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ABSTRACT 

This thesis develops a two dimensional Viterbi Algorithm for 

the maximum likelihood sequence estimation over band limited baseband 

channels with intersymbol interference. Degradation, decision depth, 

99% energy bandwidth and the channel cost are used as the performance 

measures for the comparisons of different channels. The four measures 

are extensively evaluated for channels with length up to four signalling 

intervals. The results of each measure are presented in contour form. 

Error events analysis shows that the degradation contours are 

governed by elliptical equations. Maximum degradation results from 

state path merge at a depth equal to the channel length plus one. By 

analysing periodic state sequences, we found that catastrophic error 

propagation contours are mainly governed by linear equations. Generally, 

channels with longer length have narrower minimum bandwidth but higher 

degrad at i on . 

A channel cost similar to Shannon capacity equation is proposed 

to jointly minimize both degradation suffered and bandwidth required for 

signalling over a channel. According to the equation, the channel cost 

is influenced 111ore by the bandwidth than by the degradation and thus the 

regions of low channel cost lie on the regions of narrow bandwidth. 

Also low channel cost regions are found to be on the regions of long 

decision depth and thus require higher complexity for maximum likelihood 

sequence estimation. In addition, it is found that minimum channel cost 

decreases with increasing channel length. 
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CHAPTER l 

INTRODUCTION 


In a polar digital communications system, each data symbol gives 

rise to a baseband pulse every symbol period. Over a band limited 

channel, the pulses interfere with successive ones, resulting in 

intersymbol interference. Various receiver'\ structures with different 

complexities have been proposed to "disentangle" intersymbol interference 

but with different successes. For those receivers which cannot fully 

nullify the effect of intersymbol interference, degradations in the 

form of lowering of signal to noise (S/N) ratio and/or increasing the 

bit error rate, result. This thesis focusses on the usage of an en­

coding system that correlates the amplitude levels among pulses for 

spectral shaping. This system, known as a partial response signalling 

system, may result in bandwidth efficient coding. On the receiver's 

side, the Viterbi algorithm, which is an optimum way of implementing maximum 

likelihood sequence estimation, will be used. 

Kabal and Pasupathy [8] gave a comprehensive study of partial ­

response signalling (PRS) systems. They modelled a PRS system as a 

transversal digital filter in cascade with a Nyquist filter, and the 

decoder is simply a decision feedback equalizer. Speed tolerances are 

considered, taking into account multi-level outputs and the effect of 

sampling phase. Eye width is introduced as a performance measure in 



-- --------- -

----~-~-

TRANSMITTING 
- kT)2>ks <t 

k :=.-"" 
IMPUL 

SEQUE 

p\J 

FTLTF:R 

~-

MAXIMUM 

LlKFLII!OOD 


SEQUENCE 


L_~TIMI\~OH 


-----~~~-

BAND 

-~--~ LIMI'J'FD 


C:i!ANNEL 


VH TTF 

r;AU S~~ li\N0-)­
NO I ~;E 

N 

1\ECEIV INr~l'T'\_ 

FlLTEH 

FiP:. 1.1 A Jlir·it.Cll C:C:>mmunir,aUnns ~-;ystem :v:orieJ 



3 


comparing PRS systems. The effect of an increase in the number of out­

put signal levels is measured by SNR degradation over ideal binary trans­

mission. Probability of symbol error including the effects of error 

propagation is considered using Markov chain models. The minimum band­

width of the filter is always considered as 1/T, where Tis the siqnallinq 

interval. The codes being considered are formed from filters 1 - D and 1 + D. 

Kobayashi [10] applied a non-linear processor known as the 

Viterbi algorithm to achieve maximum likelihood decoding of correlative 

level codes of the form 1 ± Dk, and analysed the performance by calculating 

the probability of symbol error using the minimum Euclidean distance 

concept. He pointed out the duality of codes 1 + Dk and 1 - Dk, where 

k is an integer. 

Forney [5] designed a maximum likelihood receiver for estimating 

digital sequences in the presence of intersymbol interference. It 

consists of a whitened matched filter followed by the Viterbi algorithm. 

The channel is modelled as a linear discrete time channel with memories 

similar to a PRS system. The error event\ concept was introduced in his 

performance analysis. Finally, Forney asserted that the probability of 

symbol error P(e) was bounded by KLQ(dmin/2cr)<P(e)<KuQ(Dmin/2cr), where 

KL' Ku are small constants, Q(x) is the Gaussian error probability 

function, cr2 the noise variance, and dmin is the minimum Euclidean 

distance between any two allowable signal sequences. 

He asserted that, by using a preemphasis filter for the input 

sequences before transmission over the channel, any degradation due to 

intersymbol interference can be avoided. The preemphasis filter is in 

fact a PRS system with F(D) = tx(D), where~x(D) is the input error sequence. 
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This assertion is only true in the context of getting optimum performance 

in degradation alone. When both degradation and 99% power bandwidth are 

to be jointly optimized, we show that the preeamphasis filter will require 

a wider bandwidth and thus a worse overall performance. Also the 

complexity of the Viterbi algorithm necessarily increases in preemphasis 

as the order of the linear channel is increased. 

Qureshi and Newhall [2] proposed a sub-optimum receiver for 

the time-dispersion channel. They showed that for a channel with a 

memory of order one, the error probability with maximum likelihood sequence 

estimation approaches the lower bound. They went on and showed that the 

quantity d~in/R0 = 0.58 for a channel with memory of order two, where R
0 

is the impulse response energy of the channel. Hence, the performance 

of maximum likelihood sequence estimation cannot approach the no-inter­

symbol interference lower bound for codes with memory of order two. 

Messerschmitt [6], [7] developed a linear space geometric theory 

for intersymbol interference. An equivalence between the theories of 

intersymbol interference and wide-sense stationary discrete random 

processes was shown, and was used to demonstrate the equivalence of zero­

forcing (decision-feedback) equalization to minimum mean-square linear 

interpolation (prediction) of a random process ..He showed that a 

canonical relationship exists between the minimum Euclidean distance 

d ·nand the decision feedback error Jle+JI and that d ·n > JJe+IJ.m1 o m1 o · 

He asserted that the amount by which S/N ratio of maximum likelihood 

decoding exceeds that of decision feedback equalization is governed by 

the coarseness of the best approximation to the projection by an element 

with restricted manifold coefficients, which for binary transmission is 
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1 and 0; the poorer the approximation, the better the S/N ratio 

of the maximum likelihood decoder 

Magee and Proakis [15] estimated the worst case error probability 

for maximum likelihood sequence estimation on channels with different 

memory order. The bound follows that of Forney [5], and estimating 

the upper bound on error probability becomes essentially findinq the 

dmin· They used the fact that the minimum d2 . for channels with m1n 
unity energy constraint on the pulse response is the minimum eigen­

value of the matrix of a suitable quadratic form. For channels of 

length greater than three, they consider input error sequences of 

various degree and select one that may give rise to minimun d2 ..m1n 
A positive definite matrix is then formed dependinq on the chosen error 

sequence. The minimum eigenvalue and the correspondinq eigenvector 

then will be the minimum squared distance and the minimum distance 

channel respectively for that particular error sequence. This 

elimination method was used for all channel lengths up to 10. No 

procedure has been given to find the minimum d2 for all channelmin 
lengths. 

Anderson and Foschini [22] provided a procedure for findinq the 

minimum d2 . for classes of systems of moderate complexity, that is,m1n 
up to a few hundred states. Their way of expressing d2. originatedm1n 
from a functional analysis computer search approach. The determination 

of a closed-form expression for d~in proceeds by selecting the crucial 

error patterns from the full tree. They found the necessary and 

sufficient error sequence patterns to cause d ·n for binary three-levelm1 ) 
and four-level siqnals with memory of order 2, 3, and 4. They also listed the 
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above error sequence pattern for channels with a null at the band edge 

for memory of order 4. Specifically, they found that t:x(D) = 1 ± D 

gives the minimum d;in for all channels with length up to six, which 

previous work [15] did not show. 

The purpose of this work is to evaluate the performance of the 

maximum likelihood receiver structure as proposed by Forney in the pre­

sence of intersymbol interference for baseband channels. This task in 

turn is equivalent to finding the performance of the receiver for channels 

having finite duration impulse response. These channels can be modelled 

as partial response signalling systems with real number tap-gains. 

In this way, the effect of the band-limitation induced inter-

symbol interference can be considered to reside entirely in the encoder 

instead of the baseband channel, hence allowing us to vary solely the 

encoder and the transmitting filter for the optimization of the overall 

performances of the communication system. In our case, the encoder and 

transmitting filter are formed from a partial response signalling system. 

In this study, a partial response signalling system is used interchangeably 

with a channel with finite impulse response. 

The second chapter of the thesis explains the above rationales in 

full detail\. In addition, the application of dynamic programming for 

maximum likelihood sequence estimation in memoryless noise is developed. 

The third chapter goes on to· quantify the performances of different optimum 

linear receivers. Their similarities and differences with a non-linear 

receiver is highlighted. Also the Viterbi algorithm for the detection of 

partial response signals is formulated. 
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In chapter four, the error event concept is introduced and used 

to develop the bounds on the probability of symbol error following 

Forney•s approach. In addition, 11 double 11 dynamic programming is developed 

for finding the free distances of partial response signalling systems. 

The rest of the thesis concentrates on developing the appropriate 

performance measures for the comparisons of different partial response 

signalling systems with different tap-gains and constraint lengths. This 

is for the searching of channels with good impulse responses for maximum 

likelihood sequence estimation. 

Four parameters are selected as the performance measures for 

different channels. Channels with length up to four are considered. The 

four parameters are degradation, decision depth, 99% energy bandwidth and 

the channel cost. Degradation is a measure of the effective decrease in the 

energy of a signal sequence in distinguishing itself from another in a 

channel with impulse response over a number of signalling interval, compared 
1 

with that of an isolated pulse. 

Decision depth is a variable which indicates the complexity, in 

terms of memories and computations required, for maximum likelihood 

sequence estimation using 11 double 11 dynamic programming. 99% energy bandwidth 

is the frequency band within which 99% of the energy of the channel•s 

impulse response lies. It gives a guide of the practical bandwidth provided 

by the channe1 . 

Finally, in a venture to jointly optimize both degradation and 

bandwidth, a channel cost function similar to Shannon capacity equation 

is proposed and evaluated. 



2.1 

CHAPTER 2 

DYNAMIC PROGRAMMING AND PARTIAL RESPONSE SIGNALLING SYSTEMS 

This chapter introduces the concept of dynamic programming and 

its application to maximum likelihood decoding of Markov process in 

memoryless noise. Furthermore, this chapter provides some rationale of 

utilizing partial response signalling systems as the transmitting filter 

in our communications system model. 

Maximum Likelihood Decoding 

In digital communications, a noisy channel distorts the trans­

mitted sequences in a stochastic manner. A channel with input sequences 

from an input alphatet I and output sequences from an output alphabet Y 

can be described by a conditional probability distribution P(yj~), where 

~' yare input and output vectors. 

A decoder is a device that instruments a decoding rule for 

choosing the transmitted sequence among all poss~ble sequences on the 

basis of the received sequence. Consider the decoding rule which 
A 

minimizes P(e), the probability of code word error. Let x be the 
,., 

estimated input vector or codeword. Then P(e/y) = 1 - P(~y). This is 

equivalent to maximizing P(yj~)P(~)/P(y), by Bayes' rule. As only P(yj~) 

depends on the channel, we define a maximum likelihood decoder (MLD) as 
"' a decoder which, given the received vector y, sets x = x such that 

8 
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P(~~)is maximized. 

Main advantage of this decoder includes: 

1) The MLD depends only on the channel and is independent of 

how the codewords are chosen. 

2) The MLD is optimal in the sense of minimizing P(e) in 

the important case when the information symbols are 

statistically independent and equally likely. 

3) The MLD sets ~ =~ about which the received vector y 

gives the most information. The mutual information of 

a data symbol 'a' supplied by 'b' is I(a/b) =log P(b/a)/P(b). 

Hence, I(~y) =log P(yj~)/P(y), and maximizing P(if~) in 

the MLD is the same as maximizing the mutual information 

between y and x. 

4) The MLD gives a constant low P(e) independent of the 

actual selection of the codewords. 

Although the MLD is an optimal decoding rule, it is often not 

used in practice due to complexity involved in its implementation. 

Consider a block code of length N and size M, where Mis the number of 

distinct sequences called codewords. Each data symbol belongs to some 

alphabet I= 0, l, 2, ... , m- 1 so that M~ mN .. The rate of the code 

is defined as R =(logm~N. A brute-force application of the maximum­

likelihood decoding requires mRN calculatio~~of the conditional probability 

distribution P(y/x). If the noise in the channel is not too large then 

a suboptimum rule such as bounded-distance decoding can be used instead. 
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2.2 Dynamic Programming Concept and the MLD 

The most commonly used MLD is the Viterbi Algorithm (VA), first 

introduced as an optimum decoder for convolutional codes. As it is 

based on dynamic programming concepts, .let us have a clear understanding 

of these principles. 

We conceive of a system as a state vector consisting of K state 

variables. The smallest set of variables which determine the state of 

the system are termed the state variables. The state has the property 

that the knowledge of these variables at t = t together with the inputs 
0 

for t > t 
0 

determine the behaviour of the system for any time t > t
0

; 

i.e., s(t) = (x1(t), .... xK(t)). One important point is that the state 

of the system at t > k depends only on sk; we do not require the past 

history of the system to determine the future. The future is uniquely 

determined by the present. 

Suppose we have sufficient influence over the system so tbat at 
• I 
)­

each stage i we can choose a variable q. £ Q, where Q is the set1allowable 
1 J. 

decisions and s.+l = s(s., q.) for all i [1]. A decision among the q. 
1 1 1 1 

forces a change of state. The process is deterministic if a decision 

causes a unique change of state. The process is discrete if there are 

only a finite number of decisions. An N-stage discrete deterministic 

process is denoted by the set of vectors 

vN = 

with si+l = s(s 1, q1) for each i. We are concerned with processes in 

which q1 are chosen so as to maximize or minimize prescribed scalar 
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function of the state and decision variable R(VN). 

We want to evaluate the "goodness" of various sequences of 

decisions. We need a criterion possessing a structure which permits us 

to concentrate solely upon the past and present history of the orocess 

in the search for values of qi. Thus we restrict to functions of form 

This function is called a policy function. A policy .. 
function is any rule for making decisions which yield/an allowable 

sequence of decisions; the policy which maximizes or minimizes the 


criterion or return function is called an optimal policy. 


The above policy function is too general and we wish to have the 

policy of form qk = y(sk)' a function only of the current state. A 

subpolicy refers to a sequence of connected decisions which form part 

of a policy. The theorem of optimality [19] states: An optimal 


policy must contain only optimal subpolicies 


Proof: 

Consider a subpolicy extracted from an optimal policy. If such 

a subpolicy were not optimal then there exists a better one which if 

. added to the remaining portion of the policy under consideration would 

improve the latter, a deduction contrary to the hypothesis that the 

latter is the optimal. Q.E.D. 

As an illustration, consider a return function possessing 

Markovian nature; after any number of decisions k, the effect of the 

remaining (N - k) stages of the decision process upon the total return 

depends only on the states sk of the system at the end of the k-th 
N-1 

decision and the subsequent decisions. Let R[VN] = I g(sk' qk) and 
k=O 
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fN(s ) =max R[VN]; i.e., it is the maximum total N-stage return starting
0 

in state s using the optimal policy. 
0 

= max max ..... max {g(s
0 

, q ) + .... g(sN-l' qN-1)}
0 

qo ql qN-1 

= max 

qo 


as g{s , q ) is independent of [q1, ..... qN_ 1]. Consequently,
0 0 

= max g(s , q ) + fN_ 1(s 1) with = s(s , q ). ( 1 ) 
0 0 

s1 0 0 
qo 

This is the dynamic programming approach. 

The principle of optimality can now be stated in another form 

[1], 11 An optimal policy has the property that regardless of the initial 

state and the initial decisions a~, the remaining decisions must contri ­
/ 

bute an optimal policy with regard to the state resulting from the first 

decision 11 
• 

The backward dynamic programming approach is similar. Let 

fN(sN) = maximum total N-stage return terminating in state sN using an 

optimal policy. As max R = max R , accordingly, 
[ qo' · · · qN-1] [qN-1 , ... qo] 
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= max 

qN-1 


= max {g(sN-1' qN-1) + 
qN-1 

= 

with (2) 

Both approaches form recurrence relations. 

As noted by Bellman [1], "the decomposition of the problem of 

choosing a point in N-dimensional space into N choices of points in one-

dimensional phase space is of utmost conceptual importance". 

The comparison of the dynamic programming approach with the 

classical treatment of variational problem is summarized by Bellman [1]: 

"Classically one seeks a curve u = u(t) over (0, T) which 
max1m1zes. The unknown u is regarded as a point in function 
space. In our approach, at every point, we seek a direction 
which is optimal; the solution is obtained in the form of a 
policy, a set of instructions to carry out the process. In 
geometry parlance, we can say that the classical view of a 
curve as a locus of points, while dynamic programming considers 
a curve to be an envelope of tangents .... Hence the two theories 
are dual to each other ... This duality and equivalence remains 
valid, however, only for deterministic processes" See Fig. 2.1 

A solution in the dynamic programming context can be given in terms 

of fN(s;), the sequence of return functions, or qN(s;) the sequence of 

policy functions. Each sequence uniquely determines the other. Another 

point is that the presence of constraints simplifies the determination 

of the solution; by means of constraints we are able to cut down on the 

allowable choices of policies at each stage. Thus, the search process 
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U(t) 

I )( 
T 

VARIATIONAL CALCULUS APPROACH 

U(t) 

TANGENT 

- j--? 

TO THE CURVE 

0 

Fig. 2.1 

T 

DYN&~IC PROGRAMMING APPROACH 

Two different principles for the maximization 

of a quantity in time. 
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is easier to carry out. 

2.3 Tree Structure in Discrete Processes 

A discrete deterministic process can be represented as a tree 

starting at the root of level 0. Levels and nodes in a tree structure 

correspond to stages and states in a process. The root gives rise to a 

finite number of nodes which in turn are roots of other trees. Thus a 

tree is able to represent exhaustively all states and stages of a process. 

At every stage, a decision is made which causes a specific branch to be 

followed. Thus by assigning return values to different.branches of the 

tree in a corresponding way, an optimal policy can be regarded as a path 

through the tree with minimum or maximum values. 

To give a dynamic programming formulation to a process requires: 

1) Characterizing a physical system by a set of state variables 

and defining the allowable states at every stage. 

2) Defining the appropriate return or criterion function. 

3) Deriving a recurrence relation connecting the members of the 

sequence of return functions fN(s). 

4) Setting up the appropriate boundary conditions or constraints. 

In the dynamic pregramming approach, the ~aximum return is uniquely 

determined, but there may be more than one optimal policy which yields 


this return. Also both forward and backward recurrence relation formulations 


are feasible to most problems, so the choice depends on the ease of pro­


gramming. In general, the tree or path representing a process is 


unstructured in the following senses. Refer to Fig. 2.2. 


1) The number of allowable states at each stage is different. 




0 

16 


Fig. 2.2 An example of an unstructured graph 
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2) The number of allowable decisions in a given state at different 

stages varies. 

3) The number of allowable transformations from different states 

to a given state differs at different stages. 

2.4 Application of Dynamic Programming to a Discrete Markov Process 

Consider a problem posed by Forney [4]: Given a sequence Z of 

observatiors of a discrete-time finite state Markov process in memory­

less noise, find the state sequence S for which the a posteriori 

probability P(S/Z) is maximum. The process is modelled as: 

Time is discrete. The state space is {0, 1 , ... , M-1}. 

Assume the process runs from time 0 to time N; i.e., the state sequence 

isS= (s , s1, .... , sN_1). As the process is Markov, the future is
0 

independent of the past conditioned on the present; i.e., the probability 

(4) 


A transition ak occurs at time k when the process changes from state sk 

to sk+l and is denoted by ak = (sk' sK+l). 

Since the channel is memoryless, the sequence Z of observations 

zk depends probabilistically only on the transition ak at time k: 

(5) 


with a= (a , a1, ... , aN-l). We use the fact that the mapping from state
0 

sequence to transition sequence is one to one. 
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In some special cases, 
N-1 

1) zk depends only on sk' P(Z/S) = rr P(zk/sk).
k=O 

2) zk depends probabilistically on an output yk of the process at 

time k, which in turn is a deterministic function of the transition 

a.k· 

Now consider a type of Markov process called a shift-register 

process [4] shown in Fig. 2.3. An input sequence X = (x , x1, ... ),
0 

consisting of xk generated independently according to some probability 

distribution P(xk}, can take on one of a finite number of values m. This 

input sequence is used to drive the sequential machine to generate a 

signal sequence Y = (y , y1, ... ) in which each yk is some deterministic
0 

function of the present state and input; i.e., yk = f(sk' xk). Define 

the state 

(6) 

where L is the number of memory units in the shift-register. This is a 

L-th order m-ary Markov process. Note that yk is not observable, but 

that the observed sequence Z is the output of a memoryless channel whose 

input is Y, i.e., 

(7) 

where {nk} is the additive noise due to the channel. 

Maximum a posteriori (MAP) is a rule such that given a sequence Z 

of observations of a discrete-time process in a noisy channel, the signal 

sequence Y will be found for which the a posteriori probability P(Y/Z) is 

maximum. We only consider the case of a discrete-time finite-state Markov 
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process in memoryless noise. For a m-ary shift-register process, finding 

the probable signal sequence Y is equivalent to finding the most probable 

state sequence S or the most probable input sequence X. The tree repre­

senting the above process is really a m-ary tree. Every node represents 

a state but not all states at a given level are distinct. The Viterbi 

Algorithm (VA) is a dynamic programming solution to the MAP rule for a 

finite-state Markov process in memoryless noise. 

Maximum Likelihood sequence estimation (MLSE) is defined as the 

choice of Y for which the probability density p{Z/Y) is maximum. It can 

be shown [25] that the ML estimates correspond mathematically to the 

limiting case of MAP estimates in which the a priori knowledge approaches 

zero. MLD is usually used in the context for block codes while MLSE is 

used for sequences. 

2.5 Generalized Partial Response Signalling System~ 

A Partial Response Signalling (PRS) system is based on the shift-

register process mentioned in section 2.4. The system consists of a 

digital transversal filter with impulse response 

(8)F(D) = 

in cascade with a filter with frequency response G(w), where Dis the 

Huffman•s delay operator and {f.} is the tap-gains of the transversal 
1 

filter, with L being the number ofT-delay units [5], [8]. See Fig. 2.4. 

The filter is a finite-state machine with ml states, the state-

space is 



T{xk} 
0,1 L = number of 

delay units 

' ;;r T 

L 

~ :r LF; xk-i 
i=O 

-1 

{~} 

ro 


N 

m~T 2$. 'i<sinc(f -kJ 
k rj_ 

- 2T 2T 

Fig. 2.4 A Partial Response Sivnalling System with K =L + 1 taps 
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Ls = {0, 1 , 2, 3, ... m - l}, (9) 

and the inputs are 

X = {0, 1 , 2, ... m - 1} , ( 1 0) 

As the machine is able to remember its L previous inputs, the state is 

defined as in eq. (6). Similarly, the output depends only on the present 

state and input; i.e., 

( 11) 

Thus the input sequence is 

00 

X(D) = I ( 12) 
i=O 

and the output sequence is 

00 

Y( D) = I y .o; (13) 
i=O 1 

The system is linear, therefore the output sequence Y(D) is the convolution 

of the input sequence with the impulse response F(D). Thus in 0 transform, 

Y(D) = X(D) F(D) ( 14) 
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with 
L 

I f.xk . ( 15) 
i =0 1 -1 

The above representation is in the time domain. 

In the frequency domain, the digital transversal filter has 

periodic frequency response of period 1/T given by [8], 

F(w) = F(D)Io = exp(-jwT) 

L 

= L fkexp(-jkwT). ( 16) 
k=O 

The impulse response of the whole PRS system has sample values {fk} if 

and only if G(w) satisfies Nyquist's first criterion, which requires 

that its impulse response has zeroes at uniformly spaced intervals except 

for a centr~al peak [20]; i.e., 

g{kT) = 0, k = 0, g(O) = 1. ( 17) 

In the frequency domain, this implies [8] 

00 

L G(w 2k~/T) = T. (18) 
k=-oo 

Any filter which satisfies Nyquist's first criterion is known as 

a Nyquist filter, and its bandwidth as the Nyquist bandwidth. There are 

several filters with different bandwidths which satisfy Nyquist's 
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first criterion. The minimum Nyquist bandwidth refers to the minimum 

bandwidth of any filter which satisfies the criterion [12]. The filter 

turns out to be an ideal low-pass filter of bandwidth 2W = 1/T. 

Conceptually, F(w) forces the desired sample values {f;} but is 

periodic, while G(w) preserves the samples and is used to bandlimit 

F(w) [8]. G(w) preserves the samples in the sense that it does not cause 

any overlapping of pulses at sampling time. G(w) also can be thought of 

as converting the discrete-sample values into a continuous waveform. 

2.6 	 Minimum Nyquist Bandwidth Filter and the Raised Cosine Filter 

The impulse response of an ideal low pass filter, of bandwidth 

W = l/2T 	 (19) 

and unity gain, is a sine pulse 

(20) 

A sine pulse is not desirable for signalling because of the precise 

timing required. The pulse response decreases as 1/t for large t. Any 

slight deviation in symbol rate, filter cut off frequency, or sampling 

instant would cause failure, as the overlapping tails represent a divergent 

series, and can add up to large values resulting in mis-interpretation of 

sample values [20]. 

With a more gradual roll-off of the low-pass characteristic, the 

oscillatory nature of the pulse is reduced and the tail decay is faster 

than 1/t. One class of Nyquist filter called raised cosine [12] consists 
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of a flat amplitude portion and a truncated sinusoidal roll-off. It has 

the advantage of tolerating more deviation in the sampling instants than 

the ideal filter, because the response falls off faster and fewer pulse 

tails contribute significantly. Its spectrum is defined in terms of a 

parameter which specifies the amount of bandwidth used in excess of the 

minimum Nyquist bandwidth. In this work, we only consider the minimum 

Nyquist bandwidth because we want to find the maximum theoretically 

obtainable data rate in a channel of given bandwidth. Also for systems 

with bandwidth larger than TI/T, aliasing will result when the outputs of 

such systems are sampled at the symbol rate. If a non-minimum bandwidth 

PRS system is used to equalize a channel characteristics, aliasing can 

cause nulls or near nulls in the Nyquist equivalent channel where non is 

intended, resulting in the degradation of the performance of the equalizer 

as noise enhancement will occur in compensating for these unintentional 

nulls. In addition, non-sine pulses like the raised cosine filter will 

introduce analytical complexities beyond the scope of this work. 

Throughout this study the impulse response of a PRS system with an ideal 

low-pass filter of minimum Nyquist bandwidth and unity gain is given by 

L 

h(t) = I f. sinc(2Wt- i). (21). 
i=O 1 

2.7 Intersymbol Inteference and PRS Systems 

In digital transmission through a linear, band limited analog 

channel, the input sequence X, in discrete time and value, is transmitted 

through a pulse-shaping filter to modulate some continuous waveform. 



26 


After passing through the baseband channel and the receiving filter, the 

waveform is being sampled. Ideally, the received samples zk should be 

equal to the corresponding xk or same simple functions thereof. But the 

samples zk are perturbed by noise and some neighbouring inputs xi' 

i f k. The latter effect is known as intersymbol interference (ISI). 

To eliminate bandwidth-induced ISI, the impulse response h(t) 

of the transmitting filter GT(w), the channel C(w), and the receiving 

filter GR(w) in cascade must satisfy the Nyquist's first criterion [12]. 

For h(t) with sample values 

(22) 

ISI due to the L-th order memory system GT{w)GR(w), with input 

sequence X = {xi}' can be represented by the convolution 

L 
I h.xk . 

i=O 1 -1 

L 

= h (xk + (l/h ). L h.xk .). (23)
0 0 i=l 1 -1 

The second term is the lSI. 

The correlation introduced between successive sample values is 

of discrete type, in the sense that a data symbol can be disturbed only 

in a finite number of ways by adjacent symbols. If symbols of a data 

sequence are so correlated, a method better than symbol-by-symbol decisions 

is to base decisions on the entire sequence received. Were the data 

encoded by a convolutional code, we would argue the same. Comparing the 
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above convolutional form with the convolution for PRS system, we note the 

similarity in both cases: namely that the sample values {h.} in ISI could 
1 

correspond to the {fi} of a PRS code. Thus IS! can be regarded as an 

unintended form of PRS coding. 

It is the band limitation of GT(w)C(w)GR(w) that introduces memory 

into the system and stretches the original waveform over a time period 

longer than the symbol duration resulting in ISI. 

The controlled amount of correlation between samples in PRS systems 

can be used for spectral shaping [8]. This allows practical systems to 

transmit at the Nyquist rate which is not possible with ordinary PAM systems. 

Violations of the correlative coding format in PRS systems can be used to 

monitor error performance or even to correct it [21]. For example, in the 

ambiquity zone decoding method, the quantizer makes a soft decision 

including rejection levels. Most of the digits in the ambiquity levels 

are replaceable with correct values by using the redundancy of the sequence. 

In addition, a PRS spectrum might be selected to complement a non-ideal 

channel spectrum in order to reduce the IS!. This idea will be further 

exploited in this thesis. 

The disadvantage of traditional PRS systems lies in using symbol 

by symbol detection. Reduced noise margin resul~s because the super­

position of waveforms causes the number of output levels to be larger and 

more dense than the number of input levels. By exploiting its spectral 

shaping property and by using MLSE, we may get improved performance out 

of PRS systems. 
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2.8 99% Energy Bandwidth of PRS Systems 

For any minimum Nyquist bandwidth PRS systems, the one-sided 

bandwidth is l/2T where T is the signalling interval. But we note that 

for some PRS systems, more energy is concentrated in the low-frequency 

portion of their spectrum, while others have DC nulls causing energy 

to be concentrated in the high frequency portions of their band instead. 

Thus the minimum Nyquist bandwidth of l/2T of all PRS systems does not 

convey any information concerning the energy distribution 

of the coded systems. 

Our aim is to obtain the minimum bandwidth required by a PRS code 

but still be able to signal at a rate of l/2T symbols/sec with a given 

amount of ISI. To facilitate this, we define the 99% energy bandwidth 

of a PRS system as the frequency band within which 99% of the energy of 

the response is confined. 

We choose a model in which the transmitting filter GT(w) is a PRS 

system and the channel is assumed to be an ideal low-pass filter of 

single-sided bandwith W. Essentially, one intentionally causes a band 

limitation with a known spectrum and transmits through a channel that 

causes no further limiting; that is, no further unintended ISI is intro­

duced by the channel. The premise is that since the ISI is known, being 

caused by the PRS system, its effect can be removed. We shall consider 

from now on that the bandwidth of a PRS code is its 99% energy bandwidth. 



3.1 

CHAPTER 3 

LINEAR AND NON-LINEAR RECEIVERS 

In this chapter, we introduce linear and non-linear receiver 

structures designed to combat IS!, whether intentional or otherwise. We 

then show step by step how to formulate the maximum likelihood decoding 

of partial response signalling systems using the Viterbi Algorithm. 

Linear Receiver Structures 

Before we can perform symbol-by-symbol decoding or maximum likeli ­

hood sequence estimation, we first have to make the transition from con­

tinuous waveform to discrete samples. Simple application of a sampler 

without a matched filter is information lossy in general. A matched filter 

receiver is optimum in the sense of maximizing the S/N ratio when there is 

no IS! [13]. 

A receiver for synchronous data symbols in the presence of ISI 

consists of a linear filter, a symbol-rate sampler and a quantiser for 

establishing symbol-by-symbol decisions. A decoder, possibly with error­

detection and/or error correction capability, may follow. The purpose of 

the receiver filter is to eliminate IS!, at the same time maintaining a 

high S/N ratio. 

For various performance criteria such as minimum mean square error 

and minimum average error probability [12], [23], the optimum linear 

29 
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filter can be factored as a matched filter (MF) and a transversal filter 

(TF) with tap-spacings equal to the sampling interval. The MF sampled 

outputs are a set of sufficient statistics for estimation of the input 

sequence, and this filter maximizes the SNR ratio without regard to the 

residual IS! at its output. The TF eliminates or at least reduces IS! 

at the expense of enhancing noise and lowering the S/N ratio. 

3.2 The Zero-Forcing Equalizer and the Decision Feedback Equalizer 

We consider the above filters in a linear space context, which 

requires that the impulse response of GT(w)C(w) mentioned in chapter 2 

has finite energy, that is, it is square integrable. Let the impulse 

response by h(t), thus 

(24) 


Define the inner product in this linear space as 

<X, Y> = J::x(t)y(t) dt, (25) 

hence, 

2 = <X, X> • {25)llx!J 

An example of a symbol-by-symbol decisions receiver is the zero­

forcing equalizer (ZFE); a ZFE is a filter with impulse response gk{t), 

which does not respond to any translate of h(t) except h(t- kT) [6]: 
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0, m F k, 	 (26) 

but 

(27) 

so that 	there is an output signal on which to base the decision. 

In terms of inner product notation, we have 

k r o, (28) 

where 

hk = h(t - kT) 

and 

<h
0 

' g
0 

> 1 0 • (29) 

Refer to Fig. 3.1. 

As noted earlier, in order to exploit the correlation between 

discrete samples in ISI, sequence estimation rather than symbol-by-symbol 

decision should be used. One method is to feedback previous symbol 

decisions and the decision feedback equalizer (DFE) represents the 

earliest step in this direction; the linear forward filter is allowed to 

respond to all past data symbols, and the residual interference from 

past symbols using past decisions is subtracted out prior to the decision 

threshold. The past decisions may not all be correct, which affects the 

present decision and causes error propagation. The DFE as a whole is 

inherently non-linear; only the forward filter consisting of a MF in 
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cascade with a TF is linear. In inner product form, the forward filter 

is shown as 

k f: 0 (30) 

<h g > .j. 0. (31)o' · o r 

Refer to Figure 3.2. 

Following Messerschmitt's geometric approach to equalization [6], 

we denote M(hk' k > 0) as the linear subspace of the past translates of 

the basic pulse h(t) and P[h , M(hk' k > 0)] as the projection of h
0 0 

to the subspace M(hk' k > 0). The projection is, by definition, the 

minimum distance between the element of the subspace M(hk' k > 0) and 

h . The prediction error vector e~ and the interpolation error vector e
0 0 

are, respectively, 

(32) 

and 

( 33) 

See Figure 3.3. 

The necessary and sufficient conditions for DFE (ZFE) to exist 

are that e~ (e ) must be positive. Physically, this means that h(t) must
0 

not be representable as an infinite weighted sum of a subset of its own 

translates. 
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3.3 	 Performances of DFE and ZFE 

Let us consider the reception of 

r(t) = ~ xkh(t - kT) + n(t) 

by a DFE represented by g . The output of the filter is
0 

<g
'0 

' r> = + <g ' n>. 	 (34)
0 

For additive white Gaussian noise (AWGN) with zero mean, the variance 

of <g , n> is 
0 

II go II 2 , 	 (35) 

with N	 being the one-sided power spectral density of AWGN. The pro­
0 

bability of symbol error is a monotonically decreasing function of S/N 

ratio 

(36) 


For DFE, <h , g > f 0 and <hk' g > = 0 for k > 0; the latter equation
0 0	 0 

means that g is orthogonal to M(hk' k > 0). Hence, g is orthogonal to
0 	 0 

P[h , M(hk' k > 0)]. By definition, we have h = e+ + P[h , M(hk' k > 0)]
0 0 0 

and the 	SNR ratio becomes 
0 
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as <g , P[h , M(Hk' k > 0)]> = 0. Using the Schwarz inequality, we have
0 0 

S/N ratio ~ I Je~J 1
2 , (37) 

with equality if and only if g = ke+ 
, where k is a multiplicative

0 0 

constant. 

The above derivation is true for ZFE also. In the DFE case, it is 

assumed that the decision feedback mechanism correctly eliminates the ISI. 

From eq. (32) and (33), we note that the prediction error vector 
+e
0 

and the interpolation error e
0 

can both be written in the form of a 

convergent sum of translates of h [6]; i.e.,
0 

(38)eo 
+ = ho - I ak

+ 
hk

k>o 

and 

(39)eo = ho - ~ ak hk ' k 0 

+where ak' ak are the appropriate coefficients. It is clear that the two 

vectors can be represented as a matched filter matched to h followed 
0 

by a transversal filter. Using the results of eq. (37), we note that 

the DFE and ZFE that maximizes the S/N ratio is a MF followed by a TF in 

the presence of AWGN. 

3.4 Non-Linear Receiver Structure 

Receivers that truly perform sequence decisions or exploit the 

discreteness of IS!, exhibit highly non-linear structures. Forney 

devised a new receiver structure consisting of a MF followed by a TF, a 
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symbol-rate sampler and a recursive non-linear processor known as the 

Viterbi Algorithm (VA) [5]. The sampled outputs of the MF provides a 

set of sufficient statistics for the estimation of input sequences. 

Whitening of the noise is essential because the VA requires that the noise 

samples be statiscally independent. This can be provided by a TF 

characterized by l/F(D-1) with R(D) = F(D)F(D-1). Accordingly, a2R(D) 

is the autocorrelation function of zero mean colored Gaussian noise due 

to the channel. This decorrelating property of a MF and a TF (MFTF) 

follows from the fact that the successive least mean square prediction 

errors of a random process are uncorrelated random variables [6]. 

Letting e; = e~(t- kT), the noise sequence at the output of MFTF is 
+<ek' n> . The noise terms in the sequence will be uncorrelated if and 

only if 

(40) 

Note that e; is orthogonal to M(hm' m > k) but M(hm' m > k) contains e; 
+ + + +for j > k, thus <ej, ek> = 0 for j > k. By symmtry, <ej' ek> = 0 for 

k < j. Hence, eq. (40) is satisfied. The MFTF of the DFE forward 

filter is idential to the "whitened matched filter" employed by Forney 

for MLSE. 

As stressed before, a band limited channel may be simulated by 

a PRS code in the sense that a PRS code can be used as the transmitting 

filter that band limits the signal before the channel. In effect, the 

channel causes no further ISI. Assuming this, let the system polynomial 

of the transmitting filter be F(D) = I
L 

fiD 1 
. 

• 
i=o 
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Thus the unit impulse is 

h( t) = I
L 

f. sinc(t- iT), (41) 
i=o 1 

where L is the number of T-delay units. 

Define R(k) = <hm' hm+k> with hm = h(t- mT). 

Thus, 

R( k) = ( 
L
l: f. <P .) . 

L 

i=O 1 m-1 J~O f j <Pm+k-j' 

L L 
= I I f.f.<P · <Pm+k-J.i=O j=O 1 J m-1 

L 
= I f.f.+k L < k < L, (42) 

. 0 1 11= 

zero otherwise due to the orthonormality of <P , where
2 

cp = sinc(t/T - £) and £ = integer.
2 

The energy of the impulse response of the filter is 

L 
R(O) = I f~ ( 43) 

. 0 11= 

From eq. (15) the received signal at the input of the whitened matched 

filter is 

oo· 

z(t) = I xkh(t - kT) + n(t) (44) 
k=O 

The signal at the output of the whitened matched filter with l/F(D-1) 

being the transversal digital filter is 
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00 

I f xk -m + nk , (45)mm=l 

where nk is an i.i.d. Gaussian random variable with variance cr
2 (i.i.d. 

denotes independent and identically distributed). See Fig. 3.6 

The DFE forms the quantity 

00 
A 

zk I f X (46)z = - m k-mk m=l 

and applies it to the decision threshold set at± f~ to determine the 
A 

estimated symbol xk; wh1lethe maximum likelihood sequence estimator 

assumes the sum in eq. (45) is truncated to M terms and determines the 
A 

estimated sequence {xk} so as to minimize 

N M 
(47)I {zk - I 

k=l m=O 

for any integer N. Thus the two receivers perform similar functions on 

the same sufficient statistics {zk}; the difference being that the DFE 

extends a single sequence while the MUSE exhaustively searches over all 

allowable sequences and selects the one which is closest to the received 

sequence in theN-dimensional Euclidean space. 

3.5 Maximum Likelihood Sequence Estimation for PRS Systems 

For PRS systems, the maps from input sequences X(D) to state 

sequences S(D) then to signal sequences Y(D) are one to one. To show 

that the eq. (47) is true, we define the maximum likelihood sequence 
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estimation (MLSE) of 

Z( D) = (48) 

as maximizing p(Z(D)/X(D)), where p(.) denotes the probability density 

function. 

Maximizing p(Z(D)/X(D)) is the same as maximizing ln(p(Z(D)/Y(D))), 

as ln(.) is a monotonically decreasing function. This in turn is equal to 

maximizing ln~ pn(zk- yk) where Pn(.) is the probability density 

function of AWGN samples nk; yk and nk are statistical independent. The 

above maximization is equivalent to maximizing 

is equivalent to maximizing 

;---;)' -(z - y )2/2cr2 

I ln [1/l 2Ticr2 . e k k ]. 

k 

is equivalent to maximizing 

2 2 2I [ - l/2 . ln 21rcr - (zk- yk) /2cr ], 
k 

is equivalent to maximizing 

as the lst term is a constant. Thus, it amounts to the minimization of 
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It can be shown [18] that the MLSE rule is equivalent to the MAP rule for 

infinite SNR ratio. The MAP rule offers a significant advantage only at 

low S/N ratio. 

3.6 Formulation of Viterbi Algorithm for PRS Systems 

From eq. (47) and eq. (49), we note that Y(D) will be chosen 

that is nearest in terms of squared Euclidean distance to the received 

sequence Z(D) in maximum likelihood sequence estimation. In formulating 

the VA, we will exploit the tree and trellis structure of the real 

number convolutional codes. Any convolutional code can be represented 

as a tree, but if two nodes at the same level of the tree represent the 

same state then they can be merged to a single node, since they will 

produce the same output sequence for the same future input sequence. 

Thus, it should be represented as a collapsed tree Forney called a trellis. 

It shows the state transitions versus time for all distinct states. It 

has the important property that to every possible state sequence S(D), 

there corresponds a unique path through the trellis and vice-versa. We 

associate with every branch of a trellis at depth K a quantity (zk- yk) 2 

of eq. (49). Every path of Ndepth will have a Euclidean distance of 
N
L (zk - yk) 

2 
. A typical section in a trellis refers to the section 

k=l k 
where m transitions occur. The first typical section of a trellis starts 

at depth K and ends at depth. N-k for a trellis of length N. See Fig. 3.4. 

For a trellis of depth N, we have mN possible state sequences for 

m-ary inputs to the PRS system. A brute force method of finding the 

minimum distance path requires the computation of the distance of mN paths 

followed by mN - 1 binary comparisons. 
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The VA is a dynamic programming approach, that compares the 

distances of all possible paths through a trellis in an optimum way, to 

minimize the number of operations, and to select the path which has the 

minimum distance. Define the optimal value function Fn(u) as the minimum 

squared Euclidean distance from timet= 0 tot= n between any signal 

sequence Yi(D) and the received sequence Z(D) terminating in state u. 

Thus, 

Fn(u) = min{ h~: h~ =min IIZ(D)- Yi(D)!! 2 for each 1 < i < mn 

such that sin = u}. (50) 

The state sequence Sj(D) is known as the survivor at time n for state u. 

s. denotes the state of state sequence S.(D) at time n. ,n 1


Using the theorem of optimality in dynamic programming, we assert 


that of all the ml survivors at every depth, one for each state, at least 

one will constitute the initial segment of the state sequence denoted 

by 
N 

S(D) s.oi (51)= I 1i=O 

which minimizes the squared Euclidean distance. For if S(D) does not 

contain any survivors at a given depth n in state u then we can replace 

its initial segment by Sj(D}, a survivor at time n in state u, to obtain 

a shorter squared Euclidean distance. 

The above assertion allows us to act as follows: for a trellis 

of depth N, instead of choosing one path through the trellis that gives 
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the minimum squared distance, we decompose the task intD N choices. For 

every depth n~ K and for every state u inS, we select among them paths 

terminating at a given state u, a path that gives the minimum squared 

Euclidean distance as the survivor. The recurrence relation for the 

optimal value function is thus 

Fn+l(u) = min{ L2(v,u) + Fn(v): for every v inS such that 

(52) 

Refer to section 2.5. The incremental length L2(v,u) is computed as ·follows 

l 2(v,u) = (zk - Y(ak)) 2 , where the transition ak = (v,u), 

2= (zk - A(v, xk}) , where the state u = o(v, xk) 

(53) 

The state transition function o(v, xk) gives the state at t = k + 1, given 

the present state v and the present input xk. 

From eq. (6), a state is denoted by 

In m-ary representation, sk is equal to the integer 

L-1 L-2 (54)xk-1 m + xk-2 m· + ······ xk-L · 

Similarly, sk+l is denoted by 
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which in m-ary notation is equal to the integer 

(55) 


By comparing eq. (54) and (55), the integer representing sk+l is equal to 

= xkm
L-1 

+
I 
sk/m 

I 7 (56) 

where L-J denotes modulo division. Thus, the o function is a function of 

the present state and input: 

o ( v , i ) = i mL-1 + LYL!ll.h (57) 

for all v E S, i E X. See Fiq. 3.5. 

The recurrence relation of eq. (52) is in the form of the backward 

dynamic programming approach [11]. The formulation utilizes the state 

transition function which is an implicit function of state u. We define 

a function T: S x P + S, which explicitly gives all states vat time n 

merging to state u at time n+l. Define Pas the set of data symbols that 

shift out from the digital transversal filter in the transition from 

t = n tot= n+l, due to various input data symbols xn EX. Thus, 

P = {0, l,.....m-1} • 

Consider sk-l' denoted by 
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present present present new 

state input output state 

sk xk yk pk sk+l 

0 0 00 0 0 

1 

1 0 

0 
1 

0 

01 
1 

2 
0 

13 
1 

t = k t = k+l 

Fig. 3.5 A typical section of a state trellis of a two delays 

PRS system showing the present state sk' the present 

input xk at timet = k and the present output·yk in 

the transition to state sk+1 at time k + 1. pk is the 

data bit that shifted <out of the shift-register in the 

transition (sk,sk+l). 



s(f )= L xkh(t- k TJ 
k=O 

------. 
+ n(t) 

RECEIVED WAVEFORM 
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T )h(-t)or I-__/ 
H~ L).) J SAMPLE 

T SECMATCHED 	 FILTER 

1 

Fr o-7 > 
DIGITAL 

TRANSVERSAL FILTER 

" xro > 

ESTIMATED DATA 

SEQUENCE 

VITERBI 


ALGORITHM 


~ 
0"1 

_j 

I 


X(OJ Fr OJ+ 

N(OJ 


N(D) --- STATISTICALIJY INDEPENDENT IDENTICALLY DIS'l'RIBUTED NOISE SAMPLES 

X(D) --- DATA SEQUENCE 

Fig. 3.6 	 The model of a maximum likelihood receiver for transmitting 

filter using partial response signalling system of Fig. 2.4. 
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and equal to the inteqer 

L-1 L-2 (58)xk-2 m + xk-3 m + · · · · xk-L-1 · 

From eq. (54) we have 

Hence, 
L-1 

=xk-lm 

As 


so = m(s x ml-l)k - k-1 ' 

therefore, 

L-1 L-1)( I (59)= m sk - I sk m I m + xk-L-1 . 

Consequently, the T function is given by 

T(u, p) = m(u- tU/mL-l 1 ml-l) + p . (60) 

The recurrence relation of eq. (52) becomes 

. . 2
Fn+1(u) = m1n{ L{v,u) + Fn(v): for each pin P such that 

v = T(u,p)} . (61) 

This is an explicit form for computing the minimum squared Euclidean 

distance corresponding to the survivor at time n + 1 for state u. 
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3.7 Viterbi Algorithm 

A functional form of the VA using structured programming is now 

given. 

;cm1MENT	1 Set boundary condition for the non-typical sections of 

the trellis choose any s £ S.
0 

For each u € S do 

/COMMENT/ Trellis of depth N 

For i = 1 step 1 until N do 

for each u e: S do 

begin 

for each p e: P do 

/COMMENT/ To get the survivor for each state at every depth 

Temp{p) + Fn{T(u,p)) + L2(T(u,p),u) 

Fn+l(u) +min {Temp{p)} 

2From Eq. (53), the values of L ( ..... ) can be computed by a sub­

traction and a squaring operation, after getting the corresponding values 

of A(.,.) From eq. (15), we note that there are mK values for A{.,.) 

and they constitute the set of all output levels. An efficient procedure 

is to calculate the above set and store them in random access memory 

for table look-up whenever needed. The depth N of the trellis required 

depends on the decision depth of the particular PRS code. The decision 

depth will be defined in Chapter 4. 
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The complexity of the VA is estimated as follows: 

in terms of memory, ml+l locations are required to store the output levels 
. Lof all transitions in a typical section. It requ1res m locations to 

store the optimal value functions Fn(u). As Fn(u) is computed by 

recursions, in practice twice the amount of memory is needed: ml locations 

are used to store the previous optimal value functions Fn_ 1(u) and 

another ml locations are needed for the present Fn(u). 

A state sequence of input sequence for each survivor at every 

depth has to be stored. In terms of computation, in each symbol period, 

L + l t. h . l . bt t. . dthere are m opera 1ons eac 1nvo v1nq a su rae 1on, a squar1nq, an 

an addition followed by (m- l)ml binary comparisons. 



4.1 

CHAPTER 4 

DOUBLE DYNAMIC PROGRAMMING 

We have sacrificed simplicity in using non-linear processors such 

as the Viterbi Algorithm in estimating the received data. We expect 

better performances in terms of both SNR ratio and probability of symbol 

error in return. Before we can precisely estimate these performances, 

the idea of error events is necessary. After introducing this concept, 

we will show how to compare the performances of the linear and non-linear 

receivers discussed in Chapter 3. For this we need the minimum squared 

Euclidean distances, which in turn require 11 two-dimensional 11 dynamic 

programming for their evaluation. The latter part of this chapter shows 

the step-by-step process in the formulation of the 11 two-dimensional 11 

dynamic programming. Finally, its implementation in the form of 

structure proqrammi ng ·is 1 i sted. 

Error Event Concept 

Following Forney's definition [4], an error event is said to 

extend from time k1 to k2 if· the estimated state sequence S(D) is equal 

to the correct state sequence S(D) at times k1 and k2, but none in 

between; i.e.: 

50 
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and 

The length of the error event is defined as: n ~ - - 1.k2 k1 
For a linear channel, Y(D) = X(D)F(D). Consider an error 

event in a linear channel of memory L; since a state is denoted as 

consequently, 

then 

Similarly, 

if = then = k - L < k < k - 1 . sk sk xk xk; 2 22 2 

As ;sk +1 sk +l
1 1 

therefore 

xk ~ xk 
1 1 

Similarly, since ;sk -1 sk -1
2 2 

therefore ; xk -L-1 
< 2 

Mathematically, the input error sequence t:x(D) can be defined as: 
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<C_ 
X 

(D) ~ (xk - ~k ) + (xk +l - xk +1 ) D + .•.. 
1 1 1 1 

" n-L 
+ (xk -L-1 - xk -L-l)D

2 2 

= e + e D+ .... + e on-L (62) 
xo xl xn-L 

It is a polynomial with non-zero constant term and degree n-L. No L 

consecutive zero coefficients can appear in an input error sequence, 

since then sk = sk for some intermediate k, and there would be two 

distinct error events instead of one. 

In the same way, the signal error sequence associated with the 

error event is defined as 

(63) 

It has non-zero constant term and degree n, where n is the length of 
A A 

the error event. As Y(D) = X(D)F(D) and Y(D) = X(D)F(D), therefore 

(64} 

4.2 Euclidean Weight of A Particular Error Event 

The Euclidean weight d2(<C_} of an error event is defined as the 

energy in the associated signal error sequence. 
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= ~x(D)F(D)F(D-l~x(D-l)]D=O 

= ~x(D)R(D~x(D-l)]D=O (65) 

where [.]D=O denotes the constant term of the polynomial. The enerqy depends 

on t:x(D) and R(D), where R(D) is the autocorrelation function polynomial 

of F(D), and is independent of the factorization R(D) = F(D)F(D-1). 

Essentially, the Euclidean weight d2(t:) is identifiable as the energy 

of the signal error sequence after passing the input error sequence t:x(D) 

through a PRS system F(D). The number of errors in the input error 

sequence t:x(D) is defined as the Hamming weight wH(t:) of the event. 

The error event t: is due to the fact that in the n + 1 dimensional 
A 

Euclidean space corresponding to times k1 to k1 + n, Y(D) is closer to the 

received sequence Z(D) than is Y(D). Since the noise is additive, 

white, and Gaussian with equal variance in all dimensions, it is 

spherically symmetric; by coordinate rotation, we see that the probability 

of an error event P(t:) is dominated by the probability that a single 

Gaussian random variable of variance a2 exceeds half the Euclidean distance 
A A k1+n 

between Y( D) and Y(D) [13]. Since [Y(D) - Y(D)]k = t:} D), this 
. 2 1 

distance squared is the Euclidean weight d (£:) of the error event. 

See Fig. 4.1. 
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/ 
/ 

line joining 
Y(D) and ~(D) n 

Y(D) kIk
1

+ 

1 

A Jk+nt 
y 

(D) [ Y(D) - Y(D) kl 

1 


P(t_) 

Fig. 4.1 The plane containing the three po~nts 
/'

Y(D), Y(D) and Z(D) in then-dimensional 

signal space. 
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4.3 Probability of Symbol Error 

Following the analysis of Forney [4], let E be the set of all 

possible error events t:_ starting at time k1. Using the union bound, 

which states that the probability of a union of events is less than or 

equal to the sum of their individual probabilities, the probability of 

an error event starting at time k1 can be bounded as 

P(E) 	 ~ L P~). (66) 
t:_e:E 

Let D be the set of all possible distances d(t:.), and for each 

de:D, let Ed be the subset of all error events for which d(t:) = d. 

Let P1 be the probability that between k1 and k1 + n - L, the input 

sequence X(D) will be such that X(D) + t:_x(D) is an allowable sequence. 

Then the probability that a particular error event starting at time k1 
with Euclidean weight dis bounded as 

P(t:_)~ Q{d(t:_)/2cr)P1. 	 (67) 

Accordingly, 

P(E) 	~ L Q(d(t:_)/2cr)P1
t e:E 


(68) 


Due to the exponential decrease of the Gaussian distribution function 

Q(.) with d, the P(E) will be dominated by the free distance dfree of 

Ed at moderate SNR ratio; i.e. 
free 

(69) 
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where 

As K1 is independent of the noise variance a2, and eq. (69) is independent 

of the starting time k1, P(E) can be considered as the probability of an 

error event per unit time. 

The probability of symbol error is computed by weighting each 

error event by the number of decision errors, that is, the Hamming 

weights wH(t:) of the error event. For example, an input error sequence 

CC:_x(D) = 1 + D will have Hamming weights of 2. The probability of 

symbol error of an error event is 

P(e)~ ! wJt:)P(t_) 

t:sE 


~ I w~t:) P1 I ex d/2a) 
t_ sEd dsD 

( 70)= !<.z CX dfre/2 a) , 

with 

= 

Forney went on to show that both P(E) and P(e) are lower bounded by 

(71) 

where K < 1 is the probability that the input sequence X(D) will be such
0­

that X(D) = X(D) + Dk t: x(D) is also an allowable input sequence for at 

least one CC:_x(D) sEd starting at time-k. For example, when 
2 free 

dfree = IIF(D) II Ed ,contains only CC:. (D) = ± 1 
free x 

and K = 1. K is the coefficient for the lower bound
0 

2 
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for both the probability of symbol error and the probability of an error event 

per unit time. For the upper estimate, Forney gets different constants: 

K1 for the probability of error event per unit time and K2 for probability 

of symbol error. The quantity K2/K1 may be regarded as the average 

number of symbol errors per error event at high S/N ratio. 

4.4 Performance of Viterbi Algorithm in the Presence of ISI 

In the absence of ISI, xk = 0 for k t 0; the signal sequence is 

of the form Y(D) = x F(D) and the probability of symbol error for m-ary
0 

input is approximately equal to 

P(e) ~ K3Q(JIF(D)II/2cr), (72) 

where 

= I (m-1)/m = 2(m-l)/m, 
'C:.E Ed

free 

since wH(CC:.) = 1 and P1 = (m-1 )/m. 

Defining the effective S/N ratio as 

(73) 

with cr~ = (m2 - 1)/12 [Appendix A.l] 

2and cr = Ni2, 

We note that the probability of symbol error of an m-level PAM system with 
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ISI differs from that of the same system without ISI by the ratio K2/K3, 

when Viterbi Algorithm is used. In decibels such a difference is small 

and goes to zero under most practically attainable SNReff' For 

correlative codes in which d~ree = I IF(D) I 1
2 under no ISI condition, 

SNR = SNReff and the degradation is negligible. 

4.5 Performance of MLSE Against DFE 

We shall now see that the performance of the Viterbi Algorithm 

for a given channel or, equivalently, for a PRS code depends only on 

the quantity diree' the minimum Euclidean weight of any possible error 

event. 

Following Messerschmitt [7], we can demonstrate a close relation­

ship between MLSE and DFE by using diree' and show that the performance 

of the former is always better. Consider, for simplicity, binary 

signalling and error events due to all possible input error sequences 

~X (D) = ......+ex Dn; for all n. Define 
n 

with ex E: {1, -1, 0} (74} 
k 

2Thus, dfree is the minimum Euclidean weight for a·ll input error sequences 

including those of infinite length. He can rewrite this as 

n 22 
dfree = infllh

0 
+ I ex hk II . (75) 

k=O k 

n 
Note that I exkhkE:M(hk' k > 1), and the minimisation in eq. (75} is 

k=l 
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to find the element of M(hk' k ~ 1) with restricted coefficients 

{1, -1, 0} which is closest to h . The closest element without the 
0 

restriction in coefficients is the projection of h on M(hk' k ~ 1);
0 

i.e., P(h , M(hk' k > 1)). Thus df2 is determined by how closely the 
0 - ree 

projection can be approximated by an element with restricted coefficients. 

From eq. (32), we have 

hence 

2 
dfree = 

2 n 2 
= ]Je~]l +inf]!P(h ,M(hk,k>l))+ I exhkll ,

0 k=l k 

(76) 
n 

as e~ is orthogonal to M(hk' k > 0) and [P(h
0 

, M(hk' k ~ 1)) + I e hk]
k=l X 

is in M(hk' k ~ 0). The result then follows from Pythaqarus theorem. k 

d~ree> I ie~l 1
2 implies that the performance of MLSE in terms of 

both symbol error probability or SNReff always exceeds that of DFE. 14e 

conclude that the actual amount of difference in performance is governed 

by the coarseness of the best approximation by an element with restricted 

coefficients to the projection: the poorer the a.pproximation, the better 

the performance of the MLSE. 

4.6 Double Dynamic Programming Formulation 

We are concerned with finding the dir~e of a correlative-level 

code. A PRS code is characterized by the tap gains {fi} or F(~, the 
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impulse response. A codeword is any allowable output sequence of the 

above code. 

Flow-graph techniques developed by Viterbi [9] give an organized 

way of considering all the possible input error sequences in computing 

the resultant Euclidean weights. This method provides a means of finding 

the number of error events producing the same Euclidean weights d2(t:), 

and gives asymptotically tight upper and lower bounds on probability of 

symbol error. But this method is difficult to computerize and time 

consuming. 

We apply dynamic programming to find the d~ree and a related 

quantity, the decision depth of PRS codes, and we neglect the total number 
2of error events that give rise to the same dfree· These PRS codes can be 

regarded as real-number convolutional codes as opposed to binary con­

volutional codes. In the former, the arithmetic operations are in the 

real-number field with redundancy introduced amplitude-wise, while the 

latter has operations in the Galois• field and redundancy introduced time-

wise. One big difference is the group property possessed by binary con­

volutional codes [9]: we can choose any specific codeword and compute 

the set of metrics {di} from this given codeword to all others; this set 

of metrics is the same no matter what is the selected codeword, consequentl~ 

it is possible to find the df merely by minimizing over this set alone. ree 
However, lacking this group property for correlative-level codes, we must 

look at the set of metrics for each codeword. 

In order to find the free distance in a real number convolutional 

code, first, we have to compare a given allowable output sequence with all 

the other allowable output sequences and select the pair that has the 
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minimum Euclidean distance. This procedure has to be 


repeated for each and every allowable output sequence. Furthermore, 


we need to find the minimum of all these minimum distances to get the 


free distance dfree· 


To put the free distance concept in to precise mathematical 

form: 

min{h? h? = 
• 1 1 
1 

Nfor each j;. i, 1 ~ j ~ mN}, for each 1 < i < m ' 

( 77) 

N 
where I (y. - Y. ) 2 

k=l 1 k Jk . 

A brute-force where method involves repeating the VA search mN times 

followed by (mN - 1) binary comparisons. To avoid this, we apply dynamic 

programming again to the "dimension 11 of all possible codewords; we term 

this joint dynamic program as 11 double dynamic programminq 11 
• 

Define the optimal value function Fn(u, v) as the minimum 

squared Euclidean distance from time t = 0 to t = n between any pair 

of codewords or signal sequences, such that one is in state u and the 

other in state v, subject to the boundary condition F (a, a) = 0 for
0 

any a e: S 

ll 2 n
Fn(u, v) = min {h~ h~ = min {JJY;(D) ... Yj(D)JI for each ~j < m 

1 1i 


< n
such that s. = v } ' for each 1 < i m ' such that s. = u} 
Jn ,n 

{78) 
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Using backward dynamic programming, Fn+l is calculated from Fn 

by the recurrence formula: 

Fn+l(u, v) = min{ Fn(p, q) + ~E(p, u), (q, v)): for each p, q E S 

such that 

u = o(p, x; ), v = o(q, x. ), x. , x. € X} (79) 
n Jn 1 n Jn 

where 

~E((p, u), (q,v)) = (\(p, X; ) - \(q, xj )) 2 

n n 

for appropriate x. , x. EX. 
· 1 n Jn 

For m-ary input, this involves a minimum of (m2 - m) and a maximum of m2 

additions followed by (m2 - 1) binary comparisons, assuming ~E((.,.),(.,.)) 

are all computed and stored in memory for table-lookup. 

The above eq. (79) using o(.,.) is not explicit. See Eq. (57). 

Using T(.,.) function as defined in eq. (60), we have 

Fn+l(u, v) = min{ Fn(T(u, r), T(v, s)) + ~E((T{u, r), u),T(v,s), v)): 

for every ·r, s E P}, (80) 

which is readily programmable. 

Call theM x M square matrix, which consists of all Fn(u, v), 

0 ~ u, v ~ ml- 1, M= ml, the distance matrix. This matrix can be 

shown to be symmetrical: if all trellises start at timet= 0, then at 

timet= 1, F1(p, q) = F1(q, p). Consequently, Fn(p, q) = Fn(q, p), 
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by the application of induction and definition of Fn(.,.) for all n. 

This symmetry allows us to calculate only the weights on or above the 

diagonal of the distance matrix, a saving in 50(M- 1)/M% of the total 

operations in computing the whole matrix. The diagonal of the matrix 

consists of those sequences that diverge at t = 0 and merge at t = n; 

from the trellis structure, m paths diverge from and merge to a given 

state at any time t ~ K. 

When two signal sequences diverge and merge over a time interval 

of n, the squared Euclidean distance between them is Fn(u, u), U£S. 

Ordinarily, we would expect Fn(u, u) to vary with different merging 

states, but computations show that it stays the same for all u at a given 

depth in the trellis. 

For those sequences which haven•t yet merged at depth n, we can 

compare among them and select the minimum one. Defining 

Min Fn = min {Fn(u, v) : for all u, vsS} (81) 

and 

d2 
n = min {Fn(u, u): for all u s S}, (82) 

we see that 

d2
free = min { d~ for all K 2. n 2. ""}. (83) 

As ~E((.,.),(.,.)) is a positive definite quantity, it follows that Min Fn 

is a non-decreasing function with depth n along the trellis. Another 

observation is that d2 
> Min F as some branches carrying non-minimum n - n 

Euclidean weights have to be followed in order to make two state sequences 

merge at a later time. 
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Define 

o2 ~ min {d2 : for all K < n < N} 	 (84)N n 	 - ­

The condition for terminating the double dynamic programming depends on 
2 2when we can equate dfree to ON. This in turn depends on at what depth 

we are sure that d~ has passed the minimum; after that, d~ can only 

increase or at least stay constant. Thus a sufficient condition for 

termination is that Min FN ~ 0~ The first level at which this occurs 

is defined as the decision depth. Mathematically, it is shown as 

2{1st N: Min FN ~ON} 	 (85) 

It is a measure the decoding depth required to get the true minimum 

squared Euclidean distance d~ree of a given code. It is also important 

in determining the real performance of a given code. For example, there 
2 may exist an unmerged pair of signal sequences of length N with Min FN < ON. 

This Min FN will dominate the probability of symbol error P(e) and will 
2consequently replace the dfree as the determining influence on P(e). 

4.7 	 Double Dtnamic Programming 

The algorithm using structured prograrrming is as follows: 

X = 	 {0, 2, ... ,m- 1},1 ' 

Ls = 	 {0, 2, .. ,m - 1},1 ' 

p = 	 {0, 2, ... ,m - 1}.1 ' 
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Begin 

For. each s. 
1 

E S, X. 
1 

E X do 

L 
\(Si' X.) + x.f + I f.x. L

1 1 0 1 1­k=l 

For each u t: S, o t: P do 

/COMMENT/ Store the incremental weights in memory for table-lookup 

For each u t: S, v t: S, t: P, p P dot:p1 2 

Choose any a t: S: 

/COMMENT/ Setting the boundary condition F
0 

(a, a) = 0; 

For each u, v t: S do 

/COMMENT/ Computing Fn(u, v) by the recursion formula; 

n + 0; 

Repeat 

n + n + l; 
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For each u, v E S do 

For each p1, p2 E P do 

if Fn(T(u, p1), T(v, p2)) = co 

and u = v) 

/COMMENT/ 	 Sequences start merging at t ~ K; comparisons are made 

from then on to get the free distance; 

if n > K then 

Begin 

Min Fn + min {Fn(u, v): for all u, v inS} 

for any u in S 

D~ + min {d~ K < i < n} 

End 

2until Min F > 0 · n - n ' 

/COMMENT/ The decision depth is n; 

END 
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4.8 	 Complexity of Double Dynamic Programming 

The complexity of Double Dynamic Programming is estimated as 

fallows: 

1) In terms of memory, it requires m2L storage for the optimal 

value function Fn(.,.) at each stage. To list the pair 

sequences corresponding to the F (u, v) requires another n m2L 

locations. L L 2Another m .m .m = 2Km , K= L + 1, locations 

are needed to store the incremental Euclidean weights 

~E ( ( . ' • ) ' ( . ' . ) ) . 

2) In terms of computation: in each symbol period, m2K additions 

subtractions, squarinq and finally m2L(m2 - 1) comparisons are required. 

The amount of storage is proportional to the square of the number 

of states and the amount of computation is proportional to the square of 

the number of transitions in each symbol period. The complexity involved 

in double dynamic programming is the square of that of the VA. Assuming 

equal termination of depths, the brute-force method would increase the 

complexity by mn-fold for a trellis of depth n. 



5.1 

~HAPTER 5 

DEGRADATION CONTOURS OF PARTIAL RESPONSE 

SIGNALLING SYSTEMS 

We showed in the last chapter that the double dynamic program 

is an optimal instrument in computing the free distances of real number 

convolutional codes. This chapter focusses on applying this proqramming 

concept in finding the free distances of PRS codes in a grid pattern 

fashion. We then analyse theoretically the possible error events 

causing degradati:on and obtain a wealth of information concerning the 

contour•s shapes of both the degradation and non-degradation regions. 

These theoretical results are then compared with the computational ones 

and the resulting implications are discussed. 

Normalized Free Distance 

In order to compare the free distances of all codes, a base upon 

which all Euclidean distances are normalized is needed. For equally 

probable polar inputs, the mean input value is zero. For m-ary input, 

the input variance is (Appendix A.l) 

2 2 ax = (m - l)/12. (86) 

After passing through a PRS filter with energy (Appendix 8.2). 
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L 
R(O) = \\F(D)\! 2 = I f~ (87) 

. 0 11= 

the output variance becomes (Appendix A.2) 

(88) 

2We may change dfree at will, simply by scaling the tap-gains 

{f;} of the PRS filter or by scaling the energy of the impulse response 

of the pulse shaping filter. In order to normalize out these effects, 

we divide d~ree by the output variance of the filter, Thus, 

(89) 

For m-ary PAM with equal separation between levels of a volts, 

2 2 2 2 2 2
df ee = a . Since R(O) = f = a , d r for PAM is l/cr . Definer o 	 - 0- nm x 

the degradation of a PRS system against ideal PAM as 

Degradation = l0log 10 (d~orm of PRS/d~orm of PM1) 

(90) 

The quantity d~ree/R(O) is the 	most fundamental quantity in measuring 
2degradation caused by IS!. .If dfree = R(O), then all the energy in the 

signal is utilized for detection purpose. For d~ree < R(O), essentially 

some of the available signal energy can not be used in the detection, 

resulting in performance loss. 	 A code F(D) showing~ dB in degradation 

will require b dB higher input signal energy to attain the same 
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probability of symbol error or SNR ratio as that of an isolated pulse. 

The correlation between levels in a PRS system, while it may have qood 

spectral aspects, does waste the energy in detection. 

The d2 for binary PAt~ is 4, and for 4-level PAM is 5/4.norm 
In our computation to follow, we find that for PRS systems with K < 2, 

d~orm is the same as the corresponding ideal PAM systems. But for K > 3, 

some codes will give d~orm less than that of the corresponding PAM 

systems, that is, d2 
< 4 for binary level inputs and d2 

< 5/4 for norm norm 
4-level inputs. 

5.2 Contour Maps 

We are interested in the following performance measures for PRS codes: 

1) Degradation, 

2) 99% power bandwidth, 

3) Decision Depth, 

4) Total channel cost 

A good way to display and present the above measures is to draw their 

contour maps with different tap-gains {f;} as the axis. We compute each 

measure in a rectangular grid-pattern and interpolate to form contours 

with constant function value. These contours ar~ invaluable in 

determ4ning trade-offs of the above quantities. 

The grid pattern we use is as follows: 

1) fl is the y-axis in steps of 0.2 over range of (-6, 6) 

2) f2 is the x-axis in steps of 0.5 over range of (-4.5' 4. 5) 

3) f3 has values of 3. 1 ' 1 . 6' 0. 8' 0. 0' -0. 8' -1 . 6 . 
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ForK= 1, we have ordinary PAM. 

For K = 2, the contours exist in one dimension along the f1 axis. In 

fact, we can get these contours from contours of higher K values by 

cutting along the f axis.1 

ForK= 3, the contours are two-dimensional along axis f 
2

, f
1

. 


For K = 4, the contours are in three dimensions and can be shown in two 


dimensions by taking cuts along f 
3 

. 


We shall plot free distances in this chapter, and return to 

performance measures 2)~ 3) and 4) in chapter 6, 7, and 8 respectively. 

For impulse response F(D) = I
L 

f.D 1 
. 

, the relative performance 
. 0 11= 

of F(D)/f is the same as F(D), thus we can normalise our tap gains such 
0 L . 


that f = 1. In this case, F(D) = 1 + I f;D 1 • Another point to

0 i =1 

note is that in the context of a coding system, the term constraint 

length K = L + 1 is used; while in the context of a band limited channel 

with the same characteristic as the codinq system, the term channel lenqth 

is usually used instead. 

5.3 Analysis of Input Error Sequences 

In this section we will consider the degree of input error sequence 

t:x{D) which causes degradation as defined in eq ..(90) for PRS systems with 

constraint length K ~ 3, where K = L + 1 with L = number of delay units. 

We want to show that for K = 2, for which F(D) = 1 ± f 1D, the 

input error sequence that leads to dfree can only bet:x(D) =± 1. Assume 

that the input error sequence of degree one c~n lead to dfree; i.e., 

t: (D) = 1 + D. 
X 

2The Euclidean weight d2{ CC. ) = 11 CC.y(D) 11 , where 
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t:y(D) = (1 + 0)(1 + f1D). By lonq multiplication, we have 

t:_y(D) = + f1D 

o + f 1o2 
+ _________, 

2
+ (1 + f

1
)o + f

1
o

)2Thus, d2(t:_) = 1 + (1 + f + f~. But the total energy R(O) for F(D) = 1 

1 + f1D is only 1 + fi; by comparison, we have d2(t:_) > R(O), which is impossible. 

Thus,t:x(D) = 1 + D will not lead to dfree and causes degradation. The same 

·argument is applicable for the case t:_x(D) = 1 - 0, as (1 - f )2 is a positive
1 


definite quantity. We have succeeded in showing that the input error sequence 


that leads to dfree for K= 2 can be of degree zero only. Therefore 

d2(t:_) = R(O) = 1 + f~, and thus no degradation in SNR ratio for 


PRS systems with K = 2 will occur if an MLSE is used. 


By using the above "proof by contradiction" principles, we now 


show that forK= 3 with f(D) = 1 + f D + f 2D2, the maximum deqree of 1

CC.x(D) which can cause degradation is one. Fort:_x(D) = l, 

1 - D then, 

2 2 2 2Accordingly, d (t:_) = 1 + (f1 - 1) + (f2 - fl) + f2. (91). 
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This error sequence will cause degradation if d2(t:) < R(O). By inspection, 

we note that the only possibility where the above inequality can occur is 

when f1 and f 2 are of the same sign. 

Consider an error sequence of degree two that will lead hypothetically 

to dfree and cause degradation. Assume for simplicity that 

2= 1 - 0 + 0 

and so 

<C_y(O) = 1 + f1o + f2o
2 

2 30 - f o - f o1 2 
2 3 4+ o + f o + f o1 2 

1 + (fl - l)D + (f2 - fl + 1)02 + - f 2)o + f o(f1 
3 

2 
4 

The above input error sequence will lead to dfree' if its Euclidean weight 

is less than that of the input error sequence t:x(D) = 1 - D. By 

comparison with eq. (91), we found that the Euclidean weight for an 

input error sequence of degree two is larger than that of degree one, 

because (f2 - f 1 + 1 )2 is a positive definite qua.ntity. Thus it is 
2impossible for the input error sequence t:x(O) = l - 0 + o to lead 

to dfree and cause degradat~on. Further increase in the degree of the 

error sequence will not result in degradation because this will only increase the 
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Euclidean weight further due to the increase in the number of positive 

definite terms. 

By the same reasoning, t:x(O) = 1 + 0 will also lead to 

dfree whiles(D)= 1 + 0 + o2 will not. Aqain, the above statement is true only 

if the tap-gains f1 and f2 are of opposite signs. This is because when 

f1 and f 2 are of the same sign, the Euclidean weight will always be 

greater than that of R(O) and so no degradation can occur. 

The only input error sequence left to consider is of the form 
2l - o . It will give the signal error sequence: 

= {1 - o2)(1 +flO+ f 202) 

2= 1 + f 0 + f 01 2

o2 3 - f o1 

It is immediately obvious that this signal error sequence will produce 

Euclidean distance greater than that of R(O), and thus cannot lead to 
2degradation at all. The same conclusion can be drawn for t:x(O) = 1 + o . 


We conclude that the only input error sequence that causes worse 


degradation is t:x(O) = 1 + D for constraint length K = 3 and the state 


path merge leading to dfree ~ccurs at deoth. K + l. 
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5.4 	 Demarcation Contours Separating the Non-Degradation 

and Degradation Regions for Constraint Length 3 

For PRS systems with constraint length K = 3, we have proved 

that degradation will occur if and only if 

i .e.' 

i .e., 

(92) 

The above inequality signifies a region within a pa~abola 

tilted by 45° counterclockwaise, and marks the region where 

degradation is inevitable even with an MSLE receiver. For 

x(D) = 	 1 + D, the resulting inequality becomes 

(93) 
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Eq. (9-) and eq. (93) are mirror reflection of each other alonq the f2 
axis. The 0 dB curve in the 1st quadrant of figure 5.1 corresponds to 

eq. (92), while the 0 dB curve in the 4th quadrant corresponds to 

eq. (93). 

5.5 	 Contours with Given Degradation for Constraint Length 3 

Recall that d2 = df2 /(o2R(O)). The region within the norm ree x ­
parabola where degradation occurs consists of contours of constant degradation 

as defined in eq. (90). The d~orm is given by 

= 

2 as ox = l/4. 
2

By letting d~orm = x, the equation for constant dnorm becomes 

2 . 2
(8 - x)f1 - 8f1f2 + (8 - x)f2 - 8f1 + (8 - x) = o. (94) 

Let us analyse the above equation as a general equation of second degree 

of form: 
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By comparison of eq. (94) with eq. (95) we have 

A = 8 - X ' 

B = -8, 

c = 8 - x, 

D = -8, 

E = 0, and 

F = 8 - x. 

The discriminant B2 - 4AC will give 

1) a parabola if the discriminant is equal to zero, or 

2) an ellipse if the discriminant is less than zero. 

From eq. (94) the discriminant is equal to 
2(-8) 2 - 4(8- x) . 

Thus the curve is a parabola if -(x2 - 16x + 48) = 0. This condition 

is equivalent to (x2 - l6x + 48) = 0, which after factorization is equi­

valent to (x - 12)(X - 4) = 0, Which is equivalent to X= 4, 

as x = 12 is outside the range of d~orm This agrees with the fact that 

for d~orm = 4, there is no degradation and the curve is a parabola. 

Substituting x = 4 into eq. (94) will give the equation of the parabola 

on which there is no degradation. Refer to all the 0 dB curves of the 

degradation contours of this chapter. 

For B2 - 4AC < 0, this is equivalent to (x2 - 16x + 48) > 0, which 

after factorization is equivalent to (x - l2)(x - 4) > 0, which then is equi­

valent to x < 4. Hence, a contour with constant degradation as defined in eq. (90) 
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corresponds to a certain contour with a constant d2 less than 4. Thisnorm 
contour is an ellipse with the general form of eq. (94) within the 

parabola with eq. (92) or eq. (93). Refer to Figure 5.1 - 5.7. 

5.6 	 Further Analysis of Input Error Sequences for PRS Systems 

with Longer Constraint Lengths 

We will now move on to consider the case for constraint length 

K = 4. From our computation, we find that input error sequences of order 

zero, one and two all can lead to dfree· R. R. Anderson and 

G. J. Foschini [22] have shown that input error sequence of order three 

can also occur. From the definition of an error event, we note that 

t:x(D) of degree n 1eading to dfree will occur between paths that merge 

at depth K + n in the state trellis; i.e.,dfree = dK+n in the notation 

of section 4.6, eq. (82). 

1) It is obvious that dfree will be equal to dK if and only if dK 

is less than both dK+l and dK+2. Accordingly, d~ree = R(O) 

with t:x(D) = ± 1. No degradation will occur if an MLSE receiver 

is used. 

2) 	 In the same way, dfree will be equal to dK+l if and only if 

dK+l is less than both dK and dK+2. With t:x(D) = 1 - D, 
2dK+l can be computed as 

= I1(1 	 - 0)(1 + fkD + f2D2 + f3D3)1 12 

2 2 2 2= 1 + 	(1 - fl) + (fl - f2) + (f2- f3) + f3 (95) 

2 	 2
This input error sequence of 1 - D can lead dK+l to be equal to dfree 
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and causes degradation if the tap gains are of the same sign. 

When the tap gains are of opposite signs, the corresponding 

input error sequence that will cause degradation is 

~x{D) = 1 + D. 

3) dfree will be equal to dK+2 if and only if dK+2 is less than 

both dK and dK+l" For the inout error sequence 
2t:x(D) = 1 - D + o , we have 

2JJ(l - D + o2)(1 + f1D + f 2D2 + f 3D3) 11 

2 2 2 = 1 + (fl - 1) + (1 + f2- f1) + (fl + f3- f2) 

2 2
(f2 - f3) + f3. (96) 

This input error sequence can lead to degradation if the tap gains are 

of the same sign. For tap gains of opposite signs,~ (D) = 1 + 0 - o2 
X 

will be the necessary input error sequence. 

5.7 Equations of Contours with Given Degradation for Constraint 4 

In this section we will derive the equations of contours with 

given degradations for PRS systems with constraint lenqth K = 4. 

l) ~/hen dfree = dK+1, and 1etti ng d~orm = x, we have from eq. (89) 

2 . 

X = dK+1/(R(0)/4). 


This is equivalent to the equation 

2
4dK+l = R(O)x, 
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2and substituting eq. (95) for dK+l gives the following 

(97) 

This is the equation of the locus of points which satisfies 

d~orm = x, with d~ree occurring from a merge of depth K + 1. 

By substituting x = 4 in to eq. (97), we get the equation for 

This equation is 

(98). 

Essentially, this is the parabolic equation demarcating the 

region of no degradation from the region due to the 

input error sequence t:x(D) = 1 - D. From Fig. 5.5. to 

Fig. 5.7, we see that when the tap-gains f3s are positive, all 

the 0 dB curves corresponding to eq. (98) are situated in the 

1st quadrant. From Fig. 5.2 to Fig. 5.4, in which all f3s 

are negative, we see that the 0 dB curves are mirror reflections 

along the f 2 axis of the 0 dB curves with positive f3s and thus 

fl + 2f,(l + f2) + (f2 + f3) + 1 0, 

are situated in the 4th quadrant. The equations of these mirror 

reflections are 
2 2 = 

with the appropriate negative f3 ~s. With regard to the contours 
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with degradation, the above discussions still hold. The 

equations of the degradation contours with f3•s negative are 

given by: 

2) 

Refer to Fig. 5.2 - Fig. 5.4. 

Similarly, by substituting eq. (96) into the equation 
24dK+2 = R(O)x, 

we get the equation of the locus of points satisfying d~ree 

with x being the d~orm The equation becomes 

= 
2 

dK+2' 

(99) 

Substituting x = 4 into eq. (99) gives the equation of d~ 

3) Finally, we get the equation of d~+l 
and eq. (96): 

= 'd~+2 by equating eq. (95) 

( 1 01 ) . 

This equation provides the sufficient condition so that all the 

degradation curves due to state merges at different depths can be 
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shown to situate in different regions of the (f2 - f 1) plane. 

This equation turns out to be the locus of points of two parallel 

straight lines across the (f2 - f 1) plane. Between the two 

parallel lines, d~+l d~+2 . These parallel lines are shown as 

dotted lines in the figures. Within the parabolic curve of eq. (100), 

degradation occurs if d~ree is less than d~ But before we can 
2 2 	 2

be sure that dfree = dK+2' we must show that dK+2 is the least 

among d~+n for 0 < n < 2 and K= 4. If the degradation region 
2 2within the locus of points of eq. (100), where dK+2 = dK' 

intersects with the region between the two parallel lines of 

eq. (101), then in the region of intersection, d~ree = d~+2 . The 

loci of points of eq. (99) and eq. (100), as shown in Fig. 5.5­

Fig. 5.7 for positive f3s, are across the 2nd, 3rd and 4th 

quadrants. The locus of points of eq. (100) for 0 dB curves is 

almost within the regions of eq. (101) except for a small section 

which shows a jump, or point of inflection. Generally, a jump resulting 

in contour discontinuity occurs when a contour with a qiven d~orm 
2 2 passes 	from a region where dfree = dK+2 into another region 

2 2
where dfree = dK+l' thus changing the equation of the contour 

from eq. (99) to eq. (97). For constraint length K = 4, only the 

0 dB curve. exhibits this jufup when its equation changes from 

eq. (100) to eq. (9&). For the case where alJ,f3's are negative, their 

corresponding loci of points on which d~ree = d~+2 and d~ = d~+2 
are the mirror reflections along the f2 axis of eq. (99) and 

eq. (100) respectively. They are shown in Fig. 5.2- Fig. 5.4. 
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~Summarising eqs. (98), (100) and (101) subdivide the (f2 - f 1) 

plane into regions where different error events resulting in degradations 

can occur. Eq. (97) gives the locus of points on which a given degradation 
2occurs with d2 These regions are referred to as region 1. = dk+l"free 

Eq. (99) gives the locus of points on which a given degradation occurs 

with d~ree = d~+2 . These regions are referred to as region 2. Eq. (101) 

provides the sufficient condition to ensure the validity of the above 

observations on different degradation regions. Within the locus of points 

satisfying eq. (101), d~+2 < d~+l. The intersection of this region with 

region 2 is the region within which degradations will occur from state 

merges of depth K + 2. Outside this region on the (f2 - f 1) plane, 

d~+2 > d~+l. Thus the intersection of the region where d~+2 > d~+l 
with region 1 gives the region within which degradations occur from state 

merges of depth K + 1. For the remaining areas on the (f2 - f1) plane, 

d~ree occurs at a state merge of depth K and thus no degradation results. 

Finally, eqs. (98), (100) and (101) intersect at a single point, known as 

the point of inflection, as shown in Fig. 5.2- Fig. 5.7. 

Duality of PRS Systems 

In the last section, we noticed that the. degradation curves for 

negative f3•s are mirror reflections along the f2 axis of the corresponding 

ones with positive f 3•s. This is a manifestation of the duality of the 

codes. The duality of PRS systems 1 - D and 1 + D was noted by 

Kobayashi [10]. From our simulations and analysis above, we discovered 

that this duality of codes can be further extended, at least for the 

cases where the constraint length K is equal to 3 and 4. This duality 
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is due to the fact that an error sequence or its complement will result 

in the same d~ree , if the sign of the tap gains are adjusted 

accordingly. 

For K = 3 1 f10 + f 202 is dual with 1 + f10 + f o2 
2 

For K = 4 1 + f 10 ± f 202 + f 3o
3 is dual with 

1 - f 1o ± f 2o
2 - f 3o

3 and that 
2 3 2 31 - f 1o ± f o + f o is dual with 1 + flO ± f2o - f302 3 

This means that the contours of degradation for positive f 3's may be 

reflected about the f2 axis to obtain those degradation curves with 

negative f 3's. This manifestation of the duality of codes ;,s valid for 

only degradation and decision depth contours because only the above two 

parameters are error events dependent. The choice of PRS systems with 

positive or negative f3's may then depend solely on the total channel 

costs which we will discuss in Chapter 8. 

5.9 General Comments on the Oeqradation Contours 

In summary, within the locus of a parabolic contour where no degradation 

occurs, are degradation contours of elliptical shapes. As a degradation 

contour crosses a region with a aifferent.merging depth for d~ree' a jump or 

point of inflection results when the equation of the contour changes. 

Magee and Proakis [15] gave an estimate on the minimum d~orm due 

to different error events for channels with constraints length up to 

10. This minimum d2 corresponds to the deepest depression in our norm 
degradation contours. They exploited the quadratic form of d~orm' and 

used the fact that the minimum of d2 under unity energy constraint for norm 
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an isolated impulse response is the minimum eigenvalue of the matrix. 

of the quadratic form. They considered some input error sequence ~x(D) 

that may give rise to the minimum Euclidean weight. They postulated 

that the input error sequences of form 1 ± D causes the minimum 

d~orm occurring from merges of different depths due to different input 

error sequences, but were unable to prove this extremal property of~(D) = 

1 ± D. It was later shown by Anderson and Foschini [23] that the above 

statement is indeed true but only up to constraint length K = 6. Thus 

the minimum d~ree occurs from a merge of depth K + 1 for K < 6. This 

can be seen in the Fig. 5.2 to Fig. 5.~ where f3•s are negative. Notice 

that the worst degradation in terms of dB occurs in the 4th quadrant, 

where dfree occurs from a merge of depth K + 1. For example, a 4 dB 

degradation occurs in this region for f3 = -0.8. While within the reqion 
2where dfree occurs from a merge of depth K + 2, only around 0.5 dB 

degradation is observed. At = 0, we have K = 3. Here the region f 3 

in which d~ree equals d~+2 ceases to exist and d~ree only occurs from 

merges at depth K or K + 1. This is shown in Fig. 5.1. As f 3•s become 

positive, degradation contours will be the reflections along the f2 
axis of their negative counterparts. 
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CHAPTER 6 

CATASTROPHIC ERROR PROPAGATION 

The previous chapter presents the degradation contours of PRS systems 

with constraint lengths up to four. Another concept which is intimately 

related to free distances is the decision depth. In fact the definition 

of decision depth utilizes the concept of free distance. In this chapter, 

we start by developing the concept of decision depth, and then by using 

the results of the double dynamic program on PRS systems, we analyse how 

catastrophic error propagation comes about. 

Decision Depth and Catastrophic Error Propagation 

In trellis decoding, decision depth is the least depth in a 

trellis at which all pairs of paths, either merged or not, have Euclidean 

distance between them greater than the free distance. It has two 

attributes: first, it gives the maximum length of a path that must be 

stored in memory when the VA is used. Receiver ~omplexity increases 

linearly with this length . Second, it provides a measure of the 

depth in the trellis where the dynamic program has found the free distance. 

If a decoder decides on a symbol at a depth shorter than that of its decision 

depth, its performance in terms of the probability of symbol errors will 

be poorer than that predicted by the free distance, that is, the 

effective free distance will be decreased. 

93 
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Recall that the definition of decision depth in eq. (85) is 
2{lst N: Min FN > ON}. For certain codes, the decision depth N approaches 

infinity, and we say catastrophic error propagation (CE) occurs. For 

these codes, the performances can never achieve that predicted by free 

distance no matter how far down the trellis the algorithm pursues. A 

closer look reveals that CE results if the Euclidean distance between 

any two non-merging signal sequences does not increase with time. Min Fn 

is non-decreasing with n because ~E((.,.)(.,.)) is a positive definite 

quantity. If ~E((.,.)(.,)) is small or tends to be zero, then Min Fn 

increases only slightly or remains the same with increasing depth n. 

Thus the decision depth gets larger or approaches infinity. 

Let us consider a state sequence pattern that will produce zero 

incremental Euclidean weight. Considering at depth n and referring to 

section 3.6 and 4.6 for definitions, we let 

for all N > n, D~ - d~ and Min Fn < d~ 

Assume 

o(p, x ) = q, o(q, x ) = p, p, q e S, (104)1 2 
n n 

where the subscript ln refers to sequence 1 at time n. Now suppose 

= X and x1 (105).= x2 ' 1(n+l) n (n+l) 
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then the output levels become 

\(q, x ) = \(q, x ), \(p, x ) = \(p, xl ) .1 2 2(n+1 ) n (n+1) n 

Now if 

\(q, x2 ) = \ ( p, x
1 

) ( 106) 
n n 

then 

\(q, x, ) = \(p, x2 ).
(n+1) (n+l) 

If the conditions in eq. (104), (105) and (106) stay true for all 

n ~ K- 1 then Fn(p, q) = Fn+l(p, q). As the Euclidean distance between 

these two non-merging sequences does not increase with depth, this 

F n {p, q) wi 11 be selected as the Min F n1 for any n1 > n. As Min F n 1 

does not increase with depth, it is always less than D~ for all N. 

Fig. 6.1 shows a typical section of a state trellis in which catastrophic 

error propagation can occur. The state sequence pair causing catastrophic 

error propagation is: 

.... p q p q .... 

. . . . q p q p.... 

with a period ofT. This is the simplest state sequence pair forCE to 

occur, other patterns have longer period. Conditions for the occurrence 

of catastrophic error propagation are: 

1) The output caused by transitions of state sequence #1 
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A 

is equal to that of state sequence #2; i.e~y(a2 ) = y(a2 ) 
k k 

k > K - 1 . 

2) 	 Both the state sequence pair and the state sequence have to be. 

periodic, although with different periods. Periodic means that a 

state sequence starting with a given state will return to the 

start state in a time interval of nT, n ~ 2. For example, the sequence 

... p q r s p... has a period of 4T. Usually, a state 

sequence pair is formed when one state sequence is displaced by a 

multiple of T from an identical one. See. Fig. 6.2 

6.2 	 State Sequence Pairs Causing Catastrophic Error Propagation for 

Constraint Length K = 3. 

As an example, consider K = 3 with F(D) 

typical section of the state trellis forK= 3 is shown in Fig. 3.5 

State 1 is represented in the shift-register as (01). An input x = 1, 

that is, a one transition in state 1 will cause the machine to change to 

state 2 represented as (10). While in state 2, a zero transition will 

give state 1. Thus eq. (104) is satisfied. In order to satisfy eq. (106), 

we need 

A(l,l) = A(2,0), which is equivalent to 

y(l,2) = y(2,1), which is equivalent to 

(107) 

See Fig. 6.11. 

The above linear equation is a locus of points in the (f2 - f1) plane, 

along which catastrophic error propagation can occur. But computations 
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Fig. 6.1 Two state paths of a state trellis that may cause 

catastrophic ~rror propagation if /\..(q,x2 ) =A_(p,x1 n n 
for all n ;;?- K-1 .. 

State sequence #1 .... p q r s P· .. , 

J	
state 
sequence 
pair 

State sequence #2 ......... p q r s p. 


time n n+1 n+2 n+J n+4 n+5 

Feriod of each sequence = 4T 

Period of the sequence pair = lT Displacement of #1 from #2 

Fig. 6.2 ?eriodicity of a state sequence and its associated 

state sequence pair 
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show that this is true only in the lst and 3rd quadrants. For 2nd and 

4th quadrants, the locus of points with catastrophic error propagation 

is governed by the equation 

( l 08) 

instead. This straight line has a negative slope and makes an angle of 

135° with the f 2 axis. 

There are other codes with catastrophic error propagation due 

to different state sequence pairs. Consider the code 1 + 0 + o2 for which 

CE is caused by the state sequence pair 

.... 3 1 2 3... . 


..•. 2 3 l 2... . (1 09) 


Note that the sequences are just one symbol period T displaced from one 

another. Each sequence has a period ofT. But the sequence pair has a 

period ofT only. The above sequence pair causes CE because f 2 = = l,f1 
thus 

(110) 

Hence, y(3,l) = y(2,3), y(l,2) = y(3,l) and y(2,3) = y(l,2). Refer to 

Fig. 3.5. Referring to the state sequence pair (109), we note that the 

Euclidean distance between the sequences over the 3T period is zero. 

As the sequence pair repeats itself indefinitely with time, the 

Euclidean distance between the sequences will not increase with depth 

resulting in CE. This codes is shown as a cross in the 1st quadrant at 
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coordinates (1,1) in the (f2 - f1) plane of Fig. 6.3. 

The dual of the above code takes on a state sequence pair of 

form 

... 0 0 2 3 1 0 0.... 

.•. 3 1 0 0 0 2 3..•• ( 111) 

2with a period of 3T. This dual code is 1 - D + o . By means of the same 

argument as above, we infer that this sequence pair causes CE because 

= 0 = 1 + f1 and that f2 = 1. Hence, y(O,O) = y(3,1),f1 + f 2 
y(0,2) = y(l,O) and y(2,3) = y(O,O). Refer to Fig. 3.5 and the 

sequence pair (111). Note that although that the period of the sequence 

pair is 3T, the period of each sequence is 6T. This code is shown as a 

cross in the 4th quadrant at coordinates (1 ,-1) in Fig. 6.3. Also note 

that the sequence pair is formed from two identical sequences displaced 

from each other by 3T. 
2For the code 1 + o , the state sequence pair that causes 

catastrophic error propagation is 

....0 0 2 1 0...• 


.... 2 0 0 2..... (112) 


with a period of 2T. Each sequence has a period of 4T. Using the same 

inference technique as above, we note that y(O,O) = y(2,1) and 

y(0,2) = y(l,O) because f1 = 0 and f 2 = 1 for this code, and so the 
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o2sequence pair (112) causes CE. The dual of the above code is 1 ­

and the pair of sequences that causes CE is 

.... 1 2 2..... . 


.... 3 3 3 3..... . ( 113) 


This is the first sequence pair which consists of a pair of sequences 

that are not just mere displacements of each other. Referring to 

Fig. 6.2 again, we see y(l, 2) = 1 + f2 and y(3, 3) = 1 + f1 + f 2. 

As f 1 = 0, therefore 

1 + f2 = 0 = 1 + f + f1 2 

Thus y(l, 2) = y(3, 3) = y(2, 1). Also as y(O, 0) = y(3, 3) = 0, 

therefore the sequence pair that causes catastrophic error propaqation 

can also be 

..... 1 2 1 2....•• 

. . • . . 0 0 0 0 .•.••. 

The above two codes,. which have catastrophic error 

propaqation, are illustrated in Fiq. 6.3 as crosses at coordinates 
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(1, 0) and (-1, 0) respectively. 

6.3 	 State Sequence Pairs Causing Catastrophic Error Propagation 

for Constraint Length K = 4. 

A typical section of the state trellis for K = 4 and binary inputs 

is shown in Fig. 6.4 Also shown are the outputs for different transitions. 

For this trellis, the simplest state sequence pair causing catastrophic 

error propagation is 

••••• 2 	 5 2 5••.• 

•.••• 5 	 2 5 2•••• ( 114) 

conditioned on y(2,5) = y(5,2). Eq. (104) is satisfied, as 

o(2,1) 	 = o(5,0). 

y(2,5) 	= y(5,2) is equivalent to 

which is equivalent to 

( 115) 


In the (f2 - f1) plane, this is the equation of the line on which cata­

strophic error propagation can occur. It makes an angle of 45° with the 
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f 2 axis. Computation results show that not all codes along the line have 

catastrophic error propagation. Near the origin of the (f2 - f1) plane, 

there is no catastrophic error propagation. Therefore the line is split 

into two parts. For positive f3's, one part is situated in the lst 

quadrant and the other in the 3rd quadrant. As the duality of codes 

applies to decision depth, thus for negative f 3's, eq. (115) becomes 

{ 116) 

Consequently, the CE loci for negative f 3's are mirror reflections about 

the f 2 axis of their positive counterparts. The same observation applies 

to decision depth contours. Fig. 6.5 - Fig. 6.7 show the decision depth 

contours for f 3's = -3.1 -1.6 and -0.8 respectively. Fig. 6.8- Fig. 6.10 

show the decision depth contours for f3's = 0.8, 1.6 and 3.1 respectively. 

Comparison of Fig. 6.5 with its corresponding positive counterpart in 

Fig. 6.10 will show the mirror reflection relationship. 

Another dominant state sequence pair that causes catastrophic 

error propagation is 

.... 1 4 6 3 1. .. . 

.... 6 3 1 4 6.... . (117) 

with a period ofT. The sequences, each with a period of 4T, are 

identical, but are displaced by 2T from each other. To find the locus 

of points for this pair of state sequences, observe that 

y(1,4) = y(6,3) is equivalent to 
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Computation results show that the locus of points for this sequence 

pair (117) passes through the 3rd quadrant where both f1 and f 2 are 

negative; so in order to accomodate the right hand side of the above 

equation for positive f3•s, negation of the right hand side is 

required. Hence the equation becomes that of y(l,4) = -y(6,3) and 

is equal to 

(118) 

Similarly, by referring to Fig. 6.4 and using the above reasoning, the 

equation for y(4,6) = -y(3,1) is 

(119) 

Eqs. (118) and (119) are not independent but are equivalent. Putting 

them into a standard form, the locus of points along which catastrophic 

error propagation occurs for positive f 3•s is 

(120) 

For negative f 3•s, the equation becomes 

(121) 

Computation results show that all codes along the lines of Eqs. (120) and 

(121) give rise to catastrophic error propagation. Thus it can be 

considered that eq. (120) and (121) are the necessary conditions for the 

QCcurence of catastrophic error propagation. The CE contours do not split 
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into two parts as in the case for the sequence pair (114). For positive 

f 3•s, eq. (120) cuts across the 2nd, 3rd and 4th quadrants diagonally 

at 135° with the f2 axis. For negative f 3•s, eq. (121) cuts across the 

1st, 2nd and 3rd quadrants diagonally at 45° with the f2 axis being the 

mirror reflections along the f axis of their positive counterparts. See2 

Fig. 6.5- Fig. 6.10. 

Another interesting state sequence pair causing CE is 

..•.• 4 6 3 1 4...•. 

..... 3 1 4 6 3..... , (122) 

which can be considered as the state sequence pair (117) displaced by a 

timeT. The necessary conditions forCE to occur are y(4,6) = y(3,1) 

and y(6,3) = y(l,4). They are equivalent to the following two equations: 

Solving these two simultaneous equations gives the solution 

Thus the codes with catastrophic error propagation caused by the sequence 

pair (122) are given by: 

It is obvious from the solution that for positive f3•s, the sequence pair 

(122) will cause catastrophic error propagation in the 1st quadrant but 
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in the 4th quadrant for negative f3's. 

We found that the code l + 2.10 - 2.102 + 3.103 and its dual 

have catastrophic error propagation. The state sequence pair which 

causes CE is found by noting that 

Then by inspection of Fig. 6.4, we get 

y(3,1) = f2 + f3 = 1 = y(0,4) 

y(l,O) = f3 = 1 + fl = y(4,6) 

y(O,O) = 0 = fl + f2 = y{6,3). 

We deduce that the state sequence pair is 

.... 3 1 0 0 4 6 3..... . 


.... 0 4 6 3 1 0 0..... . (123) 


with a period of 3T. Each sequence has a period of 6T. This is shown 

in the 2nd quadrant of Fig. 6.10 as a cross with a decision depth contour 

of 30 surrounding it. Its dual is shown in Fig. 6.5 

6.4 Comments on the Equations for Catastrophic Error Propaqation 

Let us consider the Jinear equations for different f 3's along 

which catastrophic error propagation occurs. 

1) f3 = ± 0.8 

For f = 0.8, the equation forCE due to the sequence pair (114)
3 

is 



108 


is 

(124) 

according to eq. (115). While for f3 = -0.8, the equation becomes 

(125) 

according to eq. (116). 


The equation for CE due to the state sequence pair (117) is 


(126) 

for positive f3. While for f 3 = -0.8 according to eq. (121), the 

equation becomes 

(127) 

Note that eq. (124) and eq. (125) are mirror reflections of each other 

along the f2 axis, a manifestation of the duality of PRS systems. The 

same relationship applies to eq. (126) and eq. (127). The isolated code 
2with CE due to the state sequence pair (122) is 1 + 0.80 + o + 0.803 

2for positive f3' with its dual 1 - 0.802 + o - 0.803 for neqative f . 
- 3 

All of the above can be seen in Fig. 6.7 and Fig. 6.8. 

2) f3 = ± 1.6 

In the same way as above, the equations of the loci of points with 

CE due to the sequence pair (114) for positive and negative f •s are3
respectively 

(128) 
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while the equations forCE due to the sequence pair (117) for positive 

and negative f 3's are respectively 

(129) 

The code with CE due to the sequence pair (122) is l + 1.60 + o2 + 1.603 

2for positive f3, with its dual 1 - 1.60 + o - 1.603 for negative f3. 

See. Fig. 6.6 and Fig. 6.9. 
•3) f3 = ±3.1 

The equations for CE due to the sequence pair (114) for positive 

and negative f3's are 

(130) 

respectively. The equations forCE due to the sequence pair (117) for 

both positive and negative f3's are 

(131) 

respectively. 

Similarly, the codes with CE due to the sequence pair {122) are 

1 ± 3.10 + o2 + 3.103. Also as noted in section 6.3, the code 

1 + 2.10- 2.102 + 2.103 causes catastrophic error propagation due to 

the sequence pair (123). 
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CHAPTER 	 7 

99% ENERGY BANDWIDTH 

This Chapter reports on the 99% power bandwidth of PRS codes 

with channel length K ~ 4 using binary signalling. Although the codes 

have a well defined single-sided bandwidth of nfT radians, where Tis the 

sampling interval, it is interesting and useful to determine just how much 

bandwidth is conserved merely by sacrificing 1% of the total energy at 

the high frequency end of the spectrum. 

7.1 	 99% Energy Bandwidth of PRS systems 

99% energy bandwidth is the frequency band within which 99% of the 

energy lies. The frequency response of a digital transversal filter is the 

discrete Fourier transform of the code F(D) and is given by substituting 

the delay operator D with the quantity exp(-jwiT);i.e., 

H( w) = 	 F(D) lo = exp( -jwiT) 

= I
L 

f .exp( -j wiT) 
. 0 11= 

L 
= 1 + I f;exp(-jwiT), (134) 

i=l 

2with f 	 = l, j = -1, w= 21Tf where f is used to denote frequency, i is 
0 

an integer, and L is the number of delays of the filter. 

The total energy confined from -a to a Hertz is equal to the 

integration of the energy density over the frequency range. One point to 

117 
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note is that although H(w) is periodic~ that is, H(w) = H(w - 2Tik/T) for 

integer k, H(w)G(w) is non-periodic if G(w) is an ideal low-pass filter of 2­

sided bandwidth 2n/T radians. Thus the term energy density is more appropriate 

for this non-periodic frequency response. The energy density is given by 

the product of H(w)G(w) and its complex conjucate H*(w)G*(w). But G*(w) 

is equal to one within the bandwidth of 2n/T, thus the energy density is 

L L 
H(w)H*(w) = (1 + i~lfiexp(-jwiT))(l + i~lfiexp(+jwiT)~IwJ<2TI/T. 

The energy within the frequency band I a I is 

Refer to Fig. 

B 

7.1 

= f 
2'11'a 2

1 / n { 
0 

I H ( w) I dw}. ( 135) 

It is shown in appendix 8.2 that the total energy of a PRS 

code of form F(D) is 

2
R( 0) = IIF(D)\1 = 1 + ( 136) 

Thus the equation governing the 99% energy bandwidth is 

8/R(O) = 0.99. ( 137) 

For K = 3, the equation forB becomes [Appendix B.l]. 

2na 
B = 1/n (1 + f2 + f 2 

2 + 2f1cosw + 2f1f 2cosw + 2f2cos2w)dwJ0 
1 

2 2 2f1 
= 2a(l + f1 + f 2) + --TI-- sin2na 

( 138) 
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Substituting Bin eq. (137), we have 

2 2 2fl 2flf2 2f2 
(1 + f1 + f 2)(2a - 0.99) +-;- sin2na + TI sin2na + --TI-- sin4na = 0. 

(139) 

Finding the minimum bandwidth involves minimization over all the 

tap gains of a, within the range 0 < a < l/2T and satisfying the above 

equation. This minimization, using variational calculus techniques, involves 

a highly non-linear operation, and the periodic nature of the sine function 

adds to the difficulty. We instead compute 99% energy bandwidth of each 

codes using eq. (137), and draw contours of all codes with a given band­

width. A contour line of 80%, for example, means that 99% of the energy 

of all codes on the line is confined within 80% of the minimum Nyquist 

bandwidth of n/T. 

7.2 99% Energy Bandwidth Contours 

The bandwidth contours as f 3 ranges from -1.6 to +3.1 are shown in 

Fig. 7.2 to Fig. 7.7. Some facts observed from these plots are now 

summarized. 

1) For f 3 = -1.6, the minimum bandwidth is around 72.7% and resides 

in the 2nd and 3rd quadrants. The region enclosed by the 90% 

contours stretches across the 1st, 2nd and 3rd quadrants. 

2) For f 3 = -0.8, the minimum is around 74%, and its position has 

moved diagonally upwards occupying the lst and 2nd quadrants. 

3) ~or f 3 = 0.0, which corresponds to K = 3, the minimum bandwidth 

is around 63.6%. Both the 70% and 80% contours have moved into 

the 1st quadrant. 
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4) 	 For f 3 = 0.8, the minimum bandwidth decreases to 52.7% 

This represents the minimum bandwidth for all f 3 considered in 

this work and thus approximates the minimum for K = 4. The 

region enclosed by the 90% contour has split into two separate 

portions, one in the lst quadrant and the other in the 3rd 

quadrant. 

5) 	 For f 3 = 1.6, the minimum bandwidth is around 53.5%. The 80% 

or less contours in the 1st quadrant have moved diagonally 

further away from the origin. 

6) 	 For f 3 = 3.1, the minimum bandwidth is 59.2%. The migration of 

the narrow bandwidth regions away from the origin is such that 

the 60% contour is almost off the plot in the (f2, f1) plane. 

7) 	 ForK= 2, f 3 = f 2 = 0.0, the minimum bandwidth is around 81.65%. 

For the binary PAM case, f3 = f 2 = f1 = 0.0, the 99% bandwidth 

is 99%. 

The migration of the region enclosed by the 90% contour away from 

the origin as f 3 increases implies that as f3 increases, f1 and f2 have to 

increase proportionally to give the same 99% energy bandwidth. Also notice 

that all narrow bandwidth contours reside in the 1st quadrant. This can be 

explained by observing the z-transform of codes h~ving all positive taps: 

their zeroes are all on the left-ltalf z-plane so that more energy is 

concentrated in the low frequer.cy portion of the spectra. For K = 4, the 

narrowest bandwidth region is in the 1st quadrant with the second best 

region of around 90% in the 3rd quadrant. 

The minimum 99% energy bandwidth forK= 2 is 81.65% and it occurs 

around code 1 +D. Its z-transform has a zero at z = -1. ForK= 3, the 

http:frequer.cy
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minimum bandwidth is around 63.6% and occurs at around code 1 + 1.60 + o . 


Its z-transform is (z 2 + l .6z + l)/z2. This has zeroes at 


-0.8 ± j0.6; i.e., all zeroes are on the left-hand z-plane. 


For K = 4, the minimum bandwidth is around 52.7% and it occurs 

around code 1 + 20 + 202 + 0.803 for the different f 3 's considered in this 

work. For 	 convenience sake, let the minimum occur at code 
2 3 jl 7321 + 20 + 20 + 0 . The zeroes are thus -1, -0.5 ± · , all on the2 

left-half z-plane. 

Considering the case where all tap-gains are positive, we note 

that as constraint length K increases, the z-transform of F(O) has more 

zeroes in the left-hand z-plane. This implies that the amplitude of the 

high frequency response is pulled down by more zeroes resulting in higher 

energy in the low frequency portion of the spectrum. Thus we expect the 

minimum bandwidth to further decrease as the number of taps increases. 

Fiq. 7.8 shows the zeroes of the z-transforms of the PRS systems which 

have the narrowest 99% enerqy bandwidths for K = 2, 3 and 4. 
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CHAPTER 8 

A COST FUNCTION AND ITS EVALUATION 

By comparing both the degradation and bandwidth contours, we note 

that as a general rule, each plot has a region of greatest degradation 

near the region of narrowest bandwidth. Thus, the aim of simultaneously 

minimizing both degradation and bandwidth leads to a fundamental conflict. 

In order to trade off the above two quantities, we define a channel 

penalty function. A rationale for the function is given. The rest of 

the chapter reports on its evaluation. 

Shannon Capacity Equation 

Consider the Shannon channel capacity equation, 

C = Wlog2(1 + P/N W) (140)
0 

where Wis the effective one-sided bandwidth of the channel in Hertz, P 

is the average transmitted power, and N is the one-sided power spectral
0 

density of white Gaussian thermal noise. This equation implies that is 

is possible to transmit digital information over a channel of bandwidth 

Wat a rate R < C with arbitrarily small probability of error by using 

a sufficiently sophisticated coding system, but it is impossible to send 

information at a rateR> C without a finite error rate [16]. Several 

points to note are: first, the equation only applies to white Gaussian 
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noise under average signal power limitation;second, in order to approximate 

the limiting rate of transmission, the signals must to likened in 

statistical properties to white noise. This is due to the fact that the 

received signals will have a maximum entropy if they also form a white 

noise ensemble, since noise has the greatest entropy for a given power [17]. 

Third, from the channel capacity equation, we see the unfavourable 

exchange in the signal power in order to reduce the bandwidth used for 

an ideal system: an increase of the signal power by 2n fold will only 

reduce the required bandwidth by a ratio of n. For example, in A'PCM 

system the power to bandwidth trade-off follows the logarithmic 

relationship of an ideal system, but reouires about eiqht times the power 

theoretically needed to realize a given channel capacity for a qiven 

bandwidth. Practical systems using various digital and digitized-analog 

modulation techniques display the power-bandwidth trade-off in a variety 

of shapes, and the trade-off relationship may not be logarithmic as in 

the ideal system. 

8.2 	 Rationale for a Cost Function 

We can derive the relationship between degradation and bandwidth 

as follows for PRS systems with constraint length K = 3. The equation 
2of the 	contour with constant dnorm is elliptical and is given by eq. (94) 

(8 - x)f2 - 8f f 2 + (8 - x)f2 
2 - 8f1 + (8 - x) = 0,1 1

d2where 	 X = norm 
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From this we have l + f1 
2 

+ f 2 
2 = 8(f1 + f 1f2)/(8 -'X). 

Substituting the above equation into eq. (139) gives 

8( fl + flf2) 2f1sin2na 2f/2sin2Tia 
(2a - 0.99) + + 

'IT 'IT(8 - x) 

2f2sin4Tia 
+ = 0 (140)

'IT 

In eq. (140), a and x are the dependent variables while f1 and f 2 are the 

independent variables. The region where both minimum degradation and 

bandwidth occurs can be found by maximizinq x and minimizinq a in eq. 

(140) over tap-gains f 1 and f2 subject to the constraint of 

lal < l/2T and x < 4. 

The same derivation can be applied to different constraint lenqths K. We 

found that the optimization exercise presented above is rather difficult 

due to the sinusoidal terms, and does not qive intuition into the trade-

off of power and bandwidth in PRS systems. Rather we choose to approach 

this optimization problem by defining a cost or penalty function that 

jointly takes both power and bandwidth into appropriate account for PRS 

systems. 

Generally, we provide resources to get certain returns. Surely, 

we would like to maximize our return for a given resource. But if the 

return is not "accumulative", then we want the return to be as close to 

the needs as possible so that nothinq will be wasted. "Accumulative" 

refers to the property that certain return can be accumulated over time, 
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for example, a physical entity like energy and metal. If one is not able 

to fully utilize these entities now, they can be stored and used later on 

to a certain extent. But there exists certain entities like speed or 

bandwidth that cannot be stored and used over a period of time. Either 

one fully utilizes these entities immediately or else the unused capacity 

will be lost. In an ideal communication system, we are charged for 

channel capacity directly proportional to the bandwidth occupied and to 

the logarithm of the power used in signalling for a fixed auaranteed 

probability of error. Following the line of thoughts expressed above on 

resources and returns, we would like to choose a PRS system that will 

provide a capacity close to the required signalling rate. Because any 

capacity higher than the signalling rate will be wasted as channel 

capacity is one example of a return that is not accumulative. The penalty 

for choosing a system with capacity lower than the signalling rate is the 

frequent occurrence of errors, while the penalty for choosing a system 

with higher capacity than the required sianallinq rate is the additional 

cost imposed for power and bandwidth above that necessary for ths 

signalling rate. 

8.3 Average Transmitted Power of PRS Systems 

In order to compare different PRS systems, we have to assure that 

the energies of all output signals are equal. To do so, we can either fix 

the gain of the low-pass filter or set the amplitude of the data inputs 

to a certain value so that the energy of the impulse response of the low­

pass filter stays the same. We choose to set the gain of the low-pass 

filter to lEsT; the energy of each unit pulse response then becomes 
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See Fig. 8.1 

Now from eq. (21), the impulse response of a PRS system with 

unity gain low-pass minimum Nyquist bandwidth filter is 

h( t) = I
L 

f.sinc(2Wt- i). 
. 0 ,
1= 

By scaling the gain of the filter from unity to /EsT~ the impulse response 

of a PRS system becomes 

L 
h(t) = I IE/T' fisinc(t/T - i). ( 141) 

i=O 

Then the output signal wave from a PRS system with binary inputs xk can 

be written as 

s( t) = ( 142) 

Now we want to evaluate the average power Ps of the above siqnal wave s(t). 
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low-pass filters with dif;ferent amplitude 

gains 
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NT 2(t)dt]I-NT 

NT N 2
= E {lim (2N l l)T r [ I xkh(t- kT)l dt}

N+oo J-NT k=-N 

N N NT
1 . 1= 1 I E[x.xk] J h(t -jT)h(t -kT)dtm (2N + l)T I
N+oo j=-N k=-N J -NT 

2E[xk] N 
= lim rT h2{t - kT)dt +(2N + 1)T I

N+oo k=-N -NT 


E[xjxk] N 
 N tT= lim I h(t - jT)h(t - kT)dtl(2N + 1)TN+oo j=-N kLN -NT j;fk 

(143) 

The first term of eq. (143) can be written as 

N I+"" E LL ~ [ I f; sinc(t/T- (i + k))]2dt 
k=-N -oo T i =0 

E[x~] Es L 
= (2N + 1)T . ( 2N + 1 ) . T . I f~T 

. 0 11 = . 

L r f. 2 (143)
i=O 1 

as J~: sinc(t/T - i)sinc(t/T - j) = 0 for i r j 

r+oo 2 
and j_oo sine (t/T)dt = T. 

I 
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Let us evaluate the integral of the second term of eq. (143). 

L E[ i~t Ts fisinc(t/T- (i + j))]dtjHk 

= J:: ~ [i~O f;sinc(t/T- (i + j))]. 

L 
[ i~O fisinc(t/T- (i + k))]dtl jFk 

1 0 

due to the orthonormal nature of the sine function. The second 

expression can be proved to be zero by observing that E[xjxk] =0 

for j F k as the input digits Xj and xk are uncorrelated. 

For polar inputs~ E[xk] =0 and thus E[x~] = a;. The average 

power becomes 

l 
Ps = a2 I f~ (E/T)

X i=O 1 

= a; R(O)( E/T) from eq. (87) 

= cry 
2 

E/T (144) 
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from eq. (88). This is the average power seen by the 

channel. As discussed in Chapter 5, the output variance cr y 
2 can be varied 

2by scaling the tap-gains {fi}. Therefore we can normalize cr y = 1. In 

this case the average power provided to the channel is 

= E /T (145)s 

Referring again to Section 5.1, we understand that the average power as 

seen by the receiver is less than that specified above due to the correlation 

among samples of PRS systems. In order to take the degradation effect of 

PRS systems into account, a factor R(O)jd2 of eq.(90) should be
free 

included, obtaining 

2 2Ps = R(O)/d E /T = 4/d E /T (146)free · s norm · s 

The above equation is intuitively satisfying: whenever d2 of a·· norm 

PRS system is less than the d2 of binary polar PAM, which is equal to norm 
24, then the energy per symbol should be scaled up by a factor of 4/dnorm 

By the scaling up of symbol energy, the average power seen by the receiver 

for sequence estimation will stay the same at Es/T. If the d~orm of a PRS 

system is equal to 4, the scaling factor becomes one and automatically no 

scaling occurs. 

Referring to Chapter 7, a denotes the 99% energy bandwidth of PRS 

systems. So the bandwidth utilized by the PRS systems for this study is 

aW = a/2T. In section 2 of this Chapter, we propose the usaqe of a 

penalty function to jointly optimize both power and bandwidth simultaneously. 

The Shannon capacity equation seems a reasonable candidate, although it only 
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describes the power and bandwidth trade-offs for ideal sytems, which is 

not the case for PRS systems. Substituting eq. (146) into eq. (140) and 

using the 99% energy bandwidth a/2T, eq. (140) becomes 

BE 
c = 2T log2(1 + N d~ ) (147) 

a o norm 

Furthermore, by setting Es/N = 10, we guarantee the probability of bit
0 

error for binary signalling is about 10-5 . Finally, by normalizing the 

bandwidth l/2T to 100 for calculation purposes, we obtain the penalty 

function 

C = 100 alog2(1 + 80 	 (148)
ad2 

norm 

8.4 	 Interpretation of the Cost Function 

For a given a and d2 , the function C in eq. (148) really givesnorm 
a measure of the channel capacity of an ideal system. We instead use it 

as a gauge for penalty or cost. The higher the value of C, the higher 

the cost or penalty paid. From this viewpoint, we want the value of C to 

be as low as possible but this also implies that we want the lowest channel 

capacity which contradicts to our usual intuition that the higher the 

channel capacity of a system, the better it is. 

This paradox can be explained as follows. In our model, the 

maximum single-sided bandwidth of any PRS system is 1 
2T Hz, which for 
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binary signalling, only requires a channel capacity oft b/s. Because 

we have normalized 2~ to be 100 Hz, therefore the channel capacity 

required for binary signalling is only 200 b/s. Any channel capacity 

above 200 b/s will be wasted as channel capacity is an entity that is 

not 11 accumulative 11 as discussed in Section 8.2. Thus we want the lowest 

channel capacity as long as it is above 200 b/s. Hence, we have a 

coherent objective of minimizing C in eq. (148) no matter how we interpret 

its meaning: either as a penalty function or as a channel capacity function. 

Another point to note is that it is the relative cost of a code compared 

with others that has significance, rather than the absolute cost of the 

code; the main objective of proposing the cost function is to device a 

gauge for comparisons among all codes in terms of the joint effects of 

bandwidth and degradation. 

The 99% energy bandwidth a shows up in two positions within the 

function of eq. (148). In the first position, Cis directly proportional 

to a. As a decreases, the penalty decreases proportionally. For this 

position of a , we want to choose a PRS code that minimizes a, that is, 

we want a code with energy concentrated in the low frequency portion of 

the spectrum. In the second position, a is in the denominator of the 

log2(.) function. In this case, a has the reverse effect on the C 

function. The effect of the a in the second position counteracts the effect 

of a in the first position in such a way that the net effect on the C 

function is reduced, but C still increases with a. 

The effect of d2 on the cost function is similar to the a in norm 
the second position. By re-arranging eq. (148) we have 
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c = 100 a 1og2 ( l + 1 ) . (149)
d2 

a ( 	 norm )80 

d2 	 d2 
norm 	 normThus 	 both a and have the same effect: as a or increases,80 80 

the C function decreases and vice versa. The difference is that their 

d2 ranges are different: 0 < a < 1 but 0 < < 4. norm 

8.5 The Cost Contours 

By using the above cost function of eq. (148), we compute the 

cost in a grid pattern fashion on the (f2, f1) plane using the appropriate 
299% energy bandwidth a and the normalized free distance d for each norm 

code. Observe that the shapes of the cost contours for a particular f3 
depend on the shapes of their corresponding bandwidth and degradation 

contours. From the C function of eq. (148), we see that the 99% energy 

bandwidth a always exerts the dominant influence on the cost for small 

a(a 	 < 90%). For a approaching 1, the C function of eq. (148) can be 

rewritten as 

C = 100 1og2 ( 1 + ~0 ) . (150) 
dnorm 

Hence, the dominant influence on the cost function now switches to 
2dnorm instead. The cost contours express the above ideas in the pictorial 

form. 

The cost contours for f 3 = -1.6, -0.8, 0.0, 0.8, 1.6 and 3.1 

are shown in Fig. 8.2 to Fig. 8.7. The cost contours in the figures 

are separated from each other by a value of 25. 
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1) For f 3 = -1.6, the cost contours across the 1st, 2nd and 

3rd quadrants have similar shapes as the corresponding band­

width contours of Fig. 7.2. Over these quadrants, we have a 

minimum bandwidth of about 73% but only a maximum degradation 

of 0.5 dB. See Fig. 7.2 and Fig. 5.2. Thus the dominant 

influence on the cost in this area is the bandwidth a. 

The minimum cost contour of 375 occurs and coincides with the 

minimum bandwidth contour of 80%. In the 4th quadrant, the 

bandwidth is larger than 98% and the maximum degradation is 

3.5 dB, thus the dominant influence on the cost switches to the 

d~orm instead. Comparison of Fig. 8.2 with Fig. 5.2 in the 4th 

quadrant shows their similar elliptical structures. We see that 

as d~orm decreases, that is, as degradation increases, the cost 

increases accordingly. This is intuitively convincing: as the 

free distance of a code gets shorter, more power is needed to 

distinguish one codeword from another,thus costing more. 

2) For f3 = -0.8, the same observations as = -1.6 apply. f 3 
Note that the minimum cost contour of 375 is halfway between 

the lst and 2nd quadrants and thus has moved towards the lst 

quadrant compared with the same contour for f 3 = -1.6. This 

shows the dominant effect of the bandwidth a on the cost contours: 

the cost contours migrant along the same path through the (f2, f1) 

plane as the bandwidth contours for increasing f 3•s. Refer to 

Section 7.2. 


3) For f3 = 0.0, both the bandwidth contours and the 


degradation contours reside in the 1st quadrant. For narrow 
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bandwidth 	 (a< 90%), has the dominant effect on the cost 
2over the dnorm although the overall shapes of the cost con­

tours skew towards the reqion of lower degradation. The minimum 

cost contour of 375 resides entirely within the minimum band­

width contour of 70% and just outside the maximum degradation 

contour of 2.0 dB. See Fig. 8.4, Fig. 7.4, and Fig. 5.1. 

4) For f 3 = 0.8, the region with bandwidth contours of 60%, 

70% and 80% overlaps the region with degradation contours of 

4 dB to 2 dB. Refer to Fig. 8.5, Fig. 7.5 and Fig. 5.5. The 

minimum cost contours of 350, 375, 400 and 425 follow the same 

concentric elliptical shapes as the 60%, 70% and 80% bandwidth 

contours. This is a manifestation of the dominant effect of 
2 

a over dnorm on the cost function within this region. Also these 

cost contours are very close to each other showing that a slight 

variation of position on the (f2, f 1) plane may result in a large 

change in the cost. Also note that these cost contours cut across 

the degradation contours in such a way the effect of increasing 

bandwidth a is counteracted by the decrease in degradation or 

vice versa with the net effect that the cost stays the same. 

Just outside the 80% bandwidth contour, d2 begins to exert norm 
more effect on the cost giving a region of high cost of about 450. 

In the 3rd quadrant, .the cost contour of 425 is between the 90% 

and 98% bandwidth contours and follows about the same shape as 

the bandwidth contours. 
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5) For f3 = 1.6, there are two portions to the cost contours 

in the 1st quadrant. One portion consists of cost contours 

with values 375, 400 and 425. The other portion consists of 

cost contours with values 450 and 475. For the former portion, 

the cost is dominated by the effect of the 99% energy bandwidth 

a and thus the cost contours follow the same shapes as the 

bandwidth contours of 60%, 70% and 80%. For the latter portion, 

the cost is dominated more by the d2 and the contours fit norm 
between the 90% and 98% bandwidth contours. In the 3rd 

quadrant, the cost contours of 400 is within the 90% bandwidth 

contour while the 425 cost contour is between the 90% and 98% 

bandwidth contours. 

6) For f3 = 3.1, the cost contours in the lst quadrant also 

consist of two portions. One portion consists of cost contours 

of values 375, 400 and 425 and located within the 60% and 

70% bandwidth contours. The costs for this portion is dominated 

by a. The other portion is located between the 80% and 98% 

bandwidth contours. It consists of cost contours of value 

450, 475 and 500, being dominated more by the d~orm There is a 

cost contour of 425 that spans the 1st, 3rd and 4th quadrant. 

It is dominated by the effect of bandwidth a. 
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CHAPTER 9 


CONCLUSION 


Summary of Findings and Discoveries 

This thesis develops the 11 double 11 dynamic programming for the 

maximum likelihood sequence estimation over channels having finite 

duration impulse response. The complexity involved in this algorithm 

is the square of that of the one dimensional Viterbi algorithm. 

The four performance measures, namely, degradation, decision, 

depth, 99% energy bandwidth and channel cost are extensively evaluated 

for channels with length up to four signalling intervals. We present 

the results of each parameter for different channels in contour form. 

A contour shows the locus of channels with a given functional value. 

Contours with different values are shown in each contour diagram. 

Contours with degradation are elliptical and lie within the 

parabolic contour which demarcates the region of no degradation with 

the one which has. For channels with length K = 3, degradation occurs 

at a state merge of trellis depth K + 1 only. For channels with length 

K = 4, degradation occurs at both depth of K+ 1 and K+ 2 with the 

deeper degradation occurring at depth K + 1. It is observed that as a 

contour crosses from one region to another with a different merging 

depth for the occurrence of free distance, the equation of the contour 

changes correspondingly, resulting in a jump or point of inflection. 
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Two channels are dual when one channel has the same impulse 

response over a number of signalling intervals as another in terms of 

magnitude but with the appropriate opposite signs. This duality 

manifests itself in the degradation contours of the channels, as mirror 

reflection along the appropriate axis of one channel with another. 

Catastrophic error propagation occurs when the decision depth 

required for maximum likelihood sequence estimation over a channel 

approaches infinity. It results if the Euclidean distance between any 

two non-merging signal sequences does not increase with trellis depth 

in the state trellis of the channel. The decoding algorithm is tricked 

into an un-ending search for the free distance of the channel. Practically, 

we truncate the decision depth for manageable computation. 

Contours with catastrophic error propagation are mostly governed 

by linear equations making an angle of 45° and 135° with the f2-axis of 

the (f2 - f1) plane. Thus they are parallel to the major axis of the 

elliptical degradation contours. The equations are given by equating the 

output levels of the pair of periodic state sequences whose Euclidean 

distance between them does not increase with depth. There exists also 

some isolated channels with catastrophic error propagation whose loci do 

not conform to the linear equations. They are caused by some particular 

sequence pairs. Duality also applies to the decision depth contours 

as in degradation contours because both measures are caused by error 

events. 

Minimum 99% energy bandwidth contours are found to reside in the 

first quadrant because the zeroes of the z-transform of all positive 

impulse response channels are in the left band z-plane, thus pulling down 
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the amplitude of the high frequency response of the spectra. This 

results in the concentration of energy in the low frequency portion of 

the spectra. 

It is also found that the minimum 99% energy bandwidth for 

channels with length three decreases from 63.6% to 52.7% for channels 

with length four. This is because as the length of a channel increases, 

the number of zeroes on the left half z-plane also increases, thus 

pulling down further the amplitude of the high frequency portion! 

We expect the minimum 99% energy bandwidth to further decrease with 

increasing channel length. 

The proposed channel cost is similar to the Shannon capacity 

equation and is used to jointly optimize the energy and the bandwidth 

required for adequate signalling over channels with finite impulse 

response. According to the equation, the 99% energy bandwidth exerts 

two counteracting effects on the channel cost, while energy degradation 

only has noticeable influence on the cost in regions where the 99% energy 

bandwidth is greater than 90%. Overall, 99% energy bandwidth has dominant 

influence on the total cost compared with degradation. 

From the channel cost contour figures, it can be seen that the 

contours follow closely the bandwidth contours in those regions where the 

99% energy bandwidth is less than 90%. In regions where the 99% energy 

bandwidth is greater than 90%, degradation takes over to be the dominant 

influence, causing the channel cost contours to follow the elliptical 

shapes of the degradation contours. 

By referring to the contours of the four measures, one can 

choose the appropriate channels to minimize the bandwidth required, or the 

degradation suffered, or the 
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complexity involved in maximum likelihood sequence estimation. Finally, 

one can use the channel cost to provide a guide for selecting the channel 

which minimizes both bandwidth required and degradation suffered. 

For channel with lengths up to four, it is found that the regions 

of narrow 99% energy bandwidth lie on the regions where long decision 

depths and catastrophic error propagation occur. In fact, for most cases, 

the linear equations of the catastrophic error propagation contours cut 

across the regions of minimum 99% energy bandwidth. 

The same observation applies to the channel cost contours and the 

decision depth contours, that is, the regions of lowest channel cost lie 

on the regions where catastrophic error propagation occur. This is 

expected since the channel cost is dominated by the 99% energy bandwidth 

of 90% or less. Thus, in order to have low channel cost, complexity in 

terms of long decision depth is the price to pay and vice versa. The 

channel cost can be regarded as a communication cost while complexity 

shows up in processing cost. Hence, it amounts to the trade-off between 

communication cost and processing cost. 

The following table shows the range of values within which the 

maximum or minimum of the four performance measures lie when maximum 

likelihood sequence estimation is used. 



156 


Cha~~el Lengch(K) 
?erform~"'l.c e 

1 2:vieasc:.res 

'v1aximum ') _, u < 2 . .:;!4. < D < 4.5o. 0. I-. <--.. - I 


Degrada"tior: I 
I 


I 

in d3 I 


i ' 
; / r.'. ,_ ! ., .....,:.· .'I ''ir:i:num 99% jso . < 3':I < 90 . 

I 

1 
~o. < ::w < /o. 

! 

1:;o. <.. :.o·• < ::co.99. 

rz~ergy 3~""1dwidth i I I iI in r•roont I . 
D? ! I 

i infinity I bfinity0\ Maximum j 

I
\ Decision Depth I 

I I II 
c I I I 

1375· < c < 400.1350. < c < J75.jJ25. <::; < 350.;
~;Tir.imum 436.2 


Channel Cost 

I I I 

Note that the maximum degradation suffered increases as channel 

length increases, while both minimum bandwidth and channel cost decrease 

with increasing channel length. Thus, venture into the study of channels 

with length longer than four signalling intervals is strongly recommended, 

since this may result in the discovery of lower cost channels. 

Suggestions for Further Work 

Extensions to this work are numerous. This work assumes the 

inputs to the partial response signalling system to be impulses of zero 

duration. Finite duration pulses as inputs are more realistic. In addition, 

9.2 
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this study assumes the transmitting filter to be an ideal low-pass filter 

which is not physically realizable. Non-minimum Nyquist filters like the 

raised-cosine filter should be considered. 

The thesis only considers the binary signalling case. Using an 

m-ary inputs will decrease the required bandwidth by a factor of log2m, 

although at the expense of lowering the signal to noise ratio for detection 

for a given average transmitted power. Investigation into the changes and 

relationships among complexity, degradation and bandwidth requirements for 

m-ary inputs may yield fruitful results. Some work has been done by the 

author although the results are not reported here. 

There are two interesting theoretical problems embedded in this 

study which we do not directly tackle. One is the finding of the regions 

where the minimum 99% energy bandwidth lie, the other involves the joint 

minimization of both the 99% energy bandwidth and degradation. Both tasks 

require a non-linear variational calculus approach. Theoretical solutions 

compared with our simulations may result in deeper understanding. 

Due to the large amount of computations required for running the 

"double" dynamic program, only channels with length up to four are 

extensively investigated. In reality, channel lengths of ten to twenty 

may need to be considered, for example, in inter~erence due to multipath 

echoes. In addition, channels with frequency distortion and non-linearity 

should be taken into account. These must all await a more sophisticated 

computational approach. 



A.l 

A.2 

APPENDIX A 

DERIVATION OF THE INPUT AND OUTPUT VARIANCE OF A FILTER 

Variance of M-ary Input 

For polar impulses of heights ±a/2, ±3a/2, ...±(m- l)a/2 and 

assuming all different levels are equally likely, the variance is 

2 2 2(2/m) { (a/2) + (3a/2) +... + ((m- l)a/2) } - mx' 

where mx is the mean value of the input. 

As the input is polar, mx = 0; consequently, 

This derivation does not actually depend on the polar assumption, but 

the zero mean value result does. 

Output Variance of a Time-Invariant Filter 

The input sequence x(n) is a wide-sense stationary discrete-time 

random process with autocorrelation cr;c(m); that is, we assume the input 

2variables to be i.i.d with variance a . 
X 

Assume that the mean input value is zero so that the mean output 

is zeroalso. Let the unit-sample response of the time invariant filter be 

h(n), then the output sequence is 
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00 00 

y(n) = I h(n- k)x(k) = I h(k)x(n- k).

k=-oo k=-oo 


The autocorrelation function of the output process is [24] 

~yy(n,n + m) = E[y(n)y(n + m)] 

00 00 

= E[ I I h(k)h(r)x(n - k)x(n + m- r)].
k=-oo r=-oo 

00 00 

= L h(k) I h(r)E[x(n - k)x(n + m - r)].
k=-oo r=-oo 

As x(n) is stationary, E[x(n - k)x(n + m - r)] depends only on the time 

different m + k - r. Hence, 

00 00 

~YY(n,n + m) = L h(k) I h(r) ~ (m + k- r) = ¢ (m).
k=-oo r=-oo XX YY 

This means that the output autocorrelation sequence depends only upon 

the time difference m also. 

Substituting q = r - k, the above equation becomes 

00 00 

I ~ (m - q) I h(k)h(q + k)
£=-oo XX k=-oo 

00 

= L ~xx(m- q)R(q).
£=-oo 

where R(q) = 
00 

I h(k)h(q + k).
k=-oo 

For q = 0, R(O) = I h2(k) = energy of the linear time-
k=-oo 

invariant filter. 
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Substituting 

2= crxo(m) , we qet 

00 

I o(m - q)R(q) 
£=-oo 

2 = ox R(m). 

Setting m = 0 leads to 

2 
as ~YY(O) = cry = output sequence. 

This derivation depends critically on the assumption that the 

inputs are i.i.d. variables with variance a;. 



APPENDIX B 

DERIVATION OF THE ENERGY DENSITY AND THE TOTAL ENERGY OF PRS SYSTEMS 

B. 1 The Energy Density of PRS Systems 

For K = 3, F(D) = 1 + f1D + f 2D2 

The energy density of the above filter is 
2

jF(D)!D=ejw 

= (1 + f ejw + f ej2w) (1 + f e-jw + f e-j 2w)
1 2 1 2 

. "2 . 2 
= 1 + f e-Jw + f e-J w + f eJw + f 

1 2 1 1 

+ f f e-jw + f ej 2w + f f ejw + f 2 
1 2 2 1 2 2 

= 1 + fl2 + f22 + fl(ejw + e-jw) 

+ f2(ej2w + e-j2w) + flf2(ejw + e-jw) 

e- j S + ej 6 = 2 cos s 

It is straightforward to extend the above derivation to the 

general case for K > 3. 
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Thus 

\H(w) 1 
2 = 	 ( 1 + f 

1ejw + f 
2ej2w +...... + f Lejlw) . 

( 1 + f e-jw + f e-j 2w + + f e-jlw) 1 2' ..... L 

-jlw1 + f e-jw + = 	 ..... fl e +
1 

f 2 + f ejlw + f f ej(L-l)w + f f e-j(k-L)w+ flfl lejw + 
L L L1 Lk 	 ­

= l+f,2+ 	........................ +fl2 


+ f ( jw 	 -jw)e + e 	 +....1 

+ f f (ej(L-l)w + e-j(L-l)w)
1 2 

+ ............. . 


+ ......•....•.. 
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8.2 	 The Energy of The Impulse Response of a PRS System 

In the time domain, the energy of a sequence [24]: 

00 

x(n) = I x(k)o(n - k) 
k=-oo 

is 

for real x(k). 


For the impulse response 


F(D) 

the sequence becomes 


x(n) = o(t) + f 1o(t- T) + ..... 


for delay units of T sec. The energy for the impulse response is thus 

I
L 

f; 
2 

. 
i=O 

In the frequency domain, the energy of F(D) for K = 3 can be 

obtained by substituting a= t in eq. (138), i.e., 
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2f12 2Energy = 1 + fl + f2 + sin TrTr 

2f/2 2f2 . 
+ sinTr + - s1n 2TrTr Tr 

1 + f 2 + f 2 = 1 2 

as sin k1r = 0 for k = integer. 

Generalizing the above derivation from B.l, for any K > 3, 

we have 

1Energy of F(D) = 


2 2 
= 1 + fl +...... fl 

= I
L 

f.2 
i =0 1 

as all terms involving (ejkw + e-jkw) go to zero after integration of 

jH(w)J 2 from -Tr to Tr in the frequency domain. Refer to B.l for the 
2expression of JH(w)j . 
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