
MICRO-COMPUTER CONTROLLED CUTTING TABLE

DESIGN AND IMPLEMENTATION OF A MICRO-COMPUTER

CONTROLLED CUTTING TABLE

by

ALFRED NORMAN ZEUNER

A thesis

Submitted to the School of Graduate Studies

in Partial Fulfillment of the Requirements
for the Degree

Master of Engineering Physics

~1cMaster University
May 1982

MASTER'S DEGREE (1982) McMASTER UNIVERSITY

ENGINEERING PHYSICS Hamilton, Ontario

TITLE: Design and Implementation of a Micro-computer controlled

Cutting Table

AUTHOR: Alfred Norman Zeuner, B.Eng. Phys. (McMaster University)

SUPERVISOR: Dr. C. K. Campbell

NUMBER OF PAGES: viii, 80

i i

ABSTRACT

This thesis deals with the design and implementation of a micro

computer controlled cutting table used to prepare large scale patterns

for Surface Acoustic Wave (SAW} devices. This automated cutting table

simplifies the creation of many SAW patterns and makes previously unattain

able patterns possible. The design is extremely versatile and can cut as

well as straight lines in any direction in two dimensions.

A commercially available,- 44 inch square, cutting table was

automated by mounting stepping motors on each of the two axis. The motion

of the metors is controlled by an SDK.,.85 micro-computer and several peripherals.

A full description of the hardware, software and a successful experi

mental test is included.

iii

http:SDK.,.85

TABLE OF CONTENTS

Chapter 1

1.1 	 Introduction 1

1.2 Overall Discription of Operation 3

Chapter 2

2.1 	 Cutting Table M~chanics 6

2.1.1 Stepping Motors 	 6

2.1.2 Motor Mounting 	 7

2.1.3 Translator Modules 	 9

2.1.4 Knife Drive Motor 	 11

2.2 	 Hardware Control Circuit 12

2.2.1 Knife Control Circuit 	 16

Chapter 3

3.1 	 Micro-computer Software 18

3.2 	 Data RAM Organization 21

3.3 	 ,Loading Data from Data RAM into Micro

computer Registers 22

3.4 	 Running the Motors 23

3.5 	 Adjusting the Data RAM 30

Chapter 4

4.1 	 The "PHI" Cassette Deck 34

4.2 	 The USART 8251 37

4.3 	 Data Recording Programs 43

4.4 	 Playing Back the Recorded Data 46

4.4.1 The Micro-computer Display Field 48

Chapter 5

5.1 	 The Micro-computer/CRT Terminal Interface 51

5.2 	 Loading Data from the CRT into the Data RAM 52

5.3 	 Sending Characters to the CRT Terminal 54

Chaoter 6

6.1 	 The Conversion Program, "Xmit" 56

Chaoter 7

7.1 	 Loading the Data onto Magnetic Tape 62

7.2 	 Cutting the Mask 64

7.3 	 Operating Instructions 65

iv

Chapter 8

An Example of a SAW Filter Mask 68

Chapter 9

Conclusions 73

Appendix 1

Memory Map 76

Appendix 2

Port Map 78

References 80

v

SOFTWARE

Micro-:computer Programs

Subroutines: 	 LOAD DATA
MOTOR
CURVE
DELAY
ADJUST
RECORD
OUT
WAIT
CAS TX
DCMPR
PLAYBACK
CAS RX
DISPLAY
INPUT
CRT RX
GO
CRT TX
ERROR
INITIALIZE

Mainlines: 	 CRT TO TAPE
CUT

Fortran Programs

Subroutine: CURVE

Program: 	 XMIT
MASK3

23
27
29
30
31
44
45
45
45
46
46
48
50
53
54
55
55
63
63

62
64

72

57
70

vii

ACKNOWLEDGEMENTS

I would like to express by gratitude to all those

people who helped make this project a success. First of

all I would like to thank Dr. C.K. Campbell whose idea this

was in the first place, and who patiently waited while I

stumbled around for months before I got the thing to work.

Nick Slater, whose been my friend and lab partner through

much of my university career, helped a great deal with

ideas and software. He was truly instrumental in the suc

cess of this project. Mark Usik, our lab's technical ex

pert, helped me out a lot in the beginning with the hardware

aspects of the project.

But most of all, I must thank my parents. They have

provided me with a home, and lots of moral support through

out the many years of my education. Behind this successful

man is a great family, my challenge now is to justify your

contribution. Thank You.

viii

CHAPTER 1

1.1 Introduction

This thesis deals with the design and implementation

of a microcomputer controlled cutting table used to prepare

large scale patterns for Surface Acoustic Wave (SAW) devices.

This automated cutting table simplifies the creation of many

SAW patterns and makes previously unattainable patterns pos

sible. The diesign is extremely versatile and can cut curves

as well as straight lines in any direction in two dimensions.

A commercially available, 44 inch square, cutting table

was automated by mounting stepping motors on each of the two

axis. Patterns are cut into two layered plastic sheeting,

trade named, "Rubylith". Once the outline of the pattern is

cut the thin, red coloured, top layer is peeled off the trans

parent, underlying plastic where ever desired.

Since the operating characteristics of SAW devices is

dependent on the geometry of the finger pattern, accuracy

is important. The gearing on the table determines the over

all accuracy to be .001 inch, (.0254 mm). The patterns are

then normally photo-reduced 100 to 200 times, so the final

product's geometry is accurate to the order of 1000 Angstroms.

1

2

_ FIG. 1

CUTTING TABLE CONTROL
SYSTEM

MIC~C:OKPVT£"-

X

3

1.2 	 Overall Discription of Operation

Figure 1 (preceeding page) is a schematic of the entire

automated cutting table system.

The operator must first create a data file on the CYBER

170 (McMaster's mainframe computer) describing the pattern

to be cut. The data file must simply consist of a listing

of the x-y co-ordinates that the cutting table will join by

straight lines, in "connect the dots" fashion. The knife

position, up or down, is included as a third co-ordinate.

Curves are realized simply by numerous straight lines in

succession. Obviously the most expedient method of creating

this data file, especially if curved lines are to be cut, is

by way of a Fortran program. Once the data file is loaded,

an interface program converts this "point to point" data into

the cutting code used by the micro-computer system and loads

it onto the micro RAM in 1000 byte chunks. Once the micro

computer's RAM is full it unloads the data onto the cassette

tape deck and then signals the CYBER 170 to send the next

chunk of data. After all the data has been loaded onto the

cassette tape the actual cutting routine can begin, the

CYBER system is no longer needed so the terminal may be shut

off.

The cutting routine is started by simply executing the

appropriate micro program. This program retrieves the data

from the cassette tape in 1000 byte chunks and using the data,

pulses the x and y stepping motors. The cutting program auto

matically accelerates and decelerates the motors to compen

sate for the momentum of the table's axis. The system will

run completely automatically until the entire pattern is com

plete (often 3 or 4 hours depending on the size and complexity

of the pattern) .

4

Most of the remainder of this thesis deals with the de

sign of each of the sub-systems, working back from the step

ping motors and their translator modules, through the hard~

ware that interfaces them to the micro-computer. After the

micro-software is discussed and documented the operation of

the cassette deck and. its interface circuitry is shown.

Finally the thesis talks about the CYBER interface and an

example of a successful creation of a rather complicated

SAW pattern is given.

5

··x" Mcvrt-lG CA.lU'

'X .. ST£?Ptto:~G Md'l':)~ ~\IE

'x." Alt\S

THE CUTT IN<",. TA."BLE.

CHAPTER 2

2.1 Cutting Table Mechanics

Figure 2 on the previous page shows a top view of the

cutting table and its drive motors. The knife or cutting

point is carried on the "y" moving cart. The "y" moving

cart runs along the "y" axis which in turn is fastened to

the "x" moving cart.

2.1.1 Stepping Motors

Each moving cart is driven by a "Slo-Syn" synchronous

stepping motor. Figure 3, below, is a schematic of one of

the motors:

Swj

'llE.D/W"lTE

rl&. 3

The motors operate by energizing one or two of the windings

at a time following a specific input sequence. The motor

shaft advances 200 steps per revolution (l.so per step) when

a four step input sequence (full step mode) is used and 400

6

7

steps per revolution (0.90 per step) when the eight step

input sequence (half step) is used.

Eight step input sequence:

Winding: 1 2 3 4

Step 1 energized off energized off
2 energized off off off
3 energized off off energized
4 off off off energized
5 off energized off energized
6 off energized off off
7 off energized energized off
8 off off energized off

The above sequence is repeated 50 times to make one

complete revolution. The windings can be energized in this

sequence or in the reverse order to make the motors run the

other direction. The four step input sequence is the same

as the eight step one if all the even steps are skipped, ie.

step sequence l, 3, 5, 7, 1, 3, etc. In full step mode the

motors can operate up to 25 revolutions per second, only about

12 rev/s in half step.

2.1.2 Motor Mounting

The cutting table used for this project started life

as a manually operated, imperial measurement table. It was

delivered in 1966 before the advent of micro-computers and

the introduction of metrification. ~he cutting edge was

simply moved around on the "Rubylith" by the operator physic

ally pushing either the "x" or "y" carts along their respec

tive axis. Each axis had a measuring tape fastened to it to

measure inches, each cart mounted a circular vernier scale to

indicate fractions of inches. This vernier scale was driven

by a gear which ran on a track mounted on each axis. The

8

combination of track, gear and vernier scale has a specified

accuracy of 1/1000 ths of an inch.

To automate the cutting table the vernier scale was re

placed by a large reduction gear which is chain driven by a

stepping motor. Figure 4 below is a simplified diagram of

the motor mountings:

"To'P Vre'lfl(

A reduction ratio of 5 to 1 was chosen to make full use of

the rated accuracy of the table. If the motors are operated

in full step mode there are 1000 steps to the inch, in half

step mode7 2000 steps/inch.

9

2.1.3 Translator Modules

Each motor winding draws almost 4 Amps so a translator

module is supplied to each motor to handle the load. Also,

as the name implies, it will "translate" computer commands

into the desired stepping sequence, thereby allowing several

operating modes.

L+,, v
&-ND
~ALF ~Ti£'

2
~ WINbltoiG-!l ON

l
Ru'-1 SPEE~

....
lA~l S?E~D

'PuL.t,E OUT

•b
czw

s c cw

"fl~ v

IOK
)A~~ L&VEL

"'"" t"SV

'R.-' ~ lo.f.VEL.

:n

EXTEP.NA.L
'PuL.~E IN f
WE' SPEED
Cor.rnt.o L.

~\JI't .S"PI!Eb
CONT~OI..

-

MoTot. LiAt)

To \I.AC.K 'To WM\'T~

Fa&-. 'S'

The speed and direction of the stepping motors is con

trolled by openning and closing the appropriate switches on

the translator module. A countercloc~wise step is realized

by grounding the CCW input (closing switch 6), a clockwise

step by grounding the CW input (closing switch 7). After

the switch has been closed for 10 micro-seconds it can be

opened and closed again to trigger another step. Either of

these two switches may be toggled like this at a rate of up

to "6000 Hz, which will run the motor at 15 rev/second in the

half step mode. Care must be taken not to ground both the

10

CW and CCW inputs simultaneously as this will energize three,

perhaps four motor windings. Not only will this confuse the

stepping motor but it will overload the translator module.

This translator module has two internal oscillators

that can be used to operate the motor. The "base speed'' os

cillator (selected by closing switch 4), will cause a low

frequency output on the PULSE OUT pin. This will drive the

motor at slow speed in the direction selected by switch 5.

The motor can be run faster by switching to "run speed".

The "run speed" oscillator has the additional feature of

gradually accelerating/ or decelerating the motor to/or from

the operating speed.

Base speed, run speed and the acceration constant can

be adjusted by potentiometers on the translator module.

These constants must be set giving consideration to the in

eria of the load the respective motors must handle, and_the

torque of the motors themselves.

0
Ill
w
e;

SWITC.M&:~
OPEN. 3,~ f~ O\'Et-4
C.LO\E "t

Before starting the motors the direction of rotation is

chosen (switch 5) r a micro-second, or so, later the run switch,

3, can be closed. The motor will then accelerate to the oper

11

ating or "run" speed. At no time can the acceleration be

such that the inertia of the motor load exceeds the motor's

ability to handle it. Looking back at figure 2, it is ob

vious that the "x" motor has the larger load so both "x"

and "y" motors must be adjusted for the heavier load. The

reason for this is explained later in the text. A couple of

thousand steps, about one inch, before the motor is to stop

the translator is switched to base speed and the motor will

decelerate to the slower speed (figure 6). Finally once the

motor has stepped far enough, the end of the cut has been re

ached, switch 4 is opened and the motor abruptly stops.
-Here again the base speed must be chosen such that the moving

carts can be brought to a halt within one step (1/2000 ths

of an inch) •

2.1.4 Knife Drive Motor

Since the knife must be able to cut in all directions

a blade is of no use, so a pointed buret is used instead.

Several tips were experimented with. A very small diameter

crystal tip is probably the best but are very expensive and

turned out to be virtually impossible to obtain. Sharpening

the stainless steel shaft of an old, broken, buret proved

successful but necessitated numerous painstaking sharpenings.

Finally an ordinary sewing pin was epoxied onto the flat end

of the old buret. The pin has a very narrow diameter tip

and makes a good quality cut, and best of all, costs about

one cent compared to $ 200 for a crystal tip. When the pin's

point wears out it can simply be pulled out of the epoxy and

a new one inserted.

The quartz table top is quite brittle so care must be

12

taken to lower the knife point gently. The point itself

can also be expected to survive longer if this precaution

is taken.

~IN

The above figure shows a cross-sectional view of the

knife drive system. Basically the knife rides on a cam

which can be slowly rotated by a small DC motor. The pos

ition of the knife is fedback by the feedback contacts shown.

rf the feedback contacts disagree with the required position

of the knife, switch 8 is closed, starting up the motor and

rotating the cam until the knife is in the right position.

2.2 Eardware Control Circuit

The translator module and the knife drive is controlled

by opening and closing switches. These "switches" are im

plemented using 2N2222A switching transistors as shown in

figure 8 on page 13.

To operate the motors on one of the internal oscillators

either the CW or CCW (inputs Sa or Sc, figure 8) must be set

HI, care must be taken not to allow both to be set HI toget

13

.-------- "R.uN

-
w~~e: .J
:1

~
1:

~
~
..1

~ cc.w ~

f-'
~

~

~.,
().

'Pu L.S E: OUT '5
0

AJ,.L. T~S\S\o~S: 2N24l~A

Au. "t),ot:>IQ: IN~I£to

-

-

S'c. cw

3.3t<. -
't'S'I

' ccw
~

-
7 c.w

'=, + "SA$E
0
(V

J

~
..L
0

~ 5o. ccw
~
v

:r
~ +Sv

1-"'
~
p.
z
1-t

14

her. BASE or RUN is set logical HI after the direction of

rotation has been selected. When using an external oscillator

the pulsed digital signal m~st be applied either to input 6

or 7, depending on the desired direction of rotation, all

other inputs must be ~0.

At this point a micro-computer could directly operate

the drive motors, however; the computational time required

was dramatically reduced by building the small TTL circuit

shown in figure 9 on the next page. This circuit will always

select one of the motors to run on the translator's internal

oscillator, henceforth known as the "Master" motor, while the

other must be operated by external pulses supplied by the

micro-computer, this one is refered to as the "Slave" motor.

The micro-computer's ports "0" and "1" control . the

stepping motors via the TTL circuit. The port's bit desig

nation is as follows:

Port 	0 Port 1

AJ A6 AS A4 A3 A2 A1 AO B7 B6 B5 B4 B3 B2 Bl BO

A7 	 1 "x" motor master, "y" motor = slave
0 "y" motor = master, "x" motor = slave

A6 	 1 "y" motor counterclockwise
0 "y" motor clockwise

AS 	 1 "x" motor counterclockwise
0 "x" motor clockwise

A4 	 1 knife down
0 knife up

A3 ,A2 "don't care"

A1,AO 00 stop master motor
01 master motor at "base" speed
10 master motor at "run" speed
11 same as "10"

Bits AO to A7 define the operating modes of the motors

and are set by the micro-computer to start the motors running,

and are appropriately called the "control word". Once set,

- -

~
v v

~
,..

s
v
u

..J

' "' ~
w,....
)(,

au

X 1,u~F'E~ C:.l R.C.U\1

..J
<{
z
pt.
u. Ill

~
,...

~
%

i~ z
~v ,...

c.J IJ v

bfr66¢f

-

I~

IS"

t~~

~)

t

~

v
..J
0
tiL,..

%
0
IJ

..
,_X

~ v

~~

fJI ~
~ 0;.
r

,. vi

~

.., ~
~
tJll

~
1ll
u..
1U
u.-
z
::1!

r
~

""". __._ ... -
"" .
~ -

1- ~ r-- ~ 0. ~
N1-- --

~~ ...
~~ .A<f .. ~

·~~
..r 0r+

1
t") . ~

cl1\C
 -~
~ -
~ 0

1..

.(

.2

~
~

Ul
UJ
If)

.J

a,..

2
0
v
w
~
~
~

16

the control word does not change until the motors are to

slow down, stop, or change direction. On the other hand

bits BO to B7 constantly interact with the motors. BO goes

HI after each motor step, once this step is recognized and

counted by the micro-computer, it is acknowledged by setting

bits B2 and B3 HI for a short time about 3 micro-seconds).

This allows the recognition of the next step. The micro

computer steps the slave motor by pulsing port B7. The pos

ition of the knife is fedback through B6; LO indicates that

it is not in position, HI means that it is.

2.2.1 Knife Control Circuit

Figure 10 shows how the position of the knife is con

trolled:

+~V

c;.~uwt>Eb

C.O'P\)JiR_ C:.ON rA<. T

UN'I:IEit.SIJ)a 0~

CAM SEt F'I<F . T

Ftcr,lo

-l<N•F'E
MoToR

If the micro-computer wants the knife up it sets bit A4 LO,

17

the output of. the AND gate "A" will be HI which will start

the knife motor. The cam will rotate until the "UP" feed

back contact is grounded, AND gate "A" will then go LO,

stopping the knife motor. To lower the knife, bit A4 is set

HI and the motor will run until the "DOWN" contact stops it.

CHAPTER 3

3.1 Micro-computer Software

Cuts can be made in any direction by first choosing the

master and slave motors and their direction of rotation.

The master motor is then started and the number of steps it

moves is counted by the software program. The slave motor

is moved with pulses triggered by the micro-computer accord

ing to the slope of the desired cut. For example, if a slope

of 3:1 is . desired the micro-computer counts three master mo

tor steps then triggers one pulse to the slave motor, it

counts three more master motor steps, then sends another

pulse to the slave motor, and so on. More complicated slopes

such as 5:2 can also be cu t, first three steps are counted,

then a pulse to the slave motor, then two master motor steps

are counted, and another pulse to the slave motor. This

sequence is then repeated until the end of the cut.

The above routine is accomplished by adding the slope

of the desired cut to a register after each master motor

step, then pulsing the slave motor every time an overflow is

detected. This register is always initialized to 0.5 before

every cut to ensure that the actual cut is as close as pos

sible to the desired cut, see figure 11. This algorithm can

be demonstrated using the 5:2 slope example from before.

The following example, is shown both in decimal, for clarity,

and in hexidecimal, the number system the micro-computer ac

tually operates in.

18

19

Decimal Hexidecimal

Slope .4000 6666
Initialize Reg. .5000 8000

Master motor Slave motor
steEs Accumulated total steos

1 .9000 E666
2 .3000 4CCC ~overflow 1
3 .7000 B332
4 .1000 1998 ~overflow 2
5 .5000 7FFE
6 .9000 E664
7 .3000 4CCA ;overflow 3
8 .7000 B330
9 .1000 1996 ~overflow 4

10 .5000 7FFC

etc etc etc

Figure 11 below, shows how this algorithm is actually re

alized on the cutting table:

'Ft6-. \\

-::2:-0-0-0- IN. I (o.'t)

1 lo

The motors move on the rising edge of the oscillator's

pulse and since it only takes a few micro-seconds to feedback

20

the master motor pulse and send the slave pulse, both mas

ter and slave motors move virtually simultaneously, thus the

45° angles shown in figure 11.

Obviously the largest value that can be entered as the

slope is FFFF hex. This corresponds very closely to a 450

slope (within 0.0055°, 360/ 65,536). To cover all the pos

sible angles the control digit (the upper nibble of the con

trol word) must be chosen as shown in figure 12:

FIG-. I~ Cot.a'T~oL 'lllc;.IT8

'
A
a 'SE\..1:C.TION

If we wish to make the cut shown by the dotted line, a slope
11 C 11 11 D11of 0. 4 is used and the control digit (1100) or (1101)

is selected. Actually to make a cut D must be used as the

knife will be in the lowered position, C will raise the knife

above the surface of the table. In all cases odd numbered

control digits lower the knife, even ones raise the point and

are used if we want to move the knife without cutting the

Rubylith. The orientation of the 11 X 11 and 11 Y11 axis on the ac

tual cutting table is shown in figure 2.

http:lllc;.IT

21

3.2 Data RAM Organization

In order to successfully complete a cut the micro

computer must be able to access data describing the slope,

length and direction of the cut. The slope is a double

precision value (16 bits long) ranging from 0000 hex to FFFF

hex (00 to 44.9945°). The length of the cut is also speci

fied by a double precision value ranging from 0000 hex (0

steps or 0 inches) to FFFF hex (65,535 steps or 32.768 in.).

Note from figure 13 that the micro-computer, counts the

steps taken by the master motor only, therefore the actual

length of the cut will be the distence travelled by the mas

ter motor multiplied by the secant of the slope.

OOCIO tt • r:FFF H)

Finally the control word must be specified, as explained in

Section 2.2 the control word describes the modes and direc

tions of the motors. It also specifies the speed of the mas

ter motor and the position of the knife. Bits A2 and A3

are "don't cares" as far as the hardware control circuit is

concerned, however they are used within the software. Bit

A2 is 1 if the cut is part of a curve, thus telling the micro

computer to use the curve cutting program, if A2 is zero a

straight line is to be cut and the appropriate program will

be used. Bit A3 indicates the last word of data in the data

22

RAM. If A3 is 1, more data must be sought from the cassette

tape and cutting must be suspended until the data transfer

can be completed. Each cut requires five, 8 bit words of

data and there are 1024 RAM locations (locations 5000 to

53FF) for data storage. therefore 204 cuts can be stored.

Actually only 200 cuts are stored in RAM to use a more con

venient figure.

Location: Data: 	 Comments:

5000 most sig. 8 bits of slope

01 least sig. 8 bits of slope

02 most sig. 8 bits of length
 first cut
03 least sig. 8 bits of length
04 control word, bit A3 = 0
05
06
07 second cut
08
09

53E7 most sig. 8 bits of slope

E8 least sig. 8 bits of slope

E9 most sig. 8 bits of length
 200 th cut
EA least sig. 8 bits of length
EB control word, bit A3 = 1

3.3 Loading Data from Data RAM into Micro-computer Registers

Before commencing each cut a short subroutine, "Load

Data", moves the required five words of data from the data

RAM into the micro-computer's registers, as follows:

Register 	pair D-E +---- Slope of the cut
B-C +--- Length of the cut

Register A -+-- Control word
Locations 30FO & 30Fl-+- Location of data for

the next cut

The subroutine "Load Data" ignores cuts with a length of

23

zero steps and will simply load the data for the next cut

instead.

Subroutine: "LOAD DATA"

4A00 2A FO 30 LHLD 30FO and Fl ;load H-L with loc. of data
03 23 INX H-L ;loc. of first word of data
04 56 MOV D,M ;most sig. word of slope to D
05 23 INX H-L ;loc of 2nd word of data
06 SE MOV E,M ;least sig. word of slope to E
07 23 INX H-L .

I

08 46 MOV B,M ;most sig. word of length to B
09 23 INX H-L
OA 4E MOV C,M ;least sig. word of length to c
OB 23 INX H-L
oc 78 MOV A,B
OD FE 00 CPI $00 ;most sig. word of length = 0?
OF C2 lB 4A JNZ 4AlB
12 79 MOV A,C
13 FE 00 CPI $00 ;least s ig. word of length = 0?
15 C2 lB 4A JNZ 4AlB
18 C3 03 4A JMP 4A03 ;load next data if length :;: 0
lB 7E MOV A,M ;control word to register A
lC 22 FO 30 SHLD 30FO and Fl ;save location of next data
lF C9 RET

3.4 Running the Motors

Basically there are two types of cuts which must be made;

straight cuts and curved cuts. Essentially a curved cut is

just a series of short straight cuts whose slopes are equal

to the tangent of the curve at various intervals, as in fig

ure 15::

.A::tu/4. 1

24

When the micro-computer is making a straight cut, it ac

celerates the motors to "run" speed, cuts along at this speed

until there is only 2000 steps left where it decelerates to

base speed. By the time the end of the cut is reached the

motors are moving slowly enough that they can be stopped in

staneously. Once the motors are stopped the data for the

next line is retrieved from RAM, the necessary adjustments

are made to the knife position and the translator modules

and the process may start again for the next cut. A flow

chart:, describing subroutine "Motor", shows how this is imple

mented in software is shown on the next page.

If the subroutine "Motor" was used to cut all the short

segments that make up a curve, the motors would stop every

time the slope of the cut changed slightly. This would

cause~ a very slow and jerky operation. Instead, the subrou

tine "Curve" is used (flowchart on page 26). This subroutine

does not slow down or stop the motors after each cut, rather

it simply quickly calls up the next set of data and proceeds

immediately with the execution of the next cut. However,

even during the cutting of curves the motors must stop if the

motors must change modes or direction. If the tangent to the

curve passes through the slopes 45°, 135°, 225°, or 315° the

motors must stop to exchange which one is the slave and which

the master motor (stop 1, figure 15). At slopes 0°, 90°,

180°, or 270° one of the motors must change direction (stop 2,

figure 15) • If the curvature of the cut is so small that

the slope change between successive segments is greater than

20°, the motors must also slow down and stop to avoid over

loading the torque capability of the motors.

'rhe micro-computer decides whether to use subroutine

FtG- "

~u'!tacu·n~E : "' MoTolit."

__ ~1:> S1..0'?E. oF CuT -ro Ac.CuMu&..A.TEb ToT"'I..

Ftc;.. 11

27

"Motor" or "Curve" by testing bit 2 of the control word. If

bit 2 is a "1" the cut is a segment of a curve ana the motors

are not to stop after the completion of the segment, sub

routine "Curve" is used. If bit 2 is "0" a straight cut is

required ana the motors are to decelerate ana stop at the

end of the cut, use subroutine "Motor".

The last cut described in the data RAM will always use

the "Motor" routine, so after the execution of this subrou

tine bit 3 of the control word is tested to see if the last

available data has indeed been used. If the test returns a

"0" there is still more data, which is loaded ana the sub

routine loops around to the beginning to make the next cut.

If a "1" is found the routine is suspended (returns to the

mainline program) until new data is loaded from cassette

tape.

Subroutine "MOTOR"

4AFA 21 FF 4F LXI H-L 4FFF
FD 22 F4 30 SHLD 30F4 ;save location of 1st data

4BOO 22 FO 30 SHLD 30FO II n n II

03 CD 00 4A CALL "LOAD DATA II ;load reg. with cut data
06 E6 FO ANI $FO ;mask lower byte control word
08 D3 00 OUT PORT 00 ;output control digit, set

modes ana direction of motors
OA DB 01 IN PORT 01
oc 07 RLC
OD 07 RLC ;check bit B6, port 01
OE D2 OA 4B JNC 4BOA ;jump if knife not stopped
11 CD E4 4B CALL "DELAY"
14 CD E4 4B CALL "DELAY" ;wait 2 seconds
17 CD 90 4B CALL "CURVE" ;check if this cut is the

start of a curve; yes, use
"CURVE"; no, return

lA 7E MOV A,M ;control word to reg. A
1B D3 00 OUT PORT 00 ;start motors
1D 3E OC MVI A, $0C
1F D3 01 OUT PORT 01 ;enable feedback flipflops
21 DB 01 IN PORT 01
23 OF RRC ;check bit Bl, port 01

24 D2 21 4B JNC 4B21 ;wait for master motor to move

28

4A27
29
2B
2E
2F
32
35
37
39
3C
3D
40
41
42
45
46
48

4B
4C
4D
4F
50
53
54
56
59
SA
SC
SF
60
61
63

66
69
6A
6B
6C
6D
6E

3E
D3
2A
19
22
D2
3E
D3
00
OB
2A
7E
OF
DA
78
FE
D2

7E
3D
D3
77
C3
78
FE
C2
79
FE
C2
7E
3D
D3
CD

2A
7E
OF
OF
OF
OF
D2

C9

00
01
F2

F2
3C
80
01
00

FO

53

07
lD

00

lD

00
lD

00
lD

00
00

FO

03

30

30
4B

00

30

4B

4B

4B

4B

4B

54

30

4B

MVI A, $00
OUT PORT 01
LHLD 30F2 and F3
DAD D-E
SHLD 30F2 and F3
JNC 4B3C
MVI A, $80
OUT PORT 01
NOP NOP NOP
DCX B-C
LHLD 30FO and Fl
MOV A,M
RRC
JC 4B53
MOV A ,B
CPI $07
JNC 4BlD

MOV A,M
DEC A
OUT PORT 00
MOV M,A
JMP 4BlD
MOV A,B
CPI $00
JNZ 4BlD
MOV A,C
CPI $00
JNZ 4BlD
MOV A,M
DEC A
OUT PORT 00
CALL LOC 5400

LHLD 30FO and Fl
MOV A,M
RRC
RRC
RRC
RRC
JNC 4B03

RET

7clear feedback flipflops
7accumulated total to H-L
;add slope to accumulated total
7store new accumulated total
7jump if no overflow .,
7pulse slave motor

7decrement length

;control word to reg. A
7test bit 0 of control word
7jump if at base speed

;length> 7FF H, continue
at run speed

7control word to reg. A

7slow to base speed
;store new control word
7continue at base speed

7jump if length not 0 yet

7jump if length not 0 yet

7length now 0, stop motors
;this is a jump to RAM to
allow testing of new pro
gram additions

;control word to reg. A

7continue if there is more
data in the data RAM

7no more data, return 71

29

Subroutine: "CURVE"

4B90 21 00 80 LXI H-L $8000
93 22 F2 30 SHLD 30F2 and F3

96 2A FO 30 LHLD 30F2 and F3
99 7E MOV A,M
9A OF RRC
9B OF RRC
9C OF RRC
9D DO RNC
9E 7E MOV A,M
9F D3 00 OUT PORT 00
Al 3E OC MVI A, $0C
A3 D3 01 OUT PORT 01
AS DB 01 IN PORT 01
A7 OF RRC
AS D2 AS 4B JNC 4BAS
AB 3E 00 MOV A, $00
AD D3 01 OUT PORT 01
AF 2A F2 30 LHLD 30F2 and F3
B2 19 DAD D-E
B3 22 F2 30 SHLD 30F2 and F3
B6· D2 CO 4B JNC 4BCO
B9 3E 80 MVI A, $80
BB D3 01 OUT PORT 01
BD 00 00 00 NOP NOP NOP
CO OB DCX B-C
Cl 78 MOV A,B
C2 FE 00 CPI $00
C4 C2 Al 4B JNZ 4BA1
C7 79 MOV A,C
C8 FE 00 CPI $00
CA C2 Al 4B JNZ 4BA1
CD CD 00 4A CALL "LOAD DATA II

DO C3 90 4B JMP 4B90

Subroutine: "DELAY"

;initialize accumulated
total to 8000 hex

;control word to reg. A

.•
;check bit 2 of control word
;return if bit 2 is zero

;start motors

;enable feedback flipflops

;check bit BO port 1
;wait for master motor to move

;clear feedback flipflops
;accumulated total to H-L
;add slope to accumulated total
;store new accumulated total
;jump if no overflow

;pulse slave motor

;decrement length

;jump if length not 0 yet

;jump if length not 0 yet
:load registers with next
cut data

;jump to start and cut next
segment in curve

This subroutine uses a monitor routine called "DELAY"

at location OSFl hex which simply decrements register pair

30

D-E until it detects zero, then returns. For details on this

routine see 11SDK- 85 User's Manual, Appendix A, page 36.

Subroutine: 11 DELAY 11

4BE4 EB XCHG ;save D-E in H-L
E5 11 FF FF LXI D-E $FFFF ;set delay time, about 1 sec
E8 CD Fl 05 CALL 11 DELAY 11 ;call monitor routine DELAY
EB EB XCHG ;return D-E from H-L
EC C9 RET ;1 sec delay complete

3.5 Adjusting the Data RAM

The previous section carefully explained how the lower

four bits of the control word tell the micro-computer how

fast the motors should run, and when and when not to stop the
I

motors. After a block of cut data is loaded from the cas

sette tape and before the cuts are executed a softwa~e sub

routine, 11Adjust 11
, adjusts the lower nibble of all the con

trol words 'according to the following set of rules. This en

sures correct motor operation once cutting starts.
11 1 111. 	 Bit 2 is set to (segment part of a curve) if:

a. 	 The control digit for the succeeding segment is
identic~l to the control digit for this line, this
ensures that neither motor has to change direction
or exchange master and slave status, nor does the
knife have to move.

AND

b. 	 The change in slope does not exceed 2000 hex (,
about 60), this ensures that the slave motor does
not have to change speed too abruptly causing in
ertia problems with the table's axis arms.

AND

c. 	 This segment is NOT the last cut for which there
is data available in the data RAM.

Other~ise bit 2 must be set to 0 (straight cut).

31

2. Bit 1 is set to "1" (motors to run at run speed) if:

a. 	 Bit 0, which sets the motors to base speed, is "0".
This condition, although good practice, is not ab
solutely necessary ~s the motors will run at run
speed if both bits 0 and 1 are set to "1", see
page 14.

AND

b. 	 There are more than 7FF hex steps in the ~ut, ie.
the cut is longer than one inch.

OR

c. 	 There are less than 800 hex steps in the cut but
bit 2 is equal to "1" AND there are more than 7FF
hex steps before the motors must stop. For example,
when cutting curves consisting of segments less
than 800 hex steps (one inch) long the motors are
to run at run speed until there are less than 800
hex steps left before the control digit must change
and the motors stop.

Otherwise bit 1 is set to "0" AND bit 0, which sets the mo
tors to base speed, is set to "1".

Subroutine:

4A23
26
27
28
29
2A
2B
2D
2F
32
33

36
37
3A
3B
3E
3F
42

01
03
03
03
03
OA
E6
FE
CA
03
C3

79
32

,78
32
OA
32
OB

00

08
08
36

26

F6

F7

F8

"ADJUST"

50 LXI B-C
INX B-C
INX B-C
INX B-C
INX B-C
LDAX B-C
ANI $08
CPI $08

4A JZ 4A36
INX B-C

4A JMP 4A36

MOV A,C
30 STA 30F6

MOV A,B
30 STA 30F7

LDAX B-C
30 STA 30F8

DCX B-C

5000 ;set B-C to 1st data RAM loc. .
I

i

;control word loc. in B-C
;control word into reg. A
;mask all but bit 3

;jump if last control word .
I

;continue until last con
trol word found

;store location of control word

;store control word

4A43 OA
44 SF
45 OB
46 OA
47 57
48 OB
49 OB
4A OA
4B 32 F9 30
4E 7A
4F FE 07
51 2A F6 30
54 3A F8 30
57 DA 60 4A
SA F6 02

sc 77

SD C3 63 4A
60 F6 01

62 77

63 79
64 FE 00
66 C2 6F 4A
69 78
6A FE 50
6C C8
60 00 00
6F 21 'p8 30
72 7E
73 E6 PO
75 77
76 OB
77 OA

78 BE

79 C2 36 4A

7C 79
7D 32 F6 30
80 78

LDAX B-C
MOV E,A
DCX B-C
LDAX B-C
MOV D,A
DCX B-C
DCX B-C
LDAX B-C
STA 30F9
MOV A,D
CPI $07
LHLD 30F6 and F7
LDA 30F8
JC 4A60
0RI $02

MOV M,A

JMP 4A63
ORI $01

MOV M,A

MOV A,C
CPI $00
JNZ 4A6F
MOV A,B
CPI $50
RNC
NOP NOP
LXI H-L 30F8
MOV A,M
ANI $PO
MOV M,A
DCX B-C
LDAX B-C

CMP M

JNZ 4A36

MOV A,C
STA 30F6
MOV A,B

32

~load length in D-E

~store upper byte of slope .
I

~check if length ~ 800 hex
~control word loc. to H-L
~control word to reg. A
;jump if length < 800 hex
~adjust control word for
run speed
~adjusted control word
to data RAM

~adjust control word for
base speed
~adjusted control word to
data RAM

~return if adjustments done

;control word to reg. A
~mask lower nibble

;preceeding control word
in reg. A
~compare the 2 successive
control words
~jump if control words
not identical

33

4A81 32 F7 30 STA 30F7
84 OA LDAX B-C
85 32 F8 30 STA 30F8
88 EB XCHG
89 OB DCX B-C
SA OA LDAX B-C
8B SF MOV E,A
8C OB DCX B-C
8D OA LDAX B-C
BE 57 MOV D,A
SF 19 DAD D-E

90 22 FA 30 SHLD 30FA
93 OB DCX B-C
94 OB DCX B-C
95 21 F9 30 LXI H-L 30F9
98 OA LDAX B-C
99 32 FC 30 STA 30FC
9C 96 SUB M
9D D2 AS 4A JNC 4AA5
AO 7E MOV A,M
A1 21 FC 30 LXI H-L 30FC
A4 96 SUB M
AS FE 20 CPI $20
A7 OA LDAX B-C
AS 32 F9 30 STA 30F9
AB D2 4E 4A JNC 4A4E

AE 2A FA 30 LDA 30FA
B1 EB XCHG
B2 7A MOV A,D
B3 FE 07 CPI $ 07
B5 2A F6 30 LHLD 30F6
B8 3A F8 30 LDA 30F8
BB DA C4 4A JC 4AC4
BE F6 06 ORI $06
co 77 MOV M,A

C1 C3 63 4A JMP 4A63
C4 F6 05 ORI $05
C6 77 MOV M,A

C7 C3 63 4A JMP 4A63

7store loc. of control word

7store control word
7length into H-L .
I

.
I

7preceeding length to D-E
7add this length to total
length in H-L

7Store total length
7loc. of lower byte of slope
710c. of upper byte of slope

7two successive slopes are
compared, if slopes dif
fer by more than 2000 hex,
jump

7load total length in D-E

~loc. of control word in H-L
7control word in reg. A
7 jump if length <. 800 Hex
7set bit 2 = "1", run speed
7adjusted control word
to data RAM

7set bit 2 = "0", base speed
;adjusted control word
to data RAM

i

CHAPTER 4

As already mentioned there is only space available in

RAM to load the data for 200 cuts. Several of the masks

that have been constructed have required in excess of 200

cuts, curves especially use up a lot of data. A cassette

tape is used to store the data before transfering it in 200

cut chunks to the data RAM. The cassette tape, being a mag

netic memory, is also useful to permanently store masks to

be used over and over.

This chapter discusses the micro-computer/cassette in

terface and the associated software. John Metselaar did a

great deal of work in this area, which he explains in his

thesis, "Micro-computer Interfacing, Design, and Operation".

He built an interfacing circuit, called PR0-3, which is used

in its original form in this thesis. This circuit will be

discussed briefly in this chapter, for completeness, however

the details of the construction and operation are quite ably

explained in Mr. Metselaar's thesis. The software, on the

otherhand, was changed completely and is carefully covered

in this chapter.

4.1 The "PHI" Cassette Deck

A PHI-DECK cassette recorder is used to store the cut

ting data. This is a digitally controlled cassette tape re

corder which is TTL compatible. It has the.four .standard

34

- - -

...
.......
As· A~Ae ·A,,

-~ ~.,~Ci82-«>S r

I 8lfi"S ... ~..·-· i lA••· e.f£.z.l
Q;.
 Abo-1

c1
U'

E~lt..oH '-OCA.TIO!IolS
4\eco 	- ~FFF

C'('af.ll ItO SYi T EM

.o-s:I,:a l-~--:!:-s_v____,,.Cb
0 I I

I~~
llc~tt

L• -bb~COt-tTll<>l.. "U.S M'
.,. ~

:I

~
(\ 	 AI>)us
0 'II
:J

~
~ 01

ot.

L..-.

I
l't$~'t'HilU T~o C'tltS

_ FIG-, 	 lS TttE ~~o·\ C.t'Rc.\) ITlXC l:= l.I\~U \).ltl> ,"tb M~
Rxc. 'lttll CJ.T f VS~'R.T

VO~l"ACrtl COt1'tii.TI11..lt
S2S"\

l>o-1:=1I Ct.oc.t(
~-3

1~2.0C»U'SA'k"fS
H'f.

1--1 1--7fei' T¥'1> I I I I I

STATU\ U!b '5

TitC.
~ ~ ~ 1J ~ "f'Ml • 'btrc.l(

R.»c.
~··~ 	 I

82.~lL..

t>o-1.- ~
SUi~

To/Flitot'1
I)- CASS'IiYTitSIS'S ~o·") 	 '"f'MNSI-\\T'P.I!clt~ve

til!A)> 'VI A
"PB • T~a 1>1~.f- t1ol)\l 1-Al"ol.(

0 1 '()lit'10~U 1- ATo'Q,

~
o·\ o, 	 1!ifWi) ;~A ~ ~ 	 FiWb }oA0 •1

82o'S 	 Oi Stb1' jl
03 'ti'L.Il."f

lJt..'t\ \.oc:ATIONS 3ooo. 36FF

http:C'('af.ll

36

controls which are self explanatory: Play, Stop, Fast For

ward, Fast Rewind. All of these controls are triggered by

and inverse, 1 micro-second, pulse which can be sent from

the micro-computer via an output port or from a manual con

trol panel mounted on the PHI-DECK. See figure 18, on the

preceeding page. There are also four associated status LEDs

which indicate whether the tape deck is on "play", or "stop

ped~' or "rewinding", or "fast forwarding". There are also

the same status indicators on the PR0-3 circuit and the PR0-3

feeds these status signals back to the micr-computer via some

input ports. A capstan clock is also provided which operates

a digital counter on the control panel and is used to help

locate data blocks on the tape. This counter is not hooked

up to the micro-computer a nd can only be used manually.

The actual recording and playing back from the tape

deck is accomplished via a frequency shift keying circuit

already provided, with the PHI-DECK. In order to record data

on the tape the "record/playback" switch must be in the re

cord position and the deck must be in the "play" mode. A

serial string of logical "l's" and "O's" applied to there

ceive input to the tape deck will be modulated such that a

"1" will be recorded on tape as a 6 KHz signal and a "0" as

a 5 KHz signal:
To iA.l'E

H€~'3>
' I(Mll

T ~IT 5TEAt-t (Tn.) ,......,r-1 ~ .JW\J\JWVlMM... .
FSIC

Mobil l...t.Ta~

... VIJ f"it!.t:.lil."1€
'-----1 L---1 L...;

~ ~Kl,. I

l F\\<. SI'-NA.I..T "'''t \iE."M
~1<. b~-~!.I"\ IT
Mobu'-A.'to"' ' \TT"I..) FiloM

..e...
F't(F. I~ I='S\<. 1"'\ol>ut...A."T\O~ L bE MobuL.A.T\ON

37

To get the data back off the tape, the tape is simply

rewound to the start of the data, the record/playback toggle

is flipped to "playback", and the deck set to "play". The

FSK signal on the tape will be picked up by the tape head and

routed through the demodulator. The demodulator will re

create the inputed bit stream and output it along the "trans

mit" line.

There are two more controls on the tape deck, both of

them potentiometers: tape gain and tape speed. The tape

speed adjustment is self explanatory, however care must be

taken to playback data at close to the same speed at which

it was recorded. Playing back at a different speed will

change the frequencies of the FSK signal and it will alter

the bit rate at the output. Both the demodulator and the

"serial to parallel data receiver" (the USART) can tolerate

a certain amount of deviation, but to be on the safe side

care must be taken not to adjust the speed control. The

"gain" adjustment is normally set to half-way between the

lower and upper extremes.

4. 2 The USART 8251

USART is an acronym for the INTEL Universal Synchronous/

Asynchronous Receiver/Transmitter and provides the interface

between the micro-computer and the PHI-DECK. It also pro

vides part of the interface between the micro-computer and

the CRT terminal, which will be covered in the next section.

Data is loaded onto the magnetic tape, and is subse

quently received from the tape, in a serial format. The

micro-computer however processes the data in 8 bit parallel,

38

the USART's purpose is to make the conversion and to frame

each byte so that the data can be sorted out upon recovery

from the cassette tape.

Serial data can be framed in two ways: it can be framed

by time, meaning that a synchronizing clock signal must ac

company the bits and bytes coming off the .tape. This clock

signal shifts the data into the receiving buffer counting the

pulses. Once the count reaches the word length the word is

shifted to the micro-computer and the next word is loaded

from tape. This is synchronous mode. The PHI-DECK has no

way of outputting a synchronous clock with the data so the

USART must be used in an asynchronous mode. In this mode

each word or byte gets a start and stop bit added to it be

fore it is loaded onto the tape; bit framing. When retrieving

the data the USART looks for the start bit and then clocks

in the number of expected bits using a receiver generated

clock pulse, see figure 18. The USART then looks for the

stop bit followed by the next start bit, at which time the

clock is re-aligned with the data and the next word is clocked

in.

I I L

'STAl.T ~To~l>~TA.
'!l'T '\IT

WoA.I> NElCT ~oQbk ,.I< >-I

.F'1G- lo "SST FAAH1~

39

Figure 20 shows how the data is loaded onto the cas

sette tape. As long as the micro-computer is not sending

any data the USART will continuously output "l's" onto the

tape. As soon as the USART gets a word to record, a start

bit is sent, a single "0", this is followed by the word

(which can be 4 to 8 bits long depending on how the USART

was initialized), finally a stop bit is sent (this can be

one, one and one half, or two "l's"). During the stop bit

the USART flags the micro-computer so that the next word

can be sent.

In the mode chosen for this project the receiver clock

runs at 64 times the expected bit (or baud) rate. Since the

CYBER 170 terminal operates at 300 baud and it was conven

ient to use the same clock for the terminal USART and the

tape deck USART, the clock was set to 19,200 Hz.

Before the system can be set to playback data the tape

must be rewound such that there is a string of "l's" at least

eleven bits long before the data starts, this will ensure

that the first "0" found is a start bit. As soon as the in

put line goes LO the USART counts 32 clock cycles· and checks

the input line again. If the input line has gone HI in the

meantime the USART assumes it detected a noise signal and

goes on searching for the start bit. If the input line is

still LO a valid start bit has been found! 64 more clock

cycles are counted off and the input line is tested. Here

the USART will find the center of the first bit in the serial

sequence, this bit is clocked serially into a register. 64

more cycles are counted and the second bit is clocked into

the register. This process continues until the whole word

is clocked in, 8 bits in this case. Finally 64 more clock

40

11 1 11cycles are counted and the USART checks for a , the stop

11 1 11bit. If there is a the micro-computer has 2~ bit times

to fetch the data before the USART finds the next start bit

and loads the next word in sequence. If the USART finds a

11 0 11 instead of a stop bit something is wrong and an error

flag is set. As can be seen as long as the clock rate is

reasonably close to 64 times the baud rate (within about 6%)

the USART will accurately receive the data from the tape and

relay it to the micro-computer.

The micro-computer communicates with the USART in two

ways. It has the one register which the USART shifts the

data through and is addressed like any RAM location. As

noted in Appendix 1 (Memory Map) the cassette deck USART

occupies memory locations 3800 to 3FFF, any one of these

addresses may be used to access the USART shift register, how

ever, it is always refered to using location 3800, all the

rest are redundapcies. Before the USART can do anything it

must receive a Mode Instruction and a Command Instruction,

both of these are sent to the USART via an OUT PORT instruc

tion from the micro-computer, namely port 38, see Appendix

2 (Port Map). In order that the USART knows whether it is

receiving a mode or command instruction the USART is first

reset then the mode instruction is sent, followed by the

command instruction. Any subsequent instructions are as

sumed to be command unless the command instruction specifies

the next instruction is a mode instruction or the USART is

reset again.

Mode Instruction Format: D7 D6 D5 D4 D3 D2 Dl DO

Dl DO Baud rate factor 00 synchronous mode
01 asynchronous 1 times clock
10 II 16 II II

11 II 64 II II

41

D3 D2 Character Length 00 5 bits
01 6 bits
10 7 bits
11 8 bits

D5 D4 Parity Control xo no parity
01 odd parity
11 e.ven parity

D7 D6 Framing Control 00 not valid only valid for
01 1 stop bit asynchonous op
10 1~ stop bit eration
11 2 stop bits

As already discussed the USART must operate in asynchro

nous mode with a clock rate 64 times the baud rate, there are

8 bits per word, no parity bit is to be sent or sought, and

two "l's" are to be used as the stop bit. From the above

format the mode instruction will be 11001111 binary or CF

hex. The following short micro-program can be used to set

the mode after the USART has been reset (it can be reset by

hitting the "reset" key on the micro-computer).

3E CF MVI A I $CF 7load reg A with mode
D3 38 OUT PORT 38 7mode to USART

Once the mode instruction has been sent the USART re

quires the command instruction, in the following format:

Command Instruction Format: D7 D6 D5 D4 D3 D2 Dl DO

DO Transmit enable 0 disable ,

..... enable

Dl Data terminal ready 	 0 ready
1 not ready

D2 Receive enable 	 0 disable
1 enable

D3 Break character 	 0 normal operation
1 transmit "0 IS II

D4 Reset error flags 	 0 normal operation
1 reset error flags to "0"

42

DS Request to send 	 0 send to terminal
1 do not send to terminal

D6 Internal reset 	 0 normal operation
1 next instruction is 11 mode 11

D7 Hunt mode (not used in asynchronous operation)

The command instructions are sent in an identical way as

the mode instructions.

All that must be done to begin transmitting the data

to be recorded on tape after the mode has been set is to send

the command word, 01 hex to port 38. A short delay is ne

cessary here to ensure the tape starts with a string of ''l's 11
,

after which a data word can be sent to location 3800 to be

loaded on tape. In order that the micro-computer knows

when the USART is finished sending the word and is ready

for the next one, it must check the USART's status register.

This is done by reading the port associated with the USART,

in this case, port 38.

USART Status Register Format: D7 D6 DS D4 D3 D2 Dl DO

DO Transmitter status 0 not ready
1 ready

D1 Receiver status 0 not ready
1 ready

D2 Transmitter register 0 not empty
1 empty

D3 Parity error (not used)

D4 Over run error (not used)

DS Framing error (not used)

D6 Synch detect (synchronous operation only, not used)

D7 Data set status 0 data not ready
1 data ready

Once the micro....;computer has sent a word to the USART it will

keep reading in port 38 until it detects that the "trans

mitter empty"flag has been sent, telling the micro-computer

43

to supply the next word to be recorded.

In order that the data on the tape can be identified

and found.amoung all the other data on the tape, each set

of data must have an identifiable start sequence, a unique

label, and an end sequence so the micro-computer knows when

it has received all of the data.

10 IC (oooo ooo\)

ENl\ ~E'~\J&.~e

C...S:!. E.'TTE lA.'\)£ ~'Q.MA\

There are two kinds of terminator words: As previously noted

the data RAM can only hold 1000 words (for 200 cuts) so the

data for a mask must be appropriately divided up into 200

cut chunks. Each of these 200 cut chunks are terminated

with an ascii "E" (45 hex) except for the very last chunk

which is terminated with ascii "T" (54 hex). If the micro

computer does not specify a terminator, 00 hex will auto

matically be used once 1000 words have been sent.

4.3 Data Recording Programs

This section discusses the micro-computer subroutines

required for recording data onto the cassette tape. The

data to be recorded must be first loaded into RAM and the

first RAM location must be specified in register pair H-L.

The subroutine "Record" assumes that the mode instruction has

44

already been set. Register pair D-E must be loaded with

the location of the . terminator character or the last avail

able RAM location.

Subroutine: "RECORD"

484C 3E 03 MVI A I $03
4E CD FS 48 CALL "OUT" ~this outputs 03 on port

31 which set PHI-DECK to play
51 3E 01 MVI A, $01
53 D3 38 OUT PORT 38 ~USART to "transmit"
55 CD DA 49 CALL "WAIT" ~record 300 "l's"
58 CD 7F 49 CALL II CAS TX" ~send 00 hex to tape
SB OE OA MVI c, $0A
SD 3E 01 MVI A, $01
SF CD 7F 49 CALL "CAS TX" ~send 01 hex to tape
62 OD DCR C
63 C2 SD 48 JNZ 485D ~record 10 times 01 hex
66 3A FF 30 LDA 30FF ~get label stored at 30FF
69 CD 7F 49 CALL "CAS TX" ;store label on tape
6C 7E MOV A,M ~get data from RAM
6D CD 7F 49 CALL "CAS TX" ;record data
70 23 INX H-L ;point to next data loc.
71 CD E9 48 CALL II DCMPR" ~check for terminator
74 C2 6C 48 JNZ 486C ~continue recording
77 OE OA MVI C, $0A
79 7E MOV A,M ;get terminator
7A CD 7F 49 CALL "CAS TX"
7D OD DCR C
7E C2 79 48 JNZ 4879 ;record terminator 10 times
81 3E 02 MVI A, $02
83 CD FS 48 CALL "OUT" ~stop tape deck
86 C9 RET

The subroutine "Out" controls the operation of the PHI

DECK via port A on one of the 8155 I/0 chips (port 31) 1 see

figure 18, page 35.

00 hex sets the tape deck to fast forward
01 fast rewind
02 stop
03 play

One of the above codes must be loaded into register A before

the following subroutine is run:

45

Subroutine: OUT

48F5 D3 31 OUT PORT 31 ;send start of tape deck
control pulse

F7 D5 PUSH D-E
F8 11 00 40 LXI D-E $4000 ;set for 25 msec delay
FB CD Fl 05 CALL "DELAY" ;call monitor program
FE Dl POP D-E
FF 3D DCR A ;reg. A = FF

4900 D3 31 OUT PORT 31 ;end control pulse
02 C9 RET ;cassette deck in re

quested mode

The subroutine "Wait" is simply a one second delay,

used in "Record 11 to run off a stretch of tape before com

mencing. to record data. The USART will automatically re

cord about 300 "l's" during this period.

Subroutine: WAIT

49DA D5 PUSH D-E
DB 11 FF FF LXI D-E $FFFF
DE CD Fl 05 CALL "DELAY"
El Dl POP D-E
E2 C9 RET ;delay complete

"CAS TX" sends the word in the accumulator to the USART
to be recorded onto the cassette tape.

Subroutine: CAS TX

497F 32 00 38 STA 3800 ;reg. A to USART
82 DB 38 IN PORT 38 ;check status register
84 E6 04 ANI $04 ;mask all but transmitter

empty flag .
86 00 NOP I

87 CA 82 49 JZ 4982 ;wait until transmitter
is empty

8A C9 RET ;word recorded

"DCMPR" compares the register pairs D-E and H-L. If

they are equal the zero flag is set, otherwize it is reset.

This subroutine is used in "Record" to detect the end of the

46

data (end of buffer).

Subroutine: DCMPR

48E9 cs PUSH B-C
EA 43 MOV B,E
EB 7D MOV A,L
EC B8 CMP B ~CY :::: 1 if L < E
ED Cl POP B-C
EE D8 RC ~return if E not = L
EF cs PUSH B-C
FO 42 MOV B,D
Fl 7C MOV A,H
F2 B8 CMP B ~CY :::: 1 if H (D
F3 Cl POP B-C
F4 C9 RET

4.4 Playing Back the Recorded Data

Before running the "Playback" subroutine the operator

.nust ensure the record/playback switch is in the "playback"

position or the data on the tape will be replaced by garbage.

The subroutine begins by searching for a string of ten 01

hex, when it finds such a string the start of the data has

been found. The next word read from the tape is the label,

this label is displayed in the data field display of the

micro-computer. "Playback" compares this label to the label

the user has requested and stored in RAM location 30FF. If

the labels match, the subroutine commences to load the data

from the tape into data RAM, starting at the location spec

ified in the register pair H-L. "Playback" is complete

when the terminator string is found and the tape deck is

stopped.

Subroutine: PLAYBACK

4887 3E 03 MVI A I $03
89 CD FS 48 CALL "OUT" ~start the tape deck

47

488C 3E 04
8E D3 38
90 OE OA
92 CD 8B 49
95 3D
96 C2 90 48
99 OD
9A C2 92 48
9D CD 9B 49
AO 4F
Al CD lF 49
A4 3A FF 30
A7 B9

AS C2 90 48
AB 2B
AC 06 FF
AE OE 00
BO CD E9 48
B3 23
B4 CA E3 48

B7 CD 8B 49
BA 77
BB CA CC 48
BE FE 54
CO CA CC 48
C3 7E
C4 FE 45
C6 CA CC 48
C9 C3 AC 48
CC 7E
CD B8
CE 47
CF CA D4 48

D2 OE 00

D4 OC

D5 79
D6 FE OA
D8 C2 BO 48

MVI A, $04
OUT PORT 38
MVI C, $0A
CALL "CAS RX"

DCR A
JNZ 4890
DCR C
JNZ 4892
CALL "CAS RX II

MOV C,A
CALL "DISPLAY"
LDA 30FF
CMP C

JNZ 4890
DCX H-L
MVI B, $FF
MVI C, $00
CALL "DCMPR"
INX H-L
JZ 48E3

CALL "CAS RX II

MOV M,A
JZ 48CC
CPI $54
JZ 48CC
MOV A ,M
CPI $45
JZ 48CC
JMP 48AC
MOV A ,M
CMP B
MOV B,A
JZ 48D4

MVI C, $00

INC C

MOV A,C
CPI $0A
JNZ 48BO

;set USART to receive

;input word from tape

;jump if inputed word not 01

;find string of ten 01 s
;get label

;display the . label
;get desired label
;compare desired label with
label from tape

;try again if wrong label
;start location of RAM

;look for end of data
;increment pointer
;end found terminate data
transfer

;get data from tape
;store data in data RAM
;jump if terminator 00 found

;jump if terminator 54 found

;jump if terminator 45 found
;no terminator get next data
;get terminator

;load terminator into B
;jump if terminator same
as that in reg. B

;the terminator found was
not part of terminator se
quence, must be data, re
set counter.

;count number of termination
characters found

;continue until 10 terminators

48

48DB 7D MOV A,L

DC D6 09 SUI $09

DE . 6F MOV L,A

DF 7C MOV A,H

EO DE 00 SBI $00

E2 67 MOV H,A ;once terminator sequence

is found the last 9 RAM
locations only repeat the
termination character, so
subtract them from pointer

E3 3E 02 MVI A I $02

ES CD FS 48 CALL "OUT" ;stop the tape recorder

E8 C9 RET

Note: 	 "Playback" sets the register pair D-E to the last a
vailable RAM location, so that if a terminator is not
found only as much data is read in as there is RAM to
load it into.

"CAS RX" accepts data that has been received by the

USART 	 into register A o f the micro-computer.

Subroutine: CAS RX

498B DB 38 IN PORT 38 ;check USART status reg.
8D E6 02 ANI $02 ;mask all but receiver flag
SF 00 NOP
90 CA 8B 49 JZ 498B ;wait until receiver is full
93 3A 00 38 LDA 3800 ;load word into reg. A
96 C9 RET

4.4.1 	The Micro-computer Display Field

The micro-computer display has six digits, four for

the address and two for data. Each digit is a seven segment

LED display with a decimal point.

! t
-, - ,_, - . ,I L, -; I , -,- - - ,_

49

The display fields are controlled by a Programmable Key

board/Display Interface I.e. (an Intel 8279 was used). Al

though the chip occupies memory locations 1800 to lFFF (see

the Memory Map, Appendix A) only two of them are useful.

The micro-computer can read the keyboard or write to the

display via location 1800, it can also. read the status word

or write to the command register via location 1900. Figure

22 shows how digits can be displayed, for example; to dis

play a "7", segments a, b, and c must be activated. To do

this the micro-computer outputs 10001111 binary or SF hex

to location 1800. The simplest way of obtaining the display

code is by using a look-up table. Such a look-up table is

already supplied in the monitor programs supplied with the

micro-computer. Locations 0384 through 0393 contain the

codes for the characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,

B, C, D, E, and F respectively.

The 8279 can store these codes in one of 16 RAM locations

each one controlling a single digit. The micro-computer used

has only 6 display digits, see figure 22, so only locations

0 to 5 inclusive are used. A command word must be sent via

location 1900 to instruct the 8279 as to which RAM location

the micro-computer 'wishes to write to or re·aa from, The

MCS-85 User's Manual pages 5-43 to 5-53 details all of the

possible commands. The 8279 has the additional feature of

auto-incrementing, meaning that successive write (or read)

instructions will load the codes in successive RAM locations

without the need of repeatedly sending new commands. The

command 1001AAAA binary will send the first code to location

AAAA binary, the next code to AAAA+l~ etc.

The following subroutine will display a word in register

C on the data field display in hexidecimal.

50

Subroutine: DISPLAY

491F 3E 94 .. MVI A, $94
21 32 00 19 STA 1900 ;set control register to

write to the data field
24 79 MOV A,C ;get word to be displayed
25 OF RRC
26 OF RRC
27 OF RRC
28 OF RRC ;exchange nibbles
29 CD 2D 49 CALL "LOC 492D" ;display left nibble
2C 79 MOV A,C

492D E6 OF ANI $OF ;mask left nibble
2F C6 84 ADI $84 ;add 84 hex to right nib

ble to get lower byte of
look-up table location

31 ES PUSD H-L
32 26 03 MVI H, $03 ;upper byte of look-up

table location
34 6F MOV L,A ;lower byte in reg. L
35 7E MOV A ,M ;get digit code into reg. A
36 2F CMA
37 32 00 18 STA 1800 ;display digit
3A El POP H-L
3B C9 RET

CHAPTER 5

As can be imagined computing the run lengths, the

slopes, and the control digits and loading them all onto

tape manually would be a very time consuming and tedious

job, especially when masks could literally consist of thou

sands of individual cuts. This job can be done much more

efficiently using a computer program on McMaster's CYBER

170 system. This, of course, necessitates an interface be

tween the CYBER CRT terminal and the micro-computer. Again

Mr. John Metselaar's PR0-3 circuit was used but new soft

ware was written to be compatible with the rest of the sys

tems, and is the primary topic of this chapter.

5.1 The Micro-computer/CRT Terminal Interface

There are only three connections between the CRT ter

minal and the PR0-3 circuit. Two of them are shown back

on figure 18, one wire is used to transmit serial data from

the terminal to the micro-computer, in the other the data

flows in the reverse direction. There is also a signal

ground which is not shown. One unfortunate aspect of this

communications link is that the serial data ports on the ter

minal are not TTL compatible. This problem is overcome by

inserting an MC 1488 Quad Line Driver, and an MC 1489 Quad

Line Receiver as shown in figure 18. Specification sheets

for these I.C.s can be found in John Metselaar's thesis.

Because the 1488 Line Driver must produce signals at a

different voltage than the regular OV and SV TTL levels it

51

52

must have a +/- 8 volt supply.

The micro-computer can now communicate with the terminal

in exactly the same way it communicates with the PHI-DECK,

through the USART assigned to the terminal. Mode and Com

mand instructions are passed through port 40, and data is

received or transmitted via memory location 4000. Chapter

4 has already dealt with the 8251 USART.

The CYBER 170 system transmits and receives serial data

using Ascii code. The signal received from the terminal

also include an odd parity bit preceeding the 7 bit Ascii

code. The start bit is the same as for the tape deck, a

single "0", but the stop bit, a "1", is only one bit wide

instead of two. Finally the micro-computer must conform to

the 300 baud rate that the terminal operates in. The CRT

USART will operate in the asynchronous mode with the clock

rate set to 64 times the baud rate, thus set at 19,200 Hz.

To comply with these specifications the mode instruction

must be set to 01011011 binary, SB hex (asynchronous with

a 64 times clock rate, 7 bit characters, odd parity, and

one stop bit), see section on USART control in chapter 4.

5.2 Loading Data from the CRT onto the Data RAM

The micro-computer operates using 8 bit words consist

ing of two packed hexidecimal digits while the CRT sends

data in Ascii code. Ascii 0 to 9 is 30 to 39 hex so the

required digits can be obtained by simply masking the first

three bits of the Ascii code. Ascii A to F however is 41

to 46 hex so the conversion isn't quite so simple. To

get around this problem Ascii characters J to 0 (4A to 4F

hex) were used to represent the hexidecimal digits A to F.

The data is then stored in RAM by accepting the characters

53

two at a time, loading the first character received in the

most significant nibble of the byte and the second one in

the least significant nibble.

The subroutine "Input" loads data from the CRT into

the micro-computer's data RAM starting at the location

specified in register pair H-L. It assumes that the mode

instruction has already been sent to the USART.

Subroutine: INPUT

4997 3E 04 MVI A I $04
99 D3 40 OUT PORT 40 ;set USART to receive
9B 3A 00 40 LDA 4000 ;clear the USART
9E ES PUSH H-L
9F OE FF MVI C, $FF ;use reg. C as flag:

00 is 1st ascii character
01 is 2nd ascii character

Al CD 73 49 CALL "CRT RX II ;Ascii character to reg. A
A4 06 30 MVI B, $30
A6 B8 CMP B
A7 DA Al 49 JC 49Al ;ignore Ascii less than 30
AA 06 58 MVI B, $58
AC B8 CMP B
AD D2 Al 49 JC 49Al ;ignore Ascii greater than 58
BO 06 45 MVI B, $45
B2 B8 CMP B
B3 CA D5 49 JZ 49D5 ;jump if terminator "E"

(Ascii 45) is found
B6 06 54 MVI B, $54
B8 B8 CMP B
B9 CA D5 49 JZ 49D5 ;jump if terminator "T"

(Ascii 54) is found
BC E6 OF ANI $OF ;mask left nibble
BE OC INR C ;increment flag
BF C2 CA 49 JNZ 49CA ;jump if 2nd character
C2 OF RRC
C3 OF RRC
C4 OF RRC
C5 OF RRC ;1st character, swap nibble s
C6 77 MOV M,A ;store left nibble
C7 C3 Al 49 JMP 49Al ;jump to get 2nd character

54

49CA B6 ORA,M 7combine nibbles from 1st
and 2nd characters

CB 77 MOV M,A 7store data word
CC CD E9 48 CALL "DCMPR" 7check for end of memory
CF 23 INX H-L 7increment RAM pointer
DO C2 9F 49 JNZ 499F 7continue accepting data
D3 97 SUB A,A ;clear reg. A
D4 2B DCX H-L ;point to last RAM location
DS 77 MOV M,A ;store terminator
D6 EB XCHG ;store last memory location

in D-E, for use in RECORD
D7 El POP H-L ;recover start location
D8 OC INR C
D9 C9 RET

The subroutine "Input" uses a short subroutine to re

ceive Ascii encoded data from the CRT terminal. The char

acter is loaded into register A.

Subroutine: CRT RX

4973 DB 40 IN PORT 40 ;get status word
75 E6 02 ANI $02 ;mask all but "receiver ready"
77 00 NOP
78 CA 73 49 JZ 4973 ;loop until receiver ready
7B 3A 00 40 LDA 4000 ;load character into reg. A
7E C9 RET

5.3 Sending Characters to the CRT Terminal

To send characters to the CRT all that needs to be done

is to set the USART to transmit and output the appropriate

Ascii code via location 4000. This subroutine outputs "GO";

characters "G" (Ascii 47 hex), "0" (4F hex), carriage return

(OD hex), and line feed (OA hex). This "GO" is used, as will

be seen in the next chapter, to indicate to the CYBER 170

that the micro-computer is ready to accept data from the ter

minal.

55

Subroutine: GO

4906 3E 01 MVI A, $01
08 __ D3 40 OUT PORT 40 ;set USART to transmit
OA 3E 47 MVI A, $47 ;Ascii for letter "G"

oc CD E3 49 CALL"CRT TX" ;send character
OF 3E 4F MVI A, $4F ;letter "0"
11 CD E3 49 CALL "CRT TX"
14 3E OD MVI A, $0D ;carriage return
16 CD E3 49 CALL "CRT TX"
19 3E OA MVI A, $0A ;line feed
lB CD E3 49 CALL "CRT TX"
lE C9 RET ;"GO" sent

Subroutine: CRT TX

49E3 32 00 40 STA 4000 ;reg. A to USART
E6 DB 40 IN PORT 40 ;get status word
E8 E6 04 ANI $04 ;mask all but "trans

mitter empty" flag
EA 00 NOP
EB CA E6 49 JZ 49E6 ;wait until USART is

finished sending
EE C9 RET

CHAPTER 6

A Fortran program was developed on the McMaster CYBER 170

system to enable the user to interact with the cutting table's

micro-computer via a CRT terminal. This greatly simplifies

the operating proceedure and provides a method for error

detection so masks that are larger than the 44 inch square

cutting table are not attempted.

6.1 The Conversion Program, "Xmit"

This Fortran program allows the user to enter data,

either manually via the terminal or from a previously stored

data file, in point to point form. As alrec.dy mentioned

the control system can really only cut straight lines, :

curves are realized by a succession of short line segments.

The user must simply provide a series of x-y co-ordinate

points which the cutting table will then cut in "connect

the-dots" fashion. In addition to the two cartesian points

a third parameter must be added to control the knife, this

parameter, called "P", is 0.0 if the knife is to be up, or

1.0 if the knife is to be down (actually cutting). The very

last data point entered must have "P" equal to -1.0, this

directs that the knife be up and also indicates the end of

the data. The data must be in the form (x, y ,P) and x and y

must be entered in inches ranging from 0.0 to 42.0 (the max

imum size of the table). The run length registers hold only

56

http:alrec.dy

57

16 binary bits, 65,535 steps, which works out to about 32

inches, so the program automatically divides cuts longer than

32 inches into two pieces.

Data Format:

X _y_ p

xx.xxxx xx.xxxx 0.0 or 1.0
xx.xxxx xx.xxxx 0.0 or 1.0
xx.xxxx xx.xxxx 0.0 or 1.0

xx.xxxx xx.xxxx 0.0 or 1.0
xx.xxxx xx.xxxx -1.0

XX.XXXX is a decimal number in inches ranging from 0.0 to

42.0, four significant decimal places.

Fortran Program: XMIT

00100 PROGRAM XMIT(INPUT,OUTPUT,DATAF,TAPEl=DATAF,TAPE5=
INPUT,TAPE6=0UTPUT)

00110 REAL MOVE(4000,3)
00120 INTEGER BUFSIZE, ITS(9) ,HEX(l6) ,ECL,ECB,DATA HEX/

~ lHO,lHl,lH2,1H3,1H4,1H5,1H6,1H7,1H8,1H9,1HJ,lHK,lHL,

lHM,lHN,lHO/DATA EOL,EOB/lHP,lHX/
00130 REWIND 1

;The above part of the program simply initializes
the tapes and dimensions the variables.

00140 5 WRITE(6,10)

00150 10 FORMAT(lOX,"ENTER POINTS FROM DATA FILE(l) OR

TERMINAL (5) ? II)
00160 READ(S,*)INPDEV
00170 IF(INPDEV.NE.l.AND.INPDEV.NE.S) GO TO 5

;the user is asked whether he / she wishes to enter
the data points manually from the terminal (5) or
from a data file (1). If anything other than 1 or
5 is entered the question will be repeated.

00180 XOFSET=O.O
00190 ·. YOFSET=O. 0
00200 XSCALE=2000.0
00210 YSCALE=2000.0

58

;Initialize the parameters to be used to convert
the user's scale to the cutting table scale.
XOFSET and YOFSET indicate the difference be

tween the user's origin and the origin used by
the cutting table. Both are set to zero. XSCALE
and YSCALE indicate the ratios of scales between
the user and the stepping motors, the user works
in inches while the motors operate in 112000 th
inch steps. If the user wishes to work in metric,
say in centimeters, the scale factors would be
changed to 787.4.

00220
00230 20

WRITE(6,20)
FORMAT(lOX, "ENTER DATA IN FORM (X,Y,P), WITH X, Y
IN INCHES II, I, lOX, "P=O (MOVE) , P=l (CUT) , P=-1 (END
OF DATA) ", I , lOX, "X, Y DATA MUST BE IN RANGE OF 0-42
INCHES")

7The user is informed how to enter the data and
the limitations of the cutting table.

00240
00250 30

N=O
N=N+l

00260
00270

00280
00290
00300
00310
00320
00330

READ(INPDEV,*)X,Y,P
IF(X.LT.O.O.OR.X.GT.42.0.0R.Y.LT.O.O.OR.Y.GT.42.0)
GO TO 40
IF(P.NE.-l.O.AND.P.NE.l.O.AND.P.NE.O.O) GO TO 40
MOVE(N,l) =X
MOVE(N,2) = Y
MOVE(N,3) = P
IF(P.EQ.-1.0) GO TO 60
GO TO 30

;The data
Data can

is
be

read
read

into the dimensioned matrix MOVE.
from a data file from TAPE 1 or

from the terminal, TAPE 5. MOVE has
to accept a maximum of 4000 cuts, if
quired line 00110 must be altered.

been
more

dimensioned
are re

00340
00350
00360
00370
00380

40 WRITE(6,50)N
50 FORMAT(lOX, "ERROR IN

N=N-1
IF(INPDEV.EQ.l)STOP
GO TO 30

INPUT DATA,RE-ENTER POINT" ,I6)

;If an error was detected in loading the data the
program will print ~n error message and ask that
the incorrect data be re-entered.

59

00390 60 WRITE(6,70)N
00400 70 FORMAT(lOX,I6," POINTS ENTERED")

iThe number of points entered is displayed

·00410 DO 90 1=l,N
00420 MOVE(I,l)=(MOVE(I,l)-XOFSET)*XSCALE
00430 MOVE(I,2)=(MOVE(I,2)-YOFSET)*YSCALE
00440 90 CONTINUE

iThe data in the matrix MOVE is re-scaled to the
cutting table units

00450 NMl=N-1
00460 DO 100 I=l,NMl
00470 J=I+l
00480 DELTAX=MOVE(J,l)-MOVE(I,l)
00490 DELTAY=MOVE(J,2)-MOVE{I,2)
00500 P=MOVE(J,;3)
00510 MOVE(I,3)=0.0
00520 IF(ABS(DELTAX) .LT.ABS(DELTAY))MOVE(I,3)=MOVE(I,3)+8.0
00530 IF (DELTAY •GE • 0 • 0) MOVE (I I ,3) =MOVE (I I 3) +4 • 0
00540 IF(DELTAX.GE.O.O)MOVE{I,3)=MOVE(I,3)+2.0
00550 IF(P.EQ.l~O)MOVE(I,3)=MOVE(I,3)+l.O
00560 MOVE(I,l)=ABS(DELTAX)
00570 MOVE(I,2)=ABS(DELTAY)
00580 100 CONTINUE

iThe data is all converted from point to point
data to the data format that the micro-computer
uses: namely, the_control word is generated and
the absolute data is converted to relative data

00590 BUFSIZE=200
00600 K=O

iBecause of the limited RAM on the micro-computer
buffersizes are limited to 200 data sets

00610 DO 130 I=l,NMl

00620 IF(K.EQ.BUFSIZE)K=O

00630 J=l

00640 SLOPE=O.O

00650 IF(MOVE(I,l) .EQ.O.O.OR.MOVE(I,2) .EQ.O.O)GO TO 13

00660 SLOPE=MOVE(I,l)/MOVE(I,2)

00670 IF(SLOPE.EQ.l.O)SLOPE=.9999999999

00680 IF(SLOPE.GT.l.O)SLOPE=l.O/SLOPE

http:EQ.O.O.OR

60

00690
00700
00710
00720
00730
00740
00750
00760

00770
00780
00790
00800

00810
00820
00830
00840

00850

00860
00870
00880

00890
00900
00910
00920

13 	IF (MOVE (I, 1) .LT .MOVE (I, 2))-J=2

ZSCALE = XSCALE

IF(J.EQ.2.0}ZSCALE=YSCALE

ZOFSET=XOFSET

IF(J.EQ.2.0)ZOFSET=YOFSET

LCHKl=l

IF(MOVE(I,J) .GT.(32.0-ZOFSET)*ZSCALE)LCHK1=2

IF(MOVE(I,J} .GT.(32.0-ZOFSET)*ZSCALE)MOVE(I,J)=

MOVE(I,J)/2.0

;The conversion to the micro-computer data format is
completed. The relative point to point moves are
converted to lengths and slopes. Also cuts that are
longer than 32 inches but shorter than 44 inches are
divided in half.

DIGITS(5)=INT(MOVE(I,J)/4096.0)
DIGITS(6)=INT(MOVE(I,J)/256.0)-DIGITS(5)*16
DIGITS(7)=INT(MOVE(I,J)/16.0)-DIGITS(6)*16-DIGITS(5)*256
DIGITS(8)=INT(MOVE(I,J))-DIGITS(7)*16-D1GITS(6)*256
-DIGITS(5)*4096
DIGITS(l)=INT(SLOPE*l6.0)
DIGITS(2)=INT(SLOPE*256.0)-DIGITS(l)*l6
DIGITS(3)=INT(SLOPE*4096.0)-DIGITS(2)*16-DIGITS(l)*256
DIGITS(4)=INT(SLOPE*65536.0)-DIGITS(3)*16-DIGITS(2)
*256-DIGITS(l)*4096
DIGITS(9)=MOVE(I,3)

;Here the conversion from decimal to hexidecimal is
made. Now all the "DIGITS" contain values between
0 and 15.

DO 110 L=l,9

DIGITS(L)=HEX(DIGITS(L)+l)

110 	CONTINUE

;The values in DIGITS are converted to the characters
used by the micro-computer, namely: 0,1,2,3,4,5,6,7,8
9,J,K,L,M,N, and 0. The look-up table in line 00120
is used.

IF(K.NE.O.O) GO TO 115
125 	WRITE(6,126)

READ(5,126)SIGNL
IF(SIGNL.NE."GO") GO TO 125

;Wait until the micro-computer is ready for data, ie.
it sends a "GO", before continuing to output data.

61

00930 127 FORMAT(A2)

00940 126 FORMAT("WAITING FOR A "GO" SIGNAL FROM MICRO-COM

PUTER")
00950 115 DO 116 LCHK2=l,LCHK1
00960 K=K+l
00970 IF((I.NE.NMl.AND.K.LT.BUFSIZE)WRITE(6,120)DIGITS,EOL
00980 116 IF(I.EQ.NMl.OR.K.GE.BUFSIZE)WRITE(6,120}DIGITS,EOB
00990 120 FORMAT(lX,lOAl)

;Once a go is received from the micro-computer the terminal
commences to send the data to the data RAM

01000 IF(K.GT.BUFSIZE.AND.I.NE.NMl)WRITE(6,122)

01010 IF(I.EQ.NMl)WRITE(6,121)

01020 121 FORMAT (" T ")

01030 122 FORMAT (" E ")

;At the end of each block of data, consisting of 200
"cuts" each a termination character is sent. "E" if
there is still more data to be transfered, or "T" if
all the data is transfered.

01040 130 CONTINUE
01050 END

CHAPTER 7

All the individual components of the micro-computer

controlled cutting table have now been discussed, all that

remains is to show how all these components interact and

how the whole system works. There are three basic steps

to cutting a mask, first a data file of the data points

which are to be connected in "connect-the-dots" fashion

must be made up. The simplest way to do this is by a user

Fortran program. There are no particular rules on how to

create such a program as long as a data file of the correct

format results. An example of such a program is given in

chapter 8. If the user wishes to enter the points manually

step one may be omitted. Secondly the data is converted

and loaded onto magnetic tape, finally the data is recovered

from the tape and the mask is cut.

7.1 Loading the Data onto Magnetic Tape

The following mainline program "CRT to Tape" receives

the data from the terminal and loads it onto the cassette

tape.

Mainline: CRT TO TAPE

4800 31 C2 20 LXI SP 20C2 ~initialize stack pointer
03 CD 3C 49 CALL INITIALIZE ~initialize the ports and

~et the modes of the USARTs

62

4806 CD 06 49 CALL "GO"

09 21 00 50 LXI H-L $5000

oc 11 FF 53 LXI D-E $53FF
OF CD 97 49 CALL "INPUT"

12 C2 25 48 JNZ 4825

15 CD 4C 48 CALL "RECORD"
18 7E MOV A,M
19 FE 54 CPI $54
lB C2 06 48 JNZ 4806

lE 3E 40 MVI A, $40
20 D3 38 OUT PORT 38

22 D3 40 OUT PORT 40
24 CF RST 1

Subroutine: ERROR

4825 OE EO MVI C, $EO
27 CD lF 49 CALL "DISPLAY"
2A 76 HLT

63

7inform the CRT that the

micro-computer is ready

;set starting location of

data RAM to 5000

;set end location of data RAM
;load data from CRT into data

RAM, the CRT will send no

more than 200 cuts (1000

words) before sending a

termination character.

;data has been sent, jump

to error display if an

odd number of characters

were sent.

;load data onto tape
;get termination character
;compare to Ascii "T"
;there is still more data

jump back to get next block .
I

' ;recording complete, reset
PHI-DECK USART

;reset CRT USART

;return to monitor

;set error code
;display error code
;wait for user to do some
thing about the error.
This error indicates that
a character was missed or
an inadmissible one was
sent. Normally the problem
is noise on the data line
caused by strong electrical
interference, ie. electric
machinery nearby. Remove
the source of the noise and
start over.

Subroutine: INITIALIZE

493C 3E FF MVI A, $FF .
•

64

493E D3 02 OUT PORT 02 7port 00 set to output
40 3E BC MVI A, $BC 7bits 0,1, and 6 of port 01

set to input, rest are output
42 D3 03 OUT PORT 03
44 3E OF MVI A, $OF
46 D3 20 OUT PORT 20 7set ports 21,22 and 23

to output
48 3E OF MVI A, $OF
4A D3 28 OUT PORT 28 7set ports 29 I 2A I and 2B

to output.
4C 3E OD MVI A, $0D
4E D3 30 OUT PORT 30 7PHI-DECK control ports,

ports 31 and 33 set to
output, 32 to input

50 97 SUB A,A 7reg. A = 00
51 D3 00 OUT PORT 00 7clear port 00, this ensures

the motors are stopped.
53 D3 01 OUT PORT 01 7clear port 01
55 D3 33 OUT PORT 33 7set tape direction to forward
57 3E 02 MVI A, $02
59 CD F5 48 CALL "OUT" 7ensure tape deck is stopped
5C 3E 01 MVI A, $01
5E D3 33 OUT PORT 33 7end tape direction pulse
60 3E CF MVI A, $CF
62 D3 38 OUT PORT 38 7set PHI-DECK USART: 8 bit

word, asynch 64, no parity,
2 stop bits.

64 . 3E 5B MVI A, $5B
66 D3 40 OUT PORT 40 7 set CRT USART: 7 bit word,

asynch 64, odd parity, 1
stop bit.

68 C9 RET

7.2 Cutting the Mask

The following mainline program, "Cut", recovers the data

from the magnetic tape, one 200 cut block at a time, and

runs the motors accordingly. The program will continue to

run the motors without any user interaction until all the

data is used up.

Mainline: CUT

482B 31 C2 20 LXI SP 20C2 7initialize stack pointer

65

482E CD 3C 49 CALL "INITIALIZE II :initialize ports -and .USARTs
31 21 00 50 LXI H-L $5000 :set start of data RAM
34 11 FF 53 LXI D-E $53FF :set end of data RAM
37 CD 87 48 CALL "PLAYBACK" :load data from tape to RAM
3A E5 PUSH H-L :save terminator location
3B CD 20 4A CALL "ADJUST" :adjust control digits to

correct motor speeds
3E CD 3C 4A CALL "MOTOR" :run the motors until the

data in RAM runs out
41 El POP H-L :recover terminator loc.
42 00 NOP
43 7E MOV A ,~-1 :get terminator character
44 FE 45 CPI $45 :compare to Ascii "E"
46 CA 31 48 JZ 4831 :mask not complete, continue
49 C3 lE 48 JMP 481E :mask complete, jump to the

reset routine, page 63

7.3 Operating Instructions

Step 1: 	 If the data points are to be entered manually skip
this step, otherwise create a data file of all the
data points required in the mask. See section 6.1.

Step 2: 	 Convert the data file to the format used by the micro
computei and load it onto the cassette tape:

a. 	Turn everything on, except the power to the trans
lator modules. The translator mudule ports must
be intialized before the modules are powered up
or the motors will run randomly.

b. 	Connect the CRT terminal to McMaster CYBER 170
system via the acoustic coupler (modem), dial 331.

c. 	Log on.

d. 	Localize the data file (if there is one) and the
program XMIT:

/ GET,XMIT

/ GET, "data file name"

e. 	Run the program XMIT using the following route:

/ FTN,XMIT,L=O,GO,PL=9999

This ensures that the datafile is not terminated
after only 1000 lines as would happen normally .

66

f. 	Choose between manual (if no data file has
been localized) or data file entry~ Once load
ing is complete the number of points entered will
be displayed.

g. 	Push "reset" on the micro-computer.

h. 	Enter the data label in RAM location 30FF:

"SBST MEM" "3 II "0" "F" "F" "NEXT" "XX" "NEXT"

XX is any two digit hexidecimal code word.

i. 	Ensure the PHI-DECK is rewound to a blank sec
tion of the tape, make sure there is enough tape
for all of the data (about ~ minute per 200 cut
block)

j. 	Execute the data loading program:

"EXEC" "GO" "4" "8" "0" "0" "EXEC"

200 cut blocks of data will now be read first
onto RAM then from there onto the tape. The
recording will continue until all of the data
has been transfered to the tape. The CRT will
display the data in real time while it is loaded
into RAM.

k. 	The completion of loading is indicated by a "T"
following the last data line, log off CYBER.

1. 	Wait for the tape deck to stop. All the data
required to cut the mask is now on tape, it
takes 3 to 4 minutes for each block of 200 cuts
to be loaded onto tape.

Step 3: Cutting the Mask:

a. 	Position the knife appropriately on the Rubylith.

b. 	Ensure that all the gears are engaged on the mov

ing carts.

c. 	Load instruction 11 C9" in location 5400

II sBST MEM II II 5 II II 4 II II 0 II II 0 II II NEXT II II c II II 9 II II NEXT II

d. 	Rewind the tape to the start of the data. Switch
toggle to "Playback".

67

e. 	Enter the data label as in Step 2h.

f. 	Execute the cutting program:

"EXEC" "GO" "4" "8" "2" "B" "EXEC"

g. 	Power up the translator modules.

The tape deck will start searching for the data identi

fied by the label in 30FF. As the labels are found they

are displayed on the micro-computer's data field display.

The micro-computer will not start reading data until the

correct label is found. Once the first data block is read

in, the tape deck will stop and the motors start. Once all

the data is used up in the RAM the motors will stop and more

data read in from the tape deck. The entire operation will

continue completely automatically until the mask is completed.

Large masks can take several hours to complete, depending on

what speed the translator modules are set to. Care must be

taken not to set them too fast, as the micro-computer will

start missing st~ps, especially if curves are being cut.

Running the motors too fast will also cause the x axis to

bounce a bit when the end of a cut is reached. Running the

"y" motor fast and the "x" slower does not help when the "x"

motor is slave to the "y" motor and 450 angles are being cut.

Both motors will run at the faster speed. Both motors should

be set to the same speed.

h. 	When the mask is complete the micro-computer
will reset itself and display "8085" in the
address field.

i. 	Power down, ensuring that the translator modules
are shut off before the micro-computer. Without
anything controlling the translator modules the
motors are likely to start up on their own and
ruin the mask.

j. 	Peel the mask!

CHAPTER 8

Mr. Nick Slater used the cutting table to cut masks

for SAW devices he was designing. His design is detailed

in his recently published thesis: Design of Wide Band,

Linear Phase Surface Acoustic Wave Filters. The fingers

of his device are slightly curved in order to realize a

uniform response across the pass band. Curved fingers have

only been obtainable since the automation of the cutting

table.

Figure 23 shows a picture of a mask that was cut on the

cutting table for Nick Slater's thesis. The fingers are

slightly curved outward at the bottom. The data for the

mask consisted o~ over 1500 points generated by the pro

gram on pages 70 and 71. The mask was done by first cutting

all the lower fingers from right to left then cutting the

upper fingers inbetween fro~ left to right. Upon close in

spection it can be seen that some of the fingers are not

perfectly centered, but the error is only about .02 to .05

inches. Considering that this error was accumulated over

about 2,200 inches of cutting (4.4 million steps), without

any feedback, this system works very well! More accurate

masks can be obtained by alternately cutting the upper and

lower fingers. This was done with some other masks and there

was no detectable error, all of the fingers were perfectly

spaced.

68

,,

\J?i>1!tl. <=>"- "'Cr+\T
~M"b ii.~MENT

l.o""'Etl oR. ~trT

~b Elo.eM&~T

·-~---o-------

70

00100

00110

00120
00130
00140
00150
00160
00170

00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300

PROGRAM MASK3(INPUT,OUTPUT,DATA4,TAPEl=DATA4,

TAPE5=INPUT,TAPE6=0UTPUT)

REWIND1

;This program calculates the co-ordinates for a
curved finger SAW filter mask and outputs them to
tapel. Fingers are symmetric about they axis.
Digitization follows cutting proceedure:

1. 	 Starting point of transducer is output
2. 	 Lower side of left hand element of finger

pair is output, using the subroutine "Curve".
3. 	 Right hand edge of finger is output.
4. 	 Upper side of left hand element is output.
5. 	 Starting point for next finger pair is output.
6. 	 Proceedure repeats for all left hand elements.
7. 	 Proceedure is executed in reverse for right

hand elements.
8. 	 Proceedure repeats for output transducer.
9. 	 Original start position is output, along

with an "End of Data" (EOD) mark.

X=O.O

Y=O.O

PU=O.O

PD=l.O

WRITE(l,l)X,Y,PU

1 FORMAT(3(3X,F8.5))

;All the controlling parameters are initialized.

SCALE=1.0

GAP=SCALE*0.3

ETA=0.5

N0=35

W=SCALE*24.0

BW=0.5

FC=70.0E+06

V=SCALE*3158.0*39.37*9.5*20.0

NSTRP=10.0

XOFSET=SCALE*l.O

YOFSET=SCALE*l3.0

SEP=SCALE*6.0

K=O

;The dimensions of all of the parts of the mask

are initialized.

00310 5 DELTF=BW*FC

71

00320
00330
00340
00350
00360
00370
00380
00390

00400

DELTX=(W+GAP)/FLOAT(NSTRP)
FLO=FC-DELTF/2.0
C1=V/FL0*(0.5*FLOAT(N0)+0.125)+YOFSET
C2=0.5*V*W/DELTF
C3=FLO*W/DELTF-XOFSET
X=XOFSET
Y=YOFSET-SCALE
WRITE(1,1)X,Y,PU

;Transducer digitization is set up

N=NO
00410 10 X=X-DELTX

00420
00430
00440

00450
00460
00470
00480
00490
00500

00510
00520

00530
00540
00550

00560
00570
00580
00590
00600

00610

00620

00630

;Digitise left hand elements,starting at the bottom.

SIGN=l.O

CALL CURVE(X,Y,N,SIGN,C1,C2,C3,DELTX,NSTRP)

X=X+DELTX

;Lower side of finger.

SIGN=-1.0

CALL CURVE(X,Y,N,SIGN,C1,C2,C3,DELTX,NSTRP)

N=N-2

IF(N.GE.-NO) GO TO 10

X=X+GAP+W+GAP

WRITE(1,1)X,Y,PU

;Upper side of finger.

N=-(N0-1)
20 X=X+DELTX

;Digitise right hand e1ements,starting at the top.

SIGN=-1.0

CALL CURVE(X,Y,N,SIGN,Cl,C2,C3,DELTX,NSTRP)

X=X-DELTX

;Upper side of finger.

SIGN=1.0

CALL CURVE(X,Y,N,SIGN,C1,C2,C3,DELTX,NSTRP)

N=N+2

IF(N.LE.(NO-l))GO TO 20

IF(K.NE.O)GO TO 30

;Lower side of finger.

X=XOFSET

Y=YOFSET

WRITE(1,1)X,Y,PU

72

00640 Y=YOFSET-SEP
00650 WRITE(l,l)X,Y,PD
00660 NO=ll
00670 XOFSET=SCALE*l.O
00680 YOFSET=SCALE*l.O
00690 K=l
00700 GO TO 5

~Digitise output transducer.

00710 30 X=O.O
00720 Y=O.O
00730 WRITE(l,l)X,Y,EOD
00740 END

00750 SUBROUTINE CURVE(X,Y,N,SIGN,Cl,C2,C3,DELTX,NSTRP)

~Draws a curve controlled by Cl,C2, and C3 which
reflect changes in center frequency, bandwidth,
aperture, number of fingers, and velocity of sound.

~(X,Y} starting position for the finger.
~"SIGN" controls the direction of the cut:

=1.0 cut from left to right
=-1.0 cut from right to left

~"NSTRP" indicates the number of linear segments
used to approximate the curve.

;"DELTX" gives the change in X in inches correspond
ing to each linear segment. ((aperature+gap)/NSTRP)

00760
00770

PD=l.O
M=NSTRP+l

00780
00790

DO 15 I=l,M
X=X+DELTX*SIGN

00800 Y=Cl-(FLOAT(N)+SIGN/4.0)*C2/(X+C3)
00810 WRITE(l,l)X,Y,PD
00820 15 CONTINUE
00830 RETURN
00840 1 FORMAT(3(3X,F8.5))
00850 END

This program is explained in much more detail in Nick

Slater's thesis. It is only included here to provide a

typical example of what can be done on the automated cut

ting table.

CHAPTER 9

The micro-computer controlled cutting table is now

fully operational and works sufficiently well to enable Dr.

C.K. Campbell's lab to experiment with SAW device configur

ations previously unobtainable. A phenomenal time saving

is also realized when cutting more conventional SAW patterns,

a two week job can now be completed in a day of developing

and de-bugging a data file program and another couple of

hours for the automated cutting table to cut the mask.

Nonetheless, there are numerous improvements that could

be made to the system:

1. Presently there is no feedback at all. The micro

computer cuts one line after another knowing only the rel

ative data for that particular line. A feedback system

would make the entire proceedure more accurate provided

the feedback is very precise; about plus or minus .0005 in.

Mr. Mark Usik studied the feedback problem in a fourth year

thesis using synchro feedback motors, these motors pro~ed

too inaccurate to be of any use. He suggested that linear

transducers, although very expensive, would probably be the

best solution should accuracies greater than presently ob

tainable ever be required.

2. Operating the motors in the fully automatic mode,using

the CYBER system to create data files, is fine for creating

SAW masks. SAW devices are periodic in design and lend them

selves easily to computer design. Cutting a mask for an

73

74

electronic circuit board would prove very difficult, the

data file would probably have to be created manually. It

would be much easier if the motors could be operated directly

by the user via a keyboard or toggle switches. The operator

would also need a display to tell him the position of the

motors while they were running. Such a system could likely

be added to the present hardware with only some software

additions. The present micro-computer keyboard and display

could be used.

3. The system occasionally makes a fatal error and cuts a

line incorrectly. Normally this is caused by a very minor

error in anyone of the thousands of data bits. Often the

mask is only slightly damaged and could be saved if there

was a method by which the next correct data can be found and

the motors restarted. Presently there is no way of restart

ing the cutting programs once a mistake has been discovered.

This means scraping the old mask and starting over. This

sort of catastrophic failure doesn't happen too often, how

ever, some sort of save-the-mask routine would definitely

be an asset to the overall system.

4. The first time the user gets to see what his mask looks

like is when it is actually completely cut on the cutting

table. If some software error was made in the creation of

the data file or in the loading of the magnetic tape it

would only be noticed after the cutting table has spent two

or three hours creating a useless mask. The addition of a

plotter would enable the data to be quickly verified before

the cutting table motors are set into operation. A plotter

would also produce a handy hardcopy of the mask without the

expense and delay of having the mask photographed.

75

5. A few operator oriented programs such as a cassette

tape "bootstrap" would enable the user to interact more read

ily with the various components of the system. This would

facilitate experimentation in any of the above mentioned im~

provements.

APPENDIX 1

An SDK-85 micro-computer was used in this project.

The - operational theory and all the circuit diagrams are

provided in detail in Intel's MCS-85 User's Manual. All

of the monitor programs provided with the micro-computer

are also given in this manual. This project and John Met

selaar's made numerous additions to the micro-computer,ex

panding its memory and I/0 capability. Appendix 1 and Ap

pendix 2 show just what memory and I/0 is available on this

micro-computer.

Table Al: Memory Map

Locations Device Comments

0000-07FF 83 55 (ROM) ;Monitor programs

0800-17FF ;Not connected,available for
the addition of more I.C.s.

1800-lFFF 8279 ;No memory available, locations
1800 and 1900 address the dis
play and keyboard, all the re
mainder are redundancies of
these two addresses.

2000-20FF 8155 (RAM) ;Monitor programs reserve loc
ations 20C2-20FF, the rest is
free for any use.

2100-27FF ;Redundancies for locations
2000-20FF.

2800-28FF 8155 (RAM) ;Free for any use.

2900-2FFF ;Redundancies for locations
2800-28FF.

3000-30FF 8155 (RAM) ;30D0-30FF reserved for cutting
table control programs, the
rest is free for any use.

76

77

Lo:::ations Device Comments

3100-37FF 7Redundancies for locations
3000-30FF.

3800-3FFF 8251 (USART) 73800 is used to address the
(PHI-DECK) USART register, all of the

rest of the locations are re
dundancies of 3800.

4000-47FF 8251 (USART) 74000 is used to address the
(CRT Termina 1) USART register, all the rest

of the locations are redun
dancies of 4000.

5000-53FF 8185 (RAM) 7This is the data RAM to hold
mask information.

5400-57FF 8185 (RAM) ;Tpis RAM is free for any use,
often used for development -of
new micro software.

5800-FFFF ;Not connected to anything.

APPENDIX 2

Table A2: Port Map

Port

00

01

02

03

04

05

06

07

20

21

22

23

28

29

2A

2B

30

31

32

Bits

8

8

8

8

6

8

8

6

8

8

Device Comments

8355 port A ;Input/ Output port used to
control the stepping motors.

8355 port B ;Same as port 00

8355 C/ S ;Command / Status register for
port 00

8355 C/ S ;Command / Status for port 01

;Port 00 redundancy.

;Port 01 redundancy.

;Port 02 redundancy.

;Port 03 redundancy.

8155 C/ S ;Command / Status register for
ports 21, 22, and 23.

8155 port A ;Used in Mark Usik's feedback
system.

8155 port B ;Mark Usik's feedback system.

8155 port c ;Mark Usik's feedback s y stem.

8155 C/ S ;Command/Status register for
ports 29, 2A, and 2B.

8155 port A ;Mark Usik's feedback system.

8155 port B ;Mark Usik's feedback s y stem.

8155 port C ;Mark Usik's feedback s y stem.

8155 C/ S ;Command/ Status register for
ports 31, 32, and 33.

8155 port A ;Used to control the functions
of the cassette deck.

8155 port B ;Used to feedback the status
of the cassette deck.

78

79

Port Bits Device Comments

33 6 8155 port c ~Used to control the direction
of the tape deck.

38 8251 (USART) ~This port gives access to the
control word of the PHI-DECK
USART.

40 8251 (USART) ;This port gives access to the
control word of the CRT USART.

48 8 8755 port A ;Not used.

49 8 8755 port B ~Not used.

4A 8755 C/ S ~Command/Status for port 48.

4B 8755 C/ S ;Command/Status for port 49.

4C ;Redundancy for port 48.

4D ~Redundancy for port 49.

4E ;Redundancy for port 4A.

4F ;Redundancy for port 4B.

REFERENCES

1. 	 Intel, COMPONENT DATA CATALOG, Literature Department
Intel Corporation, Santa Clara, California, 1980.

2. 	 Intel, MCS-85 USER'S MANUAL, Literature Department
Intel Corporation, Santa Clara, California, 1977.

3. 	 Metselaar, MICRO-COMPUTER INTERFACING, DESIGN, AND
OPERATION, McMaster University Thesis, Hamilton, Ont
ario, 1979.

4. 	 Slater, DESIGN OF WIDE BAND,LINEAR PHASE, SURFACE
ACOUSTIC WAVE FILTERS, McMaster University Thesis,
Hamilton, Ontario, 1982.

5. 	 Superior Electric, DESIGN ENGINEER'S GUIDE TO DC STEP
PING MOTORS, Superior Electric Company, USA, 1976.

6. 	 Usik, SYNCHRONOUS MOTOR FEEDBACK DESIGN, McMaster Uni
versity Thesis, Hamilton, Ontario, 1982.

80

	zeuner_alfred_n_1982May_masters0001
	zeuner_alfred_n_1982May_masters0002
	zeuner_alfred_n_1982May_masters0003
	zeuner_alfred_n_1982May_masters0004
	zeuner_alfred_n_1982May_masters0005
	zeuner_alfred_n_1982May_masters0006
	zeuner_alfred_n_1982May_masters0007
	zeuner_alfred_n_1982May_masters0008
	zeuner_alfred_n_1982May_masters0009
	zeuner_alfred_n_1982May_masters0010
	zeuner_alfred_n_1982May_masters0011
	zeuner_alfred_n_1982May_masters0012
	zeuner_alfred_n_1982May_masters0013
	zeuner_alfred_n_1982May_masters0014
	zeuner_alfred_n_1982May_masters0015
	zeuner_alfred_n_1982May_masters0016
	zeuner_alfred_n_1982May_masters0017
	zeuner_alfred_n_1982May_masters0018
	zeuner_alfred_n_1982May_masters0019
	zeuner_alfred_n_1982May_masters0020
	zeuner_alfred_n_1982May_masters0021
	zeuner_alfred_n_1982May_masters0022
	zeuner_alfred_n_1982May_masters0023
	zeuner_alfred_n_1982May_masters0024
	zeuner_alfred_n_1982May_masters0025
	zeuner_alfred_n_1982May_masters0026
	zeuner_alfred_n_1982May_masters0027
	zeuner_alfred_n_1982May_masters0028
	zeuner_alfred_n_1982May_masters0029
	zeuner_alfred_n_1982May_masters0030
	zeuner_alfred_n_1982May_masters0031
	zeuner_alfred_n_1982May_masters0032
	zeuner_alfred_n_1982May_masters0033
	zeuner_alfred_n_1982May_masters0034
	zeuner_alfred_n_1982May_masters0035
	zeuner_alfred_n_1982May_masters0036
	zeuner_alfred_n_1982May_masters0037
	zeuner_alfred_n_1982May_masters0038
	zeuner_alfred_n_1982May_masters0039
	zeuner_alfred_n_1982May_masters0040
	zeuner_alfred_n_1982May_masters0041
	zeuner_alfred_n_1982May_masters0042
	zeuner_alfred_n_1982May_masters0043
	zeuner_alfred_n_1982May_masters0044
	zeuner_alfred_n_1982May_masters0045
	zeuner_alfred_n_1982May_masters0046
	zeuner_alfred_n_1982May_masters0047
	zeuner_alfred_n_1982May_masters0048
	zeuner_alfred_n_1982May_masters0049
	zeuner_alfred_n_1982May_masters0050
	zeuner_alfred_n_1982May_masters0051
	zeuner_alfred_n_1982May_masters0052
	zeuner_alfred_n_1982May_masters0053
	zeuner_alfred_n_1982May_masters0054
	zeuner_alfred_n_1982May_masters0055
	zeuner_alfred_n_1982May_masters0056

