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Abstract 

Solitons and soliton systems have introduced many interests in the applications of 

signal processing and communication systems due to their special properties. To 

facilitate the various applications, a digital soliton system is designed to overcome 

the inherent drawbacks of traditional analog soliton systems in this thesis. Wave 

digital theory is employed to design a digital model of the nonlinear Toda lattice 

circuit . The designed model is implemented in Simulink, and numerical results of 

the simulation verifies the important properties of the digital model and show it 

to be a good digital soliton system simulator. 

Moreover, an example of a soliton communication system is provided to demon­

strate the digital soliton system simulator can work as well in soliton communica­

tion systems, avoiding the inherent problems of analog implementations. 

In addition, the digital Toda lattice circuit modelled in Simulink can be cus­

tomized to run in DSP and FPGA. Such hardware co-processing will highly im­

prove the speed of the simulation processes. 
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Chapter 1 

Introduction 

1.1 Context 

Solitons are a special class of signals, which propagate with a constant shape and 

velocity in a corresponding nonlinear dispersive system. From a mathematical 

standpoint, solitons are stable solutions to a class of nonlinear wave equations 

which can represent the corresponding nonlinear systems [1). 

Since their discovery by J. Scott Russel in 1834 [1), there has been great interest 

in the study of solitons and the systems exhibiting soliton solutions. A variety of 

solitons exist in nature, such as in shallow water, in gas plasmas, in nonlinear 

transmission lines and in nonlinear optics [1, 6). Most soliton systems share the 

following special properties: (i) an input pulse dissolves into many solitons, each 

travels at its own velocity, (ii) a soliton of higher amplitude travels faster than one 

of lower amplitude, (iii) solitons can pass through one another without changing 

their shapes and velocities, (iv) during overlap, their joint amplitude decreases 

[1). These unique properties facilitate the application of solitons in diverse areas, 

especially in signal processing and communication systems. Traditional signal 
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processing and communication systems are based on linear time-invariant systems. 

Such systems are attractive for their tractable mathematical analysis by linear 

techniques and are conveniently processed by Fourier methods. The application 

of soliton nonlinear systems to signal processing and communications requires an 

extension of classical processing techniques. The special properties of solitons give 

them unique qualities in most of applications. 

Electrical and optical solitons are of practical interest in many applications 

[6, 7, 10, 11]. Optical solitons have been observed and studied extensively in opti­

cal communications. In optical communications, loss and dispersion along optical 

fibres are the most important effects which limit transmission reliability. Fibres 

have inherent dispersion, and solitons are stable under the balance between nonlin­

earity and dispersion. Therefore, optical solitons can propagate in nonlinear fibres 

without suffering distortion [11]. Much research has focused on the application 

of solitons in optical communications [10, 11, 18]. In soliton-based optical com­

munications, solitons are used to carry information to achieve the transmission of 

high-speed digital signals over large distances. 

Electrical solitons have been observed in nonlinear transmission lines and non­

linear Toda lattice circuits [1, 6, 7]. In signal processing and communication sys­

tems with linear channels, electrical solitons are attractive since the Toda lattice 

circuit is tractable for realization and manipulation [2]. Some research has been 

done in soliton communication systems by employing solitons as carrier signals for 

modulation or multiplexing schemes [2, 3, 4, 5, 8, 9, 19, 20]. 

1.2 Motivation 

A variety of research on applying solitons in signal processing and communication 

systems has excited much attention. In the application of soliton signals, the corre­

2 
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Figure 1.1: General soliton communication system 

sponding soliton-supporting systems are employed to generate or process solitons. 

For example, in electrical communication systems, solitons are typically used as 

information carrier waveforms in modulation schemes [8, 9). The overall process 

is illustrated schematically in Figure 1.1. There are two Toda lattice circuits are 

utilized. The first one generates sequences of soliton signals and modulates the am­

plitudes [8] or phases [9] of solitons with the source information at the transmitter. 

The second one demodulates the signals at the receiver. 

For the general application of solitons, the corresponding systems exhibiting 

solitons must be realized. Traditional solitons and soliton-supporting systems are 

physical, and so analog. Therefore, all work on solitons and soliton-supporting 

systems are realized in analog environments and thus sensitive to physical effects 

such as temperature variations, mechanical vibrations and component tolerances. 

Digital systems are more robust, offering greater tolerance to random distur­

3 
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Figure 1.3: Equivalent digital realization of analog Toda lattice circuit 

bances or variations. Moreover, when a digital model is designed to realize a soliton 

system, the digital model can be implemented in high-performance digital signal 

processors, which improves the operation speed of signal processing. The soliton­

supporting Toda LC lattice circuit is illustrated in Figure 1.2. An ideal Toda LC 

lattice is composed of an infinite number of nodes. Every node consists of a series 

linear inductor and a shunt nonlinear capacitor. Such infinite structure is not realiz­

able in practice and a finite structure can be adopted with an equivalent impedance 

to terminate the lattice [7]. Converting an analog soliton-supporting system to a 

digital version requires sampling and analog to digital conversion (ADC) as well 

as analog to digital conversion (ADC), as shown in Figure 1.3. However, since 

the analog systems that exhibit solitons are nonlinear, the realization of a digital 

soliton system model is not straightforward. 

4 
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1.3 Research Direction 

In this thesis, a digital system is presented to generate and process digitized soliton 

signals. Electrical solitons and Toda lattice circuits are emphasized since digital 

circuit design methods can be applied to approach a digital model that has the 

similar functions to the Toda lattice circuit. The Toda LC lattice is a nonlinear 

ladder-type circuit [7] equivalent to the exponential lattice which was invented 

by Toda [6], and possesses electrical soliton solutions. Such electrical circuits are 

tractable and can be exploited as blocks in signal processing and communication 

systems. 

The goal of this work is to design a digital circuit structure to realize a finite 

length Toda lattice circuit. The general digital realization of linear circuits can be 

approached by direct transformations of the impulse response in the time domain or 

the frequency response in the frequency domain. However, the Toda lattice circuit 

is nonlinear, and there is no impulse response or transfer function to describe the 

analog Toda lattice circuit. Therefore, transformations for linear systems are not 

directly available to this nonlinear case. 

Wave digital filter (WDF) theory is considered to design a digital model of 

the Toda lattice in this thesis. Wave digital filter theory is a digital filter design 

technique based on the topological structure of the reference analog circuit, not 

the transfer function [27]. Moreover, WDF theory is not limited to application of 

filters only. In general, such principles can be applied to circuit realizations, and 

is also called wave digital circuit (WDC) theory. 

The design methodology of WDC is approached by block-based modelling. 

Therefore after the digital model is designed by WDC theory, a block-based signal 

flow diagram can be achieved. Such a model of the digital soliton system simulator 

can be built by various tools. In this thesis, Simulink [57], a block-diagram-based 

5 
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tool which runs within Matlab is utilized. Simulink is a software package used 

widely in academia and industry to model and simulate dynamic systems. The 

implementation of the digital model in Simulink can be achieved with high-level 

system language, which facilitates the implementation procedure. Furthermore, 

Simulink models can be customized to generate the C code by the Target Lan­

guage Compiler (TLC), which can run on digital signal processors (DSPs) for 

faster simulation processes. Using additional tools [52, 53], a digital model built in 

Simulink can be translated to a Hardware Description Language (HDL), which is 

a structural specification in order to generate a hardware implementation in field­

programmable gate arrays (FPGAs). Consequently, the speed of the simulation 

processes is highly improved in such real-time systems. 

The process of hardware implementation of the digital Simulink models is 

sketched in Figure 1.4. The digital model designed in Simulink can be imple­

mented in DSP or FPGA by specific tools to improve the simulation speed, and 

the results can be transferred back to display. Such co-processing technique has 

also been applied in many fields for computing intensive tasks. One of the most 

popular applications is video game consoles, such as PlayStation, XBox to model 

physics-based motion [22, 23]. In academic field, the real-time simulations of a 

variety of systems are approached by the co-processing technique [54, 55]. 

1.4 Thesis Structure 

Chapter 2 reviews the work that has been done in the area of the applications 

of solitons and soliton systems in signal processing and communications. Addi­

tionally, a survey on the general methods of the digital implementation of analog 

circuits is addressed, focusing on wave digital filters. 

Chapter 3 describes the system design of the digital soliton system simulator. 

7 
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The design procedure is investigated and the signal flow diagram of the model is 

presented. The selection of specific parameters is discussed in Chapter 4. Simula­

tion results are given to verify that the performance of the digital model is close 

to the analog Toda lattice circuit. An example of a soliton communication sys­

tem is proposed to demonstrate that the digital Toda lattice model can be used 

to substitute for an analog Toda lattice circuit in a digital soliton communication 

system. 

Finally, this thesis concludes in Chapter 5 with a summary of the work and 

directions for future work. 

8 




Chapter 2 

Background 

This chapter reviews the components of digital soliton systems that will be drawn 

upon throughout the thesis. Basic ideas and concepts of general communication 

systems are introduced. Then the evolution of soliton theory and its applications to 

communication systems is reviewed, with emphasis on electronic solitons. Finally, 

a survey on the general methods of the digital implementation of analog circuits 

is addressed, with attention on the wave digital filters for the aim of designing a 

digital model of a Toda lattice. 

2.1 Communication Systems 

2.1.1 General Communication System Model 

In this section, general communication systems are briefly described, and modula­

tion and multiplexing techniques are introduced. In the following chapters, these 

techniques will be extended to soliton-supporting systems. 

Figure 2.1 presents a schematic of a general communication system [41, 40]. 

The design of the transmitter and receiver is a fundamental problem in communi­
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Figure 2.1: Generalized communication system 

cation system specification. Two primary options exist for communication system 

design: digital or analog. For analog communication systems, data are transmit­

ted directly by varying the amplitude, phase or frequency of a carrier in regards to 

the message. The design of analog communication systems, although conceptually 

simple, is difficult to build due to the sensitivity of such systems to the components 

used [39]. Digital communication systems overcome many of the difficulties at the 

expense of a more complex implementation. The systematic diagram of a digital 

system is shown in Figure 2.2 [39]. The source encoder performs a mapping from 

a data source to bits, and the channel encoder maps from bits to codewords to 

achieve an economical and reliable transmission of bits over a channel [43]. The 

digital modulator transfers a digital bit stream over an analog channel by varying 

some parameters of a carrier signal in accordance with the codewords. This proce­

dure will be introduced using soliton-supporting system in Sec. 2.3. The receiver 

processes the received signal in reverse order to the transmitter, thereby recon­

structing the original source message signal [39, 42]. In this thesis, only digital 

communication systems are considered. 

10 
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2.1.2 Modulation Schemes 

In this subsection some background knowledge of digital modulation techniques 

are introduced, which is the starting point of the application of solitons to commu­

nication systems. Whether analog or digital communication system, the modula­

tion/demodulation part is indispensable. The function of modulation is to repre­

sent the data in a continuous waveform well suited to the channel characteristics. 

In this thesis, low pass baseband channels are considered. 

2.1.2.1 Modulation Methods 

There are two large families of modulation from the standpoint of carriers: continuous­

wave modulation and pulse modulation. Continuous-wave modulation includes two 

basic families: amplitude modulation and angle modulation. In amplitude mod­

ulation (AM), the amplitude of the carrier wave is varied in accordance with the 

message signal continuously. Angle modulation has two forms: frequency modu­

lation(FM) and phase modulation(PM). In FM, the frequency of carrier is varied 

with the message signal and similarly in PM, the phase is varied continuously 

[39, 42]. 

Pulse modulation modulates a pulse train instead of continuous-wave signals to 

carry the message. It includes pulse amplitude modulation (PAM), pulse duration 

modulation (PDM), pulse position modulation (PPM) and pulse code modula­

tion (PCM) and any others. Pulse modulation can be either analog modulation 

or digital modulation, dependent on the message is analog signals or digital bits. 

For example, digital amplitude modulation is also called amplitude-shift keying 

(ASK). In digital modulation, an analog carrier signal is modulated by a digi­

tal bit stream. The most commonly used digital modulation methods include 

on-off keying (OOK),amplitude-shift keying(ASK), phase-shift keying (PSK) and 

12 
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frequency-shift keying (FSK) [39, 42]. 

2.1.2.2 Signal Space Representations 

Consider a collection of M signals which lie in a vector space. According to the 

Gram-Schmidt procedure, the M signals can be represented as a linear combination 

of N orthonormal basis functions, where N :=:;; M. If an N-dimensional Euclidean 

space is formed with axes being the N orthonormal basis functions, then each of the 

M signals can be represented geometrically in this space as a linear combination 

of the basis. This N-dimensional Euclidean space is called a signal space. Note 

that in the signal space, the squared Euclidean distance between any signal and 

the origin is the energy of that signal. 

Suppose that {si(t), i = 1, 2, · · · M} is a set of real-valued signals, and rPi(t), j = 

1, 2, · · · N is a set of real-valued orthonormal basis functions. All si(t) and ¢j(t) 

are time limited to Dt = [0, T8 ]. The signals can be represented as 

si(t) = L
N 

siirPi(t) i = 1, 2, · · · M (2.1) 
j=l 

where the coefficients sij are the inner product of si(t) and rPi(t). 

(2.2) 


Therefore each si(t) can be determined and represented by the vector Si, 

S· = [s·1 s·2 .. ·s·N] i = 1 2 .. ·M (2.3)
't 'l, ' 't ' 't ' ' 

Thus, for a given set of basis functions rPi(t), the signal si(t) can be specified by a 

vector in an N-dimensional Euclidian space. 
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2.1.2.3 Digital Modulation Methods 

As indicated above, a digital modulator maps a sequence of binary digits into a set 

of corresponding signal waveforms. Here digital pulse amplitude modulation(PAM) 

is considered as an example to illustrate the representation of digitally modulated 

signals. 

In baseband digital PAM, the signal waveforms are represented as 

si(t) = Iig(t) i = 1, 2, · · · M , (2.4) 

where g(t) is a real-valued signal pulse whose shape influences the spectrum of 

the transmitted signal, which will be observed later. Assume that the symbol is 

time-limited to t E [0, T8 ), and there are a total of M = 2k possible messages to 

be modulated. Let {hi = 1, 2, · · · M} denote the set of M possible amplitudes 

corresponding to M possible k-bit blocks of symbols. In every T8 interval a k-bit 

block symbol is transmitted, and so the symbol rate is denoted as Rs = 1/Ts 

symbol/second. So the bit rate is R = kRs bits/second. 

Typically, the signal amplitude Ii takes the discrete values as [42]: 

J. = (2i - 1 - M) d i = 1 2 .. · M (2.5)
~ ' ' ' 

where 2d is the distance between adjacent signal amplitudes. Now the signal space 

concepts are applied to explain the PAM modulated signals. As shown in (2.4) 

and (2.5), theM-PAM signals are one-dimensional (N = 1). From (2.1), 

(2.6) 

where 
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10 

s1 s2 

Figure 2.3: Constellation of 2-PAM 

rjJ(t) ~ {fg(t) (2.7) 

(2.8) 


and E9 is the energy of g(t). In special case of M = 2 signals, s1 = -~, s2 = 

~-
A constellation diagram is a representation of a signal modulated by a digital 

modulation scheme. It is defined as the collection of all signal vectors. Figure 

2.3 is the constellation of 2-PAM, the Euclidean distance between these two signal 

points is 

(2.9) 


where the operator lvl = v< v, v >. In 2-PAM, this is also the minimum Euclidean 

distance due to only two points in the constellation. This distance is useful to an­

alyze the performance of different modulation methods. Other digital modulation 

techniques have a similar analysis to PAM. 
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2.1.3 Signal Design for Band-limited Channels 

In the previous subsection, the modulation techniques are discussed. In this sub­

section, the frequency characteristics of digitally modulated signals is discussed 

and then the signal design for a band-limited channel is considered. 

2.1.3.1 Spectral Characteristics of Digitally Modulated Signal 

Based on (2.4), a general form for PAM is 

+oo 

s(t) = L rg(t- nTs) (2.10) 
n=-oo 

where { r} represents the sequence of symbols that results from mapping k-bit 

blocks into corresponding signal points selected from the appropriate signal space 

diagram. The sequence of information symbols {In} is assumed to be wide-sense 

stationary with mean J.Li here. Therefore s(t) is a stochastic process, which is a 

cyclostationary process, i.e. it has periodic statistics. 

The power spectral density (PSD) of a random signal describes how the power 

is distributed with frequency. The PSD is the Fourier transform of the autocorrela­

tion function R(T) of a signal if the signal can be treated as a wide-sense stationary 

random process. The PSD of s(t) is 

ipss(f) = ; IG(f) l2ipii(f) (2.11) 
s 

where G(f) is the Fourier transform of g(t), and q,ii(f) denotes the PSD of the 

information sequence [42]. From (2.11), the spectral characteristics of s(t) depends 

on the design of the pulse shape g(t) and the correlation characteristics of the infor­

mation sequence. If the information symbols are equally likely and symmetrically 

positioned in the constellation, i.e. the mean P,i = 0, 
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Figure 2.4: The communication channel model 

2 

<PssU) = i IGUW (2.12) 
s 

where O"I is the variance of an information symbol. Thus the PSD of the signal to 

be transmitted over a channel is only controlled by the design of g(t). 

2.1.3.2 Pulse Shaping 

The communication channel considered in this work is band-limited to a specified 

bandwidth of W Hz. Such a channel can be modelled as Figure 2.4, and by a 

linear time-invariant filter with an equivalent low-pass frequency response C(f) 

which is zero for If I > W. Additionally, the channel is assumed to be fiat in the 

transmission bandwidth. 

The design of the pulse g(t) for a bandlimited channel is termed pulse shaping. 

The following requirements should be considered to design the pulse shape of g(t). 

Pulse g(t) should have most of the energy in the If! < W to avoid the intersymbol 

interference (lSI) among adjacent received symbols. The lSI is the distortion of 

a signal caused by the temporal spreading of the transmitted signals over the 

channel. 

Nyquist Criterion states a necessary and sufficient condition for zero lSI [42], 

namely 
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Figure 2.5: A sine-shaped pulse in time domain and its magnitude spectrum 

(2.13)g(t = kT,) = { ~ 
The Fourier transform G(f) satisfies 

00 

(2.14) 

m=-oo 

Considering these two requirements and the Nyquist criterion, an example of a 

pulse is shown in Figure 2.5. At every sample time T8 , the other symbols are zeros, 
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only the current symbol has non-zero value. So if this signal does not experience 

temporal spreading over channel, there is no lSI. Otherwise the frequency magni­

tude spectrum indicates the compact spectral of this pulse. So it also satisfies the 

first requirement. If the bandwidth of the channel is W, indicated by Figure 2.5, 

when 1/2Ts :::; W is satisfied, the Nyquist criterion is satisfied [42], therefore the 

symbol rate R = 1/Ts ::=:; 2W. From Figure 2.5, the tails of this sine-shaped g(t) 

decay as 1/t, so a small mistiming error in sampling at the receiver results in series 

of lSI components. In the next chapter, the properties of solitons in terms of the 

signal design for band-limited channels will be discussed. In this thesis, solitons 

will be utilized as pulse sequences and the performance in a communication system 

will be quantified. 

2.1.4 Multiplexing Techniques 

In this subsection, we introduce multiplexing techniques briefly, which relates to 

another possible application of solitons in communication. 

Multiplexing is a process where multiple message signals are combined into one 

signal for sharing the communication resource. By certain means this multiplexed 

signal can be separated into the signals at demultiplexer. 

The channel can be orthogonally shared in frequency or time domain respec­

tively and jointly. In a multiplexing system, the two basic methods are frequency­

division multiplexing (FDM) and time-division multiplexing (TDM). Furthermore, 

wavelength-division multiplexing (WDM) is another multiplexing technique in 

fibre-optic communications. By FDM technique, different source signals are mul­

tiplexed with different frequency resource allocation. Similarly, a TDM system 

allocates different timeslots to transmit different signals in one channel. WDM 

uses different wavelengths (colors) of laser light to carry different signals. Since 
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V(t) 

time 

Figure 2.6: One soliton signal in the time domain 

wavelength and frequency are inversely proportional, WDM is just another form 

of FDM. In recent years, another technique-Orthogonal Frequency-Division Mul­

tiplexing (OFDM) is popular in wide band digital communication systems, which 

uses a large number of closely-spaced orthogonal sub-carriers [39, 42]. 

Soliton systems have also been proposed for multiplexing of digital data streams 

[3, 19, 20]. In this work, the implementation issues with such systems are consid­

ered and previous work are reviewed in Section 2.3.2. 

2.2 	 Solitons and the Systems Supporting Soli­

tons 

The term soliton is coined to describe a solitary wave [12]. Figure 2.6 presents 

an example soliton signal measured from voltage through the nonlinear capacitor 

in a Toda lattice circuit [6]. Solitons belong to a special class of stable nonlinear 

dispersive wave entities, which can propagate with constant shape and velocity in 

nonlinear dispersive systems. 
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2.2.1 Discovery Of Soliton 

A soliton was first observed by J. Scott Russel in 1834 [1]. In his report to the 

British Association [13], he described the waves of water rolled forward along the 

channel without change of form or decrease of speed when a rapidly moving boat 

stopped suddenly on the Edinburgh-Glasgow canal. Such singular phenomenon 

excited much research interest. In 1895, Korteweg and de Vries [1] provided a 

analytic solution to explain this unusual motion of shallow water waves. This work 

was the foundation of the analytical method of solution for soliton systems. Later, 

in the course of a numerical study of the ergodicity on a weakly nonlinear lattice, 

Fermi, Pasta, and Ulam (FPU) [14] found a recurrence phenomenon: for a variety 

of sinusoidal initial conditions, they observed that the wave recovered its initial 

state after some lapse of time. Zabusky and Kruskal finished the numerical study 

of the Korteweg-de Vries (KdV) equation, which is a continuum approximation to 

the weakly nonlinear lattice studied by FPU [15]. The dramatic balance between 

dispersivity and nonlinearity ensures the stability of soliton, as is discussed in the 

next section. 

2.2.2 Mathematical Explanation of Soliton 

To comprehend the soliton's unique properties, some knowledge of nonlinear dis­

persive equations should be introduced. From a mathematical standpoint, soli­

tons are stable solutions to a class of nonlinear dispersive wave equations which 

can represent the corresponding nonlinear systems [1]. Consider the equation 

f(s(x, t)) = 0. If ss(x- J.Lt) is a solution to this equation, s8 (x- J.Lt) is a soli­

tary wave that can propagate stably in the corresponding system. The system 

is nonlinear if and only if f(C1a(x, t) + C2b(x, t)) -::/= Cd(a(x, t)) + Cd(b(x, t)). 

Moreover, if the phase velocity of the wave s8 (x - J.Li) depends on its frequency, 
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Figure 2. 7: Conditions under which solitary wave solutions exist 

this system is considered to have dispersive effect [21]. If f represents a linear 

dispersionless system, a solitary wave solution can be obtained. Also a nonlinear 

dispersive wave equation f can exhibit a solitary wave solution [12]. This situation 

is illustrated in Figure 2.7. The term Soliton is used to indicate only the solitary 

wave solution to nonlinear dispersive equations. 

2.2.3 Systems that Exhibit Solitons 

In the evolution of soliton theory, the inverse scattering transform plays significant 

role [1, 2, 6]. Given an initial condition of a nonlinear system, the solution can 

be explicitly determined for all time by inverse scattering theory [2]. Solitons are 

eigenfunction solutions with discrete eigenvalues. There has been a large class of 

nonlinear wave equations that have similar solutions with KdV. The solutions to 

these equations can be obtained by a nonlinear superposition of a variety of soliton 

solutions. This class of equations are called systems exhibiting solitons [12]. Here 

a few of this rich class that has potential applications are briefly presented. 
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2.2.3.1 Korteweg-deVries (KdV) Equation 

KdV solitons (2.15) were first derived by Korteweg and deVries to explain the 

lossless propagation of shallow water waves [1J, 

(2.15) 

where ¢ = ¢(x, t) is a real function of two real variables x and t, and a is a 

real-valued constant parameter. The operator Pq in this thesis denotes partial 

differential ~~. Here the nonlinearity and dispersive effect of KdV equation is 

analyzed as an example to comprehend the soliton systems. 

According to the mathematical background introduced previously, 

(2.16) 

is linear and dispersionless, and 

(2.17) 

is nonlinear and dispersionless due to the nonlinear term a¢¢x· 

Due to the dispersive term ¢xxx, 

(2.18) 

is linear and dispersive. The solitary wave solution of KdV equation is 

3 
¢(x, t) = : sech2 

( v; (x- ut)) (2.19) 

where u is an arbitrary constant, ¢(x, t) is the eigenfunction of equation(2.15) with 

the eigenvalue u. 
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The KdV equation is very useful in many studies of the balance effect between a 

simple nonlinearity and a simple dispersive effect. Besides the classical water wave 

problem, it can be used in many applications [1, 12], namely ion-acoustic waves in 

plasma, waves in a rotating atmosphere, the anharmonic lattice, thermally excited 

phonon packets in low-temperature nonlinear crystals and pressure waves in a 

liquid-gas bubble mixture. 

2.2.3.2 the Sine-Gordon(SG) Equation 

The sine-Gordon equation [1, 2] is 

¢xx- c/Ju =sin¢ , 

where¢= ¢(x, t) is a real function of x and t. The corresponding soliton solution 

is 

¢(x, t) = 4 arctan ( exp ± ( ; -_u~ ))21

where u is arbitrary constant. The sine-Gordon equation has been used to describe 

a variety of physical phenomena [1, 2]: the propagation of a crystal dislocation, a 

unitary theory for elementary particles and the propagation of magnetic flux along 

a Josephson strip line. The sine-Gordon soliton is also called 'kink' soliton since it 

corresponds to a rotation in ¢ by 2n as x goes from -oo to +oo. 

2.2.3.3 the Nonlinear Schrodinger (NLS) Equation 

The nonlinear Schrodinger(NLS) equation is another soliton-supporting system, 

(2.20) 
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where k is a real-valued constant parameter, i 2 = -1, ¢ = ¢(x, t) is a complex 

function of x and t. The Nonlinear Schrodinger is even more generally useful than 

the KdV equation. It has been used as a model to describe the propagation of 

lightwave pulses in nonlinear optics, the propagation of a heat pulse in a solid and 

Langmuir waves in plasmas and many other applications [1, 2]. It admits envelope 

solitary wave solutions of the form 

<P(x, t) ~ ¢0sech ( ~¢0 (x- u,t)) · exp (i (';') (x- u,t)) (2.21) 

where ¢0 , Ue, Uc are arbitrary real constants. Here Ue and Uc are the envelope and 

carrier velocity respectively. 

2.2.3.4 Toda Lattice Equation 

The Toda lattice is one of the simplest nonlinear system models supporting soli­

ton solutions [2]. Toda first derived an equation to describe motion on a one­

dimensional lattice with the nearest neighbor interaction[6, 16] and found the ex­

istence of a 'lattice soliton'. Then Hirota and Suzuki [7] constructed a nonlinear 

network which is an equivalent system to a one-dimensional nonlinear lattice based 

on Toda's results. This network is actually a lumped nonlinear transmission line, 

which consists of a ladder-type LC circuit,as shown in Figure 1.2. 

At every node of the network, the inductor is linear and the capacitor is voltage­

dependent with the capacitance is represented by 

C(Vn) = CoVo log (1 + Vn) (2.22)
Vn Vo 

where C0 and V0 are constant capacitance and voltage respectively and Vn is the 

voltage difference across the nonlinear capacitor at the nth node. 

25 




M.A.Sc: Qiuyuan Huang McMaster University- ECE 

The voltage propagation in the network can be represented by 

LC !!._ l Vn (t)) = Vn+l (t) Vn-1 (t) _ 2Vn (t)( 1 (2.23)0 dt2 og + Vo Vo + Vo Vo 

where L is a constant inductance. Actually the Toda lattice equation is a discrete 

version of KdV equation by discretizing the spatial axis x to the number of nodes n. 

Then the behavior of the Toda lattice is easily understood by KdV approximation. 

A solitary wave solution of (2.23) was given in [7] which corresponds to the one 

found by Toda: 

t . 
T= ~,f3=smhP , (2.24) 

where f3 is the corresponding eigenvalue, which is an arbitrary real constant, P is 

the velocity with which soliton propagates in the lattice, 7]0 is the initial phase shift 

of the soliton. Such electrical solitons have been of significant use in applications 

to communication and signal processing because of the tractability of Toda lattice 

circuit [2, 3, 4, 8, 9, 19, 20]. 

2.3 Soliton Communication Systems 

2.3.1 Properties 

The soliton-supporting systems discussed in the previous section have the follow­

ing properties: [6, 7, 1] 

1. A pulse signal input at any given position dissolves into many solitons, each of 

which travels at its own velocity. 

2. A soliton can travel with invariant velocity and stable shape and a soliton of 

higher amplitude travels faster than one of lower amplitude in the corresponding 
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Figure 2.8: The propagation of pulse in the Toda lattice (Amplitude=! V, Dura­

tion=2 s) 

supporting systems. 

3. And solitons can pass through one another without changing their shapes and 

velocities. 

4. During the overlapping, the joint amplitude of the signal decreases, i.e. the 

energy of the overlapped solitons decreases. 

All the simulation results shown in the figures in this section are obtained by 
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using ordinary differential equation (ODE) function to realize the Toda lattice 

equation in Matlab. Figure 2.8, Figure 2.9 and Figure 2.10 show the first property 

that pulse will dissolve into solitons when propagating in Toda lattice. Figure 

2.11 and Figure 2.12 illustrate the second property that pulse shape is preserved 

and velocity depends on amplitude. The third and the forth properties are shown 

in Figure 2.13, which clarifies the situation of two different solitons simultaneous 

propagation in Toda lattice. The solitons maintain their shapes and velocities in 

propagation even though passing through each other and when the solitons overlap 

in the Toda lattice, the amplitude of the resulting signal will be less than the higher 

amplitude of these two solitons. 

These special properties have been applied to signal processing and communi­

cation systems [10, 11, 18, 9, 8, 3, 4, 5]. Solitons can be used as information carrier 

signals due to its stable propagation and independence. In the next subsection, we 

will review the work that have been done in this field. 

2.3.2 Realization of Soliton Communication Systems 

Optical and electrical solitons share the special properties mentioned above, and 

have extensive applications in communication systems. In 1973, Hasegawa and 

Tappert theoretically demonstrated the existence of optical soliton in lossless fibers 

[11]. Since then, much research has focused on the realization of solitons in optical 

communications [10, 11, 18]. In optical communication, loss and dispersion along 

the optical fibres are the most important effects which limit transmission. Fibres 

have inherent dispersion, and solitons are stable under the balance between nonlin­

earity and dispersion. Thus, solitons can be transmitted in nonlinear fibres without 

suffering distortion [11]. Conventional communications using optical fibers require 

repeaters to regenerate optical pulses which have been distorted by fiber dispersion 
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and loss. The distances between repeaters are chosen to be as large as possible. In 

soliton-based optical communications, the repeaters only need to compensate the 

loss in fibre because the dispersive effect has been balanced by the nonlinearity. 

Therefore in soliton's optical communication, the repeater distance can be large 

and the transmission distance can be long. Some work has shown [10, 11, 18] that 

solitons can be used to achieve transmission of high-speed digital signals by 20Gb/s 

over large distances (150km) in optical communication. A comprehensive review 

of solitons in optical communication can be found in [10, 11, 18]. 

In traditional communication systems, electrical solitons are more attractive 

since the Toda lattice circuit is tractable as tuned transmitters and receivers [2). 

Usually solitons are used as information carrier waveforms in modulation by mod­

ulating their amplitudes (AM) [8) or phases (PM) [9). According to the Toda 

soliton equation (2.24), the amplitude and the phase of the soliton signal both 

depend on the parameter j3. Therefore the parameter modulation of soliton car­

riers can achieve AM and PM simultaneously. On the other hand, giving rise to 

a scale modulation rather than a pure amplitude modulation was introduced in 

A. Singer's PhD dissertation [2). Similarly, an analog of PM or pulse-position 

modulation (PPM) could be achieved by modulating the relative position of each 

soliton in a given period, which was demonstrated in [2). As a simple extension 

of soliton modulation, multi-user systems can apply different solitons as carrier 

signals of different users for multiplexing [2, 3, 19, 20). Different solitons with dif­

ferent j3 can be nonlinearly superimposed in the corresponding nonlinear system. 

Such composite soliton can be transmitted as multiplexed signal, which provide 

increased energy efficiency. This technique is particularly attractive for a broad 

range communication contexts over power-limited channels including wireless and 

satellite communication. Recent work on Soliton Amplitude Division Multiplexing 

(SADM) schemes has been done in [19, 20). The spectral properties and the energy 
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x(t) h(t) y(t) = x(t)*h(t) 
LTI system 

X(S) H(S) Y(S)=X(S)H(S) 

Figure 2.14: LTI system sketch 

content of the composite soliton was analyzed and these properties in the context 

of multiplexing were discussed in [19, 20]. In these communication systems, the 

Toda lattice circuit is employed as a carrier generator, modulator/demodulator or 

multiplexer/demultiplexer. In [8, 9, 2, 3, 19, 20], it was assumed that an analog 

Toda lattice is available for implementation. 

The Toda lattice circuit is an analog circuit, and therefore it is sensitive to 

physical effects (temperature variations, mechanical vibrations and component tol­

erances). However, digital circuits are more robust, offering greater tolerance to 

random disturbances or variations. So a digital model of a Toda lattice circuit is 

required to implement the same functions as Toda lattice in digital communication 

systems. In the next section, some general background knowledge about digital 

implementation of analog circuit will be introduced. 

2.4 	 Wave Digital Circuits 

2.4.1 	 General Methods to Implement Digital Filters from 

Analog Filters 

Digital implementation of analog filters can be approached in the time domain 

or in the frequency domain. Figure 2.14 presents a sketch of a linear time­

invariant(LTI) system. It illustrates that the impulse response h(t) or transfer 

function H(S) = L{h(t)} can describe the corresponding LTI system completely, 
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Figure 2.15: Transformations from analog to digital LTI filters 

where L{-} is the Laplace operator. Therefore, for analog LTI filters the digital 

realization is usually achieved by direct transformations of the impulse response in 

time domain or the transfer function in complex frequency domain [24, 37]. Figure 

2.15 is a diagrammatic sketch showing the transformations from analog to digital 

LTI filters. 

In time domain, a common transformation is the impulse-invariant transforma­

tion 

(2.25) 


where T8 is the sample time. In complex frequency domain, a common transform 

method is bilinear transformation 

(2.26) 
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IIR FIR 
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Figure 2.16: Simple IIR and FIR signal flow diagram 

The transfer function Hd(z) can often be written in rational form 

Hd(z) = L:o biz-i_ (2.27) 
""Q a ·z-J 
.i....JJ=O J 

where aj, bi E R If aj = 0, j = 1, · · · Q, Hd(z) represents a finite impulse 

response (FIR) filter. Finite here means its response to an impulse ultimately 

settles to zero. If not all aj, j = 1, · · · Q equals zero, this filter is termed an 

infinite impulse response (IIR) type, which has an impulse response function which 

is non-zero over an infinite length of time. Figure 2.16 is a signal flow diagram to 

show a simple example of IIR and FIR filters, where the signal flow diagram is the 

basic description of digital filter circuit. 

However, since the convolution law does not apply for nonlinear systems, there 

is no impulse response or transfer function to describe the nonlinear analog circuit. 

Thus, all the transformations introduced for the linear systems above are not 

directly available to nonlinear case. However, extensions to this linear system case 

will be discussed in the following sections. 
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2.4.2 Introduction to Wave Digital Filters 

Wave digital filter (WDF) theory is a digital filter design technique based on the 

topological structure of a circuit, not the transfer function [27). It was first de­

scribed in 1970 [25) and there has been significant work done on this subject itself 

and its many relationships with other areas, especially in the signal processing 

fields [27, 30, 31, 32, 33, 34). In [27), a detailed review of WDF theory was given 

by Fettweis. This classical paper is a valuable guide to the design of WDFs es­

pecially in the application of signal-processing field. Fettweis [27) treats the basic 

WDF principles and does not take into account of nonlinear cases. In [33), the 

WDF modelling of nonlinear circuits is proposed as an extension of the classic 

WDFs. Profiting from block-based modelling, WDFs also have great applications 

in the physical modelling for digital sound synthesis [34). 

A wave digital filter is a kind of digital filter based on physical modelling prin­

ciples. It is closely related to classical networks [28). As described by V. Belevitch 

in Classical Network Theory [28), an electrical network is a system composed of a 

finite number of interconnected elements such as resistances, capacitances, induc­

tances and generators. A WDF can be regarded as a digital representation of a 

classical network by modelling every element and interconnection. It is a physical 

modelling methodology based on the topology. 

Differential equations are commonly used to describe classical analog filters, 

and the bilinear transformation is known as a complex frequency mapping from 

analog to digital domain based on the integral of differential equation. The bi­

linear transformation is also selected as the frequency variable transform method 

in wave digital principles. On this basis, for the sake of maintaining realizability 

from reference structure to digital realization, according to scattering parameter 

of classical network theory [28), wave quantities are used as signal variables in­
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Figure 2.17: An-port element block 

stead of voltages and currents. These principles will be described in the following 

subsections specifically. 

Note that wave digital principles are not limited to application of filters only. 

In general, such principles can be applied to circuit realizations. 

2.4.3 Definitions 

Before the basic principles are described for wave digital circuit (WDC) theory, 

definitions fundamental to WDCs are present in this section. 

2.4.3.1 N-port Element 

An n-port element is the basic model in classical network theory [28]. From the 

analysis of an-port element, some important parameters can be defined to study 

the WDC theory clearly. 

Figure 2.17 shows an n-port element. Assume that Port 1 is interconnected 

with a resistive voltage source. Here R is termed the port resistance of Port 1, and 
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Z is termed the internal impedance of Port 1. The reflectance of Z relative to R 

is defined as 

Z-R vji-R,- - (2.28)
-Z+R-vji+R 

Here 1 is defined as a scattering parameter of Port 1, which describes the reflectance 

of the internal impedance to the port resistance. For the entire n-port element, 

the reflectance of every internal impedance with respect to every port resistance r 

will be controlled into a scattering matrix. 

2.4.3.2 Wave Quantities 

Wave quantities are the signal variables in WDC theory. In classical electrical 

circuit theory, all the variables such as voltage, current, charge, energy are con­

strained by Kirchhoff laws, so these variables and circuit's topology are termed 

to be in Kirchhoff domain. Wave quantities and the circuit topology realized by 

wave digital principles are called in wave digital (WD) domain. Instead of the 

corresponding variables in analog circuits, voltage,current and power wave quan­

tities are used in wave digital circuits [27]. Just as the names imply, voltage wave 

quantities have the same unit as voltage, and similarly current and power wave 

quantities have the same unit as current and power respectively. 

The voltage wave quantities are defined in detail to show the description of 

wave quantities. For example, in reference to then-port element shown in Figure 

2.17, consider Port 1, the port voltage is v and the port current is i, and R is the 

port resistance. 

In time domain, the incident wave (forward wave) is 

a= v + Ri (2.29) 
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and the reflected wave (backward wave) is 

b = v- Ri (2.30) 

In complex frequency domain, 

A= V +RI (2.31) 

and 

B = V -RI (2.32) 

The description of wave quantities in complex frequency domain could be in 

s-domain for analog circuit and in z-domain for the converted digital circuit. This 

frequency transformation from s to z domain will be addressed in the next sub­

section. 

Using the scattering parameter 1 in (2.28), this relation between a and b can 

be written as 

b = 1a (2.33) 

For clarity, these definitions can be understood by their analogy in transmission 

line theory [29]. In transmission line theory, the voltages and the currents can be 

decomposed as forward-travelling and backward-travelling. Figure 2.18 is a simple 

example to illustrate the two-direction voltages and currents by transmission line. 

An equivalent resistive voltage source representation can be derived for a one­

port generator. This one-port is interconnected with a load resistance. This case 

can be treated as a voltage source E is connected to a transmission line which 

characteristic resistance is Rc, and terminated by a load resistance RL· Here 
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Figure 2.18: Explanation of the incident and reflected signals from a transmission 

line point of view. 

V(t , Z0 ) = RJ(t, Z0 ) , (2.34) 

where Z0 is the coordinate of the load resistance in z-axis and for the forward­

travelling direction is 

(2.35) 


where p, is the parameter of the transmission line. Similarly for the backward­

travelling direction 

v- (t- p2o) = RJ- (t - p,Zo) (2.36) 

So the reflectance from RL to Rc is 
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v-(t- p,Zo) 
(2.37)

V+(t- p,Zo) 

The total voltage is 

(2.38) 

Defining a= 2V+(t- p,Z0 ) and b = 2V-(t- p,Z0 ), applying the above relations 

given, 

a= V(t, Z0 ) + RJ(t, Zo) (2.39) 

and 

b = V(t, Zo)- Rcl(t, Zo) (2.40) 

Comparing (2.39) and (2.40) with (2.29) and (2.30), the equivalence between these 

two pairs of variables is easily recognized. Therefore the incident voltage wave 

quantity a in WDC theory is equivalent to the forward-travelling voltage in trans­

mission line theory and similarly the reflected voltage wave quantity is equivalent 

to the backward-travelling voltage. 

2.4.4 Frequency Transformation 

In order to establish the correspondence between a WDC and its reference fil­

ter, an appropriate frequency transformation is required from the analog reference 

domain to the digital wave domain. The bilinear transform is based on the in­

tegral of a differential equations, as discussed in Section 2.4.2, therefore it is an 

appropriate method to be applied in WDF's frequency transformation. Here the 

procedure of transforming a first-order ordinary differential equation (ODE) to a 

difference equation by bilinear transform is introduced. A higher-order ODE can 
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be represented by several first-order ODEs. Therefore this procedure demonstrates 

how the bilinear transform can be applied for the discretization of general ODEs. 

Consider a continuous-time system represented by a first-order ODE, 

y'(t) + cy(t) = dx(t) (2.41) 

where c, dare constants, y'(t) denotes ~· The transfer function of this system is 

d
Ha(s)=- . (2.42)

s+c 

The sampled signal w(nT8 ) can be represented by 

l
nTs 

w(t = nT8 ) = w'(T)dT + w ((n- 1)Ts) 
(n-l)Ts 

Employ the trapezoidal rule to approximate the integral, 

w(nTs)- W ((n- 1)Ts) = ~s (w' (nTs) + w' ((n- 1)Ts)) (2.43) 

According to (2.41), let t = nT and t = (n- 1)Ts, subtract y'((n- 1)Ts) from8 

y'(nT8 ), and substitute (2.43) to eliminate the derivatives, a difference equation 

can be gotten 

y[n]- y[n- 1] = ~ [-c (y[n] + y[n- 1]) + d (x[n] + x[n- 1])] (2.44) 

The transfer function of the discrete-time system described by (2.44) is 

(2.45) 

Comparing (2.42) with (2.45), if the relation between s and z satisfies 
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2 1- z-1 2 
s = - _ = T tanh(pT8 /2) z = ePTs (2.46)

T8 1+z 1 s 

where pis the actual complex frequency. Notice that Hd(z) in (2.45) and Ha(s) in 

(2.42), differ only by the substitution in (2.46). 

Although all wave digital circuits (WDC) use the bilinear transform as the 

basic principle, there are still particular differences. In some references, another 

choice of frequency variable's transformation is [27, 30, 31, 32, 33] 

1- z-1 

S = = tanh(pT8 /2), z = ePTs (2.47)
1 +z-1 · 

This transformation is also bilinear, and only differs by a scaling factor from (2.46). 

In (2.46), the complex frequency in reference domain s and in WD domain pare 

equivalent in small frequency range, i.e. s ~ p for small values of p whereas this 

equivalence does not hold in (2.47).However (2.47) is still employed in many WDC 

applications, because the implementation of one-port elements is more tractable 

than (2.46), which will be explained in the discussion of realization. In our wave 

digital model, (2.46) is employed as the frequency transform. 

2.4.5 Realizability 

A digital filter can be fully described mathematically by a system of difference 

equations. The mathematical description of a digital filter can equivalently be 

represented by a signal-flow diagram. For all digital filters, not only for WDCs, 

realizability is achieved when the following conditions are satisfied [27]: 

1. The system operates at a constant rate Fs = 1/Ts 

2. The total delay in every loop must be equal to a multiple of Ts 

3. No delay-free directed loops exist in the signal-flow diagram 
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Figure 2.19: Removal of a delay-free directed loop 

The first two conditions are straightforward since any digital system requires 

that every operation can be ordered periodically at a constant rate. When a digital 

filter is designed, these two conditions are easily satisfied. The last condition is the 

most difficult one because in many cases the delay-free directed loops may exist 

in recursive filter structures. Delay-free directed loop (DFDL) is such a feedback 

loop without any delays. Such a loop is not realizable in real operation since that 

it forms an algebraic loop. Figure 2.19(a) is an example of a system with a DFDL. 

This DFDL in a signal-flow diagram is also described by 

u[n] = x[n] + au[n] (2.48) 

From (2.48), the current value of u[n] is dependent on itself, therefore it causes 

algebraic loop. However in this example, the DFDL problem can be solved by the 

modification of the signal-flow structure. Reformulating (2.48) as 

1 
u[n] = 

1 
_ a x[n] a i- 1 

and the signal-flow diagram in Figure 2.19(a) can be modified to a new structure, 

as shown in Figure 2.19(b), where no DFDL exists. However, not every DFDL 
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Figure 2.20: One port element 

problem can be solved by such manipulation. Solving the DFDL problem is a key 

issue in the design of complete WDCs and a new approach is discussed in Chapter 

3. 

2.4.6 Realization of One-port Element 

Having defined the basic principles of WDC, the realization of the simplest linear 

one-port element in WD domain is discussed. 

In a classical ciJ;:cuit, if the Laplace transform is employed for steady-state 

analysis, the impedances of major elements can be represented as Z = RS>... For 

a resistance, A = 0, for a linear inductance, A = 1 and for a linear capacitance, 

A = -1. The port resistance is denoted as Rp. Referring to the wave quantities 

defined in (2.31) and (2.32), 

and 
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Therefore in reference to the definition of the scattering parameter in Section 2.4.3, 

the reflectance of Z to the port resistance, denoted as 'Y can be gotten as 

RS>.- Rp 
'Y = RS>- + Rp 

A useful simplifying feature would be that the scattering parameter of one-port 

element "( is independent of R. Therefore, the appropriate value of Rp should be 

appointed. The two bilinear transforms discussed in Section 2.4.4 are employed 

respectively. 

Using the bilinear transform in (2.46), the scattering parameter "fwD in WD 

domain can be formed as 

2 1-z-1)>.R ( T.i+?T - Rp 
"fWD= >. (2.49) 

R (.1_ 1-z-1) + p
Ts1+z- 1 .L'P 

To have "fwD independent of R, the port resistance should be selected as 

(2.50) 


By the transform of (2.47), "fwD will be 

Rp=R (2.51) 

can keep the scattering parameter independent of R. Comparing (2.51) and (2.50), 

the appointment of the port resistance from the first transform in (2.46) is more 

complicated than the second transform in (2.47). In the following introduction to 

WDC, the second transform in ( 2.47) is employed. 
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Figure 2.21: Major linear one-port elements and their realization in the WD do­

main 

An example of linear inductance is given to illustrate the realization of one­

port element in WDC. For a linear inductance, Z = RS, if the port resistance is 

appointed as Rp = R, (2.49) can be simplified as 

-1 
'/'WD = Z 

where z-1 in z-domain is equivalent to the operation of unit delay in time domain. 

Therefore by appointing an appropriate port resistance, a linear inductance in 

reference domain can be realized by a unit delay element in WD domain. Using a 

similar technique, the realization of one-port components is shown in Figure 2.21 

[27]. 
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2.4.7 Interconnections of Elements 

In order to construct a WDC, the interconnection of individual components must 

be introduced. The basic topological connections are parallel and series. Parallel 

adaptors is introduced in detail, the series adaptors have a similar development 

outlined in [27]. Note that the Kirchhoff laws in reference domain are still satisfied 

in WD domain. 

2.4.7.1 Parallel Adaptors 

Consider N ports which have port resistance Rk, k = 1, ... N respectively are par­

allel connected. The Kirchhoff laws must be satisfied as 

(2.52) 

and 

(2.53) 

Based on WDC principles, the equations of wave quantities can be derived 

from the equations of voltages and currents. Substitute vi = (ai + bi)/2, ii = 

(ai- bi)/(2R) into (2.52) and (2.53) to give 

k= 1, ... ,N (2.54) 

where the scattering parameter 'Yk is also called the multiplier coefficient of port 

k, which is formed as 

2Gk 
k= 1, ... ,N , (2.55)'Yk = "\'N G 

L..Z=l l 

where Gk = 1/Rk is the port conductance of port k. 
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2.4.7.2 Series Adaptors 

If N ports which has port resistance Rk, k = 1, ...N respectively are series con­

nected, the wave quantities can be related as 

k = 1, ... ,N (2.56) 

where 

k=l, ... ,N (2.57) 

2.4.7.3 Special Ports 

Besides the basic adaptors, two special ports in interconnections must be explained 

before wave digital principles are applied for digital implementation. 

In order to implement a N-port adaptor, N multiplier coefficients are needed 

from the discussion above. However from (2.55) and (2.57), 

')'1 + 1'2 + · · · + ')'N = 2 (2.58) 

regardless of whether a parallel or series adaptor is used. Thus, there are N- 1 

independent coefficients. Any port coefficient 'Yk can be eliminated by (2.58), and 

is termed as a the dependent port. For an N-port adaptor, there are in total N 

degrees of freedom to decide which port is dependent. In order to minimize the 

sensitivity of the coefficient realized implicitly, the coefficient of the dependent port 

should not be smaller than any of the others. Since when the other coefficients are 

modified, it will suffer a relatively small change [27]. 

A reflection-free port is such a port where the reflection is absent, i.e. the port 

coefficient satisfies 
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Figure 2.22: A unconstrained three-port parallel adaptor and corresponding signal­

flow diagram 

/k = 1 (2.59) 

Referring to (2.56) and (2.54), the reflection wave of this port bk is independent 

of the incident wave of this port ak. From (2.57) and (2.55), reflection-free port 

has another interpretation: the port resistance is equal to the input resistance at 

this port if the other ports are terminated by their respective port resistances. If 

a reflection-free port exists, the adaptor is termed to be constrained [27]. 

2.4.7.4 Examples 

Consider the unconstrained 3-port parallel adaptor in Figure 2.22, as well as the 

corresponding signal flow diagram. The structure of the signal-flow diagram refers 

to the description of parallel adaptors in (2.54). In this adaptor, Port 3 is depen­
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Figure 2.23: A constrained three-port parallel adaptor and corresponding signal­

flow diagram 

dent port and there are no constraints on this adaptor. Figure 2.23 is a constrained 

3-port parallel adaptor with Port 3 reflection-free. In this adaptor, Port 2 is de­

pendent port. The reflection-free port is represented symbolically by a stroke at 

the output of this port, as shown in Figure 2.23. 

2.4.8 Realization of Circuits 

In the previous two subsections, the issues of how to realize the various building 

blocks and how to realize the interconnections for WDF have been addressed. 

In this section, the general principles for realization of circuits are concluded. 

Firstly, the WD building blocks must be interconnected in the same way as their 

corresponding analog elements. Secondly, for every two ports connected to each 

other, the corresponding waves must flow in the same direction. Thirdly, for any 
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two ports thus combined, the two port resistances must be the same. As shown in 

Figure 2.24, 

b1 I...
I 

a2 

• 
R1 

a1 

I. 
! 
I b2 

R2 

~ ·~ 
I 

Portl I Port2 

I 

Figure 2.24: Interconnection of two wave ports 

Finally, the realizability conditions that were expressed in Sec. 2.4.5 must be 

satisfied. 

To illustrate the WD techniques consider the digital implementation of the 

analog low pass filter in Figure 2.25. The source voltage E, the resistor Ro and 

L 

+ 

C Vo R1 

Figure 2.25: A low pass filter in analog domain 
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Figure 2.26: Circuit analysis of the analog filter 
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Figure 2.27: The corresponding low pass filter in wave digital domain 
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the remaining part of the circuit are connected in series, and the capacitor C, the 

resistor R1 and the remaining part of the circuit are parallel connected, as shown 

in Figure 2.26. In series connection 1, the port resistance of Port 1 R11 = R0 

for matching the resistor R0 , the port resistance of Port 3 R31 = L for matching 

the inductor L according to Figure 2.21. Port 2 is designated as a reflection-free 

port, since R21 is not specified a priori and is a degree of freedom. Thus, 121 = 1, 

following (2.57), the port resistance of Port 2 is 

Select Port 1 as dependent port, so the multiplier constant of this series adaptor 

IS 

R31 L 
1'31 = ---­ (2.60) 

R31 + Rn Ro+L 

In parallel connection 2, the port conductance of Port 2 G22 = C, for Port 3, 

G32 = 1/R 1 , and for Port 1, G12 = 1/R 21 . Select Port 3 as dependent port, The 

multiplier constants are 

(2.61)
= G G G '112 

12 + 22 + 32 

So, one wave digital realization of this low pass analog filter shown in Figure 

2.25 is built as Figure 2.27. 

In general, the WD implementation of an analog circuit is not unique. In this 

example, Port 2 of connection 1 can be designated as reflection-free or not. And 

in connection 2, there are three options of the dependent port: Port 1, 2 or 3. 

Therefore even for one analog circuit, there are still several corresponding WD 

structures. 
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Figure 2.28: Bode diagram of the analog low-pass filter 
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Figure 2.29: Bode diagram of the wave digital low-pass filter 
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Figures 2.28 and 2.29 are the Bode diagram of the low pass filter in analog 

domain and in wave digital domain. The parameters are set as the following: 

R 0 = 1, R1 = 1, L = 102 
, C = 102 

, Ts = 10-2 
. Notice good agreement, these two 

figures illustrate that the corresponding WD structure has the similar low-pass 

frequency property with the analog filter in the frequency range scaled by 2/T8 • 

This result agrees with (2.47). 

2.4.9 Nonlinear Wave Digital Circuits 

Since WDCs are designed based on circuit topology, they can be used to realize a 

wide range of circuits. By far, linear circuits realization is the most well studied, 

however, nonlinear circuits can also be considered. In this subsection, some work 

is reviewed that has been done in nonlinear wave digital circuits which is related 

to our prescribed design work on Toda lattice circuits. 

In 1992, Meerkotter and Felder hoff first proposed a structure of nonlinear trans­

mission lines by wave digital filter principles [30]. A linear capacitance and an 

ideal transformer whose turns ratio is variable dependent on the voltage over the 

capacitor are employed to realize the nonlinear capacitance. However, such imple­

mentation of nonlinear capacitor requires an iterative algorithm solve an implicit 

equation for the turns ratio variable and the wave quantities. In that paper, the 

wave digital model of transmission line is symmetric, which is not the same as 

Toda LC lattice which is needed for the soliton communication system. Further­

more, unit elements are inserted in that model to cut the delay-free directed loops 

(DFDLs). In that structure, the minimal operational time is T' = T/15, Tis 

the sampling time. Therefore oversampling fractional delays are required, reduc­

ing efficiency greatly. Felderhoff continued his work on a new wave description 

for nonlinear elements [38]. A method similar to the well-known Jacobi's method 
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was applied to cut the DFDLs [32]. However, the whole circuit model remained 

the same as in [30], and the implementation of the nonlinear capacitor was also 

unchanged. Some techniques to realize that nonlinear capacitor without iterative 

algorithm is attractive. And a new structure to implement the Toda lattice circuit 

is required for this model. In 1999, Sarti and De Poli proposed a detailed and 

thorough method toward nonlinear wave digital filters [33]. In next chapter, an 

implementation of the nonlinear capacitor in Toda lattice is presented based on 

the description of [33]. As well, a new structure for the Toda lattice circuit is 

presented. 

2.5 Conclusions 

In this chapter, the fundamental knowledge of communication systems is reviewed. 

Solitons and the systems exhibiting solitons are introduced, and due to their special 

properties, the applications of optical and electrical solitons in signal processing 

and communication systems are proposed. Some work on this subject is surveyed 

and the realization of the soliton communication systems is introduced. In the 

application of signal processing and communication systems, the electrical solitons 

are attractive due to the tractability of the Toda lattice circuit for realization 

and manipulation. Since traditional soliton-supporting systems are physical, they 

are analog. Thus, they are sensitive to the physical effects such as temperature 

variations, mechanical vibrations and component tolerances. So a digital model 

of the Toda lattice circuit is required to substitute the analog Toda lattice in the 

applications. A survey is presented on the methods of digital implementation of 

analog circuits. Furthermore, due to the nonlinearity of the Toda lattice, wave 

digital theory is advanced to achieve the digital realization of nonlinear circuits. 

The fundamental principles are introduced and some work related to the realization 
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of nonlinear circuits is mentioned. The design and implementation of the digital 

Toda lattice will be presented on the basis of WDCs theory. 
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Chapter 3 

Wave Digital Implementation of a 

Soliton System 

In this chapter the design and implementation of a digital soliton system is pre­

sented to overcome many of the difficulties of analog soliton systems. Here the 

Toda lattice circuit is considered since wave digital circuit design methods can be 

applied to approach a digital model that has nearly equivalent functions with the 

Toda lattice circuit. 

This chapter describes the implementation of a digital soliton simulation sys­

tem. Some definitions are specified for analysis and measurement. In the design 

of such a system, the implementation of a digital Toda lattice circuit is the major 

concern. By means of wave digital circuit theory, introduced in Chapter 2, a new 

digital representation of Toda lattice circuit is proposed. The detailed design of 

this wave digital model is addressed. This digital model of a soliton system can 

be employed as a digital soliton system simulator, which has the potential to be 

applied in the research of soliton systems, such as in optical communications, and 

soliton multiplexing systems. 
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3.1 Definitions 

3.1.1 Time-frequency Analysis 

From the Fourier transform, a signal with limited bandwidth must be unlimited 

in time and vice versa. From a signal processing standpoint, a signal that is trans­

mitted must start at some initial time and stop at some terminating time. Such 

signals can not be band-limited in frequency. However, bandwidth is a precious 

resource, and must be tightly controlled. Real signals are thus unlimited both in 

time and in frequency domain. The definition of the time and frequency bandwidth 

of a signal must be defined on the whole real line. 

In Slepian's classical paper [45], the time and frequency bandwidth are specified 

based on the measure of energy distribution in time and frequency. Define the 

energy of a continuous-time signal s (t) as 

(3.1) 


From Parseval's theorem, 

(3.2) 


where S(f) represents the continuous Fourier transform of s(t) and the operation 

1-1 is the magnitude of a signal. 

Consider a real signal s(t) of finite energy Es, given in (3.1) and (3.2). Such a 

signal is termed time-limited to the interval (-T /2, T /2) at level c if 

where 

62 




M.A.Sc: Qiuyuan Huang McMaster University- ECE 

Er = jT/2 
s2(t)dt 

-T/2 

and T is defined as the duration of s(t) at level c, or is commonly called the 

fractional energy duration. For example, if c = 10-2 
, T is 99% energy duration of 

s(t). 

Similarly, s(t) is band-limited to (-W, W) at level c if 

where 

E2w = (f)ldf1: IS2 

and W is termed the fractional energy one-sided bandwidth of s(t) and 2W is the 

corresponding two-sided bandwidth. 

These definitions lead to a useful consequence that all signals of finite energy 

are both band-limited to some finite bandwidth Wand time-limited to some finite 

duration Tat some level c. At least Ns independent functions are needed to rep­

resent such signal s(t) from the point of view of representing s(t) with normalized 

error energy less than c [45]. The approximate dimension is defined as 

Ns =2WT . 

The dimension N 8 of a signal s(t) is the number of degrees of freedom in s(t), i.e., 

s(t) which is limited in T seconds and W Hz can be specified by a sequence of 

2WT independent values at level c when energy is measured [40, 43]. For robust 

result, 

Ns = 2WT+ 1 
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This consequence is of great importance to representation of a signal in a digital 

system. 

3.2 	 Introduction to Digital Soliton Communica­

tion Systems 

This section discusses the time-frequency characteristics of Toda soliton signals 

using the definitions of Section 3.1.1 and introduces a digital soliton communication 

system as a possible application. 

3.2.1 	 Time-frequency Analysis of Soliton Signals 

In this subsection, the bandwidth and time duration of a soliton signal are ana­
-

lyzed, which are crucial to the design of the soliton simulation system. Here the 

99% energy bandwidth and duration are applied in reference to Section 3.1.1. 

Chapter 2 introduced several kinds of solitons and their corresponding soliton 

systems. The Toda soliton is selected in this work as specified in (2.24) due to close 

link to circuit theory. For a single soliton signal, the duration and bandwidth are 

independent of the phase. So for simplification, a soliton with zero phase which 

matches normalized Toda lattice circuit is analyzed, 

(3.3) 


where f3 can be any positive real value. According to Section 2.2.3.4, the normalized 

Toda lattice circuits have unit inductance L = 1 and unit capacitance parameter 

C0 = 1, Vo = 1. The Fourier transform of the Toda soliton is [7], 

2n2f 
(3.4)S(f) = . h(i!.l)

sm f3 
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1
The total energy of a single soliton can be shown to be 


00 


( 12 4 3Es = Is t) dt = -{3 
-oo 3 

Following early definitions, the 99% fractional energy duration is 

2

l T/ ls(t)l 2dt = 0.99Es 
-T/2 

and 99% fractional energy bandwidth is 

(3.5) 

(3.6) 

(3.7) 


For a given soliton, (3.6) and (3. 7) can be solved by numerical integration to give 

T = 3.1422/f3 and W = 0.3937{3 respectively. So the Nyquist rate B must satisfy 

B > 0. 7874{3 in order to avoid aliasing. 

From this result, some useful conclusions are apparent. Firstly, in reference 

to the definition in Section 3.1.1, the effective dimension of a single Toda soliton 

signal in the normalized lattice is independent of {3, i.e., 

f3 3.1422 
2WT = 2 X _ X f3 = 2.4742

0 3937 

Therefore, the effective dimension of all of the soliton signals is the same. Secondly, 

for a given band-limited channel with two-sided bandwidth 2W, the allowable 

solitons transmitted in this channel have the parameter j3 < W/0.3937. Thirdly, 

to sample a given soliton signal, the sampling rate must satisfy T8 < 1/0.7874{3. 

The time and frequency representation of a Toda soliton signal with f3 = 2 is 

illustrated in Figure 3.1, where the 99% energy is time-limited in ( -T/2, T /2) and 

band-limited in (-W, W) are shown. The figure shows that the soliton is a pulse­

like signal with compact energy both in time-limited duration and band-limited 
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Figure 3.1: Time and frequency analysis of soliton ({3 = 2) 
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bandwidth. Therefore, soliton signals are amenable to efficient representation in 

digital systems. 

3.2.2 Example of Digital Soliton Communication System 

After the time-frequency analysis of Toda solitons, the soliton has been shown 

suitable to carry information for transmission in a band-limited channel. One pos­

sible application of a soliton system is for a communication system. A schematic 

diagram of a general soliton communication system is shown in Figure 1.1. Soli­

tons are used as carrier signals to carry informatjon in a soliton communication 

system. A soliton-supporting system is required to act as digital modulator and 

demodulator. As an extension of soliton modulation, different solitons can be also 

used to multiplex signals of different users due to the separability of different soli­

tons. Traditional soliton-supporting systems are physical systems, as introduced 

in Section 2.2, and are analog systems and thus sensitive to the physical effects 

(temperature variations, mechanical vibrations). However digital systems are more 

robust, offering greater tolerance to random disturbances or variations. Therefore, 

a digital model of an analog soliton-supporting system is required to provide more 

robust performance in a digital soliton communication system. Among these sys­

tems, the Toda lattice circuit is the most tractable for digital modelling since the 

methods of digital implementation of analog filters can be applied. 

3.3 Digital Toda Lattice Circuit 

According to the discussion of the digital soliton communication system in the pre­

vious section, a digital Toda lattice circuit is required to act as digital modulator­

demodulator or multiplexer-demultiplexer. From the overview of wave digital cir­
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cuits in Section 2.4, the fundamental theory has been introduced and wave digital 

circuits are known to have advantages to represent nonlinear analog circuits. In 

this section, a new model of a digital Toda lattice is proposed using wave dig­

ital principles. For the synthesis of linear circuits, the classical wave quantities 

described in (2.29),(2.30) are sufficient to represent the circuits as introduced in 

Chapter 2. Whereas for the sake of modelling nonlinear circuit elements, new types 

of waves have been proposed in the literature [33, 38], and will be applied to Toda 

lattice circuits here. 

3.3.1 General Wave Variables 

Instead of classical voltage wave quantities, general voltage wave quantities with 

memory can be applied in the digital implementation of nonlinear analog elements 

[33]. In time domain, 

a9 (t) = m(t) + J-ln(t) (3.8) 

lJl(t) = m(t)- J-ln(t) . (3.9) 

Here m(t) is a filtered voltage, i.e. m(t) = fv(v(t)) and n(t) is a filtered current, 

i.e. n(t) = fi(i(t)). And fv(·), fi(·) are linear time-invariant (LTI) mappings. The 

value 11 is the port reference parameter. From the bilinear transform from s to z 

domain introduced in Section 2.4.4, in z domain, 

(3.10) 

(3.11) 
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where Hv(z) is the transfer function of the digital voltage filter corresponding to 

the analog filter fv and similarly Hi(z) is of the current filter. If this one-port 

element is resistive, m(t) = kmv(t), n(t) = kni(t); if capacitive, m(t) = kmv(t), 

n(t) = fi (J i(t)dt); if inductive, m(t) = fv (~~), n(t) = kni(t). 

By using this pair of general wave variables, the characteristic of inductors 

and capacitors can be transformed to that of resistors. As known, inductive and 

capacitive nonlinearities are described by differential equations and likewise, resis­

tive nonlinearities are represented by algebraic equations. Handling nonlinearities 

described by algebraic equations is easier than the nonlinearities described by dif­

ferential equations [33]. Therefore, the characteristics of nonlinear capacitors in 

the Toda lattice circuit are expected to be reformed to resistive nonlinearities. This 

will be presented in the next subsection. 

3.3.2 	 Specific Wave Variables for Nonlinear Capacitors in 

the Toda Lattice 

By adopting general wave quantities stated previously, specific wave quantities can 

be defined for the nonlinear capacitors in the Toda lattice. In the Toda lattice, 

the nonlinearity is due to the nonlinear capacitor [2], the amount of charge stored 

in this nonlinear capacitor 

q = c(v )v = C0Vo log ( 1 + ~ ) 	 (3.12)0 
where v is the voltage difference across the capacitor, C0 , Vo are parameters de­

scribed in Section 2.2.3.4. 

Thus, a new pair of wave variables can be defined as: 

(3.13) 
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(3.14) 

These definitions and (3.12) demonstrate that the characteristics are resistive in 

variables v and q. From the definitions of the wave quantities in (3.13) and (3.14), 

v=--­
2 

and 
ae- be 

q= 
2f-t 

can be derived. Substituting these two expressions into (3.12), and then the non­

linear characteristic can be represented in a function of a and b, 

(3.15) 

So the capacitive nonlinearity becomes resistive. From (3.15), an implicit function 

of ae and be is obtained to indicate the characteristic of the nonlinear capacitor in 

wave digital domain. Consider the implicit function J(a, b) = 0. Since f(a, b) is 

continuously differentiable, it is possible to write b as a explicit function of a, i.e. 

the form b = g(a), when for any fixed point (a0 , b0 ) E ~2 with 

f(ao, bo) = 0 

and 

~;I ~0 , (3.16) 
(ao,bo) 

by the implicit function theorem [36]. From (3.15), 

8j CoVo 1 
-= +­
()be ae + be + 2Vo 2f1, 

For the sake of satisfying (3.16), the following equation 
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(3.17) 

must hold in order to have an explicit functional relationship between ae and be, 

where v is the voltage difference across the capacitor. According to the definition 

in (2.22), - Vo is the breakdown reverse voltage which specifies the capacitor's 

characteristic. 

However, in Toda lattice circuit, the voltage across the nonlinear capacitor 

always satisfies 

v > -Vo 

due to the circuit's property. So the property when v :::::; - Vo is undefined. In order 

to let (3.17) always holds in the Toda lattice circuit, 

(3.18) 

is a sufficient condition. Therefore the inequality(3.18) guarantees f(ae, be) = 0 

can have an equivalent explicit form be= g(ae). 

The wave digital realization of a circuit or an element changes the variables from 

Kirchhoff domain to WD domain as introduced in Section 2.4.3.2. The nonlinear 

characteristic of the Toda capacitor in Kirchhoff domain according to (3.12) is 

shown in Figure 3.2. And Figure 3.3 shows the algebraic nonlinearity between the 

incident wave and reflected wave with different values of port reference parameter 

f.-l according to (3.15). As shown in Figure 3.3, the relationship between ae and be 

is quasi-linear when f.-l gets large. Since f.-l scales the charge q, the voltage v = ac!bc 

range decreases with f.-l increasing according to (3.13) and (3.14). Therefore, when 

the voltage range is small, the functional relationship between ae and be is quasi­

linear. With satisfaction of the condition (3.18), freedom exists to set value of f.-L. 
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Figure 3.2: Nonlinear characteristic of Toda capacitor in Kirchhoff domain 
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Figure 3.3: Nonlinear characteristic of Toda capacitor in general wave digital do­
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Figure 3.4: Connection between two wave variables of different types 

The value of J-L in the whole Toda lattice circuit will be discussed when the whole 

wave digital structure of the Toda lattice is presented in Section 3.3.5. Therefore, 

using the new wave digital transformation, the nonlinearity of Toda capacitor 

can be reformed to a resistive nonlinearity, which is quasi-linear. Hereafter, the 

nonlinear analog capacitor can be represented by some simple implementation in 

digital domain, such as look-up table, or using piece-wise linear data fitting to 

represent the dependence of the incident and reflected wave quantities. 

3.3.3 Connections between Different Wave Variables 

It is often useful to design wave digital circuits that have more than one type 

of wave quantities in systems. Therefore methods of connecting different wave 

variables are required to implement complete digital structures. In the implemen­

tation of the Toda lattice, the connection method between linear classical wave 

variables and specific wave variables for nonlinear capacitors are required since the 

remaining elements are all linear. In this subsection, the general connections of 

two different wave variables are introduced. 

In Figure 3.4, two pairs of wave quantities of different types are interconnected 

by a connector. Here Ai(z), i = 1, 2 and Bi(z), i = 1, 2 are the incident and 

reflected wave quantities of the two different types in complex frequency domain. 
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Ii (z), i = 1, 2 and Vi (z), i = 1, 2 are the currents and voltages of these two ports in 

Z-domain respectively. 

These two pairs of different wave quantities are represented as follows: 

(3.19) 


(3.20) 


(3.21) 


(3.22) 


where Hvi, i = 1, 2 are the voltage filter, and H1i, i = 1, 2 are the current filter. In 

reference to Section 2.4.3, the scattering matrix of two-port junction is defined as: 

Bt(z)l Bt(z)l ) _ At(z) A2(z)=O A 2(z) At(z)=O
S2x2- (3.23) 

( B2(z) I B2(z) I 
At(z) A2(z)=O A 2(z) At(z)=O 

so 

where 

Referring to [33], for two port interconnection, the continuity conditions of the 

two-port junctions must be satisfied: Vi(z) = V2(z) and I 1(z) = -I2 (z). From 
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(3.19), (3.20) and (3.21), (3.22), the continuity conditions can be expressed by 

wave quantities as 

A1(z) + B1(z) A2(z) + B2(z) 
(3.24)

2Hvl 2Hv2 

and 

(3.25) 

Reformulate (3.26) and (3.27), the reflected waves can be expressed by incident 

waves as 

Hv1
B1(z) = K(z)A1(z) + -H (1- K(z))A2(z) (3.26) 

V2 

and 

(3.27) 

where 

K(z) = Hv1(z)H12(z)- Hv2(z)H11 (z) (3.28)
Hv1(z)H12(z) + Hv2(z)Hn(z) 

K(z) is the transfer function of the reflection filter that characterizes the scattering 

junction with memory. The scattering matrix of this two port junction can be 

simplified to 

K(z) Hvi(z) (1 - K(z)) )S - Hv2(z) (3.29) 
2x2- ( Hv2(z) (1 + K(z)) -K(z)

Hv1(z) 
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3.3.4 R-C Mutators in the Toda Lattice 

Following the connections between different wave quantities stated in the previous 

subsection, the corresponding connections can be defined between classical waves, 

formulated in (2.29) and (2.30), for linear elements and specific waves, formulated 

in (3.13) and (3.14), for nonlinear capacitors in Toda lattice. A scattering junction 

is required between nonlinear capacitor and the remaining circuit. 

The wave digital implementation of the nonlinear capacitor in the Toda lattice 

has been proposed in Section 3.3.2. From the Laplace transformation of (3.13) and 

(3.14), the wave quantities inS-domain are 

(3.30) 


and 

(3.31) 


By the bilinear transformation specified in (2.46), the wave quantities of this 

nonlinear capacitor are indicated in Z-domain as follows: 

Ac(z) = V(z) + Rc(z)I(z) (3.32) 

and 

Bc(z) = V(z)- Rc(z)I(z) , (3.33) 

where 

1
R (z) = f.lTs 1 + z­ (3.34) 

c 2 1- z-1 

is the reference transfer function (RTF) of this nonlinear capacitor's port. 
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Such a junction to be used for connection between a capacitive RTF and a 

reference resistor is termed as R-C mutator [33]. The scattering matrix of this 

R-C mutator can be derived in reference to (3.29), 

K(z) 1- K(z) )
SRc = (3.35)

( 1 + K(z) -K(z) 

where the transfer function of the reflection filter is 

K(z) = Rc(z)- R (3.36)
Rc(z) + R 

where R is the port resistance of the resistive port to be connected to the nonlinear 

capacitive port. Due to the determinant of SRc 

the R-C mutator is a nondissipative component and therefore lossless. The struc­

ture of such digital implementation of the nonlinear capacitor in Toda lattice is 

shown as Figure 3.5. 

In this structure, by denoting 

R = f.LTs 
2 

and then according to (3.36), 

K(z) = z-1 

By adopting this K(z), considering only the two-port mutator illustrated in Figure 

3.5, there are no delay-free branches from the incident waves ac, a1 to the reflected 

waves be, b1 when no capacitor is interconnected. But when this R-C mutator is 

interconnected to a block which characterizes the nonlinearity of the capacitor, a 
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Figure 3.5: New WD implementation of the nonlinear capacitor in Toda lattice 

delay-free branch still exists. The delay-free branches give rise to the problem of 

delay-free directed loops (DFDLs) as discussed in Section 2.4.5, which is very im­

portant for the realizability. This problem will be discussed in the next subsection 

where the whole structure of wave digital Toda lattice is presented. 

3.3.5 New Wave Digital Structure of the Toda Lattice 

Based on the model of wave digital nonlinear capacitor proposed in Section 3.3.2 

and the classical realization of wave digital circuits introduced in Chapter 2, a new 

wave digital structure of a Toda lattice is built. 

3.3.5.1 One Node Structure 

The analog Toda lattice is shown in Figure 1.2. One node of the Toda lattice can 

be constructed by a series adaptor and a parallel adaptor, as illustrated in Figure 
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Figure 3.6: Circuit analysis of one node in Toda lattice 

3.6. Figure 3. 7 is the wave digital model of one node in the Toda lattice. In this 

model, a piece-wise linear data fitting block is adopted to describe the nonlinear 

capacitor. 

As discussed in Section 2.4, there are freedoms to appoint the reflection-free 

ports in the adaptors. For example, in the series adaptor of this model as shown 

in Figure 3.7, except for port 3, port 1 and port 2 both have opportunities to be 

reflection-free port since port 1 and port 2 do not connect to any element directly 

as introduced in Section 2.4. 7.3. Here port 2 is assigned to be reflection-free in 

respect that the input and output port resistance are required to be consistent. So 

this node model can be concatenated without any modification to build the whole 

Toda lattice. And moreover, the DFDL between a1 and b1 is cut by this reflection­

free port. Notice that when two nodes are concatenated, from one output port to 

another input port, there is still the problem of a DFDL. This problem must be 

solved for the realizability of the digital model referring to Section 2.4.5. 
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Figure 3.7: New WD implementation structure of one node in Toda lattice 
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3.3.5.2 Modeling to Cut DFDLs 

From a mathematical viewpoint, a DFDL is an algebraic loop. In Section 2.4.5, 

some discussiol,l has been addressed about DFDLs. The DFDL problem often 

appears in particular when analog circuits are converted to digital domain. If the 

circuit is linear, various techniques can be applied to convert an analog system into 

an equivalent digital system. A linear digital circuit can always be rearranged to a 

new one in which DFDLs are removed since the linear circuit itself does not lead to 

algebraic loops, and so if a DFDL exists, it is caused by the configuration. In [48], 

simple graph-theoretic methods for detecting and locating DFDLs in digital circuit 

configuration are outlined and the means of partial modification of the signal-flow 

structure to remove DFDLs is presented. However, such a method is only valid for 

linear cases. 

However, for digital modeling of nonlinear circuits, the DFDL problem can not 

be solved by manipulation without introducing new blocks or iterative algorithms. 

The implementation of the nonlinearity introduces delay-free branches which can 

not be directly eliminated. A general method of efficient computation of nonlinear 

filter networks with DFDLs is presented in [47], where iterative methods are applied 

to solve the DFDL problem. The Newton-Raphson method can be applied to 

iterate a solution. Although possible for short circuit, naturally the impact of 

error propagation in long Toda lattices limits the applicability of this technique. 

Clearly, some filter structure to break the delay-free branches must be added 

into any path belonging to the DFDL to cut the loop. A common delay element 

can not be employed directly in a wave digital circuit since the delay is a part of 

the wave digital block of a component, such as capacitor or inductor in reference 

to Figure 2.20. 

A linear predictor [35] is applied in our model to cut DFDLs. A linear predictor 
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is an FIR filter that predicts the present value Un in a sequence from the past inputs 

Un-k, k = 1, · · · M as described in 

M 

Un =-L akUn-k 

k=l 

where M is the prediction order, ak, k = 1, · · · M are the parameters. In the 

method of least squares the parameters ak, k = 1, ···Mare obtained as a result of 

the minimization of the total squared error 

2 (3.37)E = n~oo ( UM + t, akUn-k) 

2 

with respect to each parameter, i.e. 

8E2 
~=0, i=1,···M . (3.38) 
uai 

From (3.37) and (3.38), 

M +oo +oo

L ak L Un-kUn-i = - L UnUn-i, i = 1,···M (3.39) 
k=l n=-oo n=-oo 

can be obtained. To solve (3.39), autocorrelation method can be adopted. Define 

+oo 

R(i) = L UnUn-i 

n=-oo 

then (3.39) reduces to 

M 

LakR(i- k) = -R(i), i = 1, · · ·M . (3.40) 
k=l 

In practice, the signals are known over only a finite interval, therefore the auto­

correlation coefficients must be estimated in finite interval. In our linear predictor 

model, the previous M signal points un-k, k = 1, · · · M are known to predict the 
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signal Un. So a window of length M can be applied to truncate the signal by M 

interval, 

otherwise 

Therefore, the autocorrelation function is then given by 

M-i 

R(i) = I: UnUn+i 

n=l 

Substituting (3.41) into (3.40), rewrite in matrix form, 

(3.41) 


R(O) R(1) R(M -1) R(O) 

R(1) R(O) R(M- 2) R(1) 

R(M -1)R(M- 1) R(M- 2) R(O) 
(3.42) 

This matrix equation can be solved by Levinson-Durbin algorithm [56) in our 

linear predictor block. Consequently the present output of the linear predictor 

is independent of the present input. By adding this block into the DFDL, the 

delay-free path will be eliminated. 

3.3.5.3 Wave Digital Structure of Finite Length Toda Lattice 

The ideal Toda LC lattice is composed of an infinite number of nodes, as shown 

in Figure 1.2 in Chapter 1. Such an infinite structure is not realizable in practice. 

A finite structure can be adopted with an equivalent impedance to terminate the 

lattice, as shown in Figure 3.8. To approximate the ideal case, the equivalent 

impedance, which is resistive, is chosen to terminate the circuit [7], where 
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Figure 3.8: Equivalent finite structure of Toda LC lattice 

.[T
R=yCo . (3.43) 

The wave digital model of the finite Toda lattice is illustrated in Figure 3.9, which 

is based on the one node model in Figure 3.7. 

According to this WD structure of the Toda lattice and the basic principles 

of WDC introduced in Chapter 2, the parameters of the model are specified as 

follows with reference to Figure 3.7: R is the same as the terminating resistance 

in (3.43), and the port resistance of the linear inductor is 

RL = 	 2L 
Ts 

the port resistance of the R - C mutator is 

1 
Rc = 1 1 

R+RL + R 

and the port reference parameter of the nonlinear capacitor is 

2Rc 
jJ=­

Ts 

Therefore, fJ is not a free parameter in this WD model of Toda lattice. It depends 

on the analog circuit's specification and the sample time of this digital system. 
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Because Rc > 0 and T8 > 0, 11 > 0. Thus, this condition guarantees that an 

explicit function exists to describe the wave quantities of the nonlinear capacitor 

as discussed in 3.3.2. 

3.4 Conclusions 

In this chapter, the time-frequency properties of a single Toda soliton signal were 

analyzed from the measure of energy with regard to the signal model applied in 

signal processing. Then an example of a digital soliton communication model 

is provided. In digital soliton communication systems, the digital modulator­

demodulator or digital multiplexer-demultiplexer part should have the same func­

tion as an analog Toda lattice. Therefore, an equivalent digital model of Toda 

lattice circuit is required. By means of the wave digital principles that is intro­

duced in Chapter 2, a new wave digital structure of Toda lattice circuit with finite 

length is proposed for practical applications. This digital soliton system model can 

be used not only in digital communication systems but also in general research on 

soliton systems. In the next chapter, simulation results based on the digital model 

that is presented in this chapter will be provided for comparison with the analog 

Toda lattice circuit and corresponding parameterdesign will be discussed. 
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Chapter 4 

Simulation and Application of the 


Digital Soliton System Simulator 


In Chapter 3, a digital model of a Toda lattice circuit is proposed with design by 

wave digital principles. Existing soliton-supporting systems are all analog systems. 

Therefore, applications of solitons and soliton systems can be accomplished only in 

analog environments. Since such systems are sensitive to noise and physical effects, 

digital soliton systems have more advantages than their analog counterparts. This 

digital model is a digital soliton system simulator, which has potential use in 

extensive applications of soliton systems. 

This chapter presents the numerical results and comparison of the digital model 

to the analog Toda soliton system. The assumptions and the simulation environ­

ment are specified. The parameter selection of the model is discussed with reference 

to performance. Simulation results are then given to verify that the performance 

of the digital Toda lattice model is nearly equivalent to the analog Toda lattice 

circuit. Finally, an example of a soliton communication system is proposed to 

demonstrate that the digital Toda lattice model can be used to substitute for an 
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analog Toda lattice circuit in a digital soliton communication system. 

4.1 Simulation Environment and Assumptions 

4.1.1 Simulation Environment 

Digital signal processing (DSP) systems can be described by signal flow diagrams. 

In Chapter 3, the design procedure for a digital soliton system simulator was pre­

sented, and a signal flow diagram was given to describe this digital model visually. 

The digital soliton system simulator can be built by various tools. In this thesis, 

Simulink, which runs within Matlab is utilized [57]. Simulink is a block-diagram­

based tool for modelling, simulating and analyzing multi-domain dynamic systems, 

and it is tightly coupled with Matlab and supported by blocksets and extensions. 

Therefore, it allows designers to model a system with high-level language, which 

facilitates the modelling. The digital models built in Simulink can be translated 

to C code by the Target Language Compiler (TLC) in the real-time workshop of 

Simulink to accelerate the simulation speed. And the code can be downloaded and 

implemented in digital signal processors (DSPs) to execute real-time simulations. 

Moreover, some work in the area of hardware synthesis from Simulink models has 

already been done [52, 53]. By using these tools, a digital model built in Simulink 

can be translated to Hardware Description Language (HDL), as a structural spec­

ification in order to generate a hardware implementation in field-programmable 

gate arrays (FPGAs). Consequently, the simulation is executed faster in FPGA 

than in Simulink software. 

Our digital soliton system simulator is built up in Simulink version 6.3, Matlab 

7.1.0.246. The detailed block diagrams of our model in Simulink is specified in the 

Appendix. 
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4.1.2 Assumptions 

To measure the performance,the minimum mean square error (MMSE) is employed 

in this chapter. The minimum of the average of the sum of these errors can be 

obtained by shifting one vector relative to the other. The relative MMSE between 

x and y of the same length K is calculated as 

. { }< L~=1 (x[k]- y[k + i])
2 

}
M MSE(x, y) = mmiE[O,K-1] 1 K 2 ( 4.1) 

K Lk=1 (x[k]) 

where when k + i > K, y[k + i] = 0, i.e. zero padding is applied. This MMSE 

will be used to meas.ure the errors between the output signals of the digital Toda 

lattice and the theoretical outputs. According to (2.24), when a soliton 

2 2 ( tV (t) = Vo · /3 sech /3 ~ - ryo) 
is input to the Toda lattice, the theoretical output signal at the mth node should 

be 

0Vm(t) = Vo · /32sech
2 (/3 vb- asinh(/3)m- ry ) 

Therefore, theoretically the output at the mth node is still a soliton with the delay 

in time 

~m = asinh(/3) m (4.2)
/3 

with respect to the input soliton. 

Referring to Section 3.3.5, the parameters L, Vo, Co are decided by the elements 

in the analog Toda lattice circuit. For all the related simulations in this thesis, the 

normalized lattice is selected. These parameters are set as L = 1, Vo = 1, C0 = 1. 

Different values may be chosen for the different applications of the Toda lattice. 

90 




M.A.Sc: Qiuyuan Huang McMaster University- ECE 

Except for these three parameters, sample rate Ts, linear predictor order Ltpc and 

the total number of nodes in the Toda lattice circuit N are free parameters. All 

the other coefficients that are specified in Section 3.3.5 are dependent on these 

six parameters. The selection of these parameters will be discussed in the next 

section. 

4.2 Parameter Design 

Following the signal flow diagram presented in Chapter 3, a model of our digital 

soliton system simulator can be established. Before exploiting this model for sim­

ulation, some important parameters must be selected. This section discusses the 

parameter design problem. 

4.2.1 Sampling Rate 

For the implementation of a digital system, the sampling rate is among the most 

important specifications. From Nyquist's theorem, the sampling interval to sam­

pling a continuous bandlimited signal to make a discrete signal depends on the 

bandwidth of this signal. In the digital soliton system simulator, the transmitted 

signals may be a combination of single solitons and composite solitons. From the 

time-frequency analysis of Toda solitons in Section 3.2.1, Toda solitons are unlim­

ited in frequency and time, but since Toda solitons are of finite energy, they are 

limited in finite bandwidth and duration at some level c. For the single soliton 

described in (3.3), the 99% energy bandwidth is W = 0.3937,8 with respect to 

c = 1% as calculated in Section 3.2.1. Thus, the sampling interval must satisfy 

Ts < _ i74,B considering the 99% energy bandwidth. In soliton systems, to provide0 7

reasonable transmission energy and bandwidth, generally the solitons with .B < 10 
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are employed, in reference to the literature [2, 3, 4, 5]. Therefore, a sampling rate 

of T8 < 0.1270 is required for single soliton. For a composite soliton, the band­

width is dependent on the different solitons that are overlapping and the relative 

phase between them, and an analytical solution is difficult to derive. Nevertheless, 

from numerical studies, the bandwidth of composite soliton has the same order of 

magnitude as a single soliton. Of course if specific solitons are assumed to prop­

agate in the simulator, the sampling rate can be adjusted to the corresponding 

value of f3. The smaller sampling interval provides better performance. However, 

the smaller Ts requires higher-speed operations. Design of a high-speed digital 

signal processing system requires less complexity than a high-speed analog system. 

According to the above, Ts = w-2 is chosen as the sampling interval in the general 

simulations to fit a large range of solitons in the digital soliton system simulator. 

4.2.2 Lattice Length 

As discussed previously, the ideal Toda lattice has an infinite number of nodes. 

A finite model is used to substitute for the ideal case in simulation. However 

the longer the circuit, the smaller the reflected signal from the terminal, but the 

more complex implementation. The MMSEs between input single soliton and the 

propagated signals at different nodes with different-length lattice is illustrated in 

Figure 4.1, where Ts = 10-2 , Lzpc = 32 and the parameter of input soliton is 

specified as f3 = 1. As shown in this figure, the performance at a given output 

node is improved with the addition of more nodes to the lattice. But when the 

number of nodes in the circuit increases to a certain number, the performance will 

be maintained to the same level even with more nodes added to the circuit. If 

the signal is outputted at the tenth node, lattices with more than thirty nodes 

provide the same performance, in terms of MMSE. In the same way, if the signal 
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is outputted at the thirtieth node, at least forty-node lattice is needed. 

The time shifts between the input soliton and the output signals at every node 

with different-length lattice are shown in Figure 4.2. From (4.2), the theoretical 

time shifts at the mth node is 

~:n = 0.8814m (4.3) 

according to the parameters of the simulation. As illustrated in Figure 4.2, the 

numerical results closely approach the theoretical result, except for the last nodes 

due to the reflective signals from the terminating impedance. 

According to the discussion above, how to choose the lattice length relates to 

the output node. And then where to output the signal at Toda lattice depends on 

the design of different systems. 

4.2.3 Linear Predictor Order 

In the digital soliton system simulator, linear predictors are used to cut delay-free 

directed loops to guarantee the realizability as discussed in Section 3.3.5.2. Qual­

itatively, a larger order predictor could provide a better performance to approxi­

mate the current output based on larger number of previous inputs. A larger order 

requires more memory, and a reasonable complexity versus performance balance 

should be achieved. The simulation parameters are as follows: N =50, T8 = 10-2 

and j3 = 1. Here linear predictors in the model have different prediction orders 

at every experiment. The order Lzpc = 32, 64, 128,256 are selected respectively. 

Figure 4.3 presents the performance curves of MMSEs between input single soliton 

and the propagated signal at each node. Notice that higher predictor order gives 

better MMSE performance for node number less than 35. Nodes further into the 

lattice are computed due to end reflections. Figure 4.4 illustrates the time shifts 
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at every node with different order linear predictors. As shown in this figure, the 

numerical results with different order linear predictors are close to the theoretical 

result, which is described in ( 4.3), except for the last nodes due to the reflective 

signals from the terminal. 

Different digital soliton systems have different performance requirements. Fig­

ure 4.3 is an important reference for deciding the linear predictor orders in different 

systems' simulation. 

4.2.4 Computational Complexity Analysis 

In this subsection, the computational and memory complexities per sample time 

are analyzed. 

The Lzpc-th order linear predictor here applies Levinson-Durbin Algorithm (35) 

to compute the autocorrelation estimation equations, which requires O(L~c) op­

erations to get the Lzpc coefficients ai, i = 2, · · · Lzpc + 1. The algorithm requires 

L multipliers for calculating the estimate of the next value 

So a Lzpcth-order linear predictor requires O(LrPJ multiplication operations. 

Moreover, the number of operations is proportional to the lattice length N. 

Therefore, the whole computational complexity of the digital Toda lattice is bounded 

by 

(4.4) 


Notice that although Lzpc gives most benefit to performance, also increase the 

complexity greatly. 
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A Lzpcth-order linear predictor requires Lzpc memories to store the previous 

inputs. At every node, two memory elements are included: a linear inductor and 

a nonlinear capacitor. In reference to Section 3.3.5, two memories are required to 

represent a node. Therefore, aN-node digital Toda lattice model with Lzpcth-order 

linear predictors requires 

M (N, Lzpc) = N(Lzpc + 2) (4.5) 

memones. 

When an ex~mple of soliton communication system is introduced in Section 4.4 

to demonstrate this digital model, this form of complexities ( 4.4) and ( 4.5) will 

be employed to analyze the computational and momery complexities of the digital 

soliton communication system. 

4.3 Verification of Soliton Properties 

Based on the discussion of parameter design and the introduction to the simulation 

environment, a wave digital model of the Toda lattice was used to simulate a digital 

soliton system in Simulink. The underlying question is whether this model works 

for simulating the analog Toda lattice's properties. The following simulations 

are performed in Simulink, where the parameters are set as : the sampling rate 

Ts = 10-2
, linear predictor order L = 256, lattice length N =50. 

Considering the properties of soliton-supporting systems exemplified by the 

Toda lattice in Section 2.3.1, three significant characteristics should be checked to 

demonstrate that the digital model can function as a digital soliton system, namely 

(i) an input pulse dissolves into many solitons, each travels at its own velocity, (ii) a 

soliton of higher amplitude travels faster than one of lower amplitude, (iii) solitons 
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Figure 4.5: The propagation of input pulse in the digital Toda lattice (Ampli­

tude=! V, Duration=2 s Ts = 10-2 
, N =50, Lzpc = 256) 

can pass through one another without changing their shapes and velocities, (iv) 

during overlap, their joint amplitude decreases [1J. 

Firstly, an input pulse signal will dissolve into solitons propagating along the 

soliton-supporting system. This property is illustrated in Figures 4.5, 4.6 and 4. 7. 

As shown in Figures 4.5 and 4.6, rectangular pulses with different amplitudes and 

the same duration will dissolve into different solitons. Higher-amplitude pulses 

propagate as a soliton with higher amplitude, faster velocity, which indicates that 
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Figure 4.7: The propagation of input pulse in the digital Toda lattice (Ampli­

tude=! V, Duration=5 s Ts = 10-2 
, N = 50, Ltpc = 256) 
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the parameter f3 of this soliton is larger. Similarly, the lower-amplitude pulse 

propagates as a soliton with smaller {3. In Figure 4.7, the rectangular pulse with 

2 volts amplitude and 5-seconds duration dissolves into two solitons. Comparing 

with Figure 4.6, two pulses with the same amplitude and different duration will 

dissolve in solitons of different numbers. In general, longer duration pulses dissolve 

into more solitons than shorter duration pulses. 

The second important property of a Toda lattice circuit is that a Toda soliton 

can travel with invariant velocity and stable shape and a soliton of higher amplitude 

travels faster than one of lower amplitude. Such stability can be shown in Figures 

4.8 and 4.9. An input Toda soliton propagates in this digital Toda lattice model 

with stable shape and invariant velocity. A soliton of higher amplitude in Figure 

4.9 travels faster than one of lower amplitude in Figure 4.8. 

The third property is that solitons can pass through one another without chang­

ing their shapes and velocities. The forth property requires that during the over­

lapping of two solitons, the joint amplitude of the signal decreases. These charac­

teristics are illustrated in Figure 4.10. 

A key property for communication systems are the noise dynamics of soliton 

systems. In [2], noise dynamics are analyzed in detail using inverse scattering 

theory. The Toda lattice can be viewed as low pass filters at each node for Gaussian 

noise. Figure 4.11 and Figure 4.12 show the stability of solitons in the presence of 

additive noise when propagating in this digital Toda lattice model. 

These simulation results verify some important properties of the digital model 

and show it to be a good model of a Toda lattice. Thus, this model can function 

as a digital soliton system simulator successfully, avoiding the inherent problems 

of analog implementations. 
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Figure 4.11: Noise dynamics in the digital Toda lattice with One soliton+ additive 

Gaussian noise (JL = 0, a-2 = 1) input ({3 = 2, Ts = 10-2 
, N =50, Ltpc = 256) 
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Figure 4.13: OOK soliton communication system 

4.4 	 an Example of a Soliton Communication Sys-

tern 

According to the discussion in the previous section, the digital soliton system 

simulator has been demonstrated to have good agreement with an analog Toda 

lattice circuit. In this section, an example of a soliton communication system, 

described in Section 3.2.2, is provided to compare the digital model with analog 

Toda lattice. Consider the soliton communication system in Figure 4.13, on-off 

keying (OOK) modulation is employed, and a soliton with {3 = 2 is used as carrier 

signal. The digital model established in Simulink acts as the digital modulator 

and demodulator. For comparison, an analog modulator and demodulator are 

simulated using the ordinary differential equation (ODE) functions in Matlab to 

solve (2.23) to represent analog Toda lattice. 
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Figure 4.14 presents bit error rate (BER) versus signal-to-noise ratio (SNR). 

The performance curve of OOK system with analog modulator and demodulator 

is computed using the technique in [19]. Here 

SNR=10log(!;) db, 

where a 2 is the power of AWGN, Ea is the average transmission energy of OOK 

communication system, 

Ea = ! {T s2(t)dt 
2 Jo 

where T is 99% energy duration of soliton carrier s(t). The AWGN is modelled 

as i.i.d. Gaussian random sequence in Matlab, i.e. the sampled noise. Thus the 

effective white noise power for modelling in Matlab a! should be 

where T8 is the sampling time and a 2 is the noise in analog domain. 

According to Section 4.2, the parameters of the simulation are as follows: 

L = 1, V0 = 1, Co = 1, Ts = 10-2 
, Llpc = 256, N = 30. In reference to (4.4) 

and (4.5), the computational complexity of this model for simulation is approxi­

mated on the order of 106 operations per sample time and the number of memories 

required is on the order of 8000. However, as introduced in Section 4.1, this model 

can be translated to HDL, which can be implemented in FPGA, which is real-time 

system. Therefore the simulation time can be reduced significantly. The perfor­

mance illustrated in Figure 4.14 shows that when SNR is small, the BER of the 

digital model approaches that of the analog model and when SNR is large than 

8dB, the performance of the digital model is a little better than that of analog 

model. Linear predictors are applied in the digital model to cut DFDLs. An 
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Figure 4.14: The performance comparison of analog [19) and digital OOK solition 

communication system 
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important property of the linear predictor is that it can smooth the input signal. 

Therefore, when SNR is larger, and the variance ofthe noise is smaller, the output 

signal from the linear predictor will be closer to the signal without noise. Figure 

4.14 shows our digital model can work well as digital modulator and demodulator 

in a soliton communication systems. 

4.5 Conclusions 

In this chapter, the parameter design problem of the digital Toda lattice model 

is discussed and the simulation environment is specified. The models built in 

Simulink can be translated to HDL by additional tools, so the digital model can be 

implemented in a DSP, or FPGA. Therefore, significant speed improvement using 

hardware simulation can be achieved based on the design of a digital simulator 

in Simulink. The properties of the digital model are verified, and the digital 

model is shown to closely approximate an analog Toda lattice circuit. Finally, an 

example of an OOK soliton communication system is provided. The BER versus 

SNR curve shows when the digital model is applied in communication systems, 

the performance of the system approaches the one with an analog Toda lattice. In 

summary, the digital Toda model based on WDF principles can work as a simulator 

for analog soliton systems. 

112 




Chapter 5 

Conclusions and Discussions 

Since soliton signals have some unique properties, solitons and soliton systems 

have become of significant interest for a variety of applications, especially in signal 

processing and communications. However, all the soliton systems are physical sys­

tems, and are thus analog. Analog systems are sensitive to random disturbances 

and component variations, whereas digital systems are more robust. In this thesis, 

a digital soliton system simulator is designed by wave digital principles and im­

plemented in Simulink [57]. This digital soliton system simulator is a specialized 

soliton signal generator and processer in digital domain, which can be applied in 

digital signal processing or digital communication systems. 

5.1 	 Discussions on the Digital Soliton System 

Simulator 

The design and implementation of a digital soliton system is presented in this thesis 

to overcome many of the difficulties inherent to analog soliton systems. The Toda 

lattice circuit is considered since digital circuit design methods can be applied to 
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approach a digital model that has nearly equivalent functions with the analog Toda 

lattice circuit. 

The analog Toda lattice LC circuit is nonlinear. Digital implementation of 

analog filters can be approached in the time domain or in the frequency domain. 

For a linear time-invariant (LTI) system, the impulse response or transfer function 

can describe the system completely. Therefore, the general methods to design a 

digital circuit from the corresponding LTI analog prototype are usually achieved by 

the transformation of the impulse response from continuous time domain to discrete 

time domain or the transfer function from analogous complex frequency s-domain 

to discrete complex frequency z-domain. However, since the convolution law does 

not apply for nonlinear systems, there is no impulse response or transfer function 

to describe the nonlinear analog circuit. Thus, the usual methods for the LTI 

cases are not directly available to this nonlinear case. Wave digital filter (WDF) 

theory is a digital circuit design technique based on the topological structure of 

the circuit [27). A WDF can be regarded as a digital representation of a classical 

network by modelling every element and interconnection. It is a physical modelling 

methodology based on the topology. Thus, WDF techniques are applied to design 

the digital model of the Toda lattice circuit in this thesis. 

By means of wave digital circuit theory, a new digital representation of the 

Toda lattice circuit is proposed in Chapter 3. The detailed design procedure of 

this wave digital model is addressed. This digital model of a soliton system can 

be employed as a digital soliton system simulator, which has the potential to be 

applied in the research of soliton systems, such as in optical communications, and 

soliton multiplexing systems. 

To verify the properties of the digital soliton system simulator, the designed 

model is implemented in Simulink [57). After the simulation environment is spec­

ified, and the parameters are selected due to the various requirements, the model 
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can be exploited for simulation. Numerical results are given to verify some impor­

tant properties of the digital model and show it to be a good digital model of an 

analog Toda lattice. 

As an example of an application, a soliton communication system with on-off 

keying (OOK) modulation scheme is simulated with the digital soliton system sim­

ulator as the modulator and demodulator. For comparison, analog Toda lattice 

circuits are simulated using the ordinary differential equation (ODE) functions in 

Matlab to act as analog modulator and demodulator. The performance curve of bit 

error rate (BER) relative to signal-to-noise ration (SNR) shows the performance of 

applying the digital soliton system simulator approaches the communication sys­

tem of applying the analog Toda lattice. Thus, the digital soliton system simulator 

can work as well in soliton communication systems, avoiding the inherent problems 

of analog implementations. 

5.2 Future Work 

In the realization of this digital soliton system simulator, wave digital filter the­

ory is employed. An important problem of delay-free directed loops (DFDLs) 

is encountered in the implementation of this nonlinear ladder-type circuit which 

includes a nonlinear element at every node. In this thesis, linear predictors are 

added to cut the DFDLs. However many memories and multiplication operations 

are required for this method to solve DFDL problem. A promising future direction 

is to find a lower complexity method to cut DFDLs while maintaining the same 

performance level. 

The motivation of this work is to realize a digital soliton system, which is more 

robust than its analog counterpart. Therefore, it can facilitate the applications 

of soliton systems to practical systems through the ability for rapid simulation. 
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Furthermore, this digital model built in Simulink can be translated to C code 

by the Target Language Compiler (TLC) in real-time workshop to accelerate the 

simulation speed. The code can be downloaded and executed in a digital signal 

processor (DSP) to execute the real-time simulations. Therefore, more work can 

be done to get a digital model of C code to be utilized in DSPs. In addition, 

more work is required to translate the Simulink models to a Hardware Description 

Language (HDL) for implementation on a field-programmable gate array (FPGA) 

[52, 53]. This will provide a further increase in rate of simulation of such systems 

while maintaining robustness over analog soliton systems. 
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Appendix A 

Block Diagrams of the Digital 

Model in Simulink 

As proposed in Chapter 4, the digital soliton system simulator is built in Simulink. 

The important models are illustrated here. 
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Figure A.l: The 30-node digital Toda lattice model 
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