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CHAPTER 1 


INTRODUCTION 


The study of the structure of nuclei has been 

dominated for many years by the shell model. In this 

model it is assumed that the e ffect of the interactions 

between pairs of particles can be approximated by a 

simple local potential acting on the individual particles. 

In the simplest form o f the model the complicated 

Schrodinger equation for the nuclear system is replaced 

by a set of Schrodinger equations, one for each nucleon 

moving independentlY, in a harmonic potential. It is 

well known that the many-body wave functions, which are 

solutions t o this set of equations, are antisymmetrized 

products of single-particle wave functions. The single

particle wave functions are just the eigenstates of the 

Schrodinger equation for the harmonic well, and the many

body wave functions which they produce are called con

figurati ons. Normally a single-particle spin-orbit force 

is included with the harmonic potential, and, with this 

modification, the model can explain many of the gross 

features of nuclei. The experimental evidence in favour 

of such a model has been reviewed many times (e.g. Elliott 

and Lane 57) . 

1 
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One of the drawbacks of this approximation is 

that it is not connected with the actual two-nucleon 

interaction, and because of this i t is not possible to 

obtain self-consistent nuclear energies or sizes. One 

way o f relating the model wave functions, to the two-

nucle on interaction, is to regard them as approximations 

to the true nuclear wave functions. A better approxi

mation can be obtained by taking linear combinations of 

configurations, obtained by a variational procedure of 

the form 

c. q>. 
~ ~ 

This is equivalent to diagonalizing the N x N matrix 

whose elements are <q> . jHjq> .>. Mixtures of configurations 
~ J 

found in this way contain long-range correlations which 

,are not present in the simple· configurations. A problem 

which arises in this approach. is the choice of the 

incomplete representation of states q> .• This problem 
~ 

also occurs in the· Hartree-Fock approach, and will be 

discussed later. 

An alternative way of making this type of model 

self-consistent is to use the two-nucleon interaction to 

derive the average potential experienced by the individual . 
nuc leons. A procedure for doing just this, for the atomic 
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electron problem, was given by Hartree (1928) and improved 

by Fock (1930) many years ago. The Hartree-Fock method 

is based on a variational principle of the Ritz type, and 

wi l l be discussed in detai l in chapter 2* This method is 

c on plicated by th~ fact that the average one-body 

potential, which is derived, is in general non-local. 

Furthermore, the only practical procedure for finding the 

average one-body potential is an iterative one. Successive 

iterations must be carried out from some suitably chosen 

starting point, and there is no guarantee that these 

iterations will converge to give a self-consistent result. 

Despite this difficulty, convergence is usually obtained 

if a good staring point is chosen. Meaningful Hartree

Fock calculations for light nuclei must be carried out 

with a computer, but these calculations are more tractable 

than the configuration mixing ones mentioned above. In 

particular the Hartree-Fock method can be applied to a 

wider range of nuclei, and consequently it is suitable for 

studying the systematic behaviour of energies and sizes of 

light nuclei. 

*NOTE : 

For an alternative derivation see Baranger (1963). 
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In the type of Hartree-Fock calculation that will 

be considered here the single-particle wave functions 

are de rived as linear combinations of a finite number of 

h a rmonic oscillator states * . These harmonic oscillator 

states f orm an incomplete representation for the Hilbert 

space of all one-body states. Because the representation 

used is incomplete, the restricted Hartree-Fock (RHF) 

?Olutions depend on how this representation is chosen. 

Unfortunate ly , the "realistic" two-nucleon 

interactions, which can be derived from scattering 

experiments, appear to be strongly repulsive at short 

dis tances. Because of this there are important short

~ange correlations in the true nuclear wave function. 

mh ese correlations are not present in the types of wave 

functions considered above, and because of this such wave 

functions have very large or infinite energies. In fact 

the matrix elements of the two-nucleon interaction, which 

are needed in the configuration mixing and Hartree-Fock 

calculations, do not exist for most of these "realistic" 

interactions. This difficulty has been removed, in 

principle, by the advent of the Brueckner-Goldstone theory 

(Goldstone 57) . This theory showed quantatively how the 

*NOTE: 

An alternative procedure is to use a co-ordinate 
space representation. For an example of this technique 
see Vautherin and Veneroni (1967). 
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strong two-nucleon interaction is effectively damped, in 

a many-body system, as a res ult of the exclusion principle 

wh ich prevents two nucleons from occupying the same state. 

Brueckner proposed an alternative form of the Hartree-

Fock theory in which the strong two-nucleon interaction is 

replaced by a complicated reaction matrix. The reaction 

matrix expresses the damped interaction and is dependent 

on the many -body system in which the interaction takes 

n l a ce. It was further shown by Moszkowski and Scott (1960) 

t hat the reaction matrix could be approximated quite 

well by an effective potential. From these ideas it 

appears that the Hartree-Fock method can be used if the 

"realistic" interaction is replaced by an effective inter

action. Such an approach h as also been used in configuration 

mixing calculations (e.g. Kallio and Koltveit 64), and more 

recently this type of ca lculation had been carried out 

with reaction matrix elements derived directly from 

"realistic" interactions (e.g. Kuo and Brown 77). The 

effective interaction to be used in this work is not 

taken from a "realistic" interaction, but rather is 

derived from physical properties which the effective 

interaction should have. 

The modified form of the Hartree-Fock method 

obtained from the Brueckner-Goldstone theory, is expected 

to give th~ binding energies of nuclear many-body systems 
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quite well, even though the s hort- range correlations 

are still absent in the wave functions used. It can 

be shown from the Bethe-Goldstone equation that the 

relati ve wave funct ion for two particles "heals" outside 

a small region whi ch is directly affected by the short

rang e correlation. That is, except when two particles 

are very close together, they behave as if they were 

inde~endent . It is reasonable t o expect .that this long

r a nge independent behaviour o f the particles is expressed 

by the wave functi on arising in the modified Hartree

Fock approach . Thus the size and shape of the Hartree

Fock wave function can be compared with the size and 

shape of actual nuclei. 

The earliest Hartree-Fock calculations for light 

nuclei were carried out by Kelson et. al. (Kelson 63; 

Kelson and Levinson 64; Bassichis, Kelson and Levinson 64). 

In these calculations the representation was taken to be 

a single shell of oscillator states belonging to a 

spherically symmetric harmonic potential. A large part 

of the one-body potential was inferred from the experi

mentally observed single-particle energies. Because these 

e nergies vary with the size and shape of the nuclear state 

in a more complete calculation, it was necessary to "freeze" 

the nucleus ·at the experimentally observed size. Further

more the effective two-body interaction used could not be 
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related directly to a "realistic" interaction. In this 

way much of the self-consistent nature of the Hartree

Pock c lculation wa s de s troyed. Ripka (1966) has studied 

t h e e ffect of increasing the representation to include 

more t h a n one major shell of oscillator states. An 

i ncrease of the size of the representation in this way 

always improves the Hartree-Fock calculation. 

In the recent work of Davies, Krieger and 

Baranger (1966), of Muthukrishnan (1967), of Bassichis, 

Ke rman and Svenne (1967), and in this work, the average 

one-body potential is derived consistently from some 

s i mplified form of effective two-body interaction. 

Davies et. al. use a representation of four major shells 

o f spherical oscillator states. There is one degree o f 

freedom in this representation, which is the size of 

the harmonic well which generates the oscillator states. 

In principle the Hartree-Fock calculation will always 

seek the equilibrium size of the nucleus, but in practice 

the size of the RHF solution varies almost linearly with 

the size of the representation states. For this reason 

it is necessary to vary the representation size until a 

minimum energy is found; this minimum point gives the 

equilibrium solution. In the work of Muthukrishnan a 

r e presentation of four major shells of cartesian oscillator 

states was used. This representation has three degrees 
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o f freedom, one for each of the three axes of the 

a s ymme tric harmonic potential used to generate the 

o s cilla tor state s. I f these three degrees of freedom 

a re used, not only the size but also the shape of the 

RHF solut ion is changed. Once again an equilibrium 

point s h ould be found by minimizing the energy of the 

lli1F sol ution. In neither of these two works just mentioned 

is i t c l e ar e xactly how this type of variation was carried 

out, or t h e extent to which it was carried out. 

In the work of Bassichis, ~rman and Svenne a 

r e presentation of four major shells of oscillator states 

g e nerated by a spherical we ll was used. The representation 

wa s kept at a fixed size but the nuclear system under 

consider ation was forced to deform by using a constrained 

form of the Har t ree-Fock method. There does not seem to 

be so clear a theoretical justification for this technique, 

as there is for the method used here to find the equili

brium deformation. One of the important points made by 

Bassich is et. al. is the magnitude of the second-order 

c o rrection to the energies found in the Hartree-Fock method. 

The authors find that the energies decrease (i.e. become 

more negative) by about 17% of the total potential energy, 

when the second-order term is taken into account. This 

represents a large correction in terms of the binding 

energy. If the second and higher order corrections are 
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~s large for the forces used in this thesis, then the 

dis c ussion of the systematic behaviour which is taken 

up in chapter 7 must be modi fi ed . 

In this thesis a r e p r esentation of three major 

shells of cylindrical states will be used. Such a 

repres e ntation has basically two degrees of freedom.

However one of the original features presented here is 

to allow the different oscillat or states in the repre

sentation to come from harmonic wells of different sizes 

and deformations. The effect of this is examined in 

chapter 5. In most of the previous RHF calculations that 

have been reported, some symmetry has been imposed on the 

single- particle states. No s uch impositions are made 

h ere and it is shown that in some cases spurious solutions 

are c reated by symmetry requirements which effectively 

r e late the single-particle states to preferred axes in 

space. 

In the second chapter the RHF method is explained, 

and a closely related approximation is defined. The 

third chapter is concerned with the development of the 

fo ur different effective forces to be used. It is shown 

in this chapter that the parameters of a certain analytic 

form of effective interaction can be almost entirely 

determined by imposing natural requirements. The four th 

chapter p resents the technical details of the RHF 
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c alculation, which are t oo important to be confined to 

an appendix . The results which follow cannot be fully 

understood unless the techni ques and their limitations 

described in this chapter are understood. Some problems 

connected with the convergence of the Hartree-Fock 

i teration procedure are also discussed at this stage. 

A detailed examination of the influence of the shape 

o f t he representation on the RHF solution is carri ed out 

in c hapter 5 . In this chapter comparisons are made with 

some c alculations in a representation of cartesian states, 

and also with some RHF calculations which use a repre

sentation of four shells of cylindrical oscillator states. 

A standard procedure for obtaining an approximate 

equilibrium RHF solution is de fined in chapter 2 and 

examined in chapter 5.. In chapter 6 this procedure is 

used to examine the even-even nuclei lighter than 4 °Ca. 

All the calculations described in chapters 4, 5 and 6 

are carried out with the same simple effective f orce, 

force l . In chapter 7, a survey of results derived 

fr om three other effective forces is given . All these 

three effective forces represent a considerable improvement 

over the first force, and two of them incorporate a 

' 
dependence on the density of the nucleus in a manner 

suggested by Bethe (1966). These density dependent 

forces are designed to saturate nuclear matter in a 
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Hartre e-Fock calculation. Unfortunately these forces 

have not been treated exactly in the calculations with 

finite nuclei, and some of the problems related to this 

fact are discussed. 

The calculations carried out for this thesis 

do not permit a detailed comparison with experimental 

spectra. The reason for th is is explained in chapter 6. 

Inste~d of making such a comparison, we have attempted 

to understand as fully as possible the nature of the 

Har tree-Fock solutions, for light nuclei. The comparisons 

that are made with experimental results are confined to 

chapter 7, and are made in order to improve the pheno

menological force used. 

·



CHAPTER 2 


S I~PLE HARTREE-FOCK THEORY FOR WELL-BEHAVED INTERACTIONS 

The large number of Hartree-Fock calculation's which 

h ve b een reported for finite nuclei in recent years have 

e mp loyed a varie ty of techniques. Therefore, it is felt 

necess a ry to explain here in a detailed and unambiguous way 

how t he results to be discussed in later chapters were 

obtained . To do this in a self-contained manner we consider 

a non-relativistic n-body p roblem, in which there is a two-

body inte raction v(r .. ) f or which all the matrix elements we 

l 

lJ 
wi l l require are assumed to be well defined. The Hamiltonian 

t o r t h e problem is then 

H = L: 
i 

Ti + L: 
i<j 

( 1) 

l n which T. denotes the kinetic energy of the i'th particle 

and r . . denotes all the r elative co-ordinates of thi i'th· and
lJ 

j ' th particles. TcM denote s the kinetic energy associated with 

the motion of the centre of mass, and is subtracted explicitly, 

so that t h e Hamiltonian represents only the intrinsic energy 

of the nucleus. The Schrodinger equa tion which should be 

s olved is 

( 2) 

and b ecause it is not k nown how to treat this equation exactly, 

approximate solutions must be used. 

12 
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The state vector I~> belongs to an infinite dimensional 

.ilbert space, and it is wel l known that the real v alued 

fun ction < ~IHI~ >, confined to the hypersphere defined by 

<~ I ~> = 1, has stationary values at those points where (2) 

is satisfied (Messiah 65). To fi nd approximate eigenstates of 

H s ome finite dimensional hypersurface S is chosen ? and the 

f nction < ~ ! HI~ > confined to s and to the hypersphere is written 

as < ~jHj~ >j 8 • The presence of an eigenstate of H close to S 

c an be expected to induce one or more stationary values o f the 

restricted fun c tion < ~IHI~>I 8 , o n S and close to the true eigen

state . If the .states on the surfa c e S are paramaterized by a 

set of real numbers a1, ... am ' then the approximate solutions 

are given by values of the a 's which satisfy 

~ {<~(al, ···· ) IHI~(al, .... a )>}= 0; i = 1, 2, .... m. oa . m m 
l. 

Points found in this way are regarded as approx~mate eigenstates . 

It must be noted that there is not necessarily a one to one cor

r espondence between the true eigenstates and these approxi

mati ons. In the special case where S is a linear subspace of 

dimension N of the Hilpert space, and is spanned by a set of 

states j¢ .>, i = 1, N, then the general form of I~ > is 
l. 

N . II~>= L a. ¢ .>,
l. = 1 l. l. 

and 

where ~ is the column vector of the ai,and H8 is the N x N 

matrix whose elements are <¢i iHI¢ j>. The function~+ H8 ~ , 

whose stationary points are required, subject to the constraint 
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<IJ'!IJ'> = L: !a .! 2 = 1,
li 

is the analogue of <IJ'!H! IJ' > in anN-dimensional space . So, 

by the converse of the theorem relating eigensolutions to 

sta t ionary points, the approximate solutions inS occur at the 

eigenvectors of H
5 

. In this way approximate solutions are 

f ound by diagonalizing finite matrices. 

The Hartree- Fock Approximation . 
( 

An approximation of t he type outlined above will now 

be considered for the prob lem defined by the Hamiltonian (1). 

The choice o f the surface S is dictated, for the case of finite 

nuclei, partly by mathematical simplicity and partly by 

experimenta l results. There is much evidence to indicate that 

the low lying states of finite nuclei are close to independent 

partic le states, that is to say to states which are formed by 

forcing individual nucleons into particular one-body states 

and then taking into account the fermi statistics which the 

nucleons must obey. I f the particular one-body states are 

indexed by a set of indices {ai:i = 1, .. . n} and denoted -by 

lai> with configuration space wave functi ons ~a. (r), then the 
l 

n-particle state has the wave function 

IJ'(r 1 , ..• r ) =A· [~ (r 1 )~ (r 2 ) ~a (rn)]n a 1 a 2 n 
Where A is the normalized antisymmetrising operator acting on 

the generalized co-ordinates r .. This wave function has the 
l 

form o f a determinant and we will denote it in its normalized 
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form by II' = det ( If; , \f; , •••• \f; ) • 
a, aa 2'" n 

We will also denote the n-particle state by 

( 3) 

and t he one-body states !a.> are called the occupied states. 
l 

If the wave function det(\f; , •... \f;a) is to be non
al n 

Z "- r O, then the one-body wave functions must be linearly 

independent, and it will be seen below that there is no loss 

o£ generality if the states are taken to be orthonormal, so 

th:. s will be assumed fr om now on. 

The belief that states of this form lie close to the 

tru e eigenstates of the prob lem leads in a natural way to 

minimizing the function <II'! H!II'> over the hypersurface of such 

i~~ependent particle states. 

The most general variation on this hypersurface is 

whi ch, when second order and higher terms are ignored, can be 

separated into the sum of n independent variations of the form 

- det(\f; , ... .1jJ ) • 
aal n 

( 4) 

The condi tions o<II'IHIII'> = o 

<11'111'> = 1, (5) 

that jll'> be a stationary point of the required form, imply 

certain conditions on the Ia.>, and to express these conditions 
J. 

we consider a complete orthonormal basis of states IB>, for 
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the one -body Hilbert space, which include the states Ia.> • 
l. 

Then we can write 

a i 
oljia. (r) = L:8 s8 1)i8 (r) 

l. 

and t he v ar iat ion ( 4 ) o f the i'th state can be further sepa

ra t ed into a sum of independent variations of the form 
a· 

8 '±'=det ( lji , ... lji +Eol. 1ji 8 , . . 1ji a ) - det ( 1ji . , 
~ i,8 al a i ~ n al 

( 6) 

Ce rtain of these v a riations are identically zero, 

P-amely those where 8 = a. for some i. If the set of occupied
l. 

stat es a . is denoted by A then the remaining non-vanishing
l. 

v ari ations prod uce 

o<'±' IHI'±' > = z: 2 X Re [ <'¥ IH I6 0 '¥ > ) ( 7)
a,f..ld. sA, 8i!A 

In order to satisfy conditions (5) simultaneously,a Lagrange 

multiplier is introduced in the usual way and it is necessary 

t o find states I'±'> which satisfy 

o<'±'IH-;>..I I'±'> = o (8) 

or from (7) 
L: 


a sA, 8iA 


As the s~ coefficients in the oa,Bw(r) are all independent and 

may be real or imaginary,it follows that 

<'±' IH-;>..IIo s'±'> = 0 ( 9)
a, 

for all asA, S,tA . 

7he conditions (9) are most easily reduced to conditions on the 

states lai > if we resort to the notation of second quantization, 

+and introduce creation and annihilation operators a , a a a 
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+ +satis fying {a ' as} = {act, as} = 0a. 

+ 
{aa.' as} = 0

a.S 

a+ I0> = Ia > I a IO> = 0 
ct 	 a. 

and 	 IO> = la.l, .... a. > n 

· . e re {A,B} = AB + BA is the usual 


anticommutator. 


So that from (6) 


o 1If> = 	 la.l , .... a. >a.,S 	 n 

and (9) · becomes 

+(H - 1-I) aB a 	 a. > = 0. a. 	 n 

(10) 

It is well known that the ope r ator H can be expressed in terms 

+of the operato rs a , a as 
a. a. 


H = T + V 


T = L 	<a. IT IB > a + 
a.

a.B 

V 	 = ~ L: <a. B lv!Yo> ( ll ) . 
a.Syo 

T and V are used h ere to denote the parts o f H which are one 

and two-body operators respectively. It should be noted that 

the c entre of mas s energy affects both terms. As defined 

above the two- b ody state la.S > is antisymmetric; it will be 

more convenient in later chapters to use matrix elements between 
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states which are not antisymmetric~and such states will be 

written laS). Thus 

l aS >= 1/12 [iaf3) - !Sa)] 

a nd 	 <as!vlyo> = 0slvlyo - oy). 

Us i ng (11) 	 equation (10) can be reduced to 

<a I T + r I S > = o at.A, SiA (12) 

where r = L: a V a + (13) 
at. A a a 

or 	 (14) 

In (13 ) and (14) V is the two-body operator defined in (11). 

Equations (12 ) are the r e quired conditions on the 

one -body states, but it must be noted that the states that 

a re de f i ned by these condi tions a re not unique. The reason 

f o r thi s is as follows. The many body state ia 1 , . . . a >'a 2 n 

whic h is of interest, can be formed just as well from the 

stat es 

Ia. > = L:. !a.> ( 15) . 
1. J = J 

so long as the n x n matrix U has rank n, and if in addition 

U is unitary then the Ia. > are orthonormal. Because of this 
1. 

the many-body state does not define unique occupied one-body 

states, but instead defines ann-dimensional subspace (the 

subspace spanned by t h e Ia . >) within the Hilbert space of all 
1. 

one -body states. Any n linearly independent states lai> 

t ake n from this sub s p ace define the same many-body state and 
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it is because of this that the n states can be taken as 

orthonormal. It is customary to characterize the subspace 

o f occ pied states by the projection operator onto it i.e. 

and this operator is called the density matrix. There is 

nmv a one-to-one correspondenc e between many-body states 

of the independent particle type and their density matrices. 

The one-body operator r is defined uniquely by the many-body 

sta te (it is not changed by the transformation (15)) and this 

can be expressed by writing f(p). 

The Hartree - Fock equations (12) are now satisfied by 

a set of n states Ia . >, which form an approximate many-body
1 

s tate 1 provided the operator f(p) which they produce is such 

that the operator T + f(p) leaves the subspace spanned by 

the Ia.> invariant. Because more than one set of one-body
1 

states will produce the s~~e many-body state and the same 

density matrix these one-body states are not unique. However, 

it is customary to denote the eigenstates ofT+ f('p)as the 

Hartree-Fock states of the system. These states satisfy the 

eigenvalue equation 

[T + r ( p) J I a> = e:: I a> , (17)
a 

in which r(p) appears as an average potentLal felt by the 

indepe~dent particles. The Hartree-Fock state has an energy 
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L: <a.ITia.> + ~ ~ <a.Sjvja.S> 
a.E:A a.,SE:A 

== E (<a.ITia.> + e ) (18)
0 a. 

Fur the rmore the one-particle-one-hole excitation a + aa.. ja. • . • • a 8 1 I 
~ 

o f this ground state has an energy 

a>== E + ( - € -<Sa. . IVIBa.> n o 8 a.. l ~ 
~ 

(19) 

~\Tl en the interactions are small the last term in (19) may be 

neglected and the energies £a. appear as single particle 

excitation energies. In gener al though these one-particle

one -hole excitations do not satisfy the Hartree-Fock conditions 

because the density matrix, and h e nce f(p), is changed when 

t he set of occupied states is changed. This means that the 

si~le particle energies E must be recalculated, and even a. 

whe n the one-particle-one-hole states are close to Hartree-Fock 

sol utions there is a rearrangement of the single-particle 

levels. In even-even light nuclei, where states with high 

space symmetry are preferred, the low lying excited states are 

not of t h e one-particle-one-hole type. 

A further important point is evident from an investi 

gation of (13), namely that any unitary transformation which 

leaves the subspace of occupied states invariant, and which 

a ls o leaves V invariant, necessarily leaves f(p) invariant. 
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Consequently, the effec tive potent i a l r has just those 
I 

symme t ries whi c h are c ommon t o t he s e t of states icc>
l 

(i . e . to p ) and V the two-body i n t e r a c t ion. 

Th e Har tree-Fock c ondi t ions (1 2 ) or (17) do not 

immed i a tely so l v e t h e problem o f finding approximate many -

bo dy sta t e s, be c ause the ope rator whose e i genstates a r e r equired 

depends, t h rough p on t he s tate s thems elv e s. For this rea son 

one must find solut ion s by choos i ng an initial set o f states 

1 u, (o)> a nd c a r rying out suc ces sive i terations . In t he p 'th 

iteration one r eplac es the s tat es Ia. (p)) with the eigenstates 
l 

of~ + f(p(p )) where p (p) is t h e p' th approx imation t o the 

dens ity matrix def ined by 

p(p) = 2:: la (p} ) <a (p) I . ( 21)a sA 

The iteration s s hould continue until the solutions converge, 

i n par ticular until successive approximations p(p)are equal. 

Actua lly the above iteration p rocedure is not we l l de f ined 

n t i l some prescription is g i ve n f or s e lecting which of the 

infini te number of eigenstates of T + r are to b e occupied. 

One such pre scription would b e t o select the eigenstates which 

were c l o sest to the p r e v i ously occupied states (i. e . to t he 

Ia. (p ) > ) . However, it is felt that such a procedure migh t 

act as a constraint on the overall convergence of the density 

matr i x. That is by continually forcing t h e system into single-

particle states of the same type, convergence may be prohibited. 

l 
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A more physical prescription has been used here and is based 

on arrang ing the single-particle states so that their eigen

values are increasing. When this is done the states are 

occupie d according to an occupation vector n which has com

po ent s 

n. = 1 if the i'th state is to be occupied
l 

n. = 0 if the i'th state is to be empty.
l 

p(p)Thus the density matrix is defined for the p'th 

i te ration as 

= L: · n. Ia ~P) > 
l l l 

Unfortunately this method can also lead to serious difficulties 

in convergence, particularly for o dd nuclei. This problem, 

which seems to have been ignored in previous works will be 

discussed more fully in chapter 4 . 

The question of convergence must be examined more 

carefully in another respect. If the operator T + r has 

degeneracies, as is very often the case, then the eigenstates 

associate d with degenerate eigenvalues are not unique and _ 

cannot be expected to converge even when the density matrix 

doe s. 

The Restricted Hartree-Fock Method 

Equation (17), wh ich we would like to solve in any 

given iteration, is of the same form as equation (2). However, 

we are now in a one-body Hilbert space rather than an n- body 
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o.e, nd we have paid the price by becomi ng involved in an 

iter ation procedure in order to find a self-consistent 

solution . Because of the similarity between (2) and (17), we 

usc the same ideas to solve (17), in any particular iteration . 

T a t is we would like to find some finite dimensional hyper

surface in the s pace o f one-body states, which lies close to 

th2 true Hartree- Fock states . Some caution is needed at 

thi s point because, as mentioned before, when a variational 

proc edure is used to find approximate states, there is no 

guarantee that two or more approximate solutions do not 

correspond to the same true solution. However if two approxi 

mate one -body states, both close to the same true one- body 

SLate, are used to construct a density operator it seems 

cl2ar that this will give a poor approximation . To s ome 

extent this situation can b e avoided if the approximate one

. body states are constrained to b e orthonormal . Also it is 

reasonable to believe that the Hartree - Fock states are quite 

similar to the single-particle states used in simple shell 

models, in particular the Ni lsson model for deformed nuclei 

' Ji lsson 55). If this in fact turns out to be the case, 

then we can be fairly confident in our solution. Furthermore 

since the Hartree-Fock statei should be similar to those of 

the Nilsson model, a reasonable choice for the hypersurface 

is a subspace spanned by a finite number N, of the one~body 
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wave functions of this model . Thus recalling the special 

form o f ~he variational proce dure for such a linear subspace, 

it i s seen that a given iteration can be carried out by 

diagonalizing an N x N matrix with matrix elements 

H .. = <i I T + r (p) I j> ( 23) 
l.J 

The states Ji > are the harmonic oscillator states appropriate 

to a cylindrically symmetric harmonic well, and so satisfy 

the Schrodinger equation 

Ji > is characterised by 5 quantum numbers as well as the 

parameters a and S . 

Thus, Ji> · = Jn ., m., n ., s., T.; a, S> 
l. l. Zl. l. l. 

n2 
and e. = m [(2ni + !mil + 1) a + (n . + ~) S] (26)

l. Zl. 

s. and T. denote the spin and isospin quantum numbers 
l. l 

respe c tively . The cylindrical harmonic oscillator wave-

f unctions are considered in some detail in Appendix 1. 

This then defines our concept of a simple restricted 

Hartree- Fock ( RHF ) calculation in a fixed representation 

of states Ji>, i = 1, N (N must be larger than n the 

number of particles). If the approximate Hartre~-Fock s tates 

for the p'th iteration are contained in a row vector Ja (p)> of 
'\, 

Note 

* This notat ion is ambiguous as a and S have been 
used to label single particle states, however no confusion 
should arise in w a t f ollows. 
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length N, and the representation states similarly in a 

vector li> and if the N x N matrix n consists simply of 

t hG occupation numbers nj , mentioned above, along the 

di agonal, then the p 'th iteration c a n be defined by 

the matrix equations 

la(p )> B(p)= li> 
N N 

t 
p (p) B(p)n B (p)= 

(.p)r . . = L: p (p) <i .R- jV ! j m> 
~J .R-m .R-m (27) 

E(p) (p)= ~ Tr(Tp(p)) + ~L:k nk Ek 

[T + r (p) J I a (I?+l) > = e: _(p+l) Ia. (p+l) > 
J J J 

ja(p+l) > =row vector of the Ia. (p+l)> ordered so that the 
J 

£ . (p+l) are non- de c reasing.
J 

TheN x N matrix B is unitary, p(p) and r(p) are hermitian, 

the matrix T remains unch anged, and E (p) is the energy of 

the many-body state at the erid of the ~•th iteration, It was 

stated previously that the effective Hartree-Fock potential 

f(p) has all the symmetries common to V and top. This is 

still true in the r estricted Hartree-Fock calculation. If 

the initial states ja. (o)> have some symmetry, such as 
~ 

cylindrical symme try or time-reversal symmetry, so that the 
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censity m trix also has this symmetry, then T + f(p) wil l 

h- ve the same symmetry. This symmetry is then passed on to 

nc eigenvectors of T + r whi c h are the next approximate 

ar t r ee - Fock states. The refor e, any symmetry in the i ni tial 

cnoic e of state s is passed on to all subsequent approxi mations. 

~:1~ s featu re is often used to simplify the calcula tion by 

aki ng the matrix T + f(p) split into a block diagonal f o rm , 

by choosing to impose cer tain symmetries on the Hartree-

Fock states, which are shared by the representation states. 

I . this work no such restrictions have been imposed and the 

~~=e general range of states was maintained. 

The solution obtained by following this procedure 

is entirely self-consistent except for the c h oice of repre

sentation. Part of this choice is simple because experience 

with the shell mo del has s h own that the states with the 

lowest eigenvalues e. in (2 4 ) are the appropriate ones to 
l 

us e . Howe ver, the choice of parameters a. and B· for each 
l l 

state is not so trivial. In fact the RHF calculation can be 

carried out for any values of these oscillator parameters and 

a value for the binding energy E is obtained when convergence 

is achieved. In this manner E can be found as a f unction 

of al l the oscillator constants in the representation. 

Since we are essentially involved in a variational procedure, 
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~t is clear that the proper sel f -consistent value s for the 

o: s and S's are those which give the lowest value for ( 28) 

s~b ject to the constraint that the representation states 

c.:r-e orthonormal. 

Larger values o f N in this RHF calculation will 

give more complete representations and so better approxi

mat i ons to the true Hartree-Fock states. Furthermore, the 

~r. ergy {28 ) will become l es s dependent on the size and shape 

Pcrameters a. and B. defining the representation. If it 
~ l l 

w2re poss ible to pass to the l imi t N = oo and the r epre

s~ntation were t o become complete, then no matter what 

p~rameters a and 8 were used it would be possible to so l ve 

exac tly fo r the true Hartree-Fock states. Thus the need 

to consider variations o f the representation, is simply a 

consequence of the restr i cted nature of the calculation. 

The General Harmonic Approximation 

It is possible to consider an alternative, less 

g2neral, approximate solution o f (17). As has been stated , 

-he states Ia > are similar to the solutions ji> of (24) 

and we might then look for solutions to (17) \vith in the 

hypersurface of all one-body states of this form, seeking 

minimum values of 

(29) 

In this equation it is implied that r is derived from the 
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ens i t y mat r ix f or a many - b ody s t ate 11,2 .... n>. Becaus e 

~he de.s ity matrix f or this state depends on the oscillat or 

?2~ame ter s o f a ll the s i ngle p a r t icle states, t h e function 

-;:o be mini mized in (2 9) als o depends on all these parameters. 

Eq ation ( 29 ) i s u sed t o determine the values of these p a ra

me t e rs by r equiri ng that the n functions 

<i iT + r l i> i = 1,2, ..... n. 

a r e s imul t aneous l y minimize d . I n fact this condition can be 

d e rived f rom the condition that 

<1 , 2 .... n jHjl, · 2 ... n > = E (a ... an, ... Bn)1 B1 

(30) 

b e a minimum. Th e many-b ody state j l, 2 .... n> is simply 

e t erminant o f cy lindr i c al oscillator states and , apart 

f rom the fact that d if fe r ent oscillator states may have 

di f f erent oscillator p arame ters a and B, this is just the 

type o f state used in the Nilsson model. For reasons mentioned 

above . the oscillator states used are constrained to be 

orthogonal, and this is equivalent to constraints of the 

form a. = a . or B. =B. for certain 
l J l J 

pairs i and j. It s h ould be noticed that in this case only 

the n occupied oscillator states are varied and constrained, 

whereas in the minimization of (28) all N oscillator states 

are varied and constrained. The quantum numbers f or all of 

the s tates l l>, 12> . .. In> determin e an n-particle conf iguratior 
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By minimizing (30), the best parameters for the configuration 

re obta ine d a nd the configuration wave function defined in 

th is way is an approximation to the Hartree-Fock state. 

Thi s approximation will be called the generalized harmonic 

approximation (GHA), . and has been used in various forms by 

o ther authors (e.g. Brink and Boeker 67). 

Since the results of the more general Hartree-Fock 

c alcu l ations are usually close to these simple configuration 

wave functions, we shall adopt the standard procedure of 

using such configurations as starting points for the RHF 

iterations. But, in order t o break the high symmetry of 

such states, small random admixtures are introduced into 

t he density matrix before starting. The way this will be done 

wi l l be considered in detail in chapter 3. Furthermore the 

function (28) is only slightly dependent on the oscillator 

parameters of the representation states which were not 

con tained in the starting configuration, at least in the 

r eg ion of the minimum. This leads us to use the same oscil

l ator parameters in the RHF calculation as found from the 

min imizat ion of (30), together with some reasonable average 

v a l ues for the parameters of those states not occupied in 

the starting configuration. Later we shall present some 

evidence that in fact, the best values for the oscillator 

parameters defined by minimizing (28) are usually close to 

those found in the GHA by minimizing (30). 
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CHOICE OF A PHENOMENOLOGICAL POTENTIAL 

T.e discussion of the last chapter can not be 

a pplied directly to nuclei if the two-body interaction 

occurring in the Hamiltonian does not have well defined 

_latrix elements between harmonic oscillator states. Most 

"realistic" interactions have infinite hard cores, so that 

such matrix elements do not exist, and these interactions 

can not be used directly. However, the solution to this 

d i f ficulty has been known for some years and it amounts 

t o using a reaction matrix G instead of the interaction v 

(Goldstone 57) . G is derived from v by a complicated equation 

wh ich can be solved by various approximations (Brown 67) . 

Th is equation will not be discussed here but its signi 

ficance is that the matrix elements of G, which are 

required, can be reasonably well approximated by those of 

a well behaved potential (Brandow 65) . This well behaved 

potential would, in particular, no longer have a hard core 

and so could be used in an RHF calculation. To compensate 

f or the removal of the hard core the new effective potential 

would have a definite velocity dependence even if this were 

not present in v. Thus it is known from the work of Moszkowski 

30 
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a~d Scott (1960), that t he effect of the repulsive core can 

b2 canc e lled by t h e e~fect of some of the attractive tail, 

l2~ving a simple potential which is zero inside some 

separ a tion distance d. This is shown diagrammatically in 

fi gure 1. The resulting long-range part of the "realistic" 

potential gives, to a reasonable approximation, the same 

matrix elements as the reaction matrix G. However the 

mount o f the attractive tail region that must be taken t o 

c ancel t h e core varies with the energy of the interacting 

pa:.-tic les. In fact for a given energy this long-range 

ef~ective potentia l is simply chosen to give the correct 

sca tteri ng phase shift. In this way the separation distance 

c d ep e nds on the relative energy (Bhaduri and Tomusiak 65) . 

S~mple poten tials based on these ideas have been used in 

many nuclear calculations (e.g. Kallio and Koltveit 64). 

The non-central tensor force, which is a component of 

most "realistic" interactions can be treated in this way, 

bL~ the corresponding part of the G matrix element is not 

v e ry well approximated in this case by the long-range tail. 

I~ fact the tensor force contributes mainly, in this type 

o f approximation, through a correction term known as the 

s e cond Born correction . Kuo and Brown (1965) have shown that 

t~i s correction term can be approximated quite well by a 

c entra l potential. The significance of this last approximation, 

fo r t hi s work1 is that much of the effect of the tensor force 
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can be incorporated in a renormalization of the central part 

of the effective potential. 

The effective potential will also depend on the 

:ensity of the many - body system in which the interaction 

takes place . The physical reason for this density depen

dence can be seen by considering uniform nuclear matter, 

in which the density is related to the number of single

particle states (in this case plane-wave states) which are 

occupied. The Fermi momentum kF of the ground state and 

t~e d ensity p are related by 

p = (2I 3 7T 
2 

) kF 3 
I ( 1) 

and it is seen that the larger the density, the more states 

t ~ at are occupied. The exc lusion principle does not allow 

t.e interaction to take place via intermediate states which 

a re occupied, and the more states that are excluded in this 

way the weaker the G matrix becomes. Thus it is expected 

that the G matrix elements become smaller as the density 

increases, and this is found to be the case in detailed cal

culations (Bhargava and Sprung 67, Wong 67). If this density 

dependence is carried over to a finite nucleus, then inter

actions taking place in th~ ~entral core of the nucleus 

are weaker than those Occuring in the lower.,...density region. 

The effect of this in Hartree-Fock calculations will be 

seen later . 

The approach adopted here is to use, for the effective 
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p o t ential, some s i mple a n a lyti c f orce in which certain 

par ame ters a re fixed by the r equirement that the impor

a n t f eatures , e xpec ted o f the effective pote ntia l, are 

r e produ c ed . The i mportant fe a t ures tha t will be used 

her e t o determine the a naly tic force are: 

1 . t ha t i t produc e t he correct s-wave phase-shifts 

f or fre e nucleon- nucleon sca ttering. 

2. that it have roughly the same long-range 

b e havi our as "realistic" potentials. 

3. that it have the correct saturation properties 

i n nuclear matter. 

4 . that it have s mall second-order corrections in 

nuc l e a r matter. 

Properties 1 a nd 2 f ol l ow f rom the work of Moszkowski 

a nd Scott previously mentioned, and our emphasis on the 

s -wave is simply due to the fact t hat this is the strongest 

component of the i n teraction. Condition 3 is a natura l one 

if the systematic beha v i our of a wide range of nuclei is 

to be considered. The importance of this condition has 

b e e n s h own quantitatively by the work of Bhaduri and Tomusiak 

(1 966). The fourth condition arises because the Hartree

Fock approximation, using the reaction matrix, is essentially 

a fi r st order approxima tion in t he Brueckner-Goldstone 

theory . If this approximation is to be a good one it is 

nec essary t hat t he second and higher-order corrections be 
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SillQll. It must also be pointed out that the variational 

methods described in the las t chapter are only justified to 

he extent that these higher-order corrections are small. 

In order to carry out the detailed calculations 

of later chapters, a further feature of the force is 

desirable; 

5. Matr ix elements of the analytic force used 

should be easy to calculate. 

Because of this last condition the non-central parts of 

the effective potential will be ignored. As previously 

mentioned this is justified to some extent because the 

principal non-central component of v, the tensor force, 

contributes to G largely as a central term. One effect 

of the non-central terms whi ch are being neglected is to 

create a spin-orbit force in the average Hartree - Fock 

potential. This spin-orbit force is needed to give the 

correct single-particle levels in spherical nuclei, though 

it does not normally have much effect in deformed light 

nuclei . Consequently we include a small one-body spin

orbit force 

vso = -2 ~ . ~ 

in the Hartree - Fock potential. The magnitude of this 

force has been chosen to give the splitting of 5 MeV, 

between the d 5 / 2 and d3/2 levels, which is observed in 

stripping reactions with 16 0. The criterion of easy evaluation 
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oi matri. ' elements is well sati sfied by the Volkov for c e: 

v(r) = (w + mP + bP + hP) (V exp( - r 2 /~ 2 )+ vr exp (-r 2 /~r 2 ))
x 0 T a a 

( 2) 

? ~ operat ors P , P and P exchange the space, spin a n d 
X 0 T 

isospin co- ordinates respectively . The sum of two gauss ians 

p~oduces a radial shape which is very simi lar to the 

Moszkowski -Scott form, and yet much easier to handle . This 

form of force has been used extensively by Volkov (1965) in 

lp shell calculations, and, for nuclei lighter than 16 0, is 

capable of giving reasonable agreement for nuclear binding 

energies, sizes and low energy spectra . Forces similar to 

this have also been studied by Brink and Boeker (1967) . 

~nfortunately when such force s are used in Hartree-Fock 

c a l culations for nuclei heavi e r than 16 0 they give binding 

energies which are too large a nd sizes which are too small. 

This overbinding and co llapse becomes p rogressively wors e 

as the number of nucleons is increased. 

A force of the type given in equation (2) has been 

used for most of the Hartree-Fock calculations discussed in 

this work. Thi s f orce is denoted as force 1 and the para

meters which appear in (2) are given in Table 1. These 

parameters are such as to give fairly close . agreement with 

the effective ranges and scattering lengths of s-wave 

scattering of free nucleons, the correct binding energy of 

16 0 , and the low energy spectra of lp shell nuclei. 



TABLE 1 


FORCE PARAMETERS 


v ( r, R) = (1 - C3 p2/3 (R)) (w+mP +bP +hP ) (V exp (-r 2
/ ). 

2
) + V exp ( -r 2 /~ (k ) 2

))x o T a a r r 

0 

where ~ (k) = ~ [1 + c l (k - c 2 ) 
2 J r r 

Force No. v v ~ ~ 
0 c1 c2 c 3 w 1·1 b h a r a r 

1 - 78.03 82.8 1. 50 0.80 0.0 0.0 0.0 0. 29 0.71 0. 20 -0.0 5 

2 -78.03 82.8 1. 50 0.76 0. 496 0.70 0.0 0.2 9 0.71 0.20 -0.05 

*(w + m) \) (b - h) 

3 -150.0 155.0 "1.50 1. 09 0. 26 0. 81 0.9 22 1. 00 -1.682 0. 44 

4 - 250.0 255.0 1. 50 1. 24 7 0.15 0.836 1.180 1.0 0 -1.228 0. 40 

*Note \) = 10(w - m) + 8(b +h) 
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The first attempt (Hughe s, Sprung and Volkov) to 

a~ter this form of the force , so that it could give clos e r 

2greement with the s - wave scattering, was a simple one, and 

a sl i ghtly more general a pproach is used here . It has 

alrea dy been p ointed out that the Moszkowski-Scott type 

o f force has an attractive tail which depends on the · rela

t:..ve energy of the interacting particles ·· and that this 

'epende n ce is such that the correct scattering phase shi f ts 

2re produced. In the force (2) the amount of attractiv e 

L2:.. 1 c an be v a ried by varying ~ , and f or any given energy
r 

A can be c hosen so as to reproduce a particular phase
r 

shift. In this way ~ can be chosen to be afunction of the 
r 

r e:ative energy, or the relative wave number k, in such a 

way t ha t a given phase-shift is produced at every energy. 

Figure 2 shows Ar as a functi on of k designed to fit either 

the singlet or triplet s-wave scattering phase-shi fts. 

~ecause matr ix elements will not be evaluated in the rela

tive co-ordinate system, it is not convenient to use separate 

values of ~ f or singlet arid triple t states. Instead a 
r 

we~ghted average value is used, in whic h the triplet and 

singlet values of ~ are weighted by their relative strengths
r 

[1 + (b - h) ] and Il (b ·- h)] respectively. These average 

values of ~ can be well represented by a parabola in k 
r 

over the energy range of interest. In this way (2) becomes 

modifie d to: 
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(3) 

\·!! .ere :\ (k) = :\ 0 (1 + C1 (k- C2) 
2

)r r 

A variation of 0 .1 fm. in ), produces a change in the phase 
r 

s 1ifts of about 0.1 radians, so that this averaging· procedure 

does not cause significant changes in the phase- shifts and 

f a irly close agreement with the experimental values is 

maintained . The values of :\ 0 
, c 1 and c 2 are given in 

r 

~ ble 1 and t ogether with the remaining parameters of force 

: this defines force 2. It must be noticed that, in con 

trast to the usual type of Moszkowski -Scott force, this one 

c a n become repulsive for large k values, i.e. when A (k)
r 

becomes larger than A . This feature does not appear in 
a 

c a lculations with finite nuclei but it does mean that a 

s a turation point is found in nuclear matter. The results 

of Ha rtree-Fock calculations in ·light nucl~i using force 2 

are discussed in chapter 7. 

The binding energy per nucleon in nuclear matter, 

0 etermined by first order perturbation theory, is shown, as 

a function of kF' in figure 3 for forces 1 and 2. While 

force 1 clearly does not saturate at all, force 2 saturates 

at a large density and with a high value for the binding 

a nergy. This saturation point can be brought closer to 

~he observed values by increasing the Maj orana exchange 
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p -r amc ter, but this procedure s eems arbitrary and possibly 

non- physical. Furthermore, nucle a r d e formation depends 

~~~cr sensi tively ~ the Ma jorana component (Volkov 65) 

An a l te rnative way o f b r inging about the correct saturation 

o £ nuc lear ma t ter i s to incorporate a density dependence 

i ~to t he form o f t h e forc e . Bethe (1966) has suggeited a 

fa c t or of the fo r m (1 - a kF 2
), wh ich has the desired effect 

o: d e c reasing the strength of t he interaction as t h e de nsity 

~~cre as es . When kF is zero the density (1) is also zero 

n" t : .e densi ty f a c tor is one. This corre s p onds to f ree 

~~c leon- nucleon scattering from which forc e s 1 and 2 have 

been d e r ive d, a nd so this extra factor should essentially 

multiply t hese f orce s. Th e parameter a and the e x change 

p a r ameters of (3 ) can now be v a ri e d until the force produces 

the corre ct saturation values of kF and binding energy,in 

nuc l ear mat t er. I f this is done the value found for the 

Maj ora na exchang e does no t need to be increased and the 

v alue of a is around 0.17 fm 2 
• This causes a reduction of 

t he strength of the interaction by about 30 % at saturation 

i!1 nuc lear matter. However, this density factor cannot 

s i~ply be tagged onto forces 1 and 2, because these f orces, 

w~re also required to give the right binding energy for 16 0, 

and t he inclusion of t h e density factor decre ases this 

ene r gy considerably . To account for this t h e strength of 

t h e fr ee nucleon- nucleon scattering force must be increased . 
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To incorporate this density dependence in finite 

~u~ lei k~ is replac ed by the density from (1), and this 
l' 

~~nsity is evaluated at the centre of mass of the interacting 

p~rticles. Thi s prescription is in the spirit of the local 

densi ty approximation proposed by Breuckner and Wada (1956). 

The resulting force is written: 

V ( r 1 , r 2 ) = ( l - c 3 p 2/s (R) ) ( w + mP X + b P + h P T ) 
0 

(Va exp(-r 2 /.Aa 2 
) + Vr exp( - r 2 /.Ar 2 (k)) (4) 

where A (k) = A 0 [1 + c 1 (k - c 2) 
2

] 
r r 

and 

The choice of parameters to use in (4) is, in principle, 

straightforward. 

Aa is chosen to give a long-range behaviour compatible 

with "realistic " potentials. 

(V + v ) , the core height, is kept to some small a r 

fixed v alue in orde r to make the radial shape similar to a 

Moszkowski -Scott t ype of potential. 

A (k) is c h osen to give an average fit to singlet
r 

and triplet phase shifts. 

(b - h) determines the ratio of singlet and triplet 

strengths of the potential . A best value can be chosen to 

minimize the discrepancy between the two curves which give 

the correct values of Ar to use for single t and triplet phase 
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shif ts. 

c 3 and v = lO(w- m) + 8(b +h) are determined by 

=-tti ng the saturation values of k~ = 1. 4 fm . -1 and 

~inding energy of -1 6 . 0 MeV per nucleon in nuclear matter. 

V is ad justed to fit the binding energy of 16 0 . a 

~port from these conditions the exchange parameters are 

normalized so that 

w + m = 1 ( 5) 

There is one remaining degree o f freedom in the four 

exchange parameters . The energies of even- even nuclear 

co~figurations, and nuclear matter is such a configuration, 

depend to first order only on the exchange p arameters v 

and (w + m) . Because of this the remaining degree of 

free dom canno t be fixed in this work. 

Forces 3 and 4 have been determined f ollowing 

this type of procedure and RH F calculations with these 

forces are described in chapter 7. It is seen from (4 ) 

tLat this type of force is not translationally invariant 

because of the density f unction which is fixed in space. 

Furthermore if the density of the system is not spherica lly 

symmetric the force is not rotationally invariant. However 

as long as the density is derived in a self-consistent 

way there is nothing unphysical about this. The condition 

tha the second-order corrections in nuclear matter be 

small, has not been examined for t hese forces. It is hoped 
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~~at , because the forces used are reasonably smooth and 

~ave soft c ores, t hese second o rder corrections wi ll be 

sLa l l. Neve .... the l e ss t he omis sion o f c ondition 4 must be 

no ~ne ::. mi nd . 

Determination of Matrix Elemen ts 

Th e discussion of c h apter 2 has s h own that the 

,,:1·:::. r i x e lements o f the inte racti on taken between harmonic 

os ci l l a tor states a re r equired in the RHF calculati on. 

I n o r d e r to c alcula t e t he s e matr i x elements certa i n f urth er 

a~proximations h a ve to be made. The two-body sta t e which 

is a prod u c t o f two har onic os cillator states, without 

bei ng antisymmetrized, is written as jil), a nd t h e matri x 

eleme nt (ilj v j j m) will be consid ere d for the remainde r o f 

-ch i s chap t e r. 

The s pin-isospin factor in ( 4) can be treated 

i~mediate ly and an i n tegral over the space co-ordinates r 1 

and r 2 r emains. I t is necessary to interpret the meaning 

o f the relative wav e numbe r k, i n A (k), as it appears in 
r 

t his integral. In t h e special c a se that t h e t wo oscillator 

sta tes ji) and jl ) have the same oscillator p arameters, the 

t wo -body state jil) can be transformed quite simply into a 

fi nite sum of similar states in which the relative and 

c e ntr e of mass 'co-ordinates are separated (Brody a nd Moshinsky 60 

\·\The n t is is done the matrix· element (iljvj jm) can be written 
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a s a sum over simpler matrix elements of the form 

" n 1 v jn;m;n '), in which the states Jnmn ) are states z z z 

o~ the relative co-ordina t e (r1 - r 2 ) / IL. Kallio (1965) 

- --- 3 shown th a t the v a lue o f k t o use in the matrix element 

(l"..Dn Iv J nmn ) for t h e case of spherical states is givenz z 

k 2by = (2n + Jml + n + 3/2) a ( 6)z 

Th is expression is simply the mean square value of 

( k 1 - k2 ) //"1 for the s·t a te Jnmn). However starting from z 

(il Jv Jj m) an alternative, though not equivalent, mean 

s q uare value for k is 

.,. 2 = 

( 7) 

In the approximation defined by (6) it is necessary to use 

a different value of k in each of the simple matrix elements 

wh ich occur in the sum for (ilJvJjm). In the approximation 

defined by (7) there is only one k value which defines A (k)
r 

uniquely for(ilJvJjm), and there is consequently no neea to 

re ly on the separation of the relative co-ordinate in order 

to evaluate the matrix element. The results obtained using 

these two approximations for a typ ical matrix element in 

the spherical case are shown in figure 4 . :, The variation of 

the matrix element with the size of the oscillator para

meter is shown and it is seen that the two approximations are 
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~l~ost identica l. The app r oximation (7) will be used from 

•. :·J on and it is e x tended to the most general type of 

=~trix element as 

+'2nm+ im l+l)a + (n .+ ~ ) S .+ (n 0 +~)(3 0 + (n. + ~)f3.m m Zl l Zx. x. ZJ · J 

+ zm + ~) 6m}. 
( 8) 

It mus t b e note d t ha t the matrix elements obtained in this 

way satis fy the requirement of being hermitian, since k 2 

is symmetric with respect to all the states in the matrix 

element. 

In order to incorporate the density dependence of 

the force 1 the nuclear density will be approximated by a 

gaussian shape normalized to give the correct number of 

particles. A gaussian distribution for the density is simi

lar to the shape found for light nuclei in experiments, and 

such an analytic form is very convenient because p 2 h is then 

also a gaussian. A further important feature of this 

gaussian approximation is that the general matrix elements 

o= the force (4) can be determined analyti c ally in this 

case. This is shown in detail in appendix 3. In approxi

mat.ion I the gaussian density is determined so that it has 

t h e same mean square values for the cylindrical co- ordina tes 

p and z,as the nuclear density determined from the nuclear 
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vJ o..ve f nction . Except when the .RHF wave function is 

asymmetric the RHF density d i stribution is very close to 

tha t of the pure configuration which was used as a starting 

point in the calculation. Therefore we make the further 

approximation of calculating the mean square values of p 

and z from the pure configuration . If these mean square 

values are and respectively, then this approximationp 0 z 0 

to the density is 

Pr (r) = 2-l/2 7T - 3/2 Po - 2 Zo -1 A exp{- p2/Po 2 - z2/2zo2}. 

( 9) 

This approximation overestimates the central density when 

compared with the actual density distribution o f the 

nuc l ear wave function . Sometimes this overestimation i s 

very marked as can be seen in the c ase of 16 0 in figure 5. 

The effect of this is to over-suppress the interactions and 

the binding energy of the ls shell particles . As these 

particles usually make a considerable contribution to the 

total energy of the nucleus the total energy is also sup 

pressed. A second approximation has therefore been designed 

to g ive the correct density for this core region. This 

gaussian approximation is arranged to have the same central 

densi ty as the starting configuration. The shape of this 

second approximate dens ity is the same as that o f the density 

of the starting configuration, i.e. <p 2 >/<z 2 > is the same 



46 

f or t he true and approximate densities. This gives 

(10) 

who r e D is tho central dens ity and K is given by 

( 11) 

Th i s a pproximation is shov.m for .1 6 0 in figure 5, and it 

is seen that the approximate density distribution in this 

c a se extends beyond the true density distribution. It is 

als o seen that in the region where r 2 p(r) is a maximum 

thi s second approximate dens ity is less than the true 

dens ity . This means that fo r the bulk of the particles 

the interaction is not suffi ciently suppressed by this 

a pproximation, and consequently the total binding energy 

is too large in this approximation. For the case of 4 He 

the densi ty distribution of the dominant configuration is 

exactly gaussian and in this cas e the two approximations 

coincide. For the othe r nuclei considered the best situation 

l i e s between these two extremes. Unfortunately the extremes 

are quite widely separated for the other nuclei as will be 

seen in chapter 7, and while some of the features of the 

density dependent force can be distinguished here, an 

improved density approximation is clearly needed. 



C -IAPTER 4 

COMPUTATIONAL ASPECTS OF THE 

RESTRICTED- HARTREE FOCK CALCULATION 

In this chapter technical problems related to our 

choice o f representation and form of interaction are con

sidered. Most of the RHF calculations whi ch we have per

formed used a representation based on the first three shells 

of harmonic oscillator states. This gives 10 different space 

s~ates (which will be called orbitals) which, when combined 

with spin and isospin states, produce a representation of 

40 single-particle states. The Hartree-Fock states to be 

found have definite isospin, i.e. they are occupied either 

by a proton or a neutron. This reduces the density matrix 

p to the direct sum of two 20 x 20 matri ces, which are 

denoted by p(n) and p(p) for neutrons and protons respectively . 

The interaction to be used has the form 

V. . == (w + mP + bP + hP ) v ( r . . ) 
lJ X cr T lJ 

and the dependence on the spin and isospin ·co-ordinates is 

very simple. In fact if we define: 

47 
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.. 0 00 .. = if states j i> and jj> have opposite spinslJ 

= 1 if states !i > and jj > have t he same spins 

0 -, . . = 0 i f states ! -I i > and jj> have opposite isospinslJ 

= l if states li > and lj> have the same isospins 

6°. . = 0 if states ji 1> and Jj m> have different spins
~1; Jill 

= 1 if states ji l>and bm>have the same spins, 

t hen t he matrix element o f the interaction can be written 

(iljvj jm) = o0
. . oT. . 

1. 1 i Jffi 1. 1 i Jffi 

0 T 0 T+ ho . . 0 . ) + v . 1 . rna . . 0 .. ] ( 1) .lJ lffi l ffiJ lJ l.J 

In t his expression v. 1 . represents the configuration-space
l Jffi 

oart of the matrix element. Using this and the relevant 

equation of (27) in chapter 2, it is a matter of simple 

algebra to show that the average potential r is diagonal in 

isospin and tha t for neutrons this potential is given by 

(n) o { a o0 
PJ..m o '1 . v.l. [·(w + ~'1 ) o .. + (b-m) . ]

1. ; Jffi 1. Jm lJ lffi 

- Vi lm j [ ( w + h) oo im + (b - m) 6o i j ] } 

+ L: (p) Pl(p) oa.l. {v.l. [wo 0 
.. + bo 0

. 1l,m m 1. ; Jffi 1. Jm lJ lffi 

0 0 }[ho . - rna . . ] • ( 2)
lffi l.J 

The summations L:(n) and L:(p) in this expression are to be 

c arried out respectively over neutron and proton states 1 and 

m. The equivalent form for the proton potential is obtained 
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f~Jm (2 ) by interchanging p (n) and p(p) . 

It is also possible to define an average over t he 

neutron and proton potentials as 

[ ( ~ + h) cS 
0 

. + (~b - m) cS 
0 

. . ] } • 
~m ~J ( 3) 

~n the special case that neutrons and protons appear 

sv::'JUetrically and p (n) is equal ·to p (p) , then 

Thi s is true in particular f or the low lying states of 

light even- even ·nuclei. 

It must be noted that the calculations have b een 

carrie - out with r eal density matrices, as opposed to 

c omplex ones. This constra int on the solutions is equivalent 

to requiring that the nuclear system has a symmetry plane. 

This can be seen as follows. The nuclear density is 

given by 

= L <ria> <air> = L .. p .. lj;.(r) lj;.(r) * 
a ~J lJ l J 

wh e re 

1);. (r) = <rii> ,
l 

lS the single -particle wave function for the i'th r e pre

sentation state . p is h ermitian and if it is real also, 
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th0 n we can wri te 

= ~ L: .. p . . \jJ . ( r) ) .lJ l J J 

In the cylindrical representation this gives 

= ~L. p . . F .. (p,z)
lJ lJ lJ 

= L . . p . . F . . ( p , z) cos (m . - m . ) ¢ , ( 4)
lJ lJ lJ l J 

where F .. is a real valued f unc tion of the cylindricallJ 
co-ordinates p and z. The density pN (r) given by ( 4) has 

re f lection symmetry across th e x - z plane. It can also 

be seen from (4) that asymmetry across the y-z plane is 

Produced bv density matrix e lements p . . between states - lJ 
whose m values differ by an odd integer. In a similar way 

asy1nmetry across the x-y plane is induced by density 

matrix elements connecting states whose n values differ z 

by an odd integer. 

It was mentioned in the first chapter that simple 

configurations would be used as starting points for our 

RHF calculations. However the density matrix p(o) for s u ch 

a simple configurati on is diagonal and so t h e wave function 

has none of the as.symrnetries listed in the preceding para

graph . It has already been pointed out that the RHF c al

culation always retains any symmetry wh i ch exists at the 

start, and therefore it is necessary to allow for 
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asymme ~ri es at the initi a l stage o f t h e calculation. The 

mc~hod used to do this i s quite arb itrary and cons ists 

in t a!-::i.ng the e i genvectors of a ma trix of random numbers 

a s i nitial states. However , in orde r to keep close to 

Lhc s hell model t ype o f s tates, t h e matrix to be diagonalized 

is weighted wi th d i ag ona l e lements a n order of magnitude 

l arge r than t he o ff - d iagonal elements. In this way we 

~~~rt wi t h init i a l single-particle states which are close 

~o t he s t ates of the simple configuration (a typical over

_ao i s 90 %). Because the states are ordered according 

~o thei r eigenvalues and occupied in this order, the 

~~l ti al conf i guratio n can be chosen by making the diagonal 

elements , correspondi ng t o occup ied states, smaller than 

t hose cor respond i ng to unoccupied states. The amount of 

mi x ing i n the initial states can be reduc ed by making the 

diagonal e lements l arger. 

I n order to have some measure of t h e difference 

.O t- L.Ween the density matrix p resulting from the RHF cal

c ula tion and the density matrix p(o) for the corresponding 

configuration, we introduce the sum 

'Th is can be separa ted into partial sums over c ertain pairs 

Gf states, as follows: 

cr = L: ( p ~ ~) - p .. ) 2 for m. = m., IT. IT.
1 ij lJ lJ l J l J 

http:a!-::i.ng
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l: ( p ( 0 ) p .. ) 2 for m. IT.02 = ""' m.' I IT.ij lJ l . J l Jij 


03 = L: ( p ( ~ ). p . . ) 2 for m. I m.' IT. = IT.
ij lJ l J l JlJ 


0 L: ( p ( ? ). p .. ) 2 for m. I m. , IT. IT.
= Iij lJ lJ l J l J 

IT.
l 

der.otes the parity o f the representation state Ii.> . 

As a matter of normalization we will use t he root mean 

square values 

.Q.. ]l/2e. = [o. I ( 5)
l l l 

\vhe r e 2 . is the number of terms in the sum for o. . These 
l l 

lxing parameters e . give an indication of how different 
l 

the RHF solution is from the simple configuration with 

the diagonal density matrix p(o). Unfortunately it is 

found that the values of and though small, aree2 e4 

extremely unstable, depending on the random starting point 

fo r the fi rst iteration. It is concluded tha t the mixing 

~etween s tates of opposite parity is not necessarily 

convergent even when the energy is. 

Separate computer programs are used for the RHF 

calculations in the 3 and 4 osci llator shell representations. 

A p rogram HARFOK is based on the 3 shell representation and 

us es one 20 x 20 matrix, whi ch is 

Ptot = P(n) + P(p) 

Equation (3) is used to construct the average potential rav, 
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2.~1 this program is used fo r even-even configurations in 

·J 1ich neutrons and protons appear symmetrically. A 

( n) 
~~ogr&m HARFOl , which has separate density matrices p 

( D ) 
and p - for the neutron and proton systems , h as also 

~cen used. Because of some di ffi culties with convergence, 

\vh i ch will be explained below, no results for t his program 

are shown here . The 4 shel l program HARF04, uses one 

density matrix, which is the sili~ of the neutron and proton 

dens ity matrices. In th is case though , there are 80 

single-particle states in the representation and matr ices 

tha t are 20 x 20 in HARFOK become 40 x 40 in HARF0 4 . Even 

in t he 4 s he ll progr am there is no constraint on the single-

partic le states other than that imposed by the reality of 

~he density matrix. This prog ram is naturally more time 

consuming than HARFOK and has been used sparingly. An 

indication of the relative times taken by these programs 

wil l be given in appendix 4, where these programs are shown 

schematically. 

One further technical point will be made here . 

3oth RHF programs diagonalize the symmetric matrices repre 

s e ~ting T + r, by a Jacobi type of procedure, rather t han 

bv the faster Householder procedure. The reason for thi s 

is that the Householder procedure has a tendency to produce 

eigenvectors which are not exactly orthogonal. It is felt 

t-at this may cause errors in the dens ity matrix to accumulate 
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over sevc~ l iterations. 

\ve come now to the question o f convergence . Equations 

( :. 7 ) in chapter 2 de fine our iteration procedure, a nd it 

h~s been said that iterations s h ould continue until con

vergence i s obtained . However, there is n o proo f that 

tl:.::. s or any similar procedure must converge, and in f ac t 

very often this proc edure clear ly does not. Still wors e , 

~~ere is no proof that successive approximations E(p) to 

the e nergy of a ground state i mprove, i.e . become smaller. 

i~3in there are cases where this does not occur. Wha t has 

be~n found in the present series of c alculations is that 

the approximations E(p) normally appear to converge fair ly 

rap idly (e .g. in 4 to 8 iterations ). But after this ini t ial 

convergence 1 the values of E(p) may vary slowly by as much 

as 0.05 MeV per iteration. Thi s effect i s almost certainly 

larger than any rounding e rror which might occur in the 

diagonalization. Some examp les are shown in figures 6, 7, 

8 and 9. 

Figure 6 is a rathe r extreme case of what may occur, 

showing at first an apparent convergence of the energy but 

later on a marked improvement. Part of the reason fo r 

thi s particularly poor convergence is that the representation 

states have what is obviously the \vrong shape to des cribe 

the true Hartree - Fock system . This suggests that iter ations 

wi l l converge more rapidly when the best set of oscillator 
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p~ramctcrs is used. Figure 7 shows the same configuration 

2 s Figure 6 but now in the spherical representation, which 

i s the best one . However, t he representation states are 

~o~ a little larger than the best possib le ones. In this 

case c onvergence is not obvious even after 58 itera tions 

~~d the best energy encountered is that of the random 

s ~2 rting point! This is in sha~o contrast to Figure 8 

w~ich s h ows the same c onfiguration b ut now with the best 

oscillator parameters as determined by GHA calculation. 

I n this c ase the variations in E( p) after the ll'th 

~teration are of the order of 10- 5 MeV, which is the same 

2s the orde r of magnitude of errors in the eigenvalues 

s (p ) resulting from the diagonalization procedure.
a 

Figure 9 shows a different nuc leus but again in the best 

representation as determi ned by the corresponding GHA cal-

cu_ation. In this case the RHF calculation builds up an 

asymmetry in the density distribution which does not exist 

in the simple configuration. Because of this, convergence 

~s slower than for the previous example but is nevertheless 

qui te definite ly achieved after 14 iterations. It is 

r easonable that convergence should be improved by starting 

as close as possible to the Hartree-Fock solution, and 

the r esu lts just discussed show that the choice of the 

correc t repres entation parameters is important in t h is 

~espect. In order t o compare different calculations we use 
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t h 2 energy after 20 iterations , un l ess it is apparent 

t hat there is no convergence . Furthermore , the final 

energies E(p) are considered t o have errors of ± 0 . 05 MeV . 

The difficulties assoc iated with convergence a r e 

worse for HARF04 than for HARFOK, and are almost certai nly 

dependent on the size of the matrices which are diagona lized 

i. each iteration. Once again convergenc e seems to be 

fas ter when the values for the size parameters o f the 

os cillator states, which give the lowest energy, are us ed . 

In those cases where the approximations E(p) con 

verge, the single particle ene rgies s (p ) converge more a 

slowly, but they d o c onverge . The eigenstates, which 

appear as c olumns o f the matrix B in (l- 27) , c onverge e ven 

more slowly than the single- par t icle levels, and when t here 

are degenerate single- particle levels they may n o t converge 

at all. 

Quite apart from these problems o f slow convergence, 

there are situations where there is clearly no converge nce. 

To see how this can occur we c onsider a spec i fic examp l e. 

Suppose that the states c h osen initially are just the s tates 

of the representation, and that the first 17 are occupi ed. 

In the first iteration the average p o tential, produced by 

Lhese 17 occupied states, is comput ed and the corresponding 

e i g ens tates are found. Because o f the restricted nature 

c£ the calculation most o f these e i genstates are essentially 



5 7 

·c~12 same as the states wi t h whi c h we started . Howev e r 

whe n t he new eigensta tes are orde r ed a ccording to 

i ncreas i ng single- p a rtic l e energy , they d o not c orrespo nd 

to the old ones . In particu l a r if the 17th s tate was 

o~iginally a spin- up -state , it will become a sp i n - d own 

st~ te . The spi n -down state has a lower energy t han the 

~?i n-u? state , i n the potent ia l ?reduced by t he s pin- up 

=ys t em. T~i s is the crux o f t he matter, because it 

~e&ns t ha t f o llowing our procedure t he spi n o f t he l ast 

sta t e changes at e a c h ite ration . It als o means that 

whe n t~e energies E(p) are calculate d according to t he 

formulae in chapter 2, t hey r epres e nt the e nergy o f 

t~e s p i n - down s ystem in t he average potential produced 

by t he sp i n -up system or vice v ersa. These energies are 

t he same but neithe r is s elf consistent. This points 

that unless the d ens i ty matrix p (p) converges, or at 

lea st comes close to convergence, t h e results of the RHF 

?~ogram a r e meaningless . I n g ener al t his p roblem does 

not occur f or c onfigurations wi th maximum s pace s ymme try, 

but a n exceptiona l c ase occurs i n 8 Be and i s discus sed in 

c h apter 6. This awkwar d "flip- flop" phenomenon can be 

avoided in various ways . One way might be to use a 

representation o f states whic h had time- reversal s ymmetry, 

o r were e ither s ymmetric or antisymmetri c with respec t to 

a n int e rchange o f spin. Alternatively one c ould c hange the 
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~.~thad, used in the iterations, to select the occupied 

stat es . 

Before leaving the matter of convergence it must 

b~ poi~tcd out that if 40 states are occupied in the 

3-·shell representation, the~ no matter how they are 

c~ose~ the density matrix is just the 40 x 40 unit ma trix. 

Because of this convergence is immediate. Quite generally 

the RHF calculation can only improve the energy o f a 

state by mixing occupied and unoccupied states. The number 

of unoccupied states i n the calculation is a measure of 

c~2 n~~ber of degrees of fre edom allowed. For the special 

case of no unoccupied states, just considered, there are 

no degrees of freedom and the result of the RHF calculation 

is a simple configuration. 

The generalized Harmonic Approximation is carried 

out by the p rogram MINDET . This is a very simple program 

consisting essential ly of a minimization procedure arid 

proc edures to evaluate the energy of a configuration wave 

function for arbitrary oscillator parameters. The 

min i mization procedure is due to Powell (1964) , though 

some modifi cations have been made. This procedure works 

very well for a general n-dimensional quadratic function, 

and is explained further in appendix 5. It has been found 

that if the root ~ean square sizes of the orbitals are 

used as independent parameters, instead of the oscillator 
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constants, then t h e energy function is more symmetri c 

a~out the minimum, and convergence of the minimization 

procedure is correspondingly faster. We have for 

\nmn : 21.i3 >
2 

<x2 >1!2 = <y2>l/2 = [~(2n + !ml + 1) I a] V2 

In o roer to compare sizes of orbitals with different 

quantum numbers it is more convenient to use the para

r. eters for t he !OOO:aS> state. 

Thus 	 a ( l/2a) 1h (6) 

b = (l/2B) 1h 

3ecause the different space orbitals must be kept ortho

gc~al, it is not sufficient to have independent a and b 

parameters for each state . The necessary constraints 

are c ons idered in appendix 1, and it can be seen that the 

dimension of the parameter space for nuc lei in the 

2s -ld shell is of the order of 10 if the maximum number of 

?arameters is used . In some cases the number of parameters 

can be reduced. For example the ground state configurations 

1 6 0 Ca 40of and are obviously spherical, so that the a's 

can be made equal to the corresponding b's: However, apart 

=rom these special cases the GHA results quoted here 

correspond to the most general set of parameters. 
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A very similar program, MINCAR, has been used to 

carry out this same c alculation with configurations of 

c~rtesian states jn n n : a a a ) . In this case there
X y Z X y Z 

are more parameters, and the constraints are i mposed in 

~n an~logous way to those fo r t .e cylindrical states. 

~~e r esults ob tained with MINCAR are equivalent to those 

o~tained with MINDET , excep t when the equilibri~~ shape 

is not cylindrically symmetric. 

The minimization rout ine normally evaluates 

3 ~ - + 4 points per pass when working in an N d i mensional 

parame ter space, and these passes continue until convergence 

is obtained. In practice about ~N passes are used and 

convergence is surprisingly fast. Even so it is necess ary 

to c alculate some 200 energies for nuclei towards the end 

of the 2s-ld shell, and this c an become rather time 

consuming. The time to evaluate one point is roughly 

proportional to the square of t he numbe r of orbitals filled. 

For 4 °Ca, in which there are t en filled orbitals, the 

time per point is about 6 seconds (an IBM 70 40 computer 

was used) . 



CHAPTER 	 5 

DEFORMATION IN LIGHT NUCLEI 

The use of a representation of cylindrical harmonic 

oscillator states with two shape parameters each, as 

O?posed to a representation of spherica l states with one 

?2~ameter each, c an be justified to some extent by 

eq~ation (28) of chapter 2. The larger the nlliuber of 

parameters which occur in the energy function in this 

equation, the closer the minimum value of the energy 

s~ould come to the true Hartree-Fock value . However, it 

:::-.ust be noted t hat some degrees of freedom lead to con

siderable improvement in the minimum value of E, while 

o-::.hers lead to no improvement. 1iJhich degrees of freedom 

are the most importantmust, in general, be discovered 

by carrying out the relevant minimizations. However, some 

qua_itative statements c an be made by applying two 

in~uitive rules to the minimization of the energy of a 

configuration wave function as in equation (30) of chapte r 2. · 

l. 	 The Hartree-Fock potential f has a shape which is 

close to that of the density of the system. 

2. 	 The best harmoni c oscillator wave functions to use 
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should come from a har monic v1ell of about the same 

shape as the Hartree -Fo~k potential . 

~~2se two ideas were usea by Mottelson (1958) to predict 

cqui l~~rium shopcs of c onZiguration wave functions . In 

o~der to al low for the most general shapes at this stage 

we will use the cartesian representation of states 

I1n n n ;a. a. a >. To sim?:ify our qualitative discussion
X y Z X y Z 

the harmonic oscillator wave functions to be used in t he 

configuration will be taken frorr. the same asymmetric 

po tential well . Thus t he energy of the configura tion 

can be written E(et. , a , a.) . Mottelson's argument is 
X y Z 

~~at the shape of the configuration wave function is given 

oy 
1

L:. ( n . + ~) 2:. (n . + ~ )
l Xl Ct.y l Yl 

1 2:. (n . + ~) N /et. N /et. N /et. I 

Ct.z l Zl X X y y z z 

and that the shape of the har monic potential is given by 

1 1 1 
CiT (X2 Ct. 2 

x · y z· 

-..c: these shapes are to be the same then 

1 
N N N ( 1) 

Ct. X y z 
X 

This argument is not connected with a variational principle, 
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but Ripka (1966) has shown how (l) can be derived from 

such a principle. In fact if the harmonic potential is 

us2d instead of the Hartree- Fock potential, the energy 

o= the configuration can be written 

. 2 

E = n 
I (N ax + N a + N a ) ( 2 ) m x y y z z 

:f the a are varied arbitrarily to make E a minimum the 

sys t: ....:.:. simp ly expands to infinity and the particles 

become free. However, the =ac t that t he potential must 

a rise in a self-consistent way from the particles them

selves , can be regarded as a c onstraint on the volume 

of the system, thus 

a a a = Const. ( 3)
X y Z 

If the minimization of (2) is now carried out subject to 

(3), equation (l) results. 

This result can be immediately generalized 

b2cause in the harmonic well the kinetic and potential 

2~ergi es are equal . Thus the minimum for the total energy 

occurs at the same shape as the minimum for the kinetic 

a~d potential energies. It follows that condition (l) 

~ill hold wheneve r the total potential energy o f the 

c onfiguration wave f unction has its minimum ' at the same 

shape as the kinetic ener gy . This general result includes 

the special c ase t hat the potential energy is independent 
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o~ the oformation. In this c ase the SU(3) symmetry 

g~oup can be used at zero defer ation to classify the 

?Otential energies of simp le configurations. Ripka has 

used this technique to predict the ordering of configurations 

for 2s - ld shell nuclei. He also shows that the ordering 

o~tained by minimizing t he k inetic energy is the same as 

the ordering obtained with an SU(3) model . 

Though th e Mottelson rule depends on the behaviour 

of the potential, there is a weaker result which is 

i~dependent of the interaction. If the configuration to 

be minimi zed is transformed by interchanging the x and y 

axes, t nen all the orbitals are transformed according to 

n n ] ->- [n n n ] , 
y z y X Z 


and t he oscillator parameters ( ex N ) are transformed
NI v. I v. 
X y z 

to ( ex , ex , ex ) • In general a new configuration results y X Z 

w~~h the same shape and energy. However, if the configuration 

itself is unchanged in this transformation, that is if t he 

orb itals [nx ny n ] are merely permuted by the transformation 
2 

[n n n ] [n n n ]
X y Z y X Z 

then it follows that the energy of the configuration wave 

function is symmetric about the ex = ex plane. Furthermore
X y 

if the potential is such that there is a unique minimum 

then this minimum must lie in the ex = ex plane. This
X y 
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gcner;J.l symmetry a rgumGnt applies equally wGll to y-z 

a,d z- x sy~~etrie s. An alternative statement of the 

::-,;•:; ul t i s that a ny spatia l symme try which exists in the 

c0nfis~r~tion wa ve functio n at Q p oint wh ere 

= Q = a also exists in the configuration wave functionY z' 

whi ch g ives the lowest e ne r gy. Unfortunately this res u lt 

docs not hold wh e n dif feren t orbitals are allowed to have 

di f fere nt oscillator constants. 

Tab le 2 shows the rati o of axes for the equilibrium 

s~apes of some simp le con f i gurat i o n s as predicted by (1) 

:t should be noticed that the great majority of these 

configurations have cylindrical sy~~e try at equilibrium, 

and such configura tions c a n be described by the less general 

cylindrical r epresentation . Because of the higher symmetry 

of the cy lindrical oscillator states , they are generally 

mo~e convenient to use. Thi s is why most of our c alculations 

use this representation. It will be shown later, when 

d2 a ling with qsymmetric nuclei, that the RHF calculation 

i n a c y lindrical repres entation can be as good as the GHA 

c alcul ation in a c artesian representation. 

The extra degrees of fre edom obtained by allowing 

differe~t spatial orbitals to have different size para

me ters, i.e. to come from osci llator potentials of different 

sizes, are not considered in the Mott leson rule. If the 

t h o rb ital has oscillator cons tants i 
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TABLE / 

1'10TTELSOl\f 	 RULE EQUILIBIUUM SHAPES FOTI so:iL CAR'I'ES Ii\N COl,JFJ GllrU.TI o:~s 

NUCLEUS 	 CONFIGURAT ION x2 : y2 : z2 Q/R2 

4 He 	 1S 1. 00 1. 00 1. 00 0. 00 

8 Be 	 1S, [001] It 1. 00 1. 00 4.00 1. 00 


1S, [002] 4 1.00 1. 00 9.00 l. 45 


[010 ] 11 12c 	 1S, [100) 11 
, 2.78 2.78 l. 00 -0.~4 


1S, [001) 4 , [002] 4 1.00 1. 00 9.00 l. 45 


1S, 1P 1.00 1. 00 1. 00 0.00 

1S, [001] 4 
, [010] 4 , [0 02] 4 1. 00 2.25 6.25 0. 9 7 

1S, [001] 4 , [002) 4 , [00 3) 11 1. 00 1. 00 16.00 1. 6 7 

2 oNe 	 1S, 1P, [002] It 1.00 1. 00 2. 47 0. 66 


1S, 1P, [110) lj 1. 70 1. 70 1. 00 -0.32 


1S, 1P, [003) lj 1. 00 1. 00 3. 45 0.90 


2 t'Mg 	 1S, 1P, [002) 4 
, [Oll)lj 1. 00 1. 56 3.06 0.63 


1S , l P , [0 20 ) '' , [200) 11 2.25 2.25 1. 00 -0.45 


lS, lP I [0 02 ) 4 
, [003) lj 1.00 1. 00 5.0 6 1.15 


m 
m 

http:GllrU.TI


'l'l-dH.J~ 2 

JllOTTELSON RULE EQUILI BRIUM SHJ\PI:S FOR SO''JE Cl-\RTES I AlJ CO ! TIGUPJ, 'T'I o:;;~ ( cor. t 1 d) 
----- - ----------· -----

NUCLEUS CONFIG llRA'I'ION x2 : y 2 : z2 Q/R2 

2s5i 1S I 

151 

151 

1P I 

1P, 

1P, 

[200)lj, 

[0 0 2) 11 
1 

[0 02)!J, 

[0 2 0 ) 11 
1 

[011]'1 
, 

[0 11] lj 1 

[110) !J 

[101 ) 11 

[003 ) 4 

2 78 

1.00 

1. 00 

2 .7 8 

1. 00 

1. 49 

1. 00 

2. 39 

5.08 

-0.5 4 

0.63 

1. 01 

32 5 15 1 

1S I 

1S I 

15 1 

1S I 

1P I 

1P, 

1P I 

1 P , 

1P I 

[002 ) 4 
, 

[0 0 2 ) If f 

[200] 11 
, 

[200]lj, 

[002] 11 
, 

[0 20 ] 4 
1 

[01 1)!J, 

[0 20] 11 
, 

[020] 11 
, 

[101] I t t 

[011)lj, 

[101] 11 
, 

[002]lj , 

[101] 4 
, 

[011 )lj, 

[1 01 ) 4 

[110] lt 

[110] 4 

[0 11] It 

[003) 11 

1. 00 

1. 00 

1. 31 

1. 31 

1. 00 

1. 78 

l. 0 0 

1. 31 

l. 31 

1. 00 

2.25 

J . G 5 

l. 00 

1. 00 

4 .00 

0 . 3<1 

0.36 

-0 . 17 

-0.17 

1. 00 

3 G A 15 1 

15 1 

1S I 

1P I 

1P, 

1P I 

[200) lj 1 

[00 2 ] 11 
, 

[00 2) 4 
, 

[020) 11 
, 

[0 20)lj, 

[0 20 ] 4 
, 

[011)lj, 

[200] 11 
, 

[011] lj 1 

[101] 4 , 

[011) lj 1 

[101] 4 
, 

[1 10 ) 4 

[10 1 ] 4 

[0 0 3] 4 

1.27 

1.00 

1.00 

1. 27 

1.0 0 

1. 72 

1. 00 

1. 78 

3.69 

-0 .1 5 

0. 41 

0.73 

4 oca 15 1 

15 I 

1S I 

1P I 

1P I 

1P I 

25-1D 

[0 02] 4 
, 

[0 0 2 ) If 1 

[0 20 ] It 1 

[0 20 ) 4 
1 

[20 0) It f 

[011] 4 
1 

[01 1 ) 4 
1 

[101) I; 1 

[1 01 ) 4 
1 

[11 0 ) I; 1 

[0 0 3 ) It 

[0 0 3 ) 4 

1. 00 

1.00 

1.0 0 

1. 00 

1. 00 

1. 56 

1. 00 

2. 0 8 

1.6 4 

0.00 

0.53 

0. 1 7 
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a = k. axi l X 

a = k. ayi l y 

k. aa zi l z 

30 that all the orbitals have the same shape, but their 

s~zcs are determined bv the k., then the shapes of the 
~ l 

::J.i.lcleus and the harmonic \vell are consistent if 

(n . + !j) (n . +1 l l Xl Yl 
+ ~ ) (nzi ~) 

L:. L:. L:.
c; a a l k. l k. l k. 

~{ y z l l l 

( 4) 

On the other hand the minimum value of the kinetic energy, 

s~~ jec~ to the constraint (3) is given by 

l 1 
L: k. (n . + ~) L: k. (n . + ~) L:k.(n. +J.2 )

Cl. a a i l Xl i l Yl . l Zl 
X y z l 

(5) 

whi ch is not the same as (4 ). When detailed minimizations 

are performed, it is found that there is a slight tendency 

for di~ ferent orbitals to have different sizes, particularly 

~::1 some excited states and some very light nuclei. There is 

a more noticeable tendency for the deformations to differ, 

and therefore equations (4) and (5) will not be considered 

further . 

Nuclear configurations will be speci fied by writing 

-.:}-_ 2 o:::::-bi tals and the number of particles occupying them in 
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a~ obv i o us way. Thus 

(000) 4 
, (O Ol)tt, (O lO)tt, (0-10) 4 

de notes th e ground state configur~tion of 16 0 in which 

t~e l s and lp shells are filled . Cylindrical states are 

de~oted as (n m n), and cartesian states as [n n n ].
Z X y · Z 

The configuration above can be wr itten in the cartesi an 

representation as 

(000] 4 
, (OOl]tt, [010] 4 , [100] 4 • 

I~ is convenient to denote filled shel ls by an abbrevi ated 

~otation . Thus the above con~iguration can be expressed 

more simply as lSI lP. 

The de~ormation of cylindri cally symmetric nuclear densiti es 

., .:..11 b2 d e fined by the parameter 

( 6) 

t ::. e value of this parameter is given for the equilibrium 

s h apes in table 2. We will now make some quantitative 

stateillents about some typical configurations, considering 

in p a rticular the effect- of allowing the representation 

s t ates to deform . Al l the calculations conside red in this 

c n apter have been carried out with forc e 1 (of Table 1). 

Consider first the lowes t energy configuration of 

lS ' lP I ( 0 0 2) It I 

for which table 2 gives an equilibrium shape which is 



70 

cylina.rically synunetric. Figure- 10 shows the energy 

obtained from ru~F calculations in three and four shel l 

=cpresentations and the energy of the simple configuration , 

~3 a function of the deformation of the representation 

s~ tes. The deformation parameter dis simply the value 

of Q/R 2 for the (000) orbital (this is the same as the 

deformation of the 16 0 core) . The volume has been chosen 

to give the best energy for the simple configuration at 

zero deformation . It is seen that the RHF calculations 

~:~ays give a lower energy than the configuration, as is 

~c be expected . The energy gained in doing the three 

s>.2 ll ~qp calcula~ion is almos t independent of the 

ccfor~ati on, and is considerably smaller than that gained 

by allowing the representation to deform from the spherical 

s~~uation. Another important point is that the best 

deformation to use for ~chis three shel l RHF c alculation 

::...:: very close to the deforrnation whi ch gives the minimum 

2L2 rgy for the pure configuration . This minimum occurs 

w:::en tl::e axes of the nuc lear de.sity have roughly the ratio 

( 7) 

w~i ch is very close to the shape predicted by the Mottelson 

..: le . For the shape ( 7) , Q/R 2 = 0. 61 . 

If the shape of the RHF calculation was independent 

of the representation then it could be expected that the 

ener·gy wo·c1ld also be independent . The fact that the energy 
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c;.:;.ined. i r. the three shell HH F c a lculation is pra ctically 

i~dpendcnt o f the deformation d , suggests that t h e 

J.i ::fer2nc e between t h e Rl-IF solu·tion and the config ura tion 

is not thei r shape but some slight polariz a t i o n o f t h e 

a~b i tals which do es not vary app~eciably wi th t he shap e . 

r.::~: is i s borne: out by figure 11, wh i ch sh ows th e v a r iation 

o ~ U .e p arameter Q/ R 2 for t h e configur a t i on and for t h e 

t hre e s hell RHF s oluti o~. ~igure 12 shows the prev i ously 

d e f i ned mix i ng par ameters e l ar.d 0 " , a gain f or the t h r ee 
~ 

s~c ll repres entati o n . It can be s e e n tha t g oes through8 1 

::... shallov1 mi ::;.imw.-n i n t he region where the ener gy is a 

mini murn and 0 
3 

decreases slowly with deformation . This 

seems t o suppo r t the idea of a s ligh t polarization a t 

a :l defor mations. The GHA res ult ob tained by mi n i mizing 

\vith r e spect to a ll t he a v a ilable os cillator constants 

and the RH F result obtai ned usi ng the oscillator constan·t s 

resulting from the GHA calculati on , a re shown for compari s on 

i:1 fi g ure 10. The deg rees of fr e edom involved in allowing 

aifferent sizes a nd deformations for the different orbitals 

make a slight imp rovement and the energy gained b y the RHF 

c a lculation is unchanged . The value of Q/R 2 for the bes t 

t h ree shell RHF solution is 0. 59 3 vvh ich is still close to 

~he v a lue in Table 2. In order to understand the success 

of t he Mottelson rule we consider t he variation of the 

t o t al k inetic .and potential energy f or the configuration 
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~_,·~::.ve :: ...u:.ct.ion. This is shown in figure 13. The minimum 

ior t~c kineti c energy occurs at the shape predicted by 

,:) ~1d the potential ene~JY reaches a minimum at a 

.so::le\v.J...it smaller but posi·::.ive deformation . It is obvious 

t.::at t~e minimum energy fo:r- the configuration occurs 

The reas on that. the Mottels6n 

~-:e holds so well is tha~ ~he potential energy change is 

s.1u. ll .::.:1d has its minimu..'1l value close to where the kinetic 

c~ergy ~s a 1inimum. It mus t be pointed out here that 

·tl·.l...!re is no J.:endency to~:; a:cds asyn'Jlletry in the RHF cal

cula ~io::., even though t r.is is allowed . 

'I'he results of t~e four shell calculation, sh own 

iL fi~ure 10, are less dependent on the shape of the 

representation than those of the three shell one. The 

reason for this is that in the four snell calculation there 

is a co. plete s he ll of unoccupi ed states, the 2p-lf shell, 

and the occupied lp states can change their shape by 

.:n::...xing with the unoccupi ed states of the same parity. The 

:!..G\<Vest energy obtained in the four shell calculations .7 

sb.own ~n figure lO~is a little lower than the energy from 

the three shell calculation using the best oscillator 

ca:camete rs of the GHA calculation. This suggests that the 

extra degrees of freedom in the four shell calculation 

~:ce used to build up orbitals with different oscillator 

constants . The four shell calculation is able to build up 
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mo_e o~ the tail region of the tru e sing l e - particle wa ve 

f~nctions , be c ause the r epresentation now contains sta tes 

wh~ ch are extended over a larger ~usion . The single -

P~J:- t i ~1c tails will be co!.sid<2red in dctai l belov1 . 

We next consider ~~~il ~r calculations fer the 8 Bc 

configc;.r.:::.tio:-1 (000 ) 4 
, (0~::..)'• . Table 2 shows an equil ibri~~ 

:::.::.:::.pc '.\7 hich again is cy lindric2.lly symmetric with Q/R 2 =- l . 0 . 

? .:..g u::: c l.:l shows the variation of energy with deformati o:r_ 

:fa::::- tl:c pure configuration and for t he three and four shell 

~2~ sol~tions . Once again the size of the rep=esentati on 

states has been c hosen to n inimize the energy of ~he pure 

co:1figuration at zero deformation. There is a striking 

di~ference between this and fi gure 10, whi c h arises 

because in the case o f 8 2Je there are one and t wo co::.np l ete 

shells of unoccup i ed o scillator states i n t he two repr e 

sent ations . Thes e e x tra degr ees of freedom1 a v ailable i n 

t~e lli1F calc u l ation s f o r 8 Be,can be seen .very c learly i n 

the d ependence o f the energy on the de fo rmation of the 

representation . Near the spheri c al s i t uation the ener gies 

a= the filiF s o lutions are f latter t han that o f the pure 

configuration and the minima for t he three c urves a re 

separat e d. The GHA r esul t obtained b y allowing ~he two 

occ upied o rbitals to have inde p e ndent sizes and deformations 

is c l ose t o the best ffiiF e nergy. Furthe r more t he three 

she l l RHF solutio n obtained using the GHA rep r esentation 
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!·.<:s a~:1'.C;:; t t: e s arne energy a s "che pure conf i guration . This 

~~·....;3.ns ·.:.hat the RHF calcula. t:i o r.s are able to construct 

o~~it~ !s of diffc_ent size and sh~pe, even whe n the 

rL?rese~t~tion states are const~ained to have the same 

It is large l y th~s feature whic h c auses 

-.:::.:.::; :R.::~-:- so lutions to be so uch lower than the pure ·con

=~guration. 

There i s an additional feature in 8 Be which is 

c~aracteristic of light nuclei. Because the average 

..2~tree -Fock potential goes t o zero at large distances 

~rom the centre of the nucleus , the eigenstates of this 

potential have larger tai ls than the harmonic oscillator 

states (which co~e from a potential whi ch becomes s trongly 

rep u lsive at large distances). The tails f or single

\:)article states which are s trongly bound, i . e. have low 

single- particle energies, are smaller than those for states 

whi c h are only just bound . The weakly bound states for 

whi c h the tail region is important are just those whi c h 

spatial:y are in or near the surface of the nucleus. Because 

of t his, in a nucleus like 8 Be which is almost all sur f a c e, 

the inclus ion o f higher shells increases the tails of all 

~he particles and has a significant effect on the energy of 

the system . In t he case of. 20 Ne there is a smaller 

proportion of surface particles and they do not make much 

contribution to the total binding energy. Thus the 
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i~c:usion o~ t~c higher s~clls docs not have so much effect 

o~ the cotal energy of heavie r nuclei . These poin~s are 

~v~~c~t i~ figur~s 10 and 14. 

'l'hc mixing parame·tcrs e 1 and e 3 for the thre:e 

;;>'-ll ?..::::: calculation are shown in figure 16, and they 

c.~:·..onstrate that the solution becor.1es closer to the pure 

m~ . .
co~fi~uration as the deformatio~ is increased . 1ne ml nlrr.urn 

2~~rgies of the pure configuration and the three shell 

~:?solution occur for Q/R 2 values of 0 . 965 and 0 . 07S 

res~ectively both of which are very close to the value 

given by the Mottelson rule. The Q/R 2 value for the three 

shell RHF solution in the GHA reDresentation is a little 

less, being 0.954 . Figure 17 shows the variation of the 

ki~etic and potential energies for the pure configuration. 

~~ese have minimum values fai rly close to one ano~~er and 

as explained above this is the reason for the success of 

the Mottelson rule. It should be noted that in this cas e 

t~e variation of kinetic e~ergy is about four times that 

of ~he total potenti al energy . 

Figures l8, 19 and 20 show the variation of the 

tota l energy , shape, and kinetic and p otential energies 

with deformation, for the doubly closed shell configuration 

o~ 16 0 . As expected the minima for the energies occur at 

zero deformation . There is no t endency for the potential 

to C.eforr the syste:r. a:J.d so the Mottelson rule holds 
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ox. ctl~. ~he ~our shell ~3F c alculation a~ the spherical 

point i3 0.07 ~eV below the three shell c alc ulation . This 

~~ ~ ~ifics t~c assertion that excep t in very light nuclei 

-;:.>....: t~i 2.s of the sing le-~<:.r ti c le s ta.-tes a.re not significant 

i~ ~er~s of total energy. However, as wi ll be seen in the 

~ext chapter, the single - part icle levels for 15 0 a re· 

=}: dec? lY bound and this may be part o f the reason why 

t~e=e is such a small change in total energy here. 

Ttle now consider the a s yrn:netri c or triaxial 

~Lc leus 24Mg for which our cy lindrical representation is 

~ot so well suited. ~he 24 Mg configuration of cartesian 

states 

lS I lP [ 0 0 2] 4 
[ 0ll] 4 

1 

\·:~ich r.as the lowest energy, has an asymmetric shape as 

·J ~edicted in table 2. The closest configuration of 

cylindrical states is 

lS I lP ( 0 0 2) 4 
I ( 011) 4 

Figure )' shows t h e energy obtained for this cylindrical-.1.. 

co~figuration, and from three and four shell RHF calculations 

~~s ed on thi s configuration as a function of the deformation 

c= the representation. Also shown for comparison a re the 

:csults of the GHA calculation for the cylindrical con

=igur ation , the three she ll RHF calculation using the 

:s c:..llator parameters found in this GHA calculation, and t he 

cartes ian GHA calcula~ion for the cartesian configuration 
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•·..~ :tic:::ed above . The tl1 .... ee shell RHF calculation .:.s 

~~: ini~ely bctter p ure conf .:.guraton of cylindrical 

~~-tcs, even when full usc i s made of varying al: the 

o~cill~to~ p~r~~c~crs . ~his ind~c~tcs that the abili ty 

o~ t.'12 ~~=:? calcc:..lation t.o chango ·the occupied ( 011) orbitc:..l 

i~~o ~ cartcsi~~ type orbita l by mixing it with the 

u::occu~)iad (0-ll) orbital, is i. portant in terms of the 

·..:.c ::al e::.e::gy . Furthermore the fact that the con=iguration 

0 .~ cc:..rtcs.:.an states can have a lower energy, indicates 

1 6 0-liket~.2.t t::e abil ity of the core to beco". e c..symmetric 

.::..~ a lso .:.mportant . The £our s hell ill~F result is slight~y 

lo~er ~h2n the cartesian configuration . This shews that 

-..... . . 2 four shell calculat:ion is able to deform the core . 

The shape parameter Q/R2 is shown in figure 22 . 

The asy~~etry parameter for the RHF solution i s defined 

as 

and is also s hown in figure 22. It can be s een t ha t this 

i~ c onstant as the deformation varies, wi th a value of 

C.2 27 . The corresponding value for the c onfiguratio n o f 

c a rtesian states is 0.195 . The axes of the nuc lear 

density for this configuration have the ra~io 

w~ich is close to the ratio predicted by the Mottelson rule . 
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7ro~ the results dis cussed above we can draw 

~~2 fo::owing conclusions . 

l . The Hartree-~ock states resemble har~onic 

oscil~~~or st~tes v~ic~ h~vc t he s&mc spati~l sy~~ctry 

~hat is, when a nucleus has 

s~1ape which is asy::mnetr ic, cylindrically 

·::. ~ -~·.::net::::.. a o.::::- spherically synmletric, the harmonic 

o:..::c.:_L.. ~ ·tor wave functions should be taken from a har

~O~l c well o f the same type. 

2. For the force considered here the ~ottelson 

:.: ...... 2.e for equilibri urn shapes \vorks well , this being a 

=2£lec~ion of the fact that the shapes corresponding to 

;:::c.r. imt:.r.1 :?Otential energy 2nd minimum kinetic energy are 

~~cse to one another . The ef f ect of the interaction is 

~J make the equilibriQm shape slightly less defo rme d 

than t hat predicted by the Mottelson rule (i . e . me shape 

which gives minimmn kinetic energy) . It has bee~ shown 

by Volkov (196 7) that the exchange parameters of the fore~ 

9~ay a large part in determining the minimum potential 

e::-:.ergy shape . 

3. The GHA and RBF calculations give very similar 

::csults when the right type of oscillator sta t es 

:e .g. cylindrical or asymmetric) are used. However, the 

RI-I ? c alculation is definitely better for very light n uclei 

On the other hand RHF c alculations v7hi ch are 
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~ostric~cd to the scheri ca~ represe~ta~i on w~ll o~ly be 

~~ good as the ge~eral GEA calculatio. if t~ere are a t 

2.'- ~-s t ::\·10 shells o.E u:-toccL..:Jied states in the rep res cnta tion. 

T~i s : 2s t statement does not , of course, apply fo~ S?herical 

~uclei. 

~ - Except for very light nuclei, the best 

os cilL::.t.or parameters to use in an RHF calculation, as 

~c~i~cd by the minimization of equation (28) in chapter l, 

~rc ve~y close to those obtained by the relevant GHA 

c~l culation, togethe~ with s uitable average values for 

~e~resentation states which are not occupied in the GHA 

calculation. 

5. As the representation becomes more deformed 

the lliiF solution comes closer to a pure configuration . 

6 . The equilibriwn de formations obtained do not 

de~end significantly on the type of calculation (though 

the representation paraineter d may do) as· can be seen 

clearly in figures 14 and 15 for 8 Be. This gives much 

suppo~t to the physical reality of the deformation . 

The Hartree- Fock states which arise in our RHF 

calculations show very little parity mixing unless the 

si.ze parameters for the representation states are sig

nificantly different from the best such parameters . There 

is soffi e mixing of states with different m and spin values, 

w~ich is caused by the one-body spin-orbit force . When the 

http:oscilL::.t.or
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r:~_:: t~e:...:-~\..)ck potential b...:;cc:~1es dcfm--med,.. this effect of 

~~2 s~ :~-o_bit force is lessened because the deformed 

c:: __<:..i r:.d::..-i cally symmetric :;:>otcntial favours states of good m. 

::: t .c case o:: asyr.'...':-,2-'cric :""luclei t~ere is a very defini te 

~ixing o:: st~tes with m va :ues of opposite sign in order 

This effect is practi~ally 

.:.. ..-:.::.:. epc:-:.d.e: ... t of deformation . 

An oscillator state with given parameters c an 

be ex~x';.nded as an infinite sum .of oscillator states vJit::--.. 

c..:..~ ferent parameters, but on l y states of the same m a nd 

': .. ::::- i ty occur in such a su:-~ .. This suggests that t he mixing 

.s.:. ·cweer.. states of the same m a ::J.d parity , which occurs i n 

-~e K:? calculat.:..on, is an atte~pt to change the size and 

dc~ormation o f the corresponding orbitals . However, it 

~~s bee. seen that this mixing does not vanish even when 

..:. ..-:e bes t oscillator parameters are used, and this indi c ates 

~~at there is a further polarization of the orbitals . One 

effect of this residual p olarization is to build up a tail 

on t he single- particle wave funct ions . This tail is most 

signir.:..cant in single - particle states that have single

particle energies near zero, and consequently affects the 

total energy of light nuclei . For nuclei heavi er than 16 0 

c.::.~-:e s e tails are probably not s i gni fi cant in terms of total 

,-:· .~_e rgy . 

The effect of mixing parity in the sing l e - particle 
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~~ve :~nc~ions is to cre~~0 states whose cen~re of mass 

lS no~ at ~he origin . In ~h is wav the particles can 

~o _ar~~a to one side of the nuc:.cus . In se:ncral this 

i~~rcascs the kinetic encr~y . However, if tho size 

J~~~~c~crs used in the ~C?~esentation states differ 

sisn ificantly :Cram thc.ir b.:;st values, then the parti ·cles 

~~y polarize in this way to gain or lose potential energy. 



CIIP.PTE2:{ 6 

:C\ SUEVEY OP RESTR:C'J:'.·:D E.L'\. .:~:.::·n.E:2 - FOCK SOLUTION'S 

~~a p~rpose of t~is cha?ter is to exami ne th~ 

n~~uro o.: some of t he GHA and llii? solutions witn 

m~xi.:.;:.,:-:·. spac e s ymmetry,i for a ll the even- even nucle i 

. '• .:::.- . Thi s survey wil l be curried out us i ngc:p t o oc.

_o_·cc l . However , before this is done it must be 

:::.·..:: ..1ar:-ced that the approxir-:'.ate many-~ody states foc:nd 

l. t hese calculations ca~~ot b e compared direc tly wi th 

0xperime~tally observed states. The r eason f o r tnis 

is th~ the true eigenstates o f the nuc lear Hamiltonian 

have Hell def i ned quantum nu.rn.bers for angular momentum , 

par i ty and t otal linear r.wmentu.":t , whe r eas t he Har"c:re e - Fo c k 

stat es d o n o t . Approxir..c:.te eigens t a tes, ·like Hartree-Fock 

s·;::=.. t es, which have less syrnmetry than the t rue eigenstate s, 

2re c alled intrinsi c states. They can generally be 

~~proved by being p rojected o n to subspaces o f states of 

the prope r s ymmetry. In the present case the deformed 

intr insl c s tates which result from Hartree- Fock c alculations 

s>.ou lC. be p rojecte d onto the subspaces of states wi th well 

._:__,.: i :rlc..C:. angulc:.r momentum, linear mor,1cr. t um and parity . V.lhen 

~hi s ~s done a~ intrinsic state gives ~lse to a po ss ibly 

82 
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i.-.. _:: ini t-2 number of st2tcs v;.: ich h,_vc the sc..me sym111etry 

p ~09er~ios as true eigcnst~~es ~~c can be compared with 

3cc~us a t he ca~~~~-of-rn~s~ c~ergy has been 

....:x ~ .li ci t::..y s u0 ".::::- c..et.ed .::..~ .:he L:".r..i 1 tonian us eel here it 

~~ ~ot ~Llt t~2t projccti o~ onto a subspace of zero total 

:-:10mentwn will char-.s(.; the energy by very much . 

F'-l·.~t:-. - .:.. .0::e most of the :::z.:.:? .soll.:tions discus sed here t: ave 

,:e::::y s :1:.:.ll uncertain"cies ir~ the parity quanturn nu.-rcber , so 

- .. 2 p.::: o ject.ion 0:1.to s·.:at:c ::.; o f good parity will be ignored . 

C'::_ ortu ::. .o:.·.:ely the uncertc:inty in the angular momentu.Tl 

~- the ~~:c~ree-~ock states cannot be dismissed. It has 

~cc~ shown by Ripka(l966) t~at, for 2s - ld shell nuclei, 

cac~ intrins ic Hartree-Foc~ state gives rise to 4 or 5 

s '.:. :.:.. tes with good angular r::o:nentum and these projected 

s~ates bear a strong resemblance to the rotational bands 

predicted by the adiabatic approximation. · When t~e intrinsic 

2 :7 sta~es are calculated in a spherical representation, 

~~~ka ~as found that the lowest energy of these projected 

sc~tes lies about 2 to 3 MeV below the energy of the 

~ ~tri nsi c state. This energy difference is related to the 

:-.-.o~ent of inertia in an adiabatic approximation and there

~oYe :night be expected to change ·when a deforme d repre

~ c~tat~on is used and the intrinsic state becomes more 

http:momentu.Tl
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·,/': 

2. '- ~o rT;.-:c c. .. 

~~~s s~2l~ gain in e nergy lS not very significan~ if 

cnly intc~cs~cd in the systematic behaviour of 

~-~di~; energies over a wiCe r ange of nuclei, but is sig 

~:.i_': ic .:.:'.t if a compar ison is to be ::C!.ade v7ith the 101:1 energy 

_,~),; c tr ·~::~1 of a particular ::1-..::.c leus . In fact, in orde r · to 

a~~ain 2 sequence of states with different J values, to 

~2 co:n~x~.red wi t .h an experimental spectrum, it is necessary 

~o use t~is projection technique or some form of the 

.:.2~ ab.:.tic approximation. 

It will be seen i:::;, th i s chzmter that for many nuclei 

::.-:.er e .:.re often a nlli"'Tlber of RHl:- s"ca tes vTi tnin 10 or 20 MeV 

o..::. the lov1est one , whi c h arise when different configurations 

.:.~c us ed as starting poin~s. If a spectrQ~ of states 

with dif ferent J values is p ro jected out of each of these 

in~rinsic states , and if two o f these spectra are ident ical, 

-c1e n ~he two correspondi ng intrinsic state s can be 

regarded as different approximations to the same true 

state. That is if ~ (y) is an intrinsic state, y labelling 

t~e con~iguration from which it was derived, and if PMJ 

is the pro jection operator wh ich gives rise to states . 

~'ate: 

~e cently Lamme and Bo eker ( 19 6 7) have shm-m that 
t~a g.:.~n in energy , obtained by projection, is ~6 . 5 MeV 
~or t~e aBe ground state and 5.1 MeV for the 1 ~c ground 
s~&~e . This is in accord with the idea that the energy 
g.:.ined increases with deformation. 
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1!': (y) 

\·::... ~- a....;2ini te angular momcntwn, then the intrinsic states 

_ \'.'), 'i' (y/) arc csscntial::!..y the: same if 

I ,.· j ;•;•••. , J (y)>::o. ( y 
/ 

) III ( y 
/ 

) / 

2 0 :...\ ...._; - . . 
c:c:1~.:. s l.'!.r 2.. tlons 

lS, 

4lSI ··n [0 2 ~ ~ -~·- I 

~X-3 6~rcctc~ along the z c~ y 6irections. It is not 

c::_._ear all intrinsic .... ~ caL.es v;hich a re approxir::a.tions 

'.::.•-:. tr.e so..:ne partial spcctrc.::....-n mus·t be so obviously related,. 

p~rtic~larly when t:. ~ occupied single- particle sta~es 

t~ve no obvious sy~~et~Y - However, because ~ipka has 

='cc:nd that the energy of ~he l m·1es t projected state is 

c_cse to the energy of t~e intrinsic state, it may be 

assu...'TleC. tha.t two intrinsic states '"ith significantly dif

=erent energies are in fact distinct intrinsic states. 

I'.: wil::!.. be asswned in this work t:r:at two inJcrinsic states 

w~~ch have significantly different sizes or shapes or 

3i~glc -particle levels are in fact C.istinct . This 

~ssu.rnption is based on the idea that the sizes, shapes and 

s ~ ..g le particle levels are physically meaningful quanti ties 

w:.ich can be calcul~ted in the Hartree-Fock approximation . 
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th~~ t~cv ~~e not necessa~ily orthogonal. However, it 

is ~e:t th2t this is not significant unless detailed 

ener.:-:-v spectra a~e to be ma~e ._,_ 

~~e ~i~st even-even nucleus is 4 !e. Becat:se of 

·.:_ :'- s n~~::_::_ ~;_:.robe~ o=: p2.::cticles i::. this case, it is not. 

c_0~r ~~~t anv approximat~on using an average potential 

s: 0Jl d give a ~ood 2pproximation to the ground st~tc. 

~~~ resu:ts ob~~ined for the (000) 4 configuration will 

~e give~ in the next c hapter when the systematic behaviour 

J~ binding energies and sizes is discussed, but this is 

:.:~~.:1 ly in the interest of completeness. 

The ground state configuration 

lS I ( 0 0 1) 4 

has been discussed in chapter 4, in detail. The values 

o£ the a and b parameters (defined in equation (6) of 

-:::::-_z:p ter 4:) £or the oscillator states, that result from 

~he mininization of the energy of the configuration wave 

::·c:_:::-:Ction I are ShOWn in table 3. It can be seen that ~he 

,CO Q) orbital becomes more deformed than the (001) 

o~b ital. It mus~ be pointed out here that the (001) 

orbital has a deformation even when the oscillator para

~eters are e~ua::.., bu~ this natural deformation which is 
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is being ignored . In fact , for 

..:.--...:; v.::.h:cs of a. '"""nd b quo c,2d L1 -~.:;.ble 3, the densi-ty 

.._, __sbribution o::: the ( 00 l) orbi t:::l is more do formed than 

~~at o= the (000) orbit&l. Howcvor the harmonic well fo= 

\'J>.. ich -c.he (001) o=bitc.l lS an cigcnsta"c.e is less de=ormed 

~~:::~ ..:~~t for which t~c ;coo ) orbital is an eigenstate, 

norc 1:1eaningfu2. ::o co::1pare the deforma.tions 

v- t~2 corresponding pote~tials. This will be done fro~ 

In this case the avcrasc Dotcntia l felt by a 

(000) p2rticlc, is produced by 3 parti cles in the (000) 

c~~i~~: and by 4 in the (001 ) orbital which have a more 

~~=or~~d density distribu~ion . I~ is quite natural that 

t~i s potential should be more deformed than the average 

potential felt by a (001 ) partlcle and coming mainly from 

the (000) orbital. As was mentioned in chapter 4, the 

* r-.:::-:_c solution with a three shell representation noes not 

~:::~e a significa.n~ improvement on ~he GHA result. The 

c._"'.2 rgies and shapes of ~he two solutions are given in 

3b. 

In the cartesian representation the configurations 

::Jote: 

In this c hap·:::er an R'-IF calculation wi 11 r;:ean 
a ~hrec shell calculation . 
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lS, [001] 4 

lS, [0 10 ] 4 

lS I [1 0 0 ] ,, 

~~~ o~vio~sly not di~tinct ~nd arc ~ll cquiv~lcnt to 

20~f~s~=~t~o~ A in the cylindrical r epresentation. How 

2v2 r ~~ t~c cylindrical representation there is an 

.:.::·::er::.:.a·::ivc configuration vJi th maximum space symmetry 1 

lS , ( 0 1 0) 4 (B) 

-·-~~s lS an oblate shaped co::.:.f i gL..ration as opposed to the 

~=alate one considered a~ove. The a and b parameters 

-=2 s~ow~ in t2ble 3a for the corresponding GHA wave 

~u~ctio::.:. &nd t.:.:ble 3b shows that ~~ this c ase the ; 7 

solution lS o.. consiC.erablo imprcver.:ent . "'he reason f or 

t~is is th~t in the R~F calculation the occupied (010) 

o~~ital ~ixes with the unoccupied (0-10) orbital to 

p=oducc an orbital of the cartesian type [010 ] . The 

- - . Qj ?c.~.::orma"clon paramete r - can be used to de termine the 

: z 'i .... This ratio is shown for the two 

i~trinsic states that have been considered, in table 3c, 

~~~ it is clear from t hese values that the two solutions 

~ave very much the sane shape. The d iscrepancy between 

these shapes is a result of the di ~=i culty in representi ng 

http:co::.:.fi
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~x~s, in ter~s of si~glc-particle states wh ich arc 

~ .~· ~·:~'11C ..:;.:-i.e ~bout. the z a:..:is .. I f the re?rcscntation used 

_:_~, t h2 ~::::: cc:lct:..l.J.tion ir.crcc:tscC. , this discrcpe.ncy "'10u ld 

'l'he d ifference: bc twee~< the energies of -c:r. e 

'c.ho s.:LI..ltions is caused by the sc:..:-i'.e difficulty . I t should 

~~ no~cd -c:hat the oscil late= parameters used in the two 

~~7 c alculations are no~ the s ame , each set being obtained 

from separate GHA c alculations. 

== any further evidence that these RHF solutions 

~rc not Gistinct , is needed, it is supplied by the single-

These are shown in figure 24 f or the 

confis~ration wave functions obtained in the G5A ca l 

c-..::.:_a ti on and for the RHF solutions which use these con

fi;urc:tions as starting points. For configuration B the 

R~? calculation makes a significant change to the single-

particle spectrQ~ and t he res ult is close to the spectrwu 

o~tair.ed for configuration A . 

The fact that these intrinsic states are not 

dis ti nct shows that the GHA calcula~ion by itself gives 

spLri ous solutions, that is solutions whi c h do not 

satis=y the Hartree- Fock requirement of self-consistency 

a~d which are not eve~ good approxi~ations to such states. 

Eoweve r, self- consistent intrinsic states can be we ll 

approximated by some of the GHA solutions . 

I 

http:o~tair.ed


'J'ABLE 3 d 


BERYLLIUI·~ 8 a AND b Pl'> lU~i ·D~'J' EHS Dr:'l.' j;p-.;_1 .. ,.! J: .: C ~ l1 C'.' T.CJll,i '• · r,: 


ORBITAL 

CONFI GURATION ( 000 ) ( 0 0 1) ( 0110) ( 0 0 2 ) ( 0±11 ) ( 0±20 ) (1 0 0) ( 0 0 3 ) 

A a 0 . 85 6 0. 9 0 5 

b 1. 36 5 1.1 45 

a 1.0 70 J. . Otl l-B 


b 0. 865 0 . 94Lj 


c a 1.037 J • 218 

* b 1. 82 8 
>~ 

l. 828 

* Th ese p arame-Lers are affected b y th e o r-Lhoqon a l ity constr a i nts . 

0 



-----------------

-------- ----

'l'Ji;J,J: 3h 

BEEYLLIUM 8 ENERGIES , SIZES AND DET'ORrll\'i'IO!~S T'ROll C1J.i'\ l'.ND m:.,..., CJIJ.C'T!J.,l,'I'JO~JS 

GHJ\ PJ-IF 

CON I'JGURNriON ENERGY Ri\DIUS W\DIUS Q/R 2 

A -47.05 2.11 0.9 54 -!J.7 . 36 2.11 0.95 6 0. 

B -31.49 2.0~ - 0.<107 - !. ::, . 11 ~ . 09 -- OJ ~G 

c - 3.03 3.55 l. 39 0 · · · · · · · ·S ec cht;)·:-c}_ 5 ...... ...... . 

X 



CONFIGURATION 


A 


B 

c 

BERYLLIU.l·~ 8 

'J 'hBLL 3c 

HA'.riOS X2 :Y 2 :Z 2 FOR SOLU'J'JOl:S 

CALCULATION 

RHF 

RH.F 

GHF\ 

1. 00 

1.17 

1. 00 

1. 00 

3.18 

l. 00 

3.75 

1. 00 

7. 84 
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~~2 l~s~ configur~tion to be considered is 

lS , ( 0 0 2) 4 (C) 

~: .. ,: t:":....; CIL\ rcsc::.lts .::...ro shovm in t.:.blcs 3a and 3~ a;:.cl 

i~ fi sLrc 24. The illiF calculatic~ ~reduced considcr2blc 

~-· ~::::i ty ::1ixi::1g in this case and did not converge. It is 

co~cl~~2d that there is no intrinsic state satisfyin~ 

~-~ H=rtrcc - Fock conditions and directly related to 

7or this nucleus there are, once again, t~ree 

ec::..::ivc.::.cnt cartesian configurations which have maximum 

s~c:ce syrnrnetry. These are: 

lS, [100] 4 
, [010] 4 

lS, [010] 4 , [001]-+ 

lS I [001] 4 
' [100] 4 

~·o:-: each of these configm::ations the equilibrium shape 

g~ven by the Mottelson rule is cylindrically sy~~etric 1 

and so there is no loss of generality in using the 

cylindrical representation. The above configuration, which 

is oblate in shape, is written as 

lSI (010) 4 (0- 10) 4 (A)I 

The results o f the GHA and &qp calculations for configuration 

A are J~own in table 4 . As in the case of 8 Be the inner

~ost orbital is more deformed than the outer pair . If the 
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l2 ou~ ~~c~ting the oscil~utor 

;,.::_·amc-.... -::~:.3 .::or tl:.c orbi t.:::~s ( 01 0) ar:d ( 0-10) indepcnde n t2..y 

~~ccedu~e has a l mos t convc=ged . In tne GEA calcul~tion 

, -...:.c .::e c:. .-:..:: -ce.ble 4a t..'l.e parar.',eters for these orbitals 

\-.',-~-.:; co::..:; .:::.::.:-2.incd to be equal as were the b paramete::.:-s. 

=t is sec~ that there i s only a ve=y small difference 

:::>et\vecn -cl·.e GEA 2nd RHF solutions . Th is is shown bv -che 

c~2rgics and shapes in table 4b and ~c and by the single

~~ ~~iclc levels in figure 25. 

In an attempt to f~nd a ~ifferent intrinsic 

~~-~e one could start with ~he configur2tion 

lS, ( 0 0 1) 4 
( 010) 4 (B) 

~~~ rcs ~l~s are shown in -cab le 4 and , as might be 

::::·. :,c c-::cc :=rom the discuss.-:..or1 of 8 Be , t!l.e cylindrical 

c=~it~l (010) breaks down into a cartesian type o= 

~=j.-:.. tal, by mixing with the unocc~pied (0-10) orbital . 

="-: ·chis way an oblate state resL:. lts from the RHF cal

culation with the snaller axis in the y direction and 

-chis is indicated by t he asymme try parameter. The ratio 

x 2 :v 2 : z~ is shown for the various configurations in 

-;:~~-e ~c and the single-particle energi es in figure 25 . 

:-c is ~uite clear from these results that con f igurations 

A and 3 give rise to the same intrinsi c state. 

A separate pro2..ate intrinsic state wit.!l. maximum 



CAHBON 17. a JIJ>.~D h Pl\Rl\:;r;'l'J:RS DETERl·IH;ED BY CI;_i·. C; LCT'JJ.'.i:'JO:: 

ORDITl\L 

CONFIG URl\TI ON ( 000 ) ( 0 01 ) (0 ±1 0) ( 0 0 2 ) (0 :f: 2 0 ) ( 100) ( 0 0 ~ ) 

A a 1.1 42 l. Otl6 

b 0. 8 17 0 .886 

B a 0. 9 50 0. 950 0. 9 'l 8 

b 1. 160 l.OtlG 1. 0 7 6 


c a 0.855 0.89 7 0.9 3 5 

·,,'·* b 1. 40 8 1. 59 8 l. 40 8 

*These parameters are affected by the orthogonality constraints. 

\0 
lJl 



-------

'.1 h llLB 4 b 

CONFIGURJ'I.TION ENERGY 

A -76 . 63 

B -6t1 . 63 

c -62.29 

GHA RliF 

Rl\DIUS Q/R2 ENERGY X 

2.13 -0.506 -76.96 2 .1 3 0.0 

2.10 0.312 2. lJ 0./9( 0. 3? )_ 

2.85 1. ~ 0 7 -63.]7 /.85 J .~06 0 0 



TABLE 4c 

(' i\EBOrl J 2 Ri\T lOS X 2 
: Y 2 

: Z 2 FOJ~ S OLU'l'I ONS 
-- -- ---·----- --- ·- ·------- --------------

2 . y2 z2 CONF IGURATION CALCULI\TI ON X 

A RH F 2.5 0 2 . 5 0 l. 0 0 

B RHF l. 00 1. 9 5 2.2 4 

c REF 1. 00 1. 00 8 . 10 

\.!) 
~ .... ; 
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lS I ( 0::; :'.._) 4 
' ( 0 0 2) 

1
' (C) 

~~~ rc~ul~s o~t~i~cd with configuration C are given 

~~ ~~ble ~ and figure 25 ~nd it is clear that this gives 

~ :is~i~ct:y dif~erent i~~rinsic state about 14 MeV ab ove 

v:·:vqer. 

The ground state o£ two closed shells is 

lSI lP ( A) 

~~~ h~s bean discussed in chapt~r ~ briefly . 

~xpecte~ to be spherical. 'I'he ;_._ a:::d b parameters for the 

:.::::.;est e:·.ergy of t..'lis co::-.:.li.c:;uraL.i0~1 and the results of 

'.....-. ~ '-· R.. i· ""::1d. GHA c.::.lcula ti. m:..; are: s::.own in tc::.b l2 5 . In 

L.he :mi:iimization, the par..:..rneters of the (001) and (0±10) 

orbitals were allowed to v:::..ry independently o:: O::le 

~~othe~ and to give a truly spherical density they should 

~~~ally be equal . The small discrepancy between the:a is 

~?~rio~~ and gives an an indication of the accuracy of the 

:...: :--_if.1.iza-cion procedure .. If one of these parametc~s is 

c~~::1ged by 0.005 the resulting change in the energy of 

~.::.~1e configuration is about 0. 0 0 4 MeV. Generally the a 

::.:::-.d b oarameters cuoted from the MI:::\':J:ST program a~e cc c ur,:::.-c:e: 

:o within 0.002, in the sense that if the minimizaL.ion were 
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r2? eatcd using 2 different starti~g ~oint the new fi~a l 

v~:ucs would agree to this a ccu=acy with the values 

The single-particle levels ~or the GHA a~d ~!~ 

_ o ::.. utic.-:s .:.re shown in figure 26 c:.nd it is to be noted 

.__: z. t t l:..::c l~ ~-=-- cc..lculation :::>reduces the conventionc;.l 

and p 1; 2 levels in the sph eri cal average ?Otcntial . 

s9::..itting of these levels is 3.00 MeV, and the 

:..:.:::'-cct::::>ied d /2, /2 and d:y2 levels occur at +3.08,
5

s 1

77 .3 3 ~~d +~.08 MeV respectively. 

The low lying 0+ excited state of 1 &0 is ge~eral ly 

bc:ieved to be based on an intri~s ic state which is a 

~-~article 4- ho::..e excitation o f the ground state. ~his 

cc:::figt:ration is, in the cartesian representation, 

lS I [ 0 0 l] " [ 0 10] " 1 [ 0 0 2] 4 
I 

\vhi c h as see n in table 2 has a n asym_rne tric equilibriu.ll 

shane . The cylindrical configuration 

lS, (001) 4
, (010) 4

, (002) 4 (B ) 

can be used as a starting point to obtain the correspondi ng 

i:::Lri~sic state and the results are given in table 5 and 

~ .:.. s ure 26. The RHF c a lculation prodt:ces the asymmetri c 

s~~pe c:.nc this is accompanied by a g2in in binding energy 

c:: ll :-1eV. The result of a GHA c alculation in the 

cc:.rtesian representation is also shovu in table 5 c.nd 

2srees very well with the RHF result. The slightly lower 

http:equilibriu.ll
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'l'lil3LJ; 5 a 


OXYGI~N 16 a 1\ND b Pl\l~N-ll:TP.RS DE'l'EHI1ItH:D BY CIJ.i\ Cl\LCllLi'_',·Jn'· 


ORBITAL 

CONFIGURA'riON 

A 

B 

c 

a 

b 

a 

b 

a 

b 

( 0 0 0) ( 0 0 1 ) ( 0 i 1 0) ( 0 0 2) ( 0 :'.]_1) ( Oi20 ) ( 10 0) ( 0 0 3) 

1.007 0.959 0.9 62 

1.007 0.95 9 0.9 62 

0. 9 22 0.911 0.973 0.955 

* 1. 290 1.3'711 1.166 
-;.

1. 290 

0.857 0.882 0.9/.~ 0.95S 

*1. 804 * 1.635 
·',, 

1. 80-1 
·'·,, 

1, C3:, 

-------- -~--~------------

*'I'hese p arameters are affected by tbo 01~ t.hogonali ty cons-traints. 

$: 


7 "-· r 
' r:;: (/) 
> 
n S: 
--!rrt 
'lS: 
o o 
: ::0 
::)> 
::: r 
1 r 
5rn }-J 
- ::0 0j )> 

0·::0 
-< 

http:Pl\l~N-ll:TP.RS


OXYGEJIJ 16 ENERGIES , SIZES 1\ND DEFOR:-11\TIONS r'l"?.0'·1 Gill'. ll17D Rf-!F ChLCll:r J.'FI o:;s 

GIIJ\ Rlll' 

CONf'IGURATION ENERGY RADIUS ENEH.GY PJ:dHUS X 

A - 1 29.19 2. 0 5 0. 0 ·129.}9 2.05 0.0 0.0 

B - 85.74 2.24 0.96/1 96.12 2.5 5 0.9~7 0.258 

c - 77 .84 3.63 1. 6 28 



CONFIGURATION CALCULATION 

A RIIF 1. 00 1. 00 1. 00 

Ll (l ( I B RHF 1. 00 1. 70 z . j :.,; 

c GHA 1.00 1. 00 1~.10 

}-' 

N 
0 
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c~2rsy i~ the cartesian C2A calc~lation co~cs fro~ the 

~~ility , i~ this case, o~ the individual orbitals to 

· . c 8 - pa=ti clc-8-hole cxcitatio~ derived f~cm 

t~~ confisuration 

lS I ( c0 l) 4 
I ( 0 0 2 ) (003) 4 (C) 

~~ considered next. The f~c t ~hat this configuratio~, 

Wl ~ t pa_ticles in each of 4 diffe=ent shells, can 

:. ~ve 2...1 -::qui libri urn ene:rgy in the sa.1e region as the 

:: .:.: er co~figurations consi de red , shows very dra::I<a:tically 

~2.· abi:ity of the orbitals of the (OOn) ~Y?C ~o lose 

~-~etic energy when they are allowed to deform . 

.=a~t=ee-~ock calculation for this configuration has not 

:: (3e :1 carried out, but as the equi li~ri urn shape is 

c~:indrical it is not ex?ected that this would decrease 

-- ,_..., -__ .......... 
 energy significantly. In particular the order of 

-·- ].-,-::,--- -\:::; 4 ~nd 8-partic le - hole excitations would not be 

The results for these excited states are simila~ 

-~-=- ·:::.hose obtained by Abragall, Caurier and Monsonego (1967 ) 

~~:::on 20 

For this nucleus there are two distinct configurations 

ir. the cartes ian representation, which have maximlli"11 space 

co;y:.:., et.::-y and reasor.ab ly lmv energies. They are: 

http:reasor.ab
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, '")lC: 
~..._, I 	 -'..l. I [0 0 2] '• 

-. ':> [0 ll J I,lS / -'-~ 	 I I 

CX?C2~~~ :~om the remarks nade earlier ~~o~t the [DOn] 

~_pe o~ orbital, the prola~e state has the lower energy. 

::~ t~2 cy:in~rical representation there are four 

~~~~lar configurations which will be considered. ':'hey 

lSI lP I (002) 4 ( A) 

lSI lP I (020) 4 (B) 

lSI lP I (Cll) 4 (C) 

lS, lP I ( ::.c 0) ;. (D) 

- -.2 :.:-2SUltS a re shown in the usual way in table 6 and 

-~ f~g~:.:-e 27. As expected the prolate configura~ion A 

. ..__:._es <::.-.c ~ewes t in energ·y , and l\... is not changed very 

;:,uc r. bv the RH::? calculation. T:-.e oblate configuration B 

s-ves r~se to an intrins~c state at -1 42.39 MeV wh ich is 

..=.::.ir::...y \.Yell separated from the pro la t e one. should 

~e not~ccd in this case that the o ne single- particle 

orbitc:.:.. in the 2s - ld shell, after the RHF calculation , is 

a nix~~~2 of the form 

( 1020> ± I0-20>)/fL

~~e v~riation in the densi t y of such a state around the 

_ a:;-:~s is given by cos 2 2rp which is shmm in fi g;.:tre 23. 1>?l:-. i le 

c..:.is :..s not s-trictly cylindrically symmetric it gives an 
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~~u2: co~tribution to ~~c dens~~y in the x andy directions. 

~~a~~ is 	t~o ~n~:ogue, in ~he cylindrical rcprcsc~t~tio~, 

0: 	 c~:~~~ c~~t~~iu~ cvuf~gu~~tion considered ~~eve. 

·:r~1e next two 2 °Ke configurations become asyr:unet..:ic 

,-... ... -~ 
...,__;..1• c.J.lculation. At this ?Oint it becomes ~is -

:~adins to judge the shape of the Hartree- Fock states 

'· .~ Q/R 2 oarameter alone . This is because thls Jara

.:-~~.~te::~ anC.. the asy:nrnetry one arc connected to a fixed 

'-·o - o:.:-C:.i~".a te sys tem.1 "~.-Jhercas the R:·IF state is not_ ':2!·1e 

~hapos of these first four 20 Ne solutions are given mer~ 

~xplicitly by the ratios x 2 : y 2 :z 2 which are shown in 

~~ble 6c. It now becomes clear that both t.he second a~C. 

~~ ire configurations produce intrinsic states with 

~sscn~ially the same oblate shaoe. When the si~gle-

).J. rticle levels from the GHA a~d X-IF calc-..:.::..atio":.s fo r 

configurations Band Care corrpared in figure 27, ~tis 

clear that the RHF ca lculation acts to make the two 

single-particle spectra very similar. Finally the total 

~inding energies and the radii are the same for the t wo 

cases and it must be concluded that the second and thirc 

intrlnsic states are not distinct . 

When the firs t and fourth solutions are comparee 

s aine v1ay as the second and third :1~vc been, it 

.:::an ..:.e seen th2.t these two solutions are ::.ot dis'c.inct 



ORB ITl\L 

CONFIGURATION ( 0 0 0) ( 0 0 1) ( 0±10 ) ( 00 2) (O:Ll1) ( 0:!: 20 ) (JGO) ( 0 0 3) 

A a 

b 

0.96 4 

* 1.13 4 

0.905 

1. 211 

0. 938 

1. 002 

0. 940 

-J: 

1. 13~ 

B a 1. 082 1.00 t1 1. 021 1. 0/:9 

b 0.965 0.9 4 5 0. 918 o.SJ:..,s 

c a 1. 02 2 1. 0 29 0. 9G1 ) . 0 J 7 

D 

b 

a 

1. 0 83 

* 1. 0 9 2 

0.9 81 

0. 954 

l. 0 79 

1. 0 58 

l.OG!J 

* J . 0 9 2 

b 0.97 1 0 . 9 42 0 .942 1 .035 

J~ 

- -------·--

a 

b 

l. 0 27 l. 00 7 0 . 985 
) ; 

l. 07 6 1. 4G2 l. 0 23 
-- ------- -------- - - ------

l. ]J 0 

* J.!J6~~ 

-;; 

'I'hcsc parameters are uffectec1 by th e orthoqon~di ty cons u_-,l.j n ts . 



NEON 20 ENJ~HCJJ~S, SJZES J\ND DFFO!:·.:;~'J'IOl~S l'!CJ.J G]]J~ ..D WlJ' ('J.Tf'UJ. i:'l'J() ~,. 
--------- ---~--- --- ----------- - - ~ --------- -·--- - ---- --

GHJ\ mrr 

CONFIGURATIO N ENEJ<.GY RADIUS Q/ R2 ENEEGY RADIUS Qjl~ ? X 

A -15 6.46 2. 30 0. 603 -157 . 82 2 .30 0.593 0. 0 

B - 139 . 90 2.2G -0.270 ·- 142.39 2.26 -0.2C8 0 .0 

c -136. 8 7 2 . 26 0.1 50 -1 42.33 2 . 26 0 .149 0.1 39 

D - 1 35. 1 8 2.3 1 -0 . 2T! -146.80 2.28 -0. 2 '~ 7 0. :n 0 

E - 99.10 2.79 0. 895 

http:ENEJ<.GY


CONFIGOEATION 


A 


B 


c 

D 

E 

NJm;~ 2 0 W1TIOS X 2 
: Y ::

-------- ·-----------

CALCULATION 


RHF 


ill-I F 

RIIF 

RIIF 

GHA 

: /,? PCm SOLU'J':CO. ~; 
--  ----  ------· 

x2 y2 z2 

1. 00 1. 00 2.2 6 

1. 54 1. 54 1. 00 

l. 32 1. 00 1. 4 ~ 

1. 81 1.1 7 1. 0 0 

1. 00 l. 00 3. 43 

1-' 

co 
0 
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s~~

1
~~hcr . . ~~ t~is case t he reiF calculatio~ h~s rnix0d the 

~ ~JO) or~ltal with t he unocc upied 2s - ld sh2~l orbitals 

.,....:- ,) 0] . ~r.c d~t.crmincd by t.hc:· CI1A 

.~~cu:atio~ for the con~ig~ration Dare not at all 

tc ~ to the description of a state· with cyl i ndri c al 

r:·-:rnc·cry about t:b..e x axis and this is the r eas on for the 

rge dis crepancy in size and in bindi~g e~ergy between 

t:~:,.;o solutions A and D. 

T~e last configura-tion w:b..ich is co~sidcrc6 !or 

::\'e .::.s 

lS I lP 1 ( 0 0 3) 4 
• (E) 

_ .::s is 9rolate· and symmetri c with ·c~e last 4 particles 

i:. tn.:::. 2p-lf shel l r ather than the 2s - ld shell . The 

- ·~ ults for thi s config~rati on aYe shown in table 6 and 

g ure 27. It can be seen that ·chis intrinsic sta·te 

:1::::u::yac::::d::::.higher energy than the ones 

\ In the cartesian representatio~ there are two 

c: ~stinc-;: l ow-lying configurations \vi'.:.hin the 2s - ld shell 

,,::-1ich :"ave maximum space symmetry. r::'nese are 

I lS' 1? 1 [002]\ [0 11: ,, (W) 

l S I lP I [ 0 0 2] \ [ 0 2 0 J t, (X) 
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~~~f~su~-~ions , in the cylindrica l representation , that 

lSI lP, (C02) '• (011) 4 	 (!~) 

:c 1-; 't-'--'I (020) ( 10 0) 4 	 (E)-~ f 

lSI lP, (J20) 4 (0-20) 4 (c) 

lS, .L
,D

"- I (01 1) 4 (0-11) 4
• ( D) 

·	'>.2 :::-c::::ul·:::s of -:::~c GEA and RHF c.:::.lculaJcions are shmJ::. ir. 

-~~lc 7 .:::.~d figure 28 • 

. . : -::ic.:.-~:e: th.::::. t .::::.11 the intrinsic st.::::. t.es found have the 

.:::.~c scncr.:::.l sh.:::.pe. The singlc - Jartic le lev0ls in 

·ig·urc :::. ~'3 s::--.m-1 that the fo'Jr ir.trinsic states ho.ve c.. 

t~uct~r2 very si~il&r to ~~e cartesian co~figuration W 

-,~_: \·:___ ;:;::. 1:~e c.::::.rtesi.:tn C: :".. c alcul.:::.ccicn has been carried 

_ · "-.... c 0 single-part~cle levels, for configuration X, 

__ .:er::~ined by a G:·L&I_ calculatiorc c:.re shmvn on the left 

~ f~s~re 28 and it is clear t ha1: this is a verv differe~t 

~e ctr~ . We draw the conclusion that the configurations 

k~ C .:::.nd D are not approximations to different intrinsic 

- ~~rtrce-?ock states. Furthermore we have considered 

~ . ere c~:ate states B and C which are similar to the car

es i c:.::. configuration X, and these s1:ates did not give ris e 

o intrinsic states similar to X. In fact the oblate 

tates B and C changed quite drastically into in1:rinsic 

~atcs very similar to configuration W. This i mplies that 

http:sh.:::.pe
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X is itself not ~n .:..:.p_')Y::OXl -

T'Hartree - Foc k state . _"[. 

:J~. ~ ~~pointed out here that while other authors, i~ 

'-~·J..:ic-.:2-~.:..- Rip]c:l (1966) .:.:.~-:c, .:--1u".:.~-~'Jk:cishnan (1967), 1-,.::.vc 

---.......,
,!.-1.,!-,~,J.: 

~~3, ~~~ir calculations we re restricted i~ such a 

.. _ · u~ ..:o prevent configuration X from being tur~cd into 

This shows th~t RHF c alculations whi ch 

~-.:too restricted can le~~ to misleadi ng results, i . e . 

c70. a.iffcrent intrir~sic state Hi "ch maxi:T\Ur:l S~-:JaCe 

~ ... -.1et::::v can be construct0d b y put·ti~g 4 narticles i:-.to 

t~e 2n - :f shell and starti~g with t~e configuration 

lS I lP I ( 0 G 2) 4 
( 0 0 3) '+ (E)I 

2 rcs~:ts for this configurat~on are given in table 7 . 

::_, i:.his case the equilibriu.t s he:.pe is cylindrically 

s:~Je~ric and the size and de for~ation are quite dif 

~.r2n~ from those of the previous configurations. It 

~e:i:. that -c.his configuration gives rise to a distinct 

i:i:.:ci~sic state, and it can be seen that this is about 

-~ :..1eV t-1igher than the asymmetric state .. This energy 

c'==erence is very much less than that between the 

:_ ~~·lest intrinsic st.ate found for 20 Ne, and the 20 Ne con

:'ilguration whicl::. had 4 partic l es i n the 2p- lf shell. 

~~~s i~dicates that tha presenc e of an occup i ed (002) 

http:1-,.::.vc


'J '/J~J . t: ·;, , 

OP.I3 I'J'i\L 

CONFIGURATION ( 0 0 0) ( 0 0 1) (O:L10) ( 0 0 2) (CJ:l:1J) (0:1.20) (10 0) ( 0 0 5) 

A a 0.965 0.955 0. 9 25 0.955 0.9Gt1. 
·k ·k 

b 1.102 l. J 70 1.145 1.102 1.153 

B a l.057r: 0.967 l. 0 84 l. 071 l. 0 57 * 

b 0.922 0.909 0.887 0 909 0.9;!3 

c a 1. 1 6 4 l. 0 46 l. 0 70 1. G66 

b 0.929 0. 9 30 0 . 8 [l 0 0.927 

D a 1. 0 29 l. 063 0.947 1. 006 

b 1.168 0.989 1.171 1. 0 57 

E a 0,91)3 0.887 0.937 0 . 91/f 0.9 63 
-t: ·',.· -): -; 

b l. 3'51 1.382 1.040 1 . 35] 1.3 87 
. -------· ·-----~--

"1-: 

These parameters are affected by thG o rtho~ron,~ .1 i ty CC;~1S L: <l.i n l S . 

1-' 
1-' 
N 



I--IAGNESHF·1 24 El\;ERGrr:s , s:rzFs liND nr:For.:.JJ\'TJONs Pr:o:.·: Glih 1.:·r1 p!Jr. cl~l.C:li.TJ.'PTO:Js 

CONFJGDRl1.'l'lON ENERGY 

GHA 

RADIUS Q/R 2 
R.l~DJ.US X 

A -lfjj,67 2.38 
' 

0.5 81 - 190.89 2 . 38 0.57 9 0. 119 

B -178.77 2.37 -·0 . 412 2.3 7 -0 . .( 0 :j 0 . 161 

c --173.91 2.10 -0.410 -1BI:.31 2.1:1 -o . en 0.170 

D - 173.6 6 2.36 0. 235 -181.17 2.37 0.323 0.044 

E - 17 2.56 2.77 l. 09 6 



COl\fFIG URA11 ION CALCUL.A'l'lON x2 YL z2 

A RHF 1. 27 1. 00 2.52 

B HliF /,32 1' 6 ::; ] • 0 0 

c RHJ' 2.41! l. 73 J . 0 0 

D RHF l. 09 l. 00 1.65 

E GHA 1. 00 l. 00 tl . GS 
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The reason for ~his 

t.~.,...,
l\...'-'-· 

l
·_·c.-:::re are t\·lO C..i.s·cinct low lying cc:.rtesian 


c.·:fis~rations for this nucle L~s. ·:::hey arc : 


15 lP t.·r·Q'Jl" ro~ -, ~ '+ [0?0~"

- I ..-.... I '- V - _, I '- -'--- .) I - 

:-..s I l p [0 0 2 ~ ,, 1 [011] 4
, [101~'+1- I 

&r~ oblate and prol&te res?ectively. The correspondi~g 

c -::f:..'::;t:.rc:.tions of cylindrically syr::.1-:-.etric s ~c.a tes c:.re 


lSI lP I (lO G (0:20) 4
) (0-20) L, (A) 


lS I :;_p I ( 0 c= : (0:'..1) 4
, (0 -1::. )" (B) 

ust:.~- results are give~ in tc:.ble 8 and in figure 29. 

cc:... :.o:1 '.-J i th many ot::-.er .:.uthors (e .g. Ripka 66 1 

~hu~rishnan 67, Bernier ~nd Harvey 67, Das Gupta and 

E rvey 67) ..,,..,e find that ~he two config·ura"C.ior:s :C.ave ve-ry1 

s l~ilar energies. It should be boted that ~he s~apes and 

s ~ ~glc-?c:.rticle spectr& &re distinctly different and 

-.: . .:... t ·: ..c.se are c..wo distinct intrinsic states. The effective 

~4se~~=&cy of c..h~se intrinsic states is unsatisfactory, 

·.:::ere ::..s gooC: experimental evidence for two dis 

. - .. d~otac..lo~~~ ~an s. The 0+ stc:. ·t.es for these b2.nds 

http:stc:.�t.es
http:ot::-.er
http:f:..'::;t:.rc
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. . .:-..-:: sc~x1.rc::..tcd ';) y ..::.bou'c 6 _.cv , cl.l"ld consequently one c:r:pect:.s 

·..c f .:.nc. th'O intri::1s ic ~~.::r-t:::::-ee - Fock s tw. tes about 6 I.v:cN 

~-~ G~ -~o~ of calculatio~. An unnat:.urally large ncgc::..t:. i V2 

· < :;.-c ..:.-~ it force will c c prc ss the o:!Jlate state . 

__ :._ ,o :.x::c:: found that if tJ:-_c raini:ni r:tization of the co::: 

:.~u~~~io~ wave function, to det:.c::::-nine the: oscillator 

~~~ .::2~~urs, is carried out with the sizes and deformati ons 

o~~i t.2.ls cauc: l the:;. tile oblate so~:.:-::::..on is 

_~-.. ... \/0~~· ~,., ...___ }Jy 2bou-c 2 .. 5 i>~cv ... However, when the minimizatio~ 

~ I 

C2~-·~e:d out over the most gc:--.e:ral set of par2!l1cte:cs 

·_:-,_ p<:.t!-:o=..ogical deger.er.:.cy shou:;:;. in table 8 occ-.::.rs. The 

.--: .:::. stiv:::: of these two 2 vsi s ta'ces taken up again in 

c~ ~pte: 7 when various force s are considered, but a 

::::-e.::sonable decision as to which of t:.~ese states lies lower 

ca:;.not be made so far. 

The configuration 

lS I lP ' ( 0 0 2) 4 
I ( 0 11) 4 

1 ( 0 0 3) 4 (c) 

.. :-_ou::.c. :...ead to a distinct intrinsic state but only the GHA 

- ~:... cu::.&t:.ion is shown. This configuration is related to 

~~ c cc::..~~esian state 

·.. __ch _.:. asymmetric. :;:: -.:. is expect:e G. that a n :z.::-::::: ca l

: ~ at:.i c~ would change t:.he (Oll) orbital of C int:.c a car

http:occ-.::.rs
http:deger.er.:.cy
http:sc~x1.rc


CONFIGURJ\TI ON 

A 

ORBITAL 

(0 00 ) 

1. 0 3 7 -1:a 

b 0. 886 

( 0 0 1) 

0.977 

0.883 

( 0±10) 

l. 09 9 

0.8 t16 

( 0 0 2) ( 0:::11) ( o:: ;::o) 

l. 066 

0. 8'/9 

(: .0 (J) 

;.; 
1.0 :n 

0 . ,_: ~ 6 

( 0 0 3) 

B a 

b 

0.960 

* l. 067 

0.984 

1.129 

0. 908 

l. 240 

0.963 

* l. 067 

0.95 2 

1.124 

c a 

b 

*These parameters 

0.94 t1 0.925 

* -;, 
l. 328 l. 257 

arc affected by 

0.917 0.91 8 0. 9~7 

x 
1.206 l. 328 l. 22/: 
---- ---------- -

th e orthogonnJiiy constrai11~s. 

0 ()~") 
• J ·~ .J 

* l. 2~1 7 



CONF'IG URliTION ENERGY RADIUS Q/H::> 

l. , ' J. • ( J .t. i' ... j) ,·., 

lDil' 

l~ iJ)J us / 

234 .7 9 -0.<'193 -21;5.9'1 2. 1: 'I .. 0. i~ BS O.CICl 

B -2 44 .13 2. 41 0,56 8 - 245.59 ?..41 0 ,0(1 

c - 21 3 .0 6 L. • ·; 0 0 , 98S 



J.) 

SJ L J ccn / 8 R:~ 'J'J()~; 
·----- - - . - - . - .-

'-. l 

X 1 
: Y ? : 7. 2 l'OH f.Ol,l..JJ J o~;;:; 

C0',7FIG UEJI.TION CALCULA'l'J O>J y2 

A PJlP 2.44 1. 0 0 

B l. 00 l. 00 2 . 1 8 

c l. 00 l. 00 3.9] 
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t2si~~ t~?e o~ or~it~l ~~~~lar ~o [Oll] . This c hange 

would c~u~c ~ si;n~~ic~~~ ~ecreasc in enc~gy. Because 

t:-:.: -~ \ve ca.:: onlv say ·tl;.,_t ttc.: related ir,:i::rins.::..c state: 

·-' --- ~.::.: e 

c ..):~.:.tc 

i C" " ..., ... 
-o.J I ..l.L I [0 0 2 ~ , 

- .;:" 
_._ ._, I lP I [002]''1 

lSI lP I [002] 4 
, 

lSI lP 1 [002] 4 
1 

configurations are 

rcs;?eCJ.:i ve:ly 2.nd 

[:;:20]'·1 [Oll] 4 
I [10 1] 4 (W) 

'"l]tv J. l [101] 4 
1 [110) 4 (X) 

:c 2 0 ] :. 1 :200] I, 1 [Oll) 4 (Y) 

[C2 0] 4 
, ::::..ol] 4 

, [110] 4 ( z) 

asym..rnc ::ric 1 prolate 1 oblate and 

the equ~li:Ori um shapes ::?Yedicted 

::·_! -~nG.::::-~cal conf~guratio:-•.: res tr.::..cted to the 2s-ld shell 

~~=-

':'~"'.. 2 

c~ will be consideree ~ra 

::..s 1 lP 
-~ I (011) 4 

, (020 ) '+ 1 (0-20) 4 1 ( 10 0) I, (A) 

lSI 1'=' 
- 1 

1 002) 4 
1 (01 1) 4 1 (0 - 1_) 4 , ( 0 20) .. (B) 

lSI lP 1 (002) 4 
, (020 )'f1 (0 - 20) 4 1 (100) t, (C) 

lSI lP 1 (002) 4 
1 (011) 4 

, (0 -11) 4 
1 ( 10 0) 4 (D) 

results are shown in the usual way in table 9 and 

Configuration A produces an asymmetric state 

~~ mix.::..~g or~itals (Oll) and (0-ll) and this is r~-~ted 

-~ the asyiT~etric cartesian configuration W. It r.~"-...s ::. be 



121 

c::.lcu::.-. ~io:-.~. J:..:..c:~ 2.rc being quot'-2: 1 is lirc-~i tee ·to ten 

3 2 S,):-· ~ L · ·; in "che c.:..lcuL1tions .-:1.rJi t:he con~espondinc; ly 

Con~igu::::-u~ion 2 has a zero 

:.::~~ •.u1-c..::'.::::::-y ~)2.r::.:::cce:r in ·.::::c l:CI F ca:i.culution bu~:. t:-:c:: (020) 

o~bit&l to produce: 

cos~ 2 (~ 
J 

7he in~:.~· ~sic state resulting fro~ 

- . . 
- .. .._ l_ '::1 :_::._-:... .:..:. c ~- closely the prola~:.c c&rtesi&n 

..... _ . .:ig~-:._::-~.. l:~on lis ted above; .. 

_ ·._.-::e s~vc:1 in tc::tble 9c is ~ Jit.::: c=.ose ·to ·.:hat gi.ven ny 

·,_ . _ E01:-.:elson rule for L.'- co.r-::....:s ia:l. coYlflgurc.·:::..:..cn. Con

..:..:..-0·Jracion C gives an obl.:-1.:.::: ill. t:::::-iYls ic state vihic~ is not 

Vo....!~y d.:..£~erent ~~o2 the pure co~£iguration. Howeve~ con

. ::_,, Jre::cion D does :10t reD3..lYl cy lindrically symmetri c in 

RE::? calculat:::..o.1 a::1d ·:.!:ere is i:1 ttis case a definite 

::-:.::..nge in the sing::..e-particle spec·tn..lr.'. fo::- "cLe lp shell 

_nd for the highcs-.: occupied state. The tota~ binding 

energy in this c.::.se is g.:::-2atly reduced and d~ops belmv 

that: ot ~ither the prolate or oblate solutions . It is 

c~:clu~~~ that this co~figuration .:..s collapsing to the 

T~e las-.: con~iguration to be discussed lS 

http:spec�tn..lr
http:coYlflgurc.�:::..:..cn


---------- ----

OWHTAL 

CONFIGURNC'ION ( 000 ) ( 0 0 l) (0±10) (00/.) ( 0±11 ) (0±20) ( J () (! ) (003) 

~~ a 0.99'/ 
-l: 

1 . 0 23 l. 051 l. 0 26 
..;, 

1. 0 21 0 . 997 

b 0.9:i5 0.872 0 .899 0.926 0. 911 0 . 897 

B a 0.9St1 0.991 0.925 0 . 9GJ 0 . 95) 0.953 

·'· b l. 01 9 * l. 067 1.117 1.019 " l. 0 50 l. 0 79 

·k 
c a 0. 997 0 .888 l. 0 4.6 0 . 9lf> l. 021 o.~;cn 

")· 

·k ..k .·,,.b 0. 9 76 l. 0 39 0. 850 0 . 976 0.885 0. 976 

*D a 0 .9 71 0.965 0. 946 0 .9115 0 . 958 0. 971 
-i: 

·'· 
b ] .0/.7 

-;.-

l. 0 69 1 . .lt14 1 . 0 2 ·; J..060 *1 .027 

E a 0. 9 ~-l9 0. 9tl8 0. 895 0 . 9 J G 0. 9 29 0 . 935 
" '"l:b l. 25£1 
· ' 

1. 19 2 * l. 316 J .251 * ] . 184 1.19 2 
----------· ---------------------------------

* Th c·:; o J>iiTcllnC tr~ rs arc affected by i..hc o·· l-l1 ogunal .i ty constJ c<int-s . 

I-' 
N 
lV 
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)''!'.SIZES AND D:Cl'Ol~'-i_l~ 'l'IOi:S J_S\JLPHUH ::1/ 

GHA lUll' 

CONF') CURl\TION ENEHGY RADIUS Q/H 7 ENERGY 

A -29l.t18 2 .38 -0.35tj -297.21 2.38 -0 . 3 :.> l . 0 . 0 5 ~~ 

B -288.13 2.38 0.320 ·-290.95 2. 38 0.3 ]7 O.CJ 

c -283.3 6 . 2.38 - O.J!J"l · 286.74 2.38 

D - 27 8.01 2.39 0.320 -290.23 2. 39 0.3 ~2 0.139 

E -2 83 . 02 2 . 64 0.910 



'1'/',i _; L J: ~:J c 

CONFIGUF.Nl'IOJ\J Cl\LCUL.7\TIOIJ 

A HliF l' 'J l l. 9 3 1. 00 

B Hl!F ] . 0 0 1. 00 l. 57 

c RIJF J •.29 l. /8 l. (l 0 

D nnr l. 32 l. 00 l. Bt1 

E GHl\ l. 00 l. 00 3.50 
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lS I lP I ( 0 0:::) ., . .. : 11) :., ( 0 -11) '+ 1 ( 0 0 3 ) ., 

I'hc ::::-csul ts for Jchis cGr::ig ..... :·at.i cn 

JC this ~~2tc has an cna~JY 

...... :.:t::. ___ .....:.:.:- .:..::...:;tinct intrinsi c s·.::.atc:. 

·- ,~u.: :. .. __ c .....nci.::.atcs for ..L:~;.I2 lov1es ·~ in energy . ~l-tC.SC a:ce: 

,, :., ~;lC lP I ~) 0 ~] [0 28 J [Ol2.] [10 1] 4 [lC C] I, (X,-'-'I I I 1 I 

,, ,,
-' " ...... 1lSI lP: ._v \.;- ~ [0 20] [20 0] ., 

[0 ll] 4 [::.o l J 4 (Y)1 I 1 I 

a~d a~c oblate a~Q prolate respec~iv2ly. The co~~igura~~ons 

c c,- . .:. . . ....:.::i cal s·tates 1 which wi:2.. ;:-;c co::.sidered i:-~i~ially, 

2........ 2: 


lSI lP 1 (Oll) 4 ( 0 - ::.1) 4 
1 ( J 2c ) !, 1 ( 0 - 2 0 ) 4 

1 n.. cC) !,. (J:..: 

2.S I lP I (002) 4 ( 0 ll ) ., ( 0 - ll ) 4 
f ( 0 2 0 ) 4 ( 0 - 2 0 ) ., (B ) 

lP I (002 ) 4 
, (012_)-. (02 0) 'f I (0 - 20) 4 (100)!; (C) 

~~e rest::. :ts are given in table 10 and figure 31. It is 

~~en that the prolate configuration A remains cylindri cally 

sy~~etric whereas ~he other two bc:co~e slightly asy~~et.ric. 

~he single- partic:c energies f o r solutions B and C a re 

::-.:;arranged by th e .=-.z.::-::_-:> calculation ·::.c ap_?ear more :i:.;:e 

t~ose o= solution A. 
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-- ,..., ........ ..;.__ ,:_ ,_...., . 
__ .. .~..~ .... .:..c~~ .:.2 L...~o ... ..: .. L.. ~..- ...... ~ t.l1:::-ce: so::.. utioYl.3 A, 3 a::..d C arc ~2_:_ of 

It is conc1uclcc1 

st.::...t.::. - '- 

.::...:!..so be u::.stab::..e:. state has bec::n 

.. 0.. ... pro...!l;:,.1.. -.:·~i....:. ... 

~he prol2te confi~~...:-ation 

1 Il ~ ::_p 1 ( 0 0 2) '+ ( 0 j_:.) !, 1 ( 0 -11) !.; (020) 4 (003). (D) 

.• <.:~ a.i..::,J :been considerec c:::c.:.d the :::-esu1ts o:: -c.he G~:P. 

--~t~o~ are shown. This confi;uration is c1cselv relat~ ~ 

~v .:he asy:rw-netric cartes~~- · one 

1P I l'O 0?'- • 
4 

I 
[l 0- J ., 1 [110] 4 

1 [003]"' ( z) 

a~d it is expected ~1at configuratio~ D would become 

lt has been remarked 

.::or~ ·.:..:at the onset of asy!l.unetry L-: an I'iliF calcu1a"cion 

3.h!<'S accompanied by a significant decrease in U1e 

~:·..::....:-gy- Thus the figure of - 326.88 ~eV given in table lO:b 

~~- .:. ~e regarded as a rather poor uppc~ bound to the ene:::-gy 

o~ .:.he ::elated i~t...:-i~..:.;ic state. 



ORBI'l'AL 

CONFJCUEJ-\.TION ( 0 0 0) (001) ( (1 :: J 0) ( 0 0 2 ) (O:t:LJ) (0±20) (1 ( 0) ( 0 0:5) 

A 	 a 0. 95'7 * 1. 0 (j .l J .001 0 . 9 9 :i 0 . 9 "i 8 0.9::>7 
-;~ 

b 0 . 9 36 0 .857 0 ~ 9 lj ·1 0 , 9 0 I] 0 . 9 ~~ G 0.90~ 

0 0 	 .., (lB 	 a 1.03/. 0.98/. 0. 9 3~. 0 . 9 :~ 3 • J • .. -~ 0 . 9(0 

* b o.97z 1.01J J.o:n 0 . 9 '! .: 
:1: 

0. s ~; 0 } .OJO 

0 (l / -. 
i: 	

" 
:.J; ._)c a ' J ' .. -' 0 . 9 31 0.995 0 . 9 t1 .:: 0.9~)7 o. ~n1 0 • c t, ~· 

" 

;-; 	 !
b 0. 9 59 0.9t:B 0.901 0. ~)59 0.963 0.9 06 0. 889 

D 	 a 0 . 9 75 0 . 951 0 . 908 0.910 0.9~0 0. 91 1 0.929 
.;, -J.: 	 -;; 

b 	 1.166 1. 132 * 1. 196 1. J.GG 1. 09 3 1.118 1. ]3/ 
-- ------·--- - ····---·-- - ---·· -· ·- ---·---- -··- - - -- - ---------- - -- 

·k 
Thc~;c parumc' tC' r ,c, affC'ctec·i by the oJ·tho:Jonul.i ty co;1 !:.~ t 1. a :i n t s . c:~re 
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p·.GH A 

CON FIG UH.li.TI 01·7 J;~r;r~GY Iv\DI us Q/E2 (J/ T. "/, 

-373.24 2.3 !J ·- 0 . 2 ~ SJ - 3 7 5 , (I G /. 3 -~ -0./.-~G 0 .0 

J3 -356.8 6 0 .1 3~~ -·36~~.7') 

c - 356 , 9.5 · · 0 , 0 C 0 -- 3u ~~ , /. 1 (l . 0 : :: 

]) -3/.G . en 2. 5!J (1, 6C ~· 

}-' 
1'<..1 
( \) 

http:UH.li.TI


129 

; ., 

"' 

-


G 
v. 

'--' 

,,, 
,;; 

>~ 

>~ 

(/';. 

G 
;---; 
~ 

'S(:.-::; 

\.::) 

'" 
'' C' 

,, 

..... 
>~ 

"' /--i 

-~~ 

X 

' . 
0 
H 
8 
,::;:: 
....::; 
;:) 

u 
H 
< u 

0 
,-, 
[-i 

% ....... 

;:) 

u 
H 
~-l 
~~ 
0 
u 

0 
0 

........ 

'jvi 

rl 

C\ 
-<;;• 

rl 

:...;:./ 

:::_";) 
h 

...... I 

,-., 
,--j 

0 
0 

rl 

:-
N 

rl 

f::.< 
~ ...... 

CQ 

0 
c 

r-: 

G, 
0 

.-, 

r
......, 

rl 

~. 

'""""' 2 

u 

G' 

,-, 

0 
0 

,....... 


0 
0 

rl 

,:::-; 
~ ...... 
(J 



130 

... \.....~... ....................... \! L-~ ............. 


.. ·: '' ~ -, 'r 
...... v-- ~ 

c; 2.o._;.:.v ~ 

_;_ . 

L.. ... .:.. (.~ '-- z . 


0.'.0 

r. r .. - \ -~:21 (002)" ( 0 ll) l, I ( G- 2..1) ., ( Uu ..:..1 

..... -; .....,.~ ,..., \ - ... . .,_... .:.._ ... "-..,v __ ,._ ._...__.._ \....... • ..~.. ..:.,_ ..J ~_......_.._ '--•- <...... ...._ 


2lwavs =- () 

the mar.y-;:; cc.y resul·ts 

·.:..:--: :::-'-:;:1::: calculation lS ".:::. h.:;:; :sav.c.:: .J.~ ::he pure configuratio::-. 

lS I l..? I 2S- ::J uu 

...:...~ 

._,.... ......,-.. ............. 

.,~_..._.'- ... ._ ............ c ~ 


... ; -/21 --'/2 1 l?j~ 

.:~-..'"' s~:-::-. ericall::. symmet.ric average :?0-tGr.t:.i::.l . 


=."'ve: ls .:::.re show:1 i::1 fig·cre 32 and sho-..::.::..d :Oe co::np.:.:::-2c Hi-:::.: 


~~e r-~hers given earlier for 16 0 . The 2s :h 2..evel :-:.z:s 


- . . . ' .,
rcJ...a~lve 1:.0 -c. ..::e l2vels . In ~he ~ar~onic ?Otcn~i.:::.l 
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split by the spin-orbit f orce . . In the Woods-Saxon well, 

\vhich is squarer than the harmonic one, the d level falls 

below the s level. Insofar as the Hartree-Fock potential 

has a shape, it is closely related to the shape of the 

density , and thus in 16 0 which has a fairly square shape 

the a verage of the d levels is found below the s level. 

In this last 4 °Ca calculation, the nuclear density has a 

central peak far higher than is reasonable from exper i

~ental considerations. This large central density will 

make the Hartree-Fock potential very strongly attractive 

near the centre, and its overall shape is not at all 

square. In figure 32 it is seen that the d levels are 

above the s level which suggests that the Hartree-Fock 

potential becomes sharper than a harmonic well. This 

depression of the s level is not physical because the true 

4 °Ca density is not like the density found here. A better 

effective interaction, such as the ones described in t he 

next chapter, would give a squarer density and not give 

this depression. The a a nd b parameters for the GHA cal

culation are given in tab le lla, the energies and size 

parameters -in table llb and the x 2 :y 2 :z 2 ratios in table llc. 

The GHA calculation has been carried out for the 4

particle-4-hole excitation 

151 lP 1 (002) 4 (011) 4 (0-11) 4 (020) 4 (0 - 20) '+ (003) 4 
1 1 1 1 1 1 

(B) 



TABLE 11 a. 


CALCIUM 40 a AND b PARA11ETERS DETERHINED BY GHA CALCULA'r i ON 


ORBITAL 

CONFIGURATION (000) ( 00 1) (0±10) ( 00 2) (0±11) (0 ±20) (100) ( 0 0 3) 

A *0.913 0.945 0.945 *0.913 0.930 0.930 0.913 

*0.9 13 0.945 0.9 45 *0.913 0. 9 30 0.930 0.913 * 

B 0.994 0.951 0 . 916 0.903 0.922 0.927 0.918 

*1.123 *1.081 1.050 *1.123 1.018 l. 031 l. 081 * 

*These parameters are affected by the orthogonality cons traints . 

.. 

1-' 
Lv 
lV 



TABLE llb 

CALCIUM 40 ENERGIES , S IZES AND DEFO Rf.ll\TIOi\!S FR0i1 GHA CALCULAT'I ONS 

GHA 


CONFIGURATION ENERGY RADIUS 

A -465.52 2.28 0.0 

B -397.22 2.46 0.473 

1-' 
w 
l v 
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and t he r e sults are shown in table 11 and figure 32. This 

c'o n fig'..lration will give rise to a cylindrically symmetric 

prolate intrinsic state, which is the analogue of the con

fig ura tion believed to be responsible for the first 0+ 

e xcited state in 16 0. 

Conclusions 

It is of course possible to extend the numbe r of 

confi gurations with maximum space symmetry, without limit. 

HoHever, the restricted number considered here include 

the most interesting ones, and at the same time could be 

considered in some detail in a reasonable amount of time. 

Apart from the states of maximum space symmetry, there 

a r e many interesting configurations which have this sym

metry broken in one orbital. These configurations can 

often provide further intrinsic states in the same energy 

r ange as those considered above. By way of example three 

i mportant cases are listed here. 

1. 	 aBe: lS, (010) 2 , (0-10) 2 

this configuration gives rise to an oblate intrinsic 

state in aBe. 

2 . 	 16 0: lS, [001) 4 
, [010] 4 

, [100) 4 
, [002] 4 

this configuration is a 2~particle-2-hole excitati on 

of the 160 ground state and is comparable in energy 

with the 4-particle-4-hole state previously considered . 
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3. 2 4 Mg: lS, lP, [002] 4 
, [011] 2 

, [101] 2 

this configuration gives a cylindrically symmetric 

prolate intrinsic state for 24Hg which is comparable 

in energy with the states of maximum space sym

metry considered above. 

A review of the solutions t hat have been disduss e d 

s1ows that the intrinsic states found seldom differ from 

simp le configurations. In fact in many cases the dif f erences 

bet'l.veen an intrinsic RHF state and the relate d configuration 

ari se directly from the one -body spin-orbit f orce . It 

c an b e argued that because of the l imited representation 

used t h e single-particle states are not free to become 

anyth i ng other than harmonic oscillator states. Never

t heless, it is significant that, whenever a configuration 

becomes asymmetric in an rui F calculation, the asymmetry 

is produced largely by a cartesian type of harmonic 

oscillator orbital which is constructed out of the cylin

d rical orbitals. Thus whenever large mixings do occur 

they occur to produce an intrinsic state close to a car

tesian configuration rather than a cylindrical one. The 

t ypes of cartesian states which are produced from the 

cylindrical states follow the general rule 

(0 ± 11) + [101] or [011] 

(0 ± 20) + [110] 

(100) + [200] or [020] 
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~his pattern is closely related to the struct ure of the 

c y lindrical states in the cartes i an r epresentation, as 

lawn 1~ ppendix 1. In f aot it ean be seen that the 

cy lindrical states tend to produce the cartesian states 

with which they have the largest overlap. 

Another feature o f the solutions is that whenever 

an o rbi tal (n m n ) is occupied and the time-reversed 
2 

orbital (n-m n ) is not, then an RHF single-particlez 

stat e i s produced which contains these two orbitals in 

roughly equal amounts. This effect can be regarded as 

-::h e occurrence of asymmetry in the RHF solution. Hmve ver 

~ t can also be regarded as the occurrence of time-reversal 

syn®etry in the single-par t icle states . This indicates 

that time-reversal symmetry i s preferred over cylindrical 

symme try in the Hartree-Fock states. 



CHAPTER 7 

THE SYSTEMATIC BEHAVIOUR OF BINDING ENERGIES 

AND SIZES OF LIGHT NUCLEI FOR DIFFERENT EFFECTIVE FORCES 

The results for the ground states of the even-

even nuclei discussed in the last c hap ter are summarized 

in table 12. The results f or 4 He and 00 Zr have been 

included at this stage. It will be remarked once more, 

t h a t the GHA results are very similar to the RHF o nes 

whe n the intrinsic state has cylindrical symmetry. The 

f our-particle-four-hole excited states of 16 0 and 4 °Ca 

wil l be denoted by 16 0 * and 4 °Ca* throughout this 

chapter. In the special cases of 16 0* , 24 Mg and 32 S, 

where the intrinsic state is asymmetric, there is a 

marked difference in the RH F and GHA energies. 

The nuclear binding energy E, predicted by a 

simple liquid drop model, depends on the mass number A 

as 
( 1) 

in which case the binding energy per nucleon satisfies 

E/A = k + k A-l,h ( 2)v s 

When the experimentally observed binding energies are 

corrected for the Coulomb repulsion, and the cons equent 

137 
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TABLE 12 


SUMMARY OF BINDING ENERGIES , SHAPES AND SIZES FOR 


EVEN-EVEN NUCLEI USING FORCE 1 


NUCLEUS BINDING ENERGY Rl'1S RADIUS Q/R2 

GHA 	 RHF GHA RHF GHA RHF 

4 He 32.72 - 32.72 1.44 1.44 0.00 0.00 
8Be 47.05 47.36 2.11 2.11 0.954 0.956 

12c 76.63 -	 76.96 2.13 2.13 -0.506 -0.50 4 
160 - 129 .19 -1 29 .19 2. 0 5 2. 0 5 0.00 0.00 
16 0 * 85.74 - 96.12 2.24 2.55 0.964 0.947 

2 oNe - 156.46 	 -157.82 2. 30 2.30 0.603 0. 59 3 
:l.4 ~ .. g - 185.67 -190 . 89 2 .3 8 2.38 0.584 0.579 

2ssi(o)t - 243.79 -2 45 .97 2.41 2.41 -0. 49 3 -0. 485 
2 8Si(P)t - 244.13 -245.59 2.41 2.41 0.568 0.566 
32s - 291. 4 8 -297.21 2.38 2.38 -0.354 -0.359 
3 6 A - 373.24 -375.06 2.34 2.34 -0.2 49 -0.2 46 

'+ oCa 465.52 2.28 0.00 


4 oca* - 39 7. 22 2.46 0.473 


sozr -1448.36 2.14 0.00 


* 	 NOTE 16 0 * and 4 °Ca* denote the four-particle-four-hole 
excited states . 

. t NOTE 	 28 Si(O) and 28 Si(P) denote the oblate and prolate 
configurations fo.r 2 8Si. 
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binding energy per nuc leon is plotted against A-V3 , it 

is found that the points fo~ A greater than 16 lie very 

close to a straight line, as predicted by (2). The 

constant kv is negative (about -16.0 MeV) and represents 

the average energy per nucleon in uniform nuclear 

matter. is positive and expresses the fact that ink8 

a finite nucleus the nucleons near the surface are less 

strongly bound than those in the central core. It 

should be noticed that a larger value of k i mplies a8 

larger difference in the binding energies of core and 

surface particles. This means that for larger ks 

(i . e. for larger slopes in the plot of E/A vs A-V3 
) the 

surface is less bound relative to the core. Figure 33 

shows both the experimental values of E/A and ~he values 

obtained with force 1. It is clear that beyond 4 °Ca 

there is no agreement with the experimental line. Below 

4 ° Ca there is some correspondence between the theoretical 

and experimental values, but the erratic slope o f the 

curve joining the theoretical points indicates that with 

this f orce there is noth ing corresponding to a well 

defined surface energy fo r these light nuclei. The 

do~~ed lines in figure 33 connect the doubly closed 

shell nuclei 4 He , 16 0 and 4 °Ca. Because the inter

mediate points all lie above these dotted lines ~here 

is a definite shell structure reflected in this mod~l 
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c alculation. It has been mentioned in chapter 5 that 

because 8 Be is nearly all surface the restricted type 

of ~artree~Foek ealeulation earried out here is not 

very good . If the tail regions of the single-particle 

st:.ates v.rere properly allowed for, there would be a 

reduction in energy . This same argument applies 

equally well to 4 He, to a lesser extent to 12 C, and to 

a much lesser extent to 16 0 and beyond. Because of 

these corrections it is not unreas onahle that some 

shell structure should appear below 16 0 in the theoretical 

curve. However the fact that the 4 He point is below 

the experimental one, whereas the 16 0 one is above, 

indicates that, from the point of view of surface energy 

force 1 is not adequate in this region. 

Another reason why shell structure appears in 

Hartree-Fock calculations, is that the deformed intrinsic 

states, for nuclei which are not of the doubly closed 

shell type, do not have good angular momentum. As has 

been mentioned before, the result of projecting out 

states of good angular momentum is to give slightly 

increased binding energies. The binding energies increase 

in this procedure because the directional constraints, 

which are necessarily imposed in obtaining a deformed 

solution, are removed. These constraints of orientation 

are related to the uncertainty in angular momentum 
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~ ~ .e. to <(J-<J>) 2 >). This is probably the domi n a nt 

reason for the shell structure in the 2s-ld shell, 

th Ugl~ '!:.here are other r e ·sons sueh as non-eent:.ral 

forces. Despite all these excuses, the forces to be 

considered fur~her in this chapter have less shell 

structure and are to be preferred because of this. 

The experimentally observed r.m.s. radii of 

n~c~~~ exhibit an A dependence very close to 

A 113r = r ( 3) 
0 

The observed radii and the equilibrium radii found 

using force 1 are shown plotted against AV3 in figure 34. 

The pronounced collapse for nuclei above 4 °Ca is very 

evident here. 80 Zr is actually smaller in size than 4 °Ca. 

Once again the dotted lines connect the doubly closed 

shell nuclei and there is a definite shell structure 

evident between these. There is very poor general agree

ment between theory and experiment in these sizes, and 

this clearly reflects the inability of force 1 to saturat~. 

Further features of the calculations carried out 

with force 1 are the excitation energies of the four

particle-four-hole states in 16 0 and 4 °Ca. These values 

are 33.0 and 68.3 MeV respectively. Both ttese numbers 

are very much higher than the values of 6.1 and 3.35 MeV 

which are observed for the first 0+ excited state in 

these nuclei . · As rotational spectra are observed based 
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on these 0+ states , one reas onably expects to find 

defo rmed Hartree-Fock intrinsic states at low energies 

in bo -;:.·1. nuclei. The very high energies f ound for the 

intrinsic states here, indicate a further inadequacy 

in t he effective interaction. 

The derivation o f f orce 2, and its motivation 

have been exp l ained in c hapter 3 . To recapitulate, the 

repu lsive range parameter A b e comes dependent on the 
r 

relative wave number of the interac~ing particles as 

shown in figu r e 2. The f o r ce parameters are given in 

table l and the Hartree-Fock calculation o f nuclear 

matter saturates at a high density and energy as seen 

in figure 3. The standard procedure of using a GHA 

calculation to determine a best set of oscillator con

stants and then using these oscillator constants in an 

RHF calculation, has been used with force 2. The r e sults 

are given in table 13. Once again, ~vith t he exception 

of the asymmetric states, the GHA and RHF results are 

very close. The binding energy per nucleon is plotted 

against A-V3 in figure 35, and r.m.s. radii against A 1~ 

in figure 36. Compared to figure 33, figure 35 shows a 

drastic change in the binding energy of 80 Zr, and this 

is certainly a reflection of the saturation property in 

nuclear matter. There is still considerable shell s tructure 

with this f orce, though for the 2s-ld shell the area 
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TABLE 13 

SUMMARY OF BINDING ENERGIES, SHAPES AND SIZES FOR 

EVEN-EVEN NUCLEI USI NG FORCE 2 

NUCLEUS BINDING ENERGY RL'1S RADIUS Q/R£ 

GHA m-r F GHA RHF GHA RHF 

4 I~ c - 33 . 4 2 - 33 . 59 1.55 1.50 0.00 0 . 00 
9Bc - 49 . 7 5 - 50 . 1 4 2 . 23 2 . 22 0. 961 0. 963 

l 2 ' 
\.... - 79 . 54 - 80 . 0 2 2. 29 2 . 28 -0. 512 -0. 511 

lGo - 128.72 - 1 ::-: ~ . e s 2 . 26 2 . 25 0.00 0.00 
1 60 * - 89 . 89 - 9 9 . 8 8 2.73 2.73 0. 96 3 0. 950 
2 oN e -154.38 -1 55 . 88 2.5 6 2.55 0. 606 0 . 600 
2 '+ Hg -180.60 - 186.28 2.69 2. 69 0. 608 0.6 05 
2 8S i (O)t - 231.67 - 233 . 93 2.76 2.7 6 -0.508 -0. 503 
28 Si(P)t - 224 . 84 -2 30 . 1 3 2.73 2.71 0. 489 0. 49 7 
32 s -2 68 .7 4 -27 <1 . 8 2 2.79 2.79 -0. 371 -0.36 8 
3 6 A -33 2 . 40 -3 3 4 .09 2 . 80 2.80 -0.262 -0.261 
4 °Ca - 40 0.07 2.80 0.00 
4 °Ca * -350.67 2.97 0.496 

s ozr -939.28 	 3.30 0.00 

NOTE 1 6 0 * and .. oca* denote the four-particle-four-hole* 
excited· states. 

t NOTE 	 28 Si( O) and 28 Si(P ) denote the oblate and prolate 
configurations f or 28Si. 
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above the dotted line has been reduc ed slightly. The 

ene r gy behaviour f or nucle i lighter than 16 0 is cer

t~inly no bette r f or f orc2 2 than f o r f orce 1 and there 

is no well - defined s ur fac e e nergy . However for A 

s ~eater than 16 the s ituati on is improved, and the three 

p o i nts for 16 0, 4 °Ca and 00 Zr are almost collinear. 

The overall slope of the S/ A c urve f or f orce 2 is greater 

than the slope of the experimental points. As stated 

above this means that the surface is less bound, relative 

to the core, than it should be. The density dependence 

t o be introduced in f orces 3 and 4 has the effect of 

increasing the relative binding of the surface nucleons. 

The radii shown in figure 36 are a definite 

improvement over those in figure ;34 . Once again there is 

a drastic change in the 80 Zr point, which is a re f lection 

of the saturation property in nuclear matter. The four 

doubly closed shell nuclei f all close to a straight line 

that has a slope slightly les s than the slope of the 

experimental line. The shell structure between 16 0 and 

4 °Ca is considerably reduced in these radii. 

Re turning to table 13 it can be seen that the 

excitation energies of 16 0* and 4 °Ca* are 29.0 and 49.4 MeV. 

Both these numbers, but particularly the latter one, are 

less t han the comparable numbers for force 1. However 

they are still a long way from the sort of values indicated 
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by experime nt. The reduction o f the ~°Ca* excitation 

e ne rgy r e lative to the 16 0 * excitation energy is partially 

a consequence of t he improve d slope of the E/A curve 

f or forc e 2. However, the reduction of the 16 0* value 

is caus e d by the increas e d equilibrium size of the nuclei. 

To see how t his occurs, consider two different interactions 

v and v' , which give rise to the same total binding 

energy but differen~ equilibrium sizes. If the single 

particle leve ~s are £a and £a' and the kinetic energies 

of these level
1
s are T and T ' , then from chapter 2 the a a 

binding energies are 

~ E (T + £ ) = ~ E (T I + £ 1
) 

a a a a a a 

If v' gives a r arger size then the kinetic energy of the 

orbitals is reduced (i.e. T ' is less than T ) . It fol
1 a . a 

lows that £N' is greater than£ . The single particle
"" I a 

levels £a are .negative; the £a' are less negative. The 

excitation energy of the f our-particle-four-hole state 
I

is related to the gap between the single-particle levels 

of the occupied and unoccupied levels. When this gap is 

reduced by increasing the size of the nucleus then the 

excitation energy of 16 0 * is also reduced. 
I 

Another feature of this force is that it gives a 
. 

3.8 MeV splitting for the oblate and prolate 28 Si con-
' 

· 

figurations. 4 s remarked in the last chapter these con

figurations gi~e degenerate results with force 1, and 
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ar2 found to ?e degenerat8 by many other authors . The 

3 . 8 MeV diffefence found is smal l compared to the 

t otal energies involved, but i s be lieved to be significant . 

Thi s result at l east shows that in a fully self-consis tent 

CJ l c ul -ion the two confiJu rations can be split without 

resorting to an unnaturally la~ge spin-orbit force . · Com

paring f orces 1 and 2 it is seen that the relative 

? Osition of the oblate and p rolate states is dependent 

o n the details o f the force. 

Forces 3 a nd 4 hav e been completely rederive d 

using the criteri a set down in chap ter 3. Unfortunately 

the binding en~rgy of finite nuclei is not easy to fit in 

this scheme. As V is de c reased (i . e . made more negative)a 

in the free nucleon-nucle on scattering part of the force, 

c 3 must be incleased to give the proper saturation in 

nuclear matter . In finite nuclei the increased density 

dependence suppresses the effec t of decreasing V , and a 

the consequent change in binding energy is small. By 

way o f examplel when Va is decreased from -153 MeV to 

-250 .MeV, and the other parameters are determined by 

fitting the scattering data and by saturating nuclear 
~ I 

16 0matter, then th,e binding energy of changes from -10 4 MeV 

to -120 MeV. 'nhese figures are for density approximatio!"l I. 

It has further 
I 

peen found that if the value of kF used 

for the saturatlion density in nuclear matter is increased 
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rrom 1.4 fm- 1 to 1.5 fm- 1 the v alue o f c 3 decreases by 

~bout 30%. 

Becausr of the uncertaint y in the density approxi 

mation, which was mentione d in chap ter 3, and which wi ll 

be discussed mpre fully b elow, there is no point in a 

rigourous attempt to fit the binding energy of 16 0. 

Instead we hav~ used two sligh tly different forces which 

give approxima~ely the right binding energies. The first 

of these, force 3, has V = -1 50 MeV and is fitted to a a 

saturation kF of 1 .5 fm- 1 in nuclear matter. Force 4 is 

stronger in the free scattering limit, having a value of 

-250 MeV f or V , and is fitted t o a lower saturation a 

density in nuclear matter given by kF = 1. 4 fm- 1 
• Despite 

these differences the twb forc es produce very similar 

res ul ts in finite nuclei . This suggests that the nuclear 

matter and scat tering properties of the force determine 

to a large extent the properties of finite nuclei. Before 

the r es u lts can be discus sed it is necessary to consider 

the two densit~ approximations that were 4efined in chapter 

3. 

The first approximation, seen for 16 0 in fi gure 5, 

gives the corr~ct density in the surface region and a 
. 

definite overestimate of the density in the central region . 

As already explained this gives an underestimate of the 

binding energy . \ In the GHA minimization the density is 
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treated self-consistently, and in minimizing the total binding 

energy there is a tendency to r educe the density because 

thi s increases the strength of the for ce. Decreasing the 

density should mean increasi ng the size. The approximate 

density I is ersenti a lly determined by the size, because 

it is f itted to the <p 2 > and <z 2 > values. Thus when ·this 

~~9roxim~te density is decreas ed the size must be increased. 

The second approximate densi ty is fitted to the centra l 

density and to the ratio <p 2 >/< z 2 > . As can b e seen for 16 0 

in figure 5, t f is approximate d ens ity is generally too 

~rn~ ll and the binding energy i s overestimated. However, 

there is a very dangerous we akne ss inherent in this approxi

mation. The magnitude o f the a pproximate density is 

I
determined by the centra l density and this in turn is 

determine d by the sizes o f a few of the even parity states. 

In the spherical representa tion it is just the s states 

whi ch determine this central densi ty, in the three shell 

cy l indrical representation it is the (000) (002) and (100) 

states. Because of this feature, there is an unphysical 

tendency to increase the size of the (000), (002) and (100) 
I 

orbitals. Increasing the size of these orbitals decreases 

the central density and increases the density in the sur

1

face region. Thus, while in our approximation the density 

is reduced and the strength of the interaction is increased, 

the overal l effect is really that the density approximation 
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·I 

becomes a very poor one. Th i s second density approxi

rna tio n actually gives a lmve r e nergy f or 4 °Ca* than for 
I

4 0 c a , 'nuc· .:.;'ns· anoma 1y c a:1 ·oe r e: 1 ated to a v e ry poor 

d ensi t v a ooroxl mation ari sing in t h e manner described 

a bove.- I ~~ the I follo\ving dis cus s ion of results, density 

approximation II must be treated with c a ution and serYes 

ma~nly as a lower bound for the energies and radii. 

T~c r esults given for forces 3 a nd 4 are all from GHA 

c ~ lculations and be c ause o f t hi s the asymmetric nuclei 

2 ~ Mg a nd 32 S are omitted . The excited state 16 0 * has bee n 

included ~ecauJ e its behaviour is v ery interesting, but 

it must be remembered in t his c ase that the RHF calculation 

will produce an asymmetri c state and a consequent gain 

*in binding energy of about 1 0 MeV. The 4 °Ca results with 

density approximation II are omitted f or the reason 

3 6 Amentioned above. The res ul t with force 4 and density 

approximation II has not been computed . With these 

exceptions the lresults f or f orce 3 a re shown in table 14 

and figures 37 and 38, the results for force 4 in table 15 

and figures 39 and 40. 

It can \be seen at once from tables 14 and 15 that . the 

two for.ces give very similar results, though force 4 gives 

larger binding ene rg ies and radii. Figures 37 and 39 

show a general improvement in the overall slope of the 

E/ A curve, when compared with 'figure 35. The radii in 



TABLE 1 1 


SUM~l~RY OF BI NDING ENERGI ES , SHAPES AND SI ZES FOR EVEN-EVEN NUCLEI USING FORCE 3 

NUCLEUS BINDING ENERGY RI:1S RADIUS Q/R2 

GHA(_L) GHA (-Il) GHA(I) GHA-(-I-I) GHA-q ) - GH A(II) -

4 He 
8Be 

1 2c 

160 

160* 

- 25.16 

- 4 2. 9 3 

- 71.19 

-113.82 

- 85.88 

25.16 

48.80 

88.02 

- 151.5 8 

9 4 .55 

l. 91 

2.67 

2.72 

2.72 

3.22 

l. 91 

2.58 

2.55 

2.48 

3.10 

0.00 

0.9 48 

-0.497 

0.0 0 

0.9 40 

0.00 

0.965 

-0.502 

0.00 

0.9 36 
2 oNe -139.16 - 167.10 3.05 2.90 0.590 0.589 

28Si(O)t -209.11 - 252.08 3.32 3.21 -0. 49 5 -0. 495 

28Si(P)t 

36A 
-213.61 

-300.49 

- 269.20 

- 394.38 

3.31 

3.38 

3.06 

3.29 

0.588 

-0.259 

0.5 44 

-0.336 

4 oca 

4 oca* . 
sozr 

-352.34 

-323.87 

-804.96 

- 421.08 

-1003.13 

3.41 

3.58 

4.11 

3.31 

3.83 

0.00 

0.485 

0.00 

0.00 

0.00 

GHA(I) and (I I) denote · density approx imations I a nd II. 

*NOTE 160* and ~+ oca* denote the four-particl e -four -hole excite d states . 

tNOTE 28Si(O) and 28 Si(P) denote the oblate and prolate configurations for 2ssi. 

t-' 
lJI 
0 



_ _ _ __ ----- -
SU£.'11'-1ARY OF BI NDING 

:.._____

NUCLEUS 

4 He 
8 Be 

1 2 c 

160 

16 0 * 
2 oNe 

2ssi(O)t 

28Si(P)t 

3 6 A 

4 °Ca 
4 °Ca... * 
sozr 

Tl\.BLE 1 5 

ENERGIES , SHAPES AND SI ZES FOR EVEN-EVF.N NUCLEI USIPG FORCE 4 _ ________- - - 

BINDING ENERGY RI-1S HADI US Q/R2 

G A(T) GHA Cm GHKTT ) GHA(TT) GHJ.l. ( I ) GHJ\ (TI) 

- 24.95 2 4 . 95 2.01 2. 01 0. 00 0.0 0 

- 44.85 52.2 6 2.75 2 .66 0.9 2 8 0.9 54 

- 75.65 97 . 91 2.82 2. 61 - 0. 48 7 - 0. 491 

-120.6 2 17 2 . 1 3 2. 82 2. 51 0 . 0 0 0. 0 0 

- 9 3. 57 10 5 . 89 3. 31 3 .16 0 . 9 15 0. 910 

-148.71 187.10 3.17 2. 97 0.577 0.577 

-2 23.0 4 - 292.8 4 3 .43 3.35 -O . L156 - 0 . 48 7 

- 230. 41 - 309 .7 4 3. 43 3.10 0.581 0. 521 

- 322.31 ·3. 52 -0.230 

-377.23 - 4 89.9 0 3.55 3.52 0.00 0.0 0 

- 351.2 4 3.70 0.46 8 

-8 6 2. 83 - 1114.11 4.28 3.9 4 0.0 0 0.00 

GHA(I) and (II) de note ' de ns ity approx ima t ions I and II. 

*NOTE 16 0 * and 4 °Ca * denote t he fou r - p a r t icle -four-hole e xcited sta t e s . 

t .. 


"NOTE 28 Si(O) a nd 28 Si(P) denote the oblate and p r olate con f i gura tions f or 28 Si. 


....... 

Ul 
....... 
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f igure 38 and 40 also show a n i mproved overall slope, 

nd the general agreement with experiment is considerably 

improved . 

The l a rger binding energies with force 4 aris e 

be cause this force is es sent ially stronger than force 3, 

par t icularly in the low density limit. The larger 

radi i with force 4 can be as cribed to the fact that 

the density dependence is stronger, and so there is 

a stronger tendency to reduce the nuclear density. The 

c urves for forces 3 and 4 are a little ambiguous because 

the points haf e been replaced by lines connecting the 

results for the two density approximations. The separation 

o f t he two approximations is larger for force 4 because 

the density dependence is stronger. The one point which 

is not ambiguf us is the 4He point. The fact that the 4 He 

value lies abpve the possib le range of 16 0 values indicates 

~very definite improvement over the first two forces. 

Apart fr om the 4 He point it is not possible to make a 

detailed comparison of force s 3 and 4 with force 2. How

ever, it does seem that the overall slope is improved and 

that the shell structure is reduced. The underbound 
I 

r es ults, with \density approximation I, are certainly 
I • 

very much better than the previous ones. The overall 

slopes of the E/A curves .for forces 3 and 4 are still 

larger than t~at of the experimental line. This implies 



154 

~1at the surface nucleons are still not sufficiently 

bound. The s l ope of t he f orce 3 curve is a little better 

th~n th~t of the f orce 4 curve, which suggests that the 

s aturation density of nuclear matter plays a role here. 

The general agreeme n t with the experimental 

results in fig~res 38 and 40 i s surprisingly g ood. Once 

agai n though, the overall slopes of the curves ~ould be 

i~proved . It is worth noting that in this case force 4 

seems to give a slightly better slope than f orce 3. It 

is not possible to be specific about the excitation 

er~ergies of 16 0 * and 4 °Ca * , but if one assumes that 

the first density approxima t ion is close to the truth, 

t~:.e n these excitation energi es a r e less than those 

oDtained in GHA c alculations for f orces 1 and 2. In 

thes e excited states f our particles are taken out o f 

one shell and put into a higher one. Thus these par

ticles move to a lower density region and their inter

action i s increased. Un f ortunately the size of this 

effect cannot be judged until a better approximation to 

the nuclear density is used. 

One of the most surprising features of the 

~es ults s~mmarized in table s 12, 13, 14 and 15, is the 

lack of variation in the Q/R 2 values . It is seen that 

for any g iven nucleus t he Q/R 2 value at equilibrium i s 

c~anged only slig~tly when considerable changes are made 
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t.o the 9roperties a nd form of the force. This is a very 

st;:-ong point in support o f the argument that the 

c quilibrilm1 de f o rmati ons a r -.:; determined v e ry largely 

by the kin~ ti c energy, as expla ined in chapter 5. 

These density dependent forces have another 

point i!1 common and t hi s is tha t t hey giver· a splitting 

of the 28 Si states which favours the prolate state. 

'I'he splitting is small, particularly in comparison to 

~he unce rtainty produced by the density approximation, 

bu · is a lmost certain ly meaningful. The fact that there 

is a reversa l of the order of the prolate and oblate 

s ·tates, produced by the densi ty dependence, indicates 

tha t the detailed nature o f the interaction plays a 

critical role in determining the relative energy of 

these states. Furthermore t he splitting is increased 

in going from force 3 to f orce 4 . It is conjectured that 

this is a result of the increased density dependence in 

force 4 , and that the interactions in the oblate state 

tak e place in a higher average density than those in 

the prolate state. 

In concluding it is noted that a simple density 

dependent factor in the effective interaction gives a 

better systematic behaviour for the energies and sizes 

of light nuclei. Furthe rmore the saturation of nuclear 

m&tter and the s-wave scattering determine to a very 
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l a r g e extent the properties o f fin i te nuclei. The shell 

structure in the sy s tematic behav i our is almost cer

t.::;. in ly reduced by the dens i ·ty dependence . ~ 



C~ PT.t.H 8 

CONCLUS::: ONS 

The last three c~apters , chapters 5, 6 and 7, 

h a v e each been concerned with slightly dif fe rent aspects 

of t h e results oi the RI·I:t:' c alculati ons. In fact these 

t~ ree aspe c ts , the mechani cs o f deformation, the nature 

of ru:~ s olutions for eve n-even nuclei up to 4 °Ca, and 

~~e role played by varia~~ features of the effective 

int eraction, have been p~~s ented here more or less in 

the chronolog ical order in wh ich they were considered. 

Th is explains f or example, why the calculations o f 

chapter 6 did not use o ne of the better forces developed 

in chapter 7. 

In chapter 6 ~t was shown clearly that the 

deformation of light even-even nuclei was a very important 

degree of freedom in illiF calculations. Furthermore it 

\vas shown , using 6 Be and 20 Ne as examples, that the 

deformation of these light nuclei could be produced 

in an RHF calculation either by using a deformed repre

sentation, or by using a representation that was large 

e nough for there to be many unoccupied states, for the 

nuclei considered. In fact it appeared from these 

e xamples that a spherical representation could be used 

157 
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wi t h confidence as long as there were two shells of 

unoccupied states included in the representation. The 

next most important degree of freedom in the RHF 

solutions, appeared to be as ymme try. However this 

feature only appeared in a f ew specific intrinsic 

stat es: and could be predi cted from symmetry arguments 

about the related cartesian conf igurations. The 

ca~tesian configurations were in fact a good guide 

to the p ossible ru1F intrinsi c states, and the Mottelson 

rule was able to p redict quite well the equilibrium 

shapes o f these states. This Hottelson rule was, in 

turn, r e lated to the r ather slmv variation of the 

potential energy , as compared to changes in the kinetic 

energy. 

In chapter 6 a survey o f the intrinsic states 

for various nuclei was undertaken. Here it was shown 

~hat not all of t he cartesian confi gurations gave rise 

to re lated self-consistent states. Many of the cylin

drica l configurations collapsed, in the RHF calculation, 

to finally appear as states related to a different 

configuration. This points out the danger of imposing 

restrictive symmetries on the sing l e-particle states . 
. 

Other authors have imposed such restrictions and found 

intrinsic states which appear to be spurious in the more 

general calculations carried out here. As a result we 
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r2port f ewer distinct in t r insic states than these authors. 

Anothe r point brought out i n chap ter 6 was that it does 

no~ c os v ery much energy to p romote four particle s f r om 

t he 2s -ld s hell t o the 2p - lf shel l. This is a result 

o f the ability o f the (003) orbital to lose much of its 

k i netic e nergy b y becoming highly deformed. 

In ch ap t er 7 we inve stigated the effect o f some 

d~ ~ ferent f e a tures of the f orce. This was prompted 

l a rge ly by the marked collapse of nuclei above 28 Si, 

whi ch occurred \vi t h f orce 1 . Force 2 was an immediate 

improvement over f orce 1 as regards this collapse in 

f i nite nuclei. This improveme n t c a n only be as c ribed 

to the ability o f this fo r ce to saturate nuclear matterr 

even though the saturation point was not clos e to the : 

e xpe r imentally predicted one. Th is shows the importance 

o f the re~uirement of s atur a tion , a nd the distinct 

s e?aration that exists between saturati ng and non

s a t ura ting inter ac t ions. 

Force 2 still gave nucle i whi ch were too small, 

and the general behaviour of t h e energies left something 

to be de s ired. The density dependent f orces , forces 3 

and 4, we re de sig ned to give the correct saturation of 

nuclear matter, and made a definite improvement in the 

sizes. As was explained in chapter 7, incre asing the 

s i ze o f nucle i in t h i s way causes the single -particle 

levels to be l ess bound. The levels found with force 1 
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we r e considerably more bound than th ose f ound i n 

(? , 2p) a nd (e , e ' p ) knockout r eactio ns . Th e l e vels , 

ob t aino d wi~l fo~cQs J ~nd 4 1 hav~ not b een compa~ed 

wi t h experiment here , but i t is felt that f o r ces whi ch 

g i v e the corre c t s i ze must give approximate l y the 

right s ing le - partic l e l e v e l s. The t wo density approxi

mations used c a used a c e rta in amount o f amb i guity in 

the r esults for the l ast two f o r c es , and a s a r esult 

no t much c an be said ab out the systematic b e haviour of 

the energies . Despite t hi s ambigui ty though, it is 

c l e ar that t hese densi ty dependent forces represented 

an imp _ovement over t he ear lier ones. 

The fac t that t wo f ai r l y differe nt density 

de pendent f orces we r e us e d , a nd t hat they g ave v e r y 

s i mi lar res ul t s, i ndicates that t he criteria used i n 

de t ermini ng t he f orces are physically meani ngful. How

ever it may also mean that the a na l ytic form o f the · 

f orce may have to be f urth e r modified, in order to make 

more i mprovements in the r esults for finite nuclei. 

I t seems quite feasible, in the light of the 

work do ne to date, to e x tend the RHF calculation to 

fi ve s hells. In order to do this, in a practicable way , 
. 

i t may be necessary to make some restrict ions on the 

r e presentation. I n particular it may b e necessary to 

us e o s ci llator states with the same oscillator parameters. 
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I~ a ls o seems adva ntageo us to use the cartes ian repre

sentation r ather th a n the cylindri cal one, in order to 

bett er ~ccommodate asymmet~ i g int~i nsig states. With 

~ f ive shel l program of thi s t ype it would be possible 

to c a rry out detai l e d and f ully self-consistent analyses 

o f nucle i beyond 4 °C a . However, to relate results 

ob taine d above 4 °Ca to exper ime ntal ones will requi re 

the i nclus i on, in a self-consistent way, of the effect 

o f t h e Coulomb interacti o n . 

A very obvious i mp r ovement i s needed in the 

densi ty a pproxima tion used when c a lculating matrix 

eleme nts. Rather tha n t h e a pproximations I and II, a 

sum o f t wo or more gaussi a ns can be used to fit the true 

nucle a r d e n s i ty. Actually t he sum of gaussians must be 

f itted to the true density taken to the ~ power. Such 

a n approx imation will make it poss i ble to calculate 

ma~rix elements analytical l y, and at the same time to 

fit the nuclear density very well. 

With an improved density approximation it is 

hop ed that the systematic b e haviour of light nuclei .will 

be well reproduced. In particular it is hoped that the 

shell structure, which results from an improved calculation, 

will be small enough to be explained by the uncertainties 

in the angular momentum for the intrinsic states. 



AI'i'ENDI X l 

I-IAEHONI C OS CIL:;:,?·. "''I;~ Tt!/'V E F UN CTIONS WITH 

CYLI NDRICAL SYV~ETRY 

l . T -IE WAVE FUNCTI ONS I :\! CONFIGURATI ON S PACE 

The Wav e Function~ a r e 

\ IJ i mct> ( !2 ) Im I ,.. Im I ( p2)
r = N e a p Dn anmn nmn z z 

where N = mnn z 

a nd are eigenf unctions o f : 

wh e r e 

= ( 2n + lml + 1 ) nwp + (n + ~ )nwz z 

and 

mw 0 mwz 
a = 13 =-'n i1 

a , S h a v e dimens i o ns of (length)- 2 o r (wave numb er) 2 • 
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Ex.:tmples are 

- ~-ap 2 e 2 

The mean square dimensions f or the state ~ are 
nmn

2 

~= (2n + lml + 1) / a, z-z = (.. + ~ )/ S 
Z · 

The volume of the ellipsoid of revolution passing through 

the points 

given by 

V = ( 4n / 3) (n + ~lm l + ~) (n +~ ) ~/a S~ . 
z 

In the special c ase that a = S, t hese w~ve funct~ons 

are simply related to the spherical oscillator states 

ln, l,m), howe ver th e phase convention used here for time-

reversed states with opposite m values is not that of 

Condon and Shortley. 

The state ~ is prolate, spherical, or oblate n ,m,nz 
as 

(2n + l)a- (2n + m + l)S < 
> 0.z 
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It is convenient in the ~ollowing to write: 

Ill (r}n. ,m . , n 
J. 1. z. 

J. 

w~ere i labels a s et o f sta tes and, 

~, r ( P ) 

~vhen carrying out search es for tl)e best oscillator 

parame t e rs it is f ound t o be more efficient if the size 

parame t ers 
l ~ :k
2 2a = (1 I 2cx) - , b = (1 I 2B) , 

are us ed instead of a and 6 . These new parameters are the 

r . m.s. values of x and z f or the IOOO) state with oscil

lator constants a and B. The deformation of the state will 

b e measured by 

or b2 = 2(l+d}d = 2b 2 
- 2a 2 = 2a - 2B 

I ~ ' 2-d2a 2b 2 + a + 2 

a~6 d i s p roportional to t h e q u a drupole moment o f the IOOO} 

stat e divided by its radi us s qua red. Thus the !OOO) state 

i~ prolate, spherical, o r oblate as 

d >< 
0 . 

Note that -1 < d < + 2 . 

The vo lume V is prop o rtiona l to a 2 b and this is used as a 

volume p arameter. 
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The part of ' which depends on z, together n m n 2 

with the appropri ate normalization factor, is a o ne 

diilensional harmonic osc illator wave f unction. The 

produc t of three wave functi ons of this type , for the 

x , y and z co-ordinates , gives a carte sian oscillator wave 

f unc tion ' This wave function is associated with n n n
X y Z 

the [n n n ] orbital , and is used in the c artesian GHA 
X y Z 

c a l c ulations. The interrelations between the various 

t ypes o f o s cillator wave f unctions a re summarized in a 

recent paper by Chasman and Wah lborn (1967). 

The two-dimensional states lnm>, which are 

obtai ned from the In m n > states by removing the zz 

depe ndent part, are related to products of pairs of one

~imensional states In >In> as f ollows:
X y 

IOO > = I o> I o> 

IO±l > = 11; l l> IO> ± il~ I o> ll> 

lo±2> = ~ 12> IO> ± il~ ll> ll> - ~ IO> 12> 

ll 0> = -I~ 12> jO> - ~~ I o> I 2>, . 

The oscil lator constants are all the same in these formulae. 

Thes e equations can be used directly to express the 

cyl indrical states in terms of the cartesian states 

In n n >. z y z 
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ORTHO NORJ.vlALI TY CONS'l'RAI N'I'S 

'l'h e p a ir of s ·tate s Jn,m,n ;a,S), Jn' ,m' ,n;;a' ,8')
2 

a r e a u t o1rta tica lly orthogona l i :E 4Che y are of opposite 

p~r i ty or h a ve d i fferent m values . When this is not the 

c a se, then either 

(n,m) ~ (n ' ,m') a nd a= a', 

or and B = B I I 

must hold fo r th e s ta t es t o be o r thogonal. 

A sui t able , but not uniq ue , set of a and b para

me ters f or the f i r st twenty sta tes is given below, however 

f or a smaller s e t of thes e state s some o f these constraints 

c a n be removed. As an e x a mp le t he most general parameters 

for the GHA for the Ne 20 g r ound state are given separately. 

An additional constraint o f timereversal symmetry has 

also been incorporated b e low, so that states of the form 

Jn,m,n ) and Jn,-m,n ) have the same oscillator constants. z z 

This makes very little di f ference in the GHA calculations 

carried out in this work a nd makes no difference in the RHF 

calculations, however it enables the matrix elements for 

t he RHF programme to b e calculated more quickly. 
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P~ramc ers f o r Neon 20 minimization . 

n m n 	 Oscil lator Parameters z 

0 0 0 	 al bl 

0 0 1 	 az bz 

0 +1 0 	 a3 b3 

0 -1 0 	 a3 b3 

0 0 2 	 a'+ bl 

Quantlli~ numbers and constraints f or the f i rst four shells 

o f states. 

She ll 	 n m n parity Oscillator Parameters z 

lS 	 0 0 0 +1 a1 bl 

lP 	 0 0 1 -1 az b2 


0 +1 0 -1 a3 b3 


0 - 1 0 -1 a3 b 3 


2S ,lD 	 0 0 2 +1 al bl 

0 +1 1 +1 a'+ bit 

0 - 1 1 +1 a'+ 1?'+ 
0 +2 0 +1 as bs 

0 -2 0 +1 as bs 

1 0 0 +1 al b G 

2P,lF 0 0 3 -1 az b 4 

0 .+1 2 -1 a3 b3 . 
0 -1 2 -1 a3 b 3 

0 +2 1 -1 aG b7 

0 -2 1 -1 a6 b7 

1 0 l -1 a2 b a 
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Qu a n t um numbers and. constr a ints for the f irst· f our shells 

o f states. (cont'd) 

Shel l n m n p a ri ty Oscillator Parameters z 

0 +3 o· -1 a1 b9 

0 -3 0 - 1 a1 bg 

1 +1 0 - 1 a3 b l 0 

1 -1 0 -1 a 3 b 1 0 

Thes e constraints must be used in all illiF c alculatio n s 

r e g a rdles s o f which config uration is being considered , 

becaus e in this calculation all states are us e d and must 

be orthogonal. 

2. THE WAVE FUNCTIONS IN MOMENTUM SPACE 

Denoting the genera l point in k-space as 

(k. , e,k ),the transformed f uncti on is p z 

-31>yik r~ (kp ,e ,k ) = N (2 1T ) '/ ~ e -·- 'l' (p,¢,z) pdpd¢dz.nmn z nmn nmn 
z z z 

This integral can be evaluated to give 

~ n,m,nz 
= N' nmn z 

X 



169 

~nd 

!.\OTE 

N' can be obtai ned from N by replaci~gnmn 	 nmn z z 
~, s everywhere with their inverse . And thus apart from 

. 2n+ lm I+nz ;:ct he phase factor 1 , ~ is obtained by replacing 

a ,S with their inverses. This is very useful when cal

culating matrix elements . 

Further Notation 

Again put 

. nz\ "'a 
l '*'•

l 
(k )

z 

So: 

L 3-.: k) lmiLiml (,..,-lk 2) e-La-lkp2= (2a- 1 n ~I (n+ Im I ) ! ) ':.! (a.- 2 	
.... ':.!

P n , . P 

a _L 3-.: nz 3-.:
2 

<1> ( k ) = (B ':.!/IT 2 2 n ! ) z 	 z 

3. 	 MOSHINSKY TRANSFORMATION BRACKETS IN ONE AND TWO 

DIMENSIONS 

The one dimensional harmonic oscillator states can 
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b~ ex?r~sscd in ~erms o f ~ cre~tion operator a+ (Messi ah 65) 

n) = (n!) - !:z 

:::l1d t he p roduct o f two such sta tes f orms a two body via ve 

ft.nc tion, 

Ii" the relative and c ent:::-c of Lass co-ordinates for the 

two par t icles are defined a s 

T~en the creation opera tors for harmonic oscillator 

states in these co-ordinates a re 

+ + ..J..

and a = (a1 + a 2)/12c 

respectively. It should be noticed that it is at this 

stage that the assumption of equal oscillator constants 

f or ln1) and ln2) is made. Now the overlap we require i s 

and after expanding the operators on the right hand side 

using the binomial theorem it is found that: 
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( rq ; n 2 In ; N) 

i f n1 + n 2 = n + N and, 

o~!l.erwise. 

This formula was first derived by Brink and can 

oe extended to the two dime nsional case immediately. It 

is shown by Hessiah (6 ~) ) 'chat the two dimensional states 

c a n b e obtained by using two inO:ependent creation operators 
..J...·a: and a + . Thus 
' 

and in terms of our usual notation, 

ln,m) = n )In+' -
"f'l_ m = n+ - n 

2n +lml = n+ + n 

Now it foll ows that: 

In this way the two-dimensional transformation bracket is 

simply a product of two one-dimensional brackets. 



APPENDIX 2 

MATRIX ELEMENTS OF ONE -BODY OPERATORS 

AND THE CENTRE OF MASS CORRECTION 

1. SOHE BASIC INTEGRALS 

We define: 

00 

n rR . ~n) = J \l': ( p) p \l' . ( p ) pdp n = 0, 1 ....l.J l. J0 

00 

( -n) rR.. =J~ r
i(kp) kn ¢j (kp) k d k n = 1, 2 ....l.J 0 

p p p 

n aZ . ~n) = J
00 

\l'~ ( z) z \l' . ( z) dz n = 0,1 ....
l.J J 

-oo 

00 

(-n) knz . . =f ~C:(k ) ~~ (k ) dk n = 1, 2
l.J . l. z z J z z 

-CO 

where again i,j label some set of states and the various 

\l' and ~ functions are defined above. 

The R's and Z's have the f orm of overlaps between 

radial or azimuthal parts respectively. Many more complex 

matrix elements of one-b ody operators, and ? f separable 

two-body operators c an be reduced to products of these 

basic integrals as we wi ll now show in some detai l. 

FORTRAN function subprograms GROLAP and GZOLAP have 
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w~i tten 	to evaluate R. ~n) a nd Z . ~n ) for n = -2,-1,0,1,2.
lJ l] 

2 . 	 REDUCTION OP THE ONE-BODY SPIN-ORBIT FORCE 

We write 

whe r e 1+ , t_ ,s+,s_ are the u s ual operators, ( 1 + i1 ) etc.
X y 

Using 1 = r X k we f ind qui te easily 
~ 

. i <j> 	 iG 
Q, + = 	 -1pe k + iz e k z 	 p 

t s z z 

-i <j> -ie1 = ife k - iz e k 
2 	 p 

Thus 

The spin and angular variables can be integrated out quite 

*easily 	giving factors o f the form o (m. -m . ) , o (m. -m . ±1) etc. 
l J l J 

The integrations over p and z are now of the basic types 

given i n section 1 of this appendix, and we obtain: 

<ijt . sjj > = o(m . - m.) o(s.-s.) m.s . R. ~O) Z. ~O) + ~ o (m . - m.+1 ) 
,... ,., l J l J l l . lJ lJ l J 

o(s .-s.-1) {i(nzj-nzi+1)R. ~dz . ~-d + i(2nj+jmjj-2ni-lmi j-1) 
l J 	 lJ 1] 

R (-dz . 	~I)}+~ o(m .-m.- 1) o(s.-s. +1 ) {i(n~j-nzi-l)R. ~dz. ~-I)
ij lJ l J 1 J 	 lJ lJ 

*NOTE 

S(m) 	 = 1 if m = 0 
= 0 if m =I 0 
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The selection rules for this matrix element are 

lm. - m. I ~ 1 a nd conservation o f total j = m + s, a nd 
l J z 

par i ty . When these conditions arc satisfied the comp lex 

factors 	reduce to ±1. 

3. 	 FURTHER REDUCTION FOR~ULAE 

We 	 have immediately that 


I 21 (2) (0)
<i p j 	> = o(m . -m . ) R. . Z.
l J lJ lJ 

= o (m . - m . ) R. ~ 0
) Z . ~ 2

)
l J lJ lJ 

whence: 

= o(m. - m.) {R. ~ 2 )Z . ~o) + R. ~o)Z. ~ 2 )}
l J lJ lJ lJ lJ 

And similarly in momentum space: 

2	 0 0 2= o (m . -m.) { R . ~- ) z . ~ ) + R. ~ ) z. ~- ) } 
l J 	 lJ lJ lJ lJ 

4. 	 REDUCTION OF THE TWO-BODY CENTRE OF MASS CORRECTION 

The centre of mass correction term ~s: 

L: k. 	2 L: k .. k.
i l 	 i<j ....,l "'J 
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Nhere A is the number o f nucleons and m the average mass 

of the nucleons. The first term on the right hand side 

o f the equation above is i ncorporated as a renormalization 

o f the usual kineti c energ y . Thus: 

T -> (1 - 1; )
A 

T 

'l'h~ second term has the f orm of a separable two-body 

o p erator and contributes to the average Hartree-Fock 

potential r. 

The general matrix element which we want to 

e valua te is: 

The integrations over 81 and 8 2 are simple in each term 

and give factors of !2cS (mi-mj±l) cS (mQ,-nim±l) and 

cS(mi -mj) cS(mQ,-mm) respectively. 

Apart from the usual symmetry rules of conserved 

m and parity we have for this matrix element in addition, 

lm. -m . 121, and the parities of i and j must be o pposite.
l J 

The remaining integrals over P1,p 2 ,~, and z2 

all separate into the basic types given above. Remember i ng 

the phase factors which come from transformation to k-space 

we get: 

<iR.jk1.kzjjm> = ~cS (m.-m.±l) cS(m -m ±1) i( 2~j+ 2nm- 2ni- 2n~+ l mjl
l J . N 

0 m 
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lrJhe n ever the selection ::::-u_e:s are satisfied the comple;x 

f~ctors reduce to ±1 . 



l ,PPENDI X 3 

MATRIX ELEMENTS POR THE TWO-BODY INTERACTION 

As explained in the text the most general form 

o f interaction we are interested in has the following 

form in configuration space: 

2 

P 2,/.3 ( r 1~ r 2) v ( r 1- r 2) ::::ce- 2/3 (£L + ~ zc ) 
Po2 Zo 2 

whe re we are using (p ~ 1 z ) f or the cylindrical co-c 1 c c 

ordinates of the centre of mass variab le (r 1;r 2), and 

p and z as the r.m.s . values of p and z f or the
0 0 

density distribution. Now the general matrix element 

(i.Q. 1 pr3 (R) v(r) I jm) 

c a n be reduced to sums and products of terms of the f orm 

-,-r (. n • k K):::::-1- fwr( )* 111 r( · )* -imi<Pi-im.Q.<l>2
~ 1~ ~ ,J,m, , r. P1 rn P2 e 

. 2 1 N
47T 

177 
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a. nd 

As the states may all have different oscillator constants 

it is not possible to car+y out the usual form o f trans 

forma tion into relative and centre o f mass co-ordinates 

for the two-body wave functions, a nd s o we have to evaluate 

these integrals explicitly a s they stand. 

We write the product o f the normalization constant s 

as N s o: 

1 2a1 .2a2 .2a3 . 2a , • . n1 ! .n 2!.n3!.n4! ] 'l:t 

N = --~--~----~--~--~~~~--~--~~-----
4TI~ 

(nl + lm1 I) ·~ (n2+ lm2!) ! (n3+ lm3l ) ! (n4+ lm41)! 

then: 


I = N Je i ( m ' -m d $ 1 ~ i (m 2 -m ' ) $ 2 ( " 1 \ d Im 1 I ( " 2 "P 2 ) fm 2 I 


X 

X 

X 
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The ang ular integration c ":~ be carried out immediately, 

us i ng 

""hus 

- :'' . 2J [-i(k-K)P1P 2]. .. m 1-m3 

Now from 

= (-1) v J (z)
\) 

and 

i-m J (z) = im J (z)
m -m 

this can be written 

As the required matrix element is unchanged by a cha nge of 

n1miliering from 1,2,3,4, to 3,4,1,2, we will assume from 

>
here on that m3 - m1 

So: 


I = NJ4 'iT 2 i m 1-m3 . (a 1~P I) Im 1 I (a 2 ~P2) Im2 I (a i ~P1 ) Im3 I (a 4 ~P 2) Im4 I 
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- 1;Ap ~ e - ...'.... 

At this point we c .:tn s i mJ? lify matters somewhat 

b v noticing that in the f i rs t f our shel ls of harmonic 

osc illator states the quantum number n is always 0 or 1 

\)
Ll(X) = 1 +\)-X 

n2nce we write 

L Im I ( x) = 1 + n Im I - nx n = 0 o r 1. 
n 

i f we f urthe r put 

and constants 
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The n the integral required is 

From Erdelyi (1954) we find the standard integral 

00 

, v;2 A- (n+v+l) -a/A ·'li= n.a e Ln (a/A). 

which gives the integral over t 1 • Defining further 

we have 

L: 
r,s 

r_ ( k - K ) 2 ]
X [ A t2 . 


X2
where = AB - (k-K) 2 



182 

~~e rema ining integral c an a lso be found in Erdelyi as : 

'"' ( - ot tS a f( ~ +n+ l) yn
c - Ln (y t) d t = 1 ;-!.--- - -o:S:-+_n_+_l-=- F [-n -n-a ·-n- e ·E]

l 1 I I 'y
J , p 

I,, 2 i+r . n l 2 ( . l)
[- ( •k - '! J AJ+S-;v-r+ X- J+r+ 

2 
X 

( k- I< ) 2 

A FORTRAN f unction subprogram VDRFP has been written to 

e valua te this f ormula. 

Denoting the relevant nor malization constant by N again, 

so 

we h ave : 
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l{a t h er than at.tack. thi s i ·tcgr a l directly we use the 

generating f unction £or the Hermite polynomials 

co 

L:= H ( x ) 
n=O 

T..us : 

can b e expanded as an infinite multinomial in z 1 ,z 2 ,z 3 , and 

z.., , thus: 

n1 n2 n 3 n4Z1 Z2 Z3 Z4 

n1! n2! n3! n4! 


Th~ evaluation of J is straightf orward. 

. co +oo 

c 2 2 2 2> r e-~By. 2 +2C 8 2 !<2 Z2+84 " z4)yJ = e- z 1 + z 2 + z 3 + Z4 J dy 
Jdx 

-oo -oo 

where we have written 

A = 81 + 8 3 + k + K 

B = 82 + S 4 + k + K 
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The subsequent e valua tion using the standard integral 
, oo 

J 
r 

-co 

is simp ly a matter of algebra, and gives 

J = (2XJI ) exp (2 X )
x.2 

wher e 

~and u. = s. z. i = 1, 2; 3, 4 
1 1 1 

X 2 = AB - (k-K) 2 

Now the required integral I (n 1 ,n 2 ,n 3 ,n ~ ,) appears 

in t he coefficient of u1n 1u2n 2 u 3 n 3 u 4n 4 in the expansi on 

o f the exponential. In fact we have explicitly 

in e xp [X] 

X 
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The various rele v ant coefficients which occur for 

the first f our shells o f oscillator wave functions have 

all been evaluated by hand and a FORTRAN . function sub

program VDZFP incorporating them has been written. 



STRUC'l'URE OI·' 'l'HE RHF PROGRl'..MS AND 

S 'I'ORl\GE OF :>11\.'l'RIX E LEMENTS 

SIMPLIFIED S '.L'l\UC'E U~m OF PROGRA.t'1S 

HARFOK AND HARF0 4 

l. 	 Read in: qu~ntum numb e rs f orce parameters, 

repres entation size and shape p rame t ers, 

nucle us ~nd configuration parameters, 

and mi sce llane ous constants. 

2. 	 Store matrix elements of one-body part of Hamil 

·tonian. 

3 . 	 Calculate paramete rs for gaussian approxima tion 

to density o f doui nant configuration. 

4 . 	 Store matrix ele me nts o f two-body part of Hamil 

tonian. 

5. 	 Fill HF matrix with random numbers and biased 

diagonal elements . 

o. 	 Diagonalize HF a nd order the eigenve ctors 

according to their eigenvalues. 

7. 	 Form density matrix RHF from occupied states. 

8. 	 Put o ne-body matrix elements into HF and calculate 

average Hartree-Fock potential r, adding to H~. 

186 
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9. 	 Return to step 6 for p rescribed number of 


iterations . 


10 . Calculatc mixing parameters 0 1 I e2 e3 ' und 8 lfI 	 . 

11 . Output density mutrix RHO . 

The time f or the c a l cu lation of all the matrix 

elements is about 20 seconds fo r the three shell p~ogram 

and about 2 ~ minutes f or the four shell program. One 

iter ation loop, consisting of steps 6 to 9, takes about 

20 seconds f or the three she ll program, and approximate ly 

12 seconds o f this time is spent in diagonal izing the 

20 x 20 HF matrix. For the four shell prog ram the iteration 

loop takes about 3 minutes a nd about 1 minute of this is 

used to diagonalize the 4 0 x ·4o HF matrix. 

B STORAGE OF TWO-BODY MATRIX 


ELEME~\JTS FOR HARFOK 


The two-body matrix elements between space states 

are stored in an array V. The matrix elements . 

(IL IvI JM) I I L I J M = 1 ' 2 I 10I 	 • • • • 

satisfy 	the relation 

(ILjVjJM) = (LIIVIMJ) 

2nd so it is necess ary to store thos e for which I ~ L. 


Fur t h e rmore, for given I and L values, the values o f J 


and M which satisfy the conservation rules, for total z 
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component o f ung ula r momentum a nd parity, are considerab ly 

restricted . In fact the l a rgest number of (J,M) pairs 

that can be taken with any (I, L) pair is 16. As t here 

are 55 (I,L) pairs we s t o re the matrix elements in a 

16 x 55 array . The columns o f t h is array are nQ~bered 

a cco rding to I and L by t he index ~L (L-1) + I, and the 

non- zero matrix elements wh i ch may occur for the (I,L) 

.p a ir are stored starting a t the head of the column. In 

o~der to remember the corresponding J and M values f or t he 

matri x e leme nts, we use a rrays JV(l6,55) a nd MV(l6,55). 

Now to locate a particular matrix element (ILIV IJ M), the 

i .dices are arranged so t h at I~ Land from the~ a nd L 

v a lues a column is picked. Then we must scan dmm this 

column in the JV and MV ma trices until the JV and HV 

values coincide with the r equired J and M. Finally, when 

a row is located as containi ng the correct J and M, the 

natrix element is found i n that row of V. It will b e 

shown below that such a s e arch procedure is not needed 

to construct the average potential, and is only cons i dered 

h ere f or clarity. The two-body c entre-of-mass matrix 

elements are stored in an exactly similar way in an array 

COM ( l6,55 ) and the JV and MV arrays apply to COM as well 

a s to V. Because there are not 16 (J,M) pairs for each 

(I ,L) pair there are ma ny zeroes in the V, JV and MV 

<:.:::- rays , and , because o f the more stringent selectio:Ll rules 
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fo~ the cen tre o f mass clements, there are more zeroes 

i~ the COM array. In fa c t the storage efficiency o f 

thi s metho~ is about 50~. 

The matrix element (ILjVjJM) a ctually has more 

synunetries th a n the one mentioned above. I n particular 

(ILIVIJM) 	 = (LIIVIMJ) 

= (JM Iv I IL) 

= (MJIVjLI). 

If orbitals which differ only in the sign of m have t he 

same os cillator constants and are denoted ji) and jr) then : 

(ILjV IJM ) 	 - (ILI VIJM) 

= c:Jr:i IvI i:L> 

= (Lrj vjMJ) 

= cMJ Iv Ii r ) . 

~t must be pointed out t hat no t al l these eight form s 

2~e necessarily distinc t a. d th ey may be all equivalent 

~if I = L = J = M = I) . However on average there are two 

other distinct matrix elem~nts whi ch are identical to 

(ILjVjJM). Full use o f thi s symme try is made when 

storing matrix elements and so the time taken in evaluating 

them is reduced by a factor of 3. 

The spin and isospin par t o f the interaction is 

not stored explicitly but is calculated from the exchange 

parameters as necessary. 
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!{::-;CO\ 1~ t\.Y OF TWO- IJODY YJ:\':!:! X E L Ei:ftENTS 

~rl1 e f orm o f t h e m;_:tr ix f or the average potent ial 

is give n in chapter 4 i n ~he fo rm 

= l: . ( s+r S.n. V.n .)ij .Q.m P.Q.m i.Q.jm Vi.Q.jm ~;vJm ~;vmJ 

+
where the S~ljm are spin- isospin f a ctors and 

V. n . = (IL jVjJM) . 
~.x,J ffi 

We are denoti~g the sp&c~ s tate corresponding to ji) 

b II . It would be possible to construct the ma trix 

e : ements o f r one by one us ing the equation above. How

ever this wocild mean that a search would have to be 

c a rried out for all the non-zero elements V. n. , which 
~x.Jm 

contributed to a particula r r ... Such a search procedure 
~J 

is r athe r time consuming. It takes much less t ime t o 

consider the elements V. n. one a t a t ime and search 
~>:.Jm 

f or the various r .. to which they contribute. In this 
~J 

way the V array is scanned once and once only, , but each 

element may effect up to eight dif fe rent positions in 

the f matrix. The number eight arises because V. n. 
~.x, J r1 

a f fects r .. as a direct matrix element and r. as an 
~J ~m 

exchange matri x e lement and because there ere four possible 

spin choices for the pairs (i,j) and (i,m). 
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T10- BODY MATRIX ELEMENTS FOR USE IN 

Ill\R'l'REE- POCI< PROGRAMS 

Because of t he l a:c9 c numbe:r of matr i x ele:r.1e:nts 

L > the four sh.el l program HARFOL1, their storage and 

rocovery are more critica l . By way of example, if the 

t~e s me procedure was used i n HARF04 as in HARFOK, t o 

s~ore the matrix elements , t hen we would requ~re 27,72 0 

storage words . Th i s does not i nc l ude the c entre o f muss 

c or r ection te rms. 

A more efficient general procedure for s t or ing 

~atrix elements can be constructed as follows . A matri x 

~lement can be regarded as a n wnber associated with a 

~~adruple (i, 1, j, m) o f s ingl8-particle state indices . 

Quadr~? les can be regarded as equivalent if they give 

ris e to equal matrix elements, and they can be grouped 

accordingly. In each group there will occur the distinct 

quad ruples among 

(i,l,j,m), (l,i,m,j), (j,m,i,l) and (m,j,l,i), 

together with any others which are equivalent b e c ause o f 

symmetries pertaining to the single-particle states. 

Many of these groups o f q uadruples can now ~ be ignored, 

because the corresponding matri x elements are zero and so 

do no t affect the problem. At th is stage the symmetry o f 

the interaction is used, for example conservation of parity . 



192 

i _: so...0 sy~·.~r.1(;try is to be :!.mp o s c d o n the sing le-p <J.rt.i.. clc 

s:-.::: -::e :::; .!.n the l<.HF c a lcula•c.ion , s o tha t the density matr ix 

h .:::!-; s-.J:·,: ..:~ sy1:m1etr~:' , "chen n-·crix elemcn·t s which do not h ave 

i n the fo rmation o f: th e 

av~ ra~a p o tentia l r . For example, if the Hartree-Fock. 

s t. ...1 tc s \v-2.;:-e c ons trained ·co h a v e dcfini te pari ·ty, tht: . 

dcns _i "cy matrix p would h ave zero matrix elements between 

s t::: t es of opposite parity. Thus in f o rming f by 

the matr~x elements <i ljV jjm> in whi ch 1 and m have 

oppos ite parity, do not occur. Such matrix elements which 

do no t occ u r may be reg arde d a s zero and th e corresponding 

gorups of quadruples may be ignored. 

It now remains to list the remaining quadruple 

groups in some convenient order , and then the corres p ondi ng 

matrix elements can be store d in the same order. This can 

be done immediately if there is an ordering of the original 

set of quadruples, because any g roup of quadrup +e s has a 

lmvest q uadruple in the original ordering, and the groups 

a~e naturally orde r ed by the order of thei r lowest quad

rup les . A program t o use these ideas can be represented 

schematically as : 

l . 	 Consider all poss ible quadruples in some order. 

2. 	 If the synunetry rules, such a s parity, etc., are 

not satis fied ignore this quadruple (i.e. the 
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corresponding matrix element is zero or is not 

requi red in the c a l cu latio n) . 

3 . 	 If tl1is is not tho lowcEit ~[uadruplG in its 9ro up 

of equivalent quadruples ignore it . 

4 . 	 Otherwise calculate t he corresponding matri~ 

element and store it . 

The matrix elements are stored i n a o ne-dimensional 

~~ray, ~nd in order to remember the four single- partic le 

s~ates ass ociated with a particular matrix element we 

c 8uld store the numbers i,l ,j &nd m of the l owest quad ruple 

in s ir,1ilar arrays. This lowest quadruple c an b e used to 

generate the complete quadruple group. However, if t h e 

original quadruples are ordered as : 

( llll) 1 ( 1112) 1 (1 113 ). ( 1121) 1 (1122), . . . etc., 

then whenever (i, 1 1 j 1 m) is a lmvest quadruple we have 

i ~ min ( l, j ,m) . 

In p-ar ticular 

i ~ l 1 

and so the values of i and l which are stored occur in the 

sequence 

( l l) 1 (12) (13) (22) (23) (33) (3, 4 ) 1 1 	 • •• • 1 1 • • • • 1 

Because this sequen ce f ollows a well-define d pattern it is 

only necessary to remember at which point in the one

dimensional array o f matrix elements the (i,l) pair changes; 
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it i s not neces s ary to stor e the i and 1 indices i n ~ cp arate 

.:1 rrays . It is necessary to s tore the j a nd m indices . 

In the c ase of our f our s h e ll program thi s me thod 

h .. s b e "' 11 u::.ed to s tore r11CJ.-tr ix clements between s pace 

s t . .J. t e::: . There arc 20 such s ingle -particle space states 

and t h e n umber o f matrix elc me n ·ts to be stored is 16·/, l . 

T>.. u s we have 3 array s o f l e ng th 1641, one containi ng 

~atrix elements, another t h e v alues of j f o r the corresponding 

lm,1est quadrup l e , .:1 nd the third containing the m v alue s 

£c~ the lowest quadruple. I n addition it is necessary to 

rer..1embcr the 210 points a l o ng these arrays a~c which t h e 

v a l ue o f i o r 1 chang es . Th is a mo un ts to 5133 storage 

wo r ds a nd a considerable i mp roveme nt over the f i gure 

27, 720 given earlier . 

It has been shown ab ove that it is not necessary 

to sear ch for particular ma t rix elements when constructing 

the average potential, and the order in which they are 

pi cked out is i mmate r ial. However when a number is pi cked 

ou~ of the storage array it mus t be remeniliered th a t th is 

nw~ber is related, in general, to more than one quadruple. 

So, after the lowest quadruple is recovered from the 

storage arrays, all the equivalent distinct quadruples 

mus t be gener~ted, and the stored matrix ·element is then 

used as the matrix element corresponding to each indi

vidual quadruple. 



APPENDIX 5 

SUBROUTI NE MINI2 

1. Call and parameter list ~ 

CALL MINI2 (FUN, Pili~ , NDIM, DIRECT, N, STEP, 

STEPMX, EPS, SHIFT, ICALL, HOP, VAL, WORK, FIN). 

2 . Spcci fi ca tions ~ 

:nNI 2 is designed t o find the minimum o f a 

f uncti on of seve ral variables . The f unction is 

called as FUN (Pt ....n where PAM i s an array o f 

length NDIM . The d imensioned paramcJcers with 

their appropriate d imens ions are 

P Aiv! (NDD-i) 

DIRECT (NDIM , NDI M) 

HOP (3N + 4) 

VAL ( 3N + 4) 

WORK ( 2NDIM + N) 

3 . Procedure: 

The method has been taken from M. Pov;ell , 

Computer Journal 7_, 155, (1964), though some changes 

have been made . The subroutine executes one pass 

of the general procedure and is designed to be 

called repetitively until convergence is obtained. 

196 



197 

For the first call ICALL must be zero, and 

this parameter is stepped by one internally o n 

aoch call . When first called (ICALL = 0), MINI2 

examines the first N columns of the square mutrix 

DIRECT of side NDIM , these columns being used as 

directions to search along in the parameter space . 

The lengths o f t~ dire ctions are stored in WORK 

and i f a zero di~c ction is encountered it is 

d iscarded , the r m. i ni n<J columns of DIREC'1' b e ing 

s hif ted d own one place, and N is reduced by l. 

Also only on the first c a l l a starting v alue of 

?UN evaluated at t h e input parameter values is 

calculated, on subs equent ce1lls the starting point 

is remembered from t he p revious call 

On the first a nd all subsequent calls the 

f ollowing procedure is carried out. Each o f the N 

directions is take~ in turn and points are 

exami ned along it, using a one dimensional mi ni

mization procedur e explained below. At each ne\,7 

point the value o f FUN is stored in a corresponding 

p lace in the array VAL a nd the distance moved · in 

parameter space is stored in HOP. The result o f .. 
the one dimensional minimi zation is t o replace 

the starting PAM array with· another one at which 

the value of FUN is not greater than the starting 

\ 
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value. To ensure this fea ture the position of 

the lowest FUN value is alwa ys remembered. 

When the PAM point in parameter space has 

been move d along each of the N directions i n 

t urn in e1is way 3N + l points have b e en cal

culated and stored i n VAL and HOP. At this . 

stage a new dire c tion is introduced which is 

taken f rom the or i gi nal PAM point on entry to the 

subroutine to the most recent PAM point , a nd if 

the distance between th e s e two points is d, the 

new direction is normalized so that one step along 

it moves a distance of d/(2/N). The one o f the 

old directions clos est· to this new one is now 
. . 

discarded and the new one replaces it in DIRECT. 

Finally a one dimens ional minimization is carried 

out along this new directio~, the best value 

found for FUN is r eturned in PIN and the point 

at \vhich it occurs in PAM, and the net distance 

moved in this pass is returned in SHIFT. 

4. The one ·dimens ional minimization 

At the start of this subprocedure the v a lue 

of FUN (PAM) is given at a point, and a particular 
.' 

directi6n is given. · A step is taken along the 

direction, which moves the point PAM a distance o f 

STEP multipl i e d by the length of the direction, and 
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the value of FUN e valua ted. If the new value i s 

lower than the starting value a further step is 

taken and a third p oint evaluated, however if 

th -.:; !l~\v val u~..; o £ 7"J)J i s l a rger, two steps backwar<.l 

arc taken . At t h i s po int we have three value s 

of the f unc ti on 2Vd luate d at equal i n terval , and 

a dec i sion is made a t t his stage . I f the f unction 

a parabola is fit t ed t h rough the three f values 

and the position of t he minimum of the parabola 

is c alculated. In this case which may b e c a lled 

the normal cas e ~he function is evaluated at the 

PAM point corres ponding to the bottom of the 

parabola and th i s point is used as the start of 

the next one dimens ional minimization un less the 

value of FUN is l a rger than the lowest one 

previously found, in which case this previously 

found point is used instead. 

When this normal case is not satis f ied (that 

is f 1 -2f 2 +f 3 ~EPS) it is decided that the curve is 

too flat for a parabola to be meaningful or else 

the parabola has a maximum rather than a minimum . . 
(It should be noted that ' f 1 -2f 2 +f 3 is proportional 

to the second derivative . averaged over the region 

of interest. ) In this case the subroutine will 
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ci-..:.licr usc f 2 as · l: c s ·ta r ting point f o r the 

nex t minimizatio , i f £ 1 is s maller than both 

f1 and ' f3, or e lse ca lcul a te an additiona l point 
' . 

and make a nother ~ ttempt to fit a parab ola t o 

t hree consecutive poin t s including the new one. 

The s ubro uti ne will ma ke up to f our attemp t s 

t o fit a parabola in this way, bu t wi ll no t make 

any attempts after the extra p oints c a lculate d 

start to' increas e i n val ue . In any cas e where a 

parabola is not f it:te d , the lowe s t value o f l··UN 

which h a s b een c alcu l ated is used f or the ne xt 

minimization. In c as es where more than three 

points are calculated a long a direction only the 

f irst and the l ast two a re stored in VAL and HOP. 

It should b e noted that if the ·value of EPS 

is very srnall "or ze ro t he procedure may become 

unstable particularly a round saddl~ points. On 

the other hand if EPS is very larg e the procedure 

will never fit a parabola and will just take up to 

7 steps i~ each direction remembering always ~h~ 

lowest one, this of course will make convergence 

very slow. 

5. Further comments 
\ 

None o f the parameters need adjustment betwee n 

calls however, STEP, STEPMX and EPS may be changed 
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if desired. 

EPS should cer tainly be larger than any 

rounding error which may occur in the e v aluation 

of FUN, and reasona b le values are about the 

accuracy to which the minimum value is required. 

In principle ND IM + 1 passes are needed to 

find the minimum of a general quadratic function 

:".n NDIM variables, however for rather s 'imple 

functions of 10 variables about 5 passes has been 

sufficient. 

If nothing is known about the function a 

reasonable initial choice for DIRECT is the unit 

matrix. 

t• 
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Figure 1. 

Figure 2. 

Figure 3. 

Fi gure 4. 

FIGURE CAPTIONS 


The radial part of force 2 is shown for 

~wo values of "r' as indicated. Also shown is 

a hard-core potential and the long-range part 

of this, obtained in the Moszkowski-Scott 

separation technique. The attractive part 

of the hard-core potential is 

V(r) = -93.5 exp(-r/1.4)/r, r > 0.4 fm. 

A is shown as two functions of the r . 
relative wave number, derived by fitting the 

singlet or triple s-wave phase shifts. Some 

weighted average points are shown, the weights 

being the relative singlet and triple strengths, 

as explained in chapter 3 . Also shown is the 

parabolic fit to these points which is used 

in force 2. The range of values of k which 

are used in evaluating matrix elements extends 

roughly from 0.4 fm- 1 to 1.6 fm- 1 , and over 

this range the parabola is a good fit the the 

average points. 

The binding energy per nucleon in nuclear 

matter, obtained by a first order perturbation 

calculation (i.e. a Hartree-Fock calculation) 1 

is shown as a function of the Fermi wave num

ber, for forces 1 and 2. 

A matrix element of the gaussian potential 

0 

. A(k) = :\ ( 1 + 0. 5 (k - 1) 2 ) 

is shown as a function of the size of the 

oscillator states. Curve A gives the result 

205 
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Figure 5. 

Figure 6. 

Figure 7. 

of using the Kallio definition of k 2 , given 

in chapter 3, and using the Moshinsky trans

formation to separate the relative states. 

The result of using the definition of k 2 , 

proposed in chapter 3, cannot be separated 

from curve .A on this scale; the two sets of 

results differ my at most 0.005. Curve B 

shows the result of using a constant value 

of k 2 taken from the relative s state. Both 

curves are normalized to unity at zero size, 

and so all units are dimensionless. The 

matrix element evaluated is 

<ooo, oo21v1ooo, 002); 

other matrix elements examined show very 

similar behaviour. 

The radial density of the 16 0 configu~ation 

lS, lP, is shown as pN. Also shown are the 

two gaussian approximations and definedp1 p 11 
in chapter 3, and ar 2 pN. a is the oscillator 

constant. All units are dimensionless. 

The binding energy obtained for 16 0, in 

the three shell RHF program, is shown as a 

function of the number of iteration~ perform~d. 

The representation states used have an optimum 

volume (a 2b = 0.9186) determined by a one

dimensional minimization of the energy of the 

simple configuration lS, lP. The deformation 

of the states is d = -0.4. 

As for figure 6, the 16 0 binding energy 

is shown as a function of the number of 

iterations. In this case though, the repre

sentation states are spheric'al (i.e. d • 0) 

' ' 
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Figure 8. 

Figure 9. 

Figure 10. 

Figure 11. 

and have a volume (a 2 b = 1.00) which is 

larger than the optimum volume. 

As for figure 6, the 16 0 binding energy 

is shown as a function of the number of 

iterations. In this .case, the representation 

states have their best size and deformation, 

as determined by a GHA calculation. The . large 

energy scale shou~d be noted. 

The binding energy, for the asymmetric 
2 ~Mg ground state, is shown as a function of 

the number of iterations. The representation 

states have their best parameters, as deter

mined by the corresponding GHA calculation. 

The energy of the 20 Ne configuration 

lS, lP (002)~, and the energies of the 

related three and four shell RHF calculations 

are shown as functions of the deformation d 

of the representation states. The calculated 

values are marked with crosses. The repre

sentation size (a 2b = 1.025l)is chosen to 

minimize the energy of the pure configuration 

at zero deformation. On the right hand side 

the results of the GHA calculation ~nd of the 

RHF calculation using the GHA parameters are 

shown. 

The dimensionless deformation parameter 

Q/R2 for the 20 Ne system, as a pure con

figuration and from three shell RHF calcu

lations, is shown plotted against the 

deformation d of the representation. d is 

· just the value of O/R2 for the (000) orbital. 
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Figure 12. 

Figure 13. 

~. -
Figure 14. 

Figure 15. 

The size of the representation is given in 

the figure 10 caption. 

The mixing parameters 81 and 83, for 

states of the same m and parity and for states 

of different m but opposite parities 

respectively, are plotted against the defor

mation d of the representation. The size of 

the representation is given in the figure 10 

caption. The values obtained in the RHF 

calculation, which uses the oscillator para

meters obtained in the GHA calculation, are 

shown for comparison on the right. These are 

marked "RHF". 

The kinetic and potential energies of 
20 Ne configuration lS, lP, (002)~ are plotted 

·against the deformation d. The size of the 

representation is given in the caption for 

figure 10. 

The energies of the 8 Be configuration and 

the related RHF solutions are shown plotted 

against the deformation d. The format is 

identical to that of figure 10~ The repre

sentation size (a 2b = 1.0504) has been chosen 

to minimize the energy of the pure configuration 

at zero deformation. 

The deformation Q/R 2 of the 8Be system, 

as a pure configuration and from three shell 

RHF calculations, is .plotted against the 

deformation d of the representation. The 

representation si;~ is given in the caption 

for figure 14. 
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Figure 16. 

Figure 17. 

Figure 18. 

·Figure 19. 

The mixing parameters 81 and 83 for 

the RHF calculation, starting with the aBe 

configuration lS, (001) 4 , are shown as a 

function of the deformation d. The size 

of the representation is given in the caption 

for figure 14. 

The kinetic and potential energies of 

t he aBe configuration 15, (001) 4 are shown 

plotted against the deformation d of the 

representation states. The size of the 

representation is given in the caption for 

figure 14. 

1 60The bindi ng energies of the con

figuration 15, lP, and the related three 

shell RHF solution are plotted against the 

deformation d. The GHA result is shown to 

t he right. 

The three she ll RHF solution using the 

GHA oscillator parameters cannot be separated 

from the simpler GHA result on this scale. 

The four shell RHF solution at zero deformation 

cannot be separated from the three shell one. 

The representation s i ze (a 2b = 0.9186) is 

chosen to mini mize . the energy of the simple 

configuration at zero deformation . 

1 60The deformation Q/R 2 of is shown, for 

the configuration 15 , lP and for the related 

three shell RHF solution, as a f unction of 

the deformation d of the representation . It 

should be noted that, because of the way in 

which d is defined, the results for the 

· dominant configuration lie on the straight line 

.. ' 
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Figure 20. 

Figure 21. 

- ~ .. 

Figure 22. 

·· 

l.
0/R = d. The size of the representation 

is given in the caption for figure 18. 

The kinetic and potential energies, of 

the 160 configuration lS, lP, are plotted 

against the deformation d. The size of the 

representation states is given in the caption 

for figure 18. 

The energies for the 2 ~Mg configuration 

lS, lP, ·(00 2} ~, (0 11} ~, and for the related 

three and four shell RHF solutions are shown 

as a function of the deformation d. Cal

culated points are marked ~ith crosses. Only 

two points have been.calculated with the four 

shell program, and the dashed curve connecting 

these is necessarily tentative. The constant 

volume (a 2b = 1.0414} is chosen to minimize 

the energy of the pure configuration at zero 

deformation. On the right are shown the 

energies of the cylindrical and cartesian 

GHA calculations, and of the three shell RHF 

calculation using the oscillator parameters 

obtained in the cylindrical GHA calculation. 

The deformation parameter Q/R 2 for the 
2 ~Mg configuration 15 6 lP, (002}~, (011} 4 , 

and for the related three shell RHF solution,

is shown as a function of d. Also shown is 

the asymmetry parameter for the RHF solution. 

The very small variations in the asymmetry 

· parameter cannot be detected on this sca1eo 

The size of the representation states is 

giv~n in caption for figure 21. 



Figure 23. 

Figure 24. 

Figure 25. 

Figure 26. 

Fig.ure 27. 

Figure 28. 

Figure 29. 

Figure 30. 

Figure 31. 

Figure 32. 

Figure 33. 

Figure 34. 
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The polar plot of cos 22f gives the 

variation of the density of the single

particle state 

A £1020) + IO - 20)] 


about the z axis. The orthogonal state 


A£1020) - IO- 20)] 


has a density dependence which is similar 

to that shown, but is rotated thorugh 45°. 

The single-particle levels for the 

various 8Be solutions are shown; see chapter 

·6 · and the note below. 

As figure 24, for 1 2c. 

As figure 24, for 1 so. 

As figure 24, for 2ONe • 

As figure 24, for 24Mg. 

As figure 24, for 28si. 

As figure 24, for 32s. 

As figure 24, for 3sA. 

As figure 24, for 4oca. 

The experimental binding energies per 

nucleon (corrected for the Coulomb interaction) , 

and those obtained with force 1 are plotted 

against A-¥3 . The dashed lines connect the 
1doubly closed shell nuclei 4He, so and 4°Ca. 

. I 

The experimental r.m.s. radii and those 

obtained with force 1 are shown plotted against 

A~. 

Figure 35. As figure 33, for force 2$ · 
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Figure 36. 


Figure 37. 


Figure 38. 


Figure 39. 


Figure 40. 


NOTE: 

As figure 34, for force 2. 

The exper imental binding energies per 

nucleon (corre cted for the Coulomb inter

action) , and those obtained in GHA calculations 

with force 3 a re plotted against A-V3 
• The 

two density approximations ·are marked, and 

they represent upper and lower bounds for 

the individual nuclei. 

The experimental r.m.s. radii and those 

obtained in GHA calculations with force 3 are 

plotted against A 1~. The two density approxi

mations are marked, and they represent upp~r 

and lower bounds for the individual nuclei. 

As figure 37, for force 4. 

As figure 38, for force 4. 

In figures 24 to 32 the degeneracy of a level 

is indicated by a number in parentheses 

immediately on the right ; if no number appears 

the degeneracy is fourfold . All levels are 

symmetrically occupied by neutrons and protons. 

The levels for GHA solutions are marked with. 

the corresponding cylindrical or cartesial 

orbital in the notation used throughout the 

text. The dotted lines connecting. various 

levels are present to facilitate comparison 

between related spectra . They do not necessarily 

imply any specific relation between the different 

single-particle states, though in fact some 

correspondence often exists e The single-particle 

states, used in the GHA calculation,(i.ea the 

http:calculation,(i.ea
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representation states) are split by the 

spin-orbit force. This splitting breaks 

the (n m nz) orbital into two doubly 

degenerate levels 2m MeV apart. In order 

to simplify some of the GHA spectra, this 

splitting is not always shown. 

.. 
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FIGURE 24. BERYLLIUM 8 SINGLE PARTICLE LEVELS 
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FIGURE 25. CARDON 12 SINGLE P1\RTICLE LEVELS 
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FIGURE' 26. OXYGEN 16 SINr,LE PARTICLE LEVELS 
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FIGURE 29. SILICON 28 SINGLE PARTICLE LEVELS 
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