscellaneous Vector Variable Operations.

Integration

Statement Forms:

SET s= J<r(x)),e

SET s= J<r(x)), (*,b),e

SET s= J<r(x)), (a,*),e

SET s= J<r(x)), (a, b) *
SET v= fpx

!~ .
SET s,v= ;: {f(x)), (a, b,n)

where 	 -s and x are scalars

-v is a vector of length n

-Px is a vector of polynomial coefficients

-f(x) is some function that is to be integ­

rated over the range (a,b); (a,*) denotes integra-·

tion from a to plus infinity; (*,b) denotes integration

from mimus infinity to b. Absence of explicit ranges

denotes infinite integration from plus to mimus infinity.

The scalar s is set equal to the value of the integral.

The second last form of the statements defines polynomial

integration as described in chapter two. If the individual

area calculations are desired (for example, to plot integral

90

curves) the last form may be used. Integration takes place

over (a,b) with n intervals and the vector v is set equal

to the individual areas. A third parameter e, may be

specified for infinite integrals which are evaluated as

described in chapter two. When two successive evaluations

of the split range differ by less than e, the process is

terminated. If e is absent, it is assumed to be lo-6•

Differentiation

Paltran differentiation consists of forming vectors

that contain the first, second, etc., divided differences

of a set of values. If the interval spacing is constant

the forward, backward or central differences are determined.

Given the following:

*x(n),y(n),dl(n-1),d2(n-2), m(n-l,n-1)

SET dl = £. x,y

generates a vector dl containing the first divided dif­

ferences of vector y with spacings given by vector x, where

y=f(x).

·SET d2 =~x,dl

generates the second divided difference and so on.

SET m =A~X,y

generates the lower triangular matrix m containing all (n-1)

divided differ.ences.

If the interval spacing is constant the fo.rward, · backward

91

and central differences are formed=

SET dl =A y *
SET y = 4 (x) is used for

SET d2 = Adl
differentiating polynomials •

•
The variable x represents the

•
coefficient vector.

SET m =A y

Sum'and Product Operations

Given, s a scalar, v(n) a vector, m(n,m) a matrix,

h(n,n,n) a rectangular prism, the following operations are

possible:

SET s =~~v
~

results in the n elements of v being summed and set equal to s

SET s = [m (*, j) SET s = [m (i , *)

results in either column j or row i of m being summed

SET s = }h(i , j , *)
~

results in the summing of the elements in the remaining

direction as located by the intersection of i and j.

The following graphical example is illustrative:

*h(5,5.5)

SET s= I:h(1,2,*)

The cube represents

the array h. The shaded

portion represents the

elements summed.

92

Sum reduction in higher-order arrays is treated in a similar

manner. The sum operation is global if matricies and

higher order arrays are named without subscripts. Thus,

SETs = [a means s =[ai,j i=1,2, •••n j=1,2, •••• m

A second form of summing operation can be performed

on functions, without first producing a vector of values.

The ·form of the statement is1

SET s = [(f (X)) , (a, b, c)

The function f(x) is evaluated for x=a, incremented by b

until the value c is reached or exceeded and the partial

sums accumulated. The operation can be nested to any depth

for functions of more than one variable: let q=f(x,y,z)

we may write,

SET s= [[[(f(x,y, z)) ,x(ax• bx, ex) ,y(ay, by, cy), z (az, bz, cz)

The continued product operation is carried out in

exactly the same fashion as for summation except [is

replaced by 1T •

Matrix Operations

Matrix operations are also included under the SET

statement. The following varialables are used:

*a(n,m),b(n,r),c(r,m),d(m,n)

*g(n,n),h(n,n)

*u(m,l),v(n,l)

*w(l,m)

*z(n)

s

-four general rectangu­
lar matricies

-two square matricies

-column vectors

-a row vector

-a vector variable

-a scalar

It should be noted that column and row vectors are

matricies and are distinct from vector variables.

The following table lists the possible operations.

MATRIX OPERATIONS

IN PALTRAN

Ore ration

Matrix multiplication *
Matrix transposition *
Matrix inversion *
Trace of a square matrix

Extraction of the main
diagonal of a square matrix *
Determinant of a square matrix *
Eigenvalues

Eigenvectors

Set a square matrix equal * to the identity matrix

STATEMENT

Set a=b*c

Set a=TRAN(d)

SET g=INVR(h)

SET s=TRACE(g)

SET z=DIAG(g)

SET s=DET(g}

SET v=EVAL{g)

SET h=EVTR(g)

SET g=I

94

The matrix norms:

Largest row sum of absolute
values

Largest column sum of absolute
values

Premultiplication of a vector
by a matrix

Premultiplication of a matrix
by a·vector

Vector multiplied by another
vector (scalar or inner
product)

SET vector variable equal
to column vector or vice versa

Length of a row or column
vector, ie.

- 2 l.(L vi)2

SET s=ROW(a)

SET s=COL(a)

SET v=a*u

SET u=v*a

SET s=w*u
SET s=u*w

SET z=v
SET v=z

SET s=(v)
SET s=(w)

The didactic operators (1',*,/,+,-) and functions

can be used to preset elements in a matrix or higher-order

array. The form is:

SET a(i,j,k, •••• ,*, ••••) = e

- e is any expression whose dimensions are compatible with

those of _g_ in the unspecified direction(s).

The following graphical examples are illustrative.

*a(5,5,5),b(5,5), theta(5,5),abc(5,5)

SET a{*,*,J) = b*2 + SIN(theta)

96

The square represents
the matrix corresponding
to b*2 + SIN(theta)

SET a (3,* ~, 3) = LOG (abe (3 , *))

The square figure re­
presents the matrix
abc and the shaded
PQrtion, the third row

Plane 3 in the cube a
has elements set equal

.to b*2 + SIN(theta)

The LOG of the elements
in row 3 of abc is taken
and transferred to the
third row in plane three
of the cube ~

• •

97

Miscellaneous Vector Variable Operations

STA1.'EIVIENT DESCRIPTION EXAMPLE

SET v=~w or Reverse order w=l v=lO
SET v=REV(w) a vector 2 7

7 2
10 1

SET"v=Aw or Sort elements of w=62 v=lO
SET v=SRTUP(w) w in ascending Jl • • • 31

order 10 62
99 99

SET v=vw or Sort in w=62 · v=99
SET v=SRTDWN(w) descending order 31 • • • 62

10 31
99 10

The following miscellaneous operations can be

performed on any array.

SET s=MAX(a) or SET v=MAX(a)

SET s=MIN(a) or SET vaMIN(a)

The scalar ~ is set equal to the global maximum or minimum

element of array ~· If the replacement variable is a vector

local minima or maxima will also be located. Should more

extrema be found than elements in the vector, a diagnostic

element in FLAG is set.

APPENDIX III

References & Bibliography

98

99

1'-- Backus p J ~~ Wo, "The Syntax and Semantics of the Pro­
posed International Algebraic Language of the Zurich
ACM-GAMJVI Conference ft. Proc. Internat • 1 Conf. Informa­
tion Processing, UNESCO, Paris,1959.

2-- USA Standard FORTRAN, United States of America Stand­
ards Institute,USAS XJ.9-1966p New York, Mar., 1966.

3-- Bernstein, J. B., "Analysis of Programs for Parallel
Processing'~, IEEE Transactions on Electronic Computers,
EC-15 No, 5,(0CT. 1966)

Baer, J~ L., 60 Compilation of Arithmetic Expressions
for Parallel Computation .. , Proc. IFIPS, 1968,B4-B10~

Stone, H. s., "One=Pass Compilation of Arithmetic
Expressions for a Parallel Processor",Communications
of the ACM, 10:Nos 4 (APR. 1967)

Ramamoorth and Gonzalez, "Recognition and Representa­
tion of Parallel Processable Streams in Computer
Programs=II (Task/Process Parallelism)u, Proc0 ACM
National Conference, 1969.

4-- Bingham and Reigel, uParallelism Exposure and Exploi­
tation in ·Digital Computing Systems~~ ECOMD 02463-F~
June 1969.

5-- Murtha and Beadles, nsurvey of the Highly Parallel
Information Processing Systems", Westinghouse ONR
Report No. 4755, Nov. 1964~

6-- Blakeney~ GQ R. et al., "IBM 9020 Multiprocessing
System", IBM Systems Journal, 6, Noe 2 (196?).

7-- Gall, Re Ge, "Hybrid Associative Computer Study",
RADC-TR-65-445, Vol. 1, Final Report, July 1966~

8-- Illiac IV System Study Final Report, Burroughs Cor­
poration, University of Illinois. Dec. 1966~

9-- Campeau, J. Oe, ~The Block Oriented Computer", IEEE
Computer Group Conference Digest, .June 25=27, 1968.

10-- Thornton, Ju E., "Parallel Operation in the Control
Data 6600", Proc0 AFIPS, FJCC, 1964~» Part II.

11-- McGinn, L~~ C., "A Matrix Compiler for UNIVAC .. , Auto....
matic Codingfl Jour. Franklin Inst., fi1ono. No. J,Apr. ~57~

12-- Conway, M. E., "A Multi-Processor System Design", Proc.
AFIPS, EJCC,1963~

100

Additional References

--Holland, Js Hof "A universal Computer Capable of Executing
an Arbitrary Number of Subprograms Simultaneously", PROC.
AFIPS, EJCC~ 1959u p 108.

-Gonzalez 11 R. 11 'iiA Multio::oLayer Iterative Circuit Computer",
IEEE Transactions on Computers, Dec. 1963o

-Squire and Palais, "Programming and Design Considerations
of a Highly Parallel Computer•~, PROC., AFIPS, SJCC, 1963.

-Katx, J5 H., nsimulation of a Multi.,.Processor Computer
System",PROC. AFIPS, SJCCL' 1966s

-Karp and Miller, "Properties of a Model for Parallel
Computations: Determinacy, Termination, Queuing•• w JSIAM
Nov. 1966.

-Kuck, D. J~, "ILLIAC IV Software and Applications Prog=
rammingo$, IEEE Transactions on Electronic Computers~ Augs 68~

--Gosden, J. A., "Explicit Parallel Processing Description
and Control in Programs for r.1u1 ti.,and Uni-Processor
Computers",AFIPSP FJCC~ 1966~

-Bernstein, J. A.~ 11 Analysis of Programs for Parallel
Pr~cessingu, IEEE Transactions on Computers~ OCT. 66G

101

Bibliography

Ware, w. H., "The Ultimate CoJJlputer"

IEEE Spectrum, March 1972, P• 84.

Schwartz, J. , "Large Parallel Computers ••

Journal ACM, January 1966, P• 25

Sammet, 	 Je~ E., "Programming Languages"

Prentice-Hall, 1969

Carnahan, Luther, et alcp "Applied Numerical Methods"

John Wiley & Sons, 1969

102

APPENDIX IV

The Paltran-8 Users Handbook

INTRODUCTION

Paltran-8 is a small subset of the Paltran
programming language designed for the PDP-8 family of
computers. The Paltran-8 system consists of a com­
piler (PALX) and four operating systems (POSl, POS2,
POSJ, POS4). The PALX compiler operates on source
input and generates an object tape (consisting of sub­
routine calls and data) which is subsequently passed
on to the Paltran Operating System (POS). The operating
system is a collection of subroutines which, when
called by the object program, will execute the appro­
priate source code. In this sense the Paltran compiler
and operating system form an inte.rpretive system similar
to PDP-8 FORTRAN.

Since Paltran is a very high order language,
it is not possible to implement all of the main features
in a basic 4K PDP-8. In order to implement as many
statements as possible, four operating systems are
available to deal with specific classes of instructions.

SCOPE OF PALTRAN-8

PALTRAN is designed to communicate with and
take advantage of a m·alti-pro~~esser machine capable of
executing many operations at the same time.

The concept of an array of processing ele­
ments capable of perfot~ing arithmetic (simultaneously)
on large data structures is central to this idea. Since
the PDP-8 is a single processer machine, PALTRAN-8 is
necessarily a simulation; the only effect apparent to
the user would be a decrease in execution time if the
PDP-8 was a parallel (i.e. multi-processer) machine.*

MINIMUM SYSTEMS REQUIREMENTS

The Paltran compiler and Paltran operating
systems each run in 4K of core, on a PDP-8 (I, L, etc.)

* While Paltran-8 can be used to solve problems and serve
as a useful computational tool, it is intended only as
a demonstration of Parallel processing capabilities,
and, therefore, not "user-proof", as say FOCAL"

2

with teletype (keyboard and reader-punch). If a high
speed reader-punch is available, it may be used. The
current version of Paltran-8 does not take advantage
of any additional memory.

PALTRAN 	ARITID{1ETIC OPERATIONS

Since it is assumed a parallel-processing
machine is available, Paltran will do certain mathe­
matical operations in parallel. These operations are
performed on variables (and constants) which may be
of.three types, namely, zero, one, or two dimensional.
They are the simple variable, vector variable and
matrix variable, respectively.

An arithmetic expression may consist of
variables, which must be of the same type, constants,
operators and functions.

The Paltran operators and functions area

Operator Description Precedence

(
)
+

Open parenthesis
Close parenthesis
Addition

0
0
1

Subtraction 1

* I
Multiplication
Division

2
2

1' Exponentiation 3

Function

FSIN Sine in radians 4
FCOS Cosine in radians 4
FATN
FEXP
FLGE
FABS

Arctangent in radians
Exponential
Natural logarithm
Absolute value of

4
4
4
4

FINT
FSQT

Integer Part of
Square Root

4
4

Note: 	 Zero precedence is the lowest and four is the
highest.

The (+- * /~) operators are all of the
double operand type, that is, they always combine two

3

!

numbers. The functions are of the single operand type
since they operate on only one number or, an expression
which can be reduced to a single number. Simple vari ­
ables, vectors or matricies can be combined by these
operators in the following mannera

Simple Variables

Any two simple variables combined by
(+ - * /1') yield another simple variable as a result.
A function of a simple variable is another simple
variableo Example,

C =A+ 	B

BETA = FSIN (X)

BETA and C are single pieces of data if A, B, and X
are simple variables.

Vector Variables

A vector is a linear collection of numbers.
The length or size of a vector variable is defined in
Paltran as the number of elements (or numbers) in that
vector; thus, ·v(10) refers to a variable consisting of
10 elements and is uni-dimensional.

Any two vectors combined by (+ - * I 1')
yield another vector as a result. These operations are
done on an element by element basis, thusc

C =A + 	B

means 	 C(i) = A(i) + B(i) i = 1, 2, ••• n

where 	 C, A, and B are all of length n.

A constant or scalar may appear in a vector
expression, thusa

c = 2 	 results in every element in C being set equal
to the number 2.

C = A * 4 	results in a vector C, whose elements consist
of the elements of another vector A, multi ­
plied by 4. ­

Note a 	 Constants or scalars when used in vector (or
matrix) expressions must be numeric only. The

4

following is illegal£

Given 	 K a simple variable

B,C vector variables

•
•
•
K = 100
•
•
•c = B + K

All variables must be of the same type in
any one expression.

A constant may be added (subtracted, etc.)
to a vector (or matrix) in two ways onlye Examples

* V(10), X(10), K(10)

i.e~ V, ! and li are defined as vectors of length 10•

•
SET 	 K=lOOO

SET 	 X=V+K

•

•

In this case, K becomes a constant vector whose elements
are all equal to 1000; alternatively, the expression can
be written directly as

•
SET 	X=V+1000

•

•

•
A function when applied to a vector yields

another vector as a result; the operation is done on an

5

element by element basis, thusa

If A and B are 	vectors

SET A=FSIN(B) 	 results in a vector A whose
elements are the sine of the
elements of vector B, or

a(i)=SIN(B(i)) i = 1, 2, ••• n

Matrix Variables

A matrix is a two-dimensional array of num­
bers. The size of a matrix is given by a pair of
numbers which refer to the number of rows and columns
in that array. Hence, A(5,10) refers to a matrix of
5 rows and 10 columns, containing (5 X 10) 50 elements.

A matrix may be regarded as a two-dimensional
vector and, conversely, a vector is a matrix with only
one row or one column.

Matrix variables are combined in exactly the
same way as vector variables, that is, on an element
by element basis.

If ~. B, and Q are matricies

SET C=A+B means Q(l,j) = A(i,j) + J2(i,j)

i = 1, 2 ••• n
j = 1, 2 ••• m

SET C=A*B means C(i,j) = ~(i,j) x]{i,j)

i = 1, 2 ••• n
j = 1, 2 ••• m

Note, this is not matrix multiplication; similarly,
C=A/B is not a-rorm of matrix inversion; special
instructions apply for these operations.

FURTHER NOTES ON ARITHMETIC

Arithmetic evaluati.on takes place left-right,
with operations of highest precedence or priority being
performed first. Hence, functions are evaluated first,

http:evaluati.on

6 ­
·rollowed by exponentiation, followed by multiplication
and division, followed by addition and subtraction.
Parenthesis may be used to change the order of evalu­
ation as in the example belowc Note, that multiplica­
tion and division have the same priority, hence:

If A=4
B=2
C.=3

A/B*C is 4/2 X 3 = 2 X J = 6

A/(B*C) which is 4/(2 x 3) = 4/6 ~ 2/J.

All Paltran arithmetic is done in 3-word
floating point format, and@ in fact, makes direct use
of Floating Point Package number fouro* The function
FINT (Integer Part of) therefore returns a floating
point number. Example=

SET X=J~3333

SET Y=FINT(X)

Hence Y=)c 0000

In actual operation~ the operand X is fixed
to a single precision integer (range ~2047 x 2047)
and then re-floated and normalized~ Attempting to use
FINT outside the range + 2047 would produce erroneous
results.

Special care must be taken when using the
exponentiation operation,"i's In order to raise a number
to a power, Paltran uses the relation:

AB ~ EXP(B • Ln (A)) or

FEXP(B * FLGE (A))

Hence, there are no restrictions on the range of the
exponent, B, but A must be positive and non-zero.

* DEC-08-YQ4A-PB

1

INTRODUCTION TO PALTRAN STATEMENTS

A Paltran statement may be numbered and can
be up to 1 teletype-line (72 characters) long. A
line can be terminated by a carriage return (CR) only.
The statement numbers, if present, must lie in the
range (1-2047). The line format is:

STATEMENT BLANK COrmMAND BLANK REST OF LINE CARRIAGE
NUMBER RETURN

That is, the statement number must be terminated (or
delimited) by the character BLANK or SPACE; the com­
mand must also be terminated by a BLANK or SPACE. These
are the only two instances where the blank is important;
it is ignored at all other times.

The Paltran commands ares

COMMAND . ABBREVIATION

READ R
WRITE w
SET s
IF I
GOTO G
DO D
LIBRARY L
CONTINUE c
HALT H

Since the first character of each command is
unique, Paltran commands may be abbreviated; in fact,
the compiler checks the first character of a command
and ignores the rest of the line until the terminator
(BLANK or SPACE) is found. Thus,

READTHIS

READ

REA

RE

R

are all equivalent.

- 8

PALTRAN. CHARACTER SET

The Paltran character consists of the standard
6-BIT (2 octal characters) ASCII code which includesa

The upper case letters ABCD•••••• WXYZ

The 10 digits 0-1-2oeeeee9

The characters

Exclamation•' •• Quotes

Number sign

$ Dollar sign

% Per cent sign

(Open Parenthesis

) Close Parenthesis

Asterisk* Comma
() Period
+ Plus sign
- Minus sign

I Slash

= Equal sign

1' Up arrow

[Open brackets.
 SquareI Close brackets }

And the following non-printing characters

RUBOUT

CARRIAGE RETURN

SPACE or BLANK

In operation, the rubout key when struck
will echo a back arrow (f-); the return key will
generate a carriage~return and line-feed (CRLF) and
the space, of course, prints the character BLANK.

The following have no significance in
PALTRAN-89 but may be us~d as delimiters:

< } Angle> Brackets
~ Back arrow
' Colon
1 Semi-colon

& Ampersand

9

Line feeds are ignored as well as blank tape and leader­
trailer (~2~~-code) tape.

The following characters must ~ be used

in any Paltran source statements,

? Question mark

@ At sign

The 6-BIT ASCII for ? is 77, which the Paltran
compiler senses as an end-of-tape symbol. A ? in a
.source statement would stop the compiler with no
recovery possible. Similarly, the @ has code ~~ which
is sensed as a line delimiter (the carriage return)®
The f6fl} code would produce the action of a CRLF, but has
no delimiting value.

A Paltran delimiter is any character other
than a letter or a numberc In order to make the
carriage return a delimiter, the compiler generates
two symbols for the single character CR. The first
character is a Paltran delimiter (which is actually
code for the & (ampersand)) and the second is f]J?J which
serves as a line terminator.

Thgre is one special delimiter which serves
as the end-of-tape, or actual physical end of the
program. ·This is the$ (dollar sign)~ The compiler
checks every input character to see if it is the $;
when the $ occurs, the compiler halts.

PALTRAN STATEMENTS

The Dimension Statement

Unlike FORTRAN or FOCAL, all Paltran vari ­
ables must be declared, even simple variables. This
is done via the dimension statement·which has the form:

*Vl,V2, •••• vn, ••••

Where Vn ·= VAR or VAR(I) or VAR(I,J)

VAR is a variable name up to four characters in length.
The characters may be alphabetic or nwneric, however,
the first must be alphabetic and not the letter F.

I

10

VAR(I) defines a vector variable of length I and
VAR(I,J) defines a matrix variable with I rows and
J columns.

Commas or brackets serve as delimiters for
the variable names.

The dimension statement is the only one
different in structure from the other Paltran commands.
It is not given a statement number and may occur any­
where in the source program any number of times.
After loading the source program, the compiler looks
for statements beginning with * and ignores all others$
This is the first pass, during which the symbol table
is generated~ The symbol table can hold 30 entries,
hence no more than 30 variable names can be defined in
any one program. On the second passt the compiler
ignores all statements beginning with *and processes
the rest@ Since the source program is stored in core,
the second pass does not involve any physical action
of reloading tapes, etce

Example a

PALTRAN-8 GO (This is an introductory
message typed by PALX)•

•
*DOG,CAT,A123(10),BIRD

•

•

•

*MAT(5~10),PI
•

•

•

*ABCD

•

•

•

$

11

The READ Statement

The READ statement is the basic mechanism for
data input. It has the format:

n READ VAR, ! , " ••• ••

n is an optional statement number
VAR is a variable name
: generates a CRLF
"•••" quotes may be used to insert text in the input

format. Any ASCII character can be used between
quotes except: $, ?, @ and "•

Note, vector or matrix variables need only be mentioned
by name. The operating system will automatically read
1 or 2 dimensional variables according to a pre-arranged,
indexed format.

Example:

*SIMP, VEC T { 1 0) , MAT (2 , 2)
•

•
READ "INPUT",!,SIMP,!,VECT,MAT

•
100 R "MORE INPUT",!,ABCD,A,BC,BCD

•

•

•

*ABCD,A,BC,BCD

The following would result from the first
READ statement at execution time.

Let).14159 be a value we wish to assign to SIMP

Let 	 100
200
)00
400 be a vector we wish to be
500 read as VECT
600
?00
BOO
900

1000

And 	 11 12 be a matrix we wish to
21 22 read as MAT

I

12

Hence

INPUT (POS types INPUT)

1).14159 (POS types i indicating it is ready

VECTOR INPUT to receive input)

(1) :100 	 (user enters).14159)
(2) 	 a200 (POS then types VECTOR INPqT

and an index in parenthesis followed•. 	 by a colon, -The user then enters
(1 0)

'

sl 000 the appropriate element of the
MATRIX INPUT vector())
ENTER ROVI (1) (The operating system then
. (1) z11 (2) :.12 types MATRIX INPUT as a
ENTER ROW(2) guide indicating 2 dimensional
(1) 	 z21 (2) :22 input. All matrix variables

are read by rows only.)

Input data is usually terminated by a
carriage-return (with line-feed generated automatically)
or a space. Proper use of these delimiters is also
essential to input formating~

To change the input format slightlyt a
switch register option is available to the user. The

----index (in parenthesis) that is typed as a guide for
entering vector or matrix variables may be omitted by
raising bit /;e

i.e.

BIT~= 1 (switch up) index is not typed.

BIT~=~ (switch ·down) index is typed as above~

Note, the colon is always typed when input data is
expected.

As
switch 11 was

an example,
upa

the following would occur if

INPUT
:).14159
VECTOR INPUT
:100
:200

•
•
•

clOOO
IV'IATRIX INPUT
ENTER ROVf.
s11 s12
ENTER ROVI
a21 :22

1J

The WRITE Statement

The WRITE statement is the basic mechanism
for data output and has the .following format:

n WRITE VAR,:,#,%~Y•"•••••"

n is an optional statement number
VAR is a variable name
: generates a carriage-return, line-feed
generates only a carriage return
"•••••" text may be enclosed between quotes as in

the READ statement
%~Y 	 affects the output format

X is an integer defining the total field width,
i.e., number of digits in a numbers
Y is an integer that sets the number of decimal
places in the output number.
Examples

*ABC
•

•

•

--SET ABC=lO. 5
5

•

•

WRITE 	 %8/4,ABC,!
•

•

•

Produces at execution time

10.5000

The + sign (if the number is positive) is suppressed,
as well as are all leading zeros. The same output
format remains in effect until the occurrence of
another%, which changes it.

The output format can be set to E-:f'ormat
by using %0/0, or, simply, %/,. Example:

14

*ABCD

•
•

SET ABCD=5000000

•

•

•

WRITE %0/0,"FIVE MILLION",:,ABCD,:

•

•
•

Produces

FIVE MILLION

0.50000000E07

Vector or matrix variables are automatically­
typed out by the operating system. A vector variable
is always typed as a column vector, along with an
index. A matrix variable is typed out as a rectangular
array. Example:

Assume that the following have been calculated
previously:

v = 	 1 11 12 13 14
2 21 22 23 24MAT=3 	 31 32 33 J4
4 	 41 42 43 44

And

*V(4), MAT(4,4)

•

•

•
WRITE 	 %5/2,v,::::Th~T,:
•

•

•

Produces

1.00
2.00
).00
4.00

15

1 2 3 4

(1) 11.00 12.00 1).00 14.00
(2) 	 I 21.00 22.00 2).00 24.00

I Jl. 00)2.00 3).00)4.00(')() 41.00 42.00 4).00 44.00

The operating system prints the row and
column index for matrix variables,. taking into account
the output format (i.e. %~Y) that has been set.
The number of digits in a number limits the number
of columns that can be typed out in a 72 character
line. Example:

- 6 spaces are required for the row index.
- 2 spaces are inserted between columns.
- If the total field width is 6 digits, then,

~ - 66 ­0+2--g- 8

columns can be typed out. With 4K PALTRAN, this is

not a serious problem since core available for data

storage limits the size of matrix variables.

The index accompanying vector output and
~ the··· row index ace ompanying matrix output can be

suppressed by raising BIT ~.

The SET Statement

The SET or arithmetic replacement statement
has the forma

n SET x=e

Where n is an optional statement number
x 	 is a variable that is set equal to the

arithmetic expression e, as defined
previously.

Note, both x and e must be of the same type,
that is, all zero (simple variable), one
(vector) or two (matrix) dimensional. Only
on·e level of forward replacement is allowed.

16

Examples:

*A,B,C,D,V1(10),V2(10),V3{10),MAT(5,5),ARRY(5,5)
•
•
•

SET A=B+2.0*FSIN(C+FCOS(D))
•

•

•

SET Vl=V2~3-FABS(V3)
•

•

•

SET MAT=MAT+ARRY

The IF Statement

The IF statement can be used to change program
flow depending on the sign of a calculated expression.
It has four formss

n IF (eJ A,B,C,D

n IF [e] A, B, C

n IF [eJ A, B

n IF [fij A

n is an optional statement number
e is a valid arithmetic expression as defined

previously

If e is a vector or matrix expression, the first form
of the IF statement ~ be used1 the following action
takes placea

e is evaluated, and a single vector or matrix result,
is tested. If all of the elements of this result are
negative, control transfers to the statement numbered At
if all elements are zero, control trans£ers to B; if
all elements are positive, control transfers to c. If
any one (or more) element does not fall into one of
these categories, control passes to D. For example,

- 17

if there is at least one negative or zero number in an
array of positive numbers, control would pass to the
default statementp De If e is an expression comprised
only of simple variables, control can never transfer
to D. When only simple variables are involved, the
abbreviated forms of the IF statement can be used.

If the second form is used, control transfers
to A, B, or C, if e is negative, zero, or positive,
respectivelys

If the third form is used, control transfers
to A if e is negative, to B if e is zero9 and to the
next executable statement following the IF~ if e is
positivee

Control transfers to A if e is negative, and
to the next executable statement if e is zero or
positive, when the fourth form is used.

Notea 	 The expression e must be enclosed in square
brackets.

The GOTO Statement

The GOTO statement transfers control directly
and has the form:

n GOTO 	 x

Where n is an optional statement number
x is the statement number to which control is

transferred.

USER'S 	 NOTEs

GOTO and IF statements transfer control
indirectly through links on Page zeroe All Paltran
Operating Systems have a maximum of 26 locations
available for this purpose. Each GOTO statement uses
one link~ and an IF statement can require up to four
links, if the first form is used. Since there is a
limit on the number of links available, it is advis­
able to use the abbreviated forms of the IF statement
whenever possible.

I

18

The DO Statement

The DO statement is used for generating
repeatable segments of code or loops. It has the
forma

n DO m VAR=X,Y,Z,
•
•
•
•
•

m CONTINUE

point format, the DO indicies may be negative

Where n
m

is an optional statement number
is the number of a CONTINUE statement which
defines the range of the loop, m must be
terminated by a blank. Every DO statement
must be terminated by a CONTINUE statement,
CONTINUE cannot be used as a dummy state­
ment as in FORTRAN.

VAR is the DO index variable which is first
set equal to X.
The statements in the body of the loop
are then executed, at least once. VAR
is then incremented by Y and tested to
see if this result is equal to or greater
than z.
If VAR is less than Z, the body of the
loop is executed againJ if VAR is greater
or equal to Z, control passes to the
first statement after the CONTINUE
statement.

Since all arithmetic is performed in floating
or

decimal fractions. The DO statement cannot be shortened;
all three indicies must be present.

DO loops may be nexted in standard fashion,
with the following restrictionss

- Loops may be nested 6 deep, maximum.
- Control cannot pass from the body of one loop

to another loop or the rest of the program
until the loop is finished. If escape from a
loop is desired before the loop finishes normally,

- 19

the loop variable, VAR, may be modified (set
equal to or greater ·than Z) or repeated
jumps to the CONTINUE statement may be made.
Several loops cannot terminate on the same
CONTINUE statement. Each DO must have its own
CONTINUE statement.

- The compiler does not check for proper nesting.
The DO indicies can be either simple variables
or constants.

Example:

*I,J,K,N,M
•
•
•

READ N,M

•

•

•

DO 10 I=l,l,N

•

•
•

DO 20 J=-0.5,0.01,0.0
•

inner• loop•
20 CONTINUE outer

loop•

•

•

D? 30 K=2.5E-6,M,10.0E-5].·

• ~nner

• loop

JO CONTINUE·

10 CONTINUE

The HALT Statement

The HALT statement causes the Operating
System to cease execution. It has the simple form•

n HALT.

Where n is an optional statement number.

20

SPECIAL PALTRAN OPERATIONS

The statements discussed in the previous
sections comprise the basic Paltran-8 system. The
PALX compiler, along with Paltran-Operating-System
Number One (POSl), will handle all statements in the
basic system. In order to extend the range of Paltran
operations, three more Operating Systems are available
to process new commands. This extension is made at
the expense of data stora~e, hence restricting the
user to smaller arrays. lRefer to OPERATING PROCEDURES
for details.)

MATRIX OPERATIONS

The following matrix operations are avail ­
able when Paltran-Operating-System Number Two (POS2)
is used:

Matrix Multiplication

Matrix Inversion

~~trix Transposition

and commands which
Compute the determinant of a square matrix.

Set an array equal to the identity or unit

matrix.

Extract the main diagonal of a matrix.

The above operations are available as exten­
sions of the SET statement; the basic format iss

SET *X BODY

where SET is delimited by a blank and the * signals
the compiler to process the one or two character code
X, as one of the above dperations; X must be delimited
by a blank; BODY defines. variables used in the operation.

MATRIX MULTIPLICATION

If C is an (N,M), A an (N,R) and B an (R,M)
matrix, then the matrix product C, of] pre=multiplied
by A is defined as:

21

Q(N,M) 	 =!(N,R) X ~(R,M)

R

Q(i,j) = [A(i,k) X ~(k,j)

K=l

i =1,2••••• N
j = 1,2••••• M

Note: 	 The nwnber of columns in A must equal the number
of rows in ~·

The form of the matrix multiplication state­
ment is:

SET *M 	 A*B=C

where M denotes matrix multiplication, and C is the
resultant matrix product. The FALX compiler does not
check if A, Band Care of the proper dimensions; it is
up to the user to ensure C(N,M) = A(N,R) * B(R,M).

Example a

*C(l0,5),A(lO,J),B(J,))
•

•

•

READ "FIRST MATRIX",!,A,"SECOND MATRIX",:,B,!
•

•

•

SET *M 	 A*B=C
•
•
•

WRITE %6/J,"ANSWER, PRODUCT",:,c,:
•

•

•

HALT

MATRIX 	 INVERSION

The Inverse A-1 of a matrix ! is defined as

•
•

• •
• •
• •

• •

I 	
22 ­-

A~-1=A-1A=I where l is the identity or unit matrix.

I= 1 0 0 0 • 0
0 1 0 0 0 The main diagonal
0 0 1 0 0 elements are unity,

while all off-diagonal• are zero••
0 0 0 0 e 1

Paltran computes the inverse of a matrix
by solving a set of n-simultaneous equations, by a
variation of the Gauss-Jordan method. (In a true
parallel processing system, other techniques would of
course be used. Since Paltran-8 is a simulation, only
the final results are important.)

If A, B and X are square matricies, then the matrix
equation -

~=B may be solved for !

where A is the coefficient matrix
X is the solution matrix

and] is the matrix of constant terms.

If ~ is set equal to the identity matrix, then

AX=! and, by definition, the solution matrix
x-must be the inverse of A.

The form of the matrix inversion statement is:

SET *V INVR/A

where V denotes matrix inversion
A is the matrix to be inverted

INVR is the inverse of A

INVR must be set initially to the identity matrix: this
may be done in two waysa

1. 	 By a READ statement; however, this is tedious.

2. 	 B.y the statement

SET *I INVR

where 	 I denotes the operation of setting INVR equal
to the identity matrix.

23 ­

Unfortunately, the original matrix, A, is destroyed in
computation, It is, in fact, reduced to the identity
matrix.

The following Program is an

PROGRAM

*A(5,5),INVR(5,5)
*SAVA(5,5),TEST(5,5)

READ A

SET SAVA=A

SET *I INVR

SET *V INVR/A

WRITE %6/), 11 INVERSE",INVR!
WRITE "A MATRIX~,A,:

SET *M INVR*SAVA=TEST

WRITE "CHECK ON OPERATION",
HALT

example of matrix inversion.

CO~iMENTS

Declare variables·.

Read A, the matrix
to be-inverted,
Since A will be reduced
to the-identity matrix,
SAVA is used to save
the original coefficients.

INVR is set equal to
the identity matrix.
INVR will be computed
as !-l and A is reduced
to l•
The inverse matrix is
written, along with A
as a check. ­

The inverse INVR, is
multiplied by the original
matrix SAVA. By defini­
tion, if the inversion pro­
cess has been carried out
successfully, TEST should
be the identity matrix.

TEST,!'

The results from this program for the matrix

10 5 0 .-5 10
1 .01 .7 -.1 4

!= .1
-1
·3

2
-9
-·3

3
·5
1.5

4
·5
4.5

5
• 01
10

appear in Appendix 1.

• • • • • •
• • • • • •
• • • • •
• • • • • •
• • • • • •

24

The only restriction on this method is that
all diagonal elements of the A matrix must be non-zero,
since division by A(i,i) occurs in the process. This
method is also prone to the usual pitfalls involved
in finding inverses of ill-conditioned matricies.

Since this method consists of solving equa­
tions to find an inverse, it can be used to solve
simultaneous equations directly.

Example a

*A(5,5),B(5,5)

READ "COEFFICIENT MATRIX" ,A,:

READ "MATRIX OF CONSTANTS",B,!

SET *V B/A

WRITE "SOLUTION MATRIX",B,:

HALT

Instead of initially setting B equal to the
identity matrix, B is read as a matrix of constants,
and after the SET *V B/A statement is executed, B is
the solution to:

a a X X b b1,1 ••••• 1,5 1,1 ••••• 1,5 1,1 ••••• 1,5

* =

as,l •••. .as,s xs,1 ••••• xs,5 bs,l ••••• bs,s

that is B = x.

MATRIX TRANSPOSITION

The transpose] of matrix A._is defined as,

~(j,i)=A(i,j) i=l, ••• N, j=l, ••• M

The statement:

SET *T TRAN/A

will set TRAN(N,M) to be the transpose of A(M,N).
It is up to the user to ensure.dimensional compatibility.

25

DIAGONAL EXTRACTION

The statement

SET *DI A/VECT

will set VECT equal to the main diagonal of Ar that is,

VECT(i)=A(i,i) i=1,2••••••n

A must be a square matrix, and VECT must be of vector
of similar dimensions.

Note the two-character code following the asterisk in
the'SET statement.

DETERMINANT OF A SQUARE MATRIX ,

The statement

SET *DE DET/A

results in the simple variable, DET being set equal
to the determinant of A. Since division by A(i,i)
occurs in the process, all main diagonal elements of
A must be non-zero. As is the case with matrix inver­
sion, the A matrix is destroyed in computation.

PALTRAN LIBRARY OPERATIONS

The second class of extended operations include:

Plotting

Numerical Integration

Numerical Differentiation

Searching vectors for minima and maxima

Loading functional values into a vector.

These operations are handled by Paltran
Operating System Three (POSJ) and Paltran Operating
System Four (POS4). POS4 is basically identical to
POSJ, with only minor changes made in input-output
structure.

26 ­
The compiler handles these operations under

the LIBRARY statement, which has the basic form:

L OPCODE VAR,EXP

where L denotes the library class of operations.
OPCODE is one of the following:

P for PLOT
S for SET
M for MINIMAX
I for INTEGRATE
D for DIFFERENTIATE

Note, both the Library command and opcode must be termin­
ated by blanks.

VAR,EXP is the remainder of the statement
consisting of variables or arithmetic expressions
or both.

All of the above operations deal with vectors
as the basic unit of data storage. Many cases arise
where the values of some function are desired over a

-·------·~--g-iven range. The Library statement SET is used to
generate a vector whose elemants are values of some
function, say F(x) over the range X1JliN~X~XMAX.
The form of this statement is:

L S V,XtFXl

where V is the vector that will contain the

calculated values.

FX is some function of X.

FX must be enclosed in square brackets and the variable
X must appear as above.

At object or execution time of the SET
statement, the Operating·system (POSJ) will type XMAXt,
to which the user responds by typing in the maximum
value of the functional range. The operating system
then types XMIN:, to which the user makes a similar
response. The operating system then computes:

V(I}=F((XMIN-A~)+AX*I) I=l, •••••• N

27

where - N is the size of the vector

A X = XIVIAX-XMIN

N

Thus V will then contain F(x) evaluated from XMIN to

XMIN+.LiX*(N.... l) in increments of thl..Xe~

Note· XMIN+~*(N-l)=XMAX-~X~

Example a

*X,V(100)
•

•

• IL SET V,X FSIN(X)+FCOS(2.0*X)

WRITE %8/4, "SIN-COS FUNCTION", V,!.

HALT

In this case, the vector V will consist of the func~
tion SIN(X)COS(2X) over a range determined by the
user at execution timeo

Inte.gration and Differentiation are carried
out by Paltran in a similar fashion.

The form of the Library statement INTEGRATE is

L I SUM,V,XtFXl

SUM is a variable which will contain the value of
the integral.
V is a vector which contains the individual areas

(see belo'N) o

FX is a function of Xo

28

If F(x) is evaluated at X1
and LlX is very small, F(xl). ,6 X
is a good approximation of the
area under curve of F(x) from
Xo to X2•· since the areas of
triangles ABC and CDE are
approximately equal. By making
sufficient number of these
area calculations and adding
them, a.good approximation to
the true value of the integral
can be made.

The range or interval of integration is again
determined at execution time as was described under
the SET statement. The size of the vector V determines
the ntimber of area evaluations; the larger V is, the
more accurate the result. (Note, an integral curve
can be plotted from the elements of V.)

Example:

*SUUI,X, V(lOO)
•

•

•

L I SUM, V, XtX+ll

WRITE fo6/J, "ANSWER" ,SUM,:

HALT

If the user entered the limits ~. and 1 at execution
time a

XMAXt 1

XMIN: ~

ANSWER 1.498

~2 Noting that J<x+l)dx = +XJ:
= 1.5

29

In a similar fashion, a function may be
numerically differentiated. The form of the Library
statement DIFFERENTIATE is:

L D V ,X [FX]

where FX is a function of X.

The function is divided into intervals as
determined by the size of the vector V, and the slope
of the function calculated, the individual slope cal­
culations comprising the elements of v.

The differential curve of the function can
now-be plotted by means of the Library statement,
PLOT, which has forma

L P V

where P is the abbreviation for PLOT and V is
a vector of ttytt values. As before, an "X-value" range
is determined at execution time from user input and the
size of the vector V.

The X-scale is plotted down the teletype
•Page" and·the· Y-scale plotted across. This routine
is not very elaborate; however, plotting in all four
quadrants is possible. The Y-range is limited to
-50 places and the X-range by the length of the vector
of plot points. To obtain Y-displacement, the value
of the particular element in V is fixed and a number
of spaces are typed as given by that value, followed
by a period(.). Since this limits the range of
values in the vector V from -25 to +25, the Operating
system requests a third parameter: YMAG or Y-scale
magnification. The values in the plot vector are
multiplied by this parameter in order to place them in
the -25 to +25 range. For convenience, the X and Y
values are printed along the left-hand margin. If
plotting will only take place in the positive Y-ylane,
the range of the plot vector may be changed to ~ to
5~ by means of a switch register option. This is done
by raising switch 11 (Bit 11 = 1).

Example:

*X,V(lO)
WRITE %6/3
L SET V,X Dc*X]
L PLOT V
HALT

I 	 - JO ­

At Execution 	time:

XMAXa 10

XMIN: 0

YMAGa 0.25

yX

o.ooo o.ooo •
1.000 0.250 •
2.000 1.000 •
3.000 2.250 •
4.000 4.000 •
5.000 6.250 •6.ooo 9.000 •
?.000 12.250 •a.ooo 16.000 •
9.000 20.250 •

Note, the Y values printed are the scaled values.

Sometimes it is not apparent what the maxi­
mum or minimum value of a calculated set of points is.

- - - ~ The minimum and maximum value, of the elements, of a
given vector may be found by using the Library state­
ment MINW~X. It has form:

L M MAX,MIN,V

where - MAX 	 is a variable name and is set equal to
the largest element in vector v.
Similarly, MIN is set equal to the
smallest element.

At execution time, the operating system will
also type out the minimum and maximum value.

Example:

*X,MAX,MIN;V(25)

100 L SET V,XLFEXP(X*FSIN(2.0*X))/X]

200 L M N~X,MIN,V

JOO L P V
HALT

31

Statement 100 describes a rather complicated
function of X and it is not readily apparent what the
maximum and minimum values would be for some given
range.

Statement 200 results in a sort through the
generated vector and prints the appropriate values.
Knowing the range of .. Y-values .. , the user can then
enter a suitable value for YMAG in the plot routine.

POS4 MODIFICATIONS TO POS3

The printing and/or reading of scale or
range values at execution time is convenient in some
respects and not so in others. If the SET or MINMAX
statement was in a loop, repeated entry of values from
.the keyboard would be troublesome.

Paltran Operating System Four (POS4) is a
small modification of POSJ which changes the input­
output mechanisms for the SET and Iv1INMAX statements.
At execution time, the operating system will read

·---XMAX and XMIN, that is the function range, from core
memory instead of from the keyboard. The values read
are the first two variables declared. Similarly, the
MINMAX statement obtains values for XMAX and XMIN from
the first two variables dimensioned by the user.
In addition, the MINMAX statement returns two new data
items, which occupy the locations of the next two
variables in core. The returned numbers are the values
of X for which the maximum and minimum occur.

Example1

Suppose that some function has values, Y, for the
given X-range1

X y

0 0
1 2
2 3
J 7
4 3
5 2
6 0
7 -2
8 -10
9 -2

10 0

- 32 ­

Using POS4, the user must declare the first

four variables appropriately:

*XMAX,XMIN,PMAX,PMIN,MAX,MIN,X,v(lO)

READ XMAX,XMIN

L SET V,X some F(x)

L M MAX,MIN,V

WRITE %6/J~"MINIMUM AND MAXIMUM VALUES ARE",

MIN, ,.AND" , MAX, :
WRITE "OCCURRING AT X=", PMIN, "AND", PMAX, "RESPECTIVELY", ·!
HALT

The program would return for the above valuesa

•

•

•

•

•

MINI~fln~ AND MAXIMUM VALUES ARE -10.000 AND 7.000
.OCCURRING AT X=8.000 AND).000 RESPECTIVELY

Other than this, POS) and POS4 are identical.

---NOTEs 	 -The MINI!VT.AX routine uses an internal calcula­
tion made by the SET, INTEGHATE OR DIFFERENTIATE
routines; this necessitates using L Iv'I lvJAX, MIN, V
in conjunction with L SET V,X FX ETC., when
using POS4 only.
(Refer to Appendix II for a further example.)

OPERATING 	 PROCEDURES

The PALX compiler is brought into
core using the BIN loader, and starts in
location ~2}1/1. Before starting, the following
switch register option should be set:

Switch 11 	 UP Switch 11 DOWN
(Bit 11=1) . 	 (Bit 11=i5>

Source tape is read using Source input is
the High S~eed Reader manual; through

ACTION 	 (HSR). A ~ is ech.oed the keyboard.

every time a CR is read. The Low Speed

Line-feeds, ~2~~ code and Reader (LSR) may

blank tape are ignored. be used.

http:MINI!VT.AX

ACTION

JJ

Upon starting, PALX types

PALTRAN-8 GO

and reads a source tape or awaits keyboard
entry, depending upon BIT 11. When a $ is
encountered indicating the end of the
source program, the compiler halts. Two
switch register options are now available.

BIT 11=1 BIT ll=p
Punch object tape on Punch object
HSP (high speed punch). tape on LSP.

BIT p=p BIT P=l
Type symbol table and Omit symbol print
program data after and program data.
punching object tape.

After setting bits 11, and~ and
turning on the appropriate punch, the user
presses CONTINUE, PALX then punches the
object tape. Error messages will be typed
at this time if any errors are detected.
After punching the object tape, PALX. types

EOT (End of Tape)

to indicate a successful compilation. If the
symbol print is selected, the names and dimen­
sions of the variables will be printed.
Example, if the following appear in the
source program:

*ABCD,A,B,CAT(8),DOG{9),BIRD(4,5),W~TR(7,7)

the symbol print will be:

SYMBOL TABLE

NAME 'DIMENSIONS

ABCD

A

B

CAT 008
DOG 009
BIRD 004 005
IVIATR 007 007

34

The compiler then prints the following program dataa

Number of lines in source program.
- Total data storage required (for variables only).

Length of object program.
Number of GOTO and IF links generated.

Note, all of the above numbers are converted to deci­
mal (base 10) when typed by PALX. After printing this
data, the compiler halts, and switch register options
can be reset at this time; pressing CONTINUE restarts
the compiler. ·

If the symbol print has not been selected,
the compiler automatically restarts.

There is only one editing feature in PALX.
When in the keyboard entry mode, the RUBOUT key may
be used to delete the character just typed. Pressing
RUBOUT again will erase the previous character, etc.
A back arrow (~) is echoed every time RUBOUT is used.

--------COMPILER DATA

The maximum source urogram length is 128010characters, use of abbreviatea commands J.s there­
fore recommended to conserve space. Excessive use of
RUBOUT is not advised since each RUBOUT adds to the
source character count, and the deleted characters do
not decrease this count. The source program may con­
sist of a maximum of 50 lines (compatible with 128010
characters, maximum). Each IF statement effectively
generates GOTO statements, and these are included in the
source count. The abbreviated form of the IF statement
is therefore recommended wherever possible. In addition,
the number of GOTO links will be correspondingly conserved.

Example:

IF I:X+2. O*Y-ER J 100,200,)00,400

is considered as 5 source lines and requires 4 GOTO links.

IF I:ALFA-EPS:l 1000

counts as 2 source lines and uses only one GOTO link.

I 35 ­

·' ERRORS DETECTED BY PALX

The Paltran compiler, PALX, checks the source

program for syntax errors during compilation. In

addition, source and object program overflow is detected

and generates an error message. All Paltran-8 errors

are fatal; the source program should be corrected before

attempting execution of the object program.

Error messages are typed out in the following

format:

ERROR XX

AT YY

where XX is a two-digit octal number indicating the

error and YY is another octal number indicating the line

in which the error occurred. The following table lists

Paltran-8 errors detected by PALXa

Error Number Description

,0{6 Source overflow. Source program
too long. Compiler restarts.

j11_ Missing line number, no GOTO
transfer possible.

(J2 Object program too long.
,q}J Syntax error in a floating point

number.
~4 Undefined variable name.
115 Unrecognizable command, Invalid

Paltran statement,
~7 Illegal terminator in a Dimension

statement. ")"is missing.
1% Too many characters in a variable

name.
12 Unrecognizable extended SET command.
13 rdsmatched parenthesis.
15 Unrecognizable operator or constit ­

uent in an arithmetic expression.
67 ·- Unrecognizable command in a

LIBRARY statement.
77 Same as error 1~. Too many

characters in a variable name.

36

STATEMENT SUMMARY AND OPERATING SYSTEM DATA

The following statements can be handled by all
operating systems (1-4)

*VAR, VAR (I) , VAR (I., J) , ••••

n SET X=e
n READ VAR,:,"•••"•••••
n WRITE VAR,:,#,%x.y,"•••"•••••
n IFCe::JA,B,C,D
n GOTO r
n DO m VAR=I,J,K
m C'ONTINUE
n HALT

Where VAR is a variable name
X is a variable name
e is an arithmetic expression
A,B,C,D,n,r,m are statement numbers
: generates a CRLF
generates a CR only
%x.y changes output format

---"·-. •... denotes text
I,J,K are index parameters,

or variables
either connstants

Paltran Operating System Number Two (POS2)
will handle the following statements, as well as the basic
commands:

n SET *M A*B=C 	 ~~trix Multiplication
n SET *v AI=A 	 Matrix Inversion
n SET *I A 	 Identity Set
n SET *T TRAN/ A 	 Transposition
n SET *DI A/VECT 	 Diagonal Extraction
n SET *DE DET/A 	 Determinant of a square matrix

Paltran Operating Systems Three and Four (POSJ),
(POS4) will handle the following Library statements as well
as the basic commands:

L P V 	 Plot; Vector V
L S V,X I:F(X).::I 	 Set; V=F(X) over X~~X,XMIN
L I SUM, V, X C.F(X) .:I 	 Integration; SUM is the value of the

integral, V contains the area cal­
culat1ons.

L D V,X t:F(X)::J Differentiation
L M MAX,MIN,V 	 Extraction of minimum and maximum

37

All four operating systems can accommodate
_2610 GOTO and IF links, and a maximum of J801o locations
can be used to store the object program. The compiler
will type the number of links and locations used by the
object program at the end of each compilation.

The object tape is loaded (by the operating
system) by placing the tape in the HSR and starting
the computer in location ~177. Execution begins
immediately after loading. If the program is to be
run again, it may be restarted in location %2~~.

If a high speed reader is not available, the
following change must be made in order for the operating
system to use the LSRa

LOCATION OLD CONTENTS NEW CONTENTS

2137 6014 6032
2133 6011 6031
2135 6016 60)6

-ERROR MESSAGES

The operating system will type "TILT" if the
square root of a negative number, or divide by zero is
attempted. The absolute value of the operand will be
taken, in the case of the square root operation, and
the quotient will be set to the highest positive number
if division by zero occurs.

If the operating system receives an invalid
operator in a SET statement, it will cease execution and
7777 will be displayed in the Accumulator. ·There is no
recovery possible.

DATA STORAGE

The following table lists the memory available
for data storage in each of the operating systems:

SYSTEM 	 LOCATIONS NUMBERS*
(MAXIMUM)

POSl 900 300
POS2 450 1~0POSJ 591 1 '7
POS4 591 197

*A floating point 	number requires 3 locations for storage.

- 38 ­

If 'location ,0141 is changed from 425!6 to 453% in POSJ or
POS4, 600 locations (or 200 numbers) are available for
data storage. However, this change limits DO loop nests
to 4 deep, maximum.
The compiler types the number of locations needed for data
storage at the end of each compilation.

PALTRAN BUGS

There are two Bugs in the PALX compiler. If a
Dimension statement ends with a vector or matrix variable,
a blank entry will be placed in the symbol. The symbol
print routine stops printing when a blank entry is en­
countered; although the compilation is unaffected,
variables declared after the initial statement will not
appear in the symbol table print. If a simple variable
terminates the Dimension statement, this does not happen.

The Paltran operators (+,-,*,/, ~) require double
operands. Problems occur when (-) is used to denote a
negative number. Falx will treat the (+) or (-) operator
as indicating a positive or negative number only if this is
the first character in an arithmetic expression.

SET X=-2 is compiled as SET X=~-.2

However, if a case such as:

SET X=FSIN(-2) arises, incorrect results occur, since the
"(" and "-" are treated as two operators in succession.
Writing SET X=FSIN(~-2) will correct this condition.

·Due to round-off in the floating point format, "9'•
is returned as 8.9999•••••• When the index accompanying
vector or matrix variables is typed, (9) a will appear
as (8) 1 due to truncation.

39 ­

APPENDIX I

Sample Program
Matrix Inversion

MATRIX TO BE INVERTED
MATRIX INPUT
ENTER ROW(1)
(1) : 1 G (2) :5 (3) :S (4) :-5 (5) :1'9
ENTER ROW C 2)
(1) : 1 (2) : .G 1 (3) :&.7 (4) : -a.I (5) :4
ENTER ROWC 3)
(1) : 1 (2) :2 (3) :3 (4) :4 (5) :5
ENTER RO~JC 4)
(1) :-1 (2) :-9 (3) :.5 (4) : .s (5) :.&1
ENTER RO\~ C 5)
(1) :.3 (2) :-.3 (.3) :1.5 (4) :JJ.S (5) :1&

INVERSE MATRIX

1 2 3 4 5

(1> .168 - .7~4 .117 .117 • S54

(2) .&2& .~79 .&&9 - .119 - • Bl5

(3) .&99 .816 .334 .932 - .393

(4) .&71 .8&4 .&72 .&47 .213

(5) .&22 .263 - .~86 - .&33 .sG~

ORIGINAL 'A' MATRIX

1 2 3 4 5

(1) 1.&&9 .&s~ .sss .s~s .&&~

(2) .P!}f}& l.&~G .ss~ .&s~ .fiR~

(3) .'1&~ .&t'l& l.l'lS& .s~s .~&~

(4) .&&G .&19& -~~~ l.S~~ .fHH~

(5) .&GS .&&& .&ss .&&S 1. &~Hi

CHECK ON INVERSE, INVR*A=I

1 2 3 4 5

(1> 1 • &99 - .sao .~&~ - .&sa .s"Gn
(2) .&~& 1.G9& .&~G .&&~ -~~&

-c 3) .&s& .&~Hl .999 .fiG& .s~~ -
(4) .fl&~ - .s~s .~~~ .999 • SNG

(5) .&&& - .&&~ - .&&& .&&& .999

I 41

APPENDIX II

Parallel Processing And Functional Analysis

I 42

The repertoire of Paltran - 8 Library commands may
be used to demonstrate the application of a linearly con­
figured array of processing elements or cells, to function­
al analysis. Each cell is assumed to have the following
properties:

- arithmetic capability
- local storage or memory
- communication with a central control

communication with central memory

The availability of many processing units makes pos­
sible a somewhat unusual technique of analyzing functions
for the occurence of zeros, maxima or minima. Let f(x) = y
be some function defined over the range (xmax,xmin) in
which at least one zero, maximum or minimum is as~umed to
exist. The objective is then to find the value x for which
f(x*) = Q, where Q is the required condition. In operation,
the function is evaluated over (xmax,xmin) in n steps (assum­
ing n processors) and the resulting array searched for the
required condition, noting the value of x for which this
occurs. If n is sufficiently large, the answer may be found
on the first pass, if not, new values of (xmax,xmin) are es­
tablished around x* for which f(x*) g Q and the process re•
peated until sufficient accuracy has been attained. In gen­
eral there may be any number of zeros or extrema in the giv­
en range.

The speed at which the answer is found is quite con­
siderable since only one effective function evaluation is
performed per iteration. If large numbers of processors are
available the value of x* approaches the final value by
several orders of magnitude for each pass, thus necessitat­
ing only a few iterations. It should be noted however, that
new ranges {xmax,xmin) cannot be set arbitrarily close to
the approximation x*, since round-off and truncation error
can accumulate and create problems of overshoot.

The case of f(x) =~ will be chosen in the fol­
lowing example to demonstrate the equation solving ability
of this particular method. There are many equations that
arise in the scientific and engineering fields that cannot
be solved by analytic means or require a disproportionate
amount of work to do so. As an example, in certain micro­
wave matching problems, the following equation must be sol­
ved for z1 , given z0, ZL and Qz

::::: ~ + 2 (~)i.z1 - (:£z~)- 2 (~J zt-\ z6

I

I 43

It is not immediately obvious which value(s) of Z will
satisfy the above equation. Solving for z1 directly is
an exoersize for the student.

To illustrate
case of the parabolaa
fo~ x directly,

the me~hod let us
{x-2) - 10. We

take the simpler
may easily solve

{x-2)
2
.-lo =&

(x-2) = tylO
x.= 2 ±3.162

x =;.162 or -1.162

Although it is now obvious in which interval the
solution(s) lies, it is good practice to obtain a plot of
the function to obtain a rough idea of its behaviour.

Fig. II is a plot of (x-2)*(x-2) - 10 over (-5 ~ x ~ 10)
obtained from the following programa

*MAX,MIN,XV(JO)
w%6/J

--L-SET v,x C(X-2)~(X-2)-10:J
L M: MAX,MIN, V
W "PLOT OF PARABOLA (X-2) 1' 2-1 0", 1::
L PLOT V
HALT
$

using POSJ.

Fig. III is a source lising of the program used for the

analysis. (POS4 is required).

The range values X~~X and ~diN are read in along with EPS,

the value of f(x) at which we will consider a solution has

been reached; the variable C is used as an iteration counter.

(REF. statements # 1,2,)). The statement (#4)

L SET V, X [(X-2)*(X-2)-10:J then fills vector V with 100

function evaluations over (XI·IfAX,XMIN); the elements of V

correspond to the cells of the array. The next statement {#5)

SET V=FABS(.V) will make all zero-crossings appear as min­

ima, which can be found by means of statement number 6,

L M MAX,MIN,V. (note, only global minima will be located,

if two or more minima appear and are equal, only the last

found will be returned by the MINIMAX routine,) The

minimum found is then tested to determine if 1t is suf­
ficiently close to zero. If it is not within the error
limit new values of XMAX and XMIN are calculated and the
process repeated.

- 44 ­

New values of (XMAX,XMIN) are calculated as follows:
(REF. statements #8,9,10,11,12)

Let Dl a PMIN-XMIN

D2 = XMAX-PMIN

then
XMIN = PMIN-D1/(1+C)

XMAX = PMIN+D2/(1+C)

where C is the iteration counter and PMIN is the value of x

for which the minimum occurs.

The following line diagram illustrates the convergence of

(XMAX,XMIN) around PMIN with each successive iteration.

XMIN PMIN XMAX

T

I c=1
I

.­
I

I

l c=2

•
I

...... c=3

The following results were obtained from the program in Fig. III

INITIAL
RANGE
VALUES

ERROR
EXIT
LEVEL

SOLUTION
X=

RESIDUAL
VALUE OF
FUNCTION

NUMBER
ITERATI
TAKEN

OF
ONS

so, -50 • 0001 5.162 .000099 6

o, -100 .0001 -1.162 .000032 7

45

The power of this method becomes even mo.re apparent
if the array of processing elements is extended to, two,
three or more dimensions, enabling analysis of mult-variable
functions.

This technique is a good example of how parallel
processing can make. possible methods which have been
considered impracticle (or impossible) in the past.

46
XMtN:-5 XMAX: 1 &

MAX Jif· 25 ~
MIN - G.t;)Sfl

PLOT OF THE PARABOLA <X-2> t2 - lt1

XMIN:-5
XMAX:l&
YMAG: .5

yX

- 5.~~& 19.499 •
4.499 16.124 • - 4.&&& 12.999 • - 3.5SS 1s.125 •- 3.B&ll 7.5~9 •- 2.5~& 5.124 • - 2.&~~ 3 .'fH1S •
1.5~~ 1.124 •

1.&&& - •s&s •

.5&& - 1 .875 •
3.~~9.s&s - •

.5'f:l& - 3.874 •

1.~&& - 4.499 •

-~-~-1 .5&~ - -4.875 •

2.&G& - . s.G~G
 •
2.5G& - 4.875 •

3.&&& - 4.499 •

3.5&9 - 3.874 •

4.&&& - 3.SS9 •

4.499 - 1.875 •
5.&&8 •5GG •
5.499 1.124 •

G.&s& 3.&ss •

6.499 5.124 •

7.8~& 7.5~& •

7.-5&& 1G.125 •

8.&&& 12.999 •

8.5&& 16.124 •

8.999 19.499 •
9.5&~ 23.125 •

END

Fig. II -- Plot of Parabola (x-2)
2

- 10

PALTRAN-8 GO

*XMAX,Xf;liN, PMAX ,PNI N, MAX, MIN, X, c, Dl, D2, EPS, VC 1~~)

1 R "ENTER INITIAL RANGE VALUES ",I,XNAX,XMIN,!

2 R "ENTER ERROR EXIT LEVEL ",EPS,ll

3 S C:&

4 L S V,X[CX-2>*<X•2)-1&]
5 S V:FABS(V)
6 L M MAX,MIN,V
7 I [MIN-EPSJle~,lSS
8 S C:C+l
9 S Dl:PMIN-XMIN
1& S D2:XMAX-PMIN
11 S XI1AX:PMI N+D2/(l+C)
-12 S X~1IN:P~1IN-D!/Cl+C)
13 W "e"
14 G 4
1~& W~8/4,lii,"SOLUTION",!,"FUNCTION IS ZERO FOR X- ",PMIN,II
lSl W"ITERATIONS TAKEN ",~3/&,C~II
1&2 W~8/6,"RESIDUAL VALUE OF FUNCTION ",MIN,l!l!!!
1&3 HALT
$

EOT

SYMBOL TABLE
NAME DIMENSIONS
XMAX
XMIN
Pf1AX
PMIN
MAX
MIN
X
c
Dl 	 Fig. III
D2
EPS 	 Source Listing of
v 	 . 1&& Equation Solving

Routine

TOTAL DATA STORAGE 333

SOURCE LENGTH &21 LINES

OBJECT LENGTH 275 LOCATIONS

GOTO.AND IF LINKS &~3

	Structure Bookmarks
	Figure
	Figure
	Figure
	ed by the series
	Figure
	Figure
	I I l
	Figure
	' aJ I ~ a i • • 1 25 50 100
	6 B • • • l,n A Base c• • • ' 8~t\l1Tlll 1 0 1 u mB EJ n '• • • • • • 2,n 4 2 "''Il A I c • • • c • • • u • • • m ~ • • • u • • • l • • • r a • • • t 0 r n,l n,2 n,n tl n• • • • • • ' , ~ ~ ~ ~ ~ Base Row ~·~ Cell ~ -1 2 n ' Row Accumulator / ' ~ 'lit
	Figure
	Figure
	Figure
	I
	I

