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Abstract

The objective of this project was to investigate and determine the association between hospitaliza-
tions of respiratory diseases with one another and with isolations of viral infections in five age groups.
Weekly data on all hospitalizations in Ontario, Canada, from week 14 of 2001 to week 13 of 2003
were obtained for i age groups (under 2 years, 2 to 4 years, 5 to 15 years, 16 to 49 years and over
50 years inclusive) for respiratory diseases including, asthma, respiratory tract infection (RTI) and
chronic obstructive pulmonary disease (COPD)!. Furthermore, data for viral infections including
influenza virus type A and type B (Flu AB) and respiratory syncytial virus (RSV) isolations were
also obtained from Health Canada for the same weekly time periods.

In order to test for independence and determine a relationship, if any, between hospitalizations
of respiratory diseises with one another and with isolations of viral infections, structural time se-
ries models were developed for all age groups of the respiratory diseases and explanatory variables
were modeled acccrdingly against the hospital admission counts for the respiratory diseases. These
explanatory variables include, other respiratory diseases, viral infections, and lagged values of the
dependent variable. Neither FLU AB nor RSV showed a significant relationship with asthma pa-
tients of all ages. Weekly RSV peaks coincided with RTI patients under 2 years and RTI peaks
in patients 5 to 15 years preceded FLU AB peaks. A relationship between all three respiratory
diseases, asthma BETT and COPD, was discovered for all age groups. Peaks of asthma coincided with
various transformations of RTI peaks for the five age groups and peaks of COPD coincided with
both the untransformed asthma and RTT peaks in patients over 50. For all other relationships, the
null hypothesis of independence was accepted. These findings suggest that there is a strong asso-
ciation between respiratory diseases and that children and adults with respiratory diseases respond

differently to viral infections.

1Only data for pasients over 50 years was obtained for COPD.
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Chapter 1

Introduction

1.1 Motivation

Predictable cycles of respiratory diseases requiring hospital treatment occur globally and coincide
with peaks of isolasions of certain viral infections. For example, influenza is believed to increase the
likelihood of asthma and COPD exacerbations, but the specific affects on asthma in children and
asthma and COPD in adults is unknown. Furthermore, influenza vaccination may offer protection
to asthmatics, but this by no means is a certainty and the affects of vaccination on young children
are unknown. Thus, knowing the relationship between disease and virus peaks can provide insight
as to how these respiratory diseases can be controlled and hospitalizations prevented.

Weekly data o’ the number of hospitalizations in Ontario due to respiratory diseases (asthma,
RTI and COPD) were collected from week 14 of 2001 to week 13 of 2003 inclusive. The number
of patients under 2 years, 2 to 4 years, 5 to 15 years, 16 to 49 years and over 50 years admitted
to hospitals for clinically diagnosed asthma or RTI were recorded weekly, along with the number
of patients over tie age of 50 diagnosed with COPD. These age groups were chosen in order to
investigate the dif’erent affects viral infections have on patients of different ages and compare them
with what is comnionly believed. Children under 5 years of age do not have fully developed immune
systems, are not in school and children under 2 years are very susceptible to RSV. Children 5-15
years are “school-nged” children and are shown to be the principle source of RTI. Adults 16-49 years
show different patterns of respiratory diseases than those patients over 50 years. Furthermore, the

two respiratory viruses of concern, FLU AB and RSV were recorded as the number of positive virus



tests at a specific time ¢.

The purpose of 1his study is to test the independence of respiratory diseases and viral infections
in the 5 age groups as well as the independence of the different respiratory diseases themselves in
the same age grours. Similar to the approach and methods used by Scuffham in 2003 and 2004,
structural time series is used with the statistical programs SAS and Structural Time series Analyses,
Modeler and Predictor (STAMP) to determine if any significant relationships exist. The results of
the analyses are found below in Table 1.1, Table 1.2, Table 1.3 and Table 1.4.

Tablz 1.1: Summary of Asthma Age Groups and Respiratory Viruses

Asthma Ages (years) | RSV | Flu AB
Under 2 N.S. N.S.
2-4 N.S. N.S.
5-15 N.S. N.S.
16-49 N.S. N.S.
Over 50 N.S. N.S.

Table 1.2: Summary of RTT Age Groups and Respiratory Viruses

RTI Ages (years) | RSV | Flu AB
Under 2 0.0032 | N.S.
2-4 N.S. N.S.
5-15 N.S. 0.0016
16-49 N.S. N.S.
Over 50 N.S. N.S.

"Table 1.3: Summary of Asthma and RTT Age Groups Viruses

Asthma and RTI Ages (years) p-value
Under 2 2.04916 E-9

2-4 0.0008

5-15 0.0104

16-49 0.0128
Over 50 8.74034 E-86

Table 1.4: Summary of COPD
Analysis p-value
COPD and Asthma Over 50 | 0.0000
COPD and RTT Over 50 0.0000
COPD and RSV N.S.
COPD and FLU N.S.

N.S. : not significant



1.2 Introduction to Time Series

In this section the basic ideas of time series analysis are introduced based on the book, Introduction
to Time Series and Forecasting, by Brockwell and Davis, 2002. A particular look at concepts of
stationarity, by transforming the data to remove trend and seasonal components, and the autoco-
variance and autocorrelation functions will be discussed.

A time series, say {X:}, is a set of observations X, each being recorded at a specific time ¢. A
discrete time series, the type focused on throughout this report, is a time series in which the set Tp
of times at which observations are made is a discrete set.

The mean function of {X;} is defined as

px(t) = E(X;), where E[X2] < co
and the covariance function of X; is defined as
vx (1, 8) = Cov(X,, X,) = B[(X; — px (r))(Xs — px(s))]

for integers r and s. A time series is said to be stationary if
1. px(t) is independent of ¢,
2. yx(t + h,t) is independent of ¢ for each h.

Finally, for a stationary time series X;, the autocovariance function (ACVF) of X; is,
’YX(h) =X (h: 0) = X (t +h, t) = COV(Xt+ha Xi)»
and the autocorrelation function (ACF) of {X;} is,
h
px(h) = 20 = Cor(Xeyn, Xy)

Often time series are non-stationary due to strong dependence of variability on the level of the

series along with a trend and seasonal components in the data, thus these components should be
reduced or eliminated to make the series stationary. In order to remove the dependence of variability
and trend and seasonal components, the Box-Cox transformation and differencing techniques should
be applied. A general variance-stabilizing transformation is the Box-Cox transformation f and is

defined as:

AN UR -1), U;20,)2>0,
ant, Ut > 0,)\ =l

M(U) =

Trend and seasonal components can be detected by examining the graph of the series and also

can be identified by autocorrelation functions that are slowly decaying and/or nearly periodic. Trend



and seasonality can be eliminated by differencing. In differencing, the backward shift operator B is
defined by BX; = X;_1. The lag-d difference operator V¢ is often used to eliminate trend and is
defined by,

VixX, = (1 — B)EX,.
On the other hand, the lag-d difference operator, Vg4, is used to eliminate seasonal components with
period d and is defined by,

VaX: = (1 — BH)X,.

The transformations mentioned above allow for stationarity of the series which is necessary for
fitting an appropriate ARMA model to the data with zero mean, when the method of structural
time series modeling (discussed in Chapter 2) is not being used. The most common models used
to fit a stationary series are: an autoregressive process of order p, AR(p) model, a moving average
process of order q, MA(q) model, and a mixture of both an AR(p) process and the MA(q) process,

referred to as an ARMA(p, ¢) model. The above models are defined as follows;

1. {X;} is an autoregressive process of order p, (AR(p)) if
Xe=$1Xs1+...+pXs—p+ Z4

2. {X.} is an moving average process of order q, (MA(q)) if
Xt — Zt g5 01Zt~1 + . + Hth_q

3. {X;} is an ARMA(p, q) process of order p and q if
Xe— 1 Xo1—aXoo— ... —0pXs p=Zt + 012y 1+ 6027 o+ ...+ 0,74

where ¢t = 0,£1,42,... and ¢1,¢2,...,¢, and 01,6,,...,60, are constants. Furthermore, {Z,} is
the error sequence such that, Z; ~ white noise(0,02). That is, {Z;} is a sequence of uncorrelated
random variables, each with zero mean and variance o2.

In order to estimate the model and its parameters ¢1, @2, ..., ¢p,01,02,...,0,, the orders of the
parameters, p and ¢, must be determined. After transforming the data the sample ACF can be
examined to get an idea of potential p and g values. Order selection is then based on finding the
values of p and ¢ that minimize the Akaike Information Criterion (AIC), which will be discussed
later in the section. Once the order of p and g are determined, the parameters of the model can be
estimated using the method of Maximum Gaussian Likelihood. Suppose that {X;} is a stationary
time series with mean zero and autocovariance function (i, ) = E(X;X;). Let X, = (X1,...,X,)’

and let T';, denote the covariance matrix such that I, = E(X,,X/)). Thus, the likelihood function of
X, is



1 1 ! p—1
L(Fn) = mexp (—axnrn Xn> (11)

which using the Innovation Algorithm, can be reduced to
1 n

L(Fn) = (27r)n1/0-~~1/n_lexp —%Z(X] —Xj)z/llj_.l (12)

j=1

where X ; is the one-step prediction and v;_ = E(X; — Xj)z is the mean squared prediction error.
The parameters are estimated by maximizing the likelihood function and the best model is

selected based on minimizing the AIC. That is, selecting the values of p and ¢ for the fitted model

so as to minimize the AIC function,

- 2(pt+g+1)n

AIC=-2InL + i
Satisfying the minimum AIC criterion provides a rational method for choosing between competing
models, which can further be assessed based on the residuals (plots and tests of randomness) of the

model. Details of assessing models based on their residuals will be discussed in Chapter 3.

1.3 Cross-Correlation Approach for Testing the Independence
of Two Series

Much of the theory of univariate time series extends to the multivariate case and, in particular,
bivariate time series, allowing for testing the independence of two stationary time series. Let

X¢=(X11, Xs2) be a bivariate time series whose mean vector u is the vector of sample means
1 n
Xn=— ; X,

A natural estimator of the covariance I'(h) = E[(Xyn — p)(Xe — p)'] is

n—h
2 n—l Z(Xt+h B Xn)(xt = Xn)l for 0 S h S n— 1,
I'(h) = =1

1 =h) for —n+1<h<0

Writing 4;;(h) for the (4, j)-component of f‘(h), i,j = 1,2,..., the cross-correlations are estimated
by,
pij(h) = i5(h) (3::(0)4;5(0)) /2.



Theorem 1: Let {X4} be the bivariate time series whose components are defined by

oo

Xao= Y axZik1, {Zu}~ID(0,0}),

k=—oc0
and

oo
X2 = Z arZi—r2, {Zw} ~1ID(0,03),

k=—o00
where the two sequences {Zy} and {Z;2} are independent, >, o] < co and Y, |Br| < co. Then
for all integers h and k with h # k, the random variables n*/?p12(h) and n*/?py2(k) are
approzimately bivariate normal with mean 0, variance Z;’;_w p11(7)p22(J4) and covariance

Z;‘;_oo p11(7)p22(j + k — h), for n large (Brockwell and Davis, 2002).

Theorem 1 is used to test the correlation between two time series and can provide some insight
as to the relationship of the two series. However, since the large-sample distribution of a bivariate
series depends on both p11(.) and paa(.), a test for independence of two series cannot be based solely
on the estimated values of p12(h),h = 0,+£1, ..., without taking into account the nature of the two
component series. This can be corrected either by transforming each component series to white noise
and then inspecting the cross-correlation of the two series or inspecting the cross-correlations after
replacing the sequences {Z;} by their residuals {Wy;} from fitting a maximum likelihood model to
each component series.

Testing the hypothesis Hy, that {X;1} and {X;2} are independent corresponds to testing the
white noise series {Z;1} and {Z:2} for independence. By Theorem 1, the sample autocorrelations of
{Z;1} and {Z;»} are independent and normally distributed with means 0 and variances n~1, for large
n, thus an approximate test for independence can be obtained by comparing the values of |p12(h)]
with 1.96n=1/2. Pre-whitening the series and/or finding appropriate models that fit the model is
sometimes difficult, thus this approach is not always the best method for testing the independence
of two time series. A more appropriate approach is to use structural time series with explanatory

variables, which will be discussed in the following chapter.



Chapter 2

Structural Time Series

In this chapter a very useful and powerful technique for modeling a variety of time series models
will be discussed. Here state space models are introduced along with the Kalman filter. Structural
time series models incorporate the main observational features of most times series models such as
trends and seasonal variations, thus detrending and deseasonalizing of the series is not required as
in ARIMA models. The ideas of structural time series presented in this chapter will be based on

Harvey, 1989.

2.1 State-Space Representation

The general state space form (SSF) applied to a multivariate time series {yz, =L
containing N elements consists of two equations; the measurement equation (or observation equation)

and the transition equation. The measurement equation is such that

yt:Ztat+dt+6t; t:1,2,...,T (21)

where Z; is an N x m matrix, d; is an N x 1 vector, ¢; is an N x 1 white noise (WN) vector such
that e, ~ WN(0, {H}), T is the sample size of the series and oy is known as the state vector. In
general the elements of a; are not observable, but are assumed to be generated by the transition

equation,

as=Tiop 1+ + Ry, t=1,2,...,T (2.2)



where Ty is an m X m matrix, ¢; is an m x 1 vector, Ry is an m x g matrix and
mathbfeta; is a g x 1 vector such that 7, ~ WN(0,{Qs}). Finally, the SSF is completed by two

other assumptions:

1. the initial state vector, ag, has mean of ag and a covariance matrix Pg, that is E(ag) = ag

and Var(ap) = Po.

2. the disturbances ¢; and 7; are uncorrelated with each other in all time periods and uncorrelated
with the initial state, that is E(en.)=0 for all s,t = 1,...,T and E(e;a) = 0, E(nip) = 0
tor =11, .m0, s

2.2 The Kalman Filter

In this section the concern is focused on finding the best linear estimates of the state vector a; of the
SSF defined by equations 2.1 and 2.2 in terms of the observations yi,yz2,. .., and the random vector
yo which in most cases is the constant vector (1,1,...,1)’, via the Kalman filter. Firstly, let a;_;
denote the best linear mean-square predictors of a;—; based on the observations y1,¥y2,...,¥t-1
(i.e. the best linear combination of yg,y1,...,¥:—~1 that minimizes the mean-squared error) and let
P;_; denote the m x m covariance matrix of the estimation error, that is

Pt,1 = E[(at_l — at_l)(at_l = at_l)l]. (23)

Now, given a;_; and P;_;, the optimal estimator of «; is given by

am_l = Ttat_l + c (24)

while the covariance matrix of the estimation error is

Pt|t-—1 = TtPt—lT; =+ RtQtR';, = 1,2, ... ,T. (25)

Equations 2.4 and 2.5 are known as the prediction equations, whereas once the new observation y

becomes available, the estimator of at,ast—1 can be updated by the following updating equations

ag = a1 + Ptlt—lziFt_l(yt —Zyay 1 —dy) (2-6)



and

P, =Py — Py 1 Z,F; 2Py (2.7)

where

Ft =Z,Pt|t_1Z£+Ht, t= 1,2,...,T (28)

Taken together ths prediction and updating equations, equations 2.4 - 2.8, make up the Kalman
filter where it is assumed that the inverse of F'; exists.

The starting values for the Kalman filter may be specified in terms of ag and Pgy. These initial
values can be specified in two ways. First, if it is assumed that all the elements of g are fixed then
the Kalman filter can be initialized by specifying ag = ag and Pg = 0, where oy is a parameter to be
estimated. However, when the transition equation is non-stationary, the unconditional distribution
of the state vector is not defined. Thus, if no prior information is available, the initial distribution
of ap must be specified in terms of a diffuse non-informative prior, resulting in the second type of
initialization called diffuse initialization. Here, the Kalman filter can be initialized as ag = 0 and
Py = kI where & i3 a positive scalar and the diffuse prior is obtained as k — oo.

Given the the initial conditions ag and Py, of a non-diffuse initialization, the Kalman filter
produces the optinal estimator of the state vector as each new observation becomes available. When
all T observations are processed, the filter yields the optimal estimator of the current state vector,
and/or the state vector in the next time period, based on the full information set. This estimator
contains all the information needed to make optimal predictions of future values of both the state

and the observaticns.

2.3 Estimation for State-Space Models

Consider the state-space model defined by equations (2.1) and (2.2) and suppose that the model
is completely paremeterized by the components of the vector ¥. The likelihood function can be

written as a conditional probability density function such that

T
L(y; %) = [[ f(3e[Ye-1) (2.9)

t=1



where f(y:|Y:-1) denotes the distribution of y,; conditional on the information set at time ¢ — 1,
that is Yy—1 = {y¢t-1,¥t-2,.-.,¥1}. In time series analysis, the Gaussian likelihood is widely used
whether the time series is truly Gaussian or not. Thus, the Gaussian likelihood function of the

observations can be written as

NT T 1 T
logL = ——]og27r - Z=: log|F:| — 3 ;uéFt_lut (2.10)
where
- ¥e-1, t=1,...,T (2.11)
and
Vije—1 = Zyage—1 + dy (2.12)

The prediction errors 14 of equation (2.11) are known as innovations, since they represent the new
information in the latest observation and y,;_; of equation (2.12) is the conditional mean of y, at
time ¢ — 1 and caa be interpreted as the minimum mean square estimator (MMSE) of a;. Thus,
maximum likeliho>d estimates of the components of ¥ can be found by maximizing the likelihood
function in equation (2.10).

Furthermore, 13t ¥ denote the maximum likelihood estimator of the n x 1 vector ¥ obtained by

maximizing equat'on 2.10 and let the ij-th element of the information matrix I{¥), be defined as
B [ d%ogL ] _ g T o2,
: P 0w, 0¥, |-
Suppose that I(¥), when divided by T, converges to a positive definite matrix, IA(¥). That
is, IA(¥) = 1im7~! I(¥). Subject to certain regularity conditions v/T' (¥ — ®) has a limiting
multivariate normal distribution with mean vector zero and covariance matrix IA~*(¥). Similarly,

it can be stated that ¥ is asymptotically normal with mean ¥ and covariance matrix Avar:(\il) =

T-1 IA-1(¥).

10



2.4 Predictor Variables and Lagged Dependent Variables

When predictor variables, x}# are included in the model, such that ¥ = zjey + x.5 + €;, where
B = [1,02,-..,6,]) and x¢ = [x1s,Tat,. .., Tne), it is often the case that 3 is unknown, thus it is

useful to incorporite it into the state vector, giving an augmented state vector

of=[a 8] (2.13)

Thus, when inclucing the coefficients of the predictor variables into the model the augmented state

vector, aI satisfies; the SSF

Yt=[zi x{]al%—q, t=1,...,T (2.14)
and
o T O [a 790
a=| " |= ™. (2.15)
Bt 0 1 Be-1 0

The lower part of the transition equation simply reflects the fact that 8 = §¢ is time-invariant.
Including it in the state vector allows it to be estimated simultaneously with o. The parameters of
the model are the disturbance variances and the regression coefficients. The disturbance variances,
being elements of he system matrix are estimated by maximizing the likelihood, as described earlier,
while the regression parameters get implicitly estimated during the state estimation.

When lags of the dependent variable are included in the model as yFrimeg, such that y, =
Ziaw + Yo + €1, vhere yi = [y, ..., Mt—r+1]’ and ¢ = [¢1,..., 4]’ (i.e. up to r dependent lags), y:

and its lagged valies are included in the state vector, such that the SSF is

Y= [ o, 1 0._, ]a: (2.16)
T 0 0 R
. Qg Qg1 -
af = = | 2T ¢ o’ + | ZRaye + e (2.17)
Yt Yt-1 R
0 |[I,., OfO 0

where m is the number of elements in the state vector excluding the lagged dependent variables.

11



The parameters of this model are the disturbance variances and the lag coefficients ¢1, ¢2,. .., ¢
Since these lag coefficients are not included in the state vector as the predictor coefficients explained
in the previous paragraph, the lag coefficients along with the disturbance variances are estimated

by maximizing the likelihood.

12




Chapter 3

Methodology

3.1 General Structural Time Series Model

Time series models incorporate the main features of most time series models, including trends and
seasonal variatiors. The information presented in this chapter regarding the features of time series
models comes from The Unobserved Component Model Procedure of the SAS, version 9.1, manual.
The following eqiation represents the structural time series model used to identify various time

series.

¥4 m
Ye = pre + e+ e + Z iY—i + Zﬂjitjt +e (3.1)

i=1 i=1
The component 1 is the dependent variable at time ¢ and the components p;, y; and 1 model the
trend, seasonal and cyclical components respectively and ¢ and 8 are the regression components.
These different aspects of the time series are assumed to be statistically independent of each other
and with the irregular component, ¢;. Below is a description of each of the components of the series.

The trend of she series consists of both the level (1) and the slope (8) and can be described as:

Mt = M1+ Bo1+ s N ~iid. N(0,02
B = Bi-1+¢& & ~iid. N(0,03).

Some special casss arise here. If Ug = 0 then you obtain a model with fixed slope. If 072, =0 then

the resulting model usually has a smoother trend. If both, ag = 072, = 0 the the resulting model is

13



the deterministic linear time trend: p; = pg + Bot. Finally, if the trend remains roughly constant
without any persistent upward or downward drift then no slope component exists resulting in the
random walk mocel: puy = ps—1 +1;, M~ i4.d. N(O,a?,).

Seasonal fluctuations are common in time series data and arise because of the regular changes
in seasons or some other periodic events. The seasonal component ~; is modeled as a stochastic
periodic pattern of an integer period s (season length) such that the sum Ef;& Yi—; is always zero
in the mean. The most common type of model is called the trigonometric form of the seasonal

component. Here +; is modeled as a sum of cycles of different frequencies and is given as,

{s/2]
"= Z Vist (3.2)
j=1

where [s/2] equals 5/2 if s is even and equals (s — 1)/2 if it is odd. The frequencies here are

j = 27j/s and zre specified by the following equations,

Yit = ’)’j,t_1COS/\j + 7;,t—l * sin)\j + wj e
Yie = —Vit—18inA; + 7, j008A + W],
for j = 1,...,[s/2] where w;; and w;, ~ N(0,02) and are assumed to be independent for fixed j.

It is noted that v/hen s is even, the component at j = s/2 collapses to

Vit = Vjt-1C08A; + wjs, J=5/2 (3.3)

Another form of the seasonal component is called the dummy variable form of the seasonal

component and is described as

s—1
> ei=w, w~idd.N(0,02) (3.4)
i=0

In both the trigcnometric and dummy forms of the seasonal component, if the disturbance variance
02 = 0 then both forms of the seasonal component reduce to a constant seasonal effect which is a
deterministic function completely determined by its first s — 1 values.

Another way of modeling the periodic pattern of a time series is by considering a cycle component.

A deterministic cycle can be written as a mixture of sine and cosine waves such that
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Py = ccos(At) + Bsin(At). (3.5)

where 1, has a frequency of A,0 < A < =, period 27/, amplitude (a? + 82)'/2, phase tan~1(3/a)
and t is measured on a continuous scale. However, it is more useful to consider a more general
stochastic cycle taat has a fixed period but time varying amplitude and phase by adding random
noise and introdicing a damping factor p to the model. The stochastic cycle considered here is

described by the ollowing recursive formulas,

Yo = p(hr_1c0sA + Pf_ sind) + vy
Yy = p(—te-15inA + ¢f_jcosh) +vp

where 0 < p < 1 and the disturbances 14 and v} are independent N(0, 02) variables.

Introducing explanatory variables into a structural time series model is similar to the case of
a standard regression model, and many of the concepts and modeling procedures associated with
regression are relavant to the structural time series models that include explanatory variables. The
regression terms 5:5’:1 diys—i and z;"zl Bjxj, where y,_; and x;; are lagged values of the dependent
variable and other explanatory variables, respectively, and ¢; and 3; are the associated unknown
parameters. > 5., ¢y considers the contribution of lagged values of the dependent variable to
the model while E;"zl Bjx; considers the contribution of other factors to the model. A variety of
transformations including differences, lags and leads can be applied to the variables x;, and included

in the model.

3.2 Diagnostic Tests

In a well-specificd model, the residuals should be approximately random. This section discusses
various statistical tests of the standardized residuals ¥ = v,/ ftl/ 2, where ft1 /2 are the prediction

standard errors, that are appropriate for assessing structural models.

Ljung-Box Test for Serial Correlation:

The residual saraple autocorrelations are given by,
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t=d+1

ru(7) =

The test statistic >f the first P residual autocorrelations is given by

P

Q =T"(T"+2)> (T —7)"'ri(r) (3.7)

=1
where T* = T — ¢, such that d is the number of non-stationary elements of the state vector ay. In
a structural model, Q* is asymptotically x%_,,., such that n* = n — 1 where n is the number of
hyperparameters n the model. A hyperparameter is a stochastic parameter estimated by the model.

Thus, we reject the i.i.d. null hypothesis at a level of o if @* > X%_a’p_n,-

Test for Hetercscedasticity:

Again a diagnost.c test for heteroscedasticity can be constructed from the residuals. Here the test

statistic to consicer is given by

T

>
_ t=T—h+1
Hh) =~ —

~2
> 7

t=d+1

(3.8)

where d is the sane as above and h is the nearest integer to 7*/3. The H(h) statistic can be tested
against an F'(h,}) distribution, thus we reject the null hypothesis of homoscedasticity at level a if

H(R) > F(h,h).

Bowman-Shenton Test for Normality:

The Bowman-Shenton test for normality is based on the third and fourth moments of the residuals

which are the basic measures of skewness and kurtosis of the residuals and are given respectively as

Vo =672% (0 - )3/ T (3.9)

and
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by =674 (i — )T (3.10)

i
where &, = (T —d—1)"! Z (7 —)2. For a normal distribution, equations (3.9) and (3.10) should

t=d+1
be centered around zero and three respectively. The test statistic for normality is thus given by

N = (T*/6)b; + (T*/24)(by — 3)2 (3.11)

Under the null hypothesis of normality, N is asymptotically x3. Thus, we reject the null hypothesis
if N > x32.

Although the normality tests are standard diagnostic tests for model validity, the detection of
non-normality in the residuals does not necessarily imply that the model is not good and a new
model should be found. Non-normality in the residuals often arises due to outlier observations
and structural breaks. These data irregularities often skew the results of the normality tests so
that the null hypothesis is rejected in cases where it should not be rejected. Thus the inclusion
of intervention or dummy variables into the model can correct for this. The idea of dummy and
intervention variables is discussed in detail in the STAMP manual. An outlier which is an unusually
large value of the irregular disturbances at a particular time in the model can by captured by
including a dummy variable that takes on the value one at the time of the outlier and zero elsewhere
as an explanatory variable in the model. On the other hand, a structural break in which the level
of the series shifts up or down can be captured by a dummy variable which is zero before the event
and one at and after the event as an explanatory variable in the model. The detection of irregular
observations in the data can be determined by examining the auziliary residuals (standardized
smoothed estimates of the disturbances). Auxiliary residuals which have absolute value exceeding
two are considered irregular observations and it is these observations that should be corrected for
by the inclusion of dummy variables in the model.

The majority of the data modeling was done by SAS programming software, however when
modeling data that requires the inclusion of dummy variables SAS encounters problems in terms
of calculating residuals. Thus, for data sets that require the inclusion of dummy variables into
the model, the statistical programming package STAMP is used which takes dummy variables into
account properly. It was verified that both SAS and STAMP produce the same results (i.e. p-values)

when dummy variables are not included in the model, thus STAMP was used with confidence when
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dummy variables were included in the model.

3.3 Goodness of Fit

This section explains the goodness-of-fit statistics reported to measure how well the specified model
fits the data. The various statistics of fit are computed using the prediction errors y; — 9. In
these formulae, n is the number of non-missing prediction errors (i.e. T — d). Recall that the
sum of square errors, SSE = 31 | (y: — 9:)? and the total sum of squares corrected for the mean,

SST = Y"1, (y+ — §)?%, where ¥ is the series mean.

Mean Square Error (MSE):

The mean squared prediction error, MSE, is calculated from the one step ahead forecasts and is

given as MSE = SSE/n.

%
R? is the conventional statistic calculated as R? = 1 — (SSE/SST). The better the model fits the
series, the closer the value of R? will be to unity. However, if the model fits the series poorly, the

model error sum of squares SSE may be larger than SST and the R? statistic will be negative.

Thus, a negative R? value indicates a poor model.

R?%, (Random Walk R?):

A better measure for time series data is the Random Walk R? statistic R2, obtained by replacing

the observations by their first differences, that is

E
Rp=1- o (3.12)

Z(Ayt = A_y)2

t=2
where Ay is the mean of the first differences. The model being used here is the simple random walk

plus drift model,

y=y1+B+wn, t=2,....T (3.13)
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This a simple model in which the next period’s forecast is taken to be the current observation plus
the average increase over the sample period. Thus, E?:2(Ayt — Ay)? is simply the SSE for the
model (3.13). Again, a model of good fit will have R2 close to unity and a negative R% value

indicates a poor model.

R% (Seasonally Adjusted R?):

When a seasonal component is included in the model of the time series, a better indication of the

fit of the model is given by the R% value. The adjustment for seasonal components can be done by

simply including s — 1 seasonal dummies if there are s seasons to the model in (3.13). That is

s
w=w-a+ Y Nauj+B+v t=2,...T (3.14)
j=1

where z;;’s are dummy variables taking the value in one season j and zero otherwise, and the 7;’s

are the unknown parameters. Thus, the goodness-of-fit statistic R% is

SSE

R s ]~ s
> SSDSM

(3.15)

where SSDSM is the sum of squares of first differences around the seasonal means. That is, SSDSM
is simply the SSE for the model (3.14). Any model which has R% negative can be rejected, whereas
R% positive but close to zero suggests that there is a marginal gain in model fit for a more complex

model.

3.4 Model Selection

An essential preliminary step in model selection of a univariate time series is graphing the series.
These graphs give insight as to the nature of the model. An unstable variance is often evident by
examining the plot of the series, thus the log transformation of the series is initially taken to stabilize
the variance of the series. It is from here that model selection begins. A general-to-specific approach
is adopted for estimating the model and selecting the most appropriate model. This approach entails
estimating a fully specified model with all the stochastic components and lagged values 1 and 2 of the
dependent variable and then identifying significant components and ‘testing-down’. That is, when
there is no disturbance to a component in an estimated model (i.e. the hyperparameter is estimated

to be approximately zero) a deterministic component can be included in the model instead and if this
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deterministic compcnent is not significantly different from zero then the respective component can
be omitted all together and the model re-estimated. The most appropriate model is then selected
based on the smallest AIC and the largest R,

Once a final moiel is selected it is subjected to a series of diagnostic tests to assess its validity.
If the model passes the series of tests then the model is considered valid. If the model is not valid
based on the diagnostic tests, transformations of the dependent variable and/or the addition of
dummy variables should be considered. Some of the transformations of the dependent variable to

be considered are:

1. V&
2 /i

3. Vi+w
A (Ve +VI+y)
’ 2

1
5. —
Yt

Once a valid model is found, the significance and estimation of any explanatory variable (other
than lagged values because they are considered in the initial model) can be assessed by adding it
to the existing val'd model and re-estimating the model. If the explanatory variable is significant
then the new model with the explanatory variable is re-estimated and its residual tests re-assessed
to ensure the new model is valid. If the new model produces residual tests that suggest the new
model is not good, the explanatory variable should be subjected to some transformation similar to
the ones mentioned above or further dummy variables added to the new model so that the residual
tests suggest that she model is good. Once a valid model is found, model selection and identification

are complete.
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Chapter 4

Modeling Example

In this chapter a detailed example of the modeling procedure used for the time series data will be
outlined. In this example, the asthma data for patients under two years (ASU2) along with viral
data (RSV and FL'J AB) is used. Initially, the ASU2 data is plotted with each of the viral data,
RSV and FLU AB, separately and the resulting graphs can be found in Figure 4.1 and Figure 4.2

respectively.

Asthma Patients Under 2 years and RSV Records by Week

Starting week 14 2001 to week 13 2003

Ber'jes
300 | s-a-a nguz O-G-O.R5Y

200

160

T T T T T

OeEABpAACOrES Toa:
14 10 22 °26 30 3438 42 44502 6 10 14 10 22 26:30 3% 58.42 46 50 2. 5 10 14
Heek

Figure 4.1: Plot of asthma patients under 2 years and RSV positive tests (over mean)
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Asthma Patients Under 2 years and FLU Records by Week

Starting weck 14 2001 to week 13 2003
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Figure 4.2: Plot of asthma patients under 2 years and FLU AB positive tests (over mean)

To get some insight as to the relationship of ASU2 and RSV and FLU AB, the cross-correlations
of ASU2 with RSV and FLU AB were plotted individually, following the method outlined in section
1.3. Below are the plots of the cross-correlations from the differenced data of the log transformed
ASU2 data and tle differenced RSV and FLU AB data. Transformations of the ASU2 and RSV
and FLU AB dat:. were considered in order to obtain stationary data, since the cross-correlation
method described in section 1.3 is best suited for stationary data.

From Figure 4.3, it is evident that the greatest correlation occurs at lag 0 (i.e. no time difference).
At lag 0 there exis:s a positive correlation between the ASU2 and RSV positive tests. At lag 1 there
exists a small negautive correlation between ASU2 and RSV a week behind. At lag 2 there exists a
small positive correlation between ASU2 and RSV two weeks behind. The remainder of the graph
can be interpreted similarly.

From Figure 4 4, it is evident that a positive correlation occurs at lag 0. At lag 1 there exists
a small positive correlation between RSV positive tests and ASU2 a week behind (i.e. positive
correlation between ASU2 and RSV a week ahead). At lag 2 there exists a small positive correlation
between RSV positive tests and ASU2 two weeks behind (i.e. positive correlation between ASU2
and RSV two weeks ahead).
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Cross ACF of differenced logASU2 and RSV data

ToghSU2( 1) x RSV( 1.Y
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Figure 4.3: Cross Correlation Plot of transformed ASUZ and RSV data

Cross ACF of differenced RSV and logASU2 data
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Figwe 4.4: Cross Correlation Plot of transformed RSV and ASU2 data

The remainder >f the graph can be interpreted similarly. It can be noted that Figure 4.3 pertains

to the lagged values of the RSV data, while Figure 4.4 pertains to the lead values of the RSV data.
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Cross ACF of differenced logASU2 and FLU data

ToghSUZ 1) x FLUCL)
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Figure 4.5: Cross Correlation Plot of transformed ASU2 and FLU AB data

Cross ACF of dfferenced FLU and logASU2 data
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Figure 4.6: Cross Correlation Plot of transformed FLU AB and ASU2 data

The plots of tke cross correlations between ASU2 and FLU AB can be interpreted in the same
way the previous plots (Figure 4.3 and Figure 4.4) were interpreted for ASU2 and RSV. Figure 4.5
pertains to lagged values of FLU AB and Figure 4.6 pertains to lead values of FLU AB.
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Next, an appropriate model is found for the ASU2 data by using a general to specific approach,
starting with the most broad model, including all stochastic components and dependent lags 1 and
2, and testing dowr.. First, the broad model was applied to both the untransformed ASU2 data and
the log transformed ASU2 data to determine if the log transformation indeed improves the model by
stabilizing the variance. The fit statistics (including A.I.C., MSE, R? and R%) of the ASU2 model
and the log(ASU2) model are found in Table 4.1 and Table 4.2 respectively.

Table 4.1:
AlC.

960.33607

Fit Statistics of ASU2 Model
MSE R? R3,

648.99367 0.34117

0.62644

Table 4.2: Fit Statistics of log(ASU2) Model
AIC. MSE R R%,
-14.27072 | 0.03839 | 0.72684 | 0.87177

By examining Table 4.1 and Table 4.2, it is noted that the log(ASU2) miodel is indeed better then the
untransformed ASU2 model. Thus, model selection continues based on the log transformed ASU2
data. The log trans formed ASU2 model, including all stochastic components (level, slope, irregular
and cycle) will be denoted as Model 1. The corresponding parameter output for Model 1 is given

below in Table 4.3 and the significance analysis of the components in Model 1 is given in Table 4.4.

Table 4.3: Parameter Estimates of Model 1

Component Parameter Estimate | Std. Error | ¢ Value | Pr > |t
Irregular Error Variance | 7.62492E-10 | 5.02301E-6 0.00 0.9999
Level Error Variance 0.03608 0.0051555 7.00 <.0001
Slope Error Variance | 2.6017E-13 | 3.92139E-9 0.00 0.9999
Cycle Damping Factor 1.00000 0.0001306 | 7658.38 | <.0001
Cycle Period 6.46410 0.08750 73.87 <.0001
Cycle Error Variance | 1.145245E-8 | 1.50364E-8 0.76 0.4463
DepLag Phil -0.02090 0.09771 -0.21 0.8306
DepLag Phi2 0.09243 0.10199 0.91 0.3648
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From section 2.3, tl e estimates of ¥, estimated from the likelihood function, equation 2.10, follow an
asymptotic normal distribution with mean and covariance matrix as described in section 2.3. Since

the observed standard error is used for evaluating the statistic, the estimates follow a t distribution.

Table 4.4: Significance Analysis of Components of Model 1

Component | DF | Chi-Square | Pr > Chi-Square
Irregular 1 0.00 0.999
Level 1 29176.7 <0.0001
Slope 1 0.11 0.7387
Cycle 2 6.66 0.0359

Table 4.4 tests the validity of any restrictions placed on the estimated parameters of the model
(i.e. ¥). Under the null hypothesis, Hy, the maximum likelihood (ML) estimator W is restricted and
is denoted by \i’o. The restricted ML estimator can be contrasted with the unrestricted estimator,
. If the maximized likelihood function under Hy, L(\ilo), is much smaller than the unrestricted
maximized likeliho >d, L(\il), there is evidence against the null hypothesis. This is the idea behind
the likelihood ratio test, where the likelihood ratio is, A = L(¥,)/L(¥). Furthermore, the likelihood
ratio statistic, LR = —2log\ is asymptotically distributed as x2, under Hy, where m is the difference
in the number of parameters to be estimated between the restricted and unrestricted models. Thus,
the results of Table 4.4 are based on this idea.

From Table 4.5 and 4.4 it is evident, by examining the p-values that, the irregular and slope
components are not significant and, by examining Table 4.3, that both dependent lags (1 and 2) are
not significant coniponents in the model. Thus, one proceeds by removing these components and
re-evaluating the model. The new mode! that only consists of the level and cycle components will be
denoted as Model 2. Table 4.5 provides the fit statistics of the Model 2, while Table 4.6 and Table

4.7 provide the parameter estimates and significance analysis of components of Model 2 respectively.

Table 4.5: Fit Statistics of Model 2
AILC. MSE R? R?

D
-40.79207 | 0.03500 | 0.75182 |} 0.87971
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Table 4.6: Parameter Estimates Model 2

Component Parameter Estimate | Std. Error | t Value | Pr > |t|
Level Error Variance | 3.970704E-9 | 4.40098E-6 0.00 0.9993
Cycle Damping Factor 0.88518 0.03683 24.04 <.0001
Cycle Period 34.80643 11.94365 2.91 0.0036
Cycle Error Variance 0.03145 0.0099566 3.16 0.0016

Table 4.7: Significance Analysis of Components of Model 2

Component | DF | Chi-Square | Pr > Chi-Square
Level 1 3219.04 <0.0001
Cycle 2 2.00 0.3675

From Table 4.7, it ppears that the level component is significant, however from Table 4.6 it appears
that the level error variance is not significant in the model. Although, the cycle component in Table
4.7 appears not to be significant in the model, all of its components are significant in Table 4.6,
thus it should remain in the model. Therefore, the model is once again re-estimated by removing
the level error variance, by setting it equal to zero in the model. The new model that consists of a
cycle component and level component with level error variance set equal to zero will be denoted by
Model 3. Table 4.8 provides the fit statistics of the Model 3, while Table 4.9 and Table 4.10 provide

the parameter estiinates and significance analysis of components of Model 3 respectively.

Table 4.8: Fit Statistics of Model 3
AlC. MSE R R},
-42.79207 | 0.03500 | 0.75182 | 0.87971
Table 4.9: Parameter Estimates Model 3
Component Parameter Estimate | Std. Error | ¢ Value | Pr > |t
Cycle Damping Factor | 0.88518 0.03683 24.04 <.0001
Cycle Period 34.80643 | 11.94365 2.91 0.0036
Cycle Error Variance 0.03145 | 0.0099566 3.16 0.0016

Table 4.10: Significance Analysis of Components of Model 2

Component | DF | Chi-Square | Pr > Chi-Square
Level 1 3219.04 <0.0001
Cycle 2 2.00 0.3675
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In order for the strictural time series approach via Kalman filters to work, a model must contain at
least one stochastic component, thus the model is not tested down further and should not be as Table
4.9 shows that the error variance of the cycle component is significant. Furthermore, by examining
the fit statistics of the Models 1, 2 and 3 by examining Tables 4.2, 4.5 and 4.8 respectively, it is
observed that Mocel 3, the simplest model has the smallest AIC value with the largest R"’D value,
thus the appropriste model for the asthma under 2 years data is Model 3, level component (with
level variance set to zero) and cycle component. Thus, model 3 is the most appropriate model for
the ASU2 data.

Now that the test model has been selected for the ASU2 data, this model must now be verified

by examining the esidual plots and tests as discussed in section 3.2.

Residud Plot of log(ASU2) Model

~0.61
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Figure 4.7: Residual Plot of ASU2 model (Model 3)
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Residuad ACF of log(ASU2) Model
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I'igure 4.8: ACF of the residuals of the ASU2 model (Model 3)

Table 4.11: Ljung-Box Residual Test
P | Chi-Square | DF | P-value
6 2.27 6 | 0.8937
12 10.68 12 | 0.5562
18 19.33 18 | 0.3716
24 26.70 24 | 0.3188

Table 4.12: Other Residual Tests
Test Statistic | P-value

Heteroscedasticity | 1.0040073 | 0.4954
Bowman-Shenton | 0.1122158 [ 0.9454

The residual plots for the ASU2 model (Figure 4.7 and Figure 4.8) appear reasonable and the residual
tests (Table 4.11 and Table 4.12) do not give evidence against the model, therefore this model is an
appropriate model for the ASU2 data. If the residual tests appeared to be unreasonable, it is at this
point that dummy variables are introduced into the most model as explanatory variables in order
to make the residuals appropriate.

A valid model has been found for the ASU2 data, thus testing the independence between ASU2
(dependent variablz) and the viral infections (independent variables) RSV and FLU AB can proceed.

In order to test for independence of ASU2 and the viral infections, the untransformed viral data

29


http:Resid.Ja

along with seven transformations of the viral data were considered. The seven transformations
included were; differenced(1) (difl), lag 1 (lagl), lag 2 (lag2), lag 1 of differenced(1) (lagdif), lag
2 of differenced(1) (lag2dif), lead 1 (leadl), lead 2 (lead2). The eight tests for each viral infection
were considered in order to account for a variety of possibilities of the independent variable. Table

4.13 and Table 4.14 show the results of the eight tests for the RSV and FLU AB data respectively.

Table 4.13: RSV Predictors
AIC

Component | Estimate P-value MSE R? R Adj. P-value
RSV 0.00241 0.0070 ** | -35.08301 | 0.03442 | 0.75666 | 0.88738 0.0550
difIRSV 0.00204 0.0067 ** | -32.60532 | 0.03554 | 0.74788 | 0.88423 0.0550
laglRSV -0.00122 0.2282 -28.81985 | 0.03823 | 0.72878 | 0.87546 1.8259
lag2RSV 0.00125 0.1803 | -27.79605 | 0.04242 | 0.69822 | 0.85834 1.4428
lagdifRSV -0.00125 0.1072 -26.65914 | 0.03623 | 0.74222 | 0.87899 0.8574
Tag2difRSV | 0.00040520 | 0.6111 | -23.03748 | 0.04088 | 0.70988 | 0.86565 1.8884
RSVleadl 0.00194 0.0341 * | -31.48521 | 0.03646 | 0.74462 | 0.88172 0.2070
RSVlead2 | 0.00150 0.1060 | -30.59084 | 0.03554 | 0.75345 | 0.88528 0.8477

Table 4.14: FLU AB Predictors

Component | Estimate | P-value AIC MSE R R}, | Adj. P-value
FluABPos | -0.00045651 | 0.5139 | -29.25170 | 0.03608 | 0.74491 | 0.88194 4.1111
difiIFLU | -0.00022439 | 0.6575 | -25.77415 | 0.03631 | 0.74236 | 0.88169 5.2602
laglFLU | -0.00001176 | 0.9866 | -27.92046 | 0.03707 | 0.73701 | 0.87924 7.8930
lag2FLU 0.00027439 0.6967 | -26.62657 | 0.03786 | 0.73064 | 0.87355 5.5734
lagdifFLU | -0.00013455 | 0.7915 | -24.21244 | 0.03869 | 0.72475 | 0.87079 6.3316
lag2difFLU | 0.00011885 | 0.8165 [ -22.84895 | 0.04013 | 0.71513 | 0.86808 6.5316
FLUlead1 0.00151 0.0279 * | -32.01457 | 0.03795 | 0.73324 | 0.87741 0.2231
FLUlead2 | -0.00066647 | 0.3391 | -29.54500 | 0.03867 | 0.73172 | 0.87517 2.7126

* : significant at a 5% level of significance
** : significant at a 1% level of significance

**+* . significant at a 0.1% level of significance

It should be noted that the column “Adj. P-value” is an adjusted p-value column. The p-values
obtained through the software were adjusted for by the Bonferroni Adjustment in order to keep
the overall experiment rate to an a-level of 0.05. The a-level is the probability of making a type
I error (i.e. error of incorrectly determining a factor to be significant when it is not significant).
In the case of more than one statistical test, the chance of finding at least one test statistically
significant due to chance in the total experiment, and hence incorrectly declare a significant effect,

increases. Thus, in eight tests the chance of finding at least one relationship significant due to chance
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fluctuation, assuming independence, equals 0.125, or one in eight. Using the Bonferroni method the
a- level of each individual test is adjusted downwards to ensure that the overall experimentwise risk
for a number of tests remains 0.05. Thus, the a-level for eight tests would be adjusted downward
by dividing 0.05 by eight, resulting in an a-level of 0.00625. Equivalently, multiplying the p-value
obtained by the test by eight and testing the resulting adjusted p-value against the a-level 0.05 is the
exact same adjustment for eight tests as the previous statement. This latter method of adjustment
was used for testing of independence in the project. The Bonferroni Adjustment ensures that if more
than one test is done the risk of finding a difference or effect incorrectly significant continues to be
less than 0.05. It should also be noted that simulations were also done to adjust for the p-values
in the case that the Bonferroni adjustment method was too conservative. However, the simulations
gave adjustment factors close to eight, thus the Bonferroni adjustment method was used.

By examining the adjusted p-values in Table 4.13 and Table 4.14, neither RSV nor FLU AB are
significant predictors for the ASU2 data. In a case where a significant predictor existed, the residual

plots and residual tests would be examined to verify the model.
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Chapter 5

Results and Discussion

In this chapter the -esults of the 18 analyses done for this project are presented and discussed. The
models are presented in table format and the components of the model along with the predictors
are included. Comonents included in the model will be identified with a “x” are assumed to be
stochastic if not otherwise indicated (i.e. var = 0) and components not included in the model
are identified with a “-”. Furthermore, significant predictors are indicated by the test that was
significant and the resulting adjusted p-value given in brackets, otherwise non-significant predictors
are represented by “N.S.”. It should finally be noted that all the models are for the log transformed

dependent variables.
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5.1 Asthma Age Groups

Table 5.1: Asttma Age Group Models with Viral Infections (RSV FLU AB) as Predictors

Age level slope | cycle | irregular | lags | dummy RSV | FLU
(years) variables
(year/week)
Under 2 | x (var=0) - X - - - NS. | NS,
2-4 x (vrar=0) - X - lag 1 - N.S. | N.S.
5-15 x (v7ar=0) - X - 2002/1* NS. | N.S.
2003/1*

16-49 x (‘rar=0) - X X lag 1 | 2001/52 N.S. [ N.S.
2002/52

Over 50 - - X - lag 1 - N.S. | N.S.

* ;. dummy variables are for structural break in the level component

By examining Table 5.1 it is evident that the viral infections RSV and FLU AB are not significant
predictors of asthma hospitalizations in children under two years. Looking back at Figures 4.1 and
4.2, which plot ASU2 together with RSV and ASU2 together with FLU AB respectively, it is noted
that the results shcwn in Table 15 correspond to the graphical display in these two plots as a direct
relationship or correspondence between ASU2 and the viral infection is not evident. That is, by
examining Figure 4.1 and Figure 4.2, the peaks and troughs of ASU2 do not graphically correspond
with the peaks and troughs of the viral infection, thus confirming the result that RSV and FLU AB
are not significant -redictors of ASU2. Furthermore, by examining the other age groups of asthma,
it is noted that RSV and FLU AB are not significant predictors of these other asthma age groups.

Thus, no relationst ip was found between RSV and FLU AB and asthma hospitalizations in any age

group.
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5.2 RTI Age Groups

Table 5.2: RTI Age Group Models with Viral Infections (RSV FLU AB) as Predictors

Age
(years)

level

slope

cycle

irregular

lags

dummy
variables
(year/week)

RSV

FLU

Under 2

x (var:=0)

lag 1

2001/52
2002/52

difl
(0.0032)

N.S.

2-4

X

2001/52
2002/51
2002/52

N.S.

N.S.

5-15

2001/52
2002/51
2002/52

N.S.

leadl
(0.0016)

16-49

lag 1

2001/52
2002/2
2002/14
2002/52
2003/1
2003/2

N.S.

N.S.

Over 50

lag 1
lag 2

2001 /52
2002/52

N.S.

N.S.

RSV is strongly associated with RTI hospitalizations in children under 2 years and FLU AB is

strongly associated with RTT hospitalizations in school aged children 5-15 years. By examining the

transformations of the significant relationships, it is evident that RTI is related to the difference

between consecutive RSV positive tests in children under 2 years, whereas RTI is related to FLU

AB one week ahead in patients 5-15 years. In the other RTI age groups (2-4, 16-49 and over 50),

RSV and FLU AB have no apparent association with RTI.
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5.3 COPD Over 50

Table 5.3: COPD Over 50 Model with Viral Infections (RSV FLU AB) as Predictors

Age level | slope | cycle | irregular | lags dummy RSV FLU
(years) variables
(year/week)
Over 50 X - - x lag 1 | 2001/52 N.S. N.S.
lag 2 2002/52

COPD hospitalization in adults over 50 years show no association with RSV and FLU AB.

5.4 Respiratory Disease Analysis By Age Group

In this section the respiratory diseases were tested for independence by age group. Table 5.4 gives the
results of these analyses. The dependent variable is indicated along with the independent variable
of the model. The initial model for the dependent variable is given in either Table 5.1, Table 5.2 or
Table 5.3 excluding the viral infection predictors, thus the model components will not be displayed

in Table 5.4 and only the significance of the independent variable will be noted.

Table 5.4: Respiratory Disease Analysis By Age Group

Age (years) | Dependent variable | Independent variable Significance
Under 2 Asthma RTI difl (2.0491626E-9)
2-4 RTI Asthma AS24 (0.008)
5-15 Asthma RTI lagdif (0.0104)
16-49 Asthma RTI lag2 (0.0128)
Over 50 Asthma RTI difl (0.0000)
Over 50 COPD asthma ASO50 (0.0000)
Over 50 COPD RTI RTIO50 (0.0000)

By examining Table 5.4, it is noted that the respiratory diseases are all strongly associated.
Asthma has a strong relationship with RTI in all age groups and these relationships are based
on different transformations of the RTI data across the age groups. However, COPD is strongly
associated with the exact data (no transformations) of both asthma and RTI. As an example, by
examining Figure 5.1 and Figure 5.2 below, which display the plots of COPD and asthma over 50
and COPD and RTT over 50 respectively, the strong association of respiratory diseases in adults over

50 is clearly evident as the plots are overlapping and follow very similar paths.
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COPD Patients over 50 years and Asthma Patients over 50 years

Starting week 14 2001 to week 13 2003
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Figure 5.1: COPD and Asthma Patients Over 50 (over mean)
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Figure 5.2: COPD and RTI Patients Over 50 (over mean)

5.5 Discussion

It is believed, yet not confirmed, that the influenza virus is often related to respiratory disease
in young children and adults over 50 years and can have a severe effect on them. However, this
relationship was not evident in the results presented in this project. Influenza is a virus with multiple

strains and in any given year individuals may be effected by any of a number of these strains. Thus,
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the influenza virus is unpredictable and the strain types and associated severity vary from year to
year, with varying effects on respiratory disease patients yearly. Likewise, the capacity for influenza
strains to exacerbations in COPD varies continually in an unknown fashion. Furthermore, with the
availability of the influenza vaccination, the response of asthmatic, RTI and COPD patients to the
influenza virus may also be affected, explaining the results presented. Thus, in a single year, it
is perfectly feasible that no relationship may be found between the influenza virus and suspected
respiratory disease children and adults. By the same token, the particular influenza strains for the
virus in that year may have had a more severe affect on school-aged children, 5-15 years. The fact
that children are exposed to other school-aged children throughout the year in a school setting makes
them more susceptil le to contracting and spreading the influenza virus and resulting in a respiratory
tract infection. Thus, again it is feasible that in any given year a relationship between influenza and
RTI in school-aged children 5-15 years exists.

On the other hand, while RSV is a single virus, its antigenic profile changes, permitting multiple
or serial infections. [t is possible then that in any given year the pathenogenicity of RSV may vary
itself or be influenced by cofactors, thus again it is possible that in a single year no effect maybe
found with respiratory diseases over the various age groups (except children under 2 years) even
though an effect may be found over multiple years. However, a significant relationship between
RSV and RTI for children under 2 was found through the analysis. This relationship is considered
common knowledge to professionals in the field of respiratory health as RSV is the number one cause
of RTT in infants. Thus, the result found in the analysis confirms this idea.

Finally, the strong relationship between the respiratory diseases within each age group seems
very reasonable. Fo- children under 5 years (under 2 years, 2-4 years), asthma and RTI are difficult
to distinguish between since their respiratory system is not fully developed yet. Furthermore, when
these children are hospitalized, the main concern is to fix the problem, thus misdiagnosing and
overlapping of diagnoses can occur. Furthermore, for the other age groups, when an individual with
asthma or COPD suffers and is hospitalized with RTT, often the effects of RTT cause their asthma
and COPD exacertations to be increased, resulting in hospitalizations. Similarly, for adults over
50, either increased asthma or COPD exacerbations causes the other to be increased, resulting in a

significant relationship.
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Chapter 6

Conclusions and Future Work

The results have demonstrated successful application of structural time series modeling to the data
and have have successfully demonstrated that respiratory diseases over different age groups respond
differently to different viral infections. Thus, the relationship between respiratory diseases and viral
infections are unpredictable.

However, some ideas are suggested for the unpredictable results. First and foremost, the research
and analysis performed for this project was based on data from week 14 of the year 2001 to week
13 of the year 2003 inclusive. By examining the plots of this data (Figure 4.1 and Figure 4.2), it
is noted that these data include only one full peak of the viral infections and part of another peak.
Thus, although the results of the analysis are valid for this data set, it may not be appropriate
and effective to make these results conclusive for the population, since the second partial peak may
be skewing the results. Thus, future studies should apply the same methodology to multiple years
of data to determine more conclusive results. Furthermore, although the data are collected with
caution, the timing of the reported viral infection positive tests are not as accurate and are, in fact,
reported later than the week they were actually taken. Although this reporting discrepancy was
accounted for by adjusting all the dates by a set period based on the average of the reporting time,
this may also affect the results slightly.

Currently, I am doing work with the Firestone Institute for Respiratory Health at St. Joseph’s
Hospital, extending my research and analysis to an eight-year data set that includes seven peaks of
the viral infections. The eight-year data are being examined and analysed as a complete data set

and the seven individual peaks are being analysed separately for further verification, using the same
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theory and methods applied throughout this project. I am also including simulations to find the
appropriate p-values for the tests when the sample size is small. The larger data set will provide
a more insightful look to the true relationship between respiratory diseases and viral infections of

different age groups.
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Appendix

Appendix A: SAS Program

This appendix inclu.des all the SAS programming code used for the analyses done using SAS in this

project.

PLOTTING ORIGINAL DATA PROGRAM:

/* Calls the comma separated value file from excel to be used and */
/* tells what variables to include */

data ASU2;

infile ’C:\Documents and Settings\owner\My Documents\SAS files\
ASU2andRSVandFLlU.csv? DSD firstobs=2;

input week $2. ASU2 RSV FLU ;

run;
/* Create a new variable STATEORD that contains the x/
/* numerical ordering of observations from the original =*/
/* data set ONE. */
data add_n;

set ASU2 end=last;

wk_ord=_n_;

run;

/* Create the control data set STNAME using the ADDN */
/* data set. Tte control data set contains the */

/* following required variables: */

/* START contains the unformatted values */
/* LABEL contains the formatted values (state names) */

/* FMINAME= contains the name of the format (DATAORD) */
/* TYPE= conta:ns the type of the format, N for numeric */
/* or C for character variables. */
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data wk_name;

set add_n(rename=(wk_ord=start week=label));
fmtname=’dataorc’;

type=’N’;

keep fmtname latel start type RSV FLU;
run;

proc format cntlin=wk_name;
run;

/* Creates time sieries plots of ASU2 and RSV patients /*
goptions reset=all;

proc gplot data=add_n;
symboll i=spline v=circle h=1 c=red; */ i is to join points */
symbol2 i=spline v=circle h=1 c=blue; */ v is ype of point ¥/
*/ h is size of point #*/

plot ASU2 * wk_ord =1

RSV * wk_ord =2 /

overlay

haxis=axisl

vaxis=axis2

legend=legandl;

format wk_ord dataord.;

title ’Asthma Patients Under 2 years and RSV Records by Week’;
title2 ’Starting week 14 2001 to week 13 2003°;

axisl offset=(2,2) minor=(n=1) order=(1 to 108 by 4) label=(’Week’);
axis2 label=(’Series’);

legendl label=none position=(top left inside);

run;
quit;

CROSS-CORRELATICN PLOTS PROGRAM:
/* Cross ACF of difASU2 and difRSV data */

ods trace on; %/ Putting ODS trace on will identify the names of */
»:/ of all the output given in the procedure */

proc arima data::ASU2andRSVandFLU; */ computes cross—correlation of 2 time series */
identify var=logASU2(1) crosscorr=0NRSVPos(1); /* ASU2 x RSV */

ods output corrgraph=crosscorr_RSV;

/* ODS OUTPUT statement will put the selected outputs into useable */

/* data sets */

ods select corriraph;
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run;

proc arima data=ASU2andRSVandFLU;

identify var=0NRSVPos(1) crosscorr=logASU2(1); */ RSV x ASU2 */
ods output corrgraph=crosscorr2_RSV;

ods select corrgraph;

ods trace off;

run;

/* Preparing data sets for plotting cross-correlations */

data crosscorr_RSV;

set crosscorr_RSV;

obs=_n_;

run;

data crosscorr2_RSV;

set crosscorr2_RSV;

obs=_n_;

run;

data crosscorr_diflogASU2xdifRSV;
set crosscorr_RSV;

keep lag correlation obs;

if obs GE 50;

run;

data crosscorr_difRSVxdiflogASU2;
set crosscorr2_RSV;

keep lag correlation obs;

if obs GE 50;

run;

/* Plotting Cross ACF of diflogASU2 x difRSV */

goptions reset=all;

proc gplot data=crosscorr_diflogASU2xdifRSV;
symbol i=needle c=blue width=7;

plot correlation * lag /

haxis=axisi

vaxis=axis2

vref= -.19219 .19219 lvref=3;

title ’Cross ACF of differenced logASU2 and RSV data’;
title2 ’1logASU2(1) x RSV(1)’;

axisl label=(’Lag’) order=(0 to 25 by 1);
axis2 label=(’ACF’) order=(-1 to 1 by 0.2);

run;
goptions reset=all;

proc gplot data=crosscorr_difRSVxdiflogASU2;
symbol i=needle c=blue width=7;
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plot correlation * lag /
haxis=axis1

vaxis=axis2

vref= -.19219 .19219 lvref=3;

title ’Cross ACF of differenced RSV and logASU2 data’;
title2 ’RSV(1) x logASU2(1)’;

axisl label=(’Lag’) order=(0 to 25 by 1);
axis2 label=(’ACF’) order=(-1 to 1 by 0.2);

run;
PRELIMINARY MODELLING:

/* Using the UCM (Unobserved Component Models) procedure */
/* (Structural Models) for time series data. */

/* Not including a component in the Proc Ucm implies that */
/* that component is not in the model of the time series. */
/* If the component in the model is not stochastic, the */
/* error variance is set to zero and not estimated. */

PROC UCM DATA=ASU2ANDRSVANDFLU;

ID DATE INTERVAL=WEEK; /* ID - specifies date or time variable */
/* INTERVAL - indicates measurement spacing */

MODEL LOGASU2; /* specifies the dependent series that you */
IRREGULAR variance=0 noest; /* specifies the irregular component (epsilon)*/
LEVEL variance=0 noest; /* specifies the level component (mu) */
SLOPE variance=0 noest; /* specifies the slope component (beta) */
CYCLE PRINT=SMOOTHED; /* specifies the cycle component (psi) */
SEASON length=52; /* specifies the season component length */

ESTIMATE ; /* estimates the parameters */

FORECAST OUTFOR=modelFOR lead=0 PRINT=DECOMP;

/* requests series forecasts and forecasts of the sum of components */
/* print=decomp requests the printing of the smoothed trend (mu) and the */
/* trend plus seasonal (mu + gamma) */

0DS output fitstatistics=fitstatistics ;

ODS output fitsummary=fitsummary;

ODS output parameterestimates=parameterestimates;

ods select parameterestimates fitsummary fitstatistics componentsignificance;

title *UCM of LOGASU2’;
RUN;

*/ Preparing data sets for Residual Tests */;
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data fitstatistics;

set fitstatistics;

if _-n_=1 or _n_=5 or _n_=7;
keep fitstatistic value;
run;

data fitsummary;

set fitsummary;

if _n_=4;

keep fitstatistic value;
run;

data fits;

set fitsummary fitstatistics;

run;

proc transpose data=fits out=fits_transpose;
run;

data out;

set fits_transpose;

label coll=’AIC’ col2="MSE’ col3=’R-squared’ col4=’R.R-squared’;
drop _name_;

run;

data model_residuals;

set modelfor;

std_res= residual/std;
std_res_sq=std_res**2;

keep date residual std std_res std_res_sq;
run;

proc timeseries data=model_residuals outcorr=ACF_model_residuals;
var residual;

run;

proc means data=model_residuals n nmiss mean;

var std_res;

ods output summary=statsummary;

ods select summary;

run;

/* Q statistic (Ljung-Box) where the # of d.f. for the Chi-square should be */
/* P-n*, where n*=n-1 where n is the number of hyperparameters */
/* (i.e. the number of parameters estimated by the model). */

proc arima data=model_residuals;
identify var=std_res;

ods output chisqauto=Qtest;

ods select chisquto;

run;
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DATA Qtest;

set Qtest;

DFnew = tolags-(n-1);

alue = 1-probchi(chisq,dfnew);
keep tolags chisc, DFnew pvalue;
run;

DATA Qtest;

set Qtest;

label DFnew=’DF’
pvalue=’P-value’;
run;

/* Heteroscedasticity Test: h=T*/3, T*=T-d, d=no. of non-stationary components */

ods output stat_pvalue=heteroscedasticity;

proc iml;

use statsummary;

read all var {std_res_N std_res_NMiss} into stats[colname=labels];
no_obs=stats[1,1];

d=stats([1,2];

T=no_obs+d;

Tstar=T-d;

n=floor(Tstar/3];

use model_residuals;

read all var {std_res_sq} into res[colname=labels];
nun=sum(res[T-m--1:T,1);

den=sum(res[d+1:d+m,]);

stat=num/den;

pvalue=1-probf (stat,m,m);

title ’Heterosciedasticity Test’;

print stat pvalie;

/* Normality test of the Residuals */
ods output stat_pvalue=bowmanshenton;

proc iml;

use statsummary;

read all var {std_res_N std_res_NMiss std_res_mean} into stats[colname=labels];
no_obs=stats[1,1];

d=stats([1,2];

T=no_obs+d;

Tstar=T-d;

use model_resicuals;

read all var {std_res} into res{colname=labels];
res_mean=res-shats[1,3];

res_mean2=res_niean##2;

res_mean3=res_liean##3;

res_meand=res_inean##4;

sigma=sqrt ((sun(res_mean2{d+1:T,1))/(t-d));
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skew=(1/sigma##3) *((sum(res_mean3[d+1:T,1))/(tstar));
kurt=(1/sigma##4) *((sum(res_mean4[d+1:T,]1))/(tstar));
term1=(Tstar/6) *(skew**2);
term2=(Tstar/24)((kurt-3) **2) ;

stat=terml + tern2;

pvalue=1i-probchi stat,2);

title ’Bowman-Shenton Test’;

print stat pvalue;

data residualtes:;
set heteroscedasticity bowmanshenton shapirowilk;
run;

ods output restest=restest;

proc iml;

use residualtest;

read all into restest[colname=labels];
Test={’Heteroscedasticity’, ’Bowman-Shenton’, ’Shapiro-Wilk’};
Name={’Statistic’ ’P-value’};

use Qtest;

read all into qtest[colname=labels];
title ’Residual Tests’;

print qtest;

print restest[r=test c=name];

quit;

data restest;

set restest;

label rowname=’"'est’;

run;

*/ Defines the :emplate style for which the output will be displayed */

proc template;
define style styles.output;
parent=styles.rtf;
style table fron table /
tagattr="align="left" style="position:relative;top:.2in"’;
style systemtitle from systemtitle /
protectspecialchars=off;
Style Data from Data /
font_size=2

Just=c;
end;
run;
*/ Sets the data sets to be outputted in the given template form */
*/ This will produce the three charts similar to Tables 4.2,4.11,4.12 */
*/ in one output file */

options nodate nonumber;
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ods listing close;

ods rtf file=’outiput.rtf’style=styles.output startpage=yes bodytitle;
title ’\b\i0 Fit Statistics’;

data _null_;

file print ods;

set out;
put _ods_;
run;

ods rtf startpage=no;

title ’\b\i0 Ljuig-Box Residual Test’;
data _null_;

file print ods;

set Qtest;

put _ods_;

run;

ods rtf startpaga=no;

title ’\b\i0 More Residual Tests’;
data _null_;

file print ods;

set restest;

put _ods_;

run;

ods _all_ close;

ods listing;

/* Plotting residuals of LOGASU2 model */

GOPTIONS RESET=ALL;
proc gplot data-model_residuals;
symboll i=join v=circle h=0 C=BLUE width=1;
plot RESIDUAL * date /
overlay
haxis=axisi
vaxis=axis2;

title ’Residual Plot of log(ASU2 Model’;

axisl label=(’Date’)
order=(’1APRO:.’d to ’1APR03’d by year);
axis2 label=(’Residuals’);

run;
/* Plotting ACF of residuals of LOGASU2 model */

goptions reset=all;

proc gplot data=ACF_model_residuals;
symbol i=needle c=blue width=7;

plot ACF * lag /

overlay

haxis=axisl
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vaxis=axis2;
vref=-.19219 ,19219 1lvref=3;

title ’Residual ACF of log(ASU2) Model’;

axisli label=(’Lag’);
axis2 label=(’ACF’) order=(-1 to 1 by 0.2);

run;
MODELLING RSV AS A PREDICTOR:
/* Proc expand computes transformations of the independent variable */

proc expand data=ASU2andRSVandFLU out=RSV method=none;
id date;

convert ONRSVPcs=difiRSV / transform = (dif 1);
convert ONRSVPcs=lagiRSV / transform = (lag 1);
convert ONRSVPcs=lag2RSV / transform = (lag 2);

convert ONRSVPcs=RSVleadl / transform =( lead 1 );
convert ONFSVPos=RSVlead2 / transform =( lead 2 );
run;

/* Prepares data sets for the predictor modeling by removing missing values */

data RSVi;

set RSV;

keep date logASU2 dif1RSV lagiRSV;
if _n_ =1 then delete;

run;

data RSV2;

set RSV;

lagdifRSV=1ag(dif1RSV);

keep date logASJ2 lagdifRSV lag2RSV;
if _n_ LE 2 then delete;

Tun;

data RSV3;

set RSV;
lag2difRSV=1ag2(dif1RSV);
keep date logASU2 lag2difRSV;
if _n_ LE 3 then delete;

run;

data RSVleadi;

set RSV;

keep date logASU2 RSVleadl;
if n_ LT 104;

Tun;
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data RSVlead?2;

set RSV;

keep date logASU2 RSVlead2;
if n_ LT 103;

run;

data RSV_dif1RSV;

set RSV;

RSV_dif 1RSV=0NRS\Pos*dif1RSV;

keep date logASUZ! ONRSVPos dif1RSV RSV_dif1RSV;
if difiRSV = . then delete;

run;

/* Program that will run all eight transformations and the final
/* output will b2 that similar to Table 4.13

PROC UCM Data=RSV;

ID DATE INTERVAL=WEEK;

MODEL LOGASU2=0NRSVPos;

IRREGULAR variance=0 noest;

LEVEL variance=( noest;

CYCLE PRINT=SMOCTH;

ESTIMATE ;

FORECAST OUTFOR-modelFOR lead=0 PRINT=DECOMP;

ODS output fitstatistics=fitstatistics ;

0DS output fitsummary=fitsummary;

0DS output parameterestimates=parameterestimates;

ods select parameterestimates fitsummary fitstatistics
componentsignificance;

title *UCM of A3U2 with RSV as a predictor’;
RUN;

data fitstatistics;

set fitstatistics;

if n_ =1 or _n_=5 or _n_=7;
keep fitstatistic value;

run;

data fitsummary;

set fitsummary:

if _n_=4;

keep fitstatistiic value;

run;

data fits;

set fitsummary fitstatistics;
run;

proc transpose data=fits out=fits_transpose;
run;
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data estimates;
set parameterestimates;

if _n_=4;
keep component probt estimate ;
run;

data out_RSV1;
merge estimates i'its_transpose;

label coli=’AIC’ col2="MSE’ col3=’R-squared’ col4=’R.W.

drop _name_;
run;

PROC UCM Data=RS7;

ID DATE INTERVAL:=WEEK;

MODEL LOGASU2=dif1RSV;

IRREGULAR variance=0 noest;

LEVEL variance=0 noest;

CYCLE PRINT=SMOOTH;

ESTIMATE ;

FORECAST OUTFOR=modelFOR lead=0 PRINT=DECOMP;

ODS output fitstatistics=fitstatistics ;

ODS output fitsummary=fitsummary;

ODS output parameterestimates=parameterestimates;

ods select parameterestimates fitsummary fitstatistics
components:.gnificance;

title 'UCM of ABU2 with difiRSV as a predictor’;
RUN;

data fitstatistics;

set fitstatistics;

if _n_=1 or _n_=5 or _n_=7;
keep fitstatistic value;
run;

data fitsummary;

set fitsummary;

if _n_=4;

keep fitstatistic value;

run;

data fits;

set fitsummary fitstatistics;
run;

proc transpose data=fits out=fits_transpose;
run;

data estimates:

set parameterestimates;

if _n_=4;

keep component probt estimate ;
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run;
data out_RSV2;
merge estimates fits_transpose;

label coli=’AIC’ col2="MSE’ col3=’R-squared’ col4=’R.W.

drop _name_;
run;

PROC UCM Data=RSV;

ID DATE INTERVAL=WEEK;

MODEL LOGASU2=1ag;1RSV;

IRREGULAR variance=0 noest;

LEVEL variance=0 noest;

CYCLE PRINT=SMOO'H;

ESTIMATE ;

FORECAST OUTFOR=110delFOR lead=0 PRINT=DECOMP;

ODS output fitstatistics=fitstatistics ;

0DS output fitsummary=fitsummary;

O0DS output paramsterestimates=parameterestimates;

ods select paramaterestimates fitsummary fitstatistics
componentsignificance;

title ’UCM of ASU2 with laglRSV as a predictor’;
RUN;

data fitstatistics;

set fitstatistics;

if _n_=1 or _n_=5 or _n_=7;
keep fitstatistic value;

run;

data fitsummary;

set fitsummary;

if _n_=4;

keep fitstatistic value;

run;

data fits;

set fitsummary :‘itstatistics;
run;

proc transpose data=fits out=fits_transpose;
run;

data estimates;

set parameteres:imates;

if _n_=4;
keep component >robt estimate ;
run;

data out_RSV3;
merge estimates fits_transpose;

label coli=’AIC’ col2=’MSE’ col3=’R-squared’ col4=’R.W.

drop _name_;
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run;

PROC UCM Data=RSV;

ID DATE INTERVAL=WEEK;

MODEL LOGASU2=1ag2RSV;

IRREGULAR variance=0 noest;

LEVEL variance=0 noest;

CYCLE PRINT=SMOOTH;

ESTIMATE ;

FORECAST OUTFOR=modelFOR lead=0 PRINT=DECOMP;

0ODS output fitstatistics=fitstatistics ;

0DS output fitsummary=fitsummary;

0DS output parameterestimates=parameterestimates;

ods select parameterestimates fitsummary fitstatistics
componentsignificance;

title ’UCM of ASU2 with lag2RSV as a predictor’;
RUN;

data fitstatistics;

set fitstatistics;

if .n. =1 or _n_=5 or _n_=7;
keep fitstatistic value;

run;

data fitsummary;

set fitsummary;

if _n_=4;

keep fitstatistic value;

run;

data fits;

set fitsummary fitstatistics;
run;

proc transpose data=fits out=fits_transpose;
run;

data estimates;

set parameterestimates;

if _n_=4;
keep component probt estimate ;
run;

data out_RSV4;

merge estimates fits_transpose;

label coll=’AIC’ col2="MSE’ col3=’R-squared’ col4=’R.W. R-squared’ probt=’p-value’;
drop _name_;

run;

PROC UCM Data=RSV;
ID DATE INTERVAL=WEEK;
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MODEL LOGASU2=lagdifRSV;

IRREGULAR variance=0 noest;

LEVEL variance=0 noest;

CYCLE PRINT=SMOOTH;

ESTIMATE ;

FORECAST OUTFOR=modelFOR lead=0 PRINT=DECOMP;

ODS output fitstatistics=fitstatistics ;

0DS output fitsummary=fitsummary;

0DS output parameterestimates=parameterestimates;

ods select parameterestimates fitsummary fitstatistics
componentsignificance;

title ’UCM of ASU2 with lagdifRSV as a predictor’;
RUN;

data fitstatistics;

set fitstatistics;

if n =1 or _n_=5 or _n_=7;
keep fitstatistic value;
run;

data fitsummary;

set fitsummary;

if _n_=4;

keep fitstatistic value;

run;

data fits;

set fitsummary fitstatistics;
run;

proc transpose data=fits out=fits_transpose;
run;

data estimates;

set parameterestimates;

if _n_=4;
keep component probt estimate ;
run;

data out_RSV5;
merge estimates fits_transpose;

label coll=’AIC’ col2="MSE’ col3=’R-squared’ col4=’R.W.

drop _name_;
run;

PROC UCM Data=RSV;

ID DATE INTERVAL=WEEK;
MODEL LOGASU2=1ag2difRSV;
IRREGULAR variance=0 noest;
LEVEL variance=0 noest;
CYCLE PRINT=SMOOTH;
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ESTIMATE ;
FORECAST OUTFOR=modelFOR lead=0 PRINT=DECOMP;

0DS output fitstatistics=fitstatistics ;

0DS output fitsummary=fitsummary;

0DS output parameterestimates=parameterestimates;

ods select parameterestimates fitsummary fitstatistics
componentsignificance;

title ’UCM of ASU2 with lag2difRSV as a predictor’;
RUN;

data fitstatistics;

set fitstatistics;

if .n =1 or _n =5 or _n_=7;
keep fitstatistic value;

run;

data fitsummary;

set fitsummary;

if _n_=4;

keep fitstatistic value;

run;

data fits;

set fitsummary fitstatistics;
run;

proc transpose data=fits out=fits_transpose;
run;

data estimates;

set parameterestimates;

if _n_=4;
keep component probt estimate ;
run;

data out_RSV6;

merge estimates fits_transpose;

label coll=’AIC’ col2="MSE’ col3=’R-squared’ col4=’R.W. R-squared’ probt=’p-value’;
drop _name_;

run;

PROC UCM Data=RSV;

ID DATE INTERVAL=WEEK;

MODEL LOGASU2=RSVleadil;

IRREGULAR variance=0 noest;

LEVEL variance=0 noest;

CYCLE PRINT=SMOOTH;

ESTIMATE ;

FORECAST OUTFOR=modelFOR lead=0 PRINT=DECOMP;

0DS output fitstatistics=fitstatistics ;
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0DS output fitsummary=fitsummary;

0DS output parameterestimates=parameterestimates;

ods select parameterestimates fitsummary fitstatistics
componentsignificance;

title *UCM of ASU2 with RSVleadl as a predictor’;
RUN;

data fitstatistics;

set fitstatistics;

if n_ =1 or _n_=5 or _n_=7;
keep fitstatistic value;

run;

data fitsummary;

set fitsummary;

if _n_=4;

keep fitstatistic value;

run;

data fits;

set fitsummary fitstatistics;
run;

proc transpose data=fits out=fits_transpose;
run;

data estimates;

set parameterestimates;

if _n_=4;
keep component probt estimate ;
run;

data out_RSV7;
merge estimates fits_transpose;

label coll=’AIC’ col2="MSE’ col3=’R-squared’ col4=’R.W.

drop _name_;
run;

PROC UCM Data=RSV;

ID DATE INTERVAL=WEEK;

MODEL LOGASU2=RSVlead2;

IRREGULAR variance=0 noest;

LEVEL variance=0 noest;

CYCLE PRINT=SMOOTH;

ESTIMATE ;

FORECAST OUTFOR=modelFOR lead=0 PRINT=DECOMP;

ODS output fitstatistics=fitstatistics ;

0DS output fitsummary=fitsummary;

ODS output parameterestimates=parameterestimates;

ods select parameterestimates fitsummary fitstatistics
componentsignificance;
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title *UCM of ASU2 with RSVlead2 as a predictor’;
RUN;

data fitstatistics;

set fitstatistics;

if _n_=1 or _n_=5 or _n_=7;
keep fitstatistic value;
run;

data fitsummary;

set fitsummary;

if _n_=4;

keep fitstatistic value;

run;

data fits;

set fitsummary fitstatistics;

run;

proc transpose data=fits out=fits_transpose;
run;

data estimates;
set parameterestimates;

if _n_=4;
keep component probt estimate ;
run;

data out_RSV8;

merge estimates fits_transpose;

label coll=’AIC’ col2=’MSE’ col3=’R-squared’ col4=’R.W. R-squared’ probt=’p-value’;
drop _name_;

proc print;

run;

data final_predictors;

set out_RSV1 out_RSV2 out_RSV3 out_RSV4 out_RSV5 out_RSV6 out_RSV7 out_RSVS8;
Adj_Pvalue=probt * 8;

run;

proc template;
define style styles.output;
parent=styles.rtf;
style table from table /
tagattr="align="left" style="position:relative;top:.2in"’;
style systemtitle from systemtitle /
protectspecialchars=off;
Style Data from Data /
font_size=2
Just=c;

end;
run;
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options nodate nonumber;

ods listing close;

ods rtf file=’output.rtf’ style=styles.output startpage=yes bodytitle;
title ’\b\iO Fit Statistics’;

data _null_;

file print ods;

set final_predictors;

put _ods_;

run;

ods _all_ close;
ods listing;
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Appendix B: STAMP Output

This appendix includes a sample of the output given by the STAMP program. This output shows
only the initial model and the first two transformations of the RSV predictor. The remaining

predictors are done in the exact same way.

RTIU2:

MODEL:

1ogRTIU2 = level. + irregular + lag 1 + dummyl (2001/52) + dummy2 (2002/52) +
dummy3 (2003,/1) + dummy4 (2003/2)

*/ Original mod:l */

Method of estimation is Maximum likelihood
The present sample is: 2001 (18) to 2003 (13)

Equation 110.
LRTIU2 = Level + Expl vars + Interv + Irregular

Estimation report
Model with 1 parameters ( 1 restrictionms).

Parameter estination sample is 2001.16 - 2003.13. (T = 102).
Log-likelihood kernel is 1.876516.

No estimation ilone.

Eq 110 : Diagnostic summary report.

Estimation sarple is 2001.16 - 2003.13. (T = 102, n = 101).

Log-Likelihooc. is 200.142 (-2 LogL = -400.284).
Prediction error variance is 0.0134698

Summary statistics

LRTIU2
Std.Error 0.11606
Normality 1.2022
H( 33) 0.90893
r( L 0.28253
r( 9) -0.033005
DW 1.3351
QC 9, 9 10.920
R"2 0.93877

Eq 110 : Est:mated variances of disturbances.
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Component LRTIU2 (g-ratio)
Irr 0.014284 ( 1.0000)

Eq 110 : Estimated standard deviations of disturbances.

Component LRTIU2 (g-ratio)
Irr 0.11951 ( 1.0000)

Eq 110 : Estimated coefficients of final state vector.

Variable Coefficient R.m.s.e. t-value
Lvl 0.32720 0.18286 1.7893

[ 0.0766]

Eq 110 : Estimated coefficients of explanatory variables.

Variable Coafficient R.m.s.e. t-value
LRTIU2_1 0.95200 0.026659 35.711
Irr 2001.52 0.63087 0.12058 5.232
Irr 2002.52 0.62745 0.12108 5.1821
Irr 2003. 1 -0.40421 0.12410 -3.2572
Irr 2003. 2 ~-0.41148 0.12159 -3.3841

Normality test for Residual LRTIU2

Sample Size 101

Mean 0.231958

Std.Devn. 0.946938

Skewness 0.014369

Excess Kurtosis 0.244401

Minimum -2.645569

Maximum 2.828579

Skewness Chi~2¢(1) 0.0034754 [0.9530]
Kurtosis Chi~211) 0.25137 [0.6161]
Normal-BS Chi~2:2) 0.25485 [0.8804]
Normal-DH Chi~2:2) 1.2022 [0.5482]

Goodness—-of-fit results for Residual LRTIU2

Prediction erro:r variance (p.e.v) 0.013470
Prediction erro: mean deviation (m.d) 0.010178
Ratio p.e.v. / un.d in squares 1.114919
Coefficient of Jletermination R2 0.938770
. based on differences RD2 0.468374
. based on diff around seas mean RS2 -3.028673
Information criterion of Akaike AIC -4.189656
. of Schwartz (Bayes) BIC -4.035246

Chi~2(9) = 10.92 [0.2812]
F(33, 33) = 0.90893 [0.6072]
Normal-BS Chi~2(2) = 0.25485 [0.8804]
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*/ RSV PREDICTORS */

1. ONRSVPos

Method of estimation is Maximum likelihood

The present sample is: 2001 (16) to 2003 (13)
Method of estimation is Maximum likelihood

The present sample is: 2001 (16) to 2003 (13)
Equation 113.

LRTIU2 = Level + Expl vars + Interv + Irregular
Estimation report

Model with 1 parameters ( 1 restrictions).
Parameter estimation sample is 2001.16 - 2003.13. (T

Log-likelihood kernel is 1.876516.
No estimation done.

102) .

Eq 113 : Diagnostic summary report.
Estimation sample is 2001.16 - 2003.13. (T = 102, n = 101).
Log-Likelihood is 192.097 (-2 LogL = -384.195).

Prediction error variance is 0.0132997

Summary statistics

LRTIU2
Std.Error 0,.11582
Normality 2.6269
H( 33) 0.91830
5 0.29749
r( 9) -0.042145
DW 1.3037
QC 9, 9 11.953
R°2 0.93954

Eq 113 : Estimated variances of disturbances.

Component LRTIU2 (g-ratio)
Irr 0.014252 ( 1.0000)

Eq 113 : Estimated standard deviations of disturbances.

Component LRTIU2 (g-ratio)
Irr 0.11938 ( 1.0000)

Eq 113 : Estimated coefficients of final state vector.
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Variable Coefficient R.m.s.e. t-value
Lvl 0.54307 0.26780 2.0279

Eq 113 : Estimated coefficients of explanatory variables.

Variable Coefficient R.m.s.e. t-value
LRTIU2_1 0.91842 0.040462 22.699
ONRSVPos 0.00031766 0.00028817 1.1023
Irr 2001.52 0.593563 0.12511 4.744
Irr 2002.52 0.64310 QUL20FTF 5.2811
Irr 2003. 1 ~0..375676 0.12662 =2.9677
Irr 2003, 2 -0.40807 0.12150 -3.3587

Normality test for Residual LRTIU2

Sample Size 101

Mean 0.234750

Std.Devn. 0.941003

Skewness -0.131424

Excess Kurtosis 0.488163

Minimum -2.869261

Maximum 2.763768

Skewness Chi~2(1) 0.29075 [0.5897]
Kurtosis Chi~2(1) 1.0029 [0.3166]
Normal-BS Chi~2(2) 1.2936 [0.5237]
Normal-DH Chi~2(2) 2.6269 [0.2689]

Goodness-of-fit results for Residual LRTIU2

Prediction error variance (p.e.v) 0.013300
Prediction error mean deviation (m.d) 0.010026
Ratio p.e.v. / m.d in squares 1.120172
Coefficient of determination R2 0.939543

. based on differences RD2 0.475088

. based on diff around seas mean RS2 -2.977792
Information criterion of Akaike AIC -4.182758

. of Schwartz (Bayes) BIC -4.002613
2. dif1RSV

Method of estimation is Maximum likelihood
The present sample is: 2001 (16) to 2003 (13)

Equation 114.
LRTIU2 = Level + Expl vars + Interv + Irregular

Estimation report
Model with 1 parameters ( 1 restrictionms).
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Parameter estimation sample is 2001.16 - 2003.13. (T
Log-likelihood kernel is 1.876516.
No estimation done.

Eq 114 :

Estimation sample is 2001.16 - 2003.13. (T =
Log-Likelihood is 198.67 (-2 LogL = -397.339).

Diagnostic summary report.

Prediction error variance is 0.0118242

Summary statistics

Std.Error
Normality
H( 33)

r( 1)

r( 9)

DW

QC 9, 9
R"2

Eq 114 :

Component
Irr

Eq 114 :

Component
Irr

Eq 114 :

Variable
Lvl

Eq 114 :

Variable
LRTIU2_1
dif1RSV
Irr 2001.52
Irr 2002.52
Irr 2003. 1
Irr 2003. 2

LRTIU2
0.10874
3.2987
0.66326
0.22870
-0.12852
1.4427
10.444
0.94625

Estimated variances of disturbances.

LRTIU2 (q-ratio)
0.012671 ( 1.0000)

LRTIU2 (g-ratio)
0.11256 ( 1.0000)

Coefficient
0.26126

Coefficient
0.96191
0.0026493
0.37075
0.62521
-0.47862
-0.49986

R.m.s.e.
0.17318

R.m.s.e.
0.025256
0.00072859
0.13422
0.11404
0.11866
0.11707

Normality test for Residual LRTIU2

Sample Size
Mean
Std.Devn.

101

0.228875
0.942449

102, n

Estimated standard deviations of disturbances.

Estimated coefficients of final state vector.

t-value
1.5086

t-value
38.087
3.6362
2.7623
5.4824
-4.0336
-4.2697

[

Estimated coefficients of explanatory variables.

G B B o N e B W |

0.

O O O O O O

102).

101).

1345]

.0000]
.0004]
.0068]
.0000]
.0001]
.0000]


http:2001.16-2003.13
http:2001.16-2003.13
http:2001.16-2003.13

Skewness -0.077980

Excess Kurtosis 0.591166
Minimum -2.525803
Maximum 3.004668
Skewness Chi~2(1) 0.10236 [0.7490]
Kurtosis Chi~2(1) 1.4707 [0.2252]
Normal-BS Chi~2(2) 1.5731 [0.4554]
Normal-DH Chi~2(2) 3.2987 [0.1922]

Goodness—-of-fit results for Residual LRTIU2

Prediction error variance (p.e.v) 0.011824
Prediction error mean deviation (m.d) 0.008850
Ratio p.e.v. / m.d in squares 1.136533
Coefficient of determination R2 0.946251
. based on differences RD2 0.533324
. based on diff around seas mean RS2 -2.536477
Information criterion of Akaike AIC -4.300354
. of Schwartz (Bayes) BIC -4.120209

Chi~2(9) = 10.444 [0.3158]
F(33, 33) = 0.66326 [0.8783]
Normal-BS Chi~2(2) = 1.5731 [0.4554]
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