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Restricted Hartree-Fock calculations for light
even-even nuclei have been carried out using simple
effective interactions. The primary emphasis is on the
nature of the intrinsic states, and, in particular, on the
deformation of these states. 1In order to find the equi-
librium deformations a representation of deformed
cylindrically symmetric states is used. A self-consistent
technique for finding the equilibrium size and shape is
proposed.

There is a strong secondary emphasis on the role of
the effective interaction, and four rather different
interactions are used. Two of these incorporate a
cependence on the density on the nuclear system, and this
density dependence improves the systematic behaviour of the

energies and sizes of light nuclei.
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CHAPTER 1

INTRODUCTION

The study of the structure of nuclei has been
dominated for many years by the shell model. In this
model it is assumed that the effect of the interactions
between pairs of particles can be approximated by a
simple local potential acting on the individual particles.
In the simplest form of the model the complicated
Schrodinger equation for the nuclear system is replaced
by a set of Schrodinger equations, one for each nucleon
moving independently in a harmonic potential. It is
well known that the many-body wave functions, which are
solutions to this set of equationé, are antisymmetrized
products of single-particle wave functions. The single-
particle wave functions are just the eigenstates of the
Schrodinger equation for the harmonic well, and the many-
body wave functions which they produce are called con-
figurations. Normally a single-particle spin-orbit force
is included with the harmonic potential, and, with this
modification, the model can explain many of the gross
features of nuclei. The experimental‘evidence in favour
of such a model has been reviewea many times (e.g. Elliott

and Lane 57).



One of the drawbacks of this approximation is
that it is not connected with the actual two-nucleon
interaction, and because of this it is not possible to
obtain self-consistent nuclear energies or sizes. One
way of relating the model wave functions, to the two;
nucleon interaction, is to regard them as approximations
to the true nuclear wave functions. A better approxi-
mation can be obtained by taking linear combinations of
configurations, obtained by a variational procedure of

the form

S<Y|H|Y> =0

o B
b 8

= 1 i i
This is equivalent to diagonalizing the N x N matrix
whose elements are <¢ilH]¢j>. Mixtures of configurations
found in this way contain long-range correlations which
are not present in the simple configurations. A problem
which arises in this approach 1is the choice of the
incomplete representation of states ®i. This problem
also occurs in the Hartree-Fock approach, and will be
discussed later.

An alternative way of making this type of model
self-consistent is to use the two-nucleon interaction to
derive the average potential experienced by the individual

nucleons. A procedure for doing just this, for the atomic



electron problem, was given by Hartree (1928) and improved
by Fock (1930) many years ago. The Hartree-Fock method

is based on a variational principle of the Ritz type, and
will be discussed in detail in chapter 2*. This method is
ccmplicated by the fact that the average one-body
potential, which is derived, is in general non-local.
Furthermore, the only practical procedure for finding the
average one-body potential is an iterative one. Successive
iterations must be carried out from some suitably chosen
starting point, and there is no guarantee that these
iterations will converge to give a self-consistent result.
Despite this difficulty, convergence is usually obtained
if a good staring point is chosen. Meaningful Hartree-
Fock calculations for light nuclei must be carried out
with a computer, but these calculations are more tractable
than the configuration mixing ones mentioned above. In
particular the Hartree-Fock method can be applied to a
wider range of nuclei, and consequently it is suitable for
studying the systematic behaviour of energies and sizes of

light nuclei.

"NOTE :

For an alternative derivation see Baranger (1963).



In the type of Hartree-Fock calculation that will
be considered here the single-particle wave functions
are derived as linear combinations of a finite number of
harmonic oscillator states*. These harmonic oscillator
states form an incomplete representation for the Hilbert
space of all one-body states. Because the representation
used is incomplete, the restricted Hartree-Fock (RHF)
solutions depend on how this representation is chosen.

Unfortunately, the "realistic" two-nucleon
interactions, which can be derived from scattering
experiments, appear to be strongly repulsive at short
distances. Because of this there are important short-
range correlations in the true nuclear wave function.
These correlations are not present in the types of wave
functions considered above, and because of this such wave
functions have very large or infinite energies. In fact
the matrix elements of the two-nucleon interaction, which
are needed in the configuration mixing and Hartree-Fock
calculations, do not exist for most of these "realistic"
interactions. This difficulty has been removed, in
principle, by the advent of the Brueckner-Goldstone theory

(Goldstone 57). This theory showed quantatively how the

&
NOTE :

An alternative procedure is to use a co-ordinate
space representation. For an example of this technique
see Vautherin and Veneroni (1967).



strong two-nucleon interaction is effectively damped, in
a many-body system, as a result of the exclusion principle
which prevents two nucleons from occupying the same state.
Brueckner proposed an alternative form of the Hartree-
Fock theory in which the strong two-nucleon interaction is
replaced by a complicated reaction matrix. The reaction
matrix expresses the damped interaction and is dependent
on the many-body system in which the interaction takes
place. It was further shown by Moszkowski andecott (1960)
that the reaction matrix could be approximated quite
well by an effective potential. From these ideas it
appears that the Hartree-Fock method can be used if the
"realistic" interaction is replaced by an effective inter-
action. Such an approach has also been used in configuration
mixing calculations (e.g. Kallio and Koltveit 64), and more
recently this type of calculation had been carried out
with reaction matrix elements derived directly from
"realistic" interactions (e.g. Kuo and Brown 77). The
effective interactibn to be used in this work is not
taken from a "realistic" interaction, but rather is
derived from physical properties which the effective
interaction should have.

The modified form of the Hartree-Fock method
obtained from the Brueckner-Goldstone theory, is expected

to give the binding energies of nuclear many-body systems



quite well, even though the short-range correlations
are still absent in the wave functions used. It can
be shown from the Bethe-Goldstone equation that the
relative wave function for two particles "heals" outside
a small region which is directly affected by the short-
range correlation. That is, except when two particles
are very close together, they behave as if they were
independent. It is reasonable to expect that this long-
range independent behaviour of the particles is expressed
by the wave function érising in the modified Hartree-
Fock approach. Thus the size and shape of the Hartree-
rock wave function can be compared with the size and
shape of actual nuclei.

The earliest Hartree-Fock calculations for light
nuclei were carried out by Kelson et. al. (Kelson 63;
Kelson and Levinson 64; Bassichis, Kelson and Levinson 64).
In these calculations the representation was taken to be
a single shell of oscillator states belonging to a
spherically symmetric harmonic potential. A large part
of the one-body potential was inferred from the experi-
mentally observed single-particle energies. Because these
energies vary with the size and shape of the nuclear state
in a more completevcalculation, it was necéssary to "freeze"
the nucleus ‘at the experimentally observed size. Further-

more the effective two-body interaction used could not be



related directly to a "realistic" interaction. In this
way much of the self-consistent nature of the Hartree-
Fock calculation was destroyed. Ripka (1966) has studied
the effect of increésing the representation to include
more than one major shell of oscillator states. An
increase of the size of the representation in this way
always improves the Hartree-Fock calculation.

In the recent work of Davies, Krieger and
Baranger (1966), of Muthukrishnan (1967), of Bassichis,
Kerman and Svenne (1967), and in this work, the average
one-body potential is derived consistently from some
simplified form of effective two-body interaction.
Davies et. al. use a representation of four major shells
of spherical oscillator states. There is one degree of
freedom in this representation, which is the size of
the harmonic well which generates the oscillator states.
In principle the Hartree-Fock calculation will always
seek the equilibrium size of the nucleus, but in practice
the size of the RHF solution varies almost linearly with
the size of the representation states. For this reason
it is necessary to vary the representation size until a
minimum energy is found; this minimum point givés the
equilibrium solution. In the work of Muthukrishnan a
representation of four major shells of cartesian oscillator

states was used. This representation has three degrees



of freedom, one for each of the three axes of the
asymmetric harmonic potential used to generate the
oscillator states. If these three degrees of freedom

are used, not only the size but also the shape of the

RHF solution is changed. Once again an equilibrium

point should bé found by minimizing the energy of the

RHF solution. In neither of these two works just mentioned
is it clear exactly how this type of variation was carried
out, or the extent to which it was carried out.

In the work of Bassichis, Krman and Svenne a
representation of four major shells of oscillator stétes
generated by a spherical well was used. The representation
was kept at a fixed size but the nuclear system under
consideration was forced to deform by using a constrained
form of the Hartree-Fock method. There does not seem to
be so clear a theoretical justification for this technique,
as there is for the method used here to find the equili-
brium deformation. One of the important points made by
Bassichis et. al. is the magnitude of the second-order
correction to the energies found in the Hartree-Fock method.
The authors find that the energies decrease (i.e. become
more negative) by about 17% of the total potential energy,
when the second-order term is taken into aécount. This
represents a large correction in terms of the binding

energy. If the second and higher order corrections are



as large for the forces used in this thesis, then the
discussion of the systematic behaviour which is taken
up in chapter 7 must be modified.

In this thesis a representation of three major
shells of cylindrical states will be used. Such a
representation has basically two degrees of freedom.
However one of the original features presented here is
to allow the different oscillator states in the repre-
sentation to come from harmonic wells of different sizes
and deformations. The effect of this is examined in
chapter 5. 1In most of the previous RHF calculations that
have been reported, some symmetry has been imposed on the
single-particle states. No such impositions are made
here and it is shown that in some cases spurious solutions
are created by symmetry requirements which effectively
relate the single-particle states to preferred axes in
space.

In the second chapter the RHF method is explained,
and a closely related approximation is defined. The '
third chapter is concerned with the development of the
four different effective forces to be used. It is shown
in this chapter that the parameters of a certain analytic
form of effective interaction can be almosé entirely
determined by imposing natural requirements. The fourth

chapter presents the technical details of the RHF
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calculation, which are too important to be confined to

an appendix. The results which follow cannot be fully
understood unless the techniques and their limitations
described in this chapter are understood. Some problems
connected with the convergence of the Hartree-Fock
iteration procedure are also discussed at this stage.

A detailed examination of the influence of the shape

of the representation on the RHF solution is carried out
in chapter 5. 1In this chapter comparisons are made with
some calculations in a representation of cartesian states,
and also with some RHF calculations which use a repre-
sentation of four shells of cylindrical oscillator states.
A standard procedure for obtaining an approximate
equilibrium RHF solution is defined in chapter 2 and
examined in chapter 5. In chapter 6 this procedure is
used to examine the even-even nuclei lighter than “°cCa.
All the calculations described in chapters 4, 5 and 6

are carried out with the same simple effective force,
force 1. In chapter 7, a survey of results derived

from three other effective forces is given. All these
three effective forces represent a considerable improvement
over the first force, and two of them incorporate a
dependence on the density of the nucleus in a manner
suggested by Bethe (1966). These density dependent

forces are designed to saturate nuclear matter in a
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Unfortunately these forces

Hartree-Fock calculation.
have not been treated exactly in the calculations with
finite nuclei, and some of the problems related to this

fact are discussed.
do not permit a detailed comparison with experimental

The calculations carried out for this thesis
The reason for this is explained in chapter 6.

spectra.
The comparisons

Instead of making such a comparison, we have attempted
to understand as fully as possible the nature of the

for light nuclei.

Hartree-Fock solutions,

that are made with experimental results are confined to
chapter 7, and are made in order to improve the pheno-

menological force used.



CHAPTER 2

SIMPLE HARTREE-FOCK THEORY FOR WELL-BEHAVED INTERACTIONS

The large number of Hartree-Fock calculations which
have been reported for finite nuclei in recent years have
employed a variety of techniques. Therefore, it is felt
necessary to explain here in a detailed and unambiguous way
how the results to be discussed in later chapters were
obtained. To do this in a self-contained manner we consider
a non-relativistic n-body problem, in which there is a two-
body interaction v(rij) for which all the matrix elements we
will require are assumed to be well defined. The Hamiltonian
for the problem is then

H=I Ti;+ I v(r..) - T
5 i3 13 cM (1)

in which Ti denotes the kinetic energy of the i'th particle

and rij denotes all the relative co-ordinates of the i'th and
j'th particles. TcM denotes the kinetic energy associated with
the motion of the centre of mass, and is subtracted explicitly,
so that the Hamiltonian represents only the intrinsic energy

of the nucleus. The Schrodinger equation which should be

solved is
H|y> = E|ly> (2)
and because it is not known how to treat this equation exactly,

approximate solutions must be used.

12
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The state vector |¥> belongs to an infinite dimensional
Hilbert space, and it is well known that the real valued
function <Y|H|Y>, confined to the hypersphere defined by
<¥|¥3» = 1, has stationary values at those points where (2)
is satisfied (Messiah 65). To find approximate eigenstates of
H some finite dimensional hypersurface S ié choseny, and the
function <Y |H|Y¥> confined to S and to the hypersphere is written
as <?[H]W>|S. The presence of an eigenstate of H close to S
can be expected to induce one or more stationary values of the
restricted function <W]HIW>|S, on S and close to the true eigen-
state. If the states on the surface S are paramaterized byla
set of real numbers Q1gee.Cy then the approximate solutions

are given by values of the a's which satisfy

(o5

@
Q

" {<¥(01,000n m)lHl‘P(al,....am)>}= 0; 1= 1, 2, samne Me
Points found in this way are regarded as approximate eigenstates.
It must be noted that there is not necessarily a one to one cor-
respondence between the true eigenstates and these approxi-
mations. In the special case where S is a linear subspace of

dimension N of the Hilbert space, and is spanned by a set of

states |®i>, i=1, ... N, then the general form of |¥> is

l¥> = 2, N_
1, =

05>,
and

<v|u|y> = 2t B a

where a is the column vector of the ai,and HS is the N x N
x +
matrix whose elements are <¢i|H[¢j>. The function a Hg a

whose stationary points are required, subject to the constraint
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<¥Y|¥> =2 |a,|? = 1,

. i
is the analogue of <¥|H|Y> in an N-dimensional space. So,
by the converse of the theorem relating eigensolutions to
stationary points, the approximate solutions in S occur at the
eigenvectors of HS. In this way approximate solutions are

found by diagonalizing finite matrices.

The Hartree-Fock Approximation.

An approximation of the type outlined above will now
be considered for the problem defined by the Hamiltonian (1).
The choice of the surface S is dictated, for the case of finite
nuclei, bartly by mathematical simplicity and partly by
experimental results. There is much evidence to indicate that
the low lying states of finite nuclei are close to independent
particle states, that is to say to states which are formed by
forcing individual nucleons into particular one-body states
and then taking into account the fermi statistics which the
nucleons must obey. If the particular one-body states are
indexed by a set of indices {ai:i =1, ... n} and denoted by
lai> with configuration space wave functions wa'(r), then the

i
n-particle state has the wave function

Yl eeeoxn) = Rl (FY (5p) eee ¥y (5p)]
Where A is the normalized antisymmetrising operator acting on
the generalized co-ordinates r;. This wave function has the

‘form of a determinant and we will denote it in its normalized
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form by ¥ = det (wa , v

We will also denote the n-particle state by
] > —_
|y By o wusis a > (3)
and the one-body states lai> are called the occupied states.

If the wave function det(wal, T wan) is to be non-
zero, then the one-body wave functions must be linearly
independent, and it will be seen below that there is no loss
of generality if the states are taken to be orthonormal, so
this will be assumed from now on.

The belief that statés of this form lie close to the
true eigenstates of the problem leads in a natural way to
minimizing the function <¥|H|¥> over the hypersurface of such
incependent particle states.

The most general variation on this hypersurface is

§v =det(y, + 8V, , ... VU, + SV ) - det(, , ... Y )

1 1 n n 1 n

which, when second order and higher terms are ignored, can be
separated into the sum of n independent variations of the form

Ga'v = det(wa g s e wa' e Gwa-, eiiis wa ) = det(wa P ...-wa ) s
i 1 i i n 1 n

(4)

The conditions §<¥Y|H|¥Y> = 0

| = 1, (5)
that |Y> be a stationary point of the required form, imply
certain conditions on the lai>, and to express these conditions

we consider a complete orthonormal basis of states |B>, for
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the one-body Hilbert space, which include the states ai> .

Then we can write
O3

Sy (r) = ZB Ea WB (x)

(o
i

and the variation (4) of the i'th state can be further sepa-

rated into a sum of independent variations of the form

S, ,8Y = detlyg . .. by, * e:i s = wan) - detliy o .- wanx.
(6)
Certain of these variations are identically zero,
namely those where B = o for some i. If the set of occupied
states oy is denoted by A then the remaining non-vanishing

variations produce

S<¥Y|B|¥> =. & 2 XRel<Y|H|S
deA, BgA .

’BW>] (7)

In order to satisfy conditions (5) simultaneously, a Lagrange
multiplier is introduced in the usual way and it is necessary
to find states |¥> which satisfy
S<Y|H-AI|Y> = 0 (8)
or from (7)
z Re[<W|H-AI]6a g¥>1 = 0
aehA, BZA ’
As the eg coefficients in the 6a Bw(r) are all independent and
' 4 .

may be real or imaginary, it follows that

<W|H—AI[6Q,BW> = 0 (9)

for all aeA, BfZA.
The conditions (9) are most easily reduced to conditions on the
states |a.> if we resort to the notation of second quantization,

; ; - . +
and introduce creation and annihilation operators a,r ay



A7

B " " + +y
satisfying {aa, aB} B {aa, aB} = 0
+ —
a’|o> = la> , a_|0> =0
o t o,
+ + +
and =
aal Ay eeees aOLn o> lal, cee. 0>
where {A,B} = AB + BA is the usual
anticommutator.
So that from (6)
Ga,B > = €5 a5 3, lal, ceee Q>
and (9) becomes
<oy e.. oo | (H-AI) ag a | @y «ev a > = 0.

(10)

It is well known that the operator H can be expressed in terms

of the operators a , a’ as
o o
H=T+V
T = I<a|T|B> a a
af - B
+ +
V=%73 <aB|Vv]|yé> a, ag ag a, . (11)-
aByé ¥

T and V are used here to denote the parts of H which are one
and two-body operators respectively. It should be noted that
the centre of mass energy affects both terms. As defined
above the two-body state |aB> is antisymmetric; it will be

more convenient in later chapters to use matrix elements between
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states which are not antisymmetric, and such states will be
written |aB). Thus

|aB> = 1/¥Z [|aB) - |Ba)]

and <aB|V]|ys> =[B|V|ys - &y).

Using (1l1) equation (10) can be reduced to

<o | T+ T | B>=0 achA, BgZA (12)

where ' = I a_ VvV a * {13)
acA »

or <a|T'|B8> = Ben <ay|V|By> (14)

In (13) and (14) V is the two-body operator defined in (1l1l).
Equations (12) are the required conditions on the
one-body states, but it must be noted that the states that
are defined by these conditions are not unique. The reason
for this is as follows. The many body state [al, Oo o an>,
which is of interest, can be formed just as well from the

states
- n

= l
lag > Ly m g Ugs ' log® : (15)

so long as the n x n matrix U has rank n, and if in addition
U is unitary then the |ai‘> are orthonormal. Because of this
the many-body state does not define unique occupied one-body
states, but instead defines an n-dimensional subspace (the

subspace spanned by the Iai>) within the Hilbert space of all

one-body states. Any n linearly independent states Iai>

taken from this subspace define the same many-body state and
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it is because of this that the n states can be taken as
orthonormal. It is customary to characterize the subspace
of occupied states by the projection operator onto it i.e.

p=1ZI_ . |a><a | (16)

and this operator is called the density matrix. There is
now a one-to-one correspondence between many-body states
of the independent particle type and their density matrices.
The one-body operator T' is defined uniquely by the many-body
state.(it is not changed by the transformation (15)) and this
can be expressed by writing T (p).

The Hartree-Fock eguations (12) are now satisfied by
a set of n states lai>, which form an approximate many-body

state, provided the operator T (p) which they produce is such

ot

hat the operator T + T(p) leaves the subspace spanned by

the ]ai> invariant. Because more than one set of one-body
states will produce the same many-body state and the same
density matrix these one-body states are not unique. However,
it is customary to denote the eigenstates of T + T'(p)as the
Harﬁree—Fock states of the system. These states satisfy the
eigenvalue equation

[T + T(p)] o> = g, o> , (17)

in which T (p) appears as an average potential felt by the

independent particles. The Hartree-Fock state has an energy
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<a,0, ... ¢_|H|aje, ....0. > = I <a|T|e> + % 2 <aB|v|aB>
12 n 1 2 n B a,BeA
= E = & 2 (<a]T|a> + € ) (18)
o a€EA "

Furthermore the one-particle-one-hole excitation aB+ a, Ial ceee O
2
of this ground state has an energy

+ & N
CIEEEE anlaai agHag aailal -e. o > =E_ + SB-ca - <Bai|VlBai>

(19)

When the interactions are small the last term in (19) may be
neglected and the energies €a appear as single particle
excitation energies. In general though these one-particle-
one-hole excitations do not satisfy the Hartree-Fock conditions
because the density matrix, and hence T (p), is changed when
the set of occupied states is changed. This means that the
single particle energies Ea must be recalculated, and even
when the one-particle-one-hole states are close to Hartree-Fock
soclutions there is a rearrangement of the single-particle
levels. In even—-even light nuclei, where states with high
space symmetry are preferred, the low lying excited states are
not of the one-particle-one-hole type.

A further important point is evident from an investi-
gation of (13), namely that any unitary transformation which
leaves the subspace of occupied states invariant, and which

also lecaves V invariant, necessarily leaves T (p) invariant.
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Consequently, the effective potential T has just those
symmetries which are common to the set of states lay >
(i.e. to p) and V the two-body interaction.
The Hartree-Fock conditions (12) or (17) do not

immediately solve the problem of finding approximate many-
body states, because the operator whose eigenstates are required
depends, through p on the states themselves. For this reason
one must find solutionsAby choosing an initial set of states

(o)

o > and carrying out successive iterations. In the p'th

iteration one replaces the states |ai(p) > with the eigenstates
of T + T(p(P)) where p(p) is the p'th approximation to the

density matrix defined by

(p) _ (p) (p)
P & ZaeAla > <a | (21)

The iterations should continue until the solutions converge,

in particular until successive approximations p(p)are equal.

]

ictually the above iteration procedure is not well defined

»

until some prescription is given for selecting which of the
infinite number of eigenstates of T + ' are to be occupied.
One such prescription would be to select the eigenstates which
were closest to the previously occupied states (i.e. to the
iai(p) > ). However, it is felt that such a procedure might
act as a constraint on the overall convergence of the density

matrix. That is by continually forcing the system into single-

particle states of the same type, convergence may be prohibited.
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A more physical prescription has been used here and is based
on arranging the single-particle states so that their eigen-
values are increasing. When this is done the states are
occupied according to an occupation vector n which has com-

ponents

Nia 1 if the i'th state is to be occupied

1l

n; = 0 if the i'th state is to be empty.
Thus the density matrix p(p) is defined for the pP'th
iteration as
(

(p) _ P) (p)
o = I, n; lag >‘ < ag -

Unfortunately this method can also lead to serious difficulties
in convergence, particularly for odd nuclei. This problem,
which seems to have been ignored in previous works will be
discussed more fully in chapter 4.

The question of convergence must be examined more
carefully in another respect. If the operator T + T has
degeneracies, as 1is very often the case, then the eigenstates
associated with degenerate eigenvalues are not unique and.

cannot be expected to converge even when' the density matrix

The Restricted Hartree-Fock Method

Equation (17), which we would like to solve in any
given iteration, is of the same form as equation (2). However,

we are now in a one-body Hilbert space rather than an n-body
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one, and we have paid the price by becoming involved in an
iteration procedure in order to find a self-consistent
solution. Because of the similarity between (2) and (17), we
use the same ideas to solve (1l7), in any particular iteration.
That is we would like to find some finite dimensional hyper-
surface in the space of one-body states, which lies.close to
the true Hartree-Fock states. Some caution is needed at

this point because, as mentioned before, when a variational
procedure is used to find approximate states, there is no
guarantee that two or more approximate solutions do not
correspond to the same true solution. However if two approxi-
mate one-body states, both close to the same true one-body
state, are used to construct a density operator it seems

lzar that this will give a poor approximation. To some
extent this situation can be avoided if the approximate one-
.body states are constrained to be orthonormal. Also it is
reasonable to believe that the Hartree-Fock states are quite
similar to the single-particle states used in simple shell
models, in particular the Nilsson model for deformed nuclei
{Nilsson 55). If this in fact turns out to be the case,

then we can be fairly confident in our solution, Furthermore
since the Hartree-Fock states should be similar to those of
the Nilsson model, a reasonable choice for the hypersurface

is a subspace spanned by a finite number N, of the onevbody
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wave functions of this model. Thus recalling the special
form of the variational procedure for such a linear subspace,
it is seen that a given iteration can be carried out by
diagonalizing an N x N matrix with matrix elements

H . = <i | T + T(p)] 3> (23)

M

The states |i> are the harmonic oscillator states appropriate

to a cylindrically symmetric harmonic well, and so satisfy

the Schrodinger equation

5= [-V2 + a2p? + B2z2] |i> = e, |i> N (24)

|i> is characterised by 5 quantum numbers as well as the

parameters o and B .

Thus , |i> = lni, m;, n_., s;, T;i oo, B>

[

:3‘;

=

and e, = [(2n; + |mg| + Do+ (n,; + 3% B8] . (26)

S; and Ti denote the spin and isospin quantum numbers
respectively. The cylindrical harmonic oscillator wave-
functions are considered in some detail in Appendix 1.

This then defines our concept of a simple restricted
Hartree-Fock (RHF) calculation in a fixed representation
of states |i>, i = 1, ... N (N must be larger than n the
number of particles). If the approximate Hartree-Fock states

for the p'th iteration are contained in a row vector l%(p)> of

Note

* This notation is ambiguous as a and B have been

used to label single particle states, however no confusion
should arise in what follows.
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length N, and the representation states similarly in a

vector §£> and if the N x N matrix n consists simply of
the occupation numbers nj, mentioned above, along the
diagonal, then the P 'th iteration can be defined by

the matrix equations

Ig(p)> - l&,> B(p)
(p) () (7
p = B n B
(p) _ (p) _. :
Pig " = Igp Pop o <i2|V][3m> (27)
E® =y er(re®y 45z n e P
T + P(p)]la(9+l)> = Eﬂp+l)[a.(p+l)>
3 J J
ld(p+l)> = row vector of the laj(p+l)> ordered so that the
Ej(p+l) are non-decreasing.

The N x N matrix B is unitary, p(p) and P(p) are hermitian,
the matrix T remains unchanged, and E(p) is the energy of.
the many-body state at the end of the'p‘th'iﬁeration, It was
stated previously that the effective Hartree-Fock potential
I'(p) has all the symmetries common to V and‘to p. This is
still true in the restricted Hartree-Fock célculation. i

(o),

the initial states Iai have some symmetry, such as

cylindrical symmetry or time-reversal symmetry, so that the
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density matrix also has this symmetry, then T + T'(p) will
have the same symmetry. This symmetry is then passed on to
the eigenvectors of T + T which are the next approximate
Hartree-Fock states. Therefore, any symmetry in the initial
choice of states is passed on to all subsequent approximations.
Thiis feature is often used to simplify the calculation by
making the matrix T + T(p) split into a block diagonal form,
by choosing to impose certain symmetries on the Hartree-
Fock statesywhich are shared by the representation states.
In this work no such restrictions have been imposed and the
more general range of states was maintained.

The solution obtained by following this procedure
is entirely self-consistent except for the choice of repre-
sentation. Part of this choice is simple because experience
with the shell model has shown that the states with the
lowest eigenvalues e in (24) are the appropriate ones to
use. However, the choice of parameters oy and Bi for each
state is not so trivial. In fact the RHF calculation can_be
carried out for any values of these oscillator parameters and
a value for the binding energy E is obtained when convergence
is achieved. In this manner E can be found as a function

of all the oscillator constants in the representation.

Vo | B Yopen> = B0y cvs Ogs By sos Bl (28)

Since we are essentially involved in a variational procedure,
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it is clear that the proper self-consistent values for the
a's and B's are those which give the lowest value for (28)
subject to the constraint that the representation states
are orthonoxrmal.

Larger values of N in this RHF calculation will
give more complete representations and so better approxi—
mations to the true Hartree-Fock states. Furthermore, the
znergy (28) will become less dependent on the size and shape
parameters oy and Bi defining the representation. If it
were possible to pass to the limit N = « and the repre-

sentation were to become complete, then no matter what

H

ameters o and B were used it would be possible to solve

Da

zxactly for the true Hartree-Fock states. Thus the need

(

to consider variations of the representation, is simply a

consequence of the restricted nature of the calculation.

The CGeneral Harmonic Approximation

It is possible to consider an alternative, less
general, approximate solution of (17). As has been stated,
the states |a> are similar to the solutions |i> of (24)
and we might then look for solutions to (17) within the
hypersurface of all one-body states of this form, seeking
minimum values of

i|T + Tji> = f(al e Oy Bl —_ Bn). (29)

In this equation it is implied that I' is derived from the
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jor

ensity matrix for a many-body state |l,2 «ess N>, Because
the density matrix for this state depends on the oscillator
parameters of all the single particle states, the function
to be minimized in (29) also depends on all these parameters.
Eguation (29) is used to determine the values of these para-
meters by requiring that the n functions

<i

T + I'|i> i= 1,2, eeses N
are simultaneously minimized. In fact this condition can be
derived from the condition that

<1, 2 ....n [H[1,72 ... n> =E (a5 ... @, By ... B)

o B n

(30)
be a minimum. The many-body state |1, 2 .... n> is simply
a determinant of cylindrical oscillator states and, apart
from the fact that different oscillator states may have
different oscillator parameters o and B, this is just the
tvpe of state used in the Nilsson model. For reasons mentioned
above the oscillator states used are constrained to be

orthogonal, and this is equiﬁalent to constraints of the

form Q. = 0O, or B. = B. for certain

pairs i and j. It should be noticed that in this case only
the n occupied oscillator states are varied and constrained,
whereas in the minimization of (28) all N oscillator states
are varied and constrained. The quantum numbers for all of

the states |1>, |2> ... |n> determine an n-particle configuratior
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By minimizing (30), the best parameters for the configuration
are obtained and the configuration wave function defined in
this way is an approximation to the Hartree-Fock state.

This approximation will be called the generalized harmonic

approximation (GHA), and has been used in various forms by

O

ther authors (e.g. Brink and Boeker 67).

Since the results of the more general Hartree-Fock
calculations are usually close to these simple configuration
wave functions, we shall édopt the standard procedure of
using such configurations as starting points for the RHF
iterations. But, in order to bréak the high symmetry of
such states, small random admixtures are introduced into
the density matrix before starting. The way this will be done
will be considered in detail in chapter 3. Furthermore the
function (28) is only slightly dependent on the oscillator
parameters of the representation states which were not
contained in the starting configuration, at least in the
region of the minimum. This leads us to use the same oscil-
lator parameters in the RHF calculation as found from thé
minimization of (30), together with some reasonable average
values for the parameters of those states not occupied in
the starting configuration. Later we shall present some
evidence that in fact, the best values for fhe oscillator
parameters defined by minimizing (28) are usually close to

those found in the GHA by minimizing (30).



CHAPTER 3

CHOICE OF A PHENOMENOLOGICAL POTENTIAL

The discussion of the last chapter can not be

0

applied directly to nuclei if the two-body interaction
occurring in the Hamiltonian does not have well defined
matrix elements between harmonic oscillator states. Most
"realistic" interactions have infinite hard cores, so that
such matrix elements do not exist, and these interactions
can not be used directly. However, the solution to this
difficulty has been known for some years and it amounts

to using a reaction matrix G instead of the interaction v
(Goldstone 57). G is derived from v by a complicated egquation
which can be solved by various approximations (Brown 67).
This equation will not be discussed here but its signi-
ficance is that the matrix elements of G, which are
required, can be reasonably well approximated by those of’

a well behaved potential (Brandow 65). This well behaved
potential would, in particular, no longer have a hard core
and so could be used in an RHF calculation. To compensate
for the removal of the hard core the new effective potential
would have a definite velocity dependence even if this were

not present in v. Thus it is known from the work of Moszkowski

30
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and Scott (1960), that the effect of the repulsive core can
be cancelled by the effect of some of the attractive tail,
leaving a simple potential which is zero inside some
separation distance d. This is shown diagrammatically in
figure 1. The resulting long-range part of the "realistic"
potential gives, to a reasonable approximation, the same
matrix elements as the reaction matrix G. However the
amount of the attractive tail region that must be taken to
cancel the core varies with the energy of the interacting
particles. In fact for a given energy this long-range
effective potential is simply chosen to give the correct
scattering phase shift. In this way the separation distance
d depends on the relative energy (Bhaduri and Tomusiak 65).
Simple potentials based on these ideas have been used in
many nuclear calculations (e.g. Kallio and Koltveit 64).

The non-central tensor force, which is a component of
most "realistic" interactions can be treated in this way,
but the corresponding part of the G matrix element is not
very well approximated in this case by the long-range tail.
In fact the tensor force contributes mainly, in this type
of approximation, through a correction term known as the
second Born correction. Kuo and Brown (1965) have shown that
this correction term can be approximated quite well by a

central potential. The significance of this last approximation,

]

y

for this work,is that much of the effect of the tensor force
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can be incorporated in a renormalization of the central part
of the effective potential.

The effective potential will also depend on the
density of the many-body system in which the interaction
takes place. The physical reason for this density depen-
dence can be seen by considering uniform nuclear matter,
in which the density is related to the number of single-
particle states (in this case plane-wave stétes) which are
occupied. The Fermi momentum kF of the ground state and
the density p are related by

p = (2/31%) k;° , (1)
and it is seen that the larger the density, the more states
that are occupied. The exclusion principle does not allow
the interaction to take place via intermediate states which

re occupied, and the more states that are excluded in this

o]

way the weaker the G matrix becomes. Thus it is expected
that the G matrix elements become smaller as the density
increases, and this is found to be the case in detaiied{cal—
culations (Bhargava and Sprung 67, Wong 67). If this density
dependence is carried over to a finite nucleus, then inter-
actions taking place in the central core of the nucleus

are weaker than those occuring in the lower-density region.
The effect of this in Hartree-Fock calculations will be

seen later.

The approach adopted here is to use, for the effective
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o]

otential, some simple analytic force in which certain
parameters are fixed by the requirement that the impor-

tant features, expected of the effective potential, are

o))

eproduced. The important features that will be used

H

here to determine the analytic force are:

1. that it produce the correct s-wave phase-shifts

for free nucleon-nucleon scattering.

2. that it have roughly the same long-range

behaviour as "realistic" potentiéls.

3. that it have the correct saturation properties

in nuclear matter.

4. +that it have small second-order corrections in

nuclear matter.

Properties 1 and 2 follow from the work of Moszkowski
and Scott previously mentioned, and our emphasis on the
s-wave is simply due to the fact that this is the strongest
component of the interaction. Condition 3 is a natural one
if the systematic behaviour of a wide range of nuclei is
to be considered. The importance of this condition has‘
been shown quantitatively by the work of Bhaduri and Tomusiak
(1966) . The fourth condition arises because the Hartree-
Fock approximation, using the reaction matrix, is essentially
a first order apﬁroximation in the Brueckﬂer—Goldstone
theory. If this approximation is to be a good one it is

necessary that the second and higher-order corrections be
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small. It must also be pointed out that the variational
methods described in the last chapter are only justified to
the extent that these higher-order corrections are small.
In order to carry out the detailed calculations
of later chapters, a further feature of the force is
desirable;
5. Matrix elements of the analytic force used
should be easy to calculate.
Because of this last condition the non-central parts of
the effective potential will be ignored. As previously
mentioned this is justified to some extent because the
principal non-central component of v, the tensor force,
contributes to G largely as a central term. One effect
of the non-central terms which are being neglected is to
create a spin-orbit force in the average Hartree-Fock
potential. This spin-orbit force is needed to give the
correct single-particle levels in spherical nuclei, though
it does not normally have much effect in deformed light
nuclei. Consequently we include a small one-body spin-
orbit force

Voo = ~' & .

S
v
in the Hartree-Fock potential. The magnitude of this
force has been chosen to give the splitting of 5 MeV,

between the ds/2 and d3/2 levels, which is observed in

stripping reactions with '®0. The criterion of easy evaluation



| IS

of matrix elements is well satisfied by the Volkov force:

i ot L 2 _— 2
v(x) (w + me + bP0 + hPT)(Va exp{-r /Aa )+ V. exp(~-r /Ar ))

(2)

o

I

operators Px’ PO and P_ exchange the space, spin and

pt-

sospin co-ordinates respectively. The sum of two gaussians
produces a radial shape which is very similar to the

Moszkowski-Scott form, and yet much easier to handle. This
form of force has been used extensively by Volkov (1965) in
lp shell calculations, and, for nuclei lighter than !®0, is

capable of giving reasonable agreement for nuclear binding

()
o

nergies, sizes and low energy spectra. Forces similar to
this have also been studied by Brink and Boeker (1967).
Unfortunately when such forces are used in Hartree-Fock
calculations for nuclei heavier than '®0 they give binding
energies which are too large and sizes which are too small.
This overbinding and collapse becomes progressively worse
as the number of nucleons is increased.

A force of the type given in equation (2) has been
used for most of the Hartree-Fock calculations discussed in
this work. This force is denoted as force‘l and the paraF
meters which appear in (2) are given in Table 1. These
parameters are such as to give fairly close agreement with
the effective ranges and scattering lengths of s-wave

scattering of free nucleons, the correct binding energy of

160, and the low energy spectra of lp shell nuclei.



TABLE 1

FORCE PARAMETERS

— S - -

v(r,R) = (1 - c3 pZ*(R)) (w+mP_+bP _+hP ) (vaexP(—rz/,x;) + Vrexp(-rz/Ar(k)z))

(]

where Ar(k) = Ar [1 4 Cy(k - c2) 2]

v (e} /
Force No. Va Vr Aa Ar Cy Co Ci W M b h
1 -78.03 82.8 1.50 0.80 0.0 0.0 0.0 0.29 0.71 0.20 -0.05
2 -78.03 82.8 1.50 0.76 0.496 0.70 0.0 0.29 0.71 0.20 -0.05
%
(w + m) v (b - h)
3 -150.0 155.0 “1.50 1.09 0.26 0.81 0.922 1.00 -1.682 0.44
4 -250.0 255.0 1.50 1.247 0.15 0.836 1.180 1.00 -1.228 0.40
*
Note v = 10(w - m) + 8(b + h)

9t



The first attempt (Hughes, Sprung and Volkov) to
alter this form of the force, so that it could give closer
agreement with the s-wave scattering, was a simple one, and
a slightly more general approach is used here. It has
already been pointed out that the Moszkowski-Scott tyée
of force has an attractive tail which depends on the-rela-
tive energy of th e interacting particles- and that this
dependence is such that the correct scattering phase shifts
are produced. In the force (2) the amount of attractive
tail can be varied by varying Xr' and for any given energy
Ar can be chosen so as to reprodﬁce a particular phase
shift. In this way A_ can be chosen to be afunction of the
relative energy, or the relative wave number k, in such a
way that a given phase-shift is produced at every energy.
Figure 2 shows kr as a function of k designed to fit either
the singlet or triplet s-wave scattering phase-shifts.

Because matrix elements will not be evaluated in the rela-

a7

tive co-ordinate system, it is not convenient to use separate

values of Ar for singlet and triplet states. Instead a

weighted average value is used, in which the triplet and

singlet values of Ar are weighted by their relative strengths

1 + (b-nNh)] and [1 = (b'- h)] respectively. These average
values of Ar can be well represented by a parabola in k
over the energy range of interest. In this way (2) becomes

mcdified to:
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vir) = (w +m P+ b P+ hP)(Vexp(-r?/A *)+ V exp(-r?®/i_? (k).

o

(3)

where Ar(k) = Xrofl + c1 (k- c2)?]

A variation of 0.1 fm. in kr produces a change in the phase-
shifts of about 0.1 radians, so that this averaging procedure
does not cause significant changes in the phase-shifts and
fairly close agreement with the experimental values is
maintained. The values of kr°, c; and c, are given in

table 1 and tocgether with the remaining parameters of force
L this defines force 2. It must be noticed that, in:con—
trast to the usual type of Moszkowski-Scott force, this one
can become repulsive for large k values, i.e. when kr(k)
becomes larger than Xa. This feature does not appear in
calculations with finite nuclei but it does mean that a
saturation point is found in nuclear matter. The results

of Hartree-Fock calculations in light nuclei using force 2
are discussed in chapter 7.

The binding energy per nucleon in nuclear mattef,
determined by first order perturbation theory, is shown, as
a function of kF, in figure 3 for forces 1 and 2. While
force 1 clearly does not saturate at all, force 2 saturates
,at a large density and with a High value for the binding

energy. This saturation point can be brought closer to

the observed values by increasing the Majorana exchange
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parameter, but this procedure seems arbitrary and possibly
non-physical. Furthermore, nuclear deformation depends
rather sensitively on the Majorana component (Volkov 65).

An alternative way of bringing about the correct saturation

(@)
th
o]

uclear matter is to incorporate a density dependence
nto the form of the force. Bethe (1966) has suggested a
factor of the form (1 -a sz), which has the desired effect
oI decreasing the strength of the interaction as the density
increases. When kF is zero the density (1) is also zero

and the density factor is one. This corresponds to free

nucleon-nucleon scattering from which forces 1 and 2 have

)

been derived, and so this extra factor should essentially
multiply these forces. The parameter o and the exchange
parameters of (3) can now be varied until the force produces
the correct saturation values of kF and binding energy, in
nuclear matter. If this is done the value found for the
Majorana exchange does not need to be increéased and the
value of a is around 0.17 fm?. This causes a reduction Qf
the strength of the interaction by about 30% at saturation
in nuclear matter. However, this density factor cannbt
simply be tagged onto forces 1 and 2, because these forces,
were also required to give the right binding energy for *°0,
and the inclusion of the density factor decreases this
energy considerably. To account for this the strength of

the free nucleon-nucleon scattering force must be increased.
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To incorporate this density dependence in finite
nuclei kF is replaced by the density from (1), and this
density is evaluated at the centre of mass of the interacting
particles. This prescription is in the spirit of the local
density approximation proposed by Breuckner and Wada (1956).

The resulting force is written:

viri, r2) = (1 - c3 p”é(R))(w + mP_ + ch e hPT)
LB 2 2 2
(Vg exp(-r /Aa ) + Vr exp (-r /Ar (k)) ... (4)
where Ar(k) = Xro[l + c1 (k- c2)?]
and r=|r1 - ral, R = |%(r:1 + ra2)]| .
v N N N

The choice of parameters to use in (4) is, in principle,
straightforward.

Aa is chosen to give a long-range behaviour compatible
with "realistic" potentials.

(Va + Vr), the core height, is kept to some small
fixed value in order to make the radial shape similar to a
Moszkowski-Scott type of potential.

kr(k) is chosen to give an average fit to singlet
and triplet phase shifts. ‘

(b = h) determines the ratio of singlet and triplet
strengths of the potential. A best value can be chosen to

minimize the discrepancy between the two curves which give

the correct values of Ar to use for singlet and triplet phase



c3 and v = 10(w - m) + 8(b + h) are determined by
fitting the saturation values of k_, = 1.4 fm. ! and
binding enexrgy of -16.0 MeV per nucleon in nuclear matter.

V_ is adjusted to fit the binding energy of '°0.
Apart from these conditions the exchange parameters are
normalized so that

w+m=1 (5)

There is one remaining degree of freedom in the four
exchange parameters. The energies of even-even nuclear
configurations, and nuclear matter is such a configuration,
depend to first order only on the exchange parameters v
and (w + m). Because of this the remaining degree of
freedom cannot be fixed in this work.

Forces 3 and 4 have been determined following
this type of procedure and RHF calculations with these
forces are described in chapter 7. It is seen from (4)
that this type of force is not translationally iinvariant
because of the density function which is fixed in space.
Furthermore if the density of the system is not spherically
symmetric the force is not rotationally invariant. However
as long as the density is derived in a self-consistent
way there is nothing unphysical about this. The condition

that the second-order corrections in nuclear matter be

small, has not been examined for these forces. It is hoped
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that, because the forces used are reasonably smooth and
have soft cores, these second order corrections will be
small. Nevertheless the omission of condition 4 must be

borne in mind.

Determination of Matrix Elements

The discussion of chapter 2 has shown that the
matrix elements of the interaction taken between harmonic
oscilllator states are required in the RHF calculation.

n order to calculate these matrix elements certain further

pproximations have to be made. The two-body state which

1

is a product of two harmonic oscillator states, without
being antisymmetrized, is written as |il), and the matrix
element (il|v]|jm) will be considered for the remainder of
this chapter.

The spin-isospin factor in (4) can be treated
immediately and an integral over the space co-ordinates r;
and r, remains. It is necessary to interpret the meaning
of the relative wave number k, in Ar(k), as it appears in
this integral. In the special case that the two oscillator
states |i) and |1l) have the same oscillator parameters, the
two-body state |il) can be transformed quite simply into a
finite sum of similar states in which the relative and
centre of mass co-ordinates are separated (Brody and Moshinsky 60

When this is done the matrix element (il|v|jm) can be written
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as a sum over simpler matrix elements of the form

-

(nmn_ |v|n m B ), in which the states lnmnz) are states
of the relative co-ordinate (r: - ra2)/ V2. Kallio (1965)
has shown that the value of k to use in the matrix element

(nmnzlv[nmnz), for the case of spherical states is given

by k2 = (2n + |m| + n, + 3/2) a ~(6)

This expression is simply the mean square value of

(k1 - k2)/V/2 for the state ]nmnz). However starting from
(il|v]|jm) an alternative, though not equivalent, mean
sgquare value for k is

K2 = %<2ni + 2n. + 2nj + 2n + [mi] + Imzl + lmjl + !mml

L

to, tny Fn a4+ 6o (7)

In the approximation defined by (6) it is necessary to use

a different value of k in each of the simple matrix elements
which occur in the sum for (il|v|jm). In the approximation
defined by (7) there is only one k value which defines kr(k)
uniquely for(il|v|jm), and there is consequently no need to
rely on the separation of the relative co-ordinate in order
to evaluate the matrix element. The results obtained using
these two approximations for a typical matrix element in

the spherical case are shown in figure 4. ’"The variation of
the matrix element with the size of the oscillator para-

meter is shown and it is seen that the two approximations are
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almost identical. The approximation (7) will be used from
now on and it i1s extended to the most general type of

matrix element as

X2 = L{(2n | .
k* = %{(2n; + |mg|+ Do+ (2n, + ]m£[+ e+ (2nj+ 1mj| +l)aj
+{(2n + Im |+ . )R, e . .
(2 + m |+ l)am-+ (nZli-‘)Bl-k (nzg-+2)82-+ (nzJ + %)BJ
o |+ %)Bm}.
(8)

It must be noted that the matrix elements obtained in this
way satisfy the requirement of being hermitian, since k?
is symmetric with respect to all the states in the matrix
element.

In order to incorporate the density dependence of
the force,y,the nuclear density will be approximated by a
gaussian shape normalized to give the correct number of
particles. A gaussian distribution for the density is simi-
lar to the shape found for light nuclei in experiments, and
such an analytic form is very convenient because pz./3 is then

also a gaussian. A further important feature of this

raussian approximation is that the general matrix elements

WD)

h

O

the force (4) can be determined analytically in this

ase. This is shown in detail in appendix 3. In approxi-

Q

mation I the gaussian density is determined so that it has
the same mean square values for the cylindrical co-ordinates

p and z,as the nuclear density determined from the nuclear
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wave function. Except when the RHF wave function is
asymmetric the RHF density distribution is wvery close to
that of the pure configuration which was used as a starting
point in the calculation. Therefore we make the further
approximation of calculating the mean square values of p
and z from the pure configuration. If these mean square
values are p, and z, respectively, then this approximation
to the density ‘is

pI(r) - 2—1/2 W—S/Zpo—2 zo—l A exp{_p2/po2_ 22/2202 }.

(9)
This approximation.overestimates the central density when
compared with the actual density distribution of the
nuclear wave function. Sometimes this overestimation is
very marked as can be seen in the case of *®0 in figure 5.
The effect of this is to over-suppress the interactions and
the binding energy of the ls shell particles. As these
particles usually make a considerable contribution to the
total energy of the nucleus the total energy is also sup-
pressed. A second approximation has therefore been designed
to give the correct density for this core region. This
gaussian approximation is arranged to have the same central
density as the starting configuration. The shape of this
second approximate density is the same as that of the density

of the starting configuration, i.e. <p?>/<z?> is the same
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r the true and approximate densities. This gives

p..(r) = D exp{-p*/Kp? - 2z2/2Kz 2} (10)
where D is the central density and K is given by
K = [27V2 4=3/2 p/p Py zo]z/3 C(11)

This approximation is shown for %0 in figure 5, and it
is seen that the approximate density distribution in this

ends beyohd the true density distribution. It is

ot

e X

w
©

(=4

Q

)

2 1so

0

e

14
o

n that in the region where r?p(r) is a maximum

this second approximate density is less than the true
density. This means that for the bulk of the particles

the interaction is not sufficiently suppressed by this
approximation, and consequently the total binding energy

is too large in this approximation. For the case of “He

the density distribution of the dominant configuration is
exactly gaussian and in this case the two approximations
coincide. For the other nuclei considered the best situation
lies between these two extremes. Unfortunately the extremes
are quite widely separated for the other nuclei as will be
seen in chapter 7, and while some of the features of the
density dependent force can be distinguished here, an

improved density approximation is clearly needed.



CHAPTER 4
COMPUTATIONAL ASPECTS OF THE

RESTRICTED-HARTREE FOCK CALCULATION

In this chapter technical problems related to our
choice of representation and form of interaction are con-
sidered. Most of the RHF calculations which we have per-
formed used a representation based on the first three shells

of harmonic oscillator states. This gives 10 different space

states (which will be called orbitals) which, when combined
with spin and isospin states, produce a representation of
40 single-particle states. The Hartree-Fock states to be
found have definite isospin, i.e. they are occupied either
by a proton or a neutron. This reduces the density matrix
p to the direct sum of two 20 x 20 matrices, which are

(n)

denoted by p and p(p) for neutrons and protons respectively.
The interaction to be used has the form

= (w + me + ch + hPT) v(ri.)

M
15 J

and the dependence on the spin and isospin co-ordinates is

very simple. In fact if we define:

47
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3 14 = 0 if states |i> and |j> have opposite spins
=1 if states |i> and | > have the same spins
6Tij = 0 if states |i> and |j> have opposite isospins
= 1 if states |i> and |j> have the same isospins
dcil;jm = 0 if states [il>and |jm>have different spins
= 1 if states |il>and Pm>have the same spins,

then the matrix element of the interaction can be written

ws®.. §7.. +b 6%. &

; . _ 0 T
(1l]v|im) = & § Vitgm W8 34 8 44 im ¢ i3

il;jm 1l 9m

o T
*ROTgs 8 gp) * Vigeg T 5409 45 (1)

In this expression Vi represents the configuration-space

1jm
part of the matrix element. Using this and the relevant
equation of (27) in chapter 2, it is a matter of simple
algebra to show that the average potential T is diagonal in

isospin and that for neutrons this potential is given by

Ti?) = Zi?& Sy 6% 1 9m Winsm v+ 0) 69,45 + (b-m) 69, ]
= Viins L+ h) .+ (b -m sgij]}
* Zi%g pyl 6 1, 4m Vinsy 06755 + 6%,
= V4 1ns me?, - msoij]} ] (2)

The summationsz(n) and Z(p)

in this expression are to be
carried out respectively over neutron and proton states 1 and

m. The equivalent form for the proton potential is obtained
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(n)

from (2) by interchanging p and p(p).
It is also possible to define an average over the

neutron and proton potentials as

(av) _ , ,o(n) . (D)  _ (n) (p) | +0

Figy = MW g TG E By a0l By 0y I il9m
- . g ok o 5
1Niljm [(w + %h) & i3 + (b ¥m) § im] Vilmj

; o i o o
[(3w + h) ¢ T (b m) & ij]} 2

(3)

in the special case that neutrons and protons appear

(n)

symmetrically and p is equal to p(p), then

plavl _ . - r(p)

This is true in particular for the low lying states of
light even-even nuclei.

It must be noted that the calculations have béen
carried out with real density matrices, as opposed to
complex ones. This constraint on the solutions is equivalent
to requiring that the nuclear system has a symmetry plane.
This can be seen as follows. The nuclear density is
given by'

*
o) = Iy<rfo> <afr> = Z,5 py5 ¥y (0) Yy,

where
lPl(r) 2 <rli> 7
is the single-particle wave function for the i'th repre-

sentation state. p is hermitian and if it is real also,
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then we can write

ontr) =% Ty pgs W@ W@+ p0” b ).

In the cylindrical representation this gives

7 3 i m- - m- R . L 0 i
pN(T) = ’5213 plj Fl]<prz) le ( * j)¢+ e l(ml mj)@]
= Lij pij Fij(p,z) cos(mi - mj)¢ " (4)
where Fij is a real valued function of the cylindrical

co-ordinates p and z. The density pN(r) given by (4) has
reflection symmetry across the x-z plane. It can also
be seen from (4) that asymmetry across the y-z plane is
produced by density matrix elements pij between states
whose m values differ by an odd integer. In a similar way
asymmetry across the x-y plane is induced by density
matrix elements connecting states whose n, values differ
by an odd integer.

It was mentioned in the first chapter that simple
configurations would be used as starting points for our
RHF calculations. However the density matrix p(°) for such
a simple configuration is diagonal and so the wave function
has none of the assymmetries listed in the preceding para-
graph. It has already been pointed out that the RHF cal-
culation always retains any symmetry which exists at the

start, and therefore it is necessary to allow for



asymmetries at the initial stage of the calculation. The
mechod used to do this is quite arbitrary and consists
in taking the eigenvectors of a matrix of random numbers

as initial states. However, in order to keep close to

51

the shell model tvpe of states, the matrix to be diagonalized

is weighted with diagonal elements an order of magnitude

larger than the off-diagonal elements. In this way we
start with initial single-particle states which are close

ta Eh

(0]

states of the simple configuration (a typical over-

~ap i

n

80%) . Because the states are ordered according
o their eigenvalues and occupied in this order, the
initial configuration can be chosen by making the diagonal
elements, corresponding to occupied states, smaller than
those corresponding to unoccupied states. The amount of
mixing in the initial states can be reduced by making the
diagonal elements larger.

In order to have some measure of the difference
between the density matrix p resulting from the RHF cal-
culation and the density matrix p(°) for the corresponding

configuration, we introduce the sum

(p9) - 5. .02 .

g = 1 2 4
1] 1]

i3
This can be separated into partial sums over certain pairs

cf states, as follows:

- 2 = . ., -
pij) for m. mj, Il I


http:a!-::i.ng
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Q
5]
Il

(p(%) = p..)%2 form. =m., I. I.
pij p i My 175 4

o= L (p(9) - R =
& R o 5 or m, m., II. = 1.
3 < iy WP i3 ¥i3 i? 5 I J
o, = . (p(Q} - p..)% form, #m., I. # I.
4 13 5. ij i s R | 3 :
I, denotes the parity of the representation state |i>.
A
As a matter of normalization we will use the root mean

square values

8, =lo, / 2,1%/? (5)

where Qi is the number of terms in the sum for ;- These
mixing parameters ei give an indication of how different
the RHF solution is from the simple configuration with

the diagonal density matrix p(°). Unfortunately it is
found that the values of 6, and 8, though small, are
extremely unstable, depending on the random starting point
for the first iteration. It is concluded that the mixing
between states of opposite parity is not necessarily
convergent even when the energy 1is.

Separate computer programs are used for the RHF
calculations in the 3 and 4 oscillator shell representations.
A program HARFOK is based on the 3 shell representation and
uses one 20 x 20 matrix, which is

jtot _ (@) [ (p)

Equation (3) is used to construct the average potential Pav,
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and this program is used for even-even configurations in

which neutrons and protons appear symmetrically. A

(n)
(»)

and p for the neutron and proton systems, has also
been used. Because of some difficulties with convergence,
which will be explained below, no results for this program
are shown here. The 4 shell program HARFO4, uses one
density matrix, which is the sum of the neutron and proton
density matrices. In this case though, there are 80
single-particle states in the representation and matrices
that are 20 x 20 in HARFOK become 40 x 40 in HARFO4. Even
in the 4 shell program there is no constraint on the single-
particle states other than that imposed by the reality of
the density matrix. This program is naturally more time
consuming than HARFOK and has been used sparingly. An
indication of the relative times taken by these programs
will be given in appendix 4, where these programs are shown
schematically.

One further technical point will be made here.
3oth RHF programs diagonalize the symmetric matrices ‘repre-
senting T + T', by a Jacobi type of procedure, rather than
by the faster Householder procedure. The reason for this
is that the Householder procedure has a tendency to produce
eigenvectors which are not exactly orthogonal. It is felt

that this may cause errors in the density matrix to accumulate
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)

over several iterations.

We come now to the question of convergence. Equations
(27) in chapter 2 define our iteration procedure, and it
has been said that iterations should continue until con-
vergence 1is obtained. However, there is no proof that
this or any similar procedure must converge, and in fact
very often this procedure clearly does not. Still worse,
there is no proof that successive approximations E(p) to
the energy of a ground state improve, i.e. become smaller.
Acgain there are cases where this does not occur. What has
been found in the present series of calculations is that

(p)

the approximations E normally appear to converge fairly

rapidly (e.g. in 4 to 8 iterations). But after this initial

convergence,the values of E(p)

may vary slowly by as much
as 0.05 MeV per iteration. This effect is almost certainly
larger than any rounding error which might occur in the
diagonalization. Some examples are shown in figures 6, 7,
8 and 9.

Figure 6 is a rather extreme case of what may océur,
showing at first an apparent convergence of the energy but
later on a marked improvement. Part of the reason for
this particularly poor convergence is that the representation
states have what is obviously the wrong shépe to describe

the true Hartree-Fock system. This suggests that iterations

will converge more rapidly when the best set of oscillator



arameters is used. Figure 7 shows the same configuration

o
{

as Figure 6 but now in the spherical representation, which
is the best one. However, the representation states are
now a little larger than the best possible ones. In this
case convergence is not obvious even after 58 iterations
and the best energy encountered is that of the random

starting point! This is in sharp contrast to Figure 8

e

wh

ch shows the same configuration but now with the best

osclillator parameters as determined by GHA calculation.

<

T; case the variations in E(p) after the 1ll1l'th

4

t

wn

3

|

e

iteration are of the order of 10 ° MeV, which is the same
as the order of magnitude of errors in the eigenvalues

) resulting from the diagonalization procedure.
Figure 9 shows a different nucleus but again in the best
representation as determined by the corresponding GHA cal-
culation. In this case the RHF calculation builds up an
asymmetry in the density distribution which does not exist
in the simple configuration. Because of this, convergence
12 slower than for the previous example but is nevertheléss
guite definitely achieved after 14 iterations. It is
reasonable that convergence should be improved by starting
as close as possible to the Hartree-Fock solution, and
the results just discussed show that the choice of the

correct representation parameters is important in this

respect. In order to compare different calculations we use
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the energy after 20 iterations, unless it is apparent
hat there is no convergence. Furthermore, the final
E(p) are considered to have errors of * 0.05 MeV.
The difficulties associated with convergence are
worse for HARFO4 than for HARFOK, and are almost certainly
dependent on the size of the matrices which are diagonalized
in each iteration. Once again convergence seems to be
faster when the values for the siée parameters of the
oscillator states, which give the lowest energy, are used.
In those cases where the approximations E(p) con-

verge, the single particle energies ea(p) converge more

slowly, but they do converge. The eigenstates, which

4]

ppear as columns of the matrix B in (1-27), converge even
moere slowly than the single-particle levels, and when there
are degenerate single-particle levels they may not converge
at all.

Quite apart from these problems of slow convergence,
there are situations where there is clearly no convergence.
To see how this can occur we consider a specific example;
Suppose that the states chosen initially are just the states
of the representation, and that the first 17 are occupied.
In the first iteration the average potential, produced by
these 17 occupied states, is computed and the corresponding

cigenstates are found. Because of the restricted nature

()

cf the calculation most of these eigenstates are essentially



e same as the states with which we started. However
when the new eigenstates are ordered according to
increasing single-particle enexgy, they do not correspond
tc the old ones. In particular if the 1l7th state was
originally a spin-up 'state, it will become a spin-down
state. The spin-down state has a lower energy than the
spin-up state, in the potential produced by the spin-up
svstem. This is the crux of the matter, because it
means that following our procedure the spin of the last
state changes at each iteration. It also means that
when the energies E'¥° are calcuiated according to the
formulae in chapter 2, they represent the energy of

the spin-down system in the average potential produced

by the spin-up system or vice versa. These energies are
12 same but neither is self consistent. This points

out that unless the density matrix p(p) converges, or at
least comes close to convergence, the results of the RHF
crogram are meaningless. In general this problem does
not occur for configurations with maximum space symmetry,
but an exceptional case occurs in °Be and is discussed in
chapter 6. This awkward "flip-flop" phenomenon can be
avoided in various ways. One way might be to use a
representation of states which had time-reversal symmetry,

or were either symmetric or antisymmetric with respect to

an interchange of spin. Alternatively one could change the



method, used in the iterations, to select the occupied

Before leaving the matter of convergence it must

be pointed out that if 40 states are occupied in the

(9]
]
0
o
0
}_J
’_l
H

epresentation, then no matter how they are

chosen the density matrix is just the 40 x 40 unit matrix.
Because of this convergence is immediate. Quite generally
the RIF calculation can only improve the energy of a

state by mixing occupied and unoccupied states. The number
of unoccupied states in the calculation is a measure of

the number of degrees of freedom allowed. For the special

Hh

case of no unoccupied states, just considered, there are
no degrees of freedom and the result of the RHF calculation
is a simple configuration.

The generalized Harmonic Approximation is carried
out by the program MINDET. This is a very simple program
consisting essentially of a minimization procedure and
procedures to evaluate the energy of a configuration wave
function for arbitrary oscillator parameters. The
minimization procedure is due to Powell (1964), though
some modifications have been made. This procedure works
very well for a general n-dimensional quadratic function,
and is explained further in appendix 5. It has been found

that if the root mean square sizes of the orbitals are

used as independent parameters, instead of the oscillator

58
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constants, then the energy function is more symmetric
about the minimum, and convergence of the minimization

procedure is correspondingly faster. We have for
<x?>V2 o <y"->1/2 = [%(2n + |m| + 1) / o] Y2

<z2>% = [(n_ + %) /81

In order to compare sizes of orbitals with different

—~

guantum numbers it is more convenient to use the para-

meters for the |000:a8> state.

(1/2q) V2 (6)

Thus a

b = (1/28) Y2

Il

Because the different space orbitals must be kept ortho-

(L8]
Q
o

al, it is not sufficient to have independent a and b

H

el

arameters for each state. The necessary constraints

jal}

re considered in appendix 1, and it can be seen that the

dimension of the parameter space for nuclei in the

2s-1d shell is of the order of 10 if the maximum number of

parameters is used. In some cases the number of parameters
be reduced. For example the ground state configurations

®0 and ca“? are obviously spherical, so that the a's

can be made equal to the corresponding b's. However, apart

from these special cases the GHA results quoted here

correspond to the most general set of parameters.
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A vexry similar program, MINCAR, has been used to

carry out this same calculation with configurations of

cartesian states in"nynz:avayaz). In this case there
P P

are more parameters, and the constraints are imposed in

W
o]
fu
3
fu
}_J

ogous way to those for the cylindrical states.

=
oy
®
H
@)
n
&
}_l
rf.

s obtained with MINCAR are equivalent to those

4
]

ained with MINDET, except when the equilibrium shape
is not cylindrically symmetric.

The minimization routine normally evaluates
3N + 4 points per pass when working in an N dimensional
parameter space, and these passes continue until convergence
is obtained. In practice about %N passes are used and
convergence is surprisingly fast. Even so it is necessary
to calculate some 200 energies for nuclei towards the end
of the 2s-1d shell, and this can become rather time
consuming. The time to evaluate one point is roughly
proportional to the square of the number of orbitals filled.
For *°Ca, in which there are ten filled orbitals, the
time per point is about 6 seconds (an IBM 7040 computer

was used) .



CHAPTER 5

DEFORMATION IN LIGHT NUCLEI

oscillator states with two shape parameters each, as

opposed to a representation of spherical states with one

parameter each, can be justified to some extent by
equation (28) of chapter 2. The larger the number of
parameters which occur in the energy function in this
eguation, the closer the minimum value of the enerqgy
snou;d come to the true Hartree—?bck value. However,.it
wst be noted that some degrees of freedom lead to con-

siderable improvement in the minimum value of E, while

others lead to no improvement. Which degrees of freedom

o
B

e the most important must, in general, be discovered
by carrying out the relevant minimizations. However, some

valitative statements can be made by applying two

1Q

n

"
ol

uitive rules to the minimization of the energy of a
configuration wave function as in equation (30) of chapter

L+ The Hartree-Fock potential T has a shape which is

close to that of the density of the system.

o

" The best harmonic oscillator wave functions to use

6l

he use of a representation of cylindrical harmonic
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should come from a harmonic well of about the same
shape as the Hartree-Fock potential.
These two ideas were used by Mottelson (1958) to predict
cguilibrium shapes of configuration wave functions. In
order to allow for the most general shapes at this stage
we will use the cartesion representation of states
{nxnynz;uxayaz>. To simplify our qualitative discussion

armonic oscillator wave functions to be used in the

ct
»
0]
Iox

configuration will be taken from the same asymmetric
potential well. Thus the energy of the configuration

can be written E(o_, o, ¢_). Mottelson's argument is

C z @ T 2 » 2 — -—l— T 1 . i_ 1. s
X=EF g Kgc> 2 Lz*> - Ll(n 5 + %) - Zl(n 5 + %)
*
. + i = N - N -
Oy Ei(nzi 2) x/ax Ly/ay Nz/az’

and that the shape of the harmonic potential is given by

& 1 1

If these shapes are to be the same then

i 1 2 (1)

This argument is not connected with a variational principle,



but Ripka (1966) has shown how (1) can be derived from
such a principle. 1In fact if the harmonic potential is
used instead of the Hartree-Fock potential, the energy

of the configuration can be written
B = /. (N o, +N o + N a) . (2)

If the o are varied arbitrarily to make E a minimum the
svstenl simply expands to infinity and the particles

become free. However, the fact that the potential must
arise in a self-consistent way from the particles them-

selves, can be regarded as a constraint on the volume

of the system, thus

o6 o o = Const. (3)
Xy 2

If the minimization of (2) is now carried out subject to
(3) , egquation (1) results.
This result can be immediately generalized

because in the harmonic well the kinetic and potential

()

e
&l

rgies are equal. Thus the minimum for the total energy

occurs at the same shape as the minimum for the kinetic

0

and potential energies. It follows that condition (1)
will hold whenever the total potential energy of the
configuration wave function has its minimum at the same
shape as the kinetic energy. This general result includes

+h
th

special case that the potential energy is independent

()]
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of the deformation. In this case the SU(3) symmetry
group can be used at zero deformation to classify the

potential energies of simple configurations. Ripka has

o
n
(p]
[N}
o
=
}J
0]
ct

echnique to predict the ordering of configurations
for 2s-1d shell nuclei. He also shows that the ordering
cbtained by minimizing the kinetic energy is the same as
the ordering obtained with an SU(3) model.

Though the Mottelson rule depends on the behaviour
of the potential, there is a weaker result which is
ndependent of the interaction. If the configuration to
be minimized is transformed by interchanging the x and y

axes, then all the orbitals are transformed according to

X'y Tz y X 'z
and the oscillator parameters (ax, ay, az) are transformed
to (av, Oy az). In general a new configuration results

<

with the same shape and energy. However, if the configuration
itself is unchanged in this transformation, that is if the

orbitals [n ny nz] are merely permuted by the transformation

then it follows that the energy of the configuration wave

function is symmetric about the By = ay plane. Furthermore

if the potential is such that there is a unigue minimum

then this minimum must lie in the B, = B, plane. This

-
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2
£
o
H
fu
}J
0
<

mmetry argument applies equally well to y-z

and z-X symmetries. An alternative statement of the

result is that any spatial symmetry which exists in the
configuration wave function at a point where

o = o = az, also exists in the configuration wave function

b4 y

which gives the lowest energy. Unfortunately this result
docs not hold when different orbitals are allowed to have
different oscillator constants.

Table 2 shows the ratio of axes for the equilibrium

€2]

hapes of some simple configurations as predicted by (1).

It should be noticed that the great majority of these
configurations have cylindrical symmetry at equilibrium,

and such configurations can be described by the less general
cylindrical representation. Becéuse of the higher symmetry
of the cylindrical oscillator states, they are generally

more convenient to use. This is why most of our calculations

-

use this representation. It will be shown later, when

dealing with gsymmetric nuclei, that the RHF calculation

()

in a cylindrical representation can be as good as the GHA

fu

lculation in a cartesién representation.

The extra degrees of freedom obtained by allowing
different spatial orbitals to have different size para-
meters, i.e. to come from oscillator potentials of different
sizes, are not considered in the Mottleson rule. If the

i'th orbital has oscillator constants



MOTTELSON RULE EQUILIBRIUM SHAPES FOR SOME CARTESIAN

TABLE 2

CONFIGURATIONS

NUCLEUS
“He

®Be

12C

160

20Ne

2 g

1s

18,
1s,

18,
g,

18,
18,
18,

18,
18,
1s,

1s,
1s,
18,

2

CONFIGURATION b4

1.00
[001]" 1.00
[00271" 1.00
[ro01"%, [010]" 2.78
[0011%, [002]" 1.00
1p 1.00
[po11*%, [0101%, [002]" 1.00
[0011%, [0021%, [003)" 1.00
1P, [002]" 1.00
i, 103" 1.70
1P, [003)" 1.00
1P, [002]1%, [0o11]" 1.00
1p, [0201"%, [200]" 2,25
1P, [002]%, [003]" 1.00

2

: 4

1.00

1.00
1.00

2.78
1.00

1.00
2,25
.00

1.00
X« 70
1.00

1.00

22

1.00

4.00
9.00

1.00
9.00

1.00
6.25
16.00

2.47
1,00
3.45

3.06

1.00

5.006

Q/R?

0

=
[S2}

.00

o>
S2]

o

0. 97
1.67

0,
32
.90

66

.63
.45
«15

89
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MOTTELSON RULE EQUILIBRIUM SHAPES FOR

NUCLEUS

2851

328

36A

HOCa

18,
TP
18,

18,
15,
1S,
18,
18,

18,
18,
1s,

1S,
18,
1s,

1p,
1P,
1P,

1P,
1P,
1p,
1P,
1P,

1P,
1P,
1P,
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TABLE 2

SOME CARTESIAN CONFIGURATIONS (cont'd)

CONFIGURATION
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50 that all the orbitals have the same shape, but their

sizes are determined by the ki’ then the shapes of the

nucleus and the harmonic well are consistent if

[

1

g, ° o - i : :
X v Z i i .4

ey
a

(4)
On the other hand the minimum wvalue of the kinetic energy,
subject to the constraint (3) is given by
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(5)

which is not the same as (4). When detailed minimizations

(o))

re performed, it is found that there is a slight tendency
for different orbitals to have different sizes, particularly
in some excited states and some very light nuclei. There is
a more noticeable tendency for the deformations to differ,
and therefore equations (4) and (5) will not be considered
further,

Nuclear configurations will be specified by writing

the orbitals and the number of particles occupying them in



69

-

an obvious way. Thus
(000)*, (001)*, (010)%, (0-10)"*

denotes the ground state configuration of %0 in which
the ls and lp shells are filled. Cylindrical states are
denoted as (nm n ), and cartesian states as n, ny_nz].

The configuration above can be written in the cartesian

representation as

[0001%, ([0011%, [0101%, [1001%.

It is convenient to denote filled shells by an ‘abbreviated
nctation. Thus the above configuration can be expressed
more simply as 18, 1Py

The deformation of cylindrically symmetric nuclear densities

will be defined by the parameter

Q/R? = (2<2%> - <x?> - <y?>) f(<x?>+ <y?> + <z?%>) , (6)

(L)

the value of this parameter is given for the equilibrium
shapes in table 2. We will now make some quantitative
statements about some typical configurations, considering
in particular the effect- of allowing the representation
states to deform. All the calculations considered in this
chapter have been carried out with force 1 (of Table l);
'Consider first the lowest energy configuration of

20ne, 1s, 1p, (002)"%,

for which table 2 gives an equilibrium shape which is



cylindrically symmetric. Figure 10 shows the energy
obtained from RHF calculations in three and four shell

representations and the energy of the simple configuration,

1l

as a function of the deformation of the representation
states. The deformation parameter d is simply the value
of Q/R? for the (000) orbital (this is the same as the
deformation of the '®0 core). The volume has been chosen
to give the best energy for the simple configuration at
zero deformation. It is seen that the RHF calculations
always give a lower energy than the configuration, as is
tc be expected. The energy gained in doing the three

11 RHF calculation is almost independent of the

(u

sh

o7

eformation, and is considerably smaller than that gained
by allowing the representation to deform from the spherical

ituation. Another important point is that the best

1]

deformation to use for this three shell RHF calculation

1= very close to the deformation which gives the minimum

energy for the pure configuration. This minimum occurs

when the axes of the nuclear density have roughly the ratio
2x*> 3 <y*r 3 <2%F & 1:1:2.24 (7)

which is very close to the shape predicted by the Mottelson

rule. For the shape (7), Q/R? = 0.61 .

the shape of the RHF calculation was independent

th

-
4
of the representation then it could be expected that the

energy would also be independent. The fact that the energy

70
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gained in the three shell RHF calculation is practically
indpendent of the deformation d, suggests that the
differcence between the RHF solution and the configuration
is not their shape but some slight polarization of the
crbitals which does not vary appreciably with the shape.
This i1s borne out by figure 11, which shows the variation

of the parameter Q/R?® for the configuration and for the

2 shows the previously

}._J

three shell RHF solution. Figure
defined mixing parameters 6, and 6,, again for the three

shell representation. It can be seen that 6, goes through

= |

“ i)
n
oy
fu
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[

low minimum in the region where the energy is a

minimum and 9, decreases slowly with deformation. This

p

'seems to support the idea of a slight polarization at

= 5 =

all deformations. The GHA result obtained by minimizing

)

with respect to all the available oscillator constants

and the RHF result obtained using the oscillator constants
resulting from the GHA calculation, are shown for comparison
in figure 10. The degrees of freedom involved in allow1ng
different sizes and deformations for the different orbitals
make a slight 1mprovement and the energy gained by the RHF
calculation is unchanged. The value of Q/R? for the best
three shell RHF solution is 0.593 which is still close to
the value in Table 2. In order to understand the success

of the Mottelson rule we consider the wvariation of the

total kinetic and potential energy for the configuration



wave function. This is shown in figure 13. The minimum
for the kinetic energy occurs at the shape predicted by
«1) and the potential energy reaches a minimum at a
somewhat smaller but positive deformation. It is obvious
that the minimum energy for the configuration occurs
somewhere in between. The reason that the Mottelson

ds so well is that the potential energy change is
small and has its minimum value close to where the kinetic

energy is a minimum. It must be pointed out here that

there is no tendency towards asymmetry in the RHF cal-

culation, even though this is allowed.
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four shell calculaticn, shown
in figure 10, are less dependent on the shape of the

representation than those of. the three shell one. The

72

reason for this is that in the four shell calculation there

l1s a complete shell of unoccupied states, the 2p-1lf shell,
and the occupied lp states can change their shape by
mixing with the unoccupied states of the same parity. The
lowest energy obtained in the four shell calculationsgy
shown in figure 10,1s a little lower than the energy from
the three shell calculation using the best oscillator
parameters of the GHA calculation. This suggests that the
extra degrees of freedom in the four shell calculation

are used to build up oxrbitals with different oscillator

constants. The four shell calculation is able to build up
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more of the tail region of the true single-particle wave
functions, because the representation now contains states
which are extended over a larger region. The single-

particle tails will be considered in detail below.

g

| ik

er simil

H

QJ

We next consi ar calculations for the °“Be
configuration (000)"*, (001)*. Table 2 shows an equilibrium
shape which again is cylindrically symmetric with Q/R? = 1.0
igure 14 shows the variation of energy with deformation
for the pure configuration and for the three and four shell

RHF solutions. Once again the size of the representation

states has been chosen to minimize the energy of the pure

9]
0
h
}.J
(o]
=
H
o
o

ion at zero deformation. There is a striking

0
-
th
H
(0]
H

ence between this and figure 10, which arises
because in the case of °®Be there are one and two complete
shells of unoccupied oscillator states in the two repre-
sentations. These extra degrees of freedom,available in
the RHF calculations for 8Be,can be seen wvery clearly in
the dependence of the energy on the deformation of the
epresentation. Near the spherical situation the energiés

o
o

the RHF solutions are flatter than that of the pure

configuration and the minima for the three curves are

n

eparated. The GHA result obtained by allowing the two
occupied orbitals to have independent sizes and deformations
is close to the best RHF energy. Furthermore the three

shell RHF solution obtained using the GHA representation
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has almost the same energy as the pure configuration. This
means that the RHF calculations are able to construct
ferent size and shape, even when the
representation states are constrained to have the same

size and shape. It is largely this feature which causes

che RHF solutions to be so much lower than the pure ‘con-

There is an additional feature in °Be which is
characteristic of light nuclei. Because the average
Hartree-Fock potential goes to zero at large distances
from the centre of the nucleus,.the eigenstates of this
potential have larger tails than the harmonic oscillator
states (which come from a potential which becomes strongly
repulsive at large distances). The tails for single-
particle states which are strongly bound, i.e. have low
single-particle energies, are smaller than those for states
which are only just bound. The weakly bound states for

which the tail region is important are just those which
spatially are in or near the surface of the nucleus. Because
of this, in a nucleus like °Be which is almost all surface,
the inclusion of hicher shells increases the tails of all
the particles and has a significant effect on the energy of
the system. In the case of 2°Ne there is a smaller

proportion of surface particles and they do not make much

Q

ontribution to the total binding energy. Thus the



inclusion of the higher shells does not have so much effect

on the total energy of heavier nuclei. These points are

The mixing parameters 6, and 6, for the three
shell RHF calculation are shown in figure 16, and they

cdemonstrate that the solution becomes closer to the pure

coniiguration as the deformation is increased. The minimw
energles of the pure configuration and the three shell

RHF solution occur for Q/R? values of 0.965 and 0.975
respectively both of which are wvery close to the value
given by the Mottelson rule. The Q/R? value for the three
shell RHF solution in the GHA representation is a little

ess, being 0.954 . Figure 17 shows the variation of the

)

kinetic and potential energies for the pure configuration.

These have minimum values fairly close to one another and

[0

s explained above this is the reason for the success of
the Mottelson rule. It should be noted that in this case
the variation of kinetic energy is about four times that
of the total potential energy.

Figures 18, 19 and 20 show the variation of the

total energy, shape, and kinetic and potential energies

with deformation, for the doubly closed shell configuration

of '%0. As expected the minima for the energies occur at
zero deformation. There is no tendency for the potential

to deform the system and so the Mottelson rule holds

i
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exactly, The four shell RHF calculation at the spherical

point is 0.07 MeV below the three shell calculation. This

W

justifies the assertion that except in very light nuclei
tho tails of the single-particle states are not significant
in terms of total energy. However, as will be seen in the
next chapter, the single -particle levels for '®0 are
2ll deeply bound and this may be part of the reason why
there 1is such a small change in total energy here.
We now consider the asymmetric or triaxial

nucleus 2%Mg for which our cylindrical representation is
aot 80 well suited. The **Mg configuration of cartesian
states |

1s, 1p [002]%, [011]1*
which has the lowest energy, has an asymmetric shape as
predicted in table 2. The closest configuration of
cylindrical states is

18, 1P (BO2)%, (01ly* .
Ficgure 21 shows the energy obtained for this cylindrical
configuration, and from three and four shell RHF caléulations
based on this configuration as a function of the deformation
cf the representation. Also shown for comparison are the
results of the GHA calculation for the cylindrical con-
figuration, the three shell RHF calculation ﬁsing the
oscillator parameters found in this GHA calculation, and the

cartesian GHA calculation for the cartesian configuration
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:ntioned above. The three shell RHF calculation is

definitely better than the pure configuraton of cylindrical

of the RHF calculation to change the occupied (011l) orbital
rtesian type orbital by mixing it with the
unoccupied (0-11l) orbital, is important in terms of the
total energy. Furthermore the fact that the configuration
of cartesian states can have a lower energy, indicates
that the ability of the '°0-like core to become asymmetric
is also important. The four shell RHF result is slightly
lower than the cartesian configuration. This shows that
the four shell calculation is able to deform the core.

The shape parameter Q/R® is shown in figure 22.

The asymmetry parameter £for the RHF solution is defined

)]

LS

2

X = |<x? - y?> / <x? + y?>|

and is also shown in figure 22. It can be seen that this

is con

n

tant as the deformation varies, with a value of
0.227 . The corresponding value for the configuration of
cartesian states is 0.195 . The axes of the nuclear

density for this configuration have the ratio

<x?%> : <y?> : <z%> = 1:1.50:2.72

4

which is close to the ratio predicted by the Mottelson rule.
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From the results discussed above we can draw
the following conclusions.

1. The Hartree-TFock states resemble harmonic
oscillator states which have the same spatial symmetry
density. That is, when a nucleus has
an equilibrium shape which is asymmetric, cylindricaily
svmmetric or spherically symmetric, the harmonic
oscillator wave functions should be taken from a har-
monic well of the same type.

2 For the force considered here the Mottelson
rule for equilibrium shapes works well, this being a
reflection of the fact that the shapes corresponding to
minimun potential energy and minimum kinetic energy are
ciose to one another. The effect of the interaction is

to make the equilibrium shape slightly less deformed

than that predicted by the Mottelson rule (i.e. the shape
which gives minimum kinetic energy). It has been shown

by Volkov (1967) that the exchange parameters of the force

polay a large part in determining the minimum potential
energy shape.

3. The GHA and RHF calculations give very similar
results when the right type of oscillator states
(e.g. cylindrical or asymmetric) are used. However, the

RHF calculation is definitely better for very light nuclei

1

like ®Be. On the other hand RHF calculations which are
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restricted to the spherical representation will only be
as good as the general GEA calculation if there are at
least two shells of unoccupied states in the representation.
This last statement does not, of course, apply for spherical
nueclei .

4. Except for very light nuclei, the best
oscillator parameters to use in an RHF calculation, as

ra

N
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3]
H

2

alculation,

CRLC
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=prese

wn
(0]

calcula

the RHF

c—_ep

the representation parameter d may do)

clearly

support

calculat

ined by the minimization

@ very close to

ntation

I significantly on the

of equation (28) in chapter 1,

those obtained by the relevant GHA

together with suitable average values for

states which are not occupied in the GHA

tion.

5. As the representation becomes more deformed

solution comes closer to a pure configuration.

The equilibrium deformations obtained do not

(@)
.

type of calculation (though

as' can be seen
in figures 14 and 15 for ®Be. This gives much

the deformation.

to the physical reality of
The Hartree-Fock states which arise in our RHF

ions show very little parity mixing unless the

size parameters for the representation states are sig-

10!

is

which is caused by the one-body spin-orbit

11 ficantly different from the best such par

ameters. There

L

some mixing of states with different m and spin values,

force. When

the
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the spin-orbit force is le

cvlindrically symmetric potential
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ormed, this effect of

f 4
Fh
(0

pacomes

c
ssened because the deformed

favours states of good m.

In the case of asymmetric nuclei there is a very definite
mixing of states with m values of opposite sign in order
o simulate cartesian states. This effect is practically
independent of deformation

An oscillator state with given parameters can
be expanded as an infinite sum .0f oscillator states with
different parameters, but only states of the same m and
parity occur in such a sum. This suggests that the mixing
between states of the same m and parity, which occurs in
che RHF calculation, is an attempzt to'change the gize and
cdeformation of the corresponding orbitals. However, it
has been seen that this mixing does not vanish even when
che best oscillator parameters are used, and this indicates

that there

effect of

U)

ican
particle e

total ener

these tail
Snergy.
Th

is a further polarization of the orbitals. One

this residual polarization is to build up a tail

ingle-particle wave functions. This tail is most

t in single-particle sta that have single-

nergies near zero, and consequently affects the

gy of light nuclei. For nuclei heavier than *°%0

s are probably not significant in terms of total

H‘\

ect of mixing parity in the single-particle



wave functions is to create states whose

centre of mass

s not at the origin. In this way the particles can

polarize to one side of the nucileus 5

P )

¥

o)
0

gencral this

creases the kinetic encrgy. However, if the size
parameters used in the representation states differ
significantly from their best values, then the particles

may polarize in this way to gain or lose potential energy.



CHAPTER 6

A SURVEY OF RESTRICTED HARTREE-FOCK SOLUTIONS
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‘he purpose of this chapter is to examine the
nature of some of the GHA and RHF solutions with
maxinum space symmetry, for all the even-even nuclei
vp to *PCa. This survey will be carried out using

s done it must be

p-

rtorce 1. However, before this

il

remarked that the approximate many-body states found

in these

(0]
¢
4}
}_J
Q
o
,,..)
9]
)
}J
0

ns carnot be compared directly with
experimentally observed states. The reason for this

is that the true eigenstates of the nuclear Hamiltonian
have well defined guantum numbers for angular momentum,
parity and total linear momentum, whereas the Hartree-Fock
states do not. Approximate eigenstates, like Hartree-Fock
states, which have less syvmmetry than the true eigenstates,
re called intrinsic states. They can generally be
_mproved by being projected onto subspaces of states of

the proper symmetry. In the present case the deformed
intrinsic states which result from Hartree-Fock calculations
should be projected onto the subspaces of states with well
defined angular momentum, linear momentum and parity. When

this is done an intrinsic state gives rise to a possibly

82
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infinite number of states which have the same symmetry

properties as true eigenstates and can be compared with

explicitly subtracted in the Hamiltonian used here it
is not felt that projection onto a subspace of zero total
lisiear momentum will change the energy by wvery much.

e

Murthoe f..0re most of the RUF solutions discussed here have
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h

rity quantum number, so
@s of gcod parity will be ignored.
tunately the uncertainty in the angular momentum

of the Hartree-Fock states cannot be dismissed. It has

veen shown by Ripka(l966) that, for 2s-1d shell nucleil

)

ach intrinsic Hartree-Fock state gives rise to 4 or 5

states with good angular momentum and these projected
states bear a strong resemblance to the rotational bands

[

REFT states are calculated in a spherical representation,
Ripka has found that the lowest energy of these projected
states lies about 2 to 3 MeV below the energy of the
-1b~1 1sic state. This energy difference is related to the
moment of inertia in an adiabatic approximation and there-

Zore might be expected to change when a deformed repre-

sentation is used and the intrinsic state becomes more

predicted by the adiabatic approximation.  When the intrinsic
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gain in energy is not very significant if

Hh

ne is only interested in the systematic behaviour o
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wide range of nuclei, but is sig-
nificant if a comparison is to be made with the low energy
spectrum of a particular nucleus, In fact, in order: to

obtain a sequence of states with different J values, to
be compared with an experimental spectrum, it is necessary

to use this projection technique or some form of the

It will be seen in this chapter that for many nuclei
there are often a number of F states within 10 or 20 MeV
oZ the lowest one, which arise when different configurations
are used as starting points. If a spectrum of states
with different J values 1s projected out of each of these
intrinsic states, and if two of these spectra are identical,
then the two corresponding intrinsic states can be

egarded as different approximations to the same true

H
Q

state. That is if ¥(y) is an intrinsic state, y labelling

J
M

is the projection operator which gives rise to states.

the configuration from which it was derived, and if P

Note:

Recently Lamme and Boeker (1967) have shown that
j in energy, obtained by projection, is 6.5 MeV
the ®Be ground state and 5.1 MeV for the *?C ground
is in accord with the idea that the energy
increases with deformation.
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with definite angular momentum, then the intrinsic states

: N 7 / .58 "
Y{v), Y(y“) are essentially the same if
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A obvious example of such a pair of states is the pair

~ 2 01 - 2

C L NS conriguractlions

axls directed along the z or y directions. It is not

clear that all intrinsic states which are approximations

n

to the same partial spectrum must be so obviously related

J

particularly when tha occupied single-particle states

i
()

5

no obvious symmetry. However, because Ripka has

jo)
6]
<
0]

Fh

ocund th

()]

t the enexrgy of the lowest projected state is
close to the energy of the intrinsic state, it may be

assumed that two intrinsic states with significantly dif-—-

(1

H
0}
3
i
0]

nergies are in fact distinct intrinsic states.

It will be assumed in this work that two intrinsic states
which have significantly different sizes or shapes or
single-particle levels are in fact distinct, This
cssumption is based on the idea that the sizes, shapes and
single particle levels are physically meaningful guantities

i

which can be calculated in the Hartree-Fock approximation.



Another awkward feature of these intrinsic states is

that they are not necessarily orthogonal. However, it

comparisons with low cnc:vv spectra are to be made.

The first even-even nucleus is "He. Because of
the small number of particles in this case, it is not
clear that any approximation using an average potential

si.ould give a good approximation to the ground state.

The results obtained for the (000)* configuration will

86

e given in the next chapter when the systematic behaviour

9]
'H
o
H

inding energies and sizes is discussed, but this is

mainly in the interest of completeness.

The ground state configuration
8, {0025°*
has been discussed in chapter 4, in detail. The values
of the a and b parameters (defined in equation (6) of
chapter 4) for the oscillator states, that result from
the minimization of the energy of the configuration wave
_u:ctlon, are shown in table 3. It can be seen that the
00) orbital becomes more deformed than the (001)
orbital. It must be pointed out here that the (001)

o

orbital has a deformation even when the oscillator para-

)

meters are equal, but this natural deformation which is
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due to the guantum numbers is being ignored. In fact, for
1@ values of a and b guoted in table 3, the density
«lsbribution of the (001l) orbital is more deformed than
that of the (000) orbital. However the harmonic well for
wirtich the (00l) orbital is an eigenstate is less deformed

than that for which the (000) orbital is an eigenstate,
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e
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b

to compare the deformations

(000) particle, is produced by 3 particles in the (000)
orbital and by 4 in the (OOi) orbital which have a more
cdeformed density distribution. It is quite natural that
this potential should be more deformed than the average
potential felt by a (001l) particle and coming mainly from
the (000) orbital. As was mentioned in chapter 4, the
RHF* solution with a three shell representation does not

5

nake a significant improvement on the GHA result. The

enargies and shapes of the two solutions are given in
table 3b.

In the cartesian representation the configurations

In this chapter an RHF calculation will mean
a three shell calculation.



is, [oo1]*
18,4 [B1014
18, [Xoa]™
are obviously not distinct and arxrce all eguivalent to

configuration A in the cylindrical representation. How-

ever 1n the cylindrical representation there is an

o)

alternative configuration with maximum space symmetry,

s, (010)* , (B)

le improvement. The reason for

(I
U)
r!
49}
ct
3
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ot
o
o)
‘_i..
by
o
e
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ulation the occupied (010)
orbital mixes with the unoccupied (0-10) orbital to
produce an orbital of the cartesian type [010]. The
asymmetry parameter x = <x? - y?> /<x?® + y?> and the
ceformation parameter Q/R® can be used to determine the
ratio x* : y?* : 2z?* . This ratio is shown for the two
intrinsic states that have been considered, in table 3c,
and it is clear from these values that the two solutions
have very much the same shape. The discrepancy between

these shapes is a result of the difficulty in representing

ge
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single-particle states which are symmetric about the y

14
147]
-
}l
o]

terms of single-particle states which are
syrmetric about the 2z axis. If the representation used
in the RHF calculation increased, this discrepancy would

diminish. The difference between the energies of the

89

two solutions is caused by the same difficulty. It should

be noted that the oscillator parameters used in the two

DT

RHF calculations are not the same, each set being obtained

from separate GHA calculations.

Lf any further evidence that these RHF solutilons

D,s

= R T T == < A A
are not aixstinct, 1s neecde

~

particle levels. These are shown in figure 24 for the

Hh

configuration wave functions obtained in the GHA cal-
culation and for the RHF solutions which use these con-

figurations as starting points. For configuration B the

£
Hj
0
]
'. =
0
=
*.J
0]
ot

ion makes a significant change to the single-
particle spectrum and the result is close to the spectrum
optained for configuration A.

The fact that these intrinsic states are not

distinct shows that the GHA calculation by itself gives

w
D

urious solutions, that is solutions which do not

C

fll

isfy the Hartree-Fock requirement of self-consistency,

; it is supplied by the single-

and which are not even good approximations to such states.

Howeveyr, self-consistent intrinsic states can be well

approximated by some of the GHA solutions.
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TABLE 3a

BERYLLIUM 8 a AND b PARAMETERS DRETERMIVED BY GHA CALCUTLTION
ORBITAL
CONFIGURATION (000) (001) (0£10) (002) (0£11) (0£20) (100) (003)
A a 0.856 0.905 - - - - - i
b 1:365 1.145 - - - - . .
- a 1.070 - 1.044 . -
b 0.865 - 0.944 - - a : -
@ a—1.037% - - 1.218 - - - -
* 5
b 1.828 - - 1.828 - - - -

&
These parameters are affected by the orthogonality constraints.

06



BERYLLIUM 8

ENERGIES,

TABLYE 3b

SIZES AND

CONFIGURATION
A
B
&

GHA
ENERGY RADIUS Q/R?
-47.05 2.11 0.954
~31.49 2.04 - ~0.407
- 3.03 3.55 1.390

DEFORMATIONS FROM GHA AND RHF CALCULATIONS

RHF -
ENERGY RADIUS  Q/R? X
-47.36 2.11 0,956 0
-45,11 2.09 -0.436 ~0.462
........ See Chapter Beceiveceeneocs

6



TABLE 3c

BERYLLIUM 8 RATIOS X%2:Y%:2%2 FOR SOLUTIONS

CONFIGURATION CALCULATION x* : ¥ : g*
A RHF 1.00 1.00 3,15
B RHI* 1.17% 3.18 1.00
& GHA 1.00 1.00 7.84

Z6



The last configuration to be considered is
15, (ogz)* (C)

and the GHA results are shown in tables 3a and 3b and

3

. The RHF calculation produced considexable
parity mixing in this case and did not converge. It is
concluded that there is no intrinsic state satisfying

the Hartree-Fock conditions and directl

|
H
o
l,..)
o]
(a3
)
[N
q)
¢}

For this nucleus there

4}

re, once again, three

space symmetry. These are:

1s, [1001%, [oiol*

is, iel1*, [©OB11*

1s, [0011*, [1001%
ror each of these configurations the equilibrium shape
given by the Mottelson rule is cylindrically symmetric,
and so there is no loss of generality in using the
cylindrical representation. The above configuration, which
is ob;ate in shape, is written as

18, foLlo}™, [o-1g6)* . (&)
The results of the GHA and RHF calculations for configuration

A are shown in table 4. As in the case of ®Be the inner-

most orbital is more deformed than the outer pair. If the
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ClA minimization is carried out treating the oscillator

parametars for the oxbital

wn

(010) and (0-10) independently
thay are found to be very nearly equal when the minimization
procedure has almost converged. In the GHA calculation
gucced in table 4a the parameters for these orbitals

were constrained to be egual as were the b parameters.

It is seen that there is only a wvery small difference
between the GHA and RHF solutions. This is shown by the
nergies and shapes in table 4b and 4c¢ and by the single-

=

In an attempt to find a diffe

rent intrinsic

ct

state one could start with the configuration

1s, (001)* (o10)* (B)
The results are shown in table 4 and, as might be
axpected from the discussion of ®Be, the cylindrical
crbital (010) breaks down into a cartesian type of
crbital, by mixing with the unoccupied (0-10) orbital.
In this way an oblate state results from the RHF cal-

culation with the smaller axis in the y direction and

n

this is indicated by the asymmetry parameter. The ratio
x*:y%2:2% is shown for the various configurations in

teble 4c and the single-particle energies in figure 25.

i

Tt is quite clear from these results that configurations

Ha

and B give rise to the same intrinsic state.

A separate prolate intrinsic state with maximum



TABLLE 4a

CARBON 12 a AND b PARAMETERS DETERMINED BY GHA CALCULATION

ORBITAL
CONFIGURATION (000) (001) (0+10) (002) (0£11) (0£20) (100) (003)
A a 1.142 - 1.046 o - - - -
b " 0.817 - 0.886 = - - = -
B a 0.950 0.950 0.978 - - - i =
b 1.160 1.046 1076 - “ - - - g
C a 0.855 0.897 = | 0.935 - - - -
b 1.408* 1.598 o 1.408* - - = p=

*
These parameters are affected by the orthogonality constraints.

S6



CARBON 12 ENERGIES, SIZES AND DEFORMATIONS FROM GHA AND RHF CALCULXTIONS

TABLE 4

b

CONFIGURATION

A

GHA
ENERGY RADIUS Q/R?
-76.63 2.13 -0.506
-64.63 2.10 0.312
-62.29 2.85 1.407

x RHF e ’
ENERGY RADIUS Q/R? X
~76.96 2,13 ~0.504 0.0
~74.44 2,11 0.296 0.3
~63.17 2.85 1.406 0.0

96



CONFIGURATION

TABLE 4dc

CARBON 12 RATIOS X2:¥2%:2%2 FOR SOLUTIONS

CALCULATION

RHF

RHF

RHF

X2 y2 g
2,50 250
1.00 1.95
1.00 1.00
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1s, (001)*, (002)* (C)
he results obtained with configuration C are given
in table 4 and figure 25 and it is clear that this gives

distinctly different intrinsic state about 14! MeV above

The ground state of two closed shells is
s, 1p (A)

an discussed in chapter 4 briefly. It is

[

r

£

w
oy

P

(0}

xpected to be spherical. The a and b parameters for the
lowest energy of this configuration and the results of

the RHF and GHA calculations are shown in table 5. In

the minimization, the parameters of the (001) and (0x10)
orbitals were allowed to vary independently of one

er and to give a truly spherical density they should
Zinally be egqual. The small discrepancy between them is
spurious and gives an an indication of the accuracy of the
minimization procedure. If one of these parameters is

changed by 0.005 the resulting change in the energy of

&y

the configuration is about 0.004 MeV. Generally the
and b parameters quoted from the MINDET program are accurate

o within 0.002, in the sense that if the minimization were



e a different starting point the new final

.
gpeace

usin

R
[®F
w0

0

values would agree to this accuracy with the values

~

qguoted.
The single-particle levels for the GHA and RHF
soluticons are shown in figure 26 and it is to be noted

calculation produces the conventional

levels in the spherical average potential.

}_

The splitting of these levels is 3.00 MeV, and the

unoccupied d Sk and d levels occur at +3.08,

sf2 ! 32
+7.33 and +8.08 MeV respectively.

The low lying 0+ excited state of '°®0 is generally
believed to be based on an intrinsic state which is a
L-particle 4-hole excitation of the ground state. This
configuration is, in the cartesian representation,

1s, ([oo1l*, [0l01%, [002]1*
which as seen in table 2 has an asymmetric equilibrium
shape. The cylindrical configuration

18, (001} ™, (010}, (0D2)* (B)
can be used as a starting point to obtain the correspondihf
intrinsic state and the results are given in table 5 and
figure 26. The RHF calculation produces the ésymmetric
sLape.and this is accompanied by a gain in binding energy
cf 11 MeV. The result of a GHA calculation}in the
cartesian representation is also shown in table 5 and

agrees very well with the RHF result. The slightly lower

=
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TABLE 5a

OXYGEN 16 a AND b PARAMETERS DETERMINED BY GHA CALCULATION

ORBITAL
CONFIGURATION (000) (001) (0+10) (002) (0+21) (0£20) (100) (003)
A a 1.007 0.95% 0.962 - - - ~ -
b 1,007 0.958 0:862 = - - - -
B a 0,922 0.911 0.973 0.955
PS ]
b 1.290 1.374 1.166 1.290
€ a 0.857 0.882 - 0.924 ° - ' = # 0.955
& * r 3
b 1.804 1.635 = 1.804 - - - L 635

*
These parameters are affected by the orthogonality constraints.

00T
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OXYGEN 16 ENERGIES, SIZES AND DEFORMATIONS FROM GHA AND RHF CALCULATIONS

GHA N RHY
CONFIGURATION ENERGY RADTIUS Q/R? ENERGY RADIUS Q/R? X
A =129 .19 2.05 0.0 -129 .19 2.05 0.0 0.0
B - 85.74 . 2.24 0.964 = 96.12 2.55 0.947 0.258
c - 77.84 3.63 1.628 - - = -

TOT



CONFIGURATION

OXYGEN 16 RATIOS X?:Y%2:%% POR SOLUT*9NS

CALCULATION

RHF
RHT

GHA

TARLE

1.

S5¢

00

.00

L1110

4

.00

.70

.00

O
-

il
O

14.10

20T
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energy in the cartesian GHA calculation comes from the

ability, in this case, of the individual orbitals to

ae 8-particle-8-hole excitation derived from

18, (0013 %, (002)*, {003)* iy
is considered next. The fact that this configuration,
with 4 particles in each of 4 diffe:ent shells, can
nave an equilibrium energy in the same region as the

igurations considered, shows very dramatically

£
o
H
(@]
O
o]
-

che ability of the orbitals of the (00n) type to lose

nergy when they are allowed to deform. The

[

®
f
l,.l .
9]
0]

Fock calculation for this configuration has not
been carried out,but as the equilibrium shape is
cvlindrical it is not expected that this would decrease
the energy significantly. In particular the order of

he 4 and 8-particle-hole excitations would not be

changed. The results for these excited states are similar

For this nucleus there are two distinct configurations
in the cartesian representation, which have maximum space

symmetry and reasonably low energies. They are:
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s, 1p, [002]"

1s, 1p, {ol1}*,
nd are prolate and oblate respectively. As may be
expected from the remarks made ecarlier about the [00n]

tvpe of orbital, the prolate state has the lower energy.

similar configurations which will be considerxed. They

1s, 1ip, (002)*" (n)

1s, 1p, (020)*" (B)
1s, 1p, (011)* (c)
1s, 1P, (100)* (D)

..»@ results are shown in the usual way in table 6 and
.2 figure 27. As expected the érolate configuration A
_ies the lowest in energy, and it is not changed very
rmach by the RHF calculation. The oblate configuration B
gives rise to an intrinsic state at -142.39 MeV which is
Zairly well separated from the prolate one. It should
ke noticed in this case that the one single-particle
orbital in the 2s-1d shell, after the RHF calculation, is
a mixture of the form

(]020> = |0-20>)/V/Z"
The variation in the density of such a state around the
z axis is given by cos?2p which is shown in figure 23. While

this is not strictly cylindrically symmetric it gives an



L&)
Lne

}.J

egual contribution to the density in the x and y directions.
This is why the asymmetry parameter is zero.  |[Thigs oblate
state is the analogue, in the cylindrical representation,

of the oblate cartesian configuration considered above.

["‘] 20\

The next two Ne configurations become asymmetri
in the RHPF calculation. At this point it becomes mis-

lecading to judge the shape of the Hartree-Fock states

rl

“o Q/R? parameter alone. This is because this para-

fixed

IS

meter and the asymmetry one are connected to

33

rdinate system,whereas the RHF state is not. K The

shapes of these first four ?°Ne solutions are given more
explicitly by the ratios x°:y®:2° which are shown in

v

table 6¢c. It now becomes clear that both the second

W)
53
pj

third configurations produce intrinsic states with

cssentially the same oblate shape. When the single-

configurations B and C are compared in figure 27, it is
clear that the RHF calculation acts to make the two

-particle spectra very similar. Finally the total

w
} )
!
Q
®

Linding energies and the radii are the same for the two
cases and it must be concluded that the second and thizxd
intrinsic states are not distinct.

When the f£irst and fourth solutions are compared

in the same way as the second and third

1ave been, it

can be seen that these two solutions ar

()



TABLYE (> &

NEON 20 a AND b PARAMETERS DETEIMIFNED BY GHA CAILCULATION
ORBITAL
CONFIGURATION (000)  (001)  (0%l0)  (002)  (0:11)  (0£20)  (100)  (003)
A a 0.964 0.905 0.938  0.940 . : . y
b 1,134 . 1.21%  3.002  1.134 - K . .
B a 1.082 1.004 1.021 , : 1.049 : )
b 0.965 0.945 0.918 z x 0.955 o .
c a 1.022 1.029 0.961 - 1.017 8 . 5
b 1.083 0.981 1.079 - 1.064 ) . -
D a 1.092° 0.954  1.058 - " - 1.092° -
b 0.971 0.942  0.942 " . N 1.035 .
B a 1.027 1.007 0.985 a . . . 1.110
b 1.076- - 1.462°  1.023 > . . = 1,462°

o
These parameters are affected by the orthogonality constraints.

20T



TABLE Gh

NEON 20 ENERGIES, SIZES AND DEFORMATIONS FROM GHA 7 1D RHP

GHA RHF
CONFIGURATION ENERGY RADIUS Q/R? ENERGY RADIUS Q/R? X

A ~156. 46 2.30 0.603 ~157.82 2.30 0.593 0.0
B ~-139 .90 2.26 =@, 270 -142.39 2: 256 0,268 0.0
C -136.87 2428 0,150 -142.33 2.26 0.149 0,139

~-146.80 228 =0, 247 0.214

N
B |
~J

D -13%.18 2,31 =0 .

E - 99.10 2.79 0.895 - - - -

LOT
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LUBIONS

NEON 20 RATIOS X2:V%:4%2 F

CONFIGURATION CALCULATION %2
- RHF 3 80

: RHF 1.54

3 RHF 1.32

! RHF 1.81

. GHA 1.00

.00

« L7

.00

. 26

L 500

A4

.00

.43

80T



ither. In this case the RHF calculation has mixed the

2s-1d shell orbitals

‘ -~ -~ J q - ~Y = hl ~ o~ —,-H‘-.'<,-\—T - - P T e T
o produce an orbital closely related to the cartesia

o

(220]. The representation states determined by the GHA

2
|

galculation for the configuration D are not at all

a state with cylindrical

i

uited to the description o

Lo

syrmetry about the x axis and this is the reason for the
|

lprge discrepancy in size and in binding energy between
|

he two solutions A and D.

. The last configuration which is considered for

|
2PNe is

| 18, 1p, (003)*. (E)
;ﬁis is prolate and symmetric with the last 4 particles

i
=
o,
w3
D

2p—~-1f shell rather than the 2s-l1d shell. The
‘ - - . . g b - - 5
reésults for this configuration are shown in table 6 and
Zigure 27. It can be seen that this intrinsic state
ogcurs at a very much higher energy than the ones

|
cfeviously considerad.
\

. In the cartesian representation there are two

inct low-lying configurations within the 2s-1d shell

{\
o
. w

ot

wﬂ;ch nhave maximum space symmetry. These are
18, 1p, [0021% [R1L1* (W)

| 1s, 1p, [0021% [0201"% (X)
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heir ecguilibrium shapes are shown in table 2. The

configurations, in the cylindrical representation, that

38, 1P, Wog2) %, tei1y* ()
1s, 1p, (020)*, (100)* (BE)
1s, 1p, (020)%, (0-20)" il fit
l 1s, 1P, (011)*, (0-11)*. (D)
The results of the GHA and RHF calculations are shown in‘

lanle' 7 ana figure 28. The ratios x%:y?:2° in table 7o

s

4

indicate that all the intrinsic stat found have the

c
o
0

same general shape. The single-particle levels in

tructure very similar to the cartesi

o

figure 28 show that the four intrinsic states have a

!

| . i

T n configuration W

"or whlich the cartesian GHA calculation has been carried

w0

pvt. The single-particle levels, for the configuration X,
ictermined by a GHA calculation are shown on the left
figure 28 and it is clear that this is a very different

spectrum. We draw the conclusion that the configurations

4

B, C and D are not approximations to different intrinsic

tree-Fock states. Furthermore we have considered

P
K

&

here oblate states B and C which are similar to the car-

E

tesian configuration X, and these states did not give rise

to intrinsic states similar to X. In fact the oblate

UT
i
(4]
(O
o
n

B and C changed quite drastically into intrinsic

+
¥
I
o
o)
0]

very similar to configuration W. This implies that



http:sh.:::.pe

aafes

L S

0

(45]

B

.....

the cartesian configu:

)
o
&
O
5

X is itself not an approxi-

cion to a self-consistent Hartree-Fock state.

=
0

wast be pointed out here that while other authors, in

o de 7

ticular Ripka (1966) and Muthukrishnan (1967

v
.
S
ol
<
o)

A Ry N e Y A S 19 o - - =~ ~ ] oy A I 5
cnsidered configuration X and have found related RHF

vtes, thelr calculations were restricted in such &
as to prevent configuration X from being turned into
nfiguration W. This shows that

too restricted can lead to misleading results, i.e.

A different intrinsic state with maximum space

ymmetry can be constructed by putting 4 particles into

e 2p-1f shell and starting with the configuration
~ oo L ; : n
1s, 1p, (0602)%, (003)*% (E)
results for this configuration are given in table 7.

¥

’_

this case the equilibrium shape is cylindrical

th

mmetric and the size and deformation are gquite di

irent from those of the previous configurations. It

felt that this configuration gives rise to a distinct
trinsic state, and it can be seen that this is about

MeV higher than the asymmetric state. This energy

i|fference is very much less than that between the

west intrinsic state found for 2°Ne, and the *"Ne con-

guration which had 4 particles in the 2p-1f shell.

&

)

is indicates that the presence of an occupied (002)

11X
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TABLE

Ta

MAGNESIUM 24

a AND b PARAMETERS

DETERCIIILD BY GIA

CALCULAT:

ORBITAL
CONFIGURATION (000)  (001)  (0%10)  (002)  (0£11)  (0£20)  (100)  (003)
A a 0.965 0.955 0.925  0.955 0.964 - - x
B Lag2® 1.z T1.145 10967 1,153 i -
B a 1.057° 0.967 1.084 = - 1.071 1.057 -
b 0.922 0.909  0.887 - " 0.909  0.943 o
c a 1.164 1.046  1.070 - 1.066 . .
b 0.929 0.930 0.880 . 0.927 . .
D a 1.029 1.063 0.947 . 1.006 . . .
b 1.168 0.989  1.171 . 1.057 - g .
B a 0.943 0.887 0.937  0.914 . - - 0.963
b 1.351° 1.382° 1.044  1.351 - . - 1.382
i

These parameters

are affected by the orthogonality constraints.

AN
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MAGNESTIUM 24

CONTFIGURATION

ENERGIES, SIZES AND DEFORMATIONS FROM GHA AND RHF CALCULATIONS

GHA RHF
ENERGY RADIUS Q/R_; INERGY RAD;IiU'é—_W“Zg;Rz : x—
~185.67 2.38 0.584 ~-190.89 2.38 0.579 0.119
-178.77 2,37 -0.412 ~187.50 2.37 ~0.404 0.161
~-173.91 2.40 -0.414 -184.,31 2.41 ~0.421 0.170
~173.66  2.36 0.235 ~181.17 2.37 0.323 0.044
~172.56 2.77 1.096 - - - -

€TT



TABLE 7c¢

MAGNESTIUM 24 RATTIOS %X2%:¥2%:2? FOR SOLUTTONS

CONFIGURATION

CALCULATION

RHF

RUE

RHF

RHE

GHA

32

44

«09

.00

1.00

1.00

.00

el

85

.65

PIT
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evel makes a considerable difference to the single
particle energy of the (003) level. The reason for this
%p that the interaction between orbitals of the same

ghape 1s greater than that between ones of different

There are two distinct low lying cartesian
configurations for this nucleus. They are:
15, 12, |

o 71
" (011

¥, [o201*

k-
(]
(V)
i
Rl

18, 48, BL2}", [0111%, [1011*%,

.4 are oblate and prolate respectivel The corresponding
configurations of cylindrically symmetric states are

is, 12, {OC;}“, (C;l)“’ (O_ll)% (B)

Ip common with many other authors (e.g. Ripka 66,

b

thukrishnan 67, Bernier and Harvey 67, Das Gupta and

At
KL 67) , we find that the two configurations hav

(D

very

w

similar energies. It should be noted that the shapes and
single-particle spectra are distinctly different and

thhat these are two distinct intrinsic states. The effective
degencracy of these intrinsic states is unsatisfactory,
since there is good experimental evidence for two dis-

tinct rotational bands. The 0+ states for these bands
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cre separated by about 6 MeV, and consequently one . cxpects
to find two intrinsic Hartree-~Fock states about 6 MeV
apart. The relative energy of these two intrinsic states
by no means independent of the force parameters or of
calculation. An unnaturally large negative
soin-orbit force will depress the oblate state. It has
o150 been found that if the minimimization of the con-
figuration wave function, to determine the oscillator

sarvameters, 1s carried out with the sizes an

o
0,
o
Hh
O
By
=]
0]
(_r.
-
©
L
U

ocrf all the orbital

]

equal, then the oblate soclution is

....... ™M

favoured by about 2.5 MeV. However, when the minimization

+=» carried out over the most gene

S Ve
- =

1 set of parameters

()
4]

~2 pathological degeneracy shown in table 8 occurs. The
gusstion of these two 2°5i states is taken up again in
chapter 7 when various forces are considered, but a
reasonable decision as to which of these states lies lower
cannot be made so far.
The configuration
1s, 1p, (002)%, (01l)*, (003)* (C)

-

ead to a distinct intrinsic state but only the GHA

(]

hould
ca.culation is shown. This configuration is related to
the cartesian state
1s, 1p, [0021%, [o1ll"%*, [003]1"

which is asymmetric. It is expected that an RHF cal-

laticn would chance the (01l) orbital of C intc a car-

\J
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SILICON 28 a AND b PARAMETERS DETERMINED BY GHA CALCULATION

ORBITAL
CONFIGURATION (000)  (001)  (0£10)  (002)  (0%£11)  (0£20)  (1.00)  (003)

A a 1.037° 0.977 1.099 - - 1.066 1.037° .

b 0.886 0.883 0.846 " - 0.879  0.806 -
B a 0.960 0.984 0.908 0.963 0.952 3 - -

® %

b 1.067  1.129 1.240  1.067  1.124 - - T
c a 0.944  0.925 0.917 0.918  0.947 ’ - 0.943

b 1.328° 1.257° 1.206 1.328  1.224 : - 1.257"

% ,
These parameters are affected by the orthogonalily constraints.

LTT



SILICON 28

CONFIGURATION

ENBERGIES

GHA

ENERGY

-234.79

-244,13

-213.06

RADIUS Q/R?

T ONS

¢ SILZES AND DREFOREAT

RHJ

ENERGY
~245,97

= 245,59

RADIUS
2.4]

2.41

0.566 0.00

81T



TABLE

CONI'IGURATION CALCULATION

A RHF

C GHA

SILICON 28 RATIOS %?2:v?2

Sre

:%2 FOR SOLUTIONS

6TT



tesian tvpe of orbital similar to, [011l]. This change

would cause a significant decrease in energy.  Because

of this we can only sday that the related intrinsic state
is less than 32 MeV abpve the lowest intrinsic state.
Salphur 32

The low energy| cartesian configurations with
saximum space symmetry| for this nucleus are

is,' 1p, [oo2]}, [o20]%, fo1l]*, [loi}* (W)

18, 1», [po2]1}, BOI11%, [1011%, [1i0]1% (X)
1s, 1p, [0021%, f[0201", [2001%, [0l11" (Y)

1s, 1p, [002]%, [020]%, [101l%, [1L1l01™ (2)

These configurations are asymmetric, prolate, oblate and
chblate respectively and the equilibrium shapes predicted

ov the Mottelson rule |are given in table 2. The

cylindrical configurations restricted to the 2s=1d shell

1s, 1p, (011)"%, (020)*%, (0-20)"*, (100)* (A)
1s, 1p, (002} ", (011)%*, (0~11}%*, (0z20)t (B)
18, 1p, (002)*}, (020)%, (0-20)"*, (100)" (C)

1s, 1p, (002)*, (o1l)"*, (0-11)%, (100)"* (D)

-3

*

he results are shown in the usual way in table 9 and
figure 30. Configuration A produces an asymmetric state
oy mixing orbitals (011) and (0-11) and this is related

-0 the asymmetric cartegian configuration W. It must be

120



remembered thait the representation used, in the RHF

4]
ot
H
=3
'._)
cf
o)
(o]
(i
@]
ct
)
8.

calculations which aref{being guoted, i

O

orbitals. Because of this there are only two unoccupied
orbitals in the *2?8 calculations and the correspondingly
small number of degreeg of freedom allowed inhibits any

&y ‘ - b}

gniricant change in ghape. Configuration B has a zero

(r

asymmetry parameter infthe RHF calculation but [the (020)
oricital has mixed with |[the (0-20) orbital to produce

e ~ o spvokes o 3 ~ she = -
qle-particle states |w

s -
cf. figure 23). he dntrinsic state resulting from
configuration B is clogsely related to the prolate cartesi

co..figuration listed above. The shape of the intrinsie
state given .in table 949 is guite close to that given by

tesian configuration.  Con-

Hh
O
=
ot
¢
O
0
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the Mottelson rule

suration C gives an oblate intrinsic state which is not

l’)v
W

very different from the pure configuration. However con-
Liguration D does not remain cylindrically symmetric in
the RHF calculation and there is in this case a| definite
change in the single-particle spectrum for the lp shell
and for the highest occupied state. The total binding
energy 'in this case is gre atly reduced and drops below
that of either the prolate or oblate solutions. It is
concluded that this configuration is collapéing to the.
symmetric state found from configuration A.

The last configuration to be discussed is
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NIT T G
TABLE 9a

SULPHUR 32 a AND b PARAMETERS DETERMINED

ORBITAL
CONFIGURATION (000) (001) (0+10) (002) (0+11)
A a 0.997  1.023 1.051 - 1.026
b 0.915 0.872 0.899 : 0.926
B a 0.994  0.991 0.925 0.961 0.952
b 1.019° 1.067 1.117 1.019%  1.050
C a 0.997 0.888 1.046 0.918 -
L *
b 0.976  1.039 0.850 0.976 -
*
D a 0.971  0.965 0.946  0.945 0.958
b 1.027  1.069 1.144  1.027 1.060
I a 0.939  0.948 0.895 0.916 0.929
b 1.254  1.192 1,316 1.954 1.184

(0£20)

1.021

0

21l

O
wr
W

.079

021

. 885

BY GHA CALCULATION

(100)

(0603)

*

These parameters are affected by the orthogonality constraints.
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SULPHUR 32 ENERGIES, SIZES AND DEFORMATIONS FROM GHA AKRD RHF CALCULATIOHNS

GHA RHT

CONFIGURATION ENERGY RADIUS Q/R? ENERGY RADIUS Q/R X

A -291.48 2.38 -0,.354 -297,21 2.38 ~f.35% -0.,058

152
o

O

B -288.13 2. 38 0,330 ~290.85 . 38 0.317 0.0

& -283.36 * 2.38 ~0.147 ~286.74 2.38 =0 .,155 0.003

(o]
i
N
Lo
N

D -278.01) 2.39 0,320 =2 « 39 0.322 0 .139

E ~283 .02 2.64 0.910 - - L. —

€ZT



TABLE 9c¢

SULPIUR 32 RATIOS

X*:

CONFIGURATION

A

CALCULATION

RHF

RHF

RHF

RHF

GHA

1.32

1.00

¥2:72?2 FOR SOLUTIONS

1.00

1.00

72

1.00

1.57

1.00

1.84

3.50
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1s, 1P, (002)%, (011)"*, (0-11)"%, (o003)" (E)

Nien is a prolate stite: The results £or this configuration
Jven L. table 9 show! that this state has an energy

—guparable with that L the oblate intrinsic state dis-

P e e 8 ) 3 0N W 2 9 - g
clssec above. he shape and single-particle spectrum for

cunfiguration E show that this is likely to give rise to

a |(further distinct intrinsic state.

There are two|cartesian configurations which are
natural candidates for the lowest in energy. These are:

18, 1Fl [0062)%, Jo201%, [BL1I1%, [BilY, ([1pal® (X%

1s, 1p, [po21%, @ozel*, (2001%, [0111%, [OL}% (¥)
and are obla and proélate respectively. The configurations
cif cy.indrical states), which will be considered initially,
are:

1s, 1p,|(011)*, (0-11)%, (020)%, (0-=20)*, (1Cc0)* (&)

15, 12, (002)%, (011)*, (0-11)%, (020)*%, (0-20)" (B)
18, 1B, (002)*, (011)*, (020)*, (0-20)%, (100)* (C)
Thie results are giwveniin table 10 and figure 31. It is

y that the prolate configuration A remains cylindrically

®

symmetric whereas the|other two become sllghtly asymmetric.
The single-particle energies for solutions B and C are

rearranged by the RHF calculation to appear more like

,..

those of solution A. |This is particularly noticeable in

v

e



the lp shell. PFinallyl the shapes given in table 1l0c
indicate that the three solutions A, B and C are all of
noye or less the same oblate shape. It is concluded
that there is only onejself-consistent intrinsic state

O I e a T B BN 3 3o v i o T a4 = - Y
hexye and that it is clese to the oblate configuration A.

U

Decause the eyvlindrically symmetric prolate configuration
2 has reverted to the oblate intrinsic state it seens
asonable to assume that the prolate cartesian state Y

would also be unstable. The prolate state has been

reonrted by Muthukrishpan (1967) but this state has only
n found in calculations where the collapse to the

18, 1p, €002} %, (@R1):, (0=11)%, (020)"%, (043} (D)
has  also been considered and the results of the GHA
solution are shown. This configuration is closely related
to the asymmetric cartesian one

1s, 1p, [o02}*, [ol1l"*, [ioll%, ([li0]%, ([0031* (2)
and it is expected that configuration D would become
asvimmetric in an RHF calculation. It has been remarked
beiore that the onset of asymmetry in an RHF calculation
is always accompanied by a significant decrease in the
crergy. Thus the figure of -326.88 MeV given in table 105

must be regarded as a rather poor upper bound to the energy

= |

of cthe related intrinsic state.



TABLE

a AND b PARAMETERS

ARGON 36
ORBITAL
CONFIGURATION (000) (001)
*
A a 0.957  1.041
b 0.936 0.857
B a 1.032 0.982
b 0.974  1.01)
C a 0.9437 0.931
b 0.959" 0.988
D a 0.975 0.951
b 1.166 - 1.132-

Dis

(0

10)

196

B

TERMINED -BY - GHA - CALCULATION

J il

(002)

0.

« 210

*
166

(0+11)

(0£20)

0.978
0.936
0.944
1.010
0.971
0.906

0.941

Jrkig

(100)

(003)

. 3
These parameters are affected by the orthogonality constraints.
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ARGON 36 ENERGIES, SIZES AND DEFORMATIONS FRONM GHA 72D RIF CRLCUILZSLIONS

GHA RHF

CONFIGURATION ENERGY RADIUS Q/R2 ENERGY RADIUS

N
(69]
18
1
(]
NS
o
o
o

A -373.24 2.34 -0.:249 =375.06

B -356 .86 2535 0.335 -365.72 2.36 0.121 0,118

-0.078 0.044

(@8]
(U8
&

0. 060 .~365.27 2

(@]
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W
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o -
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This new cartesian configuration is related tc the

5 v o

cylindrxrical one
18, 1p, (002)%, (011)*, (0-11)", (100)", (003)"

1ich hhas not bheen considered.

= B! = S e - 3 e e ain
It has been pointed out in cha chey

NE
{
r

fl
rt
(

*

@

three shell RHF calculation for “°Ca gives a density
rix which is always the 20 x 20 unit matrix. A result
of this is that the many-body state which results from

the RHF calculation is the same as the pure configuration

18, ¥, 25-1D (B)
However the RHF calculation does produce single-particle

e - e deo  AAANE el e s iyt S B Al =y e - e
states which are not S1mpLy the  representation states.
S o~ U S P o AP N S e —""t Ta -t—-.-'-g o~ ~ T
i fact cne single—parctlcle staces roauecea are s

the spherically symmetric average potential. These

Py =

levels are shown in figure 32 and should be compared with

=
18 ]
(93]
w

rs given earlier for '°0. The 2sy; leve

.(r
o
S
&
o

sunk relative to the d levels. In the harmonic potential

the s and d levels are degenerate, though the d level is

®



split by the spin-orbit force., In the Woods-Saxon well,
which is squarer than the harmonic one, the d level falls
below the s level. Insofar as the Hartree-Fock potential
has a shape, it is closely related to the shape of the
density, and thus in '°0 which has a fairly square shape
the average of the d levels is found below the s level.

In this last “°Ca calculation, the nuclear density has a
central peak far higher than is reasonable from experi-
mental considerations. This large central density will
make the Hartree-Fock potential very strongly attractive
near the centre, and its overall shape is not at all
square. In figure 32 it is seen that the d levels are
above the s level which suggests that the Hartree-Fock
potential becomes sharper than a harmonic well. This
depression of the s level is not physical because the true
“%Ca density is not like the density found here. A better
effective interaction, such as the ones described in the
next chapter, would give a squarer density and not give
this depression. The a and b parameters for the GHA cal-
culation are given in table lla, the energies and size

2 ratios in table llc.

parameters -in table 1lb and the x2:y?:z
The GHA calculation has been carried out for the 4-
particle-4-hole excitation

s, 1p, (002)"*, (o11)*, (0-11)*, (020)"*, (0-20)*, (003)*,

(B)



TABLE lla

CALCIUM 40 a AND b PARAMETERS DETERMINED BY GHA CALCULATION

ORBITAL

CONFIGURATION (000)
*

A 0.913
*

0.913

B 0.994
*

1,123

(001)

0.945

0.945

0.951

*
1.081

(0£10)

0.945

0.945

0.916

1.050

(002)

*
0.913

*
0.913

0.903

*
L.223 .

(0+11)

0.930

0.930

0.922

1.018

(0+20) (100)

0.930 0:913

*
0.930 06.913

0.927 -

3,03} -

(003)

0.918

*
1.081

*
These parameters are affected by the orthogonality constraints.

~



CALCIUM 40

TABLE 11b

ENERGIES, SIZES AND DEFORMATIONS FRO!M GHA

CALCULATIONS

CONFIGURATION

GHA
ENERGY RADIUS Q/R*
-465.52 2.28 0.0
-397.22 2.46 0.473

€E€T



and the results are shown in tab;e 11 and figure 32. This
configuration will give rise to a cylindrically symmetric
prolate intrinsic state, which is the analogue of the con-
figuration believed to be responsible for the first 0+

excited state in 1'°0.

Conclusions

It is of course possible to extend the number of
configurations with maximum space symmetry, without limit.
However, the restricted number considered here include
the most interesting ones, and at the same time could be

considered in some detail in a reasonable amount of time.

=)

W

Apart from the states of maximum space symmetry, there
are many interesting configurations which have this sym-
metry broken in one orbital. These configurations can
often provide further intrinsic states in the same energy
range as those considered above. By way of example three
important cases are listed here.
1. SBe: 1S, (010)%, (0-10)*2
this configuration gives rise to an oblate intrinsic
state in ®Be.
2. " '%0: 1s, [o01]%, [0l0]*, [1001%, [002]"
this configuration is a 2-particle-2-hole excitation
of the !®0 ground state and is comparable in energy

with the 4-particle-4-hole state previously considered.



2%Mg: 1s, 1p, [0021"%, [0111%, [101]2

w

this configuration gives a cylindrically symmetric

prolate intrinsic state for ?"Mg which is comparable

in energy with the states of maximum space sym-
metry considered above.

A review of the solutions that have been discussed
shows that the intrinsic states found seldom differ from
simple configurations. In fact in many cases the differences
between an intrinsic RHF state and the related configuration
arise directly from the one-body spin-orbit force. It
can be argued that because of the limited representation
used the single-particle states are not free to become
anything other than harmonic oscillator states. Never-
theless, it is significant that, whenever a configuration
becomes asymmetric in an RHF calculation, the asymmetry
is produced largely by a cartesian type of harmonic
oscillator orbital which is constructed out of the cylin-
drical orbitals. Thus whenever large mixings do occur
they occur to produce an intrinsic state close to a car-
tesian configuration rather than a cylindrical one. The
types of cartesian states which are produced from the

cylindrical states follow the general rule

I+

(0 + 11) - [101] or [011]
(0 £ 20) - [110]

(100) =~ [200] or [020]
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This pattern is closely related to the structure of the
cvlindrical states in the cartesian representation, as
shown in appendix 1. In faet it ecan be seen that the
cvlindrical states tend to produce the cartesian states
with which they have the largest overlap.

Another feature of the solutions is that whénever
an orbital (n m nz) is occupied and the time-reversed
orbital (n-m nz) is not, then an RHF single-particle
state 1s produced which contains these two orbitals in
roughly equal amounts. This effect can be regarded as
the occurrence of asymmetry in the RHF solution. However
.t can also be regarded as the occurrence of time-reversal
symmetry in the single-particle states. This indicates
that time-reversal symmetry is preferred over cylindrical

symmetry in the Hartree-Fock states.



CHAPTER 7

THE SYSTEMATIC BEHAVIOUR OF BINDING ENERGIES

AND SIZES OF LIGHT NUCLEI FOR DIFFERENT EFFECTIVE FORCES

The results for the ground states of the even-
even nuclei discussed in the last chapter are summarized
in table 12. The results for “He and %°Zr have been
included at this stage. It will be remarked once more,
that the GHA results are very similar to the RHF ones
when the intrinsic state has cylindrical symmetry. The
four-particle-four-hole excited states of '°0 and “°cCa

: 16p™ O :
will be denoted by 0 and Ca throughout this

5 . 160% 24 32
chapter. In the special cases of 0 , Mg and g,
where the intrinsic state is asymmetric, there is a
marked difference in the RHF and GHA energies.

The nuclear binding energy E, predicted by a
simple liquid drop model, depends on the mass number A

as
E = kA + kgA??, (1)

in which case the binding energy per nucleon satisfies

+ k.ATYs ! (2)

E/A = ky ”

When the experimentally observed binding energies are

corrected for the Coulomb repulsion, and the conseguent

137



TABLE 12

SUMMARY OF BINDING ENERGIES, SHAPES AND SIZES FOR

EVEN-EVEN

NUCLEI USING FORCE 1

138

configurations for

204 .

NUCLEUS BINDING ENERGY RMS RADIUS Q/R?
GHA RHF GHA RHF GHA RHF
“He - 32.72 - 32.72 1.44 1.44 0.00 0.00
8Be - 47.05 - 47.36 2.11 2.11 0.954 0.956
bidp - 76.63 - 76.96 2.13  2.13 -0.506 -0.504
180 - 129.19 -129.19 2.05 2.05 0.00 0.00
160" - 85.74 - 96.12 2.24  2.55 0.964 0.947
20Ne - 156.46 -157.82 2.30 2.30 0.603 0.593
*4Mg - 185.67 -190.89 2.38  2.38 0.584 0.579
28gij(0) T - 243.79 -245.97 Z.41  2.41 -0.493 -0.485
28g5i(p)T - 244.13  -245.59 2.41 2.41 0.568 0.566
*ts - 291.48 =-297.21 2.38 2.38 -0.354 -0.359
s} - 373.24 -375.06 2.34 2.34 -0.249 -0.246
“Oca - 465.52 - 2.28 - 0.00 =
“oca” - 397.22 - 2.46 - 0.473 ~
digw -1448.36 - 2.14 - 0.00 -
%+  NOTE '%0" and “°Ca’ denote the four-particle-four-hole
excited states. ' *
4 NOTE 2°si(0) and 2%Si(P) denote the oblate and prolate
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binding energy per nucleon is plotted against A™VE, it
is found that the points for A greater than 16 lie very
close to a straight line, as predicted by (2). The
constant kv is negative (about -16.0 MeV) and represents
the average energy per nucleon in uniform nuclear
matter. ks is positive and expresses the fact that in
a finite nucleus the nucleons near the surface are less
strongly bound than those in the central core. It
should be noticed that a larger value of kS implies a
larger difference in the binding energies of core and
surface particles. This means that for larger ks
(i.e. for larger slopes in the plot of E/A vs A~ Y?) the
surface is less bound relative to the core. Figure 33
shows both the experimental values of E/A and the values
obtained with force 1. It is clear that beyond “°Ca
there is no agreement with the experimental line. Below
“%Ca there is some correspondence between the theoretical
and experimental values, but the erratic slope of the
curve joining the theoretical points indicates that with
this force there is nothing corresponding to a well
defined surface energy for these light nuclei. The
dotted lines in figure 33 connect the doubly closed

shell nuclei “He, !0 and *°Ca. Because the inter-

mediate points all lie above these dotted lines there

is a definite shell structure reflected in this model



calculation. It has been mentioned in chapter 5 that
because °Be is nearly all surface the restricted type

of Hartree-Fock caleculation carried out here is not

vexry good. If the tail regions of the single-particle
states were properly allowed for, there would be a
reduction in energy. This same argument applies

equally well to *He, to a lesser extent to '2C, and to

a much lesser extent to '®0 and beyond. Because of
these corrections it is not unreasonahle that some

shell structure should appear below '®0 in the theoretical
curve. However the fact that the “He point is below

the experimental one, whereas the 180 one is above,
indicates that, from the point of view of surface energy
force 1 is not adequate in this region.

Another reason why shell structure appears in
Hartree-Fock calculations, is that the deformed intrinsic
states, for nuclei which are not of the doubly closed’
shell type, do not have good angular momentum. As has
been mentioned before, the result of projecting out
states of good angular momentum is to give slightly
increased binding energies. The binding energies increase
in this procedure because the directional constraints,
which are necessarily imposed in obtaining é deformed
solution, are removed. These constraints of orientation

are related to the uncertainty in angular momentum

140



141

{i.e. to <(J-<J>)?>). This is probably the dominant
reason for the shell structure in the 2s-1d shell,
thouglh there are other reasons such as non-central
forces. Despite all these excuses, the forces to be
considered further in this chapter have less shell
structure and are to be preferred because of this.
The experimentally observed r.m.s. radii of

nucici exhibit an A dependence very close to

r = r, AYS (3)

The observed radii and the equilibrium radii found
using force 1 are shown plotted against INE in figure 34.
The pronounced collapse for nuclei above "°Ca is very
evident here. %%Zr is actually smaller in size than *°cCa.
Once again the dotted lines connect the doubly closedv
shell nuclei and there is a definite shell structure
evident between these. There is very poor general agree-
ment betwéen theory and experiment in these sizes, and
this clearly reflects the inability of force 1 to saturate.
Further features of the calculations carried out
with force 1 are the exéitation energies of the four-i
particle-four-hole states in !®0 and *°Ca. These values
are 33.0 and 68.3 MeV respectively. Both these numbers
are very much higher than the values of 6.1 and 3.35 MeV
which are observed for the first 0+ excited state in

these nuclei. As rotational spectra are observed based
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on these 0+ states, one reasonably expects to find
deformed Hartree-Fock intrinsic states at low energies
in both nuclei. The very high energies found for the
intrinsic states here, indicate a further inadeguacy
in the effective interaction.

The derivation of force 2, and its motivation
have been explaiﬁed in chapter 3. To recapitulate, the
repulsive range parameter Ar becomes dependent on the
relative wave number of the interacting particles as
shown in figure 2. The force parameters are given in
table 1 and the Hartree-Fock calculation of nuclear
matter saturates at a high density and energy as seen
in figure 3. The standard procedure of using a GHA
calculation to determine a best set of oscillator con-
stants and then using these oscillator constants in an
RHF calculation, has been used with force 2. The results
are given in table 13. Once again, with the exception
of the asymmetric states, the GHA and RHF results are
very close. The binding energy per nucleon is plotted
against A™Y3 in figure 35, and r.m.s. radii against aAVs
in figure 36. Compared to figure 33, figure 35 shows a
drastic change in the binding energy of %°zr, and this
is certainly a reflection of the saturation‘property in

nuclear matter. There is still considerable shell structure

with this force, though for the 2s-1d shell the area



TABLE 13

SUMMARY OF BINDING LENERGIES, SHAPES AND SIZES FOR

EVEN-EVEN NUCLEI USING FORCE 2

143

NUCLEUS BINDING ENERGY RMS RADIUS Q/R*?

GHA RHF GHA RHF GHA RHF

“He - 33.42 - 33.59 1.55 L.50 19.00 0.00
%Be - 49.75 - 50.14 2.23  2.22 49981 0.963
g - 79.54 - 80.02 2.29 2.28 =0.512 =0.511

ke -128.72 -123.85 2.26 2.25 0.00 0.00
160" - 89.89 - 99.8 2.73 2.73  0.963 0.950
20Ne -154.38 -155.88 2.56 2.55 0.606 0.600
24%Mg -180.60 -186.28 2.69 2.69 0.608 0.605
28si(0) T -231.67 -233.93 2.76 2.76 =-0.508 -0.503
28gi(p)tT -224.84 -230.13 2.78 2.71 10.489 0.497
deg -268.74 -274.8 2.79 2.79 =-0.371 -0.368
i -332.40 -334.09 2.80 2.80 -0.262 -0.261

it -400.07 - 2.80 - 0.00 -

vogy” -350 267 ° 4 2,89 @ - 0.496 -

"y -939.28 - 3.30 - 0.00 -

* NOTE 1°0" and “°Ca’ denote the four-particle-four-hole

excited states.
+ NOTE 2835i(0) and 2%Si(P) denote the oblate and prolate

configurations for 28si.



above the dotted line has been reduced slightly. The
energy behaviour for nuclei lighter than '®0 is cer-
tainly no better for force 2 than for force 1 and there
is no well-defined surface energy. However for A
creater than 16 the situation is improved, and the three

points for *®0, *%Ca and ®%°zr are almost collinear.
The overall slope of the IE/A curve for force 2 is greater
than the slope of the experimental points. As stated
above this means that the surface is less bound, relative
to the core, than it should be. The density dependence
to be introduced in forces 3 and 4 has the effect of
increasing the relative binding of the surface nucleons.
The radii shown in figure 36 are a definite
improvement over those in figure 34. Once again there is
a drastic change in the °°Zr point, which is a reflection
of the saturation property in nuclear matter. The four
doubly closed shell nuclei fall close to a straight line
that has a slope slightly less than the slope of the
experimental line. The shell structure between !®0 and

“0Ca is considerably reduced in these radii.

Returning to table 13 it can be seen that the

144

* *
excitation energies of '®0 and “°Ca are 29.0 and 49.4 MeV.

Both these numbers, but particularly the latter one, are

less than the comparable numbers for force 1. However

they are still a long way from the sort of values indicated
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by experiment. The reduction of the “0ca” excitation
energy relative to the ‘60* excitation energy is partially
a consequence of the improved slope of the E/A curve

for force 2. However, the reduction of the 150* value

is caused by the increased equilibrium size of the nuclei.
To see how this occurs, consider two different interactions
v and v', which give rise to the same total binding

energy but different equilibrium sizes. If the single
particle levels are €y and ea' and the kinetic energies’
of these levels are Ta and Ta', then from chapter 2 the
‘binding energies are

E E (e, * e = k g (T,' + €.")

If v' gives a larger size then the kinetic energy of the
orbitals is reduced (i.e. Ta' is less than Ta)' It fol-
lows that ea' is greater than €y The single particle
levels € are.hegative; the ea' are less negative. The
excitation energy of the four-particle-four-hole state
is related to the gap between the single-particle levels -
of the occupied and unoccupied levels. When this gap is
reduced by increasing the size of the nucleus then the
excitation energy of 160* is also reduced.

| Another feature of this force is that it gives a
3.8 MeV splitting for the oblate and prélate 283i con-
figurations. As remarked in the last chapter these con-

figurations give degenerate results with force 1, and
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are found to be degenerate by many other authors. The

3 8

3.8 MeV difference found here is small compared to the
total energies involved, but is believed to be significant.
This result at least shows that in a fully self-consistent

-
Ca

culation the two configurations can be split without

-

resorting to an unnaturally large spin-orbit force. -Com-
paring forces 1 and 2 it is seen that the relative
position of the oblate and prolate states is dependent
on the details of the force.

Forces 3 and 4 have been completely rederived
using the criteria set down in chapter 3. UnfortunatelyA
the binding energy of finite nuclei is not easy to fit in
this scheme. As Va is decreased (i.e. made more negative)
in the free nucleon-nucleon scattering part of the force,
c3; must be increased to give the proper saturation in
nuclear matter. In finite nuclei the increased density
dependence suppresses the effect of decreasing Va’ and
the consequent change in binding energy is small. By
way of example, when Vg is decreased from -153 MeV to
-250 MeV, and the other parameters are determined by
fitting the scattering data and by saturating nuclear

ey

matter, then the binding energy of '°®0 changes from -104 MeV
to =120 MeV. These figures are for density approximation I.
It has further been found that if the value of kF used

for the saturation density in nuclear matter is increased
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from 1.4 fm~! to 1.5 fm ! the value of c3; decreases by
about 30%.

Because of the uncertainty in the density approxi-
mation, which was mentioned in chapter 3, and which will
be discussed more fully below, there is no point in a
rigourous attempt to fit the binding energy of °0.

Instead we have used two slightly different forces which

g

b

ve approxima#ely the right binding energies. The first
of these, force 3, has Va = =150 MeV and is fitted to a
saturation ky of 1.5 fm ! in nuclear matter. Force 4 is
stronger in the free scaitering limit, having a value of
-250 MeV for Va’ and is fitted to a lower saturation
density in nuclear matter given by ky = 1.4 fm~'. Despite
these differences the two forces produce very similar
results in finite nuclei. This suggests that the nuclear
matter and scattering properties of the force determine
to a large extent the properties of finite nuclei. Before
the results can be discussed it is necessary to consider
the two density approximations that were defined in chaptér
3=

The first approximation, seen for '®0 in figure 5,
gives the correct density in the surface region and a
definite overestimate of the density in the;central region.
As already explained this gives an underestimate of the

binding energy. In the GHA minimization the density is
|
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treated self—cpnsistently, and in minimizing the total binding

encrgy there is a tendency to reduce the density because

this increases the strength of the force. Decreasing the
density should mean increasing the size. The approximate
density I is essentially determined by thé size, because
it is fitted to the <p?> and <z?> values. Thus when -this
epproximate density is decreased the size must be increased.
The second approximate density is fitted to the central
density and to the ratio <p?>/<z?>. As can be seen for !'%0
in figure 5, this approximate density is generally too
small and the binding energy is overestimated. However,

‘
there is a very dangerous weakness inherent in this approxi-
mation. The magnitude of the approximate density is
determined by the central density and this in turn is
determined by the sizes of a few of the even parity states.
In the spherical representation it is just the s states
which determine this central density, in the three shell
cylindrical representation it is the (000) (002) and (100)
states. Because of this feature, there is an uﬁphysical
tendency to increase the size of the (000), (002) and (100)
orbitals. 1Increasing the size of these orbitals decreases

\
the central density and increases the density in the sur-
face region. Thus, while in our approximation the density

is reduced and the strength of the interaction is increased,

the overall effect is really that the density approximation
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becomes a very poor one. This second density approxi-

*
mation actually gives a lower energy for “¢ca” '‘than! for
|

40~ )
-

a, but this|anomaly can be related to a very poor
density approximation arising in the manner described
above. In the | following discussion of results, density
approximation II must be treated with caution and serves
mainly as a lower bound for the energies and radii.
The results given for forces 3 aﬁd 4 are all from GHA
calculations and because of this the asymmetric nuclei
2*Mg and %2?S are omitted. The excited state 160" has been
included because its behaviour is very interesting, but
it must be remembered in this case that the RHF calculation
will produce an asymmetric state and a consequent gain
in binding energy of about 10 MeV. The “0ca” results with
density approximation II are omitted for the reason
mentioned above. The 3°A result with force 4 and density
approximation II has not been computed. With these
exceptions the‘results for force 3 are shown in table 14
and figures 37‘and 38, the results for force 4 in table 15
and figures 39 and 40.

It can be seen at once from tables 14 and 15 that the
two forces give very similar results, though force 4 gives
larger binding‘energies and radii. Figures 57 and 39

show a general improvement in the overall slope of the

E/A curve, when compared with figure 35. The radii in



SUMIMARY OF BINDING

TABLE 14

ENERGIES, SHAPES AND SIZES FOR EVEN-EVEN NUCLEI USING FORCE 3

NUCLEUS

2835 (0)
28g4 (P)

36A

'iOCa

“°Ca*

SOZrQ

BINDING ENERGY

~ GHA(I)

o 96,36
- 42.93
- 71.19
~113.82
- 85.88
~139.16
U ~209.11
T =313, 61
~300. 49
~352.34
~323,87
~804.96

GHA(II)

29 s
48.
«02
.58
9d~
3167
.08
269 .
394.
.08

88
1541

252

421

1003.

16
80

o

10

20

38

13

RMS RADIUS
__ GHA(I) GHA(II)

1.91 1.91
2.67 2.58
2.72 2.55
2.72 2.48
3.22 3.10
3.05 2.90
3.32 3.21
3% 3.06
3.38 3.29
3.41 3.31
3.58 -
4.11 3.83

Q/R?
GHA(TI)

0.00
0.948
~-0,.497
0.00
0.940
0,590
0,495
0.588
-0 . 258
0.00
0.485
0.00

GHA(XII) —

0.00
0.965
-0.502
0.00
0.936
0.589
=0 .. 885
0.544
=0 . 336
0.00

0.00

GHA(I) and (II) denote density approximations I and II.

%

t

NOTE

NOTE

* *
160" and “°Ca denote the four-particle-four-hole excited states.

2853 (0) and 2%si(P) denote the oblate and prolate configurations for 2°%si.

0ST



TABLE 15

SUMMARY OF BINDING ENERGIES, SHAPES AND SIZES FOR EVEN-EVEN NUCLEI USING FORCE 4

NUCLEUS

“He
® Be
124
160
160
2050
2aSi(O)T
2855 (p) T
36
K0cg
uocqf

BOZr

*

BINDING ENERGY

~ GHA(I)

- 24,95
- 44.85
= 15.65
«120.62
~ 53,57
-148.71
-223.04
-230,41
322,31
=377 &3
- 351 .24
=862 .83

~ GHA(II)  GHA(I)

24 .95 2.01
52.26 2+ 19
57:81 2.82
172:13 282
105,89 3.31
187.10 Sud i
292.84 3.43
309.74 3.43

= ‘3:52
489.90 315D

= 3.70
=11314.11 4.28

RMS RADIUS

GHA(I) and (II) denote density approximations I and II.

% * *
NOTE !®0 and “°Ca denote the four-particle-four-hole excited states.

14 -
"NOTE 2%si(0) and 2%Si(P) denote the oblate and prolate configurations for 28si.

Q/R?
“GHA(II)  GHA(I)  GHA(II)

201 0.00 0.00
2,66 0.928 0.954
2.61 -0.487 =-0.491
2 .51 0.00 0.00
3.16 0.915 0.910
2.97 0:.577 0.577
3.35 -0.456 -0.487
3.10 0.581 0.521
# -0.230 -
3.+52 0.00 0.00
- 0.468 -
3.94 0.00 0.00

TST
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figure 38 and 40 also show an improved overall slope,
and the general agreement with experiment is considerably
inmproved.

The larger binding energies with force 4 arise
because this force is essentially stronger than forcel3,
particularly in the low density limit. The larger
radii with force 4 can be ascribed to the fact that
the density dependence 1is stronger, and so there is
a stronger tendency to reduce the nuclear density. The
curves for forces 3 and 4 are a little ambiguous because
the points have been replaced by'lines connecting the
results for the two density approximations. The separation
of the two approximations is larger for force 4 because
the density dependence is stronger. The one point which
is not ambiguous is the “He point. The fact that the “He
value lies above the possible range of '°®0 values indicates
a very definite improvement over the first two forces.
Apart from the “He point it is not possible to make a
detailed comparison of forces 3 and 4 with force 2. How-
ever, it does | seem that the overall slope is improved and
that the shell structure is reduced. The underbound
results, with density approximation I, are certainly
very much better than the previous ones. The overall
slopes of the E/A curves for forces 3 and 4 are still

larger than that of the experimental line. This implies



chat the surface nucleons are still not sufficiently

bound. The slope of the force 3 curve is a little better

than that of the force 4 curve, which suggests that the
saturation density of nuciear matter plays a role here.

The general agreement with the experimental

Ui

(o

H

again though, the overall slopes of the curves could be
improved. It is worth noting that in this case force 4
seems to give a slightly better slope than force 3. It
is not possible to be specific about the excitation
energies of 160" and “°Ca*, but if one assumes that
the first density approximation is close to the truth,
then these excitation energies are less than those
obtained in GHA calculations for forces 1 and 2. In
these excited states four particles are taken out of
one shell and put into a higher one. Thus these par-
ticles move to a lower density region and their inter-
action is increased. Unfortunately the size of this
effect cannot be judged until a better approximation to
the nuclear density is used.

One of the most surprising features of the
results summarized in tables 12, 13, 14 and 15, is the

e

lack of variation in the Q/R? values. It is seen that

or any given nucleus the Q/R? value at equilibrium is

Hiy

changed only slichtly when considerable changes are made

ults in figures 38 and 40 is surprisingly good. Once
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to the properties and form of the force. This is a very
strong point in support of the argument that the
egquilibriun deformations are determined very largely

by the kinctic energy, as explained in chapter 5.

These density depcendent forces have another
point in common and this is that they give.a splitting
of the %°Si states which favours the prolate state.

The splitting is small, particularly in comparison to

the uncertainty produced by the density approximation,
but is almost certainly meaningful. The fact that there
is a reversal of the order of the prolate and oblate
states, produced by the density dependence, indicates
that the detailed nature of the interaction playé a
critical role in determining the relative energy of

these states. Furthermore the splitting is increased

in going from force 3 to force 4. It is conjectured that
this is a result of the increased density dependence in

orce 4, and that the interactions in the oblate state

Fh

take place in a higher average density than thoée in
the prolate state.

In concluding it is noted that a simple density
dependent factor in the effective interaction gives a
better systematic behaviour for the energieé and sizes

of light nuclei. Furthermore the saturation of nuclear

natter and the s-wave scattering determine to a very

>
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arge extent the properties of finite nuclei. The shell

[

structure in the systematic behaviour is almost cer-

tainly reduced by the density dependence. .
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three aspects, the mechanics of deformation,

RHET solutions for

the role played by va

ThiXee
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CONCLUSIONS

chapters, chapters 5, 6 and 7,

ave cach been concerned with slightly different aspects

R In fact these

calculations.
the nature
even-even nuclei up to “°Ca, and
of the effective

rious features

interaction, have been presented here more or less in

the chronological order in which they were considered.

This explains for example, why the calculations of

chapter 6 did not use one of the better forces developed

in chapter 7.

In chapter 6
deformation of light
degree of freedom in
was shown, using °Be

deformation of these

i1t was shown clearly that the
even-even nuclei was a very important
RHF calculations. Furthermore it
and ?Ne as examples, that the

light nuclei could be produced

in an RHF calculation either by using a deformed repre-

sentation, or by using a representation that was large

enoucgh for there to be many unoccupied states,

for the

nuclei considered. In fact it appeared from these

examples that a spherical representation could be used
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with confidence as long as there were two shells of
unoccupied states included in the representation. The
next most important degree of freedom in the RHF
solutions, appecared to be asymmetry. However this
feature only appeared in a few specific intrinsic
states, and could be predicted from symmetry arguments
about the related cartesian configurations. The
cartesian configﬁrations were in fact a good guide
to the possible RHF intrinsic states, and the Mottelson
rule was able to predict quite well the equilibrium
shapes of these states. This Mottelson rule was, in
turn, related to the rather slow variation of the
potential energy, as compared to changes in the kinetic
energy. j

In chapter 6 a survey of the intrinsic states
for various nuclei was undertaken. Here it was shown
that not all of the cartesian configurations gave rise
to related self—conéistent states. Many of the cylin-
drical configurations collapsed, in the RHF caléulation,
to finally appear as states related to a different
configuration. This points out the danger of imposing
restrictive symmetries on the single-particle states.
Other authors have imposed such restrictions and found
intrinsic states which appear to be spurious in the more

general calculations carried out here. As a result we
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report fewer distinct intrinsic states than these authors.
Another point brought out in chapter 6 was that it does
not cost very much energy to promote four particles from
the 2s-1d shell to the 2p-1f shell. This is a result

of the ability of the (003) orbital to lose much of its
Kinetic energy by becoming highly deformed.

In chapter 7 we investigated the effect of some

diZferent features of the force. This was prompted
argely by the marked collapse of nuclei above 2%si,
which occurred with force 1. Force 2 was an immediate
improvement over force 1 as regards this collapse in
finite nuclei. This improvement can only be ascribed
to the ability of this force to saturate nuclear matter,
even though the saturation point was not close to the
experimentally predicted one. This shows the importance
of the recuirement of saturation, and the distinct
separation that exists between saturating and non-
saturating interactions.

Force 2 still gave nuclei which were too small,
and the general behaviour of the energies left something
o be desired. The density dependent forces, forces 3
and 4, were designed to give the correct saturation of
nuclear matter, and made a definite improveﬁent in the
sizes. As was explained in chapter 7, increasing the
size of nuclei in this way causes the single-particle

levels to be less bound. The levels found with force 1
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were considerably more bound than those found in
(p,2p) and (e,e'p) knockout reactions. The levels,
obtained with forces 3 and 4, have not been compared
with experiment here, but it is felt that forces which
give the correct size mnust give approximately the
right single-particle levels. The two density approxi-
mations used caused a certain amount of ambiguity in
the results for the last two forces, and as a result
not much can be said about the systematic behaviour of
the energies. Despite this ambiguity though, it is
clear that these density dependent forces represented
an improvement over the earlier ones.

The fact that two fairly different density
dependent forces were used, and that they gave very
similar results, indicates that the criteria used in
determining the forces are physically meaningful. How-
ever it may also mean that the analytic form of the
force may have to be further modified, in order to make
more improvements in the results for finite nuclei.

It seems quite feasible, in the light of the
work done to date, to extend the RHF calculation to
£ive shells. In order to do this, in a practicable way,
it may be necessary to make some restrictions on the
representation. In particular it may be necessary to

use oscillator states with the same oscillator parameters.
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It also seems advantageous to use the cartesian repre-
sentation rather than the cylindrical one, in order to
better accommodate asymmetrie intrinsic states. With

a five shell program of this type it would be possible
to carry out detailed and fully self-consistent analyses
of nuclei beyond “%°Ca. However, to relate results
obtained above “*°Ca to expecrimental ones will require
the inclusion, in a self-consistent way, of the effect
of the Coulomb interaction.

A very obvious improvement is needed in the
density approximation used when calculating matrix
elements. Rather than the approximations I and II, a
sum of two or more gaussians can be used to fit the true
nuclear density. Actually the sum of gaussians must be
fitted to the true density taken to the 24 power. Such
an approximation will make it possible to calculate
matrix elements analytically, and at the same time to
fit the nuclear density very well.

With an improved density approximation'it is
hoped that the systematic behaviour of light nuclei will
be well reproduced. In particular it is hoped that the
shell structure, which results from an improved calculation,
will be small enough to be explained by the uncertainties

in the angular momentum for the intrinsic states.



APPUNDIX 1

HARMONIC OSCILLATMR WAVE FUNCTIONS WITH

CYLINDRICAL SYMMETRY

1. THE WAVE FUNCTIONS IN CONFIGURATION SPACLE

The Wave Functions are

7 2 [m | 2 1 QL
: = N lrﬂ(,b ;2 !ml ¥ lm] 2 —%ap %5 _;562
¥ pan Nomn_ € (ap) L, (e p) e H, (B%z) e
VA = z
1
Tz
2 1, !
z
h? 2 nw " nw o 2
D MWo 2 Z 2 "
. 2m . 2 pTF =5 z”] ann Enmn wnmn
Z 2 Z
where
- + - + %)
Enmnz (2n +|m|+ 1) T, (n, + %)hw,
and
o = _m‘f:’_L B = ._my...z..__ B
h A 3

a,B have dimensions of (length) 2
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or (wave number) 2.

-



R - 2 ) 2
W = 2 a4 -3/‘4 £ ’50‘9 .-’iBZ
1000 a B 1T e [
L - +i ~leoyp 2 . 2
¥ = 2% o gY T 4 o p’ e-%BZ2
001
The mean square dimensions for the state ann are
z
p%= (2n + |m| + 1)/a, 2% = (a, + %) /8

The volume of the ellipsoid of revolution passing through

. 5 3 ,
the points (<x2>2, 0,0), (0, <v¥%>*, 0), (0, O, <z?5%) ig

given by
V= (41/3) (o + Xm|+ %) (n_ + %) 7/as% .
Note that <x?> = <y?> = k<p?> .
In the special case that a = B, these wave functions

are simply related to the spherical oscillator states
In,1,m), however the phase convention used here for time-
reversed states with opposite m valuves is not that of

Condon and Shortley.

-

The state Wn s o is prolate, spherical, or oblate
7 4 z
as &
(2nZ + l)a - (2n + m + 1)B 3 0.
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It is convenient in the following to write:

! = im; oy
Ya.,m, ,n (&) = (2m) i gt Y () Wi (z),
% de zi

where 1 labels a set of states and,

o . 2
vT(p) = (2ani/(n + |m| )!)%(azo)lmlLLml(apz) & e

[ 4

2

Wiz) = (8417 2°2 n 1% n (%2 &7HBZ
=5

n

When carrying out searches for the best oscillator
parameters it is found to be more efficient if the size
parameters

a= (l/2a);i, b = (1/28)% ’

are used instead of a and B. These new parameters are the
r.m.s. values of x and z for the |000) state with oscil-
lator constants o and B. The deformation of the state will

be measured by

2
g = 2b2 = 28;2 = 20 - 28 ; Or b._i. = ZM
S e L W % r 9d

b*+ 2a‘ a + 2
and d is proportional to the quadrupole moment of the |000)
state divided by its radius squared. Thus the IOOO) state

is prolate, spherical, or oblate as

d

VIA
o

Note that -1 < d < + 2.
The volume V is proportional to a’b and this is used as a

volume parameter.
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The part of Wn m wl which depends on z, together
with the appropriate normalization factor, is a one-
dimensional harmonic oscillator wave function. The
product of three wave functions of this type, for the

X,y and z co-ordinates, gives a cartesian oscillator wave

function Wn - This wave function is associated with
X'y 2

the [nxnvnz] orbital, and is used in the cartesian GHA
calculations. The interrelations between the various
types of oscillator wave functions are summarized in a
recent paper by Chasman and Wahlborn (1967).

The two-dimensional states |nm>, which are

obtained from the |n m n_> states by removing the z-

z

dependent part, are related to products of pairs of one-

dimensional states ]nx>]ny> as follows:

|oo> = |o> |0>
|oxl> = v& |1> |0> £ ivk [0> |1>
|6x2> = % [2> 0> £ ivk 1> |1> = Nijp> |2
|1 0> = -v% |2> 0> - V& |0> |2> .

The oscillator constants are all the same in these formulae.
These equations can be used directly to express the

cylindrical states in terms of the cartesian states

B R N >,
2y 2
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ORTHONORMALITY CONSTRAINTS

The pair of states |n,m,nz;a,6), ln’,m',né;a',s')

re automatically orthogonal if they are of opposite

V]

arity or have different m values. When this is not the

~ ey

case, then either

o',

I

(n,m) # (n',m') and a

It

or n_ # n; and B Bt

must hold for the states to be orthogonal.

A suitable, but not unique, set of a and b para-
meters for the first twenty states is given below, however
for a smaller set of these states some of these constraints
can be removed. As an example the most general parameters
for the GHA for the Ne?? ground state are given separately.
An additional constraint of timereversal symmetry has
also been incorporated below, so that states of the form
1n,m,nz) and [n,—m,nz) have the same oscillator constants.
This makes very little difference in the GHA calculations
carried out in this work and makes no difference in the RHF
calculations, however it enables the matrix elements for

the RHF programme to be calculated more quickly.




Parameters

Quantum numbers and constraints for the first four shells

of states.
Shell

1s
1P

25,1D

2P, LF

H O O O O O P O O O O O o o o o

for Neon 20

n nz
0 0

0 il
+1 0
-1 0

0 2

+
N
H O NN WO O O+ HFH NN O O DN

o
b

minimization.

Oscillator Parameters

ai b1
as b,
ajs b3
as b3
ay b1

parity Oscillator Parameters

+1 a) b,
-1 ar b,
-1 as bj
-1 as bs
+1 a; ' b,
+1 ay by
+1 ay bq
+1 as bs
+1 as bs
+1 a; bg
-1 as b,
-1 as b
-1 as i b,
-1 ag by
-1 asg by

-1 =¥} ba
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Quantum numbers and constraints for the first four shells

of states. (cont'd)

Shell n m n, parity Oscillator Paramcters
0 +3 0 -1 ay b
0 “3 0 -1 az bg
A +1 0 -1 as bio y
1 -1 0 -1 as bio

hese constraints must be used in all RHF calculations .
regardless of which configuration is being considered,
because in this calculation all states are used and must

be orthogonal.

2. THE WAVE FUNCTIONS IN MOMENTUM SPACE

Denoting the general point in k-space as

(k_.,6,k_), the transformed function is
P Zz

— (p,9,2) pdpdddz.

® (ko ,8,k,) =N (zm'%&f&Ew
YA

nmn nmn
z z
This integral can be evaluated to give

X |l " I P
% mon = Mg e s 2riml oy ImlpIml (g7 2y 70 T
< 4 Z A »

= o 2
x i an (B g k,) e 1Bk y
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and

NOTE

D can be obtained from N
nmn,, n

mn_ by replacing
& ,B everywhere with their inverse. And thus apart from

5 .20+ |m|<+n
the phase factor i |m] s

& is obtained by replacing
¢,8 with their inverses. This is very useful when cal-

culating matrix elements.

Further Notation

Again put
‘ 2 -% im:6 .2n#|m| .x Rl A
By gl ™ (2m) e 1 17 o (ko) i o, (kz)
b R
i
So:

- - X y - 1 2
o¥ (k) = (20  nt/(n+|m|) ¥ (0% k) IBIgIml g1y 2y o0 Tk
P P n Qe :
3k ) = (874 22 % -k T
0% (ky) = (87H/MT 2% n 0% w87 k) e z |}

3. MOSHINSKY TRANSFORMATION BRACKETS IN ONE AND TWO

DIMENSIONS

The one dimensional harmonic oscillator states can
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: : . . + .
be expressed in terms of « creation operator a (Messiah 65)

L

! +, n .
as n) = (n!) * (a) {0),n=20,1, 2 ...
and the product of two such states forms a two body wave

fuhection,

e +
1

lnisnz) = (miina?) ™% (@) ah)P2|0).

-~

the relative and centre of mass co-ordinates for the

Fh

two particles are defined as
X = (x|~ X2) /Y2
X = (x1 + x2)/V/2

Then the creation operators for harmonic oscillator

states in these co-ordinates are

a: = (al - a3)/V2
+ + +
and a, = lafi+ az)/v2

respectively. It should be noticed that it is at this
stage that the assumption of equal oscillator constants
for ]nl) and |n2) is made. Now the overlap we require is
-1
(ni1;n2{n;N) = (Ola?lagz(af—ai)n(af+a§)N|0)(nllnzlnllen 2Ny =%

and after expanding the operators on the right hand side

using the binomial theorem it is found that:



-n-+N 1

e i

(i *:No H S B "TnIN? Li 2 - r
(n1;n2|n;N) (niinzin!Ni)™ 2 ﬁ( DR TS 0 L PETY!

if ny + n = n + N and,

(ny1;nz|n;N) = 0

otherwise.
This formula was first derived by Brink and can
pe extended to the two dimensional case immediately. It

is shown by Messiah (65) that the two dimensional states

can be obtained by using two independent creation operator

.+ -
a, and a_. Thus

ln,,n) = (n,tn_D7F (@h™@H - |0

and in terms of our usual notation,

|lnm) = |n_, n)
if m=mn_ - n_
2n +|m| =n_+n_ .

Now it follows that:

‘

! (n-r) 2

S

. " - ' 4 ) 1
(n,, .00, ,n, |0 ,n_;N_,N_) (n1+,n2+|n+,N+)(nl_,nz_'n_,h_)

In this way the two-dimensional transformation bracket is

-

simply a product of two one-dimensional brackets.



APPENDIX 2

MATRIX LELEMENTS O ONE-BODY OPERATORS

AND THE CENTRE OF MASS CORRECTION

1. SOME BASIC INTEGRALS

We define:

Rign) = f‘?i(o) o™ \Pg(p) pdp n=20,1....
Rig'n) =E<1> Fikg) XD o (k) Kk ak, no= W08,
Zién) = {?W?(z) z" W?(z) dz n = 0, Ei.ces
zijf"n) =_f: of (k) X§ (k) ak, n=l,2 ...

where again 1i,j label some set of states and the various
Y and ¢ functions are defined above.

The R's and Z's have the form of overlaps between
radial or azimuthal parts respectively. Many more complex
matrix elements of one-body operators, and of separable
two-body operators can be reduced to products of these
basic integrals as we will now show in some detail.

FORTRAN function subprograms GROLAP and GZOLAP have
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(n)

written to evaluate Rij

and Zign) for n = -2,-1,0,1,2.

2 REDUCTION OF THE ONE-30DY SPIN-ORBIT FORCE
We writce

L.

(L

=%(e,s_ + &_s.) + 2,s,

where £+,£_,s+,s_ are the usual operators, (lx + izy) etc.

Using 2 = r x k we find quite easily

£+ = —ipei¢ kz + iz eie kp
L= ifae-i(bkz w I e—ie kp
Thus
<ilg.gli> = % <ile,s_|3> + ¥ <ilos, |3> + <ila,s_|3>

The spin and angular variables can be integrated out quite
% 3
easily giving factors of the form d(mi—mj), G(mi—mjil) etc.
The integrations over p and z are now of the basic types
given in section 1 of this appendix, and we obtain:
: 5 N ;. 1 (0) (0)
<i|f.s|3> = § (m mj) §(sy sj) m,s; Rij i3

§(s,-s.-1) {i(Pz3™BzitDp (g (1) 4 (2ny+|mg|-2ni-|m; [-1)
173 .

/A + % d(mi~mj+l)

R, (g ()

 (ngi=ngi~1). (1), (=1)
i §(m, ~m.~ -5 zj~Pzi
(5 3 } +k5 8(my m 1) §(sy sj+l) {4 R z

ij ij

*
NOTE

8 (m)

o
}_l. -
Hh Hh
838

N
oo
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) i(2nj+lmj|-2ni—fmi|+l)R_(—1)Z_(1)
Dy i3
The selection rules for this matrix element are
lmi - mjl 2 1 and conservation of total j, =m+ s, and

parity. When these conditions are satisfied the comnlex

factors reduce to 1.

3. FURTHER REDUCTION FORMULAE

We have immediately that

<ilp?li> = S(mi—mj) Rigz)ziéo)
<i|z?|j> = G(mi—mj) Ri§0)zi§2)

whence:

.@2)Z.§°)
ij 85

(0) (2)}

+ R Baa
1] 1]

<ilr?|4> = 8 (m; -m,) {R

And similarly in momentum space:

. " . iy (=2)E {8) (o), (-2}
<i|k?[3> = &(m, mi) {Ryy Zys 0+ Ry 25000}

4. REDUCTION OF THE TWO-BODY CENTRE OF MASS CORRECTION

The centre of mass correction term [is:

PZ .z h2 5 2 -hz
Zma - T Zma i % mA o Biv%5
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where A is the number of nucleons and m the average mass
of the nucleons. The first term on the right hand side
of the equation above is incorporated as a renormalization

of the usual kinetic energy. hus:
. ] 1
T = {1 /A) g

The second term has the form of a separable two-body
operator and contributes to the average Hartree-Fock
potential T.

The general matrix element which we want to
evaluate is:
(i]k1.k2|3m) = (illkél)kéz)Cos(el—ez)[jm)+(i£|ké1)k;2)Ijm)
The integrations over 0; and 0, are simple in each term

and give factors of %G(mi-mjtl) § (m —mmil) and

L

G(mi—mj) § (m —mm) respectively.

'
Apart from the usual symmetry rules of conserved
m and parity we have for this matrix element in addition,
Imi—mjifl, and the parities of i and j must be.opposite.'
The remaining integrals over p;,p2,2, and 2z,
all separate into the basic types given above. Remembering
the phase factors which come from transformation to k-space
we get:
<iflkika|3m> = %6 (m-m t1) 8 (my-m *1) g (2032l - 20, + |my |

+!mml’|mil‘lm£l)x R (*I)R (=1), (o), (0)

ij Rom 25 Zpy  t Héimg-my)
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5 ph N -(nzi+n7m‘nzi‘ﬂvy) {0) (o) (=1) (=-1)
oA, =m ) - s i x R.2 I . e Z

% 7 1.7 Lm 1] Lm
Whenever the selection rules are satisfied the complex

actors reduce to 1.



IPPENDIX 3

MATRIX ELEMENTS FFOR THE TWO-BODY INTERACTION

As explained in the text the most general form
of interaction we are interested in has the following
form in configuration space:

%
- 2 Z
) viri-ry)=ce” ¥ (B + %—92)
] 2 s

p@é(Eig X

(v e—(rl—rz)z/ha2+ - e—(rl—rz)z/xr2
a r

)

where we are using (pc, Pt zc) for the cylindrical co-

ordinates of the centre of mass variable (rlgrz),

°s and z, as the r.m.s. values of p and z for the

and

density distribution. Now the general matrix element

(it | p7® (R) v(xr) | 3m)

can be reduced to sums and products of terms of the form

~ * . E . 5 oo,
_I*(i,z,j,m,k,x>=—l—-[w§<p1> ¥i (py) e MMidiTIm92

472

« e~kk(pi-2p102C08012+p3) ~%K(pf+201p2C08612+0%)

e ]
x ¥ (p1) ¥i(pa) &MMINTIMMO2,0,40,dp,d01a0.

A71
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and

<«

2 z W L Y =hk(z1-22) % -%K(z,+2,)*?
Z (n1,n2,n3,nu)=fwn (z1) an(zz) e * (z1-22) & 7 (z1+22)
i

) yZ z )
X \n3(21) ‘yn“(22) dzldzz

As the states may all have different oscillator constants
it is not possible to carxry out the usual form of trans-
forhation into relative and centre of mass co-ordinates

for the two-body wave functions, and so we have to evaluate

these integrals explicitly as they stand.

Ir:
We write the product of the normalization constants
as N so:
|,
o 2 2001 202 203 .20y N31l.N2'.n3!.ng! 2
- 4“
(ni+|my|) ! (na+|m2|) ! (ns+|ms]) ! (nu+|mu]) !
then:

I = N_[ei(ma-ml)¢1éi(m2_m“)¢2(a1%01)lmll(az%pz)rmzl
1.
x (ason) Mal(a5p ) Imel plmal (o o2y plmel(a,p2)
1 nz
=3
v - + ~% + 2
- Lrlx?al(aap?) LILTHI(aupﬁ) et (0utas)py ilaztou) 0

“ £ +p3) _-%K(pf+2p1p2C +03
= Lkk(pi-2p1p2Cos¢i2 pz)e XK (p1+2p1p2Cos¢i2 pZ)plpzdpldpzd¢1d¢;
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The angular integration can be carried out immediately,

oo nd oin
e” ¢ Jn(z)

| (X~ K)p1p2Cos012 1 (mammi) g2 iM(91+82) g, g4,

]
T _ o .My —M3
= v me-ms [-1i(k=K)pip2] i

Now from

T
J (=2) = (-1) Iy (z)
and
. =m _ .
i7 g (z) =173 ‘z)

this can be written

¥ T |ms-m, | FKKIp1p2l i~ lmi-ms |

As the required matrix element is unchanged by a change of
numbering from 1,2,3,4, to 3,4,1,2, we will assume from

>
here on that m3; - m,

So:

%, e NJ-4“2 gmme o gy dmal by mal o 3y Imal o %y Imal

« o™ laaet) L™l @r0p) 2™l aset) Ll aupt)



e Tt e J (L (k=K)p1p2] pip2dp1dp2

ma—mj;

2
v
N
ol
5
I
Q
+
jo3
w

1k =K

tJ
|

_"ld,2+(}.q + k + K

At this point we can simplify matters somewhat

bv noticing that in the first four shells of harmonic

oscillator states the gquantum number n is always 0 or 1

and
Ly(x) = 1
LY(x) = 1 +
Hence we write
Llllm‘(x) = 1 + n|m| - nx

if we ZIfurther put

and constants

Co

Ca

Il

Co = 40103n1N3

Do

D = =2azn,(1 + n4|m4|)—2aun4(l + n2|m2|)

D = 4doz0ynzny

N = X

(1 + n; [m1| Y (1 + n3|m3| )

(1 + n2|m2|)(l +nu|mq|)

04ar 1.

-2a;n; (1 + n3|m3|) -203n3(l + n;|mi|)
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Then the integral required is

_ Im,y | Ima | Ims|  |ma|
I = 4n?N ™M™ (244) T (2a2) T (203) T (2a4) Z

(=] o0
-5 j dat, t, 2l Imel+|ma+s -Bt, j at,

o o

N t?(]m1[+[m3|)+r oAt al

1 L
[2i (k-K)t7 t%]
3~y

From Erdelyi (1954) we find the standard integral

00

<

which gives the integral over t;. Defining further

L= 3% (Imi|+ |ma] + m - ma)
j = ;5 (lmzl +Imul - My +m3)
we have
|my | |ma | |msl |m |

= 472N ™3 (24,) T (202) T (203) 2 (204) 2

H

X

.8

@ e"XZ/A-t1 pMs—my E_(k—K)2

+s A t24 .

where x? = AB - (k-K)?

3 L L - o ~
J. t5\)+n Jv(2a%t2) 5 At at|= n!av/zA (n+v+1) " o/A Ln

181
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The remaining integral can also be found in Erdelyi as:

{ ~pkl B L0 _ T{(&+n+l) " o Sl 4 D

«nd hence:

; |z | ms | | | ¢ e
I = 4728 (201) 7 (2a2) 2z (2as) 2 (2a4).Z  [(k-K)/a)™3™™

: r A
o I ol R o j+s=-L-r+l _-2(j+r+l)
o CrDS(3+x+r+o). [ ——?———] A y
X
')CZ
X 2y (-%&~r,~f&-r-mz;-m; ;-4~j-r-s; - ——
(k-K) 2

A FORTRAN function subprogram VDRFP has been written to

evaluate this formula.

i
- (nl (N2 ,03 rnk)

penoting the relevant normalization constant by N again,
SO

-1 2- (n1+n2+n3+nq )/2

N = (81828384) % II [ty § Bt sl B ]

we have:

o 2
2w (B (8% 00 m (8% y) B (855 0 m (8 y) oTH(BrYBOX

< o~ (B2+Bu)y? ~hk(x-y)? _-BK(x+y)?® dy
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Rather than attack this integral directly we use the

generating function for the Hermite polynomials
e = Ze 0 (x)

Thus :

3

i 3 )
' 2 % 5 2 2
- jCXP[331 XZ1—Z1+2822y22‘22+283%xza—23+28u2yZu-Zq-%(B1+Ba)X2

=1 (B2+By) v2=kk (x~y) 2=LK(x+y) 21dx dy

can bc expanded as an infinite multinomial in z,,z;,23, and

Zy gy LHUS:

1 n n n
g L F 21 122 223 3Zu

A == T T T v
NiND20N3N0 N1« Nzs Nlged Ny

Ny

I%(ninz2nsny) /N(ninznsny)

The evaluation of gy is straightforward.

+CO “+ 00

A

1
o e—(z§+z%+z§+zﬁ)r dy e—%By2+2(Bzzzz+Bu%2q)yyf i

J

- 00 - 00

- e-%Ax2+2(Bl%zl+83%za)x + (k-K)yx

where we have written

A= 8; + B3 + k + K

(o}
1l

B + By + k + K
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The subsequent evaluation using the standard integral

-0

i 2 2
{ . > » ;, ]
| omax +bx g = MY & 3 eb /ua
2
[ee)

is simply a matter of algebra, and gives

f  _ 2m 2 .
\/ - (73) exp (;; X )

where

2

= B I X 2 K "
X = (B 28 )u1 + (A 2Bz)u2 +(B 2 )ua +(A 28 yui+2Bu,us
+2Ausu, +2(k-K) [ujuztuiuy+uzusz+uszuy]

d = % =1, 2; 3; 4
an ul — Bi Zi i = ) ’ 7

X%2= AB - (k-K)?

Now the required integral I(n,;,n,,ns3;,n,,) appears
in the coefficient of u;™'u,™?u;™%u,™ in the expansion
of the exponential. In fact we have explicitly

2 Z2idm 1
I(n1,nz,n3,n4)=N(n1,nz,ns,nq).nllnzlnslnu!(jg)(—?) =

]
X me.

n n n n n n n n
% (81 Bl B By " ]% % Coeff of wi 'as %us ugit

in exp [X] .
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where m = %(n;+ns+nsz+ny)

The various relevant coefficients which occur for
the first four shells of oscillator wave functions have
all been evaluated by hand and a FORTRAN function sub-

program VDZFP incorporating them has been written.
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STRUCTURE OF|THE RHF

J

ROGRAMS AND

STORAGE OF MATRIX ELEMENTS

SIMPLIFIED STRUCTURE OF PROGRAMS

HARI'OK AND HARFO4

Read in: gquantum numbers force parameters,
representation size and shape parameters,
nucleus and configuration parameters,
and miscellanecous constants.

Store matrix elements of one-body part of Hamil-

tonian.

Calculate parameters for gaussian approximation

to density of dominant configuration.

Store matrix elements of two-body part of Hamil-

tonian.

Fill HF matrix with random numbers and biased

diagonal elements.

Diagonalize HF and order the eigenvectors

according to their eigenvalues.

Form density matrix RHF from occuéied states.

Put one-body matrix elements into HF and calculate

average Hartree-Fock potential T', adding to HF.

186
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Return to step 6 for prescribed number of
iterations.
Calculate mixing parameters 0, 62, 03, and G4.

Output density matrix RHO.

The time for the calculation of all the matrix

elements ig about 20 seconds for the three shell proﬁram

and about 2% minutes for the four shell program. One

iteration loop, consisting of steps 6 to 9, takes about

20

12

20

seconds for the three shell program, and approximately
seconds of this time is spent in diagonalizing the

x 20 HF matrix. For the four shell program the iteration

loop takes about 3 minutes and about 1 minute of this is

used to diagonalize the 40 x 40 HF matrix.

STORAGE OI' TWO-BODY MATRIX

ELEMENTS FOR HARFOK

The two-body matrix elements between space states

are stored in an array V. The matrix elements .

(IL|V|oM) 3, Bl T, M= L, 2, «nss JB

satisfy the relation

(IL|Vv]|Jam)

Il

(LI |V|MJ)

and so it is necessary to store those for which I < 2o

Furthermore, for given I and L values, the values of J

and M which satisfy the conservation rules, for total z
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component of angular momentum and parity, are considerably
restricted. In fact the largest number of (J,M) pairs
that can be taken with any (I,L) pair is 1l6. As there

are 55 (I,L) palrs we store the matrix elements in a

16 x 55 array. The columns of this array are numbered
according to I and L by the index %L (L-1) + I, and the
non-zero matrix elements which may occur for the (I,L)
pair are stored starting at the‘head of the column. In
order to remember the corresponding J and M values for the
natrix elements, we use arrays JvV(16,55) and MV(1l6,55).
Now to locate a particular matrix element (IL|V|JIM), the
indices are arranged so that I = L and from the I and L
values a column is picked. Then we must scan down this
column in the JV and MV matrices until the JV and MV
values coincide with the required J and M. Finally, when
a row is located as containing the correct J and M, the
‘matrix element is found in that row of V. It will be
shown below that such a search procedure is not needed

to construct the average potential, and is onl§ consideréd
rere for clarity. The two-body centre-of-mass matrix
elements are stored in an exactly similar way in an array
COM(16,55) and the JV and MV arrays apply to COM as well
as to V. Because there are not 16 (J,M) péirs for each
(I,L) pair there are many zeroes in the V, JV and MV

wrrays, and, because of the more stringent selection rules
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for the centre of mass clements, there are more zeroes
in the COM array. In fact the storage efficiency of
this method is about 50%.

The matrix element (IL|V|JM) actually has more
symmetries than the one mentioned above. In particular

(IL|V]|JIM)

(LI |V |MJ)
= (JM|V]|IL)
= (MJ|V]|LI).
If orbitals which differ only in the sign of m have the

same oscillator constants and are denoted |I) and |I) then:

(IL|v|am)

i

(IL|V|IM)

= (JM|V]|IL)

= (LI|V|MJ)

= (MJ|V|LI).
it must be pointed out that not all these eight forms
are necessarily distinct and they may be all equivalent
(if I =L=J=Ms=1I). However on average there are two
other distinct matrix elements which are identical to
(IL|v|JIM) . Full use of this symmetry is made when
storing matrix elements and so the time taken in evaluating
them is reduced by a factor of 3.

The spin and isospin part of the interaction is

not stored explicitly but is calculated from the exchange

parameters as necessary.



RECOVERY O TWO-BODY MATEIX ELEMENTS

The form of the matrix for the average potential

is given in chapter 4 in the form

)

B + ~ - B
i5 = fm Pam Sizim Viedm T Siggm Vigms

)

i ) A !
where the Si are spin-isospin factors and

2jm

Vi,Qj?n. = (IL|V|JIM).

T

We are denoting the space state corresponding to |i)

by |I). It would be possible to construct the matrix

(o)
(0]

ments of T one by one using the equation above. How-

>ver this would mean that a search would have to be

0]

carried out for all the non-zero elements Vi which

2jm’
contributed to a particular Tij' Such a search procedure
is rather time consuming. It takes much less time to
consider the elements Vizjm one at a time and search

for the wvarious Tij to which they contribute. In this
way the V array is scanned once and once only,-but each -
element may effect up to eight different positions in

the T matrix. The number eight arises because Vil%ﬁ
affects rij as a direct matrix element and Fim as an

exchange matrix element and because there are four possib

spin choices for the pairs (i,j) and (i,m).

190
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A GENERAL PROCEDURL FOR STORING
TWO-BCDY MATRIX ELEMENTS FOR USE IN

HARTREL~-IFOCK PROGRAMS

Because of the large number of matrix elements
2 the four shell program HARFO4, their storage and
recovery are more critical. By way of example, if ﬁhe
the same procedure was used in HARFO4 as in HARFOX, to
score the matrix elements, then we would require 27,720
storage words. This does not include the centre of mass
correction terms.

A more efficient general procédure for storing
natrix elements can be constructed as follows. A matrix
c¢lement can be regarded as a number associated with a
cuadruple (i, 1, j, m) of single-particle state indices.
Quadrunles can be regarded as equivalent if they give
rise to equal matrix elements, and they can be grcuped
accordingly. In each group there will occur the distinct
quadruples among

{1,3.,3,0) o 41,1, m,3):; §3.0,d4,1) and (g3 138,
together with any others which are equivalent because of
symmetries pertaining to the single-particle states.

Many of these groups of gquadruples can now.,be ignored,
because the corresponding matrix elements are zero and soO
do not affect the problem. At this stage the symmetry of

the interaction is used, for example conservation of parity.
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IZ sone symmetry is to be imposed on the single-particle

states in the RHF calculation, so that the density matrix

has sone synmetryv, then matrix elements which do not have
a related symmetry do not| oceur in the formation ief the
average potential T'. TFor example, if the Hartree-Fock

4

states were constrained to have definite parity, the.
density matrix p would have zero matrix elements between
states of opposite parity. Thus in forming T by

14 = 2ot Pom <ig|Vv]jm>

the matrix elements <if|V|3m> in which £ and m have
opposite parity, do not occur. Such matrix elements which
do not occur may be regardcd as zero and the corresponding
gorups of gquadruples may be ignored.

It now remains to list the remaining quadruple
groups in some convenient order, and then the corresponding
matrix elements can be stored in the same order. This can
be done immediately if there is an ordering of the original

set of quadruples, because any group of quadruples has a .

lowest guadruple in the original ordering, and the groups

)]

2re naturally ordered by the order of their lowest gquad-

f

ruples. A program to use these ideas can be represented
schematically as: 2
1 Consider all possible quadruples in some order.

2. If the symmetry rules, such as parity, etc., are

not satisfied ignore this quadruple (i.e. the



corresponding matrix element is zero or is not
required in the calculation).

3. If this is not the lowest ¢uadruple in its group
of equivalent quadruples ignore it.

4. Otherwise calculate the corresponding matriix

element and store it.

The matrix elements are stored in a one-dimensional
array, and in order to remember the four single-particle
states associated with a particular matrix element we
could store the numbers i,l,j and m of the lowest guadruple
in similar arrays. This lowest quadruple can be used to

jenerate the complete quadruple group. However, if the

Lf'\

original quadruples are ordered as:

CAX3R] , 1 81313) , (1113}« Rasnux (312X, (1122), LB aEl.,
then whenever (i,l,j,m) is a lowest quadruple we have

S

3. min (lljlm)-

In particular
g2 = 15
and so the values of i and 1 which are stored occur in the

seqguence
(11);, C12) 5 (13), ssse CBR), (23] swss (33} 4 LB sone o
Because this sequence follows a well—definéd pattern it is
only necessary to remember at which point in the one-

dimensional array of matrix elements the (i,l) pair changes;
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it is not necessary to store the i and 1 indices in separate
arrays. It is necessary to store the j and m indices.

In the case of our four shell program this mcthod
has been used to store matrix elements between space
states. There are 20 such single-particle space states
and the number of matrix elements to be stored is 1l641.
%hus we have 3 arrays of length 1641, one containing
matrix elements, another the values of j for the corresponding
lowest quadruple, and the third containing the m values
for the lowest quadruple. In addition it is necessary to
remember the 210 points along these arrays at which the

alue of 1 or 1 changes. This amounts to 5133 storage
words and a considerable improvement over the figure
27,720 given earlier.

It has been shown above that it is not necessary
to search for particular matrix elements when constructing
the average potential, and the order in which they are
picked out is immaterial. However when a number is picked
out of the storage array it must be remembered that this-
number 1s related, in general, to more than one quadruple.
So, after the lowest quadruple is recovered from the
storage arrays, all the equivalent distinct quadfuples
must be generated, and the stored matrix‘elément is then

used as the matrix element corresponding to each indi-

vidual guadruple.



APPENDIX 5

SUBROUTINE MINI2

Call and parameter list:

CALL MINI2 (FUN, PAM, NDIM, DIRECT, N, STEP,
STEPMX, EPS, SHIIT, iCALL, HOP, VAL, WORK, FIN).
Specifications ;

ﬁINI2vis designed to find the minimum of a
function of several variables. The function is
called as FUN (Ppi4} where PAM is an array of
length NLIM. The dimensioned paramcters with
their appropriate dimensions are

PAM (NDIM)

DIRECT (NDIM, NDIM)

HOP (3N + 4)

VAL (3N + 4)

WORK (2NDIM + N)

Procedure :

The method has been taken from M. Powell,
Computer Journal 7, 155, (1964), though some changes
have been made. The subroutine exécutes one pass
of the general procedure and is designed to be

called repetitively until convergence is obtained.

196
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For the first call ICALL must be zecro, and
thic parameter is stepped by one internally on
each call. When first called (ICALL = 0), MINIZ
examines the first N columns of the square matrix
DIRECT of side NDIM, these columhs being used as
directions to search along in the parameter space.
The lengths of the directions are stored in WORK
and if a zero direction is encountered it is
discarded, the rcmaining columns of DIRECT being
shifted down one place, and N is reduced by 1.
Also only on the first call a starting value of
PUN evaluated at the input parameter wvalues is
calculated, on subsequent calls the starting point
is remembered from the previous call

On the first and all subsequent calls the
following procedure is carried out. Each of the N
directions is takcn in turn and points are
examined along it, using a one dimensional mini-
mization procedure explained below. At'each new'
point the value of FUN is stored in a corresponding
place in the array VAL and the distance moved in
parameter space is stored in HOP. The result of
the one dimensional minimization ié to replace
the starting PAM array with another one at which

the value of FUN is not greater than the starting
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value. To ensure this feature the position of
the lowest FUN value is always remembered. |

When the PAM point in parameter space has
been moved along cach of the N directions in
turn in this way 3N + 1 points have been cal-
culated and stored in VAL and HOP. At this
stage a new direction is introduced which is
taken from the original PAM point on entry to the
subroutine to the most recent PAM point, and if
the distance between these two points is d, the
new direction is normalized so that one step along
it moves a distance of d/(2v¥N). The one of the
old directions closest to this new one is now
discarded and the new one replaces it in DIRECT.
Finally a one dimensional minimization is carried
out along this new direction, the best value
found for FUN is returned in FIN and the point
at which it occurs in PAM, and the net distance
moved in this pass is returned in SHIFT.
The one dimensional minimization

At the start of this subprocedure the value
of FUN (PAM) is given at a point, and a particular
direction is given. ‘A step is eikan along the
direction, which moves the point PAM a distance of

STEP multiplied by the length of the direction, and
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the value of FUN evaluated. If the new valuc is
lower than the starting value a further step is
taken and a third noint evaluated, however if

thie new value of FUN is larger, two steps backward

9

are taken. At this point we have three values

4

of the function evaluated at equal intervals, an
a decision is made at this stage. I1f the function
values are £, f£,, £3, and if £,-2f,+f3;>EPS then

a parabola is fitted through the three f values
and the position of the minimum of the parabola

is calculated. 1In this case which may be called
the normal case the function is evaluated at the
PAM point corresponding to the bottom of the
parabola and this point is used as the start of
the next one dimensional minimization unless the
value of FUN is larger than the lowest one
previously found, in which case this prgviously
found point is used instead.

When this normal case is not satisfied (that
is £,-2f,+f3;SEPS) it is decided that the curve is
too flat for a parabola to be meaningful or else
the parabola has a maximum rather than a minimum.
(It should be noted that f1-2f2+f3.is proportional
to the second derivative. averaged over the region

of interest.) In this case the subroutine will
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either use £, as! the starting point for the
next minimization, if £, is smaller than both
£, and f3, or else calculate an additional point
and make another attempt to fit a parabola to
three consecutive points including the new one.

he subroutine will make up to four attempts
to fit a parabola in this way, but will not make
any attempts after the extra points calculated
start to increasc in value. In any case where a
parabola is not fitted, the lowest value of iUN
which has been calculated is used for the next
minimization. In cases where more than three
points are calculated along a direction only the
first and the last two are stored in VAL and HOP.

It should be noted that if the value of EPS
is very small or zero the procedure may become
unstable particularly around saddle points. On
the other hand if EPS is very large the procedure
will never fit a parabola and will jusé take up to
7 steps in each direction remembering always the
lowest one, this of course will make convergence
very slow.
.Further comments

None of the parameters need adjustment between

calls however, STEP, STEPMX and EPS may be changed
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if desired.

EPS should certainly be larger than any
rounding error which may occur in the evaluation
of FUN, and rcasonable values are about the
accuracy to which the minimum value is required.

In principle NDIM + 1 passes are needed to
find the minimum of a genefal quadratic function
‘n NDIM variables, however for rather simple
functions of 10 variables about 5 passes has been
sufficient.

If nothing is known about the function a
reasonable initial choice for DIRECT is the unit

matrix.

.
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FIGURE CAPTIONS

Figure 1. The radial part of force 2 is shown for

itwo values of A as indicated. Also shown is

rl
a hard-core potential and the long-range part
of this, obtained in the Moszkowski=-Scott
separation technique. The attractive part

of the hard-core potential is
V(r) = -93.5 exp(-r/1.4)/xr, r > 0.4 fm.

Figure 2. Ar is shown as two functions of the
relative wave number, derived by fitting the
singlet or triple s-wave phase shifts. Some
weighted average points are shown, the weights
being the relative singlet and triple strengths,
as explained in chapter 3. Also shown is the
parabolic fit to these points which is used
in force 2. The range of values of k which

- are used in evaluating matrix elements extends
roughly from 0.4 fm~! to 1.6 fm~!, and over
this range the parabola is a good fit the the
average points. '

Figure 3. The binding energy per nucleon in nuclear
matter, obtained by a first order perturbation
calculation (i.e. a Hartree-Fock calculation),
is shown as a function of the Fermi wave num-
ber, for forces 1 and 2.

Figure 4. A matrix element of the gaussian potential
exp(-r?/x (k) ?), where

Alk) = A (1 + 0.5 (k = 1)2)

is shown as a function of the size of the
oscillator states. Curve A gives the result

205



Figure 5.

Figure 6.

Figure 7.

206

of using the Kallio definition of k?, given
in chapter 3, and using the Moshinsky trans-
formation to separate the relative states.
The result of using the definition of k?,
proposed in chapter 3, cannot be separated
from curve A on this scale; the two sets of
results differ my at most 0.005. Curve B
shows the result of using a constant value
of k? taken from the relative s state. Both
curves are normalized to unity at zero size,
and so all units are dimensionless. The
matrix element evaluated is

(000, 002|v|000, 002);

other matrix elements examined show very
similar behaviour.

The radial density of the !'°®0 configuration
1s, 1P, is shown as (e Also shown are the
two gaussian approximations Py and Prr defined
in chapter 3, and arsz. a is the oscillator
constant. All units are dimensionless.

The binding energy obtained for '®0, in
the three shell RHF program, is shown as a
function of the number of iterations performed.
The representation states used have an optimum
volume (a’b = 0.9186) determined by a one-
dimensional minimization of the energy of the
simple configuration 1S, 1lP. The deformation
of the states is d = -0.4.

As for figure 6, the '®0 binding energy
is shown as a function of the number of
iterations. In this case though, the repre-
sentation states are spherical (i.e. d = 0)



Figure 8.

Figure 9.

Figure 10.

Figure 1ll.

and have a volume (a’b = 1.00) which is
larger than the optimum volume.

As for figure 6, the !®0 binding energy
is shown as a function of the number of
iterations. 1In this .case, the representation
states have their best size and deformation,
as determined by a GHA calculation. The .large
energy scale should be noted.

The binding energy, for the asymmetric
2%Mg ground state, is shown as a function of
the number of iterations. The representation
states have their best parameters, as deter-

‘mined by the corresponding GHA calculation.

The energy of the 2%Ne configuration
1s, 1P (002)*, and the energies of the
related three and four shell RHF calculations
are shown as functions of the deformation d
of the representation states. The calculated
values are marked with crosses. The repre-
sentation size (a?b = 1.0251)is chosen to
minimize the energy of the pure configuration
at zero deformation. On the right hand side
the results of the GHA calculation and of the
RHF calculation using the GHA parameters are
shown.

The dimensionless deformation parameter
Q/R? for the 2?Ne system, as a pure con-
figuration and from three shell RHF calcu-
lations, is shown plotted against the
deformation d of the representation. d is
just the value of Q/R? for the (000) orbital.
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Figure 12.

Figure 13.

Figure 14.

Figure 15.
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The size of the representation is given in

- the figure 10 caption.

The mixing parameters 6; and 063, for
states of the same m and parity and for states
of different m but opposite parities
respectively, are plotted against the defor-
mation d of the representation. The size of
the representation is given in the figuré 10
caption. The values obtained in the RHF
calculation, which uses the oscillator para-
meters obtained in the GHA calculation, are
shown for comparison on the right. These are
marked "RHF".

The kinetic and potential energies of
2%Ne configuration 1S, 1P, (002)" are plotted
against the deformation d. The size of the
representation is given in the caption for
figure 10.

The energies of the ®Be configuration and
the related RHF solutions are shown plotted
against the deformation d. The format is
identical to that of figure 10. The repre-
sentation size (a?b = 1.0504) has been chosen
to minimize the energy of the pure configuration
at zero deformation.

The deformation Q/R? of the ®Be system,
as a pure configuration and from three shell
RHF calculations, is plotted against the
deformation d of the representation. The
representation size is given'in the caption
for figure 14.

L
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Figure 16. The mixing parameters 6, and 6; for
the RHF calculation, starting with the °®Be
configuration 1S, (001)*, are shown as a
function of the deformation d. The size
of the representation is given in the caption
for figure 14.

Figure 17. The kinetic and potential energies of
the ®Be configuration 1S, (001)* are shown
plotted against the deformation d of the
representation states. The size of the
representation is given in the caption for
figure 14.

Figure 18. The binding energies of the !0 con-

' figuration 1S, 1P, and the related three
shell RHF solution are plotted against the
deformation d. The GHA result is shown to
the right.

The three shell RHF solution using the
GHA oscillator parameters cannot be separated
from the simpler GHA result on this scale.
The four shell RHF solution at zero deformation
cannot be separated from the three shell one.
The representation size (a’b = 0.9186) is
chosen to minimize the energy of the simple
configuration at zero deformation.

Figure 19. The deformation Q/R? of !%0 is shown,Afor
the configuration 1S, 1P and for the related
three shell RHF solution, as a function of
the deformation d of the representation. It
should be noted that, because of the way in
which d is defined, the results for the
dominant configuration lie on the straight line



Figure 20.

Figure 21.

Figure 22,
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Q/Ra = d. The size of the representation
is given in the caption for figure 18.

The kinetic and potential energies, of
the '®0 configuration 1S, 1P, are plotted
against the deformation d. The size of the
representation states is given in the caption
for figure 18.

The energies for the ?“Mg configuration
1s, 1p, (002)"*, (011)"*, and for the related
three and four shell RHF solutions are shown
as a function of the deformation d. Cal-
culated points are marked with crosses. Only
two points have been.calculated with the four
shell program, and the dashed curve connecting
these is necessarily tentative. The constant
volume (a%b = 1.0414) is chosen to minimize
the energy of the pure configuration at zero
deformation. On the right are shown the
energies of the cylindrical and cartesian
GHA calculations, and of the three shell RHF
calculation using the oscillator parameters
obtained in the cylindrical GHA calculation.

The deformation parameter Q/R? for the
2%Mg configuration 1S, 1P, (002)"%, (01l)"“,
and for the related three shell RHF solution,

is shown as a function of d. Alsoc shown is

the asymmetry parameter for the RHF solution.
The very small variations in the asymmetry
parameter cannot be detected on this scale.
The size of the representation states is
given in caption for figure 21.
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Figure
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Figure

Figure

Figure

24.

25,
26,
27
28.
29,
30.
3L,

32.

33.

34.

35.

The polar plot of cos?2p gives the
variation of the density of the single-

particle state

about the z axis.

has a density dependence which is similar
to that shown, but is rotated thorugh 45°,

The single-particle levels for the
various °Be solutions are shown; seé chapter

v%[(]020) + |0 - 20)]

The orthogonal state

v%[]020) - |0 - 20)]
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nucleon (corrected for the Coulomb interaction),

and those obtained with force 1 are plotted

against A-Y3,

The experimental r.m.s. radii and those
obtained with force 1 are shown plotted against

AVE,

The dashed lines connect the
doubly closed shell nuclei “He, '®0 and “‘ca.

As figure 33, for force 2.
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Figure 36. As figure 34, for force 2.

Figure 37. The experimental binding energies per
nucleon (corrected for the Coulomb inter-
action) , and those obtained in GHA calculations
with force 3 are plotted against A’y@. The
two density approximations are marked, and
they represent upper and lower bounds for
the individual nuclei.

Figure 38. The experimental r.m.s. radii and those
‘obtained in GHA calculations with force 3 are
plotted against AY’. The two density approxi-
mations are marked, and they represent upper
and lower bounds for the individual nuclei.

Figure 39. As figure 37, for force 4.
Figure 40. As figure 38, for force 4.
NOTE : In figures 24 to 32 the degeneracy of a level

is indicated by a number in parentheses
immediately on the right; if no number appears
the degeneracy is fourfold. All levels are
symmetrically occupied by neutrons and protons.
The levels for GHA solutions are marked with’

the corresponding cylindrical or cartesial
orbital in the notation used throughout the

text. The dotted lines connecting. various

levels are present to facilitate comparison
between related spectra. They do not necessarily
imply any specific relation between the different
single-particle states, though in fact some
correspondence often exists. The single-particle
states, used in the GHA calculation, (i.e. the


http:calculation,(i.ea

representation states) are split by the
spin-orbit force. This splitting breaks
the (n m nz) orbital into two doubly
degenerate levels 2m MeV apart. In order
to simplify some of the GHA spectra, this
splitting is not alwéys shown.

- 213



+10

-30

-50

TV/O-GAUSSIAN AND MOSZKOWSKI-SCOTT TYPE
POTENTIALS

1.5 2.0 2
1

b ®

Potential in MeV

/
[

/

r in fm, —>

, -

Londfraﬂ§empart of Yukawa potential

/ "realistic" potential

i

7l



I.l

1.0

0.7'

FIGURE 2. A, AS A FUNCTION OF k_

Weighted average points

o~

-2

el

TO FIT s-WAVE PHASE SHIFTS




=70

1

Binding energy per nucleon in MeV

FIGURE 3.

J Ll ]

BINDING ENERGY PER NUCLEON| IN NUCLEAR MATTER vs. K
. ¢ y

F

Force 1

-

(reduced by ten)-

1.0

2.0 3.0 , 4.0

9



1.0

0.8

0.6

0.4

0.2

0.0

FIGURE 4.

TYPICAL MATRIX ELEMENT OF VELOCITY DEPENDENT POTENTIAL,

BY KALLIO AND OTHER TECHNIQUES.

0.5

1.0 1.5 2.0

: <z’>,’/ y g

’ 2.5 <

3.0

3.5

A3



2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

FIGURE 5,

TRUE AND APPROXIMATE DENSITIES IN O

16

Density in unit

Px

0.5




-101

=102

-103

-104

)

Binding enerqv'in MeV

FIGURE 6.

CONVERGENCE OF THREE SHELL RHF FOR O16

GROUND STATE

No. of iterations




B ‘ FIGURE 7. CONVERGENCE OF THREE SHELL RHIF FOR 016 GROUND STATE
-128.36 L
-128.37 L : Ry
1
">
[]] 5
‘2 v
-128.38 [ .5 .
- > & .J
U\ a
- s
0\
=
Q
-128.39 | 2
ot
e
=
2 -~
o -
-128.40 | i
-128.41 |
TR ol iy STl S TR A GCEY Sl ey ik S ik (. et i) el W i i, T R Tl Loy e i e R
0 10 20 30 40 S0 60

No. of iterations



-129.175

”~

-129.180

-«

-129,.185

-129.190

No.,

of iterations

P
. FIGURE 8. CONVERGENCE OF THREE SHELL RHF
FOR 016 GROUND STATE
I 7 s % Pty % &
4 L

> 1

Q
~z %

5 :

> .‘

o

“ 5

Q s

g-

Sﬂ)

o i
- ° :

- . :

ke

[ =

o

fae]

3 2 , 1 L 1 1 | 1 1 ) 1 i ] 1 o |
5 10 15 20
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FIGURE 21. MAGNESTUM 24 ENERGIES vs. DEFORMATION
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FIGURE 39. BINDING ENERGIES PER NUCLEON WITH FORCE 4
-6 L
>
Q
=
g . e
ol Density I
8
-8 Lo
~
0
3
]
N
0
e
-10 | >
c
N
)
£
o -
ol § =
12 B ,—z’ o Experimental points
o .
;a
Density II x Theoretical points
-14 |
A= 80 40 32 24 16 12 8
1 i S 1 1 1 1 1 1 1
1 1 [ - (] S
0.2 0.3 0.4 0.5 0.6

A—1/3




4.0

3.5

2.5

2.0

1.5

FIGURE 40. RMS RADII WITH FORCE 4

Densitv II

£

W

S

o

-

5

- -

T

P

o

5 Experiment -~ o Experimental points
* Theoretical points

TR O e T g0

1.5 2.0 2.5 3.0 3.5 4.0 4.5




	Manning_Martin_R_D_P_1967_10_phd0001
	Manning_Martin_R_D_P_1967_10_phd0002
	Manning_Martin_R_D_P_1967_10_phd0003
	Manning_Martin_R_D_P_1967_10_phd0004
	Manning_Martin_R_D_P_1967_10_phd0005
	Manning_Martin_R_D_P_1967_10_phd0006
	Manning_Martin_R_D_P_1967_10_phd0007
	Manning_Martin_R_D_P_1967_10_phd0008
	Manning_Martin_R_D_P_1967_10_phd0009
	Manning_Martin_R_D_P_1967_10_phd0010
	Manning_Martin_R_D_P_1967_10_phd0011
	Manning_Martin_R_D_P_1967_10_phd0012
	Manning_Martin_R_D_P_1967_10_phd0013
	Manning_Martin_R_D_P_1967_10_phd0014
	Manning_Martin_R_D_P_1967_10_phd0015
	Manning_Martin_R_D_P_1967_10_phd0016
	Manning_Martin_R_D_P_1967_10_phd0017
	Manning_Martin_R_D_P_1967_10_phd0018
	Manning_Martin_R_D_P_1967_10_phd0019
	Manning_Martin_R_D_P_1967_10_phd0020
	Manning_Martin_R_D_P_1967_10_phd0021
	Manning_Martin_R_D_P_1967_10_phd0022
	Manning_Martin_R_D_P_1967_10_phd0023
	Manning_Martin_R_D_P_1967_10_phd0024
	Manning_Martin_R_D_P_1967_10_phd0025
	Manning_Martin_R_D_P_1967_10_phd0026
	Manning_Martin_R_D_P_1967_10_phd0027
	Manning_Martin_R_D_P_1967_10_phd0028
	Manning_Martin_R_D_P_1967_10_phd0029
	Manning_Martin_R_D_P_1967_10_phd0030
	Manning_Martin_R_D_P_1967_10_phd0031
	Manning_Martin_R_D_P_1967_10_phd0032
	Manning_Martin_R_D_P_1967_10_phd0033
	Manning_Martin_R_D_P_1967_10_phd0034
	Manning_Martin_R_D_P_1967_10_phd0035
	Manning_Martin_R_D_P_1967_10_phd0036
	Manning_Martin_R_D_P_1967_10_phd0037
	Manning_Martin_R_D_P_1967_10_phd0038
	Manning_Martin_R_D_P_1967_10_phd0039
	Manning_Martin_R_D_P_1967_10_phd0040
	Manning_Martin_R_D_P_1967_10_phd0041
	Manning_Martin_R_D_P_1967_10_phd0042
	Manning_Martin_R_D_P_1967_10_phd0043
	Manning_Martin_R_D_P_1967_10_phd0044
	Manning_Martin_R_D_P_1967_10_phd0045
	Manning_Martin_R_D_P_1967_10_phd0046
	Manning_Martin_R_D_P_1967_10_phd0047
	Manning_Martin_R_D_P_1967_10_phd0048
	Manning_Martin_R_D_P_1967_10_phd0049
	Manning_Martin_R_D_P_1967_10_phd0050
	Manning_Martin_R_D_P_1967_10_phd0051
	Manning_Martin_R_D_P_1967_10_phd0052
	Manning_Martin_R_D_P_1967_10_phd0053
	Manning_Martin_R_D_P_1967_10_phd0054
	Manning_Martin_R_D_P_1967_10_phd0055
	Manning_Martin_R_D_P_1967_10_phd0056
	Manning_Martin_R_D_P_1967_10_phd0057
	Manning_Martin_R_D_P_1967_10_phd0058
	Manning_Martin_R_D_P_1967_10_phd0059
	Manning_Martin_R_D_P_1967_10_phd0060
	Manning_Martin_R_D_P_1967_10_phd0061
	Manning_Martin_R_D_P_1967_10_phd0062
	Manning_Martin_R_D_P_1967_10_phd0063
	Manning_Martin_R_D_P_1967_10_phd0064
	Manning_Martin_R_D_P_1967_10_phd0065
	Manning_Martin_R_D_P_1967_10_phd0066
	Manning_Martin_R_D_P_1967_10_phd0067
	Manning_Martin_R_D_P_1967_10_phd0068
	Manning_Martin_R_D_P_1967_10_phd0069
	Manning_Martin_R_D_P_1967_10_phd0070
	Manning_Martin_R_D_P_1967_10_phd0071
	Manning_Martin_R_D_P_1967_10_phd0072
	Manning_Martin_R_D_P_1967_10_phd0073
	Manning_Martin_R_D_P_1967_10_phd0074
	Manning_Martin_R_D_P_1967_10_phd0075
	Manning_Martin_R_D_P_1967_10_phd0076
	Manning_Martin_R_D_P_1967_10_phd0077
	Manning_Martin_R_D_P_1967_10_phd0078
	Manning_Martin_R_D_P_1967_10_phd0079
	Manning_Martin_R_D_P_1967_10_phd0080
	Manning_Martin_R_D_P_1967_10_phd0081
	Manning_Martin_R_D_P_1967_10_phd0082
	Manning_Martin_R_D_P_1967_10_phd0083
	Manning_Martin_R_D_P_1967_10_phd0084
	Manning_Martin_R_D_P_1967_10_phd0085
	Manning_Martin_R_D_P_1967_10_phd0086
	Manning_Martin_R_D_P_1967_10_phd0087
	Manning_Martin_R_D_P_1967_10_phd0088
	Manning_Martin_R_D_P_1967_10_phd0089
	Manning_Martin_R_D_P_1967_10_phd0090
	Manning_Martin_R_D_P_1967_10_phd0091
	Manning_Martin_R_D_P_1967_10_phd0092
	Manning_Martin_R_D_P_1967_10_phd0093
	Manning_Martin_R_D_P_1967_10_phd0094
	Manning_Martin_R_D_P_1967_10_phd0095
	Manning_Martin_R_D_P_1967_10_phd0096
	Manning_Martin_R_D_P_1967_10_phd0097
	Manning_Martin_R_D_P_1967_10_phd0098
	Manning_Martin_R_D_P_1967_10_phd0099
	Manning_Martin_R_D_P_1967_10_phd0100
	Manning_Martin_R_D_P_1967_10_phd0101
	Manning_Martin_R_D_P_1967_10_phd0102
	Manning_Martin_R_D_P_1967_10_phd0103
	Manning_Martin_R_D_P_1967_10_phd0104
	Manning_Martin_R_D_P_1967_10_phd0105
	Manning_Martin_R_D_P_1967_10_phd0106
	Manning_Martin_R_D_P_1967_10_phd0107
	Manning_Martin_R_D_P_1967_10_phd0108
	Manning_Martin_R_D_P_1967_10_phd0109
	Manning_Martin_R_D_P_1967_10_phd0110
	Manning_Martin_R_D_P_1967_10_phd0111
	Manning_Martin_R_D_P_1967_10_phd0112
	Manning_Martin_R_D_P_1967_10_phd0113
	Manning_Martin_R_D_P_1967_10_phd0114
	Manning_Martin_R_D_P_1967_10_phd0115
	Manning_Martin_R_D_P_1967_10_phd0116
	Manning_Martin_R_D_P_1967_10_phd0117
	Manning_Martin_R_D_P_1967_10_phd0118
	Manning_Martin_R_D_P_1967_10_phd0119
	Manning_Martin_R_D_P_1967_10_phd0120
	Manning_Martin_R_D_P_1967_10_phd0121
	Manning_Martin_R_D_P_1967_10_phd0122
	Manning_Martin_R_D_P_1967_10_phd0123
	Manning_Martin_R_D_P_1967_10_phd0124
	Manning_Martin_R_D_P_1967_10_phd0125
	Manning_Martin_R_D_P_1967_10_phd0126
	Manning_Martin_R_D_P_1967_10_phd0127
	Manning_Martin_R_D_P_1967_10_phd0128
	Manning_Martin_R_D_P_1967_10_phd0129
	Manning_Martin_R_D_P_1967_10_phd0130
	Manning_Martin_R_D_P_1967_10_phd0131
	Manning_Martin_R_D_P_1967_10_phd0132
	Manning_Martin_R_D_P_1967_10_phd0133
	Manning_Martin_R_D_P_1967_10_phd0134
	Manning_Martin_R_D_P_1967_10_phd0135
	Manning_Martin_R_D_P_1967_10_phd0136
	Manning_Martin_R_D_P_1967_10_phd0137
	Manning_Martin_R_D_P_1967_10_phd0138
	Manning_Martin_R_D_P_1967_10_phd0139
	Manning_Martin_R_D_P_1967_10_phd0140
	Manning_Martin_R_D_P_1967_10_phd0141
	Manning_Martin_R_D_P_1967_10_phd0142
	Manning_Martin_R_D_P_1967_10_phd0143
	Manning_Martin_R_D_P_1967_10_phd0144
	Manning_Martin_R_D_P_1967_10_phd0145
	Manning_Martin_R_D_P_1967_10_phd0146
	Manning_Martin_R_D_P_1967_10_phd0147
	Manning_Martin_R_D_P_1967_10_phd0148
	Manning_Martin_R_D_P_1967_10_phd0149
	Manning_Martin_R_D_P_1967_10_phd0150
	Manning_Martin_R_D_P_1967_10_phd0151
	Manning_Martin_R_D_P_1967_10_phd0152
	Manning_Martin_R_D_P_1967_10_phd0153
	Manning_Martin_R_D_P_1967_10_phd0154
	Manning_Martin_R_D_P_1967_10_phd0155
	Manning_Martin_R_D_P_1967_10_phd0156
	Manning_Martin_R_D_P_1967_10_phd0157
	Manning_Martin_R_D_P_1967_10_phd0158
	Manning_Martin_R_D_P_1967_10_phd0159
	Manning_Martin_R_D_P_1967_10_phd0160
	Manning_Martin_R_D_P_1967_10_phd0161
	Manning_Martin_R_D_P_1967_10_phd0162
	Manning_Martin_R_D_P_1967_10_phd0163
	Manning_Martin_R_D_P_1967_10_phd0164
	Manning_Martin_R_D_P_1967_10_phd0165
	Manning_Martin_R_D_P_1967_10_phd0166
	Manning_Martin_R_D_P_1967_10_phd0167
	Manning_Martin_R_D_P_1967_10_phd0168
	Manning_Martin_R_D_P_1967_10_phd0169
	Manning_Martin_R_D_P_1967_10_phd0170
	Manning_Martin_R_D_P_1967_10_phd0171
	Manning_Martin_R_D_P_1967_10_phd0172
	Manning_Martin_R_D_P_1967_10_phd0173
	Manning_Martin_R_D_P_1967_10_phd0174
	Manning_Martin_R_D_P_1967_10_phd0175
	Manning_Martin_R_D_P_1967_10_phd0176
	Manning_Martin_R_D_P_1967_10_phd0177
	Manning_Martin_R_D_P_1967_10_phd0178
	Manning_Martin_R_D_P_1967_10_phd0179
	Manning_Martin_R_D_P_1967_10_phd0180
	Manning_Martin_R_D_P_1967_10_phd0181
	Manning_Martin_R_D_P_1967_10_phd0182
	Manning_Martin_R_D_P_1967_10_phd0183
	Manning_Martin_R_D_P_1967_10_phd0184
	Manning_Martin_R_D_P_1967_10_phd0185
	Manning_Martin_R_D_P_1967_10_phd0186
	Manning_Martin_R_D_P_1967_10_phd0187
	Manning_Martin_R_D_P_1967_10_phd0188
	Manning_Martin_R_D_P_1967_10_phd0189
	Manning_Martin_R_D_P_1967_10_phd0190
	Manning_Martin_R_D_P_1967_10_phd0191
	Manning_Martin_R_D_P_1967_10_phd0192
	Manning_Martin_R_D_P_1967_10_phd0193
	Manning_Martin_R_D_P_1967_10_phd0194
	Manning_Martin_R_D_P_1967_10_phd0195
	Manning_Martin_R_D_P_1967_10_phd0196
	Manning_Martin_R_D_P_1967_10_phd0197
	Manning_Martin_R_D_P_1967_10_phd0198
	Manning_Martin_R_D_P_1967_10_phd0199
	Manning_Martin_R_D_P_1967_10_phd0200
	Manning_Martin_R_D_P_1967_10_phd0201
	Manning_Martin_R_D_P_1967_10_phd0202
	Manning_Martin_R_D_P_1967_10_phd0203
	Manning_Martin_R_D_P_1967_10_phd0204
	Manning_Martin_R_D_P_1967_10_phd0205
	Manning_Martin_R_D_P_1967_10_phd0206
	Manning_Martin_R_D_P_1967_10_phd0207
	Manning_Martin_R_D_P_1967_10_phd0208
	Manning_Martin_R_D_P_1967_10_phd0209
	Manning_Martin_R_D_P_1967_10_phd0210
	Manning_Martin_R_D_P_1967_10_phd0211
	Manning_Martin_R_D_P_1967_10_phd0212
	Manning_Martin_R_D_P_1967_10_phd0213
	Manning_Martin_R_D_P_1967_10_phd0214
	Manning_Martin_R_D_P_1967_10_phd0215
	Manning_Martin_R_D_P_1967_10_phd0216
	Manning_Martin_R_D_P_1967_10_phd0217
	Manning_Martin_R_D_P_1967_10_phd0218
	Manning_Martin_R_D_P_1967_10_phd0219
	Manning_Martin_R_D_P_1967_10_phd0220
	Manning_Martin_R_D_P_1967_10_phd0221
	Manning_Martin_R_D_P_1967_10_phd0222
	Manning_Martin_R_D_P_1967_10_phd0223
	Manning_Martin_R_D_P_1967_10_phd0224
	Manning_Martin_R_D_P_1967_10_phd0225
	Manning_Martin_R_D_P_1967_10_phd0226
	Manning_Martin_R_D_P_1967_10_phd0227
	Manning_Martin_R_D_P_1967_10_phd0228
	Manning_Martin_R_D_P_1967_10_phd0229
	Manning_Martin_R_D_P_1967_10_phd0230
	Manning_Martin_R_D_P_1967_10_phd0231
	Manning_Martin_R_D_P_1967_10_phd0232
	Manning_Martin_R_D_P_1967_10_phd0233
	Manning_Martin_R_D_P_1967_10_phd0234
	Manning_Martin_R_D_P_1967_10_phd0235
	Manning_Martin_R_D_P_1967_10_phd0236
	Manning_Martin_R_D_P_1967_10_phd0237
	Manning_Martin_R_D_P_1967_10_phd0238
	Manning_Martin_R_D_P_1967_10_phd0239
	Manning_Martin_R_D_P_1967_10_phd0240
	Manning_Martin_R_D_P_1967_10_phd0241
	Manning_Martin_R_D_P_1967_10_phd0242
	Manning_Martin_R_D_P_1967_10_phd0243
	Manning_Martin_R_D_P_1967_10_phd0244
	Manning_Martin_R_D_P_1967_10_phd0245
	Manning_Martin_R_D_P_1967_10_phd0246
	Manning_Martin_R_D_P_1967_10_phd0247
	Manning_Martin_R_D_P_1967_10_phd0248
	Manning_Martin_R_D_P_1967_10_phd0249
	Manning_Martin_R_D_P_1967_10_phd0250
	Manning_Martin_R_D_P_1967_10_phd0251
	Manning_Martin_R_D_P_1967_10_phd0252
	Manning_Martin_R_D_P_1967_10_phd0253
	Manning_Martin_R_D_P_1967_10_phd0254
	Manning_Martin_R_D_P_1967_10_phd0255
	Manning_Martin_R_D_P_1967_10_phd0256
	Manning_Martin_R_D_P_1967_10_phd0257
	Manning_Martin_R_D_P_1967_10_phd0258
	Manning_Martin_R_D_P_1967_10_phd0259
	Manning_Martin_R_D_P_1967_10_phd0260
	Manning_Martin_R_D_P_1967_10_phd0261



