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A new high-level~ high-order computer programming 

la guage designed to complement multi~processor, parallel 

co,puting systems is presented, These systems permit a high­

or4er of operation by performing many instructions simultane­

ou~ly, thus producing significant increases in computing 

The proposed language is so constructed as to give 

the user a free and natural formatv to express problems 

which exhibit natural or inherent parallelism® In order to 
I 

I 

demlonstrate some of the main features, a small subset of the 

language has been writtene and implemented as a sequential 

sim~lationa 

In order to relate the language to hardware schemes~ 

a p~rallel processing array computer is briefly examinede 
I 

A core language to communicate with parallel comput­

ing systems may be constructed from the concepts developede 

iii 



ACKNOWLEDGEMENTS 

The author wishes to express his gratitude to 

the Department of ·Electrical Engineering for providing 

its facilities and assistance and to Dr. E. Della Torre 

for his guidance and encouragement. 

Thanks are given to Karl Siemens, Bob Tiernay and 

the other graduate students in the department for many 

and useful discussions. 

The author also wishes to thank Mrs. J. Wolkowski 

for her assistance and long hours in typing this manuscript. 

iv 



TABEL OF CONTENTS 


Chapter -1­

Chapter -2..., 

Chapter -3-= 

Chapter =4""' 

Chapter -5­

Chapter co6­

Appendix I 

Appendix II ... 

Appendix III 

Appendix IV 

INTRODUCTION e e • • • • • • • • • e o -1­

PARALLEL PROCESSING 
AND PALTRAN •~o••••••·~~· =8­

THE PALTRAN PROGRAMIVIING 
LANGUAGE • e 11 e·o • • • • • e e IJ -46­

PALTRAN IMPLEMENTATION 

THE MATR.IX 
PROCESSOR ~ e • e e e e • • • o • • 

CONCLUSIONS 

The Paltran Character Set 
and Key VIOrds 0 ~ ••• el li) Ill e 11 • f) 0 -83­

The SET Statement 
• • • • • 0 • • • • • • • -88­

References and 
Bibliography • • e • e o • • e • • e o -98­

The Paltran - 8 Users 

Handbook ••••••••••••• -102~ 


v 



CHAPTER ONE 

INTRODUCTION 

This thesis describes the basis on which the pro­

positions for a new programming language, to communicate 

with parallel computing systems, are founded. For purposes 

of discussion, the acronym PALTRAN (PAralleL TRANslation) 

will be adopted as a name for the language. 

Parallel Processing and the basis for Paltran will 

be discussed in the next chapter. Chapter three describes 

the proposed statement forms and syntax of the language. 

The version of the language written for a Digital Equipment 

Corporation PDP-8 minicomputer is discussed in Chapter four. 

A general model of an array processor, on which Paltran 

commands are based, is presented in the next section. 

The remainder of this chapter is devoted to the 

motives and needs for parallel processing and generally 

· related language descriptions. 

- 1 ­
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Motivation for Parallel Processing 

Several reasons can be cited for justifying 

interest in parallel processing organizations, namely, 

functional and hardware or economicc Even if application 

or functional requirements cannot justify a parallel organi­

zation, the economics of new hardware technologies may 

still do so. 

Functional reasons for parallel processing may be 

divided into four areas. These include, very large compu­

tational problems, problems with inherent parallelism, 

multi-programming and simultaneous use by many users, and 

reliability and graceful degradation. The latter two areas 

are somewhat divorced from high-level language considera­

tions, while the former are directly dependent on efficient 

communications with the hardware. 

History has shown that, at any given point, very 

large processing and computation problems place require­

ments on a system that exceed those which can be implemented 

with conventional compute~ organization using state-of-the­

art circuit and memory speeds available at that point. 

In spite of the increasing speeds of logic circuits, 

memories and input/output equipment, requirements for 

processing and computation capabilities have increased at 

a somewhat comparable rate. As computer power increases, 

there is a continuing pressure to solve problems for which 
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solutions have been impossible in the past. Examples of 

such problems include the global weather problem, nuclear 

physics problems, economic planning, traffic management, 

and others in which an array of data points are processed. 

Problems, or parts of problems, may contain struc­

tures that are inherently parallel, Such parallelism may 

result from the presence of several data streams which can 

be processed simultaneously under the control of'.a single 

instruction stream. Row or column operations on matricies 

are typical examples. Another type of inherent parallelism 

results from the requirement to perform several relatively 

independent processing operations and different sets of 

data be~veen two·points in the program. 

Hardware and economic reasons for parallel process­

ing may sometimes outweigh functional ones. Some of the 

new developments and technologies, such as large-scale 

integrated circuits, LSI semiconductor memories, 

nondestructive-read out plated wire memories, optical 

techniques, etc., may be used more effectively in some 

form of parallel organization. A highly parallel organi­

zation or functional organization provides an approach to 

the repetitive use of large arrays. In a parallel system 

implemented with LSI arrays, a few chips may be unique, 

but a large percentage could be identical, thus providing 

design and manufacturing economies. 
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Recent advances in LSI memory techniques also 

tend to make parallel organizations attractive, It is no 

longer economically necessary to design around a large 

central memory. The total internal memory capacity can 

be distributed over a number of smaller memory modules 

which can be accessed in parallelQ 
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Programming Languages in the Parallel Environment 

Computer programming languages have evolved con­

siderably; however, they share the problems encountered 

with natural languages. While there are many rules and 

regulations to be observed, there exists no formal defini­

tion or means of constructing them.. The exception to this 

is ALGOL1 , which was the first language in which the syn­

tax was defined with a formal notations It is interesting 

however, that a large class of users found the notation 

difficult to read. The very value of the formal definition 

contributed to a lesser usage of the language simply because 

it discouraged people. The view has been taken that tlle 

only complete definition of a language is a compiler for 

that languageG This is justified in some respects since 

the rule and regulations are well-documented and a program 

can be written and executed rather than be limited to 

abstract discussion. 

Since parallel processing is in its formative 

stages, with many eventualities still unexplored, a formal 

definition for Paltran will not be attempted at this time. 

Rather, the language will be described in terms of its 

technical characteristics with the view that future com­

pilers will be based on them. Since parallel processing 

systems will tend to be somewhat unique and have their own 

individual language requirements, a detailed description 

of Paltran will not be given. The various forms of 
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input/output statements, compiler directivesp etc. will 

be determined by the needs of individual installations. 

Before discussing parallel processing further, 

certain general obj~ctives as to the proposed form of 

the language may be statede The first languages to gain 
~ 

wide acceptance were those that enabled problems in the 

scientific and engineering fields to be solved. FORTRAN2 

is the best example of thise It is also interesting to 

note that the first electronic digital computers were 

"number crunchers•e rather than list, string or character 

processorso Existing computers that are organized in a 

parallel fashion are·all primarily designed for mathemati­

cal computationo In this regardg Paltran is to be a 

procedure-orientedf problem-oriented, and problem solving 

language, designed primarily for numeric, scientific 

calculationCl As experience with parallel processing in 

general is gained, list and string, as well as business 

data processing capabilities, may be addeda This implies 

that Paltran is to be a general purpose computer programming 

language and is not to be restricted to specific machines 

or applicationsg 

Experience with other languages has shown that 

certain types of operations or commands tend to be common 

to these languages. In general, some means of expressing 

mathematical problems (equations, :formulae, etc.) are 
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provided. The results of calculations performed during 


these operations can usually be tested or examined, and 


decisions to alter data or program flow can be made, 


Some method of repe.ating portions of programs many times 


in the form of loop control commands are provided as well 


as means for effecting data transmission (I/O), data 


naming, memory allocation, etc. Some languages also 


have ·provisions for error checking and debugging. 


In addition to these standard features, certain 


mathematical operations with inherent parallelism should 


be incorporated in Paltran. Such operations include, 


matrix operations, numerical integration and differentia­


tion, sum and continued product operations, simultaneous 


evaluation of functions over given ranges, etc. Since 


data involved in these operations tend to be grouped in 


large structures, suitable means for shaping or manipu­


lating the physical form of the data would be desirable. 


With these preliminaries in mind, we see that 

Paltran is to be a new language with capabilities of 

describing mathematical operations that have natural parallel 

· structureso 

The next chapter further discusses parallel pro­

cessing; in light of this, a preliminary outline of Paltran 

is described. 



CHAPTER TWO 


PARALLEL PROCESSING AND PALTRAN 
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Introduction 

Computing speed can increase by several orders of 

magnitude by permitting many operations to be done at the 

same time. It will be generally agreed that increases in 

computation speed is a good thing; in some instances, the 

objective of having faster computers may be seriously 

questioned~ The long-standing problem has been that of 

idling processors while INPUT/OUTPUT equipment and other 

peripherals took their time. The earliest and most common 

form of parallel processing was (and still is) in fact 

simultaneous I/O computation. Numerous satellite com~ 

puters 11 connected to data channels would process all input 

and output {ieee formattinge conversion@ peripheral con­

trol, etc.) perhaps through a.s many as three or more 

buffering stages. These satellite computers were relatively 

slow, while a fast central processor was reserved exclu­

sively for calculation. However, as new and larger pro~ 

blems are tackled (where I/O is relatively unimportant)~ 

the age of the processor-bound computer is fast approachinge 

Virtually every computer made to this day incor­

porates only one central processor and runs in a sequential 

mode when executing instructions. There are configurations 

of two central processor machines that run in a foreground­

background mode, as well as configurations with many 
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peripheral processors in addition to the one central pro­

cessor. These are attempts to reduce the time needed to 

execute a sequence of instructions, but still only one 

major operation at a time is actually done. In order to 

decrease the time taken to do a given problem, two solu­

tions are apparent. One way (the most obvious up to now) 

is to increase the operating speed of the hardware. How­

ever,- there are limitations to this solution which are 

finite in nature. The switching times of electronic com­

ponents are now comparable to the time taken by pulses to 

propagate (i.e., at approximately the time taken by light 

to travel a similar distance) along wiring between these 

components. Since there is a limit on how small compon­

ents (and systems) can be made, a maximum possible operating 

speed will be reached. In fact, mode~n 4th-generation 

computers are faced by these problems. The other way of 

increasing through-put is to do more things at once. 
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Forms of Parallel Processing 

Certain problems lend themselves more to parallel 

execution than others. If arrays or vectors of many ele­

ments are involved,. the savings are very large. For 

examples If one processor is available and it is required 

to multiply an n x n matrix by a scalar, then n2 sequential 
2multiplications must occur. If n or more processors are 

available, the multiplications can be carried out all at 

the same time and a speed factor of n2 is gained. For some 

problems, it may be possible to segment the program into 

parts which can be run independently and, at the same time, 

combining results at the end. 

On a smaller scale, parallel processing can take on 

slightly different forms. Loops like Fortran. DO and 

Algol FOR can sometimes be eliminatedt arithmetic strings 

can be decomposed into independent substrings and calculated 

in parallel. 

The analysis of existing programs in order to dis­

cover parallelism in the algorithm has received considerable 

attention in the literature). When two successive opera­

tions reference distinct variables, they may be performed 

simultaneously or in either order. Subexpression analysis 

has been performed to discover parallelism within arithmetic 

expressions. As an example, consider the two statementsc 
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X =A+B + C*D 

Y =E/G + F*H 

The input sets for the expressions are disjoint and each 

statement may be calculated independently and at the same 

time. On a smaller scale, the subexpressions A+B, C*D, 

E/G, and F*H can also be calculated in parallel. Numerous 

software and hardware4 algorithms have been developed to 

implement this aspect of parallel processing. In general, 

the programmer has no control over how a given program will 
I 

be broken down for execution. 

Scope of Parallel Processing 

System organization as found in existing or pro­

posed hardware can be examined in the light of the pre­

viously discussed forms of parallel processing. Parallel 

processing is interpreted broadly to include any type of 

system organization in which multiple operations are 

accomplished simultaneously, or multiple hardware control 

or processing units are working simultaneously. This 

includes multicomputer systems, multiprocessors, associ­

ative processors, array or network processors, and 
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functionally partitioned systems. Parallel processors 

have been broadly classified into three categories5 which 

consist of general purpose network computers, special 

purpose· network computers characterized by global parallel­

ism, and nonglobal computers where each module is only 

semiindependent or locally parallel. 

General purpose network computers can be further 

divided into parallel networks with a common central 

control and parallel networks with many identical process­

ing elements, each capable of independent execution. 

Special purpose network computers can be divided into 

pnttern processo~s and associative processors. 

Another approach to classification is to consider 

classes of units capable of parallel operation, namely: 

control functions, functional processing units and data 

streams. 

Parallel control units can simultaneously provide 

independent instruction streams, either operating on parts 

of the same problem or on different problems. Parallel 

functional processing units, which may be identical or 

which may differ, can simultaneously operate on either a 

single or multiple data stream under control of a single 

or multiple control unit. Parallel data streams may be 

operated upon under the control of an identical instruction 

sequence performing the same operation on each data stream 

simultaneously, or by independent instruction sequences 
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operating independently on each data stream. Although 

this approach to classification is relatively clear cut 

from the conceptual standpoint, many of the parallel 

processing systems that have been developed or proposed 

do not fall neatly into one or the other of these cate­

gories. In fact, some of them involve parallel control 

units, parallel functional processing units, and parallel 

data streams in the same system. 

If existing parallel systems are grouped together, 

the following four categories can be established. 

1. Multicomputers and Multiprocessors 

These systems consist of several complete computers 

interconnected in a manner which facilitates the transfer 

of data and the assignment of processing tasks between 

them. This permits individual units to work on different 

parts of the same problem or on different programs in an 

overall problem. Other systems include several processing 

units sharing common memory and common I/O equipment. A 

high level control unit may be used to control the transfer 

of data and to assign tasks and sequences of operations 

between the different processors. The IBM 90206 is an 

example of such a system. 

2. Associative Processors 

An associative processor utilizes associative memory 

techniques but with the inclusion of additional processing 
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logic at each cel-l or word location to permit actual 

processing operations on each word of datam As associ­

ative memory is a device capable of retrieving stored 

data by means of testing part or all of the contents of' 

each word simultaneously (by hardware means) in order to 

find one or many desired wordsv An associative processor 

performs one operation on N operands simultaneously. An 

example of such a system is the Goodyear Associative 

Processor7 
o 

)e Network or Array Processors 

Network or array processors involve a large number 

of processing units interconnected in some form of network, 

frequently a matrixe Some array processors have completely 

distributed control functions, although recent designs 

include a central control in addition to the local control 
8within each processing unit. The ILLIAC rv system and 

Litton's Block Oriented Computer9 (BOC) are examples. 

4. Functional Organizations 

A functional organization is one in which a number 

of functional modules are provided to permit performing 

different types of operations concurrently on a different 

data item within a single program or on different programs. 

This type of organization is an extension of the multi­

processor organization in which several different types of 

processors are used. The processors are smaller and are 
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functionally organized. The further distinction is that 

each of the functional organizations in this type of machine 

may not have an internal programmable control unit. In 

other words, each o.f the functional units is hard-wired 
10

to perform a specific type of operation. The CDC 66oo


is typical of these systemso 


The choice of programming languages to complement 

the above systems is not an easy one. Multicomputer and 

functionally organized systems support virtually all of 

the common high~level languages as well as several levels 

of assembly and macro languages. Associative processors 

and array processors are restricted almost entirely to 

machine languages at this point in time. A general purpose 

language to satisfy the needs of all these systems, in 

an efficient manner, is not likely to be foundQ The 

practicality of designing one may be questioned since 

various types of hardware cannot accommodate divergent 

· classes of problemas 

If Paltran is to be a general purpose language, a 

problem written in another, similar language (eeg. FOR­

. 	 TRAN), must also be capable of solution in Paltran~ 

Conversely, any high-order mathematical operations found 

in Paltran should be expressible as subroutines or sub­

programs in other languagese A ·parallel computing system 
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suitable for Paltran operation should have a default 

ttsequential mode... This mode can be entered whenever a 

high-order operation cannot run efficiently on the 

principle hardware, however, the effect should be com­

pletely transparent· to the user. As with any computing 

system, the user should be aware of the machine's capa­

bilities and make suitable alowances. 

Paltran Objectives 

The primary objective of Paltran is to give the 

user a free and natural forn1at for expressing problems that 

exhibit natural parallelism. These problems are to be of 

a mathematical nature and will be array-oriented, hence 

the basic data structure will be the array (vectors, 

matricies, etc.)*. Paltran will therefore tend to be asso­

ciated with network or array processing systems, although 

this is not a hard-and-fast rule. Simulations of Pal­

tran compilers on sequential machines may in fact be­

come quite popular until more experience with parallel 

An. interesting historical notes A~ early as 1957,* there existed the Matrix Compilerl which ran on the 
UNIVAC machines. It provided users with lan~uage and
facilities for perfonning a number of operations on 
matricies including addition, multiplication, inversion 
and transposition. 
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processing is made. 

It is not necessarily a function of Paltran com­

pilers to recognize parallel structures in sequentially 

written programs, nor to optimize existing code so as to 

take advantage of the given hardware. In general, the 

programmer is not free to initiate his own parallel 

structures by use of such operations as FORK and JOIN12 • 

The popularity of time-sharing and interactive 

terminals indicates that Paltran should be formulated as 

an on-line language. A batch version presents little 

problem since this would be a proper subset of on-line 

Paltran and somewhat less restrictive in format. 

Mathematical Objectives 

The mathematical objectives sought in the Paltran 

language are two-fold; standard arithmetic operations must 

be available as exemplified in other programming languages, 

and a special set of operations dealing with parallel 

structures must be included. The problem then becomes 

one of finding these operations and determining their 

feasibility for inclusion in a general purpose programming 

language. The requirement that these operations be of a 
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general nature is important, othe~vise, the ensuing language 

will become extremely complex, replete with specific and 

particular operations, and have a cumbersome and perhaps 

unreadable notation. 

The availability of hardware in the form of array 

processors strongly suggests that operations on arrays 

be included in the language. Linear arrays (vectors) and 

rectangular arrays (matricies) are the most common and 

parallel operations such as vector addition and multiplica­

tion of a matrix by a scalar are readily visualized and 

straightforward to implement. Matrix multiplication and 

in,rersion consists of row and column operations which can 

be done in parallel. Similarly, the determinant, ei~en~ 

values, and eigenvectors of a square matrix can be found 

in a similar manner. 

Operations on higher order arrays (i.e. )-dimen­

sional and greater) can be performed in terms of matrix 

and vector operations. 

Experience has shown that two other classes of 
1 

mathematical operations should be included in Paltran. 

These include numerical integration and differentiation, 

and sum and continued product operations. 

Integration 

In some cases, functions can be integrated by 
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direct analytical means, in others, it may be profitable 

to use numerical techniques due to the complexity involved. 

Some functions have no analytic solution and must be inte­

grated numerically; the same applies to experimental data. 

Numerical integration consists of dividing a function 

into small increments, over a given range, and summing 

the areas bounded by the function in these intervals. 

The time-consuming step in numerical integration involves 

evaluating the function repeatedly, especially if the 

function is complex (i.e. consisting of many terms). 

The availability of many processors enables these evalu­

ations to take place simultaneously, greatly reducing the 

time needed to calculate the integral~~ If the range of 

integration is large (or the function changes rapidly in 

the range), it may be subdivided and the process carried 

out in several passes. Infinite integrals can be tackled 

in this manner-- the range of integration can be split, 

for example. 

00 2a (n+l )aJ f(x)dx = { f(x)dx f(x)dx +•••• + f(x )dx+•••Ja na 

When the value of the integral for an interval (an, a(n+1)) 

changes by less than some given amount from the previous inter­

val (a(n-1), a(n-2)), the process may be terminated. 

The Trapezoidal Rule or Simpson's Rule can be used 
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effectively in the parallel environment, however, some 

reservation is neededQ While it is possible to divide 

the function (or data) into increasingly small intervals 

while maintaining good speed, a point will be reached 

where further subdivision will actually impair accuracy 

due to accumulation of round-off error and loss of pre~ 

cisione While integration will be included as a Paltran 

operation, the accuracy expected and actual methods used 

will be determined by the individual compiler and programming 

systeme 

The availability of a successful integral operator 

makes possible the convenient formulation and solution of 

a very large class of problemsy however~ the inclusion of 

explicit statements for solutions to Exponential, Fresnel, 

Elliptic, etc~ integrals would overly complicate the 

language. The following do occur frequently enough to 

merit inclusion in the language as functionsa 

The Gamma Function 

::;; Joo tz-1 I 

e-t dt z>O 

0 

noting l<z+l) = Z! 

The Error Function 

j) J.. z 
erf(z) = (24T2 

) Jr exp(-t2) dt 

0 



22 

Bessel Functions of the First Kind 

Jv(z) 2v
cos(zsin~)(cos~) d~ 

Differentiation 

The derivative of some function f(x) at x0 is 

definedc 

= lim f(x)-f(xo) 
x+xo x-xo 

An approximation to the derivative may be defineds 

f(x,xo) = f(x) - f(x 0 ) 

x-x 0 

where f(x,x 0 ) is termed the first finite divided difference 

relative to the arguments (x,x0). The first finite divided 

difference is related to the first derivative provided 

that the continuity and differentiability restrictions of 

the mean value theorem are met. The concept of second, 

.third, etc., differences can be extended to permit approxi­

mations to higher derivat~ves. As an example, the table 

below lists the divided differences for the function 

f(x) = x3 - 2x2 + 7x - 5. 



2J 


i Xi f(Xi) 

0 0 -5 
1 1 1 6 

2 3 25 12 2 

3 4 55 JO 6 1 

4 6 181 63 11 1 0 

5 7 289 108 15 1 0 0 

Divided Differences for 

x3 = 2x2 + 7x = 5 

A vector of n elements will yield n-1 first differences& 

n=2 second differences 0 etc. A lower triangular matrix 

(or upper triangular matrix) of dimensions (n=l) containing 

the (n=1) divided differences can be generated from the 

vectors (of length n) of the functional values and their 

respective spacinge It should be noted that if f(x) is 

a polynomial of degree n and m data points are taken where 

m) n, there will appear zero entries for differences of 

order greater than no This is also illustrated in the 

above table. As with integration, functional evaluations 

can take place in parallel~ and thus shorten the time 

needed to evaluate the divided difference matrix. 

When ba~e-point values are equally spaced so that 

X!-XQ = X2~x1 ~ ee~e~ = Xn-Xn-1 = h, some simplification 
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of the divided-difference table (and corresponding matrix) 

is possible. This enables the finite forward, central, 

and backward differences of the function to be calculated, 

these are identical except for subscripts of the base 

points, and the forward differences can be related to the 

divided differences by f(x,xo) = Af(x0 )/h. The forward 

difference operator is represented by£, notinga 

A r(x) = r(x+h) - t(x) etc. 

Finite differences appear in many areas such as 

interpolation, solution of differential equations, boundary 

value problems, etc. 

Extreme care must be taken where any operations 

involving differentiation is performed as errors tend to 

be magnified rather than smoothed as with integration~ 

While proper analysis is necessary before any computer 

solution is attempted, this need is even greater with 

Paltran. High-order operations used indiscriminately can 

create more problems rather than solve them. 
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Integration and Differentiation of Polynomials 

Consider as an example the polynomial, p(x) = 
3x3 + 2x + 5. Integration and differentiation of this poly­

nomial yield: Jrp(x)dx = 4•3x4 + 2•2x2 + 1•5x + a constant 

and Dxp(x) = 1/3 • Jx2 + ix noting thatJrxndx = 1 x<n+l) 
(n + 1) 

If vectors containing the coefficients of poly­

nomials are available, integration or differentiation can 

take place directly. Thus, if all polynomials are represent­

ed by the series 

the integral polynomial is, to an arbitrary constant 

p'(x) = a 0x + ta1x2 + •••••• + _!_ ~xn+l 
· n+l 

and the differential polynomial is 

p"(x ) = o + a1 + 2a 2x + •••••e + n~xn-1 • 

Thus the vectors 

ao 
al 

a2 

• 

• 

Bn 

ao 

a 1/2 

az/.3 

• 

• 

an/(n+l) 

0 

al 

2a2 

• 

• 

n·~ 

represent the .polynomial and its integral and derivative res­

pectively, taking account of the shifts in the powers of x. 

Since polynomials are used extensively in scientific 

work, these fonns of integration and differentiation should 

also be included in Paltran. 
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Sum and Continued Product Operations 

As an introduction to sum and continued product oper= 

ations let us consider the factorial functiono The factorial 

of some number n is defined as~ n: = n(n-1)(n-2)o•=J·2•1 

and 0! = le Normally this operation requires (n-1) sub~ 

tractions and (n-1) multiplications to be performed, how­

ever if n/2 processors are available the factorial can be 

computed as followsJ 

- An indexed LOAD instruction generates the vector 

whose elements are 1~2,), ••••n and each pair of 

n is odd,· is assigned storage to a single proces­

sor. 

- The product of each pair is determined simultan­

eously and the results are again paired and mult­

iplied until only a single number remainss 

Expressions of the form 

t e.= 
i=O 1 

and 

can be evaluated in this manner, noting that the factorial 

function is simply a specific case of the continued product 
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operation. The savings are increased with the complexity 

of the expression, since all e1 or Ej are evaluated sim= 

ultane~usly. 

The availability of the sum and product ·operators 

make possible the generation and solution of many functions; 

the following examples occur frequently and will be includ~ 

ed in 	Paltran: 

The product operation permits the factorial func­

tion to be calculated; as a direct consequence, the number 

of combinations and permutations of n (dissimilar) things 

taken 	r at a time nCr= (~) = n~/(n-r)~r: and 

nPr =n:/(n-r ): 	 can be foundo 

Combining the preceeding operation and the swn op~ 

eration the Bernoulli Numbers can be readily found by using 

the recursive definition: 

n 

En .. 	 L <~> ~ and B0 =1, B1 = -! 
k=O B2n+l = 0 for all integral 

n)o.· 

The same techniques can be used for determining the 

coefficients of, or solving orthogonal polynomials. Any set 

of polynomials ( fn(x) ) with the property 

Jr: w(x)fn(x)fm(X)dx = 0 for min 

= hn for m=n 
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is called a set of orthoganol polynomials on the interval 

(a,b) with respect to the weighting function w(x)o The 

four most common are the Chebyshev, Hermite, Laguerre and 

Legendre polynomials~ as an example the Laguerre Polynomial 

has explicit expressiona 
Ln(x) "' (-l)m (:) tD/mlt 

m=O 
which is a combination of the sum operation, factorial 

operation and binomial coefficient (~)e 

It should be noted that these polynomials can also 

be determined from a general recursive definition and this 

may be the better method if a family of polynomials is re= 

quirede 

Finally' the sum and product operations can be com­

bined to determine interpolating polynomials~ that is the 

polynomial of lowest degree which passes through n points 

is given by: 

n n 
p(x) = ~ (yi llf (x-xk)/(xi-xk) ) 

1=1 k=l 

where ~ xk for k ~ i 6x1 
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Functional Analysis 

The proce~s to be described may be considered too 

specific to be included in a general purpose programming 

language, however it is a good example of how parallel pro­

cessing can make possible methods which have been impract­

icle in the past6 

The availability of many processing units makes pos­

sible a somewhat unusual technique of analyzing functions 

for the_ occurence of zeros, maxima or minima. Let f(x) = y 

be some function defined over the range (xmax 9 xmin) in 

which at least one xero, maximum or minimum is assumed to 

exist~ The ob,jective is then to find the value x 
~r 

for which 

f(x*) = Q, where Q is the required condition. In operation, 

the function is evaluated over (xmax, xmin) in n steps (as­

suming n processors) and the resulting array searched for 

the required condition~ noting the value of x for which this 

occurs. If n is sufficiently large, the answer may be found 

on the first pass,. if not, new values of (xmax,xmin) are es­

tabl i shed a~ound x for wh~ch f x = Q and the process re­* . ( *> ~ 
peated until sufficient accuracy has been attained. In gen­

eral there may be any number of zeros or extrema in the giv­

en range. 

The speed at which the answer is found is quite con­

siderable since only one effective function evaluation is 

performed per iteration. If a large number of processors 
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are available the value of x* approaches the final value by 

several orders of magnitude for each pass, thus necessitat ­

ing only a few iterations. It should ~e noted however, that 

new ranges (xmax, xmin) cannot be set arbitrarily close to 

* .the approximation x , since round-off and truncat~on error 

can accumulate and create problems of overshoote Programs 

simulating one hundred processors configured linearly, have 

shown that usually less than ten iterations are needed to 

solve any arbitrary equation (f(x) = 0), to accuracies of 

order lo-5 or better, even when the initial range chosen is 

very wide·(l An example of such a simulation appears in the 

Paltran - 8 manuals (Appendix IV) 

The power of this method becomes even more appar­

ent if a rectangular configuration of processors is used to 

investigate functions of two variables. The method of sol­

ution is similar, however additional considerations as to 

locating extrema must be made. Consider t~e following table 

which lists values for y2+x = z over the ranges -J ~ x,y ~ +3 : 

X -2 -1 0 1 2 
y 

-3 
-2 
-1 

0 
1 
2 
3 

6 
1 
-2 
-J 
-2 
1 
6 

7 
2 
-1 
-2 
-1 
2 
7 

8 
3 
0 
-1 
0 
J 
8 

9 
4 
1 
0 
1 
4 
9 

10 
5 
2 
1 
2 
5 
10 

11 
6 
J 
2 
J 
6 
11 

12 
7 
4 
3 
4 
7 
12 

VALUES OF 
2 y +X 
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The function describes a parabolic surface, and 

for any value of x there always occurs a minimum value of y 

in the z - direction. For any value of y there is no maxi­

mum or minimum value of x, other than at the end.points of 

the range. The search for extrema must now be made in three 

ways. The rows and columns of the corresponding matrix must 

be individually tested and each point Zij ( = f(xi•Yj)) 

must be compared to its nearest non-diagonal neighbours, 

z(:i, j)r Z(i, ~j) or to its nearest diagonal neighbours, 

z(!i, ~j), excluding the peripheral elements. The latter 

method will reveal any global or local extrema for values of 

both x and Y• 

Functio~s of three variables (or more) can be handled 

in a similar mannerJ however, problems of visualization 

occur. For this reason, it is perhaps advantageous to decom­

pose all higher order arrays into matricies and perform analy­

sis at this level. 

A specific statement or command to implement this 

technique will not be incorporated in Paltran due to the 

many possible variations of handling different arrays. It 

will be seen in succeeding chapters, however, that other 

Paltran statements can very easily be grouped in subrou­

tine form to perform this analysis; as experience is gained, 

this technique may be incorporated as a single statement. 
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TECHNICAL CHARACTERISTICS OF PALTRAN 

The technical characteristics of Paltran may 

now be examined in light of the proposed mathematical 

operations. These will include data organization, 

arithmetic expressions, the character set, and auxil­

liary statements. 

Data Organization 

As stated in Chapter One, the basic Paltran 

data structure will be the array. In general, any arith­

metic operation that can be performed on a simple vari­

able can also be performed automatically, on any size 

array, on an element-by-element basis~ 

Simple variables or scalars are the least struc­

tured data, being zero-dimensional. Vector variables 

can be of two types. The numeric vector holds only 

floating point (or integer, etc.) numbers and all arith­

metic operations apply. Numeric vectors are always con­

sidered to be column vectors and print (on output) in this 

fashion. A character vector may hold alphanumeric-data 

as well as any character in the Paltran set. This is 

literal data and has no numeric value, except where cer­

tain operations result in a null character vector, which 

has the value zero. Character vectors are always con­

sidered to be row vectors and print in this fashion. 
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Higher-order -arrays are all· restricted to numeric 

data. Special operations may be performed on vectors and 

matricies (i.e., matrix multiplication, inversion, etc.)J 

operations on higher-order arrays (for example, vector 

multiplication of 3-d arrays) will not at this time be 

given explicit definition. They may be easily formulated 

with the basic statements in the language and called as 

subroutines. 

Data may be generated by the user or incorporated 

directly in the program. In general, data will be written 

on same external medium (tapes, disks, etc.) and be pro­

cessed by the program. 

Arithmetic Expre$sions 

Since arithmetic expressions form the basis of 

all the operations described under Mathematical Objectives, 

it is important to define what is meant by this term 

as well as describe the different types of arithmetic 

likely to be implemented. 

An arithmetic expression will be defined as any 

set of variables or constants combined by the binary or 

didactic operators: (in order of precedence), (1', *• /, 
+, - ) that is, exponentiation, multiplication, division, 

addition and subtraction. Evaluation will take place 

left-to-right with exponentiation being performed first, 
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followed by multiplication, etc. Parenthesis may be used 

to change the order of evaluation; square and angle 

brackets,may be used interchangeably with parenthesis to 

improve readability. Functions may be included in arith­

metic expressions and have precedence equal to or greater 

than that of exponentiation, hence, they are evaluated 

first. A function may have another arithmetic expression 

as its argument, since an expression can always be reduced 

to a single number (or group of numbers, in the case of 

arrays). The unary operators ( +, -, ! ) may also appear 

in arithmetic expressions. The factorial operator(!) 

is really a function and treated as such. When applied 

to an array, the factorial of each element would be calcu­

lated. No two operators may appear together except for 

the factorial operator. 

Numeric constants may be used in any arithmetic 

expression. While they are zero-dimensional, they may be 

combined with any array regardless of its size or dimensions. 

Arithmetic expressions along with the equal sign 

(=) form the simple assignment statement: v=e where ! 

is a variable and ~ is any legal expression. The variable 

~ and all variables present in ~ must be of the same 

dimensions. 

The type of variables used in arithmetic expres­
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sions will reflect the five possible means of performing 

arithmetic, namely, in integer, floating-point, complex, 

octal and logical format. Details as to naming variables 

and determining their type will be found in Chapter Three. 

The possibility of performing arithmetic in five 

ways results in problems that can occur when different 

types of variables appear in the same expression. The 

handling of mixed modes is usually tackled in different 

ways by individual compilers for a given installation, but 

the following guidelines will be proposed. 

A diagnostic is given to inform the user that 

a mixed mode expression has occurred. Each variable in 

the expression is then converted to an equivalent float­

ing point quantity (e.g. absolute value of complex quantity 

found, logical jj:o.ooo, etc.) and the expression is evalu­

ated in floating-point format. The resulting value is 

then converted to the mode of the replacement (left-hand) 

variable. 

The safest rule to follow when dealing with mixed 

mode expressions is simply to avoid them. 

The mathematical operations in Paltran are funda­

mental to ·the intended usage in numeric computation, how­

ever, these must be supported by auxilliary commands to 

shape, test, modify and prepare the data. In addition, . 
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considerations must be given to the physical form in 

which the language will appear. These consist of the 

choice of a character set, punctuation characters employed, 

the manner in whicp key words or statements are delimited, 

the possible inclusion of subprograms or programs in 

other languages, execution sequence, etc. The remainder 

of this chapter is devoted to these considerations. 

Before discussing the auxilliary statements, it 

is useful to examine the requirements for a character 

set, since all Paltran statements will be constructed 

from it. 

The Character Set 

The Paltran character set will be defined as that 

set of symbols needed to clearly and conveniently express 

the statements of the language. The definition is in­

tentionally broad. Input/Output equipment is becoming 

sufficiently sophisticated, so that the user should not 

be limited to the capital alphabetic characters, the 

numeric characters and a few special symbols such as *, 

=, /, etc. A string of alphanumeric characters can be 

replaced by a corresponding special symbol whenever its 

usage is common and unambiguous. It is clearly better 

to use f ,]and1Trather than "INTEGRATE", "SUM OVER", 
ox.'~ . 

and .. DETERMINE THE CONTINUED PRODUCT". On the other hand, 

it is more meaningful to use alphanumerics whenever there 



37 

does not exist a special symbol to denote the process 

or operation. For example, s = MAX (v) is intuitively 

closer to "Set the scalar s, equal to the maximum element 

of vector v", than s =Qv or s =A.v. 

The availability of lower case letters is a desir­

able feature. Variable, subroutine, or function names 

oan be restricted to lower case letters (and numbers), 

while key words such as commands, in-line functions, etc., 

are capitalized. This permits immediate identification 

of non-variables and makes compilation (lexical and 

syntax analysis) somewhat less difficult. This scheme 

also alleviates the need of having reserved words in the 

language or deciphering key words from contexte It is 

also desirable to provide the more common Greek letters, 

as many quantities in scientific and engineering work 

bear these designations. 

Display generators, plotters, light-pens, etc., 

are special devices which can produce arbitrary characters 

and must be treated separately. The proposed Paltran 

Character Set and key words of the language are described 

and listed in Appendix I. 

The elements of the character set may be classified 

into three groups: Delimiters~ Identifiers and Key ~tlfords G 

A delimiter is any character which is not a letter 

or a number. All key words, identifiers and numbers are 

terminated by delimiters. 
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An identifier (variable, subroutine, or function 

name) may consist of up to ten lower case letters or 

numbers, the first of which must be alphabetic. 

Key words a·re the commands such as READ, SET, 

FOR, etc., of which statements are composed, In-line 

(or system defined) functions such as SIN, COS, etc., are 

also considered to be key words. Key words consist of 

upper case letters only. 

Delimiters, identifiers and key words are com­

bined along with labels to form statements. 

Statements and Program structure 

Paltran statements will consist of up to three 

fields. The first is a label field which consists of a 

STATEMENT NUMBER and is optional. In the batch mode, the 

label field may be omitted, however, statement numbers 

must be present in the on-line mode for indirect execu­

tion. A blank label field indicates the direct (or desk 

calculator) mode and results in immediate execution upon 

receipt of a statement delimiter. 

The statement number consists of two parts: a 

group number x, and a number y denoting a line within 

the group. A period is used to separate these two parts; 

however, a statement number is not to be interpreted as a 

decimal or fixed point number, but rather as two integers. 

The lowest possible statement number is, therefore, 1.1, 
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that is, line one in group one. There may be any number 

of lines in a given group. Execution starts at the lowest 

numbered line and continues with the next highest, regard­

less of physical order; in the batch mode, unnumbered lines 

are executed consecutively. 

Field two is the command field which identifies 

the type of statement, e.g., READ, WRITE, SET, etc. If 

field.two is blank, it is assumed to be an assignment 

statement. 

Field three is the data (or operand) field which 

contains information (i.e. variable names) relating to the 

command. A statement is terminated by a carriage-return, 

line-feed, or semi-colon(;), and, in the case of punched 

card I/0, a semi-colon may be used to separate individual 

statements on one card~ Statement fields are interpreted 

in context, and commas and blanks may be used freely to 

improve readability. 

A program is composed of several Paltran state­

ments with the possible inclusion of subroutines or user­

defined functions. A subroutine is simply a separate set 

of statements which can be compiled independently and can 

accept or.pass on more than one argument. A function is 

essentially a subroutine that has only one argument and 

is called by name rather than by an explicit statement. 

Propositions for the auxilliary statements can 

now be examined. 
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Conditional Statements 

The ability to test or compare the results of 

numeric calculations has manifested itself in most pro­

gramming languages in the form of an "IF" statement. 

These .come in two varieties a the arithmetic IF compares 

the results of some calculation to zero and the execution 

sequence subsequently changes, depending on whether the 

number tested was less than, equal to, or greater than 

zeroa the logical IF compares two expressions by means of 

logical and relational operators, and execution sequence 

is dependent on the TRUE or FALSE outcome of the test. 

In languages dealing with sequential processing, 

these tests always took place on simple variables or 

expressions of simple variables. The Paltran IF state­

ment, must, however, make provision for arrays (or parts 

of arrays) to be tested; this will be effected by comparing 

arrays on an element-by-element basis. The arithmetic IF 

will be constructed so that simple variables or arrays 

may be tested for sign or, against zero, the proviso-

being that if all elements of an array are similar, the 

action of the IF statement is the same as that for simple 

variables. If any one or more elements of an array do 

not satisfy the requirements (as for simple variables), 

a default or alternative action occurs. As an example, 

consider the IF statement: 

IF (e) nl, n2, nJ, n4 
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The ni refer to statement numbers and (e) is 

any arithme-tic expression composed of simple variables or 

arrays of identical dimensions. The expression is evalu­

ated and if it consists of arrays, all elements are 

tested• if all are negative, control passes to statement 

nl; if all zero, control passes to n2, and, if positive, 

to nJ. If at least one element does not fall into the 

same categories, control passes to n4. Obviously, if 

the statement consists only of simple variables, control 

can never pass to n4. 

If the case of the logical IF statement, all 

elements of an array must satisfy the comparison for the 

result to be TRUE. If any one corresponding element, of 

the expressions being compared, does not meet the criterion, 

the FALSE condition occurs. 

Error Condition Detection 

All of the high order Paltran operations are sub­

ject to errors of one so,rt or another. In general, each 

Paltran compiler will ha~dle differently depending on the 

hardware of the target computer. A machine with many pro­

cessors, but poor precision may not integrate as well as 

one with fewer processors but can accomodate high precision 

arithmetic. A matrix can be inverted by direct, iterative 

or random (Monte Carlo) methods, each of which can fail 

depending on the matrix or algorithm used. The user of 
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high order Paltran commands must be aware of the al­

gorithms his particular compiler uses and the limita­

tions of such. Details pertaining to errors and applic­

ability of data sets to the implementing algortithms would 

normally constitute a large part of the user's manual for 

a given compiler. 

In practice, however, the user cannot always be 

trusted to take account of possible errors. The problem is 

compounded by errors occuring even when data sets and al­

gorithms have been correctly matched and formulated. It 

is possible to detect many user errors at compilation time 

while certain others can be detected by hardware means at 

object time. In order to give the user some measure of 

success on the outcome of high order operations, the fol­

lowing is proposed. An internal vector variable called 

FLAG will be associated with each Paltran statement and 

its status may be tested by means of an IF statement. The 

elements of FLAG will be set equal to zero or FALSE if no 

error conditions are present, or set to one or TRUE if some 

error occurs. The individual elements can represent such 

conditions as incompatible dimensions, convergence fail­

ure, mixed modes, singular matrix on inversion, divide by 

zero, etc. Since compile time and object time are indis­

tinguishable on most on-line sy-stems, FLAG can be ut=fed to 

warn the user of errors detected during compilation, how­

ever for more elaborate systems, an actual error message 
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is warranted. It should be noted that FLAG = 0 does not 

imply accurate or acceptible answers, but only that the 

possible error conditions have not been detected. 

Composition and Decomposition 

The majority of Paltran operations can be perform­

ed on vectors and matricies. Similar operations can usual~ 

ly be defined on three dimensional and greater arrays but 

no explicit definition of these will be given at this time. 

Operations on multi-dim@nsional arrays can always be for­

mulated in terms of matricies or vectors and some means of 

breaking up (or building) large arrays are needede Pal­

tran provides two classes of statements for this use. 

The first consists of only a single bi-directional 

statement (called the PROJECT statement) by which hyper­

planes can be projected into planes, planes into rows or 

columns and so on. Conversely planes can be projected into 

hyperplanes and hyperplanes into the next highest dimen­

sion etc. 
, 

The second class consists of the PARTITION and 

BUILD statements which will operate only on matricies. The 

PARTITION statement is used to split large matricies into 

smaller submatricies, while the BUILD is used to construct 

large matricies from small ones. These statements find use 

in constructing augmented matricies which occur quite often 

in linear programming techniques or solutions of simultan­
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eous equations. A second application is hardware and sys­

tems oriented. Normally, any size matrix comensurate with 

memory capacity can be operated on irregardless of the 

type of hardware. If partitioning occurs, this effect 

should be transparent to the user. Certain efficiencies 

can be gained however, if a network or array processor is 

being used and the user is aware of the number and dimen­

sions of the processors available. He is then at liberty 

to use these statements to shape data to conform to the 

dime~sions of the hardware. 

Loop and Execution Control 

There is still a need for indexing and repeated cal~ 

culation in the parallel enviroment as defined by Paltran. 

The FOR and DO statements will be used to generate repeat­

able segements of code. 

The DO is a form of execute statement which causes 

a line or group of lines in the program to be performed. A 

group of lines when called by a DO therefore form a type 

of subroutine. 

The FOR statement is analgous to the ALGOL-FOR and 

FORTRAN-DO loops. Statements in the body of the FOR range 

are repeatedly.executed, based on the value of an index var­

iable which varies according to preset parameters. The 

mechanics of the Paltran FOR-DO statements will be detail­

ed in the next chapter. 
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Input/Output 

The input/output systems of most computers tend 

to be very complex, sometimes being computer subsystems 

themselves. The parallel computing system will undoubt­

edly incorporate very elaborate I/O equipment to maximize 

throughput and utilize resources efficiently. While means 

of accessing tapes,disks,mass memory, etc. are needed, 

these will not be discussed, instead only two I/O state­

ments, geared to simplicity will be proposed. The Pal­

tran I/O statements will be READ and WRITE and will handle 

simple variables and arrays in pre-determined formats in 

order to simplify data transmission, These statements will 

also be discussed in detail in the next chapter. 

Miscellaneous Statements 

Grouped in this category are statements and com­

mands which are somewhat standard and found in many other 

languages. These include GOTO statements to change program 

flow, HALT or STOP statements to terminate execution, SUB­

ROUTINE and FUNCTION statements to construct user-defined 

subprograms and functions and the various forms of de­

claratives such as dimension and · type statements. Only 

these latter statements will be discussed further in de­

tail, in the next chapter, which describes the proposed 

statement forms of the Paltran Language. 
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THE PALTRAN PROGRAMMING LANGUAGE 
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Introduction 

This section takes the concepts developed in 

Chapter Two and builds on them the various forms of pro­

posed Paltran Statements. Extreme details as to the 

various forms of input/output state~ents, declarations, 

arithmetic performed and program structure will not be 

given as these do not directly relate to parallel process­

ing and tend to be oriented to a particular machine. The 

language, as described, is considered to be the on-line 

version; however, text-editing and control statements 

will not be discussed since these are somewhat standard 

for any on-line language. A batch version would be a 

proper subset of on-line Paltran and would be somewhat 

less restrictive with regard to statement numbering and 

input/output methods. 

The key words and functions normally to be incor­

porated into a Paltran system are listed in Appendix I. 

The statements to be discussed in this chapter 

form the basic Paltran system and includes 

The dimension statement and declaratives. 

The Simple assignment. 

The SET Statement. 

The LOAD Statement. 

The ROTATE Statement. 



48 

The PROJECT Statement. 


The IF Statement. 


The FOR and DO Statements. 


The PARTITION. and BUILD Statements. 


The READ and WRITE Statements. 


The Dimension Statement and Declaratives 

The status of all variables must somehow be 

defined so that appropriate measures may be taken during 

compilation. The size and dimensions, as well as the 

precision and type of arithmetic to be performed on a 

variable, must be declared explicitly; otherwise, default 

values will be assumed. 

All arrays in Paltran must be declared via a 

dimension statementa 

*v(n), v(n,m), v(n,m,r), v(n,m,r, ••••• ) 

or 

**c(n), ••••• 

The first statement defines a numeric vector vari ­

able with n elements, a matrix with n rows and mcolumns, 

a rectangular prism with£ planes~ etc. The second state­

ment defines a character vector which may contain up to 

n characters. 

The dimension statement is unnumbered and non­

executable and may appear anywhere in the source program, 
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any number of times, although some compilers may require 

that it appear before the first executable statement. 

Variables which appear in the source program 

that have not been dimensioned are assumed to be simple 

numeric variables or scalars. Operations on arrays defined 

by the dimension statement may be global or local, and 

subscripts or partial subscripting may be used to access 

individual elements, rows (columns), planes, etc. of an 

array, as necessary. 

In addition to the dimension statement, the 

following signal the compiler as to variable types 

REAL Vi vi = v or v(m) or v(n,m) etc. 
INTEGER v·1 REAL refers to floating 
COMPLEX V·1 or fixed point variables. 
OCTAL vi 

LOGICAL V•1 

Dimensional information may be included in declara­

tions, however, these statements must precede any execut­

able statements. 
, 

The precision of all variable types is assumed to 

be single, but may be extended by including DOUBLE or 

TRIPLE with any of the above declaratives. 

Examples: 

REAL a, b , ·c ,mat ( 5, 5 ) 

DOUBLE al,v(lO) 

TRIPLE COMPLEX Z(4,5,6) 
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It is convenient to assign the following default 

modes for variables. All variables are assumed to be 

single precision and REAL, unless the name begins with 

an i,j,k,l,m,n, in which case an integer variable is 

assumed. 

The Simple Assignment Statement 

The simple assignment statement is the •work-horse' 

of any numeric scientific programming language, as it 

conveniently and naturally expresses simple arithmetic 

operations. This statement consists of a left-hand or 

replacement variable which is set equal to some arithmetic 

expression as defined in Chapter Two. The form is quite 

straightforward: v=e where v is the replacement vari­

able and e is any expression. The only restrictions that 

apply to the simple assignment statement are that dimen­

sions of all variables must be the same and due considera­

tion must be given to mixed modes. Operations are global 

when arrays are involved, although subscripts may be used 

when simple variables are present. Partial subscripts 

may not be used. 

Limited operations on character strings are also 

a part of the simple assignment statement. Literals or 

alphanumeric data may be assigned only to 'Character 

Vectors' which hold non-numeric data and must be declared 

apart from the numeric vector variable. Operations include 
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assignment, concatenation, extraction, expansion and inter­

section. The following examples illustrate their usea 

ASSIGNMENT 

x=abc y=123 KING ST. g=?'''* w=string v=trn 

CONCATENATION 

q=x+y • • • q=abc123 KING ST • 

EXTRACTION 
Ip=w-v p=sig• 0 

EXPANSION (by a scalar factor) 

•r=2*x I e r=abcabc 


s=2*(x+z) • 
I s=abc?'''*abc?'''*
I 

INTERSECTION 


Let sl=AEIOU and s2=COMPUTER 


and sJ=sl:s2 


then sJ=CUE or EUC or UEC etc. 


The size of s3 must be at least that of one of the 

vectors on the right. The null character (printing as, 

but not equal to the character BLANK) would fill the 

remaining (if any) spaces in the vector. If the vectors 

are disjoint, the result would print as a blank vector 

and have the numeric value %. Note, this is the only 

numeric value a character vector can have1 a vector full 

of blanks has no numeric value. 

The extraction operation can also result in a 

null vector, All character vectors are considered row 
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vectors and print (or plot, display, etc.) across the 

'page' which makes use of these vectors valuable in I/O 

formatting. The hierarchy of operations area 

* Expansion 


+,- Concatenation, Extraction 


: Intersection 


Further examples: 

x=E y=EACH z=COMPUTE 

q=y! (2*x+y) noting 2*x+z=EECOMPUTE 

q=EAC or CAE or AEC, etc. 

-Other character handling facilities will be added 

to Paltran as need and use dicta.te. 

The SET Statement 

The SET statement is the most powerful of the 

Paltran statements, as integration, differentiation, sum 

and continued product operations, and the maxtrix operations 

(multiplication, inversion, etc.) are defined by it. 

There are a large number of individual SET state­

ments, and these are listed in Appendix II along with a 

brief explanation. 

The SET statement is unique in that there are two 

operator or command fields. It has the general format: 

SET v=OPR,a,b,c ••••• 

"SET" itself indicates that a high-order parallel operation 

takes place. The variable ~ is a general replacement 

http:dicta.te
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variable and can be a scalar, vector, matrix, etc., depend­

ing upon the individual statement. The second command, 

OPR, consists of a symbol or alphanumeric string to indi­

cate operations such as integrate, sum over, invert a 

matrix, etc. The remaining field consists of other vari ­

ables or constants ~,b,£•••••• 

Variables in any SET statement may be referenced 

globally by name only, or by partial or complete sub­

scripts. As an example, the matrix a(n,m) may be useds 

OPR a - operate on a globally 


OPR a ( I , "'-" ) - operate on row I only 


OPR a(*,J) - operate on column J only 


OPR a(I,J) - operate on element (if j) 


The LOAD Statement 

It is often necessary to evaluate functions over 

some given range. This can be done by using the LOAD 

Statement. 

LOAD a= (f(x,y,z, •••• )),x(xmax,xmin),y(ymax,ymin), •••••• 

The array~ is filled with values of the function 


f(x,y,z, ••• ) over the ranges inn steps (xmax,xmin), 


(ymax,ymin), •• e. in increments of~x = (xmax-xmin)/n etc., 


hence the function is evaluated from xmin to xmax -t~x, etc. 
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As an example consider the function f(x) = x4'2 

*v(5) 


LOAD v = (X 1' 2 ) , x ( 1 0, 0 ) 


Hence xmax-xmin = 10 - 0 = 2 
n 5 

n X v 
I 0 0 
2 2 4 
3 4 16 
4 6 )6 
5 8 64 

The ROTATE Statement 

The ROTATE statement may be used to shift data in 

arrays. This can be quite useful in generating displays 

and other graphical presentations. Rotation or shifting 

is always circularr the following examples illustrates 

*b(J,J), c(1,5) 

ROTATE C,2,L - that is, rotate the elements 

of C 2 places left. 

e.g. c = 1,2,),4,5-

c' = 3,4,5,1,? 

ROTATE b(*,J),2,U - Rotate column J of b 

2 places up. 

b = 11 12 13 (the other possible 

21 22 23 directions are right 

Jl 32 33 (R) and down (D).) 

b ' = 11 12 33 
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b 
t 

= 	 21 22 13 


31 32 2) 


Rotations in )-dimensional arrays are somewhat 

more complex since there are· six possible directions to 

move rows, columns ~ planes. In 4 or greater dimensional 

arrays, rotations tend to be extremely difficult to 

visualize due to the number of units and directions. 

For this reason, the ROTATE statement is defined 

only for vector or matrix variables. The PROJECT state­

ment can be used to decompose multi-dimensional arrays 

into matricies and rotation performed at this level. 

The PROJECT Statement 

As discussed in Chapter Two, the PROJECT state­

ment may be used for transferring data between arrays in 

one, two, or more dimensional blocks. The units to be 

transferred are denoted by asterisks in the variable 

names. The statement form iss 

PROJECT vl(i,j, ••••• ,*,*, ••••• ) INTO v2(k,m, ••••• ,*,*, •.... ) 
The following examples illustrate use of the 

PROJECT statement: 

*a(5),b(5,5),c(5,5,5) 

PROJECT a INTO b(*,2) 

PROJECT b INTO c(*,2,*) 



) 


The narrow rectangle represents the elements of ~ which 

is projected into column 2 of the square representing 

matrix ~· The previous contents of column 2 are lost. 

The matrix is then projected into plane 2 of the cube £• 

*box(5,5,5), square(5p5) 

PROJECT box(*,*,2) INTO square. 

I I l 
I ! 

I I 
 t; ·~ 
! 
• l 

_:. __ ' ) --- ­ > n·_/..~ 
i 

I 

L'~.::_ -.:_:-:._- ~ 

; 

L__,____ 

square 

The diagram shows plane 2 of variable box which becomes 

the matrix square. 
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The IF Statement 

There are two forms of IF statement in Paltran. 

The arithmetic IF statement has the form: 

IF (e)n1,n2,nJ,n4 

and has been described in Chapter Two, 

The logical IF statement has a slightly different 

format: 

IF (el op e2 )S1 ELSE S2 

and are any arithmetic or logical expressions.e1 e2 
Sl and S2 are any executable Paltran statements, ex­

cep~ for another IF. 

op stands for any one of the relational operators: 

= (equal to) 

~ (not equal to) 

>(greater than) 

> (greater than or equal to) 

< (less than) 

< (less than or eq':lal to) 

or any one of the logical operators: 

.A. (And) (This is one instance where 

.o. (Or) alphanumerics are favoured 

.N. (Not) over .special symbols, in 

order to avoid ambiguity.) 

In operation the two expressions e1 and e 2 are ev­
aluated and the resulting relational or logical expression 

is tested. If the result is TRUE statement Sl is performed, 

otherwise (ELSE) statement S2 is executed, indicating a FALSE 
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result. Control passes to the next executable statement after 

Sl or S2 has been performed, unless a GOTO transfer is made. 

If arrays are involved, the comparison takes place 

on an element by element basis and dimensional integrity 

must be maintained. If all elements in the evaluated expres­

sion result in a TRUE condition, statement Sl is performed. 

If any one element produces a FALSE Qutcome, Statement S2 

is executed. 

A second form of logical IF statement may be used to 

test portions of arrays by means of partial subscripting, on 

an element by element basis1 

IF 	(a op c)Sl ELSE S2 

-~ is any array which may be referenced globally or 

by means of partial subscripts. 

-op is any nne of the relational operators 

-£ is a conditional expression which can be any 

arithmetic expression containing relational or 

logical operators whose dimensions are compatible 

with those of the array being tested. 

Examples1 

IF ( a(*,2) = 0.0) SET a(*,2) = -1.0 ELSE GOTO 1.1 

The above statement tests column 2 of the matrix ~ against 

zero. If column 2 equals zero, it is changed to -1.0, if 

not, transfer is made to line 1.1. 
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*time(lO,lO,lO), mat{10,10) 

IF (time(*,*,10)~ mat) HALT ELSE DO 5 

In this case the tenth. plane of array time is 

compared to the matrix ~· If all elements in plane 10 

of time are greater than the corresponding elements in 

~ the program HALTS otherwise group 5 statements are 

performed. 

The FOR and DO Statements 

The FOR and DO statements may be used to generate 

repeatable segments of code. 

The DO statement causes execution of a single 

line or a group of lines ~d has forma 

DO X or 

DO x.y 



60 

where x is a group number and x.y is a number of an 

individual statement. Upon completion of the line or 

group, control passes to the next highest-numbered 

statement after· the DO, or the next sequential state­

ment. 

The DO statement must not reference its own line 

or group. 

The FOR statement has the simple format: 

FORi= x,y,z; sl;s2;s3; ••••• 

The index variable is the scalar i and is initially 

set equal to~· The group of statements sl,s2,s), •••••. 

are then executed at least once. The index variable is 

then incremented by~ and tested. If it is greater or 

equal to ~· the loop is finished and control passes to 

the next statement; if not, sl,s2,sJ, ••••• are again 

executed. The variables (or constants) i,x,y, and z 

may be integers or floating point quantities. 

The body of the FOR loop is limited to one line; 

however, its range may be extended indefinitely by means 

of the DO statement. FOR loops may be nested, the inner­

most being performed first. Since all FOR loops are 

limited to one line, transfer into a FOR loop is impossible. 

Example of a FOR loop: 

1.10 FOR i=1,1,10; FOR j = -106,25.9,-ll; DO 2; WRITE a,b,c. 
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The PARTITION and BUILD Statements 

The PARTITION statement is used to split large 

matricies into smaller, submatricies. It has the forma 

ROWS 
PARTITION (x) INTO (x1,x2,x), ••••• ) BY 

COLUMNS 

Examples: 

*a(100,100), a1(50,75),a2(50,25),a3(25,75) 

PARTITION (a) INTO (al,a2) BY ROWS 

e.g. 	 1 

al 

so 
a <a2 

100 . . 
1 25 50 75 100 

PARTITION (a) INTO (a2,aJ) BY COLUMNS 

e.g. 1 

25 

50 

100 

' aJ 

I ~ 

a 

i • • 
1 25 50 100 
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The BUILD statement is the converse of the PARTI­

TION statement and is used to construct large matricies 

from smaller ones: 

ROWS 
BUILD (v) FROM (v1tv2,vJ, ••• ~e) BY 

COLUMNS 

The PARTITION and BUILD statements may be used for matrix 

variables only. 

The READ and WRITE Statements 

The aim of Paltran input/output statements is 

simplicity and convenience for the user~ hence only the 

READ and WRITE statements will be formally proposed® 

The format for these statements is~ 

READ/WRITE n VAR1, VAR2, 

The appropriate I/O device is represented by the integer 

n• If~ is omitted, the system device is selected. For 

purposes of discussion, this is assumed to be a teletype­

like ter.minale VAR1 refers to any numeric variableG 

Simple variables are written across the 'page 9 as usual, 

while vector variables are automatically written in 

column-wise fashion~ down the page, along with an index 

denoting the elements of the vector. b~trix variables 

are also automatically printed. The numbers of rows in 

a matrix presents no problem, since the 'page' of most 

printers can be infinitely long0 The width, however, is 

usually limited from 72 to 130 characters, and a large 
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number of columns cannot be accommodated on a single page. 

As many columns as possible are printed across the page, 

taking into account field width, intra-column spacing 

and indicies. Remaining columns of the matrix variable 

are printed on succeeding pages. Higher-order arrays can 

be printed in terms of matricies. Suitable indicies are 

automatically supplied to identify rows, columns, planes, 

hyperplanes, etc. (Refer to the Paltran-8 Manual for 

examples.) 

The input format is less restrictive. Vector and 

matrix variables are always read column-wise. Higher­

order arrays are read in terms of matricies. An index is 

supplied to guide user input for on-line systems. 

VAR2 is any collection of character vectors, which 

are always printed as rows. Text may also be enclosed in 

quotation marks, (" •••••• ")and any character except (") 

may be used. The (:)produces a carriage-return, line­

feed (line-advance on a printer), and (~) produces a 

carriage-return only (re.set left margin on a printer), 

and ($) produces a form feed (skip page). On input, 

these commands may be used for on-line systems; if card 

readers, paper tape readers, etc., are being used, they 

will have no meaning except as delimiters. 

Numeric output format may be set by using (#). 

The format is initially set to "E" --format and the field 
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width is the maximum number of significant digits that 

single precision allows. The occurrence of the first (#) 

changes this toa 

#X.Y -"F" - format with X digits and Y decimal places. 


#X -"I" - format, X integers. 


#EX.Y -''E" - format with X digits and Y decimals. 


# .;.nEtt - format, full precision 


#CX,Y -complex output format, real and imaginary 


parts are written in succession; an i or j 

is automatically supplied to denote the 

imaginary part. 

#OX.Y -Octal output. 

The format remains the same for succeeding numbers until 

the occurrence of another #. 

On input, format is self-adjusting according to 

the variable type. 



Chapter Four 


PALTRAN IMPLENffiNTATION 
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The basic Paltran statements have been developed in 

the last two chapters, however additional software is need­

ed to make a truely effective programming system. 

This can consist of up to four parts which can be 

assembled to put Paltran "on the air". The system includes 

the Basic Instruction Gene-rator (BIG), the Macro Instruc­

tion Generator (MIG), the Paltran Operating System-EDitor 

(POSED), and the Parallel Task Analyzer (PTA). 

The Basic Instruction Generator implements the 

statements of the Reference Language. The formidable 

problem of determinacy must be handled at this stage. A 

given hardware system may not be large enough to accommodate 

the size of data sets requested, nor may it be well suited 

to handle array arithmetic. Algorithms which ensure that 

a given parallel structure is determinate {executable) 

regardless of the number of processors, their speed, 

interconnection etc., must be normally included in the BIG. 

For some systems execution efficiency may be very low and 

Paltran should not be considered as a core language. The· 

user must be aware of what the hardware limitations are and 

make suitable allowances to ensure efficiency, as in any 

language.· 

The BIG may be a sequential simulation consisting, 

for example, of a Fortran compiler, a subroutine library and 

an interpreter acting as a subroutine caller. 
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The Macro Instruction Generator is a mechanism to 

give the user access to the system hardware. High level 

macros can be incorporated in a program to implement paral­

lel structures that are suitable for execution by the given 

hardware, but do not have a direct Paltran description. In 

this manner efficient hardware use can be achieved while 

retaining the convenience and power of the BIG. The MIG 

however, is optional and need not appear in all Paltran 

systems; it would not be useful for example, in sequential 

simulatl:ons. 

The Paltran Operating ·system-Editor can be added to 

the BIG and MIG in order to permit on-line operation, most 

likely in a stand-alone mode. POSED consists of a text 

editor to generate and correct source programs, a load and 

go compiler-assembler and a dynamic error detection and 

handling routine. 

Finally, if system resources are large enough (or 

Paltran programs small enough) programs may be subjected 

to a Parallel Task Analyzer (chapter two) and run in a 

doubly parallel mode. The PTA is optional and would be 

useful only in very large installations where high pro­

gramming bandwidth is essential. 

It is possible to write a Paltran simulator con­

sisting only of the Basic Instruction Generator; this has 

been done and is discussed in the remainder of this chapter. 
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Paltran ""' 8 

A Paltran system has been written for the Digital 

Equipment Corporation PDP - 8 series of minicomputersf and 

is called appropriately, Paltran ~ B. 

The configuration for which Paltran - 8 was written 

consists of only 4096, 12 - bit words of central memory, and 

a single teletype and high speed paper tape reader-punch 

for input/output equipment~ The small amount of memory 

available necessitates that Paltran ~ 8 be a small subset 

of Paltran, however most of the major features are illustra­

ted$ The Statements in the subset are as follows$ 

The SET Statement 

All arithmetic in Paltran - 8 is handled by the SET 

statement, including simple assignment. The standard arith~ 

metic operators are available as well as eight basic func­

tions (sine, cosine, etc~) and operations are done on arrays 

(vectors and matricies only) on an element by element basis. 

An extension to the SET statement permits matrix multipli ­

cation, inversion, and transposition to be performed. The 

determinant of a square matrix may be found, and the main 

diagonal extracted as well!B There is also a provision for 

setting a rnatrix equal to the i_denti ty matrix. 

The LIBRARY Statement 

The Library statement simply groups together several 
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vector variable operations and is reserved for future 

expansiono The five possible vector operations are: 

- Plot a vector of co-ordinates 

-:Set a vector equal to a function evaluated over a 

given range 

Find the global minimum and maximum element in a 

vector 

- Numerical Integration, which produces a vector of 

individual area calculations, as well as the 

accumulated sum 

- Differentiationj which produces vectors contain­

ing the first forward differences, etco 

The IF Statement 

The Paltran - 8 arithmetic IF statement has form and 

action identical to that described in chapters two and three~ 

The DO - CONTINUE Statements 

The Paltran FOR ~ DO statements as used in looping, 

have been contracted to the DO - CONTINUE pair in Paltran ~ 8~ 

and resemble the Fortran Do loop. There is no execute state­

ment (in the form of the DO), nor is there a FOR statement. 

Input/Output Statements 

The READ and WRITE are the two I/O statements, and 
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they work only with the teletype as a data transmission 

medium. They are similar to the READ/VIRITE pair describ­

ed in chapter three, however the notation has been altered 

somewhat to resemble other PDP - 8 software. 

Miscellaneous Statements 

These include the GOTO which causes unconditional 

program transfers and the HALT which terminates execution. 

It is interesting to note the features that Paltran-8 

does.not have. Sum and Continued Product operations, charac­

ter vector representation, and full or partial subscripting 

are not availablec Likewise, the PARTITION, BUILD, and 

PROJECT statements have not been implemented& Considering 

the limited memory available, the Paltran - 8 system is quite 

remarkable for providing the operations it does. 

The Paltran - 8 User's Manual in Appendix IV should 

be consulted for full operational details and several ex­

amples of parallel processing applications. 



Chapter Five 


THE MATRIX PROCESSOR 
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The Matrix Processor 

One of the characteristics of high level program­

ming languages is machine independence. In this regard, 

Paltran is not a language designed to be restricted to 

any one type of parallel processing scheme. It is use­

ful, however, to relate Paltran commands to some particu­

lar hardware configuration in order to demonstrate the 

straightforward implementation of some high-level opera­

tions. A large class of Paltran computations take place 

on arrays of data and the lMTRIX PROCESSOR is well-suited 

to handle these. This particular scheme takes its name 

both from the physical arrangement of processing elements 

comprising it, and the ease with which matrix operations 

may be implemented. 

The heart of the system is a rectangular array 

of processing elements or cells (ref. Fig. 1). For pur­

poses of discussion, the array will be considered square, 

containing n x n cells with the following properties: 

several words of local memory. 

the ability to ADD, SUBtract, MuLTiply and 

DIVide. 

Other operations such as shifting, masking, 

logical operations on individual bits, etc. will not be 

considered, but would, in fact, be included in an actual 
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Fig. -1- Schematic Representation of the Matrix 
Processor 



hardware implementation. 

In addition, a collection of cells which we will 

call a ROW ACCUMULATOR and a COLIDAN ACCUMULATOR are added 

to the array; the term, 'accumulator•, should not be taken 

too literally. This 'super-register• serves as a com­

munications device to and from the array, as well as 

holding intermediate results. The accumulator (referring 

to either one or both) has properties which can be exa­

mined by looking at what might be a partial instruction 

set for this 'device'. 

The first cell in either accumulator will be 

termed the base cell. It is assumed that data will be 

fetched (or stored) from central memory one word at a 

time. The instructions• 

LOAD X, R/C 

UNLOAD X, R/C 

will cause a transfer to or from central memory word X, 

to the base cell. R/C determines whether transfer is 

made to the ROW or COLUMN base cell. 

SHIFT n, U/D/R/L 

will shift the data n cells UP, DOWN, RIGHT or LEFT 

from the base cell. Shifts are assumed to be circular. 

U/D affects only the column accumulator; R/L affects 

only the row accumulator. 
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SWAP 

will interchange ROW and COLm~rn data. 

The following instruction has both local and 

global action: 

INSTRUCTION 

SET R=C Set ROW=COL, COL unaffected 

SET C=R Set COL=ROW, ROW unaffected 

SET R=~ Clear entire ROW 

SET C=f$ Clear entire COLUMN 

SET R(i)=C(j} Data interchange between 


SET C(j)=R(i) individual cells. 


SET R(i=x,y)=C(j=W,&) Set ROW cells x to y equal 

SET C(j=w,D)=R(i=x,y) to column cells w to 6 etc. 

NOTE: 	 An indexed, micro-programmed LOAD/UNLOAD-SHIFT 

instruction can be used to bring data into the 

entire ROW or COL accumulator, from central memory. 

In a more elaborate shceme, central memory can be 

re-organized in n-word blocks to make n-word 

transfers to the accumulators possible. 

The actual physical location of these super­

registers or accumulators poses an interesting question. 

Since the instructions mentioned apply to either one, the 

ROW and COLUMN accumulators can be one physical unit; it 

is only a matter of proper gating to obtain the results. 
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In fact, it will be convenient to let word (or location) 

~ of each cell be called the accumulator. This effectively 

gives each cell capabilities for inter-cell communication 

as well as for central memory data transfer. Note, 

although the accumulator is accessible as word ~ of each 

cell, this does not imply there are n x n "accumulator 

cells .... 

Instructions that operate on a cell-to-cell basis 

can now be examined. The general format is: 

OPR FIELD 1 FIELD 2 

where 

OPR = ADD/SUB/MLT/DIV 

FIELD 1 =x,y,ft 

-FIELD 2 = BLANK/( i, j )/(i, )/(, j) 

OPR designates the arithmetic instruction to be performed. 

FIELD 1 defines the words in local memory on which OPR 

is done in )-address format. FIELD 2 defines the scope 

of the operation; if it is blank, the operation is global; 

if two parameters are present, the operation is local to 

a single cell; if one parameter is present, the operation 

is performed on a row or column. Examples, 

ADD 1,2,3 means add word #2 to word #1 and leave 

the result in word .#3 of all cells. 

SUB ~,1,$(6,) means subtract word #1 from the 

accumulator and leave the result in 
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the accumulator of all cells in 

row 6e 

Note, operations involving the accumulator cannot be 

done globally, only on a row, column or single cell 

basis,; 

In addition, the transfer operation: 


DEPOSIT SOURCE,DEST (i~j) is provided@ 


Example, 

deposit the accumulator 

in word 3 of column #2 cellse 

The accumulator and cell-to-cell instructions may 

be micro-programmed and indexed to form a set of high= 

level macrosfj 

. The LOADP SHIFT, and DEPOSIT instructions can 

be combined to generate the macro: 

LOAD 'VI, (N ,M) ,X 

which can be interpreted as: Place in word W of each 

cell the N x M array, as read from central memory (by 

rows or columns) starting at word X (inCM)e 

Other useful macros arez 

MACRO 	 ACTION 

TRANS POSE \'f TRANSPOSE rows and columns, 
word w. w;io 

OPR (x,y,z) 	 Example: ADD wordy to word 
x and leave re.::;ul t 1n ,.·rord 
z of all cells. xlyFziO 
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,p'R ( ) ROW ( ~ • )O x,y~z r COL leJ9k 	 Exampleg ADD wordy of ROW j 
to word x of ROW i and store 
in word z of ROW k 

ROW
OPR WJ COL i~ 	 Examples ADD together all 

words w in ROW i and leave 
result in word .0 of the 
base ROW cell 

ROW
SHIFT w; COL i9k 	 Shift word w from ROW/COL 

i to k 

Some of the higher Paltran commru1ds can now be re= 

lated to these macros, The Paltran statement SET a=TRAN(b) 

is simply a combination of s 

LOAD 1 (n j m ) , b (bring the matrix b(n,m) into location 1) 

TRANSPOSE 1 (transpose rows and columns) 

UNLOAD 1 (m,n),a (put the transpose into central memory 

as a (m."'n) ) 

Addition, subtraction, etco of matricies is similar; the 

macros 

LOAD l (n,m), a 

LOAD 2 (n,m)~ b 

ADD 1,2,3 

UNLOAD 3 (n,m),c 

simply mean *a{n,m),b(n,m),c(n,m) 

c=a+b 

Matrix multiplication involves bringing the two 

matricies into the array and transposing one of themg Row 

by column multiplication can now occur en masse and results 
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added to form a column (or row) of the resultant matrix. 

One of the matricies is circularly rotated and the row by 

column multiplication and addition occurs again to form. 

the second column of the product and so on. 

Other matrix and vector operations can be handled 

in a similar manner. If some form of associative memory 

techniques are given to the matrix processor such as the 

ability to test the sign of a word in all cells simultan­

eously, the arithmetic IF statement becomes very easy to 

implement. The logical IF is·an extension of these tech­

niques. 

The ROTATE statement is simply the SHIFT macro, 

while the PARTITION and BUILD as well as the PROJECT 

statements are combinations of LOAD-SHIFT-UNLOAD macros. 

The matrix processor can also run in the default 

'sequential' mode making use of only the base accumulator 

cell and one processor cell. Depending on the capabili ­

ties of the accumulators a Foreground-Background mode is 

possible using the row and column base cells plus two 

processors or it may be possible to run n processors 

simultaneously and independently. 

The matrix processor is a complex hardware scheme 

but is certainly within the realm of possibility with LSI 

technology. In overall scope, some 4-th generation mult­

and •super' computers are every bit as complex if r:ot nore so. 

The advent of the matrix processor combined with a language 

such as Paltran will result in a very powerful! analytic tool. 
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CONCLUSIONS 
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The conceptual basis for a new computer programming 

language for the parallel processing enviroment has been de­

veloped in this thesis. Various aspects of existing and 

proposed hardware schemes and forms of parallel processing 

have been investigated to determine the objectives for the 

language. Available hardware, in the form of array and as­

sociative processors and mathematical operations displaying 

inherent, array-oriented, parallelism, together with pre­

vious language experience, has suggested that the language 

be of the type suitable for mumeric, scientific calculations 

with an array-based data structure. 

Several mathematical operations have been discussed 

in light of these requirements and statements for the lang­

uage have been developed to accomodate them. The syntax 

and semantics of the language have been chosen to express 

high-order operations concisely and to maximize user con­

venience. An extensive character set has been proposed to 

incorporate common, well-used symbols and special characters 

in order to simplify the notation. The absence of special 

purpose mathematical operations also tend to keep the nota­

tion uncomplicated. 

Various software schemes have been proposed to im­

plement the language as it might appear on a large, fully 

parallel system. A small subset of the language has been 
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written as a sequential simulation and very effectively 

demonstrates the major technical characteristics. 

Finally, a possible hardware configuration in the 

form of an array processor is examined in the light of the 

language requirements. 

A core language to communicate with parallel 

computers may be constructed from the concepts developed 

and form the basis of a powerful analytical toolo 
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The following is the proposed Paltran Character Set, 

which includes: 

The 8-bit ASCII (ANSCII, etc.) character set. 

(Upper and lower case letters, numerals, punctua­

tion characters, and other "characters .. such as 

carriage return, line feed, rubout, etc.) 

The special characters 

LJ1T ArAvr<><>=l= 

The upper and lower case Greek alphabet if possible. 

The availability of special characters on I/O 

equipment makes possible the equivalence of the Reference, 

Publication, and Hardware descriptions of the Language. 

The following table lists the key words in Paltran: 

KEY WORD ABBREVIATION IF SYMBOL IF 
APPLICABLE APPLICABLE 

BUILD 

COLUMNS COL 

COMPLEX 

DETERMINANT* DET 

DIAGONAL* DIAG 

DIFFERENTIATE* DEL A 
DO* 

DOUBLE 
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I 

EIGENVALUE EVAL 

EIGENVECTOR EVTR 

ELSE 

END 

FLAG 

FOR 

FROM 

GO* 

GOTO 

HALT* 

* 
IF * 
INTEGER 

INTEGRATE INT* J 
INTO 

INVERSE INVR* 
LOAD * 
LOGICAL 

MAXIMUM MAX* 
MINIMUM MIN* 
OCTAL 

PARTITION PART 

PRODUCT RRD 1T 
PROJECT PRO 

READ * 
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REAL 


REVERSE REV 


ROTATE ROT 


ROWS 


SET * 

SORTDOWN SRTDWN 


SORTUP SRTUP 


SUM 


TRACE 


TRANSPOSE * 

TRIPLE 


WRITE * 


The standard function~: 

SIN * (sine) 


COS * (cosine) 


· ATN * (arctangent) 

EXP * (exponential ) 

LGE * (natural log) 

· 	LOG (common log) 

SQT * (square root) 

ABS * (absolute value) 

FLT (float an integer) 

ITR * (fix a floating point quantity) 

Functions such as tangent, hyperbolic cosine, arc 

hyperbolic cosecant, etc., can all be constructed from the above. 
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The following functions are all based on the defini­

tions given in chapter two. These functions are also con­

sidered to be key words. 

C(n,r) (number of combinations) 

P(n,r) (number of permutations) 

B(n) (Bernoulli number) 

r (z·) (Gamma function) 

ERF(z) (Error function) 

T(n,x) (Value of Chebyshev polynomial n, for argument x) 

H(n,x) (Hermite· polynomial) 

L(n:,x) (Laguerre polynomial) 

G(n~;x) (Legendre polynomial) 

J(n, x) (Bessel function of the first kind) 

In addition, functions that supply random numbers, 

time of day, etc. are usually provided, as defined by 

system parameters. 

*Statements or functions marked with an ast~risk are part 
of the Paltran - 8 subset and have been implemented. 
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There are five catagories of operations which are defined 

in the SET statement. These area Integration, Differentia­

tion, Sum· and Continued Product Operations, Matrix Opera­

tions and Miscellaneous Vector Variable Operations. 

Integration 

Statement Forms: 

SET s= J<r(x)),e 

SET s= J<r(x)), (*,b),e 

SET s= J<r(x)), (a,*),e 

SET s= J<r(x)), (a, b) * 
SET v= fpx 

!~ . 
SET s,v= ;: {f(x) ), (a, b,n) 

where 	 -s and x are scalars 

-v is a vector of length n 

-Px is a vector of polynomial coefficients 

-f(x) is some function that is to be integ­

rated over the range (a,b); (a,*) denotes integra-· 

tion from a to plus infinity; (*,b) denotes integration 

from mimus infinity to b. Absence of explicit ranges 

denotes infinite integration from plus to mimus infinity. 

The scalar s is set equal to the value of the integral. 

The second last form of the statements defines polynomial 

integration as described in chapter two. If the individual 

area calculations are desired (for example, to plot integral 
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curves) the last form may be used. Integration takes place 

over (a,b) with n intervals and the vector v is set equal 

to the individual areas. A third parameter e, may be 

specified for infinite integrals which are evaluated as 

described in chapter two. When two successive evaluations 

of the split range differ by less than e, the process is 

terminated. If e is absent, it is assumed to be lo-6• 

Differentiation 

Paltran differentiation consists of forming vectors 

that contain the first, second, etc., divided differences 

of a set of values. If the interval spacing is constant 

the forward, backward or central differences are determined. 

Given the following: 

*x(n),y(n),dl(n-1),d2(n-2), m(n-l,n-1) 

SET dl = £. x,y 

generates a vector dl containing the first divided dif­

ferences of vector y with spacings given by vector x, where 

y=f(x). 

·SET d2 =~x,dl 

generates the second divided difference and so on. 

SET m =A~X,y 

generates the lower triangular matrix m containing all (n-1) 

divided differ.ences. 

If the interval spacing is constant the fo.rward, · backward 
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and central differences are formed= 

SET dl =A y * 
SET y = 4 (x) is used for 

SET d2 = Adl 
differentiating polynomials • 

• 
The variable x represents the 

• 
coefficient vector. 

SET m =A y 

Sum'and Product Operations 

Given, s a scalar, v(n) a vector, m(n,m) a matrix, 

h(n,n,n) a rectangular prism, the following operations are 

possible: 

SET s =~~v 
~ 

results in the n elements of v being summed and set equal to s 

SET s = [ m ( *, j ) SET s = [ m ( i , * ) 

results in either column j or row i of m being summed 


SET s = }h( i , j , * ) 
~ 

results in the summing of the elements in the remaining 

direction as located by the intersection of i and j. 

The following graphical example is illustrative: 

*h(5,5.5) 

SET s= I:h(1,2,*) 

The cube represents 

the array h. The shaded 

portion represents the 

elements summed. 
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Sum reduction in higher-order arrays is treated in a similar 

manner. The sum operation is global if matricies and 

higher order arrays are named without subscripts. Thus, 

SETs = [a means s =[ ai,j i=1,2, •••n j=1,2, •••• m 

A second form of summing operation can be performed 

on functions, without first producing a vector of values. 

The ·form of the statement is1 

SET s = [ ( f (X ) ) , (a, b, c ) 

The function f(x) is evaluated for x=a, incremented by b 

until the value c is reached or exceeded and the partial 

sums accumulated. The operation can be nested to any depth 

for functions of more than one variable: let q=f(x,y,z) 

we may write, 

SET s= [ [ [ (f(x,y, z)) ,x(ax• bx, ex) ,y(ay, by, cy), z (az, bz, cz) 

The continued product operation is carried out in 

exactly the same fashion as for summation except [ is 

replaced by 1T • 

Matrix Operations 

Matrix operations are also included under the SET 

statement. The following varialables are used: 



*a(n,m),b(n,r),c(r,m),d(m,n) 

*g(n,n),h(n,n) 


*u(m,l),v(n,l) 


*w(l,m) 


*z(n) 


s 


-four general rectangu­
lar matricies 

-two square matricies 

-column vectors 

-a row vector 

-a vector variable 

-a scalar 

It should be noted that column and row vectors are 

matricies and are distinct from vector variables. 

The following table lists the possible operations. 

MATRIX OPERATIONS 

IN PALTRAN 

Ore ration 

Matrix multiplication * 
Matrix transposition * 
Matrix inversion * 
Trace of a square matrix 

Extraction of the main 
diagonal of a square matrix * 
Determinant of a square matrix * 
Eigenvalues 

Eigenvectors 

Set a square matrix equal * to the identity matrix 

STATEMENT 

Set a=b*c 


Set a=TRAN(d) 


SET g=INVR(h) 


SET s=TRACE(g) 


SET z=DIAG(g) 


SET s=DET(g} 


SET v=EVAL{g) 


SET h=EVTR(g) 


SET g=I 
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The matrix norms: 

Largest row sum of absolute 
values 

Largest column sum of absolute 
values 

Premultiplication of a vector 
by a matrix 

Premultiplication of a matrix 
by a·vector 

Vector multiplied by another 
vector (scalar or inner 
product) 

SET vector variable equal 
to column vector or vice versa 

Length of a row or column 
vector, ie. 

- 2 l.( L vi )2 

SET s=ROW(a) 

SET s=COL(a) 

SET v=a*u 

SET u=v*a 

SET s=w*u 
SET s=u*w 

SET z=v 
SET v=z 

SET s=(v)
SET s=(w) 

The didactic operators (1',*,/,+,-) and functions 

can be used to preset elements in a matrix or higher-order 

array. The form is: 

SET a(i,j,k, •••• ,*, •••• ) = e 

- e is any expression whose dimensions are compatible with 

those of _g_ in the unspecified direction(s). 

The following graphical examples are illustrative. 

*a(5,5,5),b(5,5), theta(5,5),abc(5,5) 

SET a{*,*,J) = b*2 + SIN(theta) 
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The square represents
the matrix corresponding 
to b*2 + SIN(theta) 

SET a ( 3,* ~, 3 ) = LOG (abe ( 3 , * ) ) 

The square figure re­
presents the matrix 
abc and the shaded 
PQrtion, the third row 

Plane 3 in the cube a 
has elements set equal 

.to b*2 + SIN(theta) 

The LOG of the elements 
in row 3 of abc is taken 
and transferred to the 
third row in plane three 
of the cube ~ 
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Miscellaneous Vector Variable Operations 

STA1.'EIVIENT DESCRIPTION EXAMPLE 

SET v=~w or Reverse order w=l v=lO 
SET v=REV(w) a vector 2 7 

7 2 
10 1 

SET"v=Aw or Sort elements of w=62 v=lO 
SET v=SRTUP(w) w in ascending Jl • • • 31 

order 10 62 
99 99 

SET v=vw or Sort in w=62 · v=99 
SET v=SRTDWN(w) descending order 31 • • • 62 

10 31 
99 10 

The following miscellaneous operations can be 

performed on any array. 

SET s=MAX(a) or SET v=MAX(a) 

SET s=MIN(a) or SET vaMIN(a) 

The scalar ~ is set equal to the global maximum or minimum 

element of array ~· If the replacement variable is a vector 

local minima or maxima will also be located. Should more 

extrema be found than elements in the vector, a diagnostic 

element in FLAG is set. 
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APPENDIX IV 


The Paltran-8 Users Handbook 



INTRODUCTION 

Paltran-8 is a small subset of the Paltran 
programming language designed for the PDP-8 family of 
computers. The Paltran-8 system consists of a com­
piler (PALX) and four operating systems (POSl, POS2, 
POSJ, POS4). The PALX compiler operates on source 
input and generates an object tape (consisting of sub­
routine calls and data) which is subsequently passed 
on to the Paltran Operating System (POS). The operating 
system is a collection of subroutines which, when 
called by the object program, will execute the appro­
priate source code. In this sense the Paltran compiler
and operating system form an inte.rpretive system similar 
to PDP-8 FORTRAN. 

Since Paltran is a very high order language,
it is not possible to implement all of the main features 
in a basic 4K PDP-8. In order to implement as many 
statements as possible, four operating systems are 
available to deal with specific classes of instructions. 

SCOPE OF PALTRAN-8 

PALTRAN is designed to communicate with and 
take advantage of a m·alti-pro~~esser machine capable of 
executing many operations at the same time. 

The concept of an array of processing ele­
ments capable of perfot~ing arithmetic (simultaneously) 
on large data structures is central to this idea. Since 
the PDP-8 is a single processer machine, PALTRAN-8 is 
necessarily a simulation; the only effect apparent to 
the user would be a decrease in execution time if the 
PDP-8 was a parallel (i.e. multi-processer) machine.* 

MINIMUM SYSTEMS REQUIREMENTS 

The Paltran compiler and Paltran operating 
systems each run in 4K of core, on a PDP-8 (I, L, etc.) 

* While Paltran-8 can be used to solve problems and serve 
as a useful computational tool, it is intended only as 
a demonstration of Parallel processing capabilities, 
and, therefore, not "user-proof", as say FOCAL" 



2 


with teletype (keyboard and reader-punch). If a high 
speed reader-punch is available, it may be used. The 
current version of Paltran-8 does not take advantage 
of any additional memory. 

PALTRAN 	ARITID{1ETIC OPERATIONS 

Since it is assumed a parallel-processing 
machine is available, Paltran will do certain mathe­
matical operations in parallel. These operations are 
performed on variables (and constants) which may be 
of.three types, namely, zero, one, or two dimensional. 
They are the simple variable, vector variable and 
matrix variable, respectively. 

An arithmetic expression may consist of 
variables, which must be of the same type, constants, 
operators and functions. 

The Paltran operators and functions area 

Operator Description Precedence 

( 
) 
+ 

Open parenthesis 
Close parenthesis
Addition 

0 
0 
1 

Subtraction 1 

* I 
Multiplication 
Division 

2 
2 

1' Exponentiation 3 

Function 

FSIN Sine in radians 4 
FCOS Cosine in radians 4 
FATN 
FEXP 
FLGE 
FABS 

Arctangent in radians 
Exponential 
Natural logarithm 
Absolute value of 

4 
4 
4 
4 

FINT 
FSQT 

Integer Part of 
Square Root 

4 
4 

Note: 	 Zero precedence is the lowest and four is the 
highest. 

The (+- * /~) operators are all of the 
double operand type, that is, they always combine two 
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numbers. The functions are of the single operand type
since they operate on only one number or, an expression
which can be reduced to a single number. Simple vari ­
ables, vectors or matricies can be combined by these 
operators in the following mannera 

Simple Variables 

Any two simple variables combined by 
(+ - * /1') yield another simple variable as a result. 
A function of a simple variable is another simple 
variableo Example, 

C =A+ 	B 

BETA = FSIN (X) 

BETA and C are single pieces of data if A, B, and X 
are simple variables. 

Vector Variables 

A vector is a linear collection of numbers. 
The length or size of a vector variable is defined in 
Paltran as the number of elements (or numbers) in that 
vector; thus, ·v( 10) refers to a variable consisting of 
10 elements and is uni-dimensional. 

Any two vectors combined by (+ - * I 1')
yield another vector as a result. These operations are 
done on an element by element basis, thusc 

C =A + 	B 

means 	 C(i) = A(i) + B(i) i = 1, 2, ••• n 

where 	 C, A, and B are all of length n. 

A constant or scalar may appear in a vector 
expression, thusa 

c = 2 	 results in every element in C being set equal 
to the number 2. 

C = A * 4 	results in a vector C, whose elements consist 
of the elements of another vector A, multi ­
plied by 4. ­

Note a 	 Constants or scalars when used in vector (or
matrix) expressions must be numeric only. The 
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following is illegal£ 

Given 	 K a simple variable 

B,C vector variables 

• 
• 
•
K = 100 
• 
• 
•c = B + K 

All variables must be of the same type in 
any one expression. 

A constant may be added (subtracted, etc.) 
to a vector (or matrix) in two ways onlye Examples 

* V(10), X(10), K(10) 

i.e~ V, ! and li are defined as vectors of length 10• 

•
SET 	 K=lOOO 

SET 	 X=V+K 

• 

• 


In this case, K becomes a constant vector whose elements 
are all equal to 1000; alternatively, the expression can 
be written directly as 

•
SET 	X=V+1000 

• 

• 

• 
A function when applied to a vector yields 

another vector as a result; the operation is done on an 
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element by element basis, thusa 

If A and B are 	vectors 

SET A=FSIN(B) 	 results in a vector A whose 
elements are the sine of the 
elements of vector B, or 

a(i )=SIN(B(i)) i = 1, 2, ••• n 

Matrix Variables 

A matrix is a two-dimensional array of num­
bers. The size of a matrix is given by a pair of 
numbers which refer to the number of rows and columns 
in that array. Hence, A(5,10) refers to a matrix of 
5 rows and 10 columns, containing (5 X 10) 50 elements. 

A matrix may be regarded as a two-dimensional 
vector and, conversely, a vector is a matrix with only 
one row or one column. 

Matrix variables are combined in exactly the 
same way as vector variables, that is, on an element 
by element basis. 

If ~. B, and Q are matricies 

SET C=A+B means Q(l,j) = A(i,j) + J2(i,j) 

i = 1, 2 ••• n 
j = 1, 2 ••• m 

SET C=A*B means C(i,j) = ~(i,j) x ]{i,j) 

i = 1, 2 ••• n 
j = 1, 2 ••• m 

Note, this is not matrix multiplication; similarly,
C=A/B is not a-rorm of matrix inversion; special
instructions apply for these operations. 

FURTHER NOTES ON ARITHMETIC 

Arithmetic evaluati.on takes place left-right, 
with operations of highest precedence or priority being 
performed first. Hence, functions are evaluated first, 

http:evaluati.on


6 ­
·rollowed by exponentiation, followed by multiplication 
and division, followed by addition and subtraction. 
Parenthesis may be used to change the order of evalu­
ation as in the example belowc Note, that multiplica­
tion and division have the same priority, hence: 

If A=4 
B=2 
C.=3 

A/B*C is 4/2 X 3 = 2 X J = 6 

A/(B*C) which is 4/(2 x 3) = 4/6 ~ 2/J. 

All Paltran arithmetic is done in 3-word 
floating point format, and@ in fact, makes direct use 
of Floating Point Package number fouro* The function 
FINT (Integer Part of) therefore returns a floating 
point number. Example= 

SET X=J~3333 

SET Y=FINT(X) 


Hence Y=)c 0000 

In actual operation~ the operand X is fixed 
to a single precision integer ( range ~2047 x 2047)
and then re-floated and normalized~ Attempting to use 
FINT outside the range + 2047 would produce erroneous 
results. 

Special care must be taken when using the 
exponentiation operation,"i's In order to raise a number 
to a power, Paltran uses the relation: 

AB ~ EXP(B • Ln (A)) or 

FEXP(B * FLGE (A)) 

Hence, there are no restrictions on the range of the 
exponent, B, but A must be positive and non-zero. 

* DEC-08-YQ4A-PB 
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INTRODUCTION TO PALTRAN STATEMENTS 

A Paltran statement may be numbered and can 
be up to 1 teletype-line (72 characters) long. A 
line can be terminated by a carriage return (CR) only. 
The statement numbers, if present, must lie in the 
range (1-2047). The line format is: 

STATEMENT BLANK COrmMAND BLANK REST OF LINE CARRIAGE 
NUMBER RETURN 

That is, the statement number must be terminated (or
delimited) by the character BLANK or SPACE; the com­
mand must also be terminated by a BLANK or SPACE. These 
are the only two instances where the blank is important;
it is ignored at all other times. 

The Paltran commands ares 

COMMAND . ABBREVIATION 

READ R 
WRITE w 
SET s 
IF I 
GOTO G 
DO D 
LIBRARY L 
CONTINUE c 
HALT H 

Since the first character of each command is 
unique, Paltran commands may be abbreviated; in fact, 
the compiler checks the first character of a command 
and ignores the rest of the line until the terminator 
(BLANK or SPACE) is found. Thus, 

READTHIS 

READ 

REA 

RE 

R 

are all equivalent. 
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PALTRAN. CHARACTER SET 

The Paltran character consists of the standard 
6-BIT (2 octal characters) ASCII code which includesa 

The upper case letters ABCD•••••• WXYZ 

The 10 digits 0-1-2oeeeee9 

The characters 


Exclamation•' •• Quotes 

# Number sign 

$ Dollar sign

% Per cent sign 

( Open Parenthesis 

) Close Parenthesis 


Asterisk* Comma 
() Period 
+ Plus sign
- Minus sign

I Slash 

= Equal sign 

1' Up arrow 

[ Open brackets. 
 SquareI Close brackets } 

And the following non-printing characters 

RUBOUT 

CARRIAGE RETURN 

SPACE or BLANK 


In operation, the rubout key when struck 
will echo a back arrow (f-); the return key will 
generate a carriage~return and line-feed (CRLF) and 
the space, of course, prints the character BLANK. 

The following have no significance in 
PALTRAN-89 but may be us~d as delimiters: 

< } Angle> Brackets 
~ Back arrow 
' Colon 
1 Semi-colon 

& Ampersand 
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Line feeds are ignored as well as blank tape and leader­
trailer (~2~~-code) tape. 

The following characters must ~ be used 

in any Paltran source statements, 


? Question mark 

@ At sign 


The 6-BIT ASCII for ? is 77, which the Paltran 
compiler senses as an end-of-tape symbol. A ? in a 
.source statement would stop the compiler with no 
recovery possible. Similarly, the @ has code ~~ which 
is sensed as a line delimiter (the carriage return)®
The f6fl} code would produce the action of a CRLF, but has 
no delimiting value. 

A Paltran delimiter is any character other 
than a letter or a numberc In order to make the 
carriage return a delimiter, the compiler generates 
two symbols for the single character CR. The first 
character is a Paltran delimiter (which is actually 
code for the & (ampersand)) and the second is f]J?J which 
serves as a line terminator. 

Thgre is one special delimiter which serves 
as the end-of-tape, or actual physical end of the 
program. ·This is the$ (dollar sign)~ The compiler 
checks every input character to see if it is the $; 
when the $ occurs, the compiler halts. 

PALTRAN STATEMENTS 

The Dimension Statement 

Unlike FORTRAN or FOCAL, all Paltran vari ­
ables must be declared, even simple variables. This 
is done via the dimension statement·which has the form: 

*Vl,V2, •••• vn, •••• 

Where Vn ·= VAR or VAR(I) or VAR(I,J) 

VAR is a variable name up to four characters in length. 
The characters may be alphabetic or nwneric, however, 
the first must be alphabetic and not the letter F. 
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VAR(I) defines a vector variable of length I and 
VAR(I,J) defines a matrix variable with I rows and 
J columns. 

Commas or brackets serve as delimiters for 
the variable names. 

The dimension statement is the only one 
different in structure from the other Paltran commands. 
It is not given a statement number and may occur any­
where in the source program any number of times. 
After loading the source program, the compiler looks 
for statements beginning with * and ignores all others$ 
This is the first pass, during which the symbol table 
is generated~ The symbol table can hold 30 entries, 
hence no more than 30 variable names can be defined in 
any one program. On the second passt the compiler
ignores all statements beginning with *and processes
the rest@ Since the source program is stored in core, 
the second pass does not involve any physical action 
of reloading tapes, etce 

Example a 

PALTRAN-8 GO (This is an introductory 
message typed by PALX)• 

•
*DOG,CAT,A123(10),BIRD 


• 

• 

• 

*MAT(5~10),PI 
• 

• 

•

*ABCD 

• 

• 

• 


$ 
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The READ Statement 

The READ statement is the basic mechanism for 
data input. It has the format: 

n READ VAR, ! , " ••• •• 

n is an optional statement number 
VAR is a variable name 
: generates a CRLF 
"•••" quotes may be used to insert text in the input

format. Any ASCII character can be used between 
quotes except: $, ?, @ and "• 

Note, vector or matrix variables need only be mentioned 
by name. The operating system will automatically read 
1 or 2 dimensional variables according to a pre-arranged,
indexed format. 

Example: 

*SIMP, VEC T { 1 0 ) , MAT ( 2 , 2 ) 
• 

•
READ "INPUT",!,SIMP,!,VECT,MAT 

•
100 R "MORE INPUT",!,ABCD,A,BC,BCD 

• 

• 

•


*ABCD,A,BC,BCD 

The following would result from the first 
READ statement at execution time. 

Let ).14159 be a value we wish to assign to SIMP 

Let 	 100 
200 
)00 
400 be a vector we wish to be 
500 read as VECT
600 
?00 
BOO 
900 

1000 

And 	 11 12 be a matrix we wish to 
21 22 read as MAT 
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Hence 

INPUT (POS types INPUT) 

1).14159 (POS types i indicating it is ready 

VECTOR INPUT to receive input) 

(1) :100 	 (user enters ).14159) 
(2) 	 a200 (POS then types VECTOR INPqT 

and an index in parenthesis followed•. 	 by a colon, -The user then enters 
(1 0) 

' 

sl 000 the appropriate element of the 
MATRIX INPUT vector()) 
ENTER ROVI ( 1 ) (The operating system then 
. ( 1 ) z11 ( 2 ) :.12 types MATRIX INPUT as a 
ENTER ROW(2) guide indicating 2 dimensional 
(1) 	 z21 (2) :22 input. All matrix variables 

are read by rows only.) 

Input data is usually terminated by a 
carriage-return (with line-feed generated automatically) 
or a space. Proper use of these delimiters is also 
essential to input formating~ 

To change the input format slightlyt a 
switch register option is available to the user. The 

----index (in parenthesis) that is typed as a guide for 
entering vector or matrix variables may be omitted by 
raising bit /;e 

i.e. 

BIT~= 1 (switch up) index is not typed. 

BIT~=~ (switch ·down) index is typed as above~ 

Note, the colon is always typed when input data is 
expected. 

As 
switch 11 was 

an example, 
upa 

the following would occur if 

INPUT 
:).14159
VECTOR INPUT 
:100 
:200 

• 
• 
• 

clOOO 
IV'IATRIX INPUT 
ENTER ROVf. 
s11 s12 
ENTER ROVI 
a21 :22 
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The WRITE Statement 

The WRITE statement is the basic mechanism 
for data output and has the .following format: 

n WRITE VAR,:,#,%~Y•"•••••" 

n is an optional statement number 
VAR is a variable name 
: generates a carriage-return, line-feed 
# generates only a carriage return 
"•••••" text may be enclosed between quotes as in 

the READ statement 
%~Y 	 affects the output format 

X is an integer defining the total field width, 
i.e., number of digits in a numbers 
Y is an integer that sets the number of decimal 
places in the output number. 
Examples 

*ABC 
• 

• 

• 


--SET ABC=lO. 5 
5 

• 

•


WRITE 	 %8/4,ABC,! 
• 

• 

• 


Produces at execution time 


10.5000 

The + sign (if the number is positive) is suppressed, 
as well as are all leading zeros. The same output
format remains in effect until the occurrence of 
another%, which changes it. 

The output format can be set to E-:f'ormat 
by using %0/0, or, simply, %/,. Example: 
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*ABCD 

• 
•

SET ABCD=5000000 

• 

• 

•


WRITE %0/0,"FIVE MILLION",:,ABCD,: 

• 

• 
• 

Produces 

FIVE MILLION 

0.50000000E07 

Vector or matrix variables are automatically­
typed out by the operating system. A vector variable 
is always typed as a column vector, along with an 
index. A matrix variable is typed out as a rectangular 
array. Example: 

Assume that the following have been calculated 
previously: 

v = 	 1 11 12 13 14 
2 21 22 23 24MAT=3 	 31 32 33 J4 
4 	 41 42 43 44 

And 

*V(4), MAT(4,4) 

• 

• 

•
WRITE 	 %5/2,v,::::Th~T,: 
• 

• 

• 

Produces 

1.00 
2.00 
).00 
4.00 
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1 2 3 4 

(1) 11.00 12.00 1).00 14.00 
(2) 	 I 21.00 22.00 2).00 24.00 

I Jl. 00 )2.00 3).00 )4.00(')( ) 41.00 42.00 4).00 44.00 

The operating system prints the row and 
column index for matrix variables,. taking into account 
the output format (i.e. %~Y) that has been set. 
The number of digits in a number limits the number 
of columns that can be typed out in a 72 character 
line. Example: 

- 6 spaces are required for the row index. 
- 2 spaces are inserted between columns. 
- If the total field width is 6 digits, then, 

~ - 66 ­0+2--g- 8 


columns can be typed out. With 4K PALTRAN, this is 

not a serious problem since core available for data 

storage limits the size of matrix variables. 


The index accompanying vector output and 
~ the··· row index ace ompanying matrix output can be 

suppressed by raising BIT ~. 

The SET Statement 

The SET or arithmetic replacement statement 
has the forma 

n SET x=e 

Where n is an optional statement number 
x 	 is a variable that is set equal to the 

arithmetic expression e, as defined 
previously. 

Note, both x and e must be of the same type, 
that is, all zero (simple variable), one 
(vector) or two (matrix) dimensional. Only 
on·e level of forward replacement is allowed. 
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Examples: 

*A,B,C,D,V1(10),V2(10),V3{10),MAT(5,5),ARRY(5,5) 
• 
• 
•

SET A=B+2.0*FSIN(C+FCOS(D)) 
• 

• 

•


SET Vl=V2~3-FABS(V3) 
• 

• 

•


SET MAT=MAT+ARRY 

The IF Statement 

The IF statement can be used to change program 
flow depending on the sign of a calculated expression.
It has four formss 

n IF (eJ A,B,C,D 

n IF [e] A, B, C 

n IF [eJ A, B 

n IF [fij A 

n is an optional statement number 
e is a valid arithmetic expression as defined 

previously 

If e is a vector or matrix expression, the first form 
of the IF statement ~ be used1 the following action 
takes placea 

e is evaluated, and a single vector or matrix result, 
is tested. If all of the elements of this result are 
negative, control transfers to the statement numbered At 
if all elements are zero, control trans£ers to B; if 
all elements are positive, control transfers to c. If 
any one (or more) element does not fall into one of 
these categories, control passes to D. For example, 
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if there is at least one negative or zero number in an 
array of positive numbers, control would pass to the 
default statementp De If e is an expression comprised
only of simple variables, control can never transfer 
to D. When only simple variables are involved, the 
abbreviated forms of the IF statement can be used. 

If the second form is used, control transfers 
to A, B, or C, if e is negative, zero, or positive,
respectivelys 

If the third form is used, control transfers 
to A if e is negative, to B if e is zero9 and to the 
next executable statement following the IF~ if e is 
positivee 

Control transfers to A if e is negative, and 
to the next executable statement if e is zero or 
positive, when the fourth form is used. 

Notea 	 The expression e must be enclosed in square
brackets. 

The GOTO Statement 

The GOTO statement transfers control directly 
and has the form: 

n GOTO 	 x 

Where n is an optional statement number 
x is the statement number to which control is 

transferred. 

USER'S 	 NOTEs 

GOTO and IF statements transfer control 
indirectly through links on Page zeroe All Paltran 
Operating Systems have a maximum of 26 locations 
available for this purpose. Each GOTO statement uses 
one link~ and an IF statement can require up to four 
links, if the first form is used. Since there is a 
limit on the number of links available, it is advis­
able to use the abbreviated forms of the IF statement 
whenever possible. 



I 
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The DO Statement 

The DO statement is used for generating 
repeatable segments of code or loops. It has the 
forma 

n DO m VAR=X,Y,Z, 
• 
• 
• 
• 
• 

m CONTINUE 

point format, the DO indicies may be negative 

Where n 
m 

is an optional statement number 
is the number of a CONTINUE statement which 
defines the range of the loop, m must be 
terminated by a blank. Every DO statement 
must be terminated by a CONTINUE statement, 
CONTINUE cannot be used as a dummy state­
ment as in FORTRAN. 

VAR is the DO index variable which is first 
set equal to X. 
The statements in the body of the loop 
are then executed, at least once. VAR 
is then incremented by Y and tested to 
see if this result is equal to or greater
than z. 
If VAR is less than Z, the body of the 
loop is executed againJ if VAR is greater 
or equal to Z, control passes to the 
first statement after the CONTINUE 
statement. 

Since all arithmetic is performed in floating 
or 

decimal fractions. The DO statement cannot be shortened; 
all three indicies must be present. 

DO loops may be nexted in standard fashion, 
with the following restrictionss 

- Loops may be nested 6 deep, maximum. 
- Control cannot pass from the body of one loop 

to another loop or the rest of the program 
until the loop is finished. If escape from a 
loop is desired before the loop finishes normally, 
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the loop variable, VAR, may be modified (set
equal to or greater ·than Z) or repeated
jumps to the CONTINUE statement may be made. 
Several loops cannot terminate on the same 
CONTINUE statement. Each DO must have its own 
CONTINUE statement. 

- The compiler does not check for proper nesting.
The DO indicies can be either simple variables 
or constants. 

Example: 

*I,J,K,N,M 
• 
• 
• 

READ N,M 

• 

• 

•


DO 10 I=l,l,N 

• 

• 
•

DO 20 J=-0.5,0.01,0.0 
• 

inner• loop•
20 CONTINUE outer 

loop• 

• 

• 


D? 30 K=2.5E-6,M,10.0E-5].· 

• ~nner 

• loop 

JO CONTINUE· 

10 CONTINUE 


The HALT Statement 

The HALT statement causes the Operating
System to cease execution. It has the simple form• 

n HALT. 

Where n is an optional statement number. 
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SPECIAL PALTRAN OPERATIONS 


The statements discussed in the previous
sections comprise the basic Paltran-8 system. The 
PALX compiler, along with Paltran-Operating-System
Number One (POSl), will handle all statements in the 
basic system. In order to extend the range of Paltran 
operations, three more Operating Systems are available 
to process new commands. This extension is made at 
the expense of data stora~e, hence restricting the 
user to smaller arrays. lRefer to OPERATING PROCEDURES 
for details.) 

MATRIX OPERATIONS 

The following matrix operations are avail ­
able when Paltran-Operating-System Number Two (POS2)
is used: 

Matrix Multiplication

Matrix Inversion 

~~trix Transposition 


and commands which 
Compute the determinant of a square matrix. 

Set an array equal to the identity or unit 

matrix. 

Extract the main diagonal of a matrix. 


The above operations are available as exten­
sions of the SET statement; the basic format iss 

SET *X BODY 

where SET is delimited by a blank and the * signals
the compiler to process the one or two character code 
X, as one of the above dperations; X must be delimited 
by a blank; BODY defines. variables used in the operation. 

MATRIX MULTIPLICATION 

If C is an (N,M), A an (N,R) and B an (R,M)
matrix, then the matrix product C, of ] pre=multiplied
by A is defined as: 
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Q(N,M) 	 =!(N,R) X ~(R,M) 

R 

Q(i,j) = [ A(i,k) X ~(k,j) 


K=l 


i =1,2••••• N 
j = 1,2••••• M 

Note: 	 The nwnber of columns in A must equal the number 
of rows in ~· 

The form of the matrix multiplication state­
ment is: 

SET *M 	 A*B=C 

where M denotes matrix multiplication, and C is the 
resultant matrix product. The FALX compiler does not 
check if A, Band Care of the proper dimensions; it is 
up to the user to ensure C(N,M) = A(N,R) * B(R,M). 

Example a 

*C(l0,5),A(lO,J),B(J,)) 
• 

• 

•


READ "FIRST MATRIX",!,A,"SECOND MATRIX",:,B,! 
• 

• 

•


SET *M 	 A*B=C 
• 
• 
•

WRITE %6/J,"ANSWER, PRODUCT",:,c,: 
• 

• 

•

HALT 

MATRIX 	 INVERSION 

The Inverse A-1 of a matrix ! is defined as 



• 
• 

• • 
• • 
• • 

• • 
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A~-1=A-1A=I where l is the identity or unit matrix. 

I= 1 0 0 0 • 0 
0 1 0 0 0 The main diagonal 
0 0 1 0 0 elements are unity, 

while all off-diagonal• are zero••
0 0 0 0 e 1 

Paltran computes the inverse of a matrix 
by solving a set of n-simultaneous equations, by a 
variation of the Gauss-Jordan method. (In a true 
parallel processing system, other techniques would of 
course be used. Since Paltran-8 is a simulation, only
the final results are important.) 

If A, B and X are square matricies, then the matrix 
equation -

~=B may be solved for ! 

where A is the coefficient matrix 
X is the solution matrix 

and ] is the matrix of constant terms. 

If ~ is set equal to the identity matrix, then 

AX=! and, by definition, the solution matrix 
x-must be the inverse of A. 

The form of the matrix inversion statement is: 

SET *V INVR/A 

where V denotes matrix inversion 
A is the matrix to be inverted 

INVR is the inverse of A 

INVR must be set initially to the identity matrix: this 
may be done in two waysa 

1. 	 By a READ statement; however, this is tedious. 

2. 	 B.y the statement 

SET *I INVR 

where 	 I denotes the operation of setting INVR equal 
to the identity matrix. 
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Unfortunately, the original matrix, A, is destroyed in 
computation, It is, in fact, reduced to the identity 
matrix. 

The following Program is an 

PROGRAM 

*A(5,5),INVR(5,5)
*SAVA(5,5),TEST(5,5) 

READ A 

SET SAVA=A 

SET *I INVR 

SET *V INVR/A 

WRITE %6/), 11 INVERSE",INVR! 
WRITE "A MATRIX~,A,: 

SET *M INVR*SAVA=TEST 

WRITE "CHECK ON OPERATION", 
HALT 

example of matrix inversion. 

CO~iMENTS 

Declare variables·. 

Read A, the matrix 
to be-inverted, 
Since A will be reduced 
to the-identity matrix, 
SAVA is used to save 
the original coefficients. 

INVR is set equal to 
the identity matrix. 
INVR will be computed 
as !-l and A is reduced 
to l• 
The inverse matrix is 
written, along with A 
as a check. ­

The inverse INVR, is 
multiplied by the original
matrix SAVA. By defini­
tion, if the inversion pro­
cess has been carried out 
successfully, TEST should 
be the identity matrix. 

TEST,!' 

The results from this program for the matrix 

10 5 0 .-5 10 
1 .01 .7 -.1 4 

!= .1 
-1 
·3 

2 
-9 
-·3 

3 
·5
1.5 

4 
·5
4.5 

5 
• 01 
10 

appear in Appendix 1. 



• • • • • • 
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The only restriction on this method is that 
all diagonal elements of the A matrix must be non-zero, 
since division by A(i,i) occurs in the process. This 
method is also prone to the usual pitfalls involved 
in finding inverses of ill-conditioned matricies. 

Since this method consists of solving equa­
tions to find an inverse, it can be used to solve 
simultaneous equations directly. 

Example a 

*A(5,5),B(5,5) 

READ "COEFFICIENT MATRIX" ,A,: 

READ "MATRIX OF CONSTANTS",B,! 

SET *V B/A

WRITE "SOLUTION MATRIX",B,: 

HALT 


Instead of initially setting B equal to the 
identity matrix, B is read as a matrix of constants, 
and after the SET *V B/A statement is executed, B is 
the solution to: 

a a X X b b1,1 ••••• 1,5 1,1 ••••• 1,5 1,1 ••••• 1,5 

* = 

as,l •••. .as,s xs,1 ••••• xs,5 bs,l ••••• bs,s 

that is B = x. 

MATRIX TRANSPOSITION 

The transpose ] of matrix A._is defined as, 

~(j,i)=A(i,j) i=l, ••• N, j=l, ••• M 

The statement: 

SET *T TRAN/A 

will set TRAN(N,M) to be the transpose of A(M,N).
It is up to the user to ensure.dimensional compatibility. 
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DIAGONAL EXTRACTION 

The statement 

SET *DI A/VECT 

will set VECT equal to the main diagonal of Ar that is, 

VECT(i)=A(i,i) i=1,2••••••n 

A must be a square matrix, and VECT must be of vector 
of similar dimensions. 

Note the two-character code following the asterisk in 
the'SET statement. 

DETERMINANT OF A SQUARE MATRIX , 

The statement 

SET *DE DET/A 

results in the simple variable, DET being set equal 
to the determinant of A. Since division by A(i,i) 
occurs in the process, all main diagonal elements of 
A must be non-zero. As is the case with matrix inver­
sion, the A matrix is destroyed in computation. 

PALTRAN LIBRARY OPERATIONS 

The second class of extended operations include: 

Plotting

Numerical Integration

Numerical Differentiation 

Searching vectors for minima and maxima 

Loading functional values into a vector. 


These operations are handled by Paltran 
Operating System Three (POSJ) and Paltran Operating
System Four (POS4). POS4 is basically identical to 
POSJ, with only minor changes made in input-output 
structure. 
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The compiler handles these operations under 

the LIBRARY statement, which has the basic form: 

L OPCODE VAR,EXP 

where L denotes the library class of operations.
OPCODE is one of the following:

P for PLOT 
S for SET 
M for MINIMAX 
I for INTEGRATE 
D for DIFFERENTIATE 

Note, both the Library command and opcode must be termin­
ated by blanks. 

VAR,EXP is the remainder of the statement 
consisting of variables or arithmetic expressions 
or both. 

All of the above operations deal with vectors 
as the basic unit of data storage. Many cases arise 
where the values of some function are desired over a 

-·------·~--g-iven range. The Library statement SET is used to 
generate a vector whose elemants are values of some 
function, say F(x) over the range X1JliN~X~XMAX. 
The form of this statement is: 

L S V,XtFXl 

where V is the vector that will contain the 

calculated values. 


FX is some function of X. 


FX must be enclosed in square brackets and the variable 
X must appear as above. 

At object or execution time of the SET 
statement, the Operating·system (POSJ) will type XMAXt, 
to which the user responds by typing in the maximum 
value of the functional range. The operating system
then types XMIN:, to which the user makes a similar 
response. The operating system then computes: 

V(I}=F((XMIN-A~)+AX*I) I=l, •••••• N 
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where - N is the size of the vector 

A X = XIVIAX-XMIN 

N 


Thus V will then contain F(x) evaluated from XMIN to 

XMIN+.LiX*(N.... l) in increments of thl..Xe~ 

Note· XMIN+~*(N-l)=XMAX-~X~ 


Example a 

*X,V(100) 
• 

• 

• IL SET V,X FSIN(X)+FCOS(2.0*X) 

WRITE %8/4, "SIN-COS FUNCTION", V,!. 

HALT 


In this case, the vector V will consist of the func~ 
tion SIN(X)COS(2X) over a range determined by the 
user at execution timeo 

Inte.gration and Differentiation are carried 
out by Paltran in a similar fashion. 

The form of the Library statement INTEGRATE is 

L I SUM,V,XtFXl 

SUM is a variable which will contain the value of 
the integral.
V is a vector which contains the individual areas 

(see belo'N) o 


FX is a function of Xo 
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If F(x) is evaluated at X1 
and LlX is very small, F(xl). ,6 X 
is a good approximation of the 
area under curve of F(x) from 
Xo to X2•· since the areas of 
triangles ABC and CDE are 
approximately equal. By making 
sufficient number of these 
area calculations and adding
them, a.good approximation to 
the true value of the integral 
can be made. 

The range or interval of integration is again 
determined at execution time as was described under 
the SET statement. The size of the vector V determines 
the ntimber of area evaluations; the larger V is, the 
more accurate the result. (Note, an integral curve 
can be plotted from the elements of V.) 

Example: 

*SUUI,X, V(lOO) 
• 

• 

• 

L I SUM, V, XtX+ll 

WRITE fo6/J, "ANSWER" ,SUM,: 

HALT 


If the user entered the limits ~. and 1 at execution 
time a 

XMAXt 1 

XMIN: ~ 


ANSWER 1.498 

~2 Noting that J<x+l )dx = +XJ: 
= 1.5 
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In a similar fashion, a function may be 
numerically differentiated. The form of the Library 
statement DIFFERENTIATE is: 

L D V ,X [FX] 

where FX is a function of X. 

The function is divided into intervals as 
determined by the size of the vector V, and the slope
of the function calculated, the individual slope cal­
culations comprising the elements of v. 

The differential curve of the function can 
now-be plotted by means of the Library statement, 
PLOT, which has forma 

L P V 

where P is the abbreviation for PLOT and V is 
a vector of ttytt values. As before, an "X-value" range
is determined at execution time from user input and the 
size of the vector V. 

The X-scale is plotted down the teletype
•Page" and·the· Y-scale plotted across. This routine 
is not very elaborate; however, plotting in all four 
quadrants is possible. The Y-range is limited to 
-50 places and the X-range by the length of the vector 
of plot points. To obtain Y-displacement, the value 
of the particular element in V is fixed and a number 
of spaces are typed as given by that value, followed 
by a period(.). Since this limits the range of 
values in the vector V from -25 to +25, the Operating 
system requests a third parameter: YMAG or Y-scale 
magnification. The values in the plot vector are 
multiplied by this parameter in order to place them in 
the -25 to +25 range. For convenience, the X and Y 
values are printed along the left-hand margin. If 
plotting will only take place in the positive Y-ylane,
the range of the plot vector may be changed to ~ to 
5~ by means of a switch register option. This is done 
by raising switch 11 (Bit 11 = 1). 

Example: 

*X,V(lO) 
WRITE %6/3
L SET V,X Dc*X] 
L PLOT V 
HALT 
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At Execution 	time: 

XMAXa 10 

XMIN: 0 

YMAGa 0.25 


yX 

o.ooo o.ooo •
1.000 0.250 •
2.000 1.000 •
3.000 2.250 •
4.000 4.000 •
5.000 6.250 •6.ooo 9.000 •
?.000 12.250 •a.ooo 16.000 •
9.000 20.250 • 

Note, the Y values printed are the scaled values. 

Sometimes it is not apparent what the maxi­
mum or minimum value of a calculated set of points is. 

- - - ~ The minimum and maximum value, of the elements, of a 
given vector may be found by using the Library state­
ment MINW~X. It has form: 

L M MAX,MIN,V 

where - MAX 	 is a variable name and is set equal to 
the largest element in vector v. 
Similarly, MIN is set equal to the 
smallest element. 

At execution time, the operating system will 
also type out the minimum and maximum value. 

Example: 

*X,MAX,MIN;V(25)

100 L SET V,XLFEXP(X*FSIN(2.0*X))/X]

200 L M N~X,MIN,V


JOO L P V 
HALT 
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Statement 100 describes a rather complicated
function of X and it is not readily apparent what the 
maximum and minimum values would be for some given 
range. 

Statement 200 results in a sort through the 
generated vector and prints the appropriate values. 
Knowing the range of .. Y-values .. , the user can then 
enter a suitable value for YMAG in the plot routine. 

POS4 MODIFICATIONS TO POS3 

The printing and/or reading of scale or 
range values at execution time is convenient in some 
respects and not so in others. If the SET or MINMAX 
statement was in a loop, repeated entry of values from 
.the keyboard would be troublesome. 

Paltran Operating System Four (POS4) is a 
small modification of POSJ which changes the input­
output mechanisms for the SET and Iv1INMAX statements. 
At execution time, the operating system will read 

·---XMAX and XMIN, that is the function range, from core 
memory instead of from the keyboard. The values read 
are the first two variables declared. Similarly, the 
MINMAX statement obtains values for XMAX and XMIN from 
the first two variables dimensioned by the user. 
In addition, the MINMAX statement returns two new data 
items, which occupy the locations of the next two 
variables in core. The returned numbers are the values 
of X for which the maximum and minimum occur. 

Example1 

Suppose that some function has values, Y, for the 
given X-range1 

X y 

0 0 
1 2 
2 3 
J 7 
4 3 
5 2 
6 0 
7 -2 
8 -10 
9 -2 

10 0 
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Using POS4, the user must declare the first 

four variables appropriately: 


*XMAX,XMIN,PMAX,PMIN,MAX,MIN,X,v(lO)

READ XMAX,XMIN 

L SET V,X some F(x)

L M MAX,MIN,V 

WRITE %6/J~"MINIMUM AND MAXIMUM VALUES ARE",


MIN, ,.AND" , MAX, : 
WRITE "OCCURRING AT X=", PMIN, "AND", PMAX, "RESPECTIVELY", ·! 
HALT 

The program would return for the above valuesa 

• 

• 

• 

• 

• 

MINI~fln~ AND MAXIMUM VALUES ARE -10.000 AND 7.000 
.OCCURRING AT X=8.000 AND ).000 RESPECTIVELY 

Other than this, POS) and POS4 are identical. 

---NOTEs 	 -The MINI!VT.AX routine uses an internal calcula­
tion made by the SET, INTEGHATE OR DIFFERENTIATE 
routines; this necessitates using L Iv'I lvJAX, MIN, V 
in conjunction with L SET V,X FX ETC., when 
using POS4 only. 
(Refer to Appendix II for a further example.) 

OPERATING 	 PROCEDURES 

The PALX compiler is brought into 
core using the BIN loader, and starts in 
location ~2}1/1. Before starting, the following
switch register option should be set: 

Switch 11 	 UP Switch 11 DOWN 
(Bit 11=1) . 	 (Bit 11=i5> 

Source tape is read using Source input is 
the High S~eed Reader manual; through

ACTION 	 ( HSR). A ~ is ech.oed the keyboard. 

every time a CR is read. The Low Speed

Line-feeds, ~2~~ code and Reader (LSR) may

blank tape are ignored. be used. 


http:MINI!VT.AX


ACTION 


JJ 

Upon starting, PALX types 

PALTRAN-8 GO 

and reads a source tape or awaits keyboard 
entry, depending upon BIT 11. When a $ is 
encountered indicating the end of the 
source program, the compiler halts. Two 
switch register options are now available. 

BIT 11=1 BIT ll=p 
Punch object tape on Punch object
HSP (high speed punch). tape on LSP. 

BIT p=p BIT P=l 
Type symbol table and Omit symbol print 
program data after and program data. 
punching object tape. 

After setting bits 11, and~ and 
turning on the appropriate punch, the user 
presses CONTINUE, PALX then punches the 
object tape. Error messages will be typed 
at this time if any errors are detected. 
After punching the object tape, PALX. types 

EOT (End of Tape) 

to indicate a successful compilation. If the 
symbol print is selected, the names and dimen­
sions of the variables will be printed. 
Example, if the following appear in the 
source program: 

*ABCD,A,B,CAT(8),DOG{9),BIRD(4,5),W~TR(7,7) 

the symbol print will be: 

SYMBOL TABLE 

NAME 'DIMENSIONS 

ABCD 

A 

B 

CAT 008 
DOG 009 
BIRD 004 005 
IVIATR 007 007 
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The compiler then prints the following program dataa 

Number of lines in source program. 
- Total data storage required (for variables only). 

Length of object program.
Number of GOTO and IF links generated. 

Note, all of the above numbers are converted to deci­
mal (base 10) when typed by PALX. After printing this 
data, the compiler halts, and switch register options 
can be reset at this time; pressing CONTINUE restarts 
the compiler. · 

If the symbol print has not been selected, 
the compiler automatically restarts. 

There is only one editing feature in PALX. 
When in the keyboard entry mode, the RUBOUT key may
be used to delete the character just typed. Pressing
RUBOUT again will erase the previous character, etc. 
A back arrow (~) is echoed every time RUBOUT is used. 

--------COMPILER DATA 

The maximum source urogram length is 128010characters, use of abbreviatea commands J.s there­
fore recommended to conserve space. Excessive use of 
RUBOUT is not advised since each RUBOUT adds to the 
source character count, and the deleted characters do 
not decrease this count. The source program may con­
sist of a maximum of 50 lines (compatible with 128010 
characters, maximum). Each IF statement effectively 
generates GOTO statements, and these are included in the 
source count. The abbreviated form of the IF statement 
is therefore recommended wherever possible. In addition, 
the number of GOTO links will be correspondingly conserved. 

Example: 

IF I:X+2. O*Y-ER J 100,200, )00,400 

is considered as 5 source lines and requires 4 GOTO links. 

IF I:ALFA-EPS:l 1000 

counts as 2 source lines and uses only one GOTO link. 
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·' ERRORS DETECTED BY PALX 

The Paltran compiler, PALX, checks the source 

program for syntax errors during compilation. In 

addition, source and object program overflow is detected 

and generates an error message. All Paltran-8 errors 

are fatal; the source program should be corrected before 

attempting execution of the object program. 


Error messages are typed out in the following

format: 


ERROR XX 

AT YY 


where XX is a two-digit octal number indicating the 

error and YY is another octal number indicating the line 

in which the error occurred. The following table lists 

Paltran-8 errors detected by PALXa 


Error Number Description 

,0{6 Source overflow. Source program 
too long. Compiler restarts. 

j11_ Missing line number, no GOTO 
transfer possible.

(J2 Object program too long. 
,q}J Syntax error in a floating point

number. 
~4 Undefined variable name. 
115 Unrecognizable command, Invalid 

Paltran statement, 
~7 Illegal terminator in a Dimension 

statement. ")"is missing.
1% Too many characters in a variable 

name. 
12 Unrecognizable extended SET command. 
13 rdsmatched parenthesis.
15 Unrecognizable operator or constit ­

uent in an arithmetic expression.
67 ·- Unrecognizable command in a 

LIBRARY statement. 
77 Same as error 1~. Too many 

characters in a variable name. 
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STATEMENT SUMMARY AND OPERATING SYSTEM DATA 

The following statements can be handled by all 
operating systems (1-4) 

*VAR, VAR ( I ) , VAR ( I., J ) , •••• 

n SET X=e 
n READ VAR,:,"•••"••••• 
n WRITE VAR,:,#,%x.y,"•••"••••• 
n IFCe::JA,B,C,D 
n GOTO r 
n DO m VAR=I,J,K 
m C'ONTINUE 
n HALT 

Where VAR is a variable name 
X is a variable name 
e is an arithmetic expression
A,B,C,D,n,r,m are statement numbers 
: generates a CRLF 
# generates a CR only
%x.y changes output format 

---"·-. •... denotes text 
I,J,K are index parameters, 

or variables 
either connstants 

Paltran Operating System Number Two (POS2) 
will handle the following statements, as well as the basic 
commands: 

n SET *M A*B=C 	 ~~trix Multiplication 
n SET *v AI=A 	 Matrix Inversion 
n SET *I A 	 Identity Set 
n SET *T TRAN/ A 	 Transposition 
n SET *DI A/VECT 	 Diagonal Extraction 
n SET *DE DET/A 	 Determinant of a square matrix 

Paltran Operating Systems Three and Four (POSJ),
(POS4) will handle the following Library statements as well 
as the basic commands: 

L P V 	 Plot; Vector V 
L S V,X I:F(X).::I 	 Set; V=F(X) over X~~X,XMIN 
L I SUM, V, X C.F(X) .:I 	 Integration; SUM is the value of the 

integral, V contains the area cal­
culat1ons. 

L D V,X t:F(X)::J Differentiation 
L M MAX,MIN,V 	 Extraction of minimum and maximum 
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All four operating systems can accommodate 
_2610 GOTO and IF links, and a maximum of J801o locations 
can be used to store the object program. The compiler
will type the number of links and locations used by the 
object program at the end of each compilation. 

The object tape is loaded (by the operating
system) by placing the tape in the HSR and starting
the computer in location ~177. Execution begins
immediately after loading. If the program is to be 
run again, it may be restarted in location %2~~. 

If a high speed reader is not available, the 
following change must be made in order for the operating 
system to use the LSRa 

LOCATION OLD CONTENTS NEW CONTENTS 

2137 6014 6032 
2133 6011 6031 
2135 6016 60)6 

-ERROR MESSAGES 

The operating system will type "TILT" if the 
square root of a negative number, or divide by zero is 
attempted. The absolute value of the operand will be 
taken, in the case of the square root operation, and 
the quotient will be set to the highest positive number 
if division by zero occurs. 

If the operating system receives an invalid 
operator in a SET statement, it will cease execution and 
7777 will be displayed in the Accumulator. ·There is no 
recovery possible. 

DATA STORAGE 

The following table lists the memory available 
for data storage in each of the operating systems: 

SYSTEM 	 LOCATIONS NUMBERS* 
(MAXIMUM) 

POSl 900 300 
POS2 450 1~0POSJ 591 1 '7 
POS4 591 197 

*A floating point 	number requires 3 locations for storage. 
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If 'location ,0141 is changed from 425!6 to 453% in POSJ or 
POS4, 600 locations (or 200 numbers) are available for 
data storage. However, this change limits DO loop nests 
to 4 deep, maximum. 
The compiler types the number of locations needed for data 
storage at the end of each compilation. 

PALTRAN BUGS 

There are two Bugs in the PALX compiler. If a 
Dimension statement ends with a vector or matrix variable, 
a blank entry will be placed in the symbol. The symbol
print routine stops printing when a blank entry is en­
countered; although the compilation is unaffected, 
variables declared after the initial statement will not 
appear in the symbol table print. If a simple variable 
terminates the Dimension statement, this does not happen. 

The Paltran operators (+,-,*,/, ~) require double 
operands. Problems occur when (-) is used to denote a 
negative number. Falx will treat the (+) or (-) operator 
as indicating a positive or negative number only if this is 
the first character in an arithmetic expression. 

SET X=-2 is compiled as SET X=~-.2 

However, if a case such as: 

SET X=FSIN(-2) arises, incorrect results occur, since the 
"(" and "-" are treated as two operators in succession. 
Writing SET X=FSIN(~-2) will correct this condition. 

·Due to round-off in the floating point format, "9'• 
is returned as 8.9999•••••• When the index accompanying 
vector or matrix variables is typed, (9) a will appear 
as (8) 1 due to truncation. 
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APPENDIX I 

Sample Program 
Matrix Inversion 



MATRIX TO BE INVERTED 
MATRIX INPUT 
ENTER ROW( 1) 
( 1) : 1 G ( 2) :5 ( 3) :S ( 4) :-5 ( 5) :1'9 
ENTER ROW C 2) 
( 1) : 1 ( 2) : .G 1 ( 3) :&.7 ( 4) : -a.I ( 5) :4 
ENTER ROWC 3) 
( 1) : 1 ( 2) :2 ( 3) :3 ( 4) :4 ( 5) :5 
ENTER RO~JC 4) 
( 1) :-1 ( 2) :-9 ( 3) :.5 ( 4) : .s ( 5) :.&1 
ENTER RO\~ C 5) 
( 1) :.3 ( 2) :-.3 ( .3) :1.5 ( 4) :JJ.S ( 5) :1& 

INVERSE MATRIX 

1 2 3 4 5 

( 1> .168 - .7~4 .117 .117 • S54 

( 2) .&2& .~79 .&&9 - .119 - • Bl5 

( 3) .&99 .816 .334 .932 - .393 

( 4) .&71 .8&4 .&72 .&47 .213 

( 5) .&22 .263 - .~86 - .&33 .sG~ 

ORIGINAL 'A' MATRIX 

1 2 3 4 5 

( 1) 1.&&9 .&s~ .sss .s~s .&&~ 

( 2) .P!}f}& l.&~G .ss~ .&s~ .fiR~ 

( 3) .'1&~ .&t'l& l.l'lS& .s~s .~&~ 

( 4) .&&G .&19& -~~~ l.S~~ .fHH~ 

( 5) .&GS .&&& .&ss .&&S 1. &~Hi 

CHECK ON INVERSE, INVR*A=I 

1 2 3 4 5 

( 1> 1 • &99 - .sao .~&~ - .&sa .s"Gn 
( 2) .&~& 1.G9& .&~G .&&~ -~~& 

-c 3) .&s& .&~Hl .999 .fiG& .s~~ -
( 4) .fl&~ - .s~s .~~~ .999 • SNG 

( 5) .&&& - .&&~ - .&&& .&&& .999 
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APPENDIX II 


Parallel Processing And Functional Analysis 
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The repertoire of Paltran - 8 Library commands may
be used to demonstrate the application of a linearly con­
figured array of processing elements or cells, to function­
al analysis. Each cell is assumed to have the following 
properties: 

- arithmetic capability 
- local storage or memory 
- communication with a central control 

communication with central memory 

The availability of many processing units makes pos­
sible a somewhat unusual technique of analyzing functions 
for the occurence of zeros, maxima or minima. Let f(x) = y
be some function defined over the range (xmax,xmin) in 
which at least one zero, maximum or minimum is as~umed to 
exist. The objective is then to find the value x for which 
f(x*) = Q, where Q is the required condition. In operation,
the function is evaluated over (xmax,xmin) in n steps (assum­
ing n processors) and the resulting array searched for the 
required condition, noting the value of x for which this 
occurs. If n is sufficiently large, the answer may be found 
on the first pass, if not, new values of (xmax,xmin) are es­
tablished around x* for which f(x*) g Q and the process re• 
peated until sufficient accuracy has been attained. In gen­
eral there may be any number of zeros or extrema in the giv­
en range. 

The speed at which the answer is found is quite con­
siderable since only one effective function evaluation is 
performed per iteration. If large numbers of processors are 
available the value of x* approaches the final value by
several orders of magnitude for each pass, thus necessitat­
ing only a few iterations. It should be noted however, that 
new ranges {xmax,xmin) cannot be set arbitrarily close to 
the approximation x*, since round-off and truncation error 
can accumulate and create problems of overshoot. 

The case of f(x) =~ will be chosen in the fol­
lowing example to demonstrate the equation solving ability
of this particular method. There are many equations that 
arise in the scientific and engineering fields that cannot 
be solved by analytic means or require a disproportionate 
amount of work to do so. As an example, in certain micro­
wave matching problems, the following equation must be sol­
ved for z1 , given z0, ZL and Qz 

::::: ~ + 2 (~)i.z1 - (:£z~)- 2 (~J zt-\ z6 
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It is not immediately obvious which value(s) of Z will 
satisfy the above equation. Solving for z1 directly is 
an exoersize for the student. 

To illustrate 
case of the parabolaa 
fo~ x directly, 

the me~hod let us 
{x-2) - 10. We 

take the simpler 
may easily solve 

{x-2)
2
.-lo =& 

(x-2) = tylO 
x.= 2 ±3.162 

x =;.162 or -1.162 

Although it is now obvious in which interval the 
solution(s) lies, it is good practice to obtain a plot of 
the function to obtain a rough idea of its behaviour. 

Fig. II is a plot of (x-2 )*(x-2) - 10 over (-5 ~ x ~ 10)
obtained from the following programa 

*MAX,MIN,XV(JO) 
w%6/J

--L-SET v,x C(X-2)~(X-2)-10:J 
L M: MAX,MIN, V 
W "PLOT OF PARABOLA (X-2) 1' 2-1 0", 1:: 
L PLOT V 
HALT 
$ 

using POSJ. 

Fig. III is a source lising of the program used for the 

analysis. (POS4 is required).

The range values X~~X and ~diN are read in along with EPS, 

the value of f(x) at which we will consider a solution has 

been reached; the variable C is used as an iteration counter. 

(REF. statements # 1,2,)). The statement (#4) 

L SET V, X [(X-2)*(X-2)-10:J then fills vector V with 100 

function evaluations over (XI·IfAX,XMIN); the elements of V 

correspond to the cells of the array. The next statement {#5)

SET V=FABS(.V) will make all zero-crossings appear as min­

ima, which can be found by means of statement number 6, 

L M MAX,MIN,V. (note, only global minima will be located, 

if two or more minima appear and are equal, only the last 

found will be returned by the MINIMAX routine,) The 

minimum found is then tested to determine if 1t is suf­
ficiently close to zero. If it is not within the error 
limit new values of XMAX and XMIN are calculated and the 
process repeated. 
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New values of (XMAX,XMIN) are calculated as follows: 
(REF. statements #8,9,10,11,12) 

Let Dl a PMIN-XMIN 

D2 = XMAX-PMIN 

then 
XMIN = PMIN-D1/(1+C) 

XMAX = PMIN+D2/(1+C) 

where C is the iteration counter and PMIN is the value of x 

for which the minimum occurs. 

The following line diagram illustrates the convergence of 

(XMAX,XMIN) around PMIN with each successive iteration. 


XMIN PMIN XMAX 

T 

I c=1 
I 

.­
I 

I 

l c=2 

• 
I 

...... c=3 

The following results were obtained from the program in Fig. III 

INITIAL 
RANGE 
VALUES 

ERROR 
EXIT 
LEVEL 

SOLUTION 
X= 

RESIDUAL 
VALUE OF 
FUNCTION 

NUMBER 
ITERATI
TAKEN 

OF 
ONS 

so, -50 • 0001 5.162 .000099 6 

o, -100 .0001 -1.162 .000032 7 
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The power of this method becomes even mo.re apparent 
if the array of processing elements is extended to, two, 
three or more dimensions, enabling analysis of mult-variable 
functions. 

This technique is a good example of how parallel
processing can make. possible methods which have been 
considered impracticle (or impossible) in the past. 
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XMtN:-5 XMAX: 1 & 

MAX Jif· 25 ~ 
MIN - G.t;)Sfl 

PLOT OF THE PARABOLA <X-2> t2 - lt1 

XMIN:-5 
XMAX:l& 
YMAG: .5 

yX 

- 5.~~& 19.499 • 
4.499 16.124 • - 4.&&& 12.999 • - 3.5SS 1s.125 •- 3.B&ll 7.5~9 •- 2.5~& 5.124 • - 2.&~~ 3 .'fH1S • 
1.5~~ 1.124 • 

1.&&& - •s&s • 


.5&& - 1 .875 • 
3.~~9.s&s - • 

.5'f:l& - 3.874 • 

1.~&& - 4.499 • 


-~-~-1 .5&~ - -4.875 • 

2.&G& - . s.G~G 
 • 
2.5G& - 4.875 • 

3.&&& - 4.499 • 

3.5&9 - 3.874 • 

4.&&& - 3.SS9 • 

4.499 - 1.875 • 
5.&&8 •5GG • 
5.499 1.124 • 

G.&s& 3.&ss • 

6.499 5.124 • 

7.8~& 7.5~& • 

7.-5&& 1G.125 • 

8.&&& 12.999 • 

8.5&& 16.124 • 

8.999 19.499 • 
9.5&~ 23.125 • 

END 

Fig. II -- Plot of Parabola (x-2)
2 

- 10 



PALTRAN-8 GO 

*XMAX,Xf;liN, PMAX ,PNI N, MAX, MIN, X, c, Dl, D2, EPS, VC 1~~) 

1 R "ENTER INITIAL RANGE VALUES ",I,XNAX,XMIN,! 

2 R "ENTER ERROR EXIT LEVEL ",EPS,ll 

3 S C:& 

4 L S V,X[CX-2>*<X•2)-1&] 
5 S V:FABS( V) 
6 L M MAX,MIN,V 
7 I [MIN-EPSJle~,lSS 
8 S C:C+l 
9 S Dl:PMIN-XMIN 
1& S D2:XMAX-PMIN 
11 S XI1AX:PMI N+D2/( l+C)
-12 S X~1IN:P~1IN-D!/Cl+C) 
13 W "e" 
14 G 4 
1~& W~8/4,lii,"SOLUTION",!,"FUNCTION IS ZERO FOR X- ",PMIN,II 
lSl W"ITERATIONS TAKEN ",~3/&,C~II 
1&2 W~8/6,"RESIDUAL VALUE OF FUNCTION ",MIN,l!l!!! 
1&3 HALT 
$ 

EOT 

SYMBOL TABLE 
NAME DIMENSIONS 
XMAX 
XMIN 
Pf1AX 
PMIN 
MAX 
MIN 
X 
c 
Dl 	 Fig. III 
D2 
EPS 	 Source Listing of 
v 	 . 1&& Equation Solving

Routine 

TOTAL DATA STORAGE 333 

SOURCE LENGTH &21 LINES 

OBJECT LENGTH 275 LOCATIONS 

GOTO.AND IF LINKS &~3 
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