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Abstract 


The objective of tris project was to investigate and determine the association between hospitaliza­

tions of respiratory diseases with one another and with isolations of viral infections in five age groups. 

Weekly data on all hospitalizations in Ontario, Canada, from week 14 of 2001 to week 13 of 2003 

were obtained for ii age groups (under 2 years, 2 to 4 years, 5 to 15 years, 16 to 49 years and over 

50 years inclusive) for respiratory diseases including, asthma, respiratory tract infection (RTI) and 

chronic obstructiw: pulmonary disease ( COPD) 1 . Furthermore, data for viral infections including 

influenza virus type A and type B (Flu AB) and respiratory syncytial virus (RSV) isolations were 

also obtained from Health Canada for the same weekly time periods. 

In order to test for independence and determine a relationship, if any, between hospitalizations 

of respiratory dise lBes with one another and with isolations of viral infections, structural time se­

ries models were developed for all age groups of the respiratory diseases and explanatory variables 

were modeled acccrdingly against the hospital admission counts for the respiratory diseases. These 

explanatory variables include, other respiratory diseases, viral infections, and lagged values of the 

dependent variabh Neither FLU AB nor RSV showed a significant relationship with asthma pa­

tients of all ages. Weekly RSV peaks coincided with RTI patients under 2 years and RTI peaks 

in patients 5 to 15 years preceded FLU AB peaks. A relationship between all three respiratory 

diseases, asthma IiTI and COPD, was discovered for all age groups. Peaks of asthma coincided with 

various transformations of RTI peaks for the five age groups and peaks of COPD coincided with 

both the untransformed asthma and RTI peaks in patients over 50. For all other relationships, the 

null hypothesis of independence was accepted. These findings suggest that there is a strong asso­

ciation between rEspiratory diseases and that children and adults with respiratory diseases respond 

differently to viral infections. 

10n!y data for pa ;ients over 50 years was obtained for COPD. 
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Chapter 1 

Introd11ction 

1.1 Motivation 

Predictable cycles of respiratory diseases requiring hospital treatment occur globally and coincide 

with peaks of isola ;ions of certain viral infections. For example, influenza is believed to increase the 

likelihood of asthma and COPD exacerbations, but the specific affects on asthma in children and 

asthma and COPD in adults is unknown. Furthermore, influenza vaccination may offer protection 

to asthmatics, but this by no means is a certainty and the affects of vaccination on young children 

are unknown. Thts, knowing the relationship between disease and virus peaks can provide insight 

as to how these re:;piratory diseases can be controlled and hospitalizations prevented. 

Weekly data o ·the number of hospitalizations in Ontario due to respiratory diseases (asthma, 

RTI and COPD) .vere collected from week 14 of 2001 to week 13 of 2003 inclusive. The number 

of patients under 2 years, 2 to 4 years, 5 to 15 years, 16 to 49 years and over 50 years admitted 

to hospitals for clmically diagnosed asthma or RTI were recorded weekly, along with the number 

of patients over tie age of 50 diagnosed with COPD. These age groups were chosen in order to 

investigate the dif'erent affects viral infections have on patients of different ages and compare them 

with what is commonly believed. Children under 5 years of age do not have fully developed immune 

systems, are not in school and children under 2 years are very susceptible to RSV. Children 5-15 

years are "school-aged" children and are shown to be the principle source of RTI. Adults 16-49 years 

show different pat terns of respiratory diseases than those patients over 50 years. Furthermore, the 

two respiratory viruses of concern, FLU AB and RSV were recorded as the number of positive virus 
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tests at a specific tine t. 

The purpose of 1his study is to test the independence of respiratory diseases and viral infections 

in the 5 age groups as well as the independence of the different respiratory diseases themselves in 

the same age grour s. Similar to the approach and methods used by Scuffham in 2003 and 2004, 

structural time seriEs is used with the statistical programs SAS and Structural Time series Analyses, 

Modeler and Predictor (STAMP) to determine if any significant relationships exist. The results of 

the analyses are fovnd below in Table 1.1, Table 1.2, Table 1.3 and Table 1.4. 

Tabl~ 1.1: Summary of Asthma Age Groups and Respiratory Viruses 
Asthma Ages (years) RSV Flu AB 

Under 2 N.S. N.S. 
2-4 N.S. N.S. 
5-15 N.S. N.S. 
16-49 N.S. N.S. 

Over 50 N.S. N.S. 

Table 1.2: Summary of RTI Age Groups and Respiratory Viruses 
RTI Ages (years) RSV Flu AB 

Under 2 0.0032 N.S. 
2-4 N.S. N.S. 
5-15 N.S. 0.0016 
16-49 N.S. N.S. 

Over 50 N.S. N.S. 

Table 1 3· .. Summary of Asthma and RTI Age Groups Viruses 
Asthma and RTI Ages (years) p-value 

Under 2 2.04916 E-9 
2-4 0.0008 
5-15 0.0104 
16-49 0.0128 

Over 50 8.7 4034 E-86 

Table 14·.. Summary of COPD 
Analysis p-value 

COPD and Asthma Over 50 0.0000 
COPD and RTI Over 50 0.0000 

COPD and RSV N.S. 
COPD and FLU N.S. 

N .S. : not significant 
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1.2 Introduction to Time Series 

In this section the basic ideas of time series analysis are introduced based on the book, Introduction 

to Time Series and Forecasting, by Brockwell and Davis, 2002. A particular look at concepts of 

stationarity, by transforming the data to remove trend and seasonal components, and the autoco­

variance and autocorrelation functions will be discussed. 

A time series, say {Xt} , is a set of observations Xt, each being recorded at a specific timet. A 

discrete time series, the type focused on throughout this report, is a time series in which the set To 

of times at which observations are made is a discrete set. 

The mean function of {Xt} is defined as 

Jkx(t) = E(Xt), where E[Xf] < oo 

and the covariance function of Xt is defined as 

-rx(r,s) = Cov(XnXs) = E[(Xr- Jkx(r))(Xs - Jkx(s))] 

for integers r and s. A time series is said to be stationary if 

1. Jkx(t) is independent oft, 

2. -rx (t + h, t) is independent oft for each h. 

Finally, for a stationary time series Xt , the autocovariance function (ACVF) of Xt is, 

-rx(h) = -rx(h, 0) = -rx(t + h, t) = Cov(Xt+h, Xt) , 

and the autocorrelation function (ACF) of {Xt} is, 

px(h) = ~~~~j = Cor(Xt+h,Xt) 

Often time series are non-stationary due to strong dependence of variability on the level of the 

series along with a trend and seasonal components in the data, thus these components should be 

reduced or eliminated to make the series stationary. In order to remove the dependence of variability 

and trend and seasonal components, the Box-Cox transformation and differencing techniques should 

be applied. A general variance-stabilizing transformation is the Box-Cox transformation h and is 

defined as: 

Trend and seasonal components can be detected by examining the graph of the series and also 

can be identified by autocorrela.tion functions that are slowly decaying and/or nearly periodic. Trend 
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and seasonality can be eliminated by differencing. In differencing, the backward shift operator B is 

defined by EXt = Xt_ 1. The lag-d difference operator \ld is often used to eliminate trend and is 

defined by, 

\ldXt = (1- B)dXt. 

On the other hand, the lag-d difference operator, \7d, is used to eliminate seasonal components with 

period d and is defined by, 

\7dXt = (1- Bd)Xt. 

The transformations mentioned above allow for stationarity of the series which is necessary for 

fitting an appropriate ARMA model to the data with zero mean, when the method of structural 

time series modeling (discussed in Chapter 2) is not being used. The most common models used 

to fit a stationary series are: an autoregressive process of order p, AR(p) model, a moving average 

process of order q, MA(q) model, and a mixture of both an AR(p) process and the MA(q) process, 

referred to as an ARMA(p, q) model. The above models are defined as follows; 

1. 	 {Xt} is an autoregressive process of order p , (AR(p)) if 


Xt = r/JlXt-1 + ... + ¢;pXt-p + Zt 


2. 	{Xt} is an moving average process of order q, (MA(q)) if 


Xt = Zt + fhZt-1 + ... + OqZt - q 


3. {Xt} is an ARMA(p, q) process of order p and q if 

Xt- ¢1Xt-1- ¢2Xt-2- ... - ¢;pXt-p = Zt + B1Zt-1 + B2Zt-2 + ... + OqZt-q 

where t = 0,±1,±2, ... and ¢1,¢2 , . . . ,¢;p and 01 ,02 , ... ,0q are constants. Furthermore, {Zt} is 

the error sequence such that, Zt ~white noise(0,0"2 ). That is, {Zt} is a sequence of uncorrelated 

random variables, each with zero mean and variance 0" 2 
. 

In order to estimate the model and its parameters ¢1 , ¢2 , ... , ¢;p, 01 , 02 , ... , (}q, the orders of the 

parameters, p and q, must be determined. After transforming the data the sample ACF can be 

examined to get an idea of potential p and q values. Order selection is then based on finding the 

values of p and q that minimize the Akaike Information Criterion (AIC), which will be discussed 

later in the section. Once the order of p and q are determined, the parameters of the model can be 

estimated using the method of Maxim~m Gaussian Likelihood. Suppose that {Xt} is a stationary 

time series with mean zero and autocovariance function r.(i ,j) = E(X;Xj). Let Xn = (X1, . .. , Xn)' 

and let r n denote the covariance matrix such that r n = E(XnX~). Thus, the likelihood function of 

Xn is 
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1 1L r - ex ( - -X' r - 1x ) 	 (1.1)( n)-	J(27r)n(detrn) P 2 n n n 

which using the Innovation Algorithm, can be reduced to 

(1.2) 

where xj is the one-step prediction and 1/j-1 = E(Xj- Xj) 2 is the mean squared prediction error. 

The parameters are estimated by maximizing the likelihood function and the best model is 

selected based on minimizing the AIC. That is, selecting the values of p and q for the fitted model 

so as to minimize the AIC function, 

2(p+q+1)nAle = -2 In L + (n-p-q-2). 

Satisfying the minimum AIC criterion provides a rational method for choosing between competing 

models, which can further be assessed based on the residuals (plots and tests of randomness) of the 

model. Details of assessing models based on their residuals will be discussed in Chapter 3. 

1.3 	 Cross-Correlation Approach for Testing the Independence 

of Two Series 

Much of the theory of univariate time series extends to the multivariate case and, in particular, 

bivariate time series, allowing for testing the independence of two stationary time series. Let 

Xt =(Xt1, Xt2)' be a bivariate t ime series whose mean vector f.-! is t he vector of sample means 

- 1 n 
X n =- l:Xt. 

n 
t=1 

A natural estimator of the covariance r(h) = E[(Xt+h - J-L)(Xt- J-1)'] is 

n-h 

n-1 l: (Xt+h- Xn)(Xt- Xn)' for 0 :S h :S n - 1, 
t(h) ~ { t=1 

r'(-h) 	 for -n + 1 :S h < 0. 

Writing 'YiJ(h) for the (i,j)-component of f(h) , i,j = 1, 2, .. . , the cross-correlations are estimated 

by, 
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Theorem 1: Let {Xt} be the bivariate time series whose components are defined by 

00 

xtl = L cxkZt-k ,l, {Zn} ~ IID(O,O"~), 
k=-oo 

and 

xt2 = L
00 

cxkZt-k,2, {Zt2} ~ IID(O,O"~), 
k=-oo 

where the two sequences {Zn} and {Zt2} are independent, 2:k icxki < oo and 2:k I.Bkl < oo. Then 

for all integers hand k with hi= k, the random variables n112p12 (h) and n 1l 2 p12(k) are 

approximately bivariate normal with mean 0, variance 2::f=-oo Pll (j)p22(j) and covariance 

2::f=-oo pu(j)P22(j + k- h), for n large (Brockwell and Davis, 2002). 

Theorem 1 is used to test the correlation between two time series and can provide some insight 

as to the relationship of the two series. However, since the large-sample distribution of a bivariate 

series depends on both p11 (.) and p22 (.), a test for independence of two series cannot be based solely 

on the estimated values of p12 (h), h = 0, ±1, ... , without taking into account the nature of the two 

component series . This can be corrected either by transforming each component series to white noise 

and then inspecting the cross-correlation of the two series or inspecting the cross-correlations after 

replacing the sequences {Zt;} by their residuals {Wti} from fitting a maximum likelihood model to 

each component series. 

Testing the hypothesis H 0 , that {Xn} and {Xt2} are independent corresponds to testing the 

white noise series {Zn} and {Zt2} for independence. By Theorem 1, the sample autocorrelations of 

{Ztl} and {Zt2 } are independent and normally distributed with means 0 and variances n- 1 , for large 

n, thus an approximate test for independence can be obtained by comparing the values of I!J12 (h) l 

with 1.96n- 112 . Pre-whitening the series and/or finding appropriate models that fit the model is 

sometimes difficult, thus this approach is not always the best method for testing the independence 

of two time series. A more appropriate approach is to use structural time series with explanatory 

variables, which will be discussed in the following chapter. 
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Chapter 2 

Structural Time Series 

In this chapter a very useful and powerful technique for modeling a variety of time series models 

will be discussed. Here state space models are introduced along with the Kalman filter. Structural 

time series models incorporate the main observational features of most times series models such as 

trends and seasonal variations, thus detrending and deseasonalizing of the series is not required as 

in ARIMA models. The ideas of structural time series presented in this chapter will be based on 

Harvey, 1989. 

2.1 State-Space Representation 

The general state space form (SSF) applied to a multivariate time series {y1, t=1 , 2, . ..} 

containing N elements consists of two equations; the measurement equation (or observation equation) 

and the transition equation. The measurement equation is such that 

t=1,2, ... ,T (2 .1) 

where Z1 is anN x m matrix, d1 is anN x 1 vector, Et is an N x 1 white noise (WN) vector such 

that Et "'WN(O, {Ht}), T is the sample size of the series and OCt is known as the state vector. In 

general the elements of oc1 are not observable, but are assumed to be generated by the transition 

equation, 

t= 1, 2, ... ,T (2.2) 
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where Tt is an m x m matrix, Ct is an m x 1 vector, Rt is an m x g matrix and 

mathbjetat is a g x 1 vector such that 1Jt ~ WN(O, {Qt}). Finally, the SSF is completed by two 

other assumptions: 

1. 	 the initial state vector, a 0 , has mean of a 0 and a covariance matrix P 0 , that is E(ao) = ao 

and Var(ao) = Po. 

2. 	 the disturbances Et and 1Jt are uncorrelated with each other in all time periods and uncorrelated 

with the initial state, that is E(Et7J~)=O for all s, t = 1, . .. , T and E(Etab) = 0, E(1Jtab) = 0 

for t = 1, .. . , T. 

2.2 The Kalman Filter 

In this section the concern is focused on finding the best linear estimates of the state vector O:t of the 

SSF defined by equations 2.1 and 2.2 in terms of the observations Y1> y 2 , ... , and the random vector 

y 0 which in most cases is the constant vector (1, 1, ... , 1)', via the Kalman filter. Firstly, let at-1 

denote the best linear mean-square predictors of O:t-1 based on the observations Y1, Y2, ... , Yt-1 

(i.e. the best linear combination of Yo, Y1 , ... , Yt-1 that minimizes the mean-squared error) and let 

Pt-1 denote them x m covariance matrix of the estimation error, that is 

(2.3) 

Now, given at-1 and Pt-1> the optimal estimator of O:t is given by 

(2.4) 

while the covariance matrix of the estimation error is 

t = 1,2, ... ,T. 	 (2.5) 

Equations 2.4 and 2.5 are known as the prediction equations, whereas once the new observation Yt 

becomes available, the estimator of O:t, atlt-1 can be updated by the following updating equations 

(2.6) 
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and 

(2.7) 

where 

t=1,2, ... ,T (2.8) 

Taken together the prediction and updating equations, equations 2.4 - 2.8, make up the Kalman 

filter where it is al'sumed that the inverse of Ft exists. 

The starting values for the Kalman filter may be specified in terms of ao and P 0 . These initial 

values can be specified in two ways. First, if it is assumed that all the elements of a 0 are fixed then 

the Kalman filter can be initialized by specifying ao = a0 and Po= 0, where a 0 is a parameter to be 

estimated. Howev~~r, when the transition equation is non-stationary, the unconditional distribution 

of the state vector is not defined. Thus, if no prior information is available, the initial distribution 

of ao must be spe~ified in terms of a diffuse non-informative prior, resulting in the second type of 

initialization called diffuse initialization. Here, the Kalman filter can be initialized as ao = 0 and 

Po= ~I where ~is a positive scalar and the diffuse prior is obtained as,..--+ oo. 

Given the the initial conditions ao and P 0 , of a non-diffuse initialization, the Kalman filter 

produces the optimal estimator of the state vector as each new observation becomes available. When 

all T observations are processed, the filter yields the optimal estimator of the current state vector, 

and/or the state 'ector in the next time period, based on the full information set. This estimator 

contains all the information needed to make optimal predictions of future values of both the state 

and the observaticns. 

2.3 Estim.:ttion for State-Space Models 

Consider the statn-space model defined by equations (2.1) and (2.2) and suppose that the model 

is completely parhmeterized by the components of the vector 'IJI. The likelihood function can be 

written as a conditional probability density function such that 

T 

L(y; 'IJI) =II J(yt!Yt-1) (2.9) 
t=l 
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where f(YtiYt_ 1) denotes the distribution of Yt conditional on the information set at time t- 1, 

that is Yt-1 = {yt-1,Yt-2, ... , Y1}. In time series analysis, the Gaussian likelihood is widely used 

whether the time series is truly Gaussian or not. Thus, the Gaussian likelihood function of the 

observations can be written as 

(2.10) 

where 

Vt = Yt- Ytlt-1> t = 1, ... ,T (2.11) 

and 

(2.12) 

The prediction enors Vt of equation (2.11) are known as innovations, since they represent the new 

information in thE latest observation and Ytlt-1 of equation (2.12) is the conditional mean of Yt at 

time t- 1 and caa be interpreted as the minimum mean square estimator (MMSE) of Ot· Thus, 

maximum likeliho)d estimates of the components of W can be found by maximizing the likelihood 

function in equation (2.10). 

Furthermore, ht l}t denote the maximum likelihood estimator of the n x 1 vector lJt obtained by 

maximizing equaton 2.10 and let the ij-th element of the information matrix I(w), be defined as 

Suppose that J:(w), when divided by T, converges to a positive definite matrix, IA(w). That 

is, IA(w) = lim'r- 1 I(w). Subject to certain regularity conditions JT(l}t- w) has a limiting 

multivariate nonn'l.l distribution with mean vector zero and covariance matrix lA-l(w). Similarly, 

it can be stated trat l}t is asymptotically normal with mean lJt and covariance matrix Avar=(l}t) = 
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2.4 Predietor Variables and Lagged Dependent Variables 

When predictor v1riables, x~,B are included in the model, such that Yt = z~at + ~,6 + tt, where 

,6 = [,61,,62, ... ,,6,.]' and Xt = [xit,X2t, ... ,XntJ', it is often the case that ,6 is unknown, thus it is 

useful to incorpor:tte it into the state vector, giving an augmented state vector 

(2.13) 

Thus, when inducing the coefficients of the predictor variables into the model the augmented state 

vector, a! satisfie~: the SSF 

Yt = [ z~ ~ ] a!+ tt, t = 1, ... ,T (2.14) 

and 

(2.15) 

The lower pan of the transition equation simply reflects the fact that ,6 = f3t is time-invariant. 

Including it in the state vector allows it to be estimated simultaneously with at. The parameters of 

the model are the disturbance variances and the regression coefficients. The disturbance variances, 

being elements oLhe system matrix are estimated by maximizing the likelihood, as described earlier, 

while the regression parameters get implicitly estimated during the state estimation. 

When lags of the dependent variable are included in the model as yfrimeq'>, such that Yt 

z~at + y~q'> + tt, vrhere Yt = [Yt, ... ,Yt-r+1]' and ¢> = [¢>1, ... ,1/>r]' (i.e. up tor dependent lags), Yt 

and its lagged val1es are included in the state vector, such that the SSF is 

Yt=[o;.. 1 O'r-1 ] a*t (2.16) 

R1Jt 

0 1 [ ,,_, ]a*t (2.17)O' --- + z~R17t + tt 
Yt-1[:: ] [·: 0 0 

0 

¢>' 

Ir-1 0 

where m is the number of elements in the state vector excluding the lagged dependent variables. 
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The parameter:; of this model are the disturbance variances and the lag coefficients ¢>1, ¢>2 , ... , if>r· 

Since these lag coefficients are not included in the state vector as the predictor coefficients explained 

in the previous paragraph, the lag coefficients along with the disturbance variances are estimated 

by maximizing thE likelihood. 

12 



Chapter 3 

3.1 General Structural Time Series Model 

Time series models incorporate the main features of most time series models, including trends and 

seasonal variatior s. The information presented in this chapter regarding the features of time series 

models comes from The Unobserved Component Model Procedure of the SAS, version 9.1, manual. 

The following eq 1ation represents the structural time series model used to identify various time 

series. 

P m 

Yt = f.1t + "'t + 'lj;t +L ¢iYt-i +L (3jXjt +it (3.1) 
i=l j=l 

The component l't is the dependent variable at time t and the components P,t, "'t and 'lj;t model the 

trend, seasonal and cyclical components respectively and ¢ and (3 are the regression components. 

These different aJ;pects of the time series are assumed to be statistically independent of each other 

and with the irregular component, Et. Below is a description of each of the components of the series. 

The trend of ;he series consists of both the level (p,) and the slope ((3) and can be described as: 

P,t-1 + f3t-1 + "'t "'t ~ i.i.d. N(O, a~) 

f3t f3t-1 + ~t ~t ~ i.i.d. N(O, al). 

Some special cas~s arise here. If al = 0 then you obtain a model with fixed slope. If a~ =0 then 

the resulting mo,fel usually has a smoother trend. If both, al = a~ = 0 the the resulting model is 
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the deterministic linear time trend: f.Lt = f.Lo + j30t. Finally, if the trend remains roughly constant 

without any persi3tent upward or downward drift then no slope component exists resulting in the 

random walk mocel: f.Lt = f.Lt-1 + 'f/t, 

Seasonal fluctuations are common in time series data and arise becanse of the regular changes 

in seasons or sorr e other periodic events. The seasonal component "'t is modeled as a stochastic 

periodic pattern of an integer period s (season length) such that the sum I;;,:~ "'t-i is always zero 

in the mean. The most common type of model is called the trigonometric form of the seasonal 

component. Here "'t is modeled as a sum of cycles of different frequencies and is given as, 

[s/2] 

"'t =I: "/j,t (3.2) 
j=1 

where [s/2] equals s/2 if s is even and equals (s - 1)/2 if it is odd. The frequencies here are 

Aj = 27rj / s and ae specified by the following equations, 

"/j,t "/j,t-1COSAj + 'Yj,t-1 *sin>..i + Wj,t 

"fj,t -"/j,t-1sin>..i + 'Yj,t_1cos>.. + wj,t 

for j = 1, ... , [s/2] where Wj,t and wj,t rv N(O, a~) and are assumed to be independent for fixed j. 

It is noted that Hhen s is even, the component at j = s/2 collapses to 

"/j,t = "/j,t-1COSAj +Wj,t, j = s/2 (3.3) 

Another form of the seasonal component is called the dummy variable form of the seasonal 

component and is described as 

s-1 

L "'t-i = Wt, Wt rv i.i.d.N(O, a~) (3.4) 
i=O 

In both the trigc nometric and dummy forms of the seasonal component, if the disturbance variance 

a~ = 0 then both forms of the seasonal component reduce to a constant seasonal effect which is a 

deterministic function completely determined by its first s - 1 values. 

Another way of modeling the periodic pattern of a time series is by considering a cycle component. 

A deterministic cycle can be written as a mixture of sine and cosine waves such that 
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'1/Jt = acos(.At) + f'Jsin(.At). (3.5) 

where '1/Jt has a fmquency of .A,O < ,\ < 1r, period 27r/.A, amplitude (a2 + /32 ) 112 , phase tan-1(!3/a) 

and t is measured on a continuous scale. However, it is more useful to consider a more general 

stochastic cycle t 1at has a fixed period but time varying amplitude and phase by adding random 

noise and introdt.cing a damping factor p to the model. The stochastic cycle considered here is 

described by the ·allowing recursive formulas, 

'1/Jt p('l/Jt-1COSA + '!f;;_1sin,\) + Vt 

'1/Jt p( -'l/Jt-1sin.A + '!f;;_1cos,\)+ v; 

where 0::::: p::::: 1 tnd the disturbances Vt and v; are independent N(O, on variables. 

Introducing e 1Cplanatory variables into a structural time series model is similar to the case of 

a standard regre:;sion model, and many of the concepts and modeling procedures associated with 

regression are rebvant to the structural time series models that include explanatory variables. The 

regression terms ~f=1 <PiYt-i and I:;:1 /3jXjt, where Yt-i and Xjt are lagged values of the dependent 

variable and oth,~r explanatory variables, respectively, and ¢i and /3j are the associated unknown 

parameters. I:L1 ¢>iYt-i considers the contribution of lagged values of the dependent variable to 

the model while I:;:1 /3jXjt considers the contribution of other factors to the model. A variety of 

transformations including differences, lags and leads can be applied to the variables Xjt and included 

in the model. 

3.2 Diagnostic Tests 

In a well-specifi•~d model, the residuals should be approximately random. This section discusses 

various statistical tests of the standardized residuals i/ = vt/ ft112 
, where ft112 are the prediction 

standard errors, that are appropriate for assessing structural models. 

Ljung-Box Te3t for Serial Correlation: 


The residual sanple autocorrelations are given by, 
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T

:L (fit- v)(fit_,.- v) 
t=d+l+r 

Tv (T ) = T T = 1,2, ... t=1,2, ... ,T (3.6) 

:L (fit- v) 2 

t=d+l 

The test statistic )f the first P residual autocorrelations is given by 

p 

Q* = T*(T* + 2) L(T*- r)- 1 r~(r) (3.7) 
r=l 

where T* = T - c~, such that d is the number of non-stationary elements of the state vector at· In 

a structural modd, Q* is asymptotically X~-n•, such that n* = n- 1 where n is the number of 

hyperparameters n the model. A hyperparameter is a stochastic parameter estimated by the model. 

Thus, we reject the i.i.d. null hypothesis at a level of a if Q* > xLa P-n•. 

Test for Heterc,scedasticity: 

Again a diagnost c test for heteroscedasticity can be constructed from the residuals. Here the test 

statistic to consic er is given by 

T 

:L 
(3.8) 

where dis the sa:ne as above and his the nearest integer toT* /3. The H(h) statistic can be tested 

against an F(h, h) distribution, thus we reject the null hypothesis of homoscedasticity at level a if 

H(h) > F(h, h). 

Bowman-Shenton Test for Normality: 

The Bowman-Shenton test for normality is based on the third and fourth moments of the residuals 

which are the ba3ic measures of skewness and kurtosis of the residuals and are given respectively as 

1L , -3 ""'(- ")3/T*V Ul = (J* ~ llt - ll (3.9) 

and 
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_ ,-4~(- " )4/T*b2- a. L Vt- v (3.10) 

T 

where a-.= (T-d-1)- 1 L (v-v) 2
. For a normal distribution, equations (3.9) and (3.10) should 

t=d+l 
be centered around zero and three respectively. The test statistic for normality is thus given by 

N = (T* /6)b1 + (T* /24)(b2 - 3)2 (3.11) 

Under the null hypothesis of normality, N is asymptotically x§. Thus, we reject the null hypothesis 

if N > x§. 

Although the normality tests are standard diagnostic tests for model validity, the detection of 

non-normality in the residuals does not necessarily imply that the model is not good and a new 

model should be found. Non-normality in the residuals often arises due to outlier observations 

and structural breaks. These data irregularities often skew the results of the normality tests so 

that the null hypothesis is rejected in cases where it should not be rejected. Thus the inclusion 

of intervention or dummy variables into the model can correct for this. The idea of dummy and 

intervention variables is discussed in detail in the STAMP manual. An outlier which is an unusually 

large value of the irregular disturbances at a particular time in the model can by captured by 

including a dummy variable that takes on the value one at the time of the outlier and zero elsewhere 

as an explanatory variable in the model. On the other hand, a structural break in which the level 

of the series shifts up or down can be captured by a dummy variable which is zero before the event 

and one at and after the event as an explanatory variable in the model. The detection of irregular 

observations in the data can be determined by examining the auxiliary residuals (standardized 

smoothed estimates of the disturbances). Auxiliary residuals which have absolute value exceeding 

two are considered irregular observations and it is these observations that should be corrected for 

by the inclusion of dummy variables in the model. 

The majority of the data modeling was done by SAS programming software, however when 

modeling data that requires the inclusion of dummy variables SAS encounters problems in terms 

of calculating residuals. Thus, for data sets that require the inclusion of dummy variables into 

the model, the statistical programming package STAMP is used which takes dummy variables into 

account properly. It was verified that both SAS and STAMP produce the same results (i.e. p-values) 

when dummy variables are not included in the model , thus STAMP was used with confidence when 
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dummy variables were included in t he model. 

3.3 Goodness of Fit 

This section explains the goodness-of-fit statistics reported to measure how well t he specified model 


fits t he data. The various statistics of fit are computed using the prediction errors Yt - Yt · In 


these formulae, n is the number of non-missing prediction errors (i.e. T- d). Recall that the 


sum of square errors, SSE= 2::::~ 1 (Yt- fjt) 2 and t he total sum of squares corrected for the mean, 


SST= L~=l (Yt - y)2, where y is the series mean. 


Mean Square Error ( M S E): 


The mean squared prediction error, MSE, is calculated from the one step ahead forecasts and is 


given as MSE = SSE/n. 


R 2 is the conventional statistic calculated as R2 = 1- (SSE/SST) . The better the model fits the 


series, t he closer the value of R 2 will be to unity. However, if the model fits the series poorly, the 


model error sum of squares SSE may be larger than SST and the R2 statistic will be negative. 


Thus, a negative R 2 value indicates a poor model. 


R'b (Random Walk R2
): 


A better measure for t ime series data is t he Random Walk R2 statistic R'b obtained by replacing 


the observations by their first differences, that is 


SSER'b = 1 - - r=------- (3 .12) 

2::)-.~Yt- D.y? 
t = 2 

where b.y is the mean of the first differences. The model being used here is the simple random walk 

plus drift model, 

Yt = Yt-l + (3 + Vt, t = 2, .. . ,T (3.13) 
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This a simple model in which the next period's forecast is taken to be the current observation plus 

the average increase over the sample period. Thus, L,'{'=2 (llyt - lly) 2 is simply the SSE for the 

model (3.13) . Again, a model of good fit will have R'b close to unity and a negative R'b value 

indicates a poor model. 

R~ (Seasonally Adjusted R2 
): 

When a seasonal component is included in the model of the time series, a better indication of the 

fit of the model is given by the R1 value. The adjustment for seasonal components can be done by 

simply including s - 1 seasonal dummies if there are s seasons to the model in (3.13). That is 

s 

Yt = Yt-1 + L ,;Ztj + (3 + Vt t = 2, ... 'T (3.14) 
j=l 

where Zt/s are dummy variables taking the value in one season j and zero otherwise, and the r;'s 

are the unknown parameters. Thus, the goodness-of-fit statistic R1 is 

SSE2 1 (3 .15)Rs = - SSDSM 

where SSDSM is the sum of squares of first differences around the seasonal means. That is, SSDSM 

is simply the SSE for the model (3 .14). Any model which has R1 negative can be rejected, whereas 

R1 positive but close to zero suggests that there is a marginal gain in model fit for a more complex 

model. 

3.4 Model Selection 

An essential preliminary step in model selection of a univariate time series is graphing the series. 

These graphs give insight as to the nature of the model. An unstable variance is often evident by 

examining the plot of the series, thus the log transformation of the series is initially taken to stabilize 

the variance of the series. It is from here that model selection begins. A general-to-specific approach 

is adopted for estimating the model and selecting the most appropriate model. This approach entails 

estimating a fully specified model with all the stochastic components and lagged values 1 and 2 of the 

dependent variable and then identifying significant components and 'testing-down' . That is, when 

there is no disturbance to a component in an estimated model (i.e. the hyperparameter is estimated 

to be approximately zero) a deterministic component can be included in the model instead and if this 
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deterministic compcnent is not significantly different from zero then the respective component can 

be omitted all together and the model re-estimated. The most appropriate model is then selected 

based on the smalle:;t AIC and the largest R'b. 
Once a final model is selected it is subjected to a series of diagnostic tests to assess its validity. 

If the model passes the series of tests then the model is considered valid. If the model is not valid 

based on the diagnostic tests, transformations of the dependent variable and/or the addition of 

dummy variables should be considered. Some of the transformations of the dependent variable to 

be considered are: 

l.vfiji 

2 . 	..(JfJ: 

3. 	 yfl + Yt 


(FYi + yiTYt)

4. 2 

1
5. 

Yt 

Once a valid m)del is found, the significance and estimation of any explanatory variable (other 

than lagged values because they are considered in the initial model) can be assessed by adding it 

to the existing val d model and re-estimating the model. If the explanatory variable is significant 

then the new model with the explanatory variable is re-estimated and its residual tests re-asse:ssed 

to ensure the new model is valid. If the new model produces residual tests that suggest the new 

model is not good, the explanatory variable should be subjected to some transformation similar to 

the ones mentioned above or further dummy variables added to the new model so that the residual 

tests suggest that 1.he model is good. Once a valid model is found, model selection and identification 

are complete. 
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Chapter 4 

Modeling Example 

In this chapter a d~tailed example of the modeling procedure used for the time series data will be 

outlined. In this e:liample, the asthma data for patients under two years (ASU2) along with viral 

data (RSV and FLlJ AB) is used. Initially, the ASU2 data is plotted with each of the viral data, 

RSV and FLU AB, separately and the resulting graphs can be found in Figure 4.1 and Figure 4.2 

respectively. 

Asthma Patients Under 2 years and RSV Records by WOO< 
Star-tino. __. 14 2~1- to weel: 13 2003 

200 

roo 

14 18 22 26 30 34 31 42 4S $t 2 6 " 11 .. 22 zc 31 34 38 42 46 so 2 6 10. 14 -· 
Figure 4.1: Plot of asthma patients under 2 years and RSV positive tests (over mean) 
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Anthma Patients Lhder 2 years and FLU Records by WeBf. 
stw-t ino week 14 zoot ~ wOok t3 2.003 

~~;r~~~~--2--~~~R-U--------------------------------------~ 

300: 

14 II 22 2G a• 34 38 42 4G SO 2 6 .. 14 l8 22 2G 3o 34 38 42 46 SO 2 G IO 14-k 
Figure 4.2: Plot of asthma patients under 2 years and FLU AB positive tests (over mean) 

To get some im ight as to the relationship of ASU2 and RSV and FLU AB, the cross-correlations 

of ASU2 with RSv and FLU AB were plotted individually, following the method outlined in section 

1.3. Below are thE plots of the cross-correlations from the differenced data of the log transformed 

ASU2 data and tl.e differenced RSV and FLU AB data. Transformations of the ASU2 and RSV 

and FLU AB datL were considered in order to obtain stationary data, since the cross-correlation 

method described in section 1.3 is best suited for stationary data. 

From Figure 4.:!, it is evident that the greatest correlation occurs at lag 0 (i.e. no time difference). 

At lag 0 there exis ;s a positive correlation between the ASU2 and RSV positive tests. At lag 1 there 

exists a small negative correlation between ASU2 and RSV a week behind. At lag 2 there exists a 

small positive correlation between ASU2 and RSV two weeks behind. The remainder of the graph 

can be interpreted similarly. 

From Figure 4 4, it is evident that a positive correlation occurs at lag 0. At lag 1 there exists 

a small positive c:>rrelation between RSV positive tests and ASU2 a week behind (i.e. positive 

correlation betweerr ASU2 and RSV a week ahead). At lag 2 there exists a small positive correlation 

between RSV pos tive tests and ASU2 two weeks behind (i.e. positive correlation between ASU2 

and RSV two weeks ahead). 
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Cross ACF of differenced logA$U2 and RSV cata 
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Figme 4.3: Cross Correlation Plot of transformed ASU2 and RSV data 

Cross ACF of differenced RSV and logi\SU2 cata 
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Figure 4.4: Cross Correlation Plot of transformed RSV and ASU2 data 

The remainder -)f the graph can be interpreted similarly. It can be noted that Figure 4.3 pertains 

to the lagged values of the RSV data, while Figure 4.4 pertains to the lead values of the RSV data. 
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0003 ACF of dfferenced I~SLY2 and FLU data 
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Figure i.5: Cross Correlation Plot of transformed ASU2 and FLU AB data 

0003 ACF of dfferenced FW and logi\SLJ2 data 
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Figure 4.6: Cross Correlation Plot of transformed FLU AB and ASU2 data 

The plots of tte cross correlations between ASU2 and FLU AB can be interpreted in the same 

way the previous plots (Figure 4.3 and Figure 4.4) were interpreted for ASU2 and RSV. Figure 4.5 

pertains to lagged values of FLU AB and Figure 4.6 pertains to lead values of FLU AB. 
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Next, an appropriate model is found for the ASU2 data by using a general to specific approach, 

starting with the rr ost broad model, including all stochastic components and dependent lags 1 and 

2, and testing dowr.. First, the broad model was applied to both the untransformed ASU2 data and 

the log transformed ASU2 data to determine if the log transformation indeed improves the model by 

stabilizing the variance. The fit statistics (including A.I.C., MSE, R2 and R1) of the ASU2 model 

and the log(ASU2) model are found in Table 4.1 and Table 4.2 respectively. 

By examining Tabk 4.1 and Table 4.2, it is noted that the log(ASU2) model is indeed better then the 

untransformed ASU2 model. Thus, model selection continues based on the log transformed ASU2 

data. The log tram formed ASU2 model, including all stochastic components (level, slope, irregular 

and cycle) will be denoted as Model 1. The corresponding parameter output for Model 1 is given 

below in Table 4.3 wd the significance analysis of the components in Model 1 is given in Table 4.4. 

Table 4 3· Parameter Estimates of Modell.. 
Compone11t Parameter Estimate Std. Error t Value Pr > ltl 

Irregula1· Error Variance 7.62492E-10 5.02301E-6 0.00 0.9999 
Level Error Variance 0.03608 0.0051555 7.00 <.0001 
Slope Error Variance 2.6017E-13 3.92139E-9 0.00 0.9999 
Cycle Damping Factor 1.00000 0.0001306 7658.38 <.0001 
Cycle Period 6.46410 0.08750 73.87 <.0001 
Cycle Error Variance 1.145245E-8 1.50364E-8 0.76 0.4463 

DepLag Phil -0.02090 0.09771 -0.21 0.8306 
DepLag Phi2 0.09243 0.10199 0.91 0.3648 
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From section 2.3, tl e estimates of \}1, estimated from the likelihood function, equation 2.10, follow an 

asymptotic normal distribution with mean and covariance matrix as described in section 2.3. Since 

the observed standard error is used for evaluating the statistic, the estimates follow a t distribution. 

Table 4.4: Significance Analysis of Components of Model 1 
Component DF Chi-Square Pr > Chi-Square 

Irregular 1 0.00 0.999 
Level 1 29176.7 <0.0001 
Slope 1 0.11 0.7387 
Cycle 2 6.66 0.0359 

Table 4.4 tests Ghe validity of any restrictions placed on the estimated parameters of the model 

(i.e. w). Under th( null hypothesis, H0 , the maximum likelihood (ML) estimator w is restricted and 

is denoted by ~0 . The restricted ML estimator can be contrasted with the unrestricted estimator, 

~- If the maximized likelihood function under Ho, L(~o), is much smaller than the unrestricted 

maximized likeliho)d, £(~),there is evidence against the null hypothesis. This is the idea behind 

the likelihood ratio test, where the likelihood ratio is, A= £(~0)/£(~). Furthermore, the likelihood 

ratio statistic, LR = -2logA is asymptotically distributed as x;, under Ho, where m is the difference 

in the number of p.trameters to be estimated between the restricted and unrestricted models. Thus, 

the results of Tabln 4.4 are based on this idea. 

From Table 4.~ and 4.4 it is evident, by examining the p-values that, the irregular and slope 

components are not significant and, by examining Table 4.3, that both dependent lags (1 and 2) are 

not significant components in the model. Thus, one proceeds by removing these components and 

re-evaluating the model. The new model that only consists of the level and cycle components will be 

denoted as Model 2. Table 4.5 provides the fit statistics of the Model 2, while Table 4.6 and Table 

4.7 provide the parameter estimates and significance analysis of components of Model 2 respectively. 
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Table 4 ..6· Parameter Estimates Model 2 
Component Parameter Estimate Std. Error t Value Pr > ltl 

Level Error Variance 3.970704E-9 4.40098E-6 0.00 0.9993 
Cycle Damping Factor 0.88518 0.03683 24.04 <.0001 
Cycle Period 34.80643 11.94365 2.91 0.0036 
Cycle Error Variance 0.03145 0.0099566 3.16 0.0016 

Table 4 7: Significance Analysis of Components of Model 2 
Component DF Chi-Square Pr > Chi-Square 

Level 1 3219.04 <0.0001 
Cycle 2 2.00 0.3675 

From Table 4. 7, it hppears that the level component is significant, however from Table 4.6 it appears 

that the level error variance is not significant in the model. Although, the cycle component in Table 

4.7 appears not to be significant in the model, all of its components are significant in Table 4.6, 

thus it should remain in the model. Therefore, the model is once again re-estimated by removing 

the level error variance, by setting it equal to zero in the model. The new model that consists of a 

cycle component and level component with level error variance set equal to zero will be denoted by 

Model3. Table 4.8 provides the fit statistics of the Model3, while Table 4.9 and Table 4.10 provide 

the parameter estimates and significance analysis of components of Model 3 respectively. 

Table 4 ..9· Parameter Estimates Model 3 
Compo 11ent Parameter Estimate Std. Error t Value Pr > ltl 

Cycl e Damping Factor 0.88518 0.03683 24.04 <.0001 
Cycl e Period 34.80643 11.94365 2.91 0.0036 
Cycl e Error Variance 0.03145 0.0099566 3.16 0.0016 

Table 4.10: Significance Analysis of Components of Model 2 
Component DF Chi-Square Pr > Chi-Square 

Level 1 3219.04 <0.0001 
Cycle 2 2.00 0.3675 
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In order for the str 1ctural time series approach via Kalman filters to work, a model must contain at 

least one stochastic component, thus the model is not tested down further and should not be as Table 

4.9 shows that the error variance of the cycle component is significant. Furthermore, by examining 

the fit statistics of the Models 1, 2 and 3 by examining Tables 4.2, 4.5 and 4.8 respectively, it is 

observed that Moe el 3, the simplest model has the smallest AIC value with the largest R'b value, 

thus the appropriate model for the asthma under 2 years data is Model 3, level component (with 

level variance set to zero) and cycle component. Thus, model 3 is the most appropriate model for 

the ASU2 data. 

Now that the J:.est model has been selected for the ASU2 data, this model must now be verified 

by examining the ·esidual plots and tests as discussed in section 3.2. 

Residua Plct of log(ASU2) Model 

Figure 4.7: Residual Plot of ASU2 model {Model 3) 
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Figure 4.8: ACF of the residuals of the ASU2 model (Model 3} 

Table 4.11: Ljung-Box Residual Test 
p Chi-Square DF P-value 
6 2.27 6 0.8937 
12 10.68 12 0.5562 
18 19.33 18 0.3716 
24 26.70 24 0.3188 

Table 4 12· Other Residual Tests 
Test Statistic P-value 

Heteroscedasticity 1.0040073 0.4954 
Bowman-Shenton 0.1122158 0.9454 

The residual plots Jor the ASU2 model (Figure 4. 7 and Figure 4.8) appear reasonable and the residual 

tests (Table 4.11 a:1d Table 4.12) do not give evidence against the model, therefore this model is an 

appropriate model for the ASU2 data. If the residual tests appeared to be unreasonable, it is at this 

point that dummy variables are introduced into the most model as explanatory variables in order 

to make the residuals appropriate. 

A valid model has been found for the ASU2 data, thus testing the independence between ASU2 

(dependent variabb) and the viral infections (independent variables) RSV and FLU AB can proceed. 

In order to test for independence of ASU2 and the viral infections, the untransformed viral data 
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Component Estimate P-value AIC MSE R~ R[; Adj . P -value 
FluABPos -0.00045651 0.5139 -29.25170 0.03608 0.74491 0.88194 4. 11 11 
diflFLU -0.00022439 0.6575 -25 .77415 0.03631 0.74236 0.88169 5.2602 
laglFLU -0.00001176 0.9866 -27.92046 0.03707 0.73701 0.87924 7.8930 
lag2FLU 0.00027439 0.6967 -26.62657 0.03786 0.73064 0.87355 5.5734 

lagdifFLU -0.00013455 0.7915 -24.21244 0.03869 0.72475 0.87079 6.3316 
lag2difFLU 0.00011885 0.8165 -22.84895 0.04013 0.71513 0.86808 6.5316 
FLU!ead1 0.00151 0.0279 * -32.01457 0.03795 0.73324 0.87741 0.2231 
FLUlead2 -0.00066647 0.3391 -29.54500 0.03867 0.73172 0.87517 2.7126 

along with seven transformations of the viral data were considered. The seven transformations 

included were; differenced(!) (difl) , lag 1 (lagl) , lag 2 (lag2) , lag 1 of differenced(!) (lagdif) , lag 

2 of differenced(!) (lag2dif), lead 1 (leadl), lead 2 (lead2). The eight tests for each viral infection 

were considered in order to account for a variety of possibilit ies of the independent variable. Table 

4.13 and Table 4.14 show the results of the eight tests for the RSV and FLU AB data respectively. 

Table 4 13· RSV Predictors 
R~Component Estimate P-value AIC MSE Adj . P-value R[; 

RSV 0.00241 -35.08301 0.03442 0.75666 0.88738 0.05500.0070 ** 
0.00204diflRSV -32.60532 0.03554 0.74788 0.88423 0.05500.0067 ** 

laglRSV -0.00122 0.2282 -28.81985 0.03823 0.72878 0.87546 1.8259 
lag2RSV 0.00125 0.1803 -27.79605 0.04242 0.69822 0.85834 1.4428 

-0.00125 0.1072lagdifRSV -26.65914 0.03623 0.74222 0.87899 0.8574 
lag2difRSV 0.00040520 0.6111 -23.03748 0.04088 0.70988 0.86565 4.8884 

0.00194 -31.48521 0.03646 0.74462 0.88172 0.2070RSVleadl 0.0341 * 
0.00150 0.1060RSVlead2 -30.59984 0.03554 0.75345 0.88528 0.8477 

Table 4 14· FLU AB Predictors 

* : significant at a 5% level of significance 

** : significant at a 1% level of significance 

*** : significant at a 0.1% level of significance 

It should be noted that the column "Adj. P -value" is an adjusted p-value column. The p-values 

obtained through the software were adjusted for by the Bonjerroni Adjustment in order to keep 

the overall experiment rate to an a-level of 0.05. The a -level is the probability of making a type 

I error (i.e. error of incorrectly determining a factor to be significant when it is not significant). 

In the case of more than one statistical test , t he chance of finding at least one test statistically 

significant due to chance in the total experiment, and hence incorrectly declare a significant effect, 

increases. T hus, in eight tests t~e chance of finding at least one relationship significant due to chance 
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fluctuation, assuming independence, equals 0.125, or one in eight. Using the Bonferroni method the 

a - level of each individual test is adjusted downwards to ensure that the overall experimentwise risk 

for a number of tests remains 0.05. Thus, the a -level for eight tests would be adjusted downward 

by dividing 0.05 by eight, resulting in an a-level of 0.00625. Equivalently, multiplying the p-value 

obtained by the test by eight and testing the resulting adjusted p-value against the a-level 0.05 is the 

exact same adjustment for eight tests as the previous statement. This latter method of adjustment 

was used for testing of independence in the project. The Bonferroni Adjustment ensures that if more 

than one test is done the risk of finding a difference or effect incorrectly significant continues to be 

less than 0.05. It should also be noted that simulations were also done to adjust for the p-values 

in the case that the Bonferroni adjustment method was too conservative. However, the simulations 

gave adjustment factors close to eight, thus the Bonferroni adjustment method was used. 

By examining the adjusted p-values in Table 4.13 and Table 4.14, neither RSV nor FLU AB are 

significant predictors for the ASU2 data. In a case where a significant predictor existed, the residual 

plots and residual tests would be examined to verify the model. 
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Chapter 5 

Results and Discussion 

In this chapter the ·esults of the 18 analyses done for this project are presented and discussed. The 

models are presented in table format and the components of the model along with the predictors 

are included. Com)onents included in the model will be identified with a "x" are assumed to be 

stochastic if not o1 herwise indicated (i.e. var = 0) and components not included in the model 

are identified with a "-". Furthermore, significant predictors are indicated by the test that was 

significant and the resulting adjusted p-value given in brackets, otherwise non-significant predictors 

are represented by ·'N.S.". It should finally be noted that all the models are for the log transformed 

dependent variable:;. 
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5.1 Asthma Age Groups 

Table 5.1: Astl:ma Age Group Models with Viral Infections (RSV FLU AB) as Predictors 
Age 
(years) 

level slope cycle irregular lags dummy 
variables 
(year/week) 

RSV FLU 

Under 2 x ('rar=O) - X - - - N.S. N.S. 

2-4 x ('rar=O) - X - lag 1 - N.S. N.S. 

5-15 x ('rar=O) - X - 2002/1* 
2003/1* 

N.S. N.S. 

16-49 x ('rar=O) - X X lag 1 2001/52 
2002/52 

N.S. N.S. 

Over 50 - - X - lag 1 - N.S. N.S. 

* : dummy variabl~s are for structural break in the level component 

By examining T:~.ble 5.1 it is evident that the viral infections RSV and FLU ABare not significant 

predictors of asthrn a hospitalizations in children under two years. Looking back at Figures 4.1 and 

4.2, which plot ASU2 together with RSV and ASU2 together with FLU AB respectively, it is noted 

that the results shewn in Table 15 correspond to the graphical display in these two plots as a direct 

relationship or correspondence between ASU2 and the viral infection is not evident. That is, by 

examining Figure 4.1 and Figure 4.2, the peaks and troughs of ASU2 do not graphically correspond 

with the peaks and troughs of the viral infection, thus confirming the result that RSV and FLU AB 

are not significant )fedictors of ASU2. Furthermore, by examining the other age groups of asthma, 

it is noted that RSV and FLU AB are not significant predictors of these other asthma age groups. 

Thus, no relationsl ip was found between RSV and FLU AB and asthma hospitalizations in any age 

group. 
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5.2 RTI Age Groups 

Table 5.2: RTl Age Group Models with Viral Infections (RSV FLU AB) as Predictors 
Age levd slope cycle irregular lags dummy RSV FLU 
(years) variables 

(year/week) 
Under 2 x (var=O) - X X lag 1 2001/52 

2002/52 
difl 
(0.0032) 

N.S. 

2-4 X - X - - 2001/52 N.S. N.S. 
2002/51 
2002/52 

5-15 X - X X - 2001/52 N.S. lead1 
2002/51 (0.0016) 
2002/52 

16-49 - - X X lag 1 2001/52 
2002/2 
2002/14 
2002/52 
2003/1 
2003/2 

N.S. N.S. 

Over 50 X - - X lag 1 
lag 2 

2001/52 
2002/52 

N.S. N.S. 

RSV is strongly associated with RTI hospitalizations in children under 2 years and FLU AB is 

strongly associated .vith RTI hospitalizations in school aged children 5-15 years. By examining the 

transformations of ihe significant relationships, it is evident that RTI is related to the difference 

between consecutiw RSV positive tests in children under 2 years, whereas RTI is related to FLU 

AB one week ahead in patients 5-15 years. In the other RTI age groups (2-4, 16-49 and over 50), 

RSV and FLU AB have no apparent association with RTI. 
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5.3 COPD Over 50 

Table 5.3: COPD Over 50 Model with Viral Infections (RSV FLU AB) as Predictors 
A ge 
(year s ) 

leve l slop e cycle irregular lags dummy 
variables 
(year/ week) 

RSV FLU 

Over 50 X - - X lag 1 
lag 2 

2001/52 
2002/52 

N.S. N.S. 

COPD hospitalization in adults over 50 years show no association with RSV and FLU AB. 

5.4 Respiratory Disease Analysis By Age Group 

In this section the respiratory diseases were tested for independence by age group. Table 5.4 gives the 

results of these analyses. The dependent variable is indicated along with the independent variable 

of the model. The initial model for the dependent variable is given in either Table 5.1, Table 5.2 or 

Table 5.3 excluding the viral infection predictors, thus the model components will not be displayed 

in Table 5.4 and only the significance of the independent variable will be noted. 

Table 5.4: Respiratory Disease Analysis By Age Group 
A ge (years ) D ep ende nt varia ble Indep endent va ria ble Significance 

Under 2 Asthma RTI difl (2.0491626E-9) 
2-4 RTI Asthma AS24 (0.008) 

5-15 Asthma RTI lagdif (0.0104) 
16-49 Asthma RTI lag2 (0.0128) 

Over 50 Asthma RTI difl (0.0000) 
Over 50 COPD asthma AS0 50 (0.0000) 
Over 50 COPD RTI RTI050 (0.0000) 

By examining Table 5.4, it is noted that t he respiratory diseases are all strongly associated. 

Asthma has a strong relationship with RTI in all age groups and these relationships are based 

on different transformations of the RTI data across the age groups. However, COPD is strongly 

associated with the exact data (no transformations) of both asthma and RTI. As an example, by 

examining Figure 5.1 and F igure 5.2 below, which display the plots of COPD and asthma over 50 

and COPD and RTI over 50 respectively, the strong association of respiratory diseases in adults over 

50 is clearly evident as the plots are overlapping and follow very similar paths. 
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F igure 5.1: COPD and Asthma Patients Over 50 (over mean) 
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Figure 5.2: COPD and RTI Patients Over 50 (over mean) 

5.5 Discussion 

It is believed, yet not confirmed, that t he influenza virus is often related to respiratory disease 

in young children and adults over 50 years and can have a severe effect on them. However , t his 

relationship was not evident in t he results presented in this project. Influenza is a virus with mult iple 

strains and in any given year individuals may be effected by any of a number of t hese strains. Thus, 
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the influenza virus i:; unpredictable and the strain types and associated severity vary from year to 

year, with varying effects on respiratory disease patients yearly. Likewise, the capacity for influenza 

strains to exacerbations in COPD varies continually in an unknown fashion. Furthermore, with the 

availability of the influenza vaccination, the response of asthmatic, RTI and COPD patients to the 

influenza virus may also be affected, explaining the results presented. Thus, in a single year, it 

is perfectly feasible that no relationship may be found between the influenza virus and suspected 

respiratory disease children and adults. By the same token, the particular influenza strains for the 

virus in that year may have had a more severe affect on school-aged children, 5-15 years. The fact 

that children are exr: osed to other school-aged children throughout the year in a school setting makes 

them more susceptil:le to contracting and spreading the influenza virus and resulting in a respiratory 

tract infection. Thu:;, again it is feasible that in any given year a relationship between influenza and 

RTI in school-aged children 5-15 years exists. 

On the other hand, while RSV is a single virus, its antigenic profile changes, permitting multiple 

or serial infections. It is possible then that in any given year the pathenogenicity of RSV may vary 

itself or be influenmd by cofactors, thus again it is possible that in a single year no effect maybe 

found with respirat•)ry diseases over the various age groups (except children under 2 years) even 

though an effect mty be found over multiple years. However, a significant relationship between 

RSV and RTI for children under 2 was found through the analysis. This relationship is considered 

common knowledge to professionals in the field of respiratory health as RSV is the number one cause 

of RTI in infants. 1 hus, the result found in the analysis confirms this idea. 

Finally, the strong relationship between the respiratory diseases within each age group seems 

very reasonable. Fo: children under 5 years (under 2 years, 2-4 years), asthma and RTI are difficult 

to distinguish betw(en since their respiratory system is not fully developed yet. Furthermore, when 

these children are hospitalized, the main concern is to fix the problem, thus misdiagnosing and 

overlapping of diagnoses can occur. Furthermore, for the other age groups, when an individual with 

asthma or COPD s1ffers and is hospitalized with RTI, often the effects of RTI cause their asthma 

and COPD exacertations to be increased, resulting in hospitalizations. Similarly, for adults over 

50, either increased asthma or COPD exacerbations causes the other to be increased, resulting in a 

significant relationsb.ip. 
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Chapter 6 

Conclusions and Future Work 

The results have demonstrated successful application of structural time series modeling to the data 

and have have successfully demonstrated that respiratory diseases over different age groups respond 

differently to different viral infections. Thus, the relationship between respiratory diseases and viral 

infections are unpredictable. 

However, some ideas are suggested for the unpredictable results. First and foremost, the research 

and analysis performed for this project was based on data from week 14 of the year 2001 to week 

13 of the year 2003 inclusive. By examining the plots of this data (Figure 4.1 and Figure 4.2), it 

is noted that these data include only one full peak of the viral infections and part of another peak. 

Thus, although the results of the analysis are valid for this data set , it may not be appropriate 

and effective to make these results conclusive for the population, since the second partial peak may 

be skewing the results. Thus, future studies should apply the same methodology to multiple years 

of data to determine more conclusive results. Furthermore, although the data are collected with 

caution, the timing of the reported viral infection positive tests are not as accurate and are, in fact, 

reported later than the week they were actually taken. Although this reporting discrepancy was 

accounted for by adjusting all the dates by a set period based on the average of the reporting time, 

this may also affect the results slightly. 

Currently, I am doing work with the Firestone Institute for Respiratory Health at St. Joseph's 

Hospital, extending my research and analysis to an eight-year data set that includes seven peaks of 

the viral infections. The eight-year data are being examined and analysed as a complete data set 

and the seven individual peaks are being analysed separately for further verification, using the same 
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theory and method:; applied throughout this project. I am also including simulations to find the 

appropriate p-value> for the tests when the sample size is small. The larger data set will provide 

a more insightful look to the true relationship between respiratory diseases and viral infections of 

different age groups. 

39 



Appen<iix 

Appendix A: SAS Program 

This appendix inch.des all the SAS programming code used for the analyses done using SAS in this 

project. 

PLOTTING ORIGINAL DATA PROGRAM: 


I* Calls the conma separated value file from excel to be used and *I 

I* tells what variables to include *I 


data ASU2; 

infile 'C:\Docmtents and Settings\owner\My Documents\SAS files\ 

ASU2andRSVandFLU.csv' DSD firstobs=2; 

input week $2. hSU2 RSV FLU ; 

run; 


I* Create a new variable STATEORD that contains the *I 

I* numerical ordering of observations from the original *I 

I* data set ONE. *I 


data add_n; 
set ASU2 end=last; 
wk_ord=_n_; 

run; 

I* Create the control data set STNAME using the ADDN *I 
I* data set. TI.e control data set contains the *I 
I* following required variables: *I 
I* START contains the unformatted values *I 
I* LABEL contai.ns the formatted values (state names) *I 
I* FMTNAME= contains the name of the format (DATAORD) *I 
I* TYPE= conta:.ns the type of the format, N for numeric *I 
I* or C for ch<~acter variables. *I 
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data wk_name; 
set add_n(rename=(wk_ord=start week=label)); 
fmtname='dataorc'; 
type='N'; 
keep fmtname lat,el start type RSV FLU; 

run; 

proc format cntlin=wk_name; 
run; 

I* Creates time Heries plots of ASU2 and RSV patients I* 

goptions reset=a:.l; 

proc gplot data=add_n; 
symbol1 i=spline v=circle h=1 c=red; *I i is to join points *I 
symbol2 i=spline v=circle h=1 c=blue; *I v is ype of point *I 

*I h is size of point *I 
plot 	 ASU2 * wk_,)rd =1 

RSV * wk_oc:-d =2 I 
overlay 
haxis=axisl 
vaxis=axis2 
legend=leg=nd1; 
format wk_Jrd dataord.; 

title 'Asthma Patients Under 2 years and RSV Records by Week'; 
title2 'Starting week 14 2001 to week 13 2003'; 

axis1 offset=(2,2) minor=(n=1) order=(1 to 108 by 4) label=('Week'); 
axis2 label=('Series'); 

legend1 label=none position=(top left inside); 

run; 
quit; 

CROSS-CORRELATICN PLOTS PROGRAM: 

I* Cross ACF of difASU2 and difRSV data *I 

ods trace on; 	 ;I Putting ODS trace on will identify the names of *I 
>) of all the output given in the procedure *I 

proc arima data,ASU2andRSVandFLU; *I computes cross-correlation of 2 time series *I 
identify var=logASU2(1) crosscorr=ONRSVPos(1); I* ASU2 x RSV *I 
ods output corrgraph=crosscorr_RSV; 
I* ODS OUTPUT s1;atement will put the selected outputs into useable *I 
I* data sets *I 
ods select corrgraph; 
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run; 

proc arima data=ASU2andRSVandFLU; 

identify var=ONRSVPos(l) crosscorr=logASU2(1); *I RSV x ASU2 *I 

ods output corrgraph=crosscorr2_RSV; 

ods select corrgraph; 

ods trace off; 

run ; 


I* Preparing data sets for plotting cross-correlations *I 

data crosscorr_RSV; 
set crosscorr_RSV; 
obs=_n_; 
run; 

data crosscorr2_RSV; 

set crosscorr2_RSV; 

obs=_n_; 

run; 

data crosscorr_diflogASU2xdifRSV; 

set crosscorr_RSV; 

keep lag correlation obs; 

if obs GE 50; 

run; 

data crosscorr_difRSVxdiflogASU2; 

set crosscorr2_RSV; 

keep lag correlation obs; 

if obs GE 50; 

run; 


I* Plotting Cross ACF of diflogASU2 x difRSV *I 

goptions reset=all; 

proc gplot data=crosscorr_diflogASU2xdifRSV; 

symbol i=needle c=blue width=?; 

plot correlation * lag I 

haxis=axisl 

vaxis=axis2 

vref= -.19219 .19219 lvref=3; 


title 'Cross ACF of differenced logASU2 and RSV data'; 

title2 'logASU2(1) x RSV(l)'; 


axis! label=('Lag') order=(O to 25 by 1); 

axis2 label=('ACF') order=(-1 to 1 by 0.2); 


run; 


goptions reset=all; 

proc gplot data=crosscorr_difRSVxdiflogASU2; 

symbol i=needle c=blue wi~th=7; 
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plot correlation * lag I 

haxis=axis1 

vaxis=axis2 

vref= -.19219 .19219 lvref=3; 


title 'Cross ACF of differenced RSV and logASU2 data'; 

title2 'RSV(1) x logASU2(1)'; 


axis! label=('Lag') order=(O to 25 by 1); 

axis2 label=('ACF') order=(-1 to 1 by 0.2) ; 


run; 


PRELIMINARY MODELLING: 


I* Using the UCM (Unobserved Component Models) procedure *I 

I* (Structural Models) for time series data. *I 

I* Not including a component in the Proc Ucm implies that *I 

I* that component is not in the model of the time series. *I 

I* If the component in the model is not stochastic, the *I 

I* error variance is set to zero and not estimated . *I 


PROC UCM DATA=ASU2ANDRSVANDFLU; 

ID DATE INTERVAL=WEEK; I* ID - specifies date or time variable 


I* INTERVAL - indicates measurement spacing *I 
MODEL LOGASU2; I* specifies the dependent series that you *I 
IRREGULAR variance=O noest; I* specifies the irregular component (epsilon)*/ 
LEVEL variance=O noest; I* specifies the level component (mu) *I 
SLOPE variance=O noest ; I* specifies the slope component (beta) *I 
CYCLE PRINT=SMOOTHED; I* specifies the cycle component (psi) *I 
SEASON length=52; I* specifies the season component length *I 
ESTIMATE ; I* estimates the parameters *I 

FORECAST OUTFOR=modelFOR lead=O PRINT=DECOMP; 


I* requests series forecasts and forecasts of the sum of components *I 

I* print=decomp requests the printing of the smoothed trend (mu) and the *I 

I* trend plus seasonal (mu + gamma) *I 


ODS output fitstatistics=fitstatistics ; 

ODS output fitsummary=fitsummary; 

ODS output parameterestimates=parameterestimates; 

ods select parameterestimates fitsummary fitstatistics componentsignificance; 


title 'UCM of LOGASU2'; 

RUN; 


*I Preparing data sets fo~ Residual Tests *I; 
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data fitstatistics; 

set fitstatistics; 

if _n_=1 or _n_=5 or _n_=7; 

keep fitstatistic value; 

run; 


data fitsummary; 

set fitsummary; 

if _n_=4; 

keep fitstatistic value; 

run; 


data fits; 

set fitsummary fitstatistics; 

run; 

proc transpose data=fits out=fits_transpose; 

run; 


data out; 

set fits_transpose; 

label col1='AIC' col2='MSE' col3='R-squared' col4='R.R-squared'; 

drop _name_; 

run; 


data model_residuals; 

set modelfor; 

std_res= residuallstd; 

std_res_sq=std_res**2; 

keep date residual std std_res std_res_sq; 

run; 

proc timeseries data=model_residuals outcorr=ACF_model_residuals; 

var residual; 

run; 

proc means data=model_residuals n nmiss mean; 

var std_res; 

ods output summary=statsummary; 

ods select summary; 

run; 


I* Q statistic (Ljung-Box) where the# of d.f. for the Chi-square should be *I 

I* P-n*, where n*=n-1 where n is the number of hyperparameters *I 

I* (i.e. the number of parameters estimated by the model). *I 


proc arima data=model_residuals; 

identify var=std_res; 

ods output chisqauto=Qtest; 

ods select chisquto; 

run; 
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DATA Qtest; 
set Qtest; 
DFnew = tolags-(D-1); 
alue = 1-probchi(chisq,dfnew); 
keep tolags chisc, DFnew pvalue; 
run; 

DATA Qtest; 
set Qtest; 
label DFnew='DF' 
pvalue='P-value'; 
run; 

I* Heteroscedasticity Test: h=T*I3, T*=T-d, d=no. of non-stationary components *I 

ods output stat_pvalue=heteroscedasticity; 

proc iml; 

use statsummary; 

read all var {std_res_N std_res_NMiss} into stats[colname=labels]; 

no_obs=stats[1,1]; 

d=stats [1, 2] ; 

T=no_obs+d; 

Tstar=T-d; 

m=floor(Tstarl3); 

use model_residuals; 

read all var {s1;d_res_sq} into res [colname=labels] ; 

num=sum (res [T-m--1: T,]) ; 

den=sum(res[d+1 d+m,]); 

stat=numlden; 

pvalue=1-probf(atat,m,m); 

title 'Heteroscr3dasticity Test'; 

print stat pval1e; 


I* Normality test of the Residuals *I 

ods output stat_pvalue=bowmanshenton; 

proc iml; 
use statsummary; 
read all var {std_res_N std_res_NMiss std_res_mean} into stats[colname=labels]; 
no_obs=stats[1,1]; 
d=stats [1, 2] ; 
T=no_obs+d; 
Tstar=T-d; 
use model_residuals; 
read all var {Btd_res} into res[colname=labels]; 
res_mean=res-s1;ats [1 ,3] ; 
res_mean2=res_nean##2; 
res_mean3=res_I~ean##3; 

res_mean4=res_J ~ean##4; 
sigma=sqrt((sw~(res_mean2[d+1:T,]))I(t-d)); 
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skew=(1lsigma##3)*((sum(res_mean3[d+1:T,]))I(tstar)); 

kurt=(1lsigma##4)*((sum(res_mean4[d+1:T,]))I(tstar)); 

term1=(Tstarl6)*1skew**2); 

term2=(Tstarl24)><((kurt-3)**2); 

stat=terml + teru2; 

pvalue=1-probchi<stat,2); 

title 'Bowman-Shonton Test'; 

print stat pvalun; 


data residualtes·;; 

set heteroscedast.icity bowmanshenton shapirowilk; 

run; 


ods output restest=restest; 

proc iml; 

use residualtest; 

read all into restest[colname=labels]; 

Test={'Heteroscedasticity', 'Bowman-Shenton', 'Shapiro-Wilk'}; 

Name={'Statistic' 'P-value'}; 

use Qtest; 

read all into qtest[colname=labels]; 

title 'Residual Tests'; 

print qtest; 

print restest [r=,test c=name] ; 

quit; 

data restest; 

set restest; 

label rowname= P:est' ; 

run; 


*I Defines the ·;emplate style for which the output will be displayed *I 

proc template; 
define strle styles.output; 

parent=styles.rtf; 
style table fron table I 

tagattr=' align=" left" style="position:relative ;top:. 2in"'; 
style systemtitle from systemtitle I 

protectspecialchars=off; 
Style Data from Data I 
font size=2 

Jtst=c; 

end; 
run; 

*I Sets the da1:a sets to be outputted in the given template form *I 
*I This will pl:oduce the three charts similar to Tables 4.2,4.11,4.12 *I 
*I in one output file *I 

options nodate nonumber; 
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ods listing closE'; 

ods rtf file=' ou1;put. rtf' style=styles. output startpage=yes bodytitle; 

title '\b\iO Fit Statistics'; 

data _null_; 

file print ods; 

set out; 

put _ods_; 

run; 

ods rtf startpag,l=no; 

title '\b\iO Lju:1g-Box Residual Test'; 

data _null_; 

file print ods; 

set Qtest; 

put _ods_; 

run; 

ods rtf startpaga=no; 

title '\b\iO Mora Residual Tests'; 

data _null_; 

file print ods; 

set restest; 

put _ods_; 

run; 

ods _all_ close; 

ods listing; 


I* Plotting residuals of LOGASU2 model *I 

GOPTIONS RESET=~LL; 
proc gplot data=model_residuals; 

symbol! i=j oin v=circle h=O C=BLUE width=!; 
plot RESII>UAL * date I 

overlay 
haxis=axis1 
vaxis=axis2; 

title 'Residual Plot of log(ASU2 Model'; 

axis1 label=('Date') 
order= (' 1APRO , 'd to '1APR03' d by year) ; 

axis2 label=( 'Rosiduals'); 

run; 

I* Plotting ACF of residuals of LOGASU2 model *I 

goptions reset=,'!.ll; 
proc gplot data=ACF_model_residuals; 
symbol i=needle c=blue width=7; 
plot ACF * lag I 
overlay 
haxis=axis1 
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vaxis=axis2; 

vref=-.19219 .192L9 lvref=3; 


title 'Residual A,~F of log(ASU2) Model'; 

axis1 label=('Lag'); 

axis2 label=('ACF') order=(-1 to 1 by 0.2); 


run; 


MODELLING RSV AS A PREDICTOR: 


I* Proc expand computes transformations of the independent variable *I 

proc expand data=ASU2andRSVandFLU out=RSV method=none; 
id date; 


convert ONRSVPcs=dif1RSV I transform (dif 1); 

convert ONRSVPcs=lag1RSV I transform (lag 1); 

convert ONRSVPcs=lag2RSV I transform (lag 2); 

convert ONRSVPc,s=RSVlead1 I transform =( lead 1 ) ; 


convert ONFSVPos=RSVlead2 I transform=( lead 2 ); 
run; 

I* Prepares data sets for the predictor modeling by removing missing values *I 

data RSV1; 

set RSV; 

keep date logASU:! dif1RSV lag1RSV; 

if _n_ =1 then dolete; 

run; 


data RSV2; 

set RSV; 

lagdifRSV=lag(dH1RSV); 

keep date logAS"J2 lagdifRSV lag2RSV; 

if _n_ LE 2 then delete; 

run; 


data RSV3; 

set RSV; 

lag2difRSV=lag2(jif1RSV); 

keep date logASU2 lag2difRSV; 

if _n_ LE 3 then delete; 

run; 


data RSVlead1 ; 

set RSV; 

keep date logASU2 RSVlead1; 

if _n_ LT 104; 

run; 
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data RSVlead2; 

set RSV; 

keep date logASU2 RSVlead2; 

if _n_ LT 103; 

run; 


data RSV_dif1RSV; 

set RSV; 

RSV_dif1RSV=ONRS,~os*dif1RSV; 

keep date logASU:~ ONRSWos dif1RSV RSV_dif1RSV; 

if dif 1RSV = . then delete; 

run; 


I* Program that ·•ill run all eight transformations and the final *I 

I* output will ba that similar to Table 4.13 *I 


PROC UCM Data=RSV; 

ID DATE INTERVAL=WEEK; 

MODEL LDGASU2=0NRSVPos; 

IRREGULAR variance=O noest; 

LEVEL variance=( noest; 

CYCLE PRINT=SMOCTH; 

ESTIMATE 

FORECAST DUTFDR=,modelFDR lead=O PRINT=DECOMP; 


ODS output fits1;atistics=fitstatistics ; 

ODS output fits1mmary=fitsummary; 

DDS output parru~eterestimates=parameterestimates; 


ods select parru~eterestimates fitsummary fitstatistics 
componentsignificance; 

title 'UCM of A3U2 with RSV as a predictor'; 
RUN; 

data fitstatistics; 
set fitstatistics; 
if _n_=1 or _n_=5 or _n_=7; 
keep fitstatistic value; 
run; 
data fitsummary; 
set fi tsummary: 
if _n_=4; 
keep fi tstatis1;ic value; 
run; 
data fits; 
set fitsummary fitstatistics; 
run; 
proc transpose data=fits out=fits_transpose; 
run; 
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data estimates; 

set parameterestimates; 

if _n_=4; 

keep component probt estimate 

run; 

data out_RSV1; 

merge estimates fits_transpose; 

label col1='AIC' col2='MSE' col3='R-squared' col4='R.W. R-squared' probt='p-value'; 

drop _name_; 

run; 


PROC UCM Data=RS'/; 

ID DATE INTERVAL=WEEK; 

MODEL LOGASU2=dif1RSV; 

IRREGULAR variance=O noest; 

LEVEL variance=O noest; 

CYCLE PRINT=SMOOIH; 

ESTIMATE 

FORECAST OUTFOR=modelFOR lead=O PRINT=DECOMP; 


ODS output fitstatistics=fitstatistics ; 

ODS output fitstmmary=fitsummary; 

ODS output paran,eterestimates=parameterestimates; 

ods select paranLeterestimates fitsummary fitstatistics 

components :,gnif icance; 

title 'UCM of A:lU2 with dif1RSV as a predictor'; 

RUN; 


data fitstatistics; 

set fitstatisti:s; 

if _n_=1 or _n_=5 or _n_=7; 

keep fitstatistic value; 

run; 

data fitsummary; 

set fitsummary; 

if _n_=4; 

keep fitstatistic value; 

run; 

data fits; 

set fitsummary fitstatistics; 

run; 

proc transpose data=fits out=fits_transpose; 

run; 

data estimates, 

set parametere:;timates; 

if _n_=4; 

keep component probt estimate 
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run; 
data out_RSV2; 
merge estimates fits_transpose; 
label col1='AIC' col2='MSE' col3='R-squared' col4='R.W. R-squared' probt='p-value'; 
drop _name_; 
run; 

PROC UCM Data=RS\"; 

ID DATE INTERVAL=,WEEK; 

MODEL LOGASU2=la!;1RSV; 

IRREGULAR variance=O noest; 

LEVEL variance=O noest; 

CYCLE PRINT=SMOO~:H; 
ESTIMATE 
FORECAST OUTFOR=nodelFOR lead=O PRINT=DECOMP; 

ODS output fitstitistics=fitstatistics ; 
ODS output fitsurunary=fitsummary; 
ODS output paramaterestimates=parameterestimates; 
ods select paramaterestimates fitsummary fitstatistics 

componentsignificance; 

title 'UCM of ASU2 with lag1RSV as a predictor'; 

RUN; 


data fitstatistics; 

set fitstatistics; 

if _n_=1 or _n_=5 or _n_=7; 

keep fitstatistjc value; 

run; 

data fitsummary; 

set fitsummary; 

if _n_=4; 

keep fi tstatist:.c value; 

run; 

data fits; 

set fitsummary :'itstatistics; 

run; 

proc transpose <lata=fits out=fits_transpose; 

run; 

data estimates; 

set parameteres·:imates; 

if _n_=4; 

keep component Jrobt estimate 

run; 

data out_RSV3; 

merge estimates fits_transpose; 

label col1='AIC' col2='MSE' col3='R-squared' col4='R.W. R-squared' probt='p-value'; 

drop _name_; 
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run; 

PROC UCM Data~RSV; 


ID DATE INTERVAL~WEEK; 


MODEL LOGASU2~lag2RSV; 
IRREGULAR variance~O noest; 
LEVEL variance~O noest ; 
CYCLE PRINT~SMOOTH; 
ESTIMATE 
FORECAST OUTFOR~modelFOR lead~O PRINT~DECOMP; 

ODS output fitstatistics~fitstatistics ; 
ODS output fitsummary~fitsummary; 
ODS output parameterestimates~parameterestimates; 
ods select parameterestimates fitsummary fitstatistics 

componentsignificance; 

title 'UCM of ASU2 with lag2RSV as a predictor ' ; 
RUN; 

data fitstatistics; 
set fitstatistics; 
if _n_~1 or _n_~5 or _n_~7; 
keep fitstatisti c value; 

run; 

data fitsummary; 

set fitsummary ; 

if _n_~4; 


keep fitstatistic value; 

run; 

data fits; 

set fitsummary fitstatistics; 

run; 

proc transpose data~fits out~fits_transpose; 
run ; 
data estimates ; 
set parameterestimates; 
if _n_~4; 

keep component probt estimate 
run; 
data out_RSV4; 
merge estimates fits_transpose; 
label coll~'AIC' col2~'MSE' col3~'R-squared' col4~'R.W. R-squared' probt~'p-value ' ; 

drop _name_; 
run; 

PROC UCM Data~RSV; 


ID DATE INTERVAL~WEEK ; 
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MODEL LOGASU2=lagdifRSV; 

IRREGULAR variance=O noest; 

LEVEL variance=O noest; 

CYCLE PRINT=SMOOTH; 

ESTIMATE 

FORECAST OUTFOR=modelFOR lead=O PRINT=DECOMP; 


ODS output fitstatistics=fitstatistics ; 

ODS output fitsummary=fitsummary; 

ODS output parameterestimates=parameterestimates; 

ods select parameterestimates fitsummary fitstatistics 

componentsignificance; 

title 'UCM of ASU2 with lagdifRSV as a predictor ' ; 

RUN; 


data fitstatistics; 

set fitstatistics ; 

if _n_=1 or _n_=5 or _n_=7; 

keep fitstatistic value; 

run; 

data fitsummary; 

set fitsummary; 

if _n_=4; 

keep fitstatistic value; 

run; 

data fits; 

set fitsummary fitstatistics; 

run; 

proc transpose data=fits out=fits_transpose; 

run; 

data estimates; 

set parameterestimates; 

if _n_=4; 

keep component probt estimate 

run; 

data out_RSV5; 

merge estimates fits_transpose ; 

label col1='AIC' col2='MSE' col3='R-squared' col4='R.W. R-squared' probt='p-value'; 

drop _name_; 

run; 


PROC UCM Data=RSV; 

ID DATE INTERVAL=WEEK; 

MODEL LOGASU2=lag2difRSV; 

IRREGULAR variance=O noest; 

LEVEL variance=O noest; 

CYCLE PRINT=SMOOTH; 
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ESTIMATE 
FORECAST OUTFOR=modelFOR lead=O PRINT=DECOMP; 

ODS output fitstatistics=fitstatistics ; 
ODS output fitsummary=fitsummary; 
ODS output parameterestimates=parameterestimates; 
ods select parameterestimates fitsummary fitstatistics 

componentsignificance; 

title 'UCM of ASU2 with lag2difRSV as a predictor'; 

RUN; 


data fitstatistics; 

set fitstatistics; 

if _n_=1 or _n_=5 or _n_=7; 

keep fitstatistic value; 

run; 

data fitsummary; 

set fitsummary; 

if _n_=4; 

keep fitstatistic value; 

run; 
data fits; 

set fitsummary fitstatistics; 

run; 

proc transpose data=fits out=fits_transpose; 

run; 

data estimates; 

set parameterestimates; 

if _n_=4; 

keep component probt estimate 

run; 

data out_RSV6; 

merge estimates fits_transpose; 

label col1='AIC' col2='MSE' col3='R-squared' col4='R.W. R-squared' probt='p-value'; 

drop _name_; 

run; 


PROC UCM Data=RSV; 

ID DATE INTERVAL=WEEK; 

MODEL LOGASU2=RSVlead1; 

IRREGULAR variance=O noest; 

LEVEL variance=O noest; 

CYCLE PRINT=SMOOTH; 

ESTIMATE 

FORECAST OUTFOR=modelFOR lead=O PRINT=DECOMP; 


ODS output fitstatistics=fitstatistics 
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ODS output fitsummary=fitsummary; 

ODS output parameterestimates=parameterestimates; 

ods select parameterestimates fitsummary fitstatistics 


componentsignificance; 

title 'UCM of ASU2 with RSVlead1 as a predictor'; 
RUN; 

data fitstatistics; 
set fitstatistics; 
if _n_=1 or _n_=5 or _n_=7; 
keep fitstatistic value; 
run; 
data fitsummary; 
set fitsummary; 
if _n_=4; 
keep fitstatistic value; 
run; 
data fits; 
set fitsummary fitstatistics; 
run; 
proc transpose data=fits out=fits_transpose; 
run; 
data estimates; 
set parameterestimates; 
if _n_=4; 
keep component probt estimate 
run; 
data out_RSV7; 
merge estimates fits_transpose; 
label coll='AIC' col2='MSE' col3='R-squared' col4='R.W. R-squared' probt='p-value'; 
drop _name_; 
run; 

PROC UCM Data=RSV; 

ID DATE INTERVAL=WEEK; 

MODEL LOGASU2=RSVlead2; 

IRREGULAR variance=O noest; 

LEVEL variance=O noest; 

CYCLE PRINT=SMOOTH; 

ESTIMATE 

FORECAST OUTFOR=modelFOR lead=O PRINT=DECOMP; 


ODS output fitstatistics=fitstatistics ; 

ODS output fitsummary=fitsummary; 

ODS output parameterestimates=parameterestimates; 

ods select parameterestimates fitsummary fitstatistics 


componentsignificanc~; 
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title 'UCM of ASU2 with RSVlead2 as a predictor'; 
RUN; 

data fitstatistics; 
set fitstatistics; 
if _n_=1 or _n_=5 or _n_=7; 
keep fitstatistic value; 
run; 
data fitsummary; 
set fitsummary; 
if _n_=4; 
keep fitstatistic value; 
run; 
data fits; 
set fitsummary fitstatistics; 
run; 
proc transpose data=fits out=fits_transpose; 
run; 
data estimates; 

set parameterestimates; 

if _n_=4; 

keep component probt estimate 

run; 

data out_RSV8; 

merge estimates fits_transpose; 

label col1='A!C' col2='MSE' col3='R-squared' col4='R.W. R-squared' probt='p-value'; 

drop _name_; 

proc print; 

run; 


data final_predictors; 

set out_RSV1 out_RSV2 out_RSV3 out_RSV4 out_RSV5 out_RSV6 out_RSV7 out_RSV8; 

Adj_Pvalue=probt * 8; 

run; 

proc template; 
define style styles.output; 

parent=styles.rtf; 
style table from table I 

tagattr='align="left" style="position:relative;top:.2in"'; 
style systemtitle from systemtitle I 

protectspecialchars=off; 
Style Data from Data I 
font_size=2 
Just=c; 

end; 
run; 
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options nodate nonumber; 
ods listing close; 
ods rtf file='output.rtf' style=styles.output startpage=yes bodytitle; 
title '\b\iO Fit Statistics'; 
data _null_; 
file print ods; 
set final_predictors; 
put _ods_; 
run; 

ods all_ close ; 
ods listing; 
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Appendix B:: STAMP Output 

This appendix inch; des a sample of the output given by the STAMP program. This output shows 

only the initial model and the first two transformations of the RSV predictor. The remaining 

predictors are done in the exact same way. 

RTIU2: 

MODEL: 
logRTIU2 = leve:. + irregular + lag 1 + dummy1 (2001152) + dummy2 (2002152) + 

dummy3 (2003/1) + dummy4 (200312) 

*I Original mod,~l •I 

Method of estimation is Maximum likelihood 
The present sample is: 2001 (16) to 2003 (13) 

Equation 110. 

LRTIU2 = Level + Expl vars + Interv + Irregular 

Estimation report 

Model with 1 parameters ( 1 restrictions). 

Parameter estiJ~ation sample is 2001.16 - 2003.13. (T 102). 

Log-likelihood kernel is 1.876516. 

No estimation ione. 


Eq 110 : Diagnostic summary report. 


Estimation sanple is 2001.16- 2003.13. (T = 102, n = 101). 

Log-Likelihooc. is 200. 142 (-2 LogL = -400. 284) . 

Prediction error variance is 0.0134698 


Summary stati:;tics 

LRTIU2 


Std.Error 0.11606 

Normality 1.2022 

H( 33) 0.90893 

r( 1) 0.28253 

r( 9) -0.033005 

DW 1.3351 

Q( 9, 9) 10.920 

R-2 0.93877 


Eq 110 Est:~ated variances of disturbances. 
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Component LRTIU2 (q-ratio) 
Irr 0.014284 ( 1.0000) 

Eq 110 Estimated standard deviations of disturbances. 


Component LRTIU2 (q-ratio) 

Irr (1.11951 ( 1. 0000) 


Eq 110 Estimatod coefficients of final state vector. 


Variable Coofficient R.m.s.e. t-value 

Lvl 0.32720 0.18286 1.7893 [ 0.0766] 


Eq 110 Estimat,3d coefficients of explanatory variables. 


Variable Co3fficient R.m.s.e. 
LRTIU2_1 
Irr 2001.52 
Irr 2002.52 
Irr 2003. 1 
Irr 2003. 2 

Normality test 
Sample Size 
Mean 
Std.Devn. 
Skewness 
Excess Kurtosis 
Minimum 
Maximum 
Skewness Chi-21 1) 

Kurtosis Chi-21.1) 
Normal-BS Chi-2<2) 
Normal-DH Chi-2:2) 

0.95200 0.026659 
0.63087 0.12058 
0.62745 0.12108 

-0.40421 0.12410 
-0.41148 0.12159 

for Residual LRTIU2 
101 

0.231958 
0.946938 
0.014369 
0.244401 

-2.645569 
2.828579 

0.0034754 
0.25137 
0.25485 

1.2022 

[0.9530] 
[0.6161] 
[0.8804] 
[0.5482] 

Goodness-of-fit results for Residual LRTIU2 
Prediction erro:~ variance (p. e. v) 
Prediction erro:~ mean deviation (m. d) 
Ratio p.e.v. I m.d in squares 
Coefficient of ietermination R2 
... based on differences RD2 
... based on diff around seas mean RS2 
Information criterion of Akaike AIC 
... of Schwartz (Bayes) BIC 

Chi-2(9) = 10.92 [0.2812] 
F(33, 33) = 0.90893 [0.6072] 
Normal-BS Chi-2(2) = 0.25485 [0.8804] 
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t-value 
35.711 [ 0.0000] 

5.232 [ 0.0000] 
5.1821 [ 0.0000] 

-3.2572 [ 0.0015] 
-3.3841 [ 0.0010] 

0.013470 
0.010178 
1.114919 
0.938770 
0.468374 

-3.028673 
-4.189656 
-4.035246 



*I RSV PREDICTORS *I 

1. ONRSVPos 

Method of estimation is Maximum likelihood 
The present sample is : 2001 (16) to 2003 (13) 

Method of estimation is Maximum likelihood 
The present sample is: 2001 (16) to 2003 (13) 

Equation 113. 

LRTIU2 = Level + Expl vars + Interv + Irregular 

Estimation report 

Model with 1 parameters ( 1 restrictions). 

Parameter estimation sample is 2001.16- 2003.13. (T 102). 

Log-likelihood kernel is 1.876516. 

No estimation done. 


Eq 113 : Diagnostic summary report. 


Estimation sample is 2001 . 16- 2003.13. (T = 102, n = 101) . 

Log-Likelihood is 192.097 (-2 LogL = -384.195). 

Prediction error variance is 0 . 0132997 


Summary statistics 

LRTIU2 

Std . Error 0.11532 
Normality 2.6269 
H( 33) 0 . 91830 
r( 1) 0 . 29749 
r ( 9) -0.042145 
DW 1.3037 
Q( 9, 9) 11 . 953 
R-2 0.93954 

Eq 113 : Estimated variances of disturbances. 

Component LRTIU2 (q-ratio) 
Irr 0 . 014252 ( 1 . 0000) 

Eq 113 : Estimated standard deviations of disturbances. 

Component LRTIU2 (q-ratio) 
Irr 0.11938 ( 1 . 0000) 

Eq 113 Estimated coefficients of final state vector. 
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Variable Coefficient R.m.s.e. t-value 

Lvl 0.54307 0.26780 2 . 0279 [ 0.0452] 


Eq 113 Estimated coefficients of explanatory variables. 


Variable Coefficient R.m.s.e. 
LRTIU2_1 0 . 91842 0.040462 
ONRSVPos 0.00031766 0 . 00028817 
Irr 2001.52 0.59353 0.12511 
Irr 2002.52 0.64310 0.12177 
Irr 2003 . 1 -0 . 37576 0.12662 
Irr 2003. 2 -0.40807 0.12150 

Normality test for Residual LRTIU2 
Sample Size 101 
Mean 0 . 234750 
Std.Devn. 0.941003 
Skewness -0.131424 
Excess Kurtosis 0.488163 
Minimum -2.869261 
Maximum 2 . 763768 
Skewness Chi-2(1) 0.29075 [0 .5897] 
Kurtosis Chi-2(1) 1. 0029 [0. 3166] 
Normal-BS Chi-2(2) 1. 2936 [0.5237] 
Normal-DH Chi- 2(2) 2.6269 [0.2689] 

Goodness-of-fit results for Residual LRTIU2 
Prediction error variance (p.e.v) 
Prediction error mean deviation (m.d) 
Ratio p . e.v . I m.d in squares 
Coefficient of determination R2 
... based on differences RD2 
. . . based on diff around seas mean RS2 
Information criterion of Akaike AIC 
. .. of Schwartz (Bayes) BIC 

2. dif1RSV 

Method of estimation is Maximum likelihood 
The present sample is: 2001 (16) to 2003 (13) 

Equation 114. 

t-value 
22.699 [ 0.0000] 
1.1023 [ 0. 2729] 
4.744 [ 0.0000] 

5 . 2811 [ 0.0000] 
-2 . 9677 [ 0.0037] 
-3.3587 [ 0 . 0011] 

0 . 013300 
0 . 010026 
1.120172 
0.939543 
0.475088 

-2.977792 
-4.182758 
-4.002613 

LRTIU2 = Level + Expl vars + Interv + Irregular 

Estimation report 
Model with 1 parameters 1 restrictions) . 
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Parameter estimation sample is 2001.16- 2003.13 . (T 102). 
Log-likelihood kernel is 1 . 876516 . 
No estimation done. 

Eq 114 : Diagnostic summary report . 

Estimation sample is 2001 . 16- 2003 . 13. (T = 102, n = 101). 
Log-Likelihood is 198.67 (-2 LogL = -397 .339) . 
Prediction error variance is 0.0118242 

Summary statistics 
LRTIU2 

Std.Error 0.10874 
Normality 3 . 2987 
H( 33) 0 . 66326 
r( 1) 0 . 22870 
r( 9) -0 . 12852 
DW 1.4427 
Q( 9, 9) 10 . 444 
R-2 0.94625 

Eq 114 : Estimated variances of disturbances. 

Component LRTIU2 (q-ratio) 
Irr 0.012671 ( 1 . 0000) 

Eq 114 Estimated standard deviations of disturbances . 

Component LRTIU2 (q-ratio) 
Irr 0.11256 ( 1 . 0000) 

Eq 114 Estimated coefficients of final state vector . 

Variable Coefficient R.m.s.e . t-value 

Lvl 0.26126 0 . 17318 1.5086 [ 0 . 1345] 


Eq 114 Estimated coefficients of explanatory variables. 

Variable Coefficient R.m . s . e . t-value 
LRTIU2_1 0 . 96191 0.025256 38 . 087 [ 0.0000] 
dif1RSV 0 . 0026493 0.00072859 3.6362 [ 0 . 0004] 
Irr 2001.52 0.37075 0.13422 2.7623 [ 0.0068] 
Irr 2002.52 0.62521 0 . 11404 5.4824 [ 0.0000] 
Irr 2003 . 1 -0.47862 0.11866 -4.0336 [ 0.0001] 
Irr 2003. 2 -0 . 49986 0.11707 -4.2697 [ 0 . 0000] 

Normality test for Residual LRTIU2 
Sample Size 101 
Mean 0 . 228875 
Std .Devn. 0 . 942449 
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Skewness -0 . 077980 
Excess Kurtosis 0 . 591166 
Minimum -2 . 525803 
Maximum 3 . 004668 
Skewness Chi - 2(1) 0 . 10236 [0.7490] 
Kurtosis Chi -2(1) 1 .4707 [0.2252] 
Normal-BS Chi-2(2) 1.5731 [0. 4554] 
Normal-DH Chi-2(2) 3.2987 [0 .1922] 

Goodness-of-fit results for Residual LRTIU2 
Prediction error variance (p . e . v) 0.011824 
Prediction error mean deviation (m.d) 0.008850 
Ratio p.e . v . I m.d in squares 1 . 136533 
Coefficient of determination R2 0 . 946251 
. .. based on differences RD2 0 . 533324 
.. . based on diff around seas mean RS2 -2 . 536477 
Information criterion of Akaike AIC -4 . 300354 
... of Schwartz (Bayes) BIC -4.120209 

Chi-2(9) = 10.444 [0.3158] 
F(33, 33) = 0.66326 [0.8783] 
Normal-BS Chi-2(2) = 1.5731 [0.4554] 
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