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l. INTRODUCT I ON

The computaticnal complexity of chemical processes has been
reduced by the development of generalized procsss simulators for use
on a digital computer. Excellent reviews describing fthe process

simulators available have been published lately (C4, EI, J1, L, RI).

Oné_of these executive programs is Shannon's PACER (C4, M2, 520 nich
has been widely utilized at McMasTer University fdr simulaffon of
‘chemical plants such as a sulphdric acid'planf, an alkylation process
unit, and the Bayer process for alumina extracvion.

| The underlying principle of most of these simulator programs
is that of modularity. A real chemical plent is made up of processing
~units such as distillation columns, reactors, heat exchangers, pumps,
compressors, and so on. Fach unit (equipment) has a set of fundamental
laws of chemistry or physics which can be used to model the unit
mathematically or by empirical equations. The assembly of such a set
of mathematical equations and of the mathematical techniques for solving
them, so that the unit is simulated, is defined aé a unit computation.
Each unit computation computes all the output streams from the unit,
given all the input streams and the relevant parameters which describe
the unit.

The process simulator controls and directs the calculation of

the unit computation of the chemical plant. Thus, the unit computations,



together with the information from the process flow diagram, can be
| utilized by the simulaTér To sef up a mathematical model of the
complete process.

The essence of a simulator which uses the modular approach is
that it provides an easy means of describing the entire process itself,
and the relevant data and specifications, so that modifications can be
readily made and the calculations carried out without the need for any
spépial programming by the user; other than of the ﬁecessary unit
computations. The simulation of The complete process can bé used as
‘many tTimes as required to evaluate the pérformance, either for different
Input conditions or for different values of the design or operating
ﬁaramefers.

If the process flow diagram contains no recycle streams, it is

| possible to work systematically through the process, unit by unit, usTng
computed output streams as the ippufs +o succeeding units., This is not
possible if a-recycle stream is present, since This will always be
required as an input before it has beén computed as an outpuf., All the
simulator progfams deal with This situation by breaking a sufficiehf
number of streams, called assumed or recycle streams, by TreaTing the
downstream half of each as an input to fthe process and The other half
as an output, and by using a suitable iterative procedure to match the
two halves. The user must provide the initial estimates for these

(K1) et

"inputs", although it has been claimed by Kesler and Griffiths
in some cases convergence is assured from an initial estimate of zero.

Typical recycle process is given in Figure 2.1.



-

Determining the sequence in which the units are computed, the

 computational sequence, and hence the identification of the recycle

streams, is the first step essential in the calculation of recycle

(€2, L2, $3, F2, NI) .

processes. Extensive research has been done
determine the minimum number of recycle streams (assumed streams), by
analyzing the topological description of the flowsheet, although the
computational sequence which is obtained from these streams will not
né@essarily yield the most rapid convergence,
The method of successive‘subsfifufions is probably fhe most
(EI)

commonly used for computing the recycle processes., The major

advantage of this method is its simplicity, but unfortunately its rate

of convergence can be intclerably slow and sometimes it may not

converge at all.

For this reason, various kinds of convergence accelerators

are frequently used in process simulation work (C3, K, K2, R3, RB).

(C3)

Cavett presented a comprehensive review of techniques for

obtaining solutions for steady state process simulations, In particular,

Cavett discussed the application of convergence acceleration such as

(W1) (N3)

Wegstein's method and Newton's method. Naphtali , Ravicz and

Norman (R5) have also discussed the application of Newton's method for
obtaining the steady state solution of recycle processes.

(N2) who has not applied the modular approach to solve

Nagiev,
recycle problems, formulated the simulation problem as a system of
linear equations, Linearization was achieved by linearly characterizing

the operation of the processihg'unifs in terms of split fractions and
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-The solution was obtained simulfaneously by inverting the matrix of
constant coefficients. Rosen (R2) egfended Nagiev's formulation
technique to allow for varying of the split fraction. Rosen used
this method for promoting the convergence of heat and material balance
calculation of recycle processes. |

| Despite extensive studies and wide attention given To the
'convergence problem in the past, the need still exists to develop more
efficient convergence promotion techniques for large and complex
chemical processes. The recognition of this néed initiated this study.

The objective was to evaluate methods for promoting the
convergence of complex chemical plants and thus, for réducing the
number of iterations and overéll computation time.

The formulation of the iterative calculation technique for
recycle process is discussed in.SecTion 2. In addition, the existence
of the solution and the convergence condition of linear and non-linear
Iterations are studied. The asymptotic behaviouf of the i+era+fon is
thoroughly examined.

-In Section 3, the convergence promotfion methods are discﬁssed.
The full matrix method and the geometfric éxfrapélafion technique are
demonstrated in fwo case studies (Section 5). Section 4 brings out the
residual méfhod of formulation of recycle processes. A few solution
+echnfques for solving sets of non—lfnear algebraic equations are
discussed such as, Newton's method, a modified form of Newton's method
and the Quasi-Newton method. Two methods for solving mﬁlfi~componen+

distillation columns are studied in Section 6.



2.  STEADY-STATE PROCESS SIMULATION

The widespread use of computers for simulation and design of
large chemical processes has led to the development of executive

computer programs (C4, E["Ll).

These master programs’coordinafe_%he
computation of The unit process modules and perform simulaTion’or
opfimal‘design of complex chemical plants. The computational complexity
of chemical processes has been reduced by the development of these
~generalized process simulators.

The successive subsfffufion iteration ié the most common
technique to solve recycle ﬁrob!ems. The formulation and conditions
for convergence of the iteration wfll be discussed in this seé+ion.

In addition, the asympfotical behaviour of the iteration will be studied.

2.1 Formulation

In order to reduce the total computation time, the first step
in calculafipn of complex recycle processes is fto partition the plant
equipment into blocks, such that all the recycles-are within the
blocks; and then to order the blocks, such that completion of the
computation in one block éssures that all the streams, needed 1o perfofm
the computation of the next block in order, would be known. The block
contains one or mere equipments (nodes) where the connections between
the nodes are such that it is possible to reach from ény node all the

others in the same block, by a finite number of steps in the direction



of the arrows. A block, which can be repreéenfed by direct graph,
sometimes is called a maximal cyclical net (C!).
Example of partitioning recycle process into }wo blocks is
given in Figure 2.3, Nodes (equipments) | and 2 are in the first
block and nodes 3, 4, and 5 are in the second block. The computation
in the second block would be made only after completing the computation
of the first one, |

NT)

Norman ¢ and Himmelblau D,

detect blocks by taking
successively higher powers of the "Association Mafrix" of the process.
Sargent and Westerberg (83 performed partition directly with a list-
type representation of the "flow diagram" of the process. A similar
vTechnique was also used by Christensen (CZ).

Any block that contains more than one equipment (node), has
one o} mo}e recycles and thus may be solved iTeraTivejy. Before
starting Tthe sequential calculation within a block having recycle,

a set of streams must be chosen, the values of their variables assumed
and the sequence of calculation of the equibmenf implied by this set

of assumed streams should be found.

2.1.1 Assumed Streams and Sequence of Calculation

(N1 (HIY ch

Norman , Himmelblau and Chartrand used the

"Association Matrix" for identification of the cycles within the
blocks. Lee and Rudd (t2) start from this point, assuming that some
method is available to trace out all the recycles, and use the

"eycle matrix" to find minimum number of assumed streams. In PACER

by testing all the feasible stream combinations and increasing



successively The number of assumed streams, the minimum number of
assumed streams can be found. Buf the number of combinations to be
examined is excessive when the block is of moderate size, or when the
number of streams that need to be assumed, for solving this block, is
bigger than three.

(53) reduce the number of combinations

(C2)

Sargent and Wesfefberg
by merging edges and nodes (streams and equipments). Christensen
reduced the combinatorial problem by eliminating "ineligible" edges
(streams).

In all these works (€2, L2, 52, 23

; assumptions were made

fhaT the sequence of calculation which results from a minimum set of
assumed streams is thal sequence of'calculafion of the equipment within
the blocks which would minimize the calculation time. However, there .
is nefTher a numerical nor a theoretical proof of +his assumption.
Truly, Sargent and Westerberg (s3) were concerned about the problem

* that the minimum number of assumed streams might not lead to minimum
over-all computation time.

FurTHermore, it can be shown that the same sequence can result
from another set of assumed streams, larger than br equal to the minimum
set, by simply starting the calculation from another equipment in the
sequence, and therefore the rate of convergence will be TheAsame.

To explain the statement above we may examine a case that was

given by Lee and Rudd (t2)

(See Figure 2.2). For this recycle flow-sheet
they have given four available sets of assumed streams which are

sufficient to render the recycle problem acyclic (Table 2,1).



Although case B has the minimum number ‘of assumed streams and was

selected as the best by Lee and Rudd (LZ), all four cases give the

same computational sequence, differing only in the s?arfing point,

TABLE 2.1
Assumed Streams and Sequence of Calculation

for Recycle Problem as given by Lee & Rudd (t2)

(Figure 2.2)
Case ‘ Assumed Sequence

Streams of Calculation

A S9, S10, Sl l, 2, 3, 4, 5, 6, 7

B S3, S7 4, 5, 6, 7, 1, 2, 3

C S4, $8, S9 5, 6, 7, |, 2, 3, 4

D S6, S8, S9, S10 7, 1, 2, 3, 4, 5, 6

Therefore, in order to get The best cémpuTaTional sequence it is not
necessary to locate The minimum set of assumed streams. Furthermore,
iT appears that it is not always sufficienf to locate the minimum set
of assumed streams, in order to get the best computational sequence,
since we may have more than one minimum set.

However, for solving recycle problems some set of streams
must be assumed and this set ought to be feasible in order to get some
suffable computational sequence, where a feasible set is defined as

follows:



"A set of assumed streams of size m is a feasible éef if
and only if this set is sufficient to render the récycle
problem acyclic but no proper sub-set of this set -is
sufficient o do so"

2.1.2 Calculation Techniques

By breaking each assumed stream and treating one half as an
“"input" to process and other half as an "output" a suitable iterative
pFchdure may be used for matching the two halvés.

If the assumed streams and their related sequence o% calculafion
have been correctly chosen, Thet"oufpuT"‘half of the assumed streams
depends only on the "input" half (if all the design and operating

variables of the process remain constant). These relations can be

represented by the following set of functions:

y; = F, <x|, X s e xm) ' (2.1
' i=1,2, ...m
or in vector form:
¥ o= F X (2.2)
where:
X - is the "Inpufﬁ vector
Vrf is the "oquuT".veCTor
F - is the function vector
m - is the number of elements in vectors i, Y and F.

Vectors X and ¥ represent the same set of -assumed streams and the

elements of these vectors contain all the componentsof these streams.



Therefore, the number of elements, m, in vectors X or ¥ are equal to
the number of assumea streams mul%ipiied by the number of components
in Those streams.

The aim of any calculation Techﬁique is o find vector X such

that X = Y or to satisfy the following equation

X =F (X , (2.3)

Here, X is the variable vector and Rs is the solution of the recycle

problem which satisfies equation (2.3), such that
X. = F (X : ' (2.4)

After evaluating is’ that is the values in the assumed streams, the
remaining streams of the recycle process may be calculated directly..
Most of the executive programs as PACER (52) use successive

substitution for solving recycle problems. This technique may be

described by the following two equations:

X .= Y _ (2.6)

where n is the numbef éf the iteration and vecTor»?o is tThe Initial
poEnT;

If the initial value'io of the assumed streams is close enough
to the solution 25 the iterative procedure‘(EquaTions (2.5) and (2.6))

hopefully will converge within a specified tolerance after a sufficient

Y = F (X)) (2.5)
n



number of iferations.

(K1)

Kesler and Griffiths have also applied this successive

substitution method and they compared their results with the method

of simultfaneous solution described by Nagiev (N2) and Rosen (RZ).

The initial composition of the assumed sireams X, 15 assumed to be

zero in their study.

(C3) (K2)

Cavett and Kliesch discussed the application of

convergence promotion routines to replace the successive substitution

(C3)

(Equation 2.6). Cavett presented a comprehensive review of

iteration techniques used fo obtain so!uTioné of recycle processes.
Direct iteration (successive substitution), Wegstein's method,
hyperbolic exTrapolaTibn and Newton Raphson were reviewed and used
Yo solve example problems. Cavett found the hyperbotic method to be
very effective and useful for accelerating the convergence of recycle

processes containing only one recycle stream.

(K2)

Kliesch claimed success in accelerating the convergence

(W1) (W)

method. Wegstein used his method,

(A3, A4)

using the bounded Wegstein
which is in fact a modification of Aitken's method, for
accelerating the convergence of mono-variable iTéraTive processes.
Hence, it is expected that this method, as Cavett's hYperbolic extra-

(CB), will be useful only for promoting the convergence

polation method
of a mono-recycle process where tThe interaction between the components
are weak,

The sum of the equations (2.5) and (2.6) gives the general

iterative equation



X = F (X)) (2.7
n "

This equation (2.7) is the basic iterative equation that describes
calculation of recycle processes or calculation of heat and material
balances which are solved iteratively.

In case of recycle processes the functions F;(?) represent in
fact.the numerical procedure which is carried out as the calculation
progresses from unit fto unif. It is possible to find the value of the
set of functions for any point X but the first derivéTive can be taken
only numerically (by a finite difference). |

Atthough it was said that it is possible to evaluate F for
any point X it should be noted Thaf in practice only when X is located
wiThih a desfred distance from the solufion can the set of functions
be evaluated. It mainly happens if some modules within the recycle
process have a constraint on Their.feed composition.

Now, if the solution XS exists iq the desired interval and
satisfies eqﬁafion (2.4) and the inifial poinf'io-is close enough to
the solution, for material balance calcutations the iteration (2.7)
usual ly converges. Non-convergent iteration sometimes appears in the
caleulation of'highly interactive heat and material balances. The
probtlem of bowAfo obtain a good initial point io that will be close
enough 1o solution Xs is unresolved in general. Frequently, a good

estimate of the solution is known to the problem formulator, i.e. the

process engineer,
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2,1.% Recycle of Heat

In many chemical processes the output flows from a unit
exchange heat with the input flows, which constitutes a recycte of
“heat. Considering the case which is given in Figure 2.4, El is a
heat exchanger and EZ, which could represent an evaporator, distillation
column etc., is a computational unit which consists of heat and material
" balance calculations.

It can easily be shown that it is preferable fo select stream
number 2 as the assumed siream instead of sfréam number 4 (See Figure
2.4), |f stream number 2 is selected then the ftemperature of this
stream becomes the only variable of the recycle calculation. All The
components which flow in stream 2 are identical to those in stream I{
the feed stream. |If stream number 4 is chosen as assumed stream, the
variables of the recycle calculation are the temperature and all the
components of stream 4.

Hence the compufafion of recycie of heaT'cén be reduced to a
one dimensional problem which can be solved by successive substitution
or any ofher‘one dimensional search technique where the variable is
the Temperaf&re of sTream_Z.

If the recycle of heat (Figure.2.4) is part of another main
recycle, such that 5+réams | and 5 are included in it, it may be better
To converge the recycle of heat separately, every time the computational
sequence reaches this secffoh of the flowsheet.

Sometimes, the temperature of sfreém number 2 is controlled

(See Figure 2.5). In this case, the computation of the recycle of



‘heat can be solved directly. The calculation procedure can be as

follows:
I. Transfer the components flow from stream | to
stream 2 and fix the Tempera#uré of stream 2
as desired.
2. Calculate eguipment E2, EIl, and E3 in sequence.
) Extracting all the recycles of heat in the simulated processes

and treating them in the way discussed above can reduce the number of
recycles and simplify the calculation. An example is given in Section

5.1,
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2.2 lteration and Fixed Point

Considering again the general equation of iteration (2.7),

Xn+| = F (Xn) : (2f8)

(xh showed that for any set of functions F and

Isaacson and Keller
some initial approximation Ro’ the convergence of this iteration
process is assured if the mapping F(X) carries a closed and bounded

set S R" info itself and if the mapping is confracting, i.e., if

[FGO - FAOO|] <M || X - Y]] (2.9)
for some norm, the '"Lipschitz" constant M < | and all X, Y es.

It can be shown under these conditions that F(X) has a unique fixed

point is in S satisfying equation (2.8), as
X, = F (X
s s

The vector norm may be chosen as any one of the following

HXT .,

1t

max |X. | (2.10)

(2.11)

1
1
[ne]

>

1
f & (2.12)

=
5
|
R
nm3
>
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2.2.1 Convergence Conditions

The following twotheorems stated by Isaacson and Keller (H

give sufficient conditions for the existence of a solution Rs and for
éonvergence.
Theorem |

Let F(X) satisfy
HEGO - B <M ||%=Y]] (2.13)

for all vectors, X, ¥ such that

A
=5

and - 17 - % || <r

0 <M< 1 , L o (2.14)
and let the initial, RO, satisfy
|]?(20> - XN < G- o ~(2.15)
Then, 1) “all iterates Xn (2.8) safis%y

HX, = X1 <r

n

ii) the iterates converge to some vector say,

2im X » X
Mo D s

i) is is the only root of (2.8) in the interval,

1% - %] < r

(The precof is given in Appendix C).
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The iterate, Xn’ can be shown as follows o satisfy

%, = X I <wcamr

n+
as from (2.8)

X o = X = TR - F(Xn_J)]|

Thus, by (2.13), the Lipschitz condition yields,

S 1% - R

Ilxn+!

<M llgnﬂl_ ih-2||'

and applied condition (2.15), then

X = %1 < ML= (2.17)

As a consequence of +h[§ result (2.17) it is seen that the
iterates converge geometrically, and at least as fast as M > 0.

I+ also can be shown from (2.16) and (2.8) that,

y - % (2.18)
n-1 _

HFRR D - xn||_5 M.]IF(xn_l

A sinmilar Théorem, "Subcontracting Mapping Theorem", is given

(Gt)

by Goldstein In his theorem the initial point 20 satisfies the

following condition

or with (2.8)
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‘which replaces the initial condition (2.[5);

A more useful result can be obtained if we are willing o place
more restrictions on ?(i) and assume the existence of a solution is'
Theorem 2

-Let the iteration (2.8) have a root XS and let the funcfions

Fiti) have continuous first order partial derivatives,

_ R
(X = (2.19)
J X
and satisfy
. . )
max £ |F.. ()] <M< | ' , (2.20)
. IJ —_— .
r J=

for all X in

%X - X1, <r (2.21)

(for the norm see equation (2.10))
Then, 1) @ for any Xo satisfying (2.21) all the iterates in of
(2.8) a!éo satisfy (2.21)
i) for any XO satisfying (2.21) the iferafes (2.8)
converge to the solution ?S which is unique In (2.21)
(See Appendix C)

The iferafion can be shown as follows to satisfy

From (2.8) and (2.10)

||Xn+| - XS|'|.:,o -

Using the mean value theorem
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m
FA(X)=-FAX)= 2 F. (£).(x . =x_.)
‘I n | S j=| IJ 1 n, S,J
or IIF(Xn) - F(XS)Ilw = m?x {jzl Fij(ii).(xn,j - xS’J)}
where §i is a point on the open line segment joining in and XS.
Thus with (2.10) and (2.20) yields |
X 4 - xg[]@ = m?x {jil FiiEpa0q 5 - xS,J)}
. m . - ‘ - -—
< max {'E Fij(gi)}'llxh - Xsllw
iog=l ,
<% - X1,
P )
< M'“ n- | - Xs”oo
<M - %]
O S’ '®
< Mn+l r
and [ - % || <M ' (2.22)
n S .

Here again, from (2.22), it is seen that the iterates approach
the solution geometrically, and at least as fast as M' > 0.

As theorem 2 is only a sufficient condiffon for convergence,
the iterate might converge to solution without Xo satisfying (2.20)
and (2.21). Therefore, it may be that if equation (2.20) is satisfied

for X within a spheré of radius r around the solution Xs’ then the



)

24

_ifteration may converge to is if io is close enough to solution Xs’ but

not necessarily within that sphere, as required by (2.21).

For example, we may examine one dimension iterative calculation

- as

X = glx )} (2.23)
n -

n+l!

Then (2.20) and (2.21) become
lg'ta] <M< (2.24)
for all x in
Ix - x| <r , | (2.25)
Thus in Figure 2.6, although x, is outside of the interval of

(2.25) and X does not satisfy (2.24) since

lg'(xo)l > |

~ the iteration still converges.

2.2.2 Convergence Test

If the iterative calculation is a convergent proceés, the
iterate Xn wou I d approach the solution Rs asymptotically, that is,
that Xn wou ld approach Rs arbitrarily closely as n aﬁproaches infinity.
In a practical case it may be sufficient to iterate uanL reaching
somé point Xc’ close enoQgh To the solution Rs’ and o consi&er This
point as the solution.

However, the test of convergence used in iferative calculations
commonly is To examine the fractional changa of every element in veéTor

X, between two successive iterations. Hence, the test vector may be
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written as,
6, = [I)"(n]"'o"(nH - X)) (2.26)

where [IX] is to be inferprefed as a diagonal matrix wiTH elements x;
throughout this Thes{s. The iteration is considered to have converged
when every element in vector én is less in modulus than some small
To!érance. This kind of éonvergence test gives an indication of the
fractional change of every element in the vector X, but does not show
how far Rn is from the true solution 25: In addition, in order to
obtain the same deviation from the true solution fof two different cases,
the tolerance of the test vecfo} (2.26) ought to be chosen according to
the rate of convergence. It is well known that the slower the iteration
converges, the smaller the tolerance must pe for the same absolute
accuracy. Later in this work a fechnigue for choosing the right tolerance
will be discussed.

Another indicator for convergence is the deviation vector which

is defined as follows

- - -

3 -l g
Dn = [I XS] (XS - Xn) (2.27)

The elements in the deviation vector give the fractional difference
between ?n and the soluffon Rs' The deviation vector is hardly ever
used as The convergence indicator because ?S is unknown. However, if
a relation between Bn and én can be found, Bn may be used in choosing
the right tolerance for the test vector én ;uch that in is sufficiently
close To Rs as given by a specified ﬁn'

The test of convergence can also be done on the process itself

(2.5) separately from the computation method. In other words, the


http:choosi.ng

test would examine the fractional difference between vector Rn and ?n

regardless of the kind of convergence technique used for evaluating

in+i’ such as successive substitution (2.6) or some accelerating method.
This kind of test may be called fixed-point test vector and

can be written as, |

-

= o =] - _
T o= x xn] (¥, - X)) (2,28)

Since the fixed-point test vector is fndependenf of the convergence
technique, it was used for comparison of the various acceleréfing
methods. |t is worthwhile mentioning that for successive-substitution
iteration (2.6) the test vector én (2.26) and the fixed point test Tn
(2.28) are the same.

T =0 (2.29)

2.3 Linear lteration

It is well established that modern linear system theory has
been highly successful when applied to practical cases (35), in spife
of the need to use approximations. That is, that equation (2.5) may

be approximated by Iineaf equation as

F(X) =AX+D (2.30)
or

Y =AX +5 (2.31)

where A is an m x m matrix of the linear coefficients

ol

is a vector constants

and successive substifution as in equation (2.6) applied to linear
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system (2.31) gives,

Xn+l = A Xn + b (2.32)

for some given Xo'
The linear iterative system (2.32) is useful because the

mathematical knowledge of this system is well established (A2, FI),

Iterative calculations of chemical plants are often linear or very

close to linear, and convergence promotion techniques that are suitable
for linear systems may be used for practical non-linear cases as an
approximation,

2,3.1 Convergence Condition of Linear lteration

The two theorems (1 and 2) that were applied for general
iterative process are obviously frue for linear systems. Applying

(2.19), the partial derivatives of the set of linear functions (2.30)
gives, L
BFi(X) .
-F.. = = a, . (2.33)
' X, N
J

where aij is the element (i, j) of the matrix A. Therefore the maximum

absolute row sum (2.20), for a linear sysfem is
max I [aij] <M< | (2.34)
This maximum absolute row sum is usually known as the matrix norm ||A]]_

[1Al], = max
i

™3

[aul <M< (2.35)
|

As the elements of the matrix A are constant, (2.35) is independent of

X, therefore if (2.35) is satisfied the iteration will converge (Theorem 2).
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Faddeeva (FD shows that in order that the process of linear

iteration converge, it is sufficient that any norm of the matrix A be

less than unity. That is, that

[l Al < i ‘ (2.36)

Faddeeva also has given necessary and sufficient conditions for

‘convergence of linear systems as follows:

Iﬁeorem 3

For convergence of the process of linear iferafion (2.32) with
any initial vector XO and with any value of the vector b, it is
necessary and sufficient that all the eigenvalues of the matrix A be

less than unity in modulus. Thus,

| 2. | <1 (2.37)

2.3.2 The Solution of the Linear lteration

The linear iteration equation (2,32}, which is a linear
difference equation, may be solved generally for some initial value Xo’

(See Appendix A) to give,

x =z 422" 7z . a%+x (2.38)
j=1 Wz, oo
J J
X, = (@ -am""b (2.39)
where XS - is the steady state solufion of (2.32)
AJ - the eigenvalue of matrix A
Zj - the eigenvector of matrix A .

the eigenrow of matrix A
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T
W.[X X ]
b c, =2 (2.40)
J Wz,
g i=1, 2,. m
Theh’fhe solution becomes
X = 8 C.Z. A, + X (2.41)
n SN AN s .

Examining the solution of the difference equation, it is clear that if

the eigenvalues of matrix A are less than unity in modulus the iteration

will converge, (Theorem 3), as
gim A%+ 0
oo Y
jJ=1,2,3 ... m
and
2£im Xn =%im {2 C. 2.\, + X } = X,
n->o e j=| J

Furthermore, the rate of convergence dependsAon the absolute value of
the eigenvalués (2.41), such that, the smaller the eigenvalues in

modu lus, the faster the iterate will converge. Also, the rate of
convergence deﬁends on the coefficients Cj (2.40) which are linear
functions of the distance between the initial point XO and the solution
Xs', Obviously, the number of iterations needed for converging would

be less if the initial point Xo is closer to solution Xs‘

2.3.,3 Dominant Eigenvalue

The solution of the linear difference equation (2.41), that is
the linear iterative calculation, is a linear combination of the eigen-

vectors ZJ with the scalar coefficients CJAS. Every single coefficient j
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declines geometrically as n increases. The bigger the eigenvalue in
modulus the slower the coefficient decreases, Therefore{ if Ak is the
biggest eigenvalue in modulus of the matrix A, then after sufficient
number of iterations, only one term of the summation remains since all
the other coefficients have become very small, The solution (2.41)

then becomes

N U |
X = CZ N *+ X (2.42)

Thus, after a sufficient number of iterations the biggest eigenvalue
in modulus controls the rate of‘convergencé of The iterative process
and the iterate converges geometrically to Rs (2.42),

This geometric behaviour of the iteration may be utilized for
determining the tolerance for the test vector (2.26) and for promoiing

the convergence.,

2.3.4 The Convergence Tolerance for the
Test Vector (Linear lteration)

The tolerance of the deviation vector (2.27) can be chosen

independently of the iterative process. The problem formulator may
choose it according to the necessary accuracy.
For determining the tolerance of the test vector (2.26) from

the selected tolerance of the deviation vector, equation (2.42) may

be used., This equation (2.42) can be assumed Valid as the iteration
approaches convergence.

Substituting equation (2.42) info equation (2.27) the deviation
vector becomes

5 =-rx3'cz A" : (2.44)
n s k™k 'k
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and subsf?fufing equation (2.42) into the numerator of equation (2.26)

the test vector becomes

- 1l ~s5 .0
6, = Lt xn]‘ Clite Oy = 1) (2.45)

v

Assume first that [T Rn]r' (x XS]-', then from equations (2.44) and

(2.45) the following relation between @ and D can be found
e =D ., ¢k (2.46)
where ¢k = (l-kk).
A more general relation between 6n-and Bn can be found by

substituting equation (2.42) into the dencminator of equation (2.45)

and then with equation (2.44) we gef

lw]]

0 =[1- Iﬁn ];' .

n L (2.47)

n

Now, if Rn is very close to the solution Rs’ That ié, if every element

in vector ﬁn is small, then the first part éf equation (2.47) is almost

the unit matrix I and (2.47) becomes equivalent to equation (2.46).
Equation (2.46) or (2.47) can be used for determining the

tolerance for the ?esfivecfor if the tolerance for the deviation

vector had been chosen and the biggest eigenvalue Is known. If B is

the tolerance for the deviation vector, then
HEJnHOo <B (2.48)

and the iteration converges if the vector Bn satisfies (2.48). Now,

using (2.46)

and substituting (2.48) we get
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18, 1, <8 - lo (2.49)

Therefore the iteration satisfies (2.48) if the vector test 6n satisfies

(2.49).

As an example of the tolerance calculation, suppose

B = 0.00l

A, = 0.9

then ‘ ¢k = 0.1
11811, < 0.000

The tolerance for the test vector is ten times smal ler .than the folerance
for The deviation vector, when the biggest eigenvalue is 0.9, Table 2.2

gives the correction factor ¢, @s a function of Ak.

TABLE 2.2

The Correction Factor ¢K

Ay o |/¢k
0.5 0.5 2.0
0.6 0.4 2.5
0.7 0.3 3.33
0.8 0.2 5.00
0.85 0.15 6.67
0.90 0.10 10,
0.95 0.05 20.
0.97 0.03 33,3
0.98 0.02 50.
0.99 0.01 100.
0.999 0.001 1000.
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The biggest eigenvalue in modulus of matrix A (2.30) can be
obtained from the iteration by equation (2.42) using three successive

values of vector X (X Xn—l’ Xn). The method for general iteration

n-2"'
will be discussed in detail later in this work. The biggest eigenvalue
in modulus can be also calculated by the power (L4 method.,

2.4 The General lteration

Geometric convergence was observed in iterative calculation of

recycle processes (AD) or heat and material balance of distillation

(PZ). Thus, not only linear iterations (2.32) approach the

columns
form of equation (2.42) but also non-linear iteration (2.7) asympfofically
approach the geometric progression. Although it is-not a general
statement for any non-linear iteration, in practical calculation of
chemical engineering processes when the rate of convergence is very

slow or the iterates close to solution, the iteration can be approximated

by a geometric progression in form of'equaTion (2.42) as,
X =0+ X (2.50)

where U is vector of coefficients
| ?; is fhe approximation fto the solg+i0n Rs
u is The geomefricvcoefficienf
When the iteration (2,7) approaches a geometric progression,
equation (2.50) can be used to obtain the geometric coefficient u which
may be used for determining the tolerance for the test vector (2.26)
and for determining the rate of convergence. Furfﬁermore, if the

iteration has approached geometric progression in a sma!l number of
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iterations, equation (2.50) may be utilized, as a convergence promotion
method, for approximating the solution.

2.4.1 Evaluation of the Geometric Coefficient

The value in modulus of the geometric coefficient can be
calculated directly from the iterate vectors (in—l’ Rn’ ...) if The
number of iterations is sufficient for the iferafién (2.7) to have’
abproached geometric progression (2.50). Therefore the iterate vectors
may bé examined first in order fo deTeCT'when (2.50) becomesvalid and

then to calculate the geometric coefficient.

- We may define an error vector En’ which will be used in the
derivation and later will be replaced by the test vector (2.26), as
E =X, -X (2.52)
n n+l n :

and we may define W, @s the rafio between the norms of two successive

error vectors, as '
HE I TIX ., - X 1]

=N .Ml (2.53)
HE T T =Xy

Hn

with any norm (2.10), (2.11) or (2.12). Now, if (2.50) is valid the

error vector (2.52) becomes
E =% =% =04"m=-0 (2.54)

and (2.53) becomes
C1IE

o= —— = |y : (2.55)
n —
"OE

From (2.55) we can see that as the iterate approaches the geometric

progression, M approaches a constant value equal to the absolute value
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of the geomelric coefficient u.
Now, if An is the fractional change of Mo in two successive

iTerations,

) / w C(2.56)

n n n-1| n-1

then if An is less than some small tolerance y, (2.50) .is assumed o
be valid and the geometric coefficient in modulus is oo (equation (2.,55),

That is, if B
| a1 <v (2.57)

then

Practically, En’ un‘and An can be calculated every iteration,
énd if An is satisfied (2.57) then ]uI = un; The sign of fthe geometric
coefficient can be calculated by using one of the elements of the error
vector En' Suppose En,j is the largest élemenf in the error vector, then
- The sign of the geomeffic coef ficient ¥ is The same as the sign of un,j
that is obtained by the following ratio

E . X .- X,
n,j . _ntl,j n,J

woo = -
"Ry ey T el

Actual ly, the test vector (2.26) can be used instead of the
error vector (2.52) for obtaining The geometric coefficient. Equation
(2.55) becomes

118, .
uo= e (2.58)

n -
11511

If the iterate approéches geometric progression (2.50), then by
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substitution of (2.50) into (2.26) the test vector becomes
6, = LI >"<nj’I 0" (u-1) (2.59)

and equation (2.58) becomes
11511

15,11

o= = |yl (2.60)

since [I?n]"l 2 [Iin_lj—l. Practically,. it is preferable to use the

test vector én as it gives fractional change befween the fwo iterations.
For the case of linear iteration (2.32), the biggest eigenvalue

in modulus can be calculated by the same procedure as above. |f the

number of iterations fs sufficient and the Iinéar iteration has approached

a geometric progression which is dominated:-by the biggest eigenvalue in

modulus, equation (2.42) becomes valid and by substituting equation (2.45)

into equation (2.58) we get,

T e—— |;\k| , (2.61)

since [Iin]_l = [I§n~l]—1' The sign of the biggest eigenvalue in
modu lus can be obtained in the same way as the sign of the geometric
coefficient u was obtained.

Finally, if the fixed poih+ test vector (2.28) is obtained in
every iteration instead of the fest vector §2.26) we may define u; as

the ratio between the norms of two successive fixed point test vectors,

as

s e—— (2.62)
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Now, if the computational method, which was used instead of the
successive substitution equation (2.6) in order to accelerate the
convergence, has the following linear form as

XnH - Xn *

¥, - %) (2.63)

e 11}

where T is a non-singular matrix, and if the iteration approaches
geometric progression so that equaTion (2.50) becomes valid, then

ué approaches a constant value |u'[, as

Al

. = Ju' (2.64)
T _ 1

1
uﬂ

and it will be shown in the following page: That

[1!]

[ul

where u is defined by equafion (2.60).
Thus, assuming that the iteration has approached a geometric
progression and equation (2.50) is valid and also assuming that

[IX 717" = [1X 37" then from (2.50) we get

= t
Xn Uy + XS
and
. -~ -— _ - n _
Xn+| - Xn = Uy (p-1) (2.65)
and from (2.63) we get
X =X =T -X%X) (2.66)
n+| n n n
From (2,65) and (2.66) we get
v -% =@ o "
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or
17, = %01 = DT amD] (2.67)

and
17 - %[

¥ = Xl

= [u] (2.68)

and from (2.64) and (2.68), we get

|7 || |
lu| = —— = |u'| (2.69)
HTn,|” ' '
. s -l -3 -1
since [1xnj = [IXn_lj .
The convergence promotion equation in form of equation (2.63) will be
discussed in detail in Section 3.

2.4.2 The Convergence Tolerance

The mathematical relation béTween the test vector (2.26) and the
deviation vector (2,27) can be obtained for the general iteration in a
way similar to that for linear iteration (Section 2.3.4). As the
iterate Xn approaches the solution RS,‘geomeTric progression usually
dominates the iTeraT[pn apd equation (2.50) can be assumed to be valid.

Substituting equation (2.50) into equation (2.27), the deviation
vector becomes

5, = -Cix T 0" (2.72)
and substifuting (2.50) into the numerator of equation (2.26) the test
vector becomes

5 = [Iin]" 0 u"(=1) (2.73)
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Now, assuming +hat [Ifn]“! = [I?Sjﬂl, from equations (2.72) and

(2.73) we get

| & =D .4 (2.74)
where

(1=p)

¢

which is the samé result as equaTioh (2.46). Equation (2.74) can be
used for obtaining the folerance for the test vector Gn when the
geometric coefficient p Is known and the fblerance for the deviation
vector has been chosen prior to iteration (See the example in Section
2,3.4). This equation (2.74), may be used for calculating the
deviation vector or its norm from the test vector, en, and the geometric
coefficient as the iteration proceeds.

2.4.3 Rate of Convergence

Let it be required o reduce the amplitude of the error by a

factor of at least IO"P. . From equation (2.22), we see that, the norm

of the error l]in - X loo is reduced by at least a factor of M.

ol

The number of iteraftions required is the least value of 'n for which

if 0 <M< 1, by faking logs we obtain

n > P
—'—Log M

_P
=5 (2.75)

Thus, the number of itferations required to reduce the initial
error by the factor IO“P is inversely proportional to R, the rate of

convergence.
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Now, for iterative calculations (2.7) which asymptotically
approach geometric convergence, that is, when the iterate satisfies
(2.50), the factor M can be replaced by the geometric coefficient wu.
If k is the number of iterations necessary for the iteration to reach

~geometric behaviour then (2.50) becomes

- ktv |

ik+v = U . * ?é
and with
X, =0+
we get
Ry, = XD 20X = XD (2.76)

The quantity u is frequently called the asymptotic convergence

factor and the rate of convergence is

R = -log |ul (2.77)

The rate of convergence § as a function of the asymptotic convergence
factor wuw (the geomeTric‘coefficienf or the biggest eigenvalue for
linear iteration) is given in Table 2.3. The value |/R, also given
there, is the number ofA}TeraTions necessary fo reduce the norm of

the error by a factor of one-tenth (1/10).



TABLE 2.3

The Rate of Convergence R as a Function of

the Asymptotic Convergence Factor p*

u R 1/R _
0.50 .301 3.322
0.55 260 | 3,852
0.60 222 . 4,508
0.65 . 187 © 5,345
0.70 155 6.456
0.75 125 8.004
0.80 .097 10.319
0.85 .0706 14.168
0.86 . .0655 15.267
0.87 .0605 16.534
0.88 .0555 i18.012
0.89 0506 19,759
0.90 : .0458 21.854
0.91 L0410 24,415
0.92 .0362 27.615
0.93 .03152 31,729

-0.94 .02687 37,213
0.95 .02228 44,891
0.96 .01773 ' 56.406
0.97 01323 75.596
0.98 .008774 113.974

©0.99 , .004365 229.105

The geometric coefficient or the biggest eigenva!uelkk.
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3. CONVERGENCE PROMOTION TECHNIQUES

In This section various acceleration ftechniques for promoting
the rate of convergence wifl be discussed. A few of these fechniques
can be included in the form of a general equafionAof convergence
 promo+ion which replaces the successive substitution equation (2.6).
This_ general equation of convergence promotion is applied every
iteration and becomes a part of the iteration procedure. The convergence
promotion coefficients of the general equation are constant and are
chosen prior to the calculéfion.

Another method to be discussed is the geomefric extrapolation
vmeThod. This method can be applied only wHen the iteration approaches
geomé+ric‘behaviour, that is when eguation (2.50) becomes valid. Hence
the geometric extrapolation method does‘nof consTiTuTé a part of the
iteration procedure and it is appl}ed when the variables of the
iteration reach geometric progression. This method is very useful for
cases of slow convergence when the geomefric progression is achieved
in small number of iterations, (suppose less than ten).

The Tﬁird method that will be discussed is the multi-dimensional
extrapolation. This method can be useful for cases which have a small
number of variables (m < 10),

The.lasT one, the partition recycle method belongs to the class

of problems which deal with the structure of the recycle calculation,

43
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3.1 The General Equation

The successive substitution equation (2.6) can be replaced by

the general equation of convergence promotion which is

X, =% + 1.6, -%) (3.1

and by substituting (2.5) into (3.1) the iteration with convergence

promotion becomes

X =X 4 t.6.(F(X) - %) (3.2)
n+| n n n
where G - matrix of convergence promotion coefficients
t =~ relaxation factor (scalar).

The successive substitution equation (2.6) is a particular case
of equation (3.1) when ¥ = | and G is the unit matrix I,

The various techniques which are represented by the general
equation (3.1) are first distinguished by the structure of matrix G,
which may be divided info two main sets:

l. full matrices of convergence-Coefficienfs.

2, diagonal matrices of convergence coef*icienTs.'

The first one, the full matrix G, is more comprehensive, demands
more computer storage and manipulation, but can overcome most of the
fecyc!e calculation problems. The second one, the diagonal matrix, is
a simpler technique, it saves computer storage and calculation time,
but can be used only for a limited number of cases. |

The prob!em.of slow convergence appears usually in some

neighbourhood close fo the solution is’ where the process can be
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approximated by a linear equation as (2.30). The general process can
be linearized in some neighbourhood of the solution and The linear
equation can be used to obtain the convergence promotion coefficient.
The following mathematical development is méinly concerned with linear
iteration, however, we should bear in mind that the general iteration
can be linearized and represented by a linear equation as an approximation.
The linearization procedures are given in Appendix B,

By substituting the linear equation (2,30) into (3.2) we get

the linear iterative calculation with convergence promotion as

n+| n n n
or
X  ={1 + +.6.(A-D)}.X_+ +.G.b (3.3)
n+ | n
let ' B=1I++.C.(A-1) (3.4)
then equation (3.3) becomes
Xn+| = B.Xn + +.G.b (3.5)

where (3.5) is a new iTeraTive process.

The rate of convergence of (3.5) depends upon the eigenvalues of
matrix B. Therefore, we wish to find the convergence promo+ion‘ma+rix G
such that the biggest eigenvalue in modulus of matrix B will be as small

as possible.
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3.1.1 - Full Matrices of Convergence Coefficients

If G is to be a full matrix of coefficients, the matrix should

be chosen as

(3.6)

‘.and t+ = 1, so that B (3.4) is the zero matrix, with all eigenvalues also
‘zero. That is, that linear iterative process (3.3) would be converged
in one iteration if matrix G were chosen as (3.6) and t = I.

For a general case (2,5), the process may be linearized in
order to get matrix A* (See Appendix B) and equation (3.1) will be

used in the convergence promotion routine, as

X=X ++.(I-r07 G - %) (3.7)
n+1 n n n _

wheré A*¥ is the linearization matrix and T is a relaxation factor.
This relaxation factor is there To‘prevenf oscilliation of vector in+l
éround the solution.

This technique, with a full matrix bf coefficients G, is similar
to the modif}ed form of Newton's method for solving a set of algebraic

(L3 where the Jacobian matrix has been evaluated only once

eduafions
at the point io and used unchanged through all the iterations.

The linearization can be made around the initial point io or
any other point of the iteration in' Practically it may be better tfo
iterate (2.7) until the rate of convergence becomes siow and then,

since Xn is closer to the solution XS, to linearize the process for

obtaining A¥ to use in equation (3.7),



3.1.2 Diagonal ‘Matrices of Convergence Coefficients

Two kinds of diagonal matrices will be discussed in this
section.

(a) G = oI

-'where o is a scalar.

‘Substituting (3.8) into (3.4), then

T + oI(A - I)

con
I

(I-a)I + ui

or §

Now, as before, we wish fo find a coefficient a such that
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(3.8)

(3.9)

the eigenvalues of matrix B will be as small as possible in modulus.

Hence, since B is a matrix polynomial of A (3.9), then each eigenvalue

of B is the same scalar polynomiai of the respective éigenvalue of A,

Therefore
AB = (l-a) + uAA ~ (3.
Now, if A and A are the biggest eigenvalues of matrix A and
A,b B,b _
B respectively, and A and A are the smallest eigenvalues of
A,s B,s : ,
A and B respectively, then for o > 0
AB,b =l - o)+ alA,b
= | -— + .
AB,S {1 - a) alA,S (3

All the other eigenvalues of the two matrices are located between the

extreme values as

[0)

H)
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2,5 <% < ?g,b

‘s <M S A

Figure 3.1 illustrates the behaviour of equation (3.11), where
the upper line is X and the lower line is A, _, and both of them
B;b . : ’ B,S
vary with a. Obviously, when a = I, the eigenvalues of malrix B are

equal to the eigenvalues of matrix A, as the two matrices are identical
(3.9).
For accelerating the convergence the best o +that may be chosen

is The one that will satisfy (3.12), (the dashed line in Figure 3.1).

- = A : : o (3.12)

and from (3.12) and (3,11) o is

o = ' (3.13)

This method of a diagonal matrix with one coefficient o (3.8)
is very useful as an accelerating method when éll the eigenvalues of
matrix A are squeezed fogéfher as shown in Figure (3.1a). For example
suppose

AA,b = 0.95 and AA,S = 0.65

Since the biggest eigenvalue is 0.95, the iterative process converges

very slowly (See Table 2.3). From equation (3.13)

2
2~-0.75 - 0.95
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the new eigenvalues of matrix B are

'AB,b = “XB,S = (1-5) + 5 x 0.95 = 0.75

Reducing the biggest eigenvalue from 0.95 fo 0.75 increases the rate

of convergence significantly. From Table (2.3) it can be seen that

Thé rate of convergence for eigenvaiue 0.95 is 0.0223 and for eigenvalue
'0.75 is 0.125 which means that fthe rate of convergence increases by
factor 5.6 . However, if the eigenvalues of matrix A are not squeezed
~together, this method improves the rate of conQergence very little, as

“shown in Figure (3,1b)., For example, suppose

Mp = 0.95 end A, o = -0.45

then from (3.13) o s

a = 2 = %-= 1.3333
2+ 0,45 - 0.95
The new eigenvalues
Ay L = hg L = (-4 + 2 0,95 = 0,9333
B,b B,s 3 307 '

reduce the biggest eigenvalue from 0.95 to 0.93333, a very small
improvement. |

This method of diagonal matrix (3.8) can also be used as a
relaxation method for non-convergent iterative processes as well as a
convergence promotion technique.

Three examples of non—cohvergenf i%erafive processes are given

in Figure (3.2). In the first one (a) where AA,S < -1 and AA,b < 1,
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the iterate oscillates and divérges. Here « as a damping factor, has
the range of

0 <a< |

and it can be calculated by (3.13) (See the dashed line Figure 3.2a).

In the second case (b)), ’AA,S > | and AA,b > 1,

'diverges (blowup). The coefficient o, which in this case is a negative

e} Thaf the iterate

factor, can be calculated also by (3.13).

AA,b > | and AA,S <}, there

is no value of o which can fransfer the non-convergent iferative

In the last example (c), when

process to a convergent one, as seen in Figure (3.2c).
Consider again equation (3.12); although this condition gives
the smallest eigenvalue in modu lus, the negative eigenvalue AB o Mmay

’

cause. undesirable oscillation. Therefore it may be better that A

B,s
would be smal ler than AB b in modulus, that is, that
2

g sl <2
and condition (3.12) may be replaced with

—AB,S = G'AB,b (3.14)
where

0<o =<1
From this condition (3.14), and equation (3.11) a becomes
o = _1*9 (3. 15)
I +6 -2 - 6.2

A,s A,b



5\

(a)
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. | 1 -
| 2 3 : o
-0.5 |-
-1.0 — '
(a)
|
2 a
| 1 ! | .
-2 -1 | 2 o
{c) Co -0.5
o - AA’b
] - }‘B,

FIGURE 3.2 Variation of the Biggest and the
Smallest Eigenvalue With the Coefficient o
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Finally, it is worthwhile mentioning that the relaxation factor
t, equation (3.1), and the coefficient d play the same role, and it
is possible To use the relaxation factor t instead of o in the
development above, where matrix G is considered as the unit matrix I.
In addition it is important to emphasize that this diagonal method may
be used as a supplemenfél method to the full matrix of coefficient
techniques where the factor 1t s usually.chosen smaller than unity

for relaxation.

(b) G =[Ta] (3.16)
t=1=0n
where o = (ul, Coy Oz oes am)
Substitute (3.16) to (3.4) to get
B = T +[1alA -

i) (3.17)

Here again, the objective.is to find vector a such that the bigéesT
eigenvalue in modulus of matrix B will be as small as possible, that is
min { max | A [} (3.18)
a J

where Aj are the eigenvalues of matrix B,

This multi-variable minimization procedure (3.18) will become
too expensive in computer time when the number of variables m is bigger
than about three. Practically it is not a useful method for evaluating
the set of coefficients a., However, under particular conditions the
set of coefficients o can be found, when the objective is to minimize

the norm of matrix B (2.35) instead of using (3.18), that is


http:objective.is
http:matrix.of
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; . m
min {[|8]],} = min { max % [b,
o o S j=ld

. : (3.19)
Jl,}

where bi‘ is the element of matrix B. The rate of convergence may be
increased as the norm of B is decreased (2.35 and 2.22).
The particular condition under which set o can be found is
that matrix A should satisfy the following condition,
bro- aii[ > 1 [ai.[ ‘ {3.20)
A AR
‘Thus, the absolute row sum of mafrix B is dependent on the coefficient a

(3.17), and becomes

: m
R o) = il Ibijl = [I—ai(!—aii)f+]aif jiilaijl (3.21)

_— I
a; = (aii 7z 1) 3,22)
I - a,.
Vi )
*
Condition (3.20) guarantees that any decrease of Iail from [ui[
will increase the first term faster fthan the decrease of the second fterm.
Clearly any increase of [dil increases both terms. The minimum value
of Ri(ai) is given by
* | :
Rita,) = ———00 1 Ja, | (3.23)

l‘—a“[vj:i !
i=1, 2,3, ... m,

Finally, although the conditions (3,20) seem severe they are

frequently satisfied in practice,
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3.2 Geometric Extrapolation

" The solution of iterative calculation (2.7) can be well
approximated by exfrabolafion if the iterate has approached a geomefric
progression. This Technique is particularly suited fo cases where The
. geometric progression is obtained after a relgfively small number of
Ai+era+ion5.

Let it be assumed that the number of iteration n Is sufficiently
large so that the iterate has approached a geometric progression and
satisfied (2.57). Therefore the iterate can be expressed by equation

(2.50), which is

= 0 !
Xn Uuw + XS
This equation (2.50) can be written for any component |1 as
- . n ’
x . =U. p + x' . (3.25)
n, i [ S, i

The approximate solution of component 1, xé ;s can be evaluated from
, , .

the last three iteration points (xn—2’ Xo_1? xn), by eliminating Ui

and p to get

Y (3.26)

i=1, 2,3, ... nm
Proceeding from the evaluation of the new point ?;, the iteration
is reapplied with the point ié as initial value., The iteration will

proceed until the iterate again approaches a geometric progression,
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Any time that the iterate approaches a geometric progression
the solution can be approximated by (3.26) and thereby accelerate the
éonvergence. Thus, the difference between This method and other
convergence promotion techniques is that equation (3.26) is not a part
of iteration procedure, but should only be used repeatedly as an
extrapolation method when the iterate approaches a geometric progression.

Furthermore, the geometric exfrapofafion method (3.26) can be
used asa supplementary acceleration method To The convergence promotion
technique (3.1) with a fixed matrix G.

Aifk?;s 62 process (A3, A4), which was developed specifically
for solving characteristic value problems iteratively, yields the same

expression as equation (3.26).

Equation (3.26) may be transferred to the following form as

x' . = x Lt oa.lx - X L) : (3.27)

s, i n-1,i i n,i n-1,1 .

I = l’ 2, 3, . . m.

where
X - X
o = ( n-2 “n-l ) (3.28)
i X = 2.% + x i
n n-1 n-2

In order to prevent oscillation, a relaxation factor T may be added

to equation (3.27) as

Cx! L, = x o+ tool W (x L - X L) (3.29)
s n

Equation (3.29) may be written in vector notation as

—— oo o
X=X _, + T.[Iu](Xn Xoo)) (3.30)
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‘where

al = (a,, o Y eee @)
| m

Equation (3.30) is in the form of equation (3.1) with matrix G
as (3.16) but as it has been said before equation (3.30) is not parf of
the iteration and should only be applied when the iterate apﬁroaches a
_ gegmefric progression.

Now, examining the coefficient o (3.28) for any element i

=2 T X ~ o
o - X - X
X = 2% + x n n-1
n n-1 n-2 | - T

“n T Xn-l :
— = q (3.31)
=l T *p-2
and :
a = o _ (3.32)
I - }

“that is, that alt the coefficients a; are equal,

OLI=0L2,=0L3..=OLm
and if -1 <y <
then , : . 0 < LI | = u<?2
[0
and ‘%- < @ (3.33)

Now, combining (3.32) and (3.30) the solution approximating

X; becomes
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o= X k(X -% ) (3.34)
s T n-| |—u n n-| .

Liusternik's (F1)

technique for improving the convergence of
the iterative process for solving systems of linear equations yields
a similar expression to (3.34).

Summarizing the geometric extrapolation technique, we may say
that if the iterate satisfies (2.57), u may be evaluated by (2.57)
and\gquafion (3.34) can be used for calculating the épproximaTe solution
X!,

s

' - However, when the geome*fic éx+rapola+ion'+echnique is applied
for practical cases of chemical recycle problems, it is apﬁarenf that
it may be preferable to use equation (3.30) for calculating the
approximate solution Xé where o is calculated by (3.28) for every
component,
| In practice, we may have a recycle problem where %he components
of vector X dd not have full interaction among themselves or the
components form a few groups, each of which hés a different geometric
coefficient u. ‘Truly, if the compohenTs of vector X can be divided into
groups where there is no interaction between them, then the problem can
be sq[ved separately for every group of components. When WOfking with
an executive program like PACER it is not feasible to separate the
calculation and it may be cheaper to solve all the components together,
Therefore, o ought to be calculated for evefy component by (3,28).

We may conclude that the above Tecﬁnique seems to be very useful

and simple to operate but it should be noted that from the point of view



‘of the fotal calculation time it performs best in cases where the

geometric progressive stage is achieved in small number of itferations.

3,3 Multidimensional Extrapolation

The convergence of iterative calculation (2.7) may be promoted
by fitting a set of linear equations (2.32) to the last m + 2 point
vectors X, and then approximating the solution by (2,39). Consider

‘m+ | iterations of equation (2.7}

Py
11

iyl

1

vl Y
v=1, 2, 3 ... mtl.
where XI is some initial point. The (m+2) vectors of X that result

from this iTera?ion can be used 1o calculate The linear coefficients

of the linear iteration (2.32) as
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(3.36)

X  =AX +b (3.37)

vt v

v=1,2,3, .. mntl.
By arranging the mt2 vectors of X in partitioned matrices, equation

(3.37) may be expanded to the following form,

e

1

| —
bl . X
| .

|

X

|,
1

X 1 o0
|
|

]
>

i

i _
2! %3 X2

I

<l

or 0 = C .

Postmultiplying of (3.39) by V! we get

<l

C=10

(3,38)

- (3.39)

(3.40)



60

(for more details see Appendix B, the second method of linearization).
After C has been calculated, the solution can be approximated

by (2.39) using matrix A and vector b,

L= (T-m"'56 (3.41)

The approximate solution (3.41) may be used as an iniTiél point il-for
a new set of m+l iterations.

This technique is well suitable for cases where the number of
elements, m, in vector X, is relatively small, as mt] iTeranons ére
necessary for collecting data for matrices Uand V. In addition, the
computation time for the inversion of maltrix ﬁ, needs To be faken into
consideration if m is large since the size of matrix Vis (mt1) x (m+l).

3.4 Partition Recycle

In an executive program such as PACER, all the reéycles in a
block are solved simultaneously. Thus, the iteration takes place on all
the assumed streams at once. This kind of iteration is represented by
equation (2.7) and for linear processes, by equation (2.32),

‘Now, it may be worthwhile to perform a partition of the recycle
process which has more than one recycle, into two groups: the main
group and the secondary group of recycles, such that, for every iteration
of the main recycle, the secondary one may be iferated a few times or
may be even ¢onverged,

For illustration we may examine Figure 3.3 which is a second
order recycle problem. To solve this recycle problem as one group, we

may choose streams S7 and S4 as assumed streams and the related sequence
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of unit calculations will be
4, l, 2’3 s s 0 v

This recycle problem (Figure 3.3) may also be solved by partitioning
the problem into two groups; the recycle around the nodes | and 2 is
the secondary iteration and the nodes 4 and 3, together with the
-secondary iterations are the main group. ,THe sequence will be as
follows

4, U, 2, 3 «ues

That is, that the secondary recycle iterates k Times for every iTeraTion>
of the main group. The number of iterations, k, of the secondary
recycle can be chosen as a fixed number or the secondary recycle may bé
iterated until convergence is obtained. The secondary iferafion can
also be chosen as the recycle ground nodes 3 and 4, Thus, any recycle
in the process can be chosén as secondary, but obviously we wish the
secondary recycle to havera small nuﬁber of equiéménTs (nodes) or, more
precisely, the calculation time of the secondary needs to be small
compared to that of the main i+efa+ion.

A method for analyzing multi-recycle problems, that can be
represented by linear equation (2.32), is given in Appendix D. This
method can be used To~évalua+e the eigenvalues of the process which
includes secondary iteration. The number of iterations k of the
secondary recycle can be a ffnife number or if the secondary iteration
is converged, k can be considered as k w; It appears that the

calculation of the eigenvalues for the case that k + « is relatively
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-simple, and by calculating the biggest ejgénvalue in modultus for this
case it is possibleifo evaluate if there is any benefit from the sub-
iteration of the secondary recycle,

Any recycle in the process can be chosen as secondary one and
the biggest eigenvalue in modulus may be calculafea. Obviously, the
secondary recycle which reduces the biggest eigenvalue in modulus the
-most, is the best one to choose. But, for gaining a reduction in The
overall calculation time fT is also important that the calculation time

of the secondary recycle will be small compared to the overal |

calculation time,

S8

S7 ‘ S6

S5

S S2

53 3 57

" FIGURE 3.3 Two Recycle Problems



4, RESIDUAL APPROACH

4.1 Introduction

Thus far, we have been concerned with the convergence of
}Terafive calculations in the form of equations (2.5) and (2.6) which
have been represented by equation (2.7)}: Convergence promotion
techniques have been applied in order to accelerate the convergence
of the iterative calculation. The general.form of the convergence
promotion is given by equation (3.1} which replaced equation (2.6).
Equations (2.5) aﬁd (3.1) represent the iteration with convergence
promotion where matrix G, the matrix of cngergence promotf fon
coefficients, may be chosen beforehand as a diagonal matrix (3.8) or
(3.16) or as a full matrix (3.6). Undoubtedly the full matrix fechnique
(3.6), when applied, gives a more powerful method which can cover a
wider range of cases. The full matrix technique, compared to diagonal
matrix in a case of a Truly linear iTéraTive process, gives the
solution in one step. We may say that the more non-linear the process
is, the more sophisticated ought to be the methods applied. Logically
the next step is to deal with methods which woyld recalculate matrix G
every iteration. Alfhough these fechnfques would be more powerful in
solving recycle processes, and may reduce the number of iterations

they would consume more computer time and storage.

63
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Ac+ual|y we. discussed previously two methods which do not use
a fixed value of mafri% G. The first one was The‘geqmefric extrapolation
technique where the convergence promotion ccefficient a (3.28) was
recalculated every time the iterate approached a geomefric progression.
The second one, the mul+i—dimensiona[‘exfrapoia+ion technique, approximafes
the solution every mt+!l iterations by finearizing the process repeatedly.

The Quasi-Newton method (R4, Z1)

has been found very attractive
for redetermining the matrix G. This method has been developed primarily
for solving sets of non;linear algebraic eqﬁafions.

Before discussing the Quasi-Newton method we may reconstruct
the problem to represent the recycle process, or any iterative calculation,
as a set of algebraic equations, This form will enable us.fo apply the
Quasi-Newton method more smoothly and might give us a new outlook on
the problem,

4,2 Formulation

Rubin (RB)vhas considered the error vector (2.52) as a set of

residual equations as

f(X) =Y -X=FX -X=0 | (4.1)

Rubin has used the "generalized false poéifion" method, for solving
this set of equations (4.1). As the components in vector X or Y may
not be of the same magnitude, working with the absolute difference,

as in equation (4,1), can create difficulties in the solution. Hence,
it will be more practical to normalize the set of equations +o give

the fixed-point fest vector (2.28). Therefore the iterative calculation
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can be represented in form of set of algebraic equations as follows:

fl(xl, Xop woe xm)A: (y_l - xl)/xI =0
fz(xi, SYIREE xm) = {y, —.><2)/><2 =0 (4.2)
fm(xl, Xos . xm) = (ym - xm)/xm =Q
where from equation (2.1)
y; = Fi'(xl’ Xos aee xm)
i=1, 2,3 m
And in vector notation the set of equations gives,
O =TI E-% =0 (4.3)
and by substituting equation (2.2) infto (4.3) we get
T =F=[ X FR -% =0 (4.4)

The aim of any calculation technique is to find vector X which
satisfies equation (4.4), - |t may be assumed that at least one real
solution exists and that the functions (4.4) are continuous and possess
continuous first derivatives. NOQ, the functions themselves are often
long and expensive to evaluate, since any evaluation of the functions is
equivalent 1o one iteration around the recycles, and the value of the
functional derivatives can only be obtained by finite difference
approximation. Therefore, solution methods which keep the number of

functional evaluations to a minimum become very attractive.
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Practically, instead of satisfying the set of equation (4.4)
exactly, it may be sufficient to find a vector X which is close enough fo
solution and reduces the norm of the functions below a certain tolerance.

The norm may be chosen as (2.10), thus

o = |[FGO]], _ (4.5)

or one of the norms (2.11) or (2.12).

4.3 Solution Techniques

The most widely used method for solving the set of functions

(4.4) is the Newton-Raphson technique (Il). The method can be defined
by two equations, as
Xn+| = Xn + Pn (4.6)
" where P o= (3% (4.7)
n n n

for det (J ) # 0

The Jacobian jn is the matrix of partial derivatives of F(X)
evaluated at point Rn’ ¥n is the vector of functions evaluated at in
(?n = ¥(Xn))’ and ﬁn is the correction to be applied to in such that

the value of in+l will be closer 1o the solution of the equations (4.4).
The disadvantage of the Newton-Raphson method is that for every iteration
the Jacobian ought to be evaluated and its inverse ought to be calculated.
Evaluating the Jacobian numerically by finite difference means evaluating
the functions (4.4) m+i times.

Before continuing to the next method for solving the set of

functions (4.4) it is worthwhile to show that the successive subsTiTquon
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technique (2.5) and (2.6) can be achieved by choosing

P = [ITRX]JFT ~ (4.8)
then
P =[x X1 X T -%)=9 -%
1] N N n

and with equation (4.6)

°

as equation (2.6).

In order to reduce the number of function-evaluations a modified
form of Newton's method has been introduced. Lohr and Rall (L3 used
Kantorovich theorems to compare the overall efficiency of Newton's method
and its modified form. They have given criferia for choosing the methed
of achieving a solution in minimum time, |

The modified form of Newton's method can be described by the

following two equations,

Xp = X+ t.P (4.9)
I (4.10)
1] [&] n
for det (J ) # 0
(0]

The Jacobian matrix jo is evaluated only once in point io and
used unchanged Tﬁroughouf all the caIculaTion.. As ﬁn would be a poor
estimate of the true correction, relaxation factor + may be used in

order to prevent oscillation, where 0 < + < |,


http:choosi.ng
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In a case where the inifial point io is far away from the
solution Rs’ the Jacobian may be evaluated a few times as the iterate
(4.9) progress toward the solution. The sum of equations (4.9) and
(4.10) gives an iterative equation in form of equation (2.7); hence,
if The convergence is slow, the geometric extrapolation Techniqué for
accelerating the convergence may be applied.

Actually, if the first estimate of the solution Ro is sﬁfficienfly
close to is the modified form of Newton's method gives good convergence
in a calculation of heat and material balance. The technique will be
demonstrated in detail in Section 6.4.

4.4 Quasi-Newton MeThod

Recently the Quasi-Newton iterative schemes (R4, BI, B2, Z1)

have been. proposed, Unlike the Newton's method fthey do not require the
Jacobian, but do use an approximate Jacobian (or its inverse)., The

method can be defined by the following equations

X ., =% +1.P ; (4.1

P =f ¥ ' (4.12)

where Hn Is an approximation to the Jacobian inverse. At each stage of
"~ the calculation the approximate Jacobian inverse is recalculated until,
af convergence, it hopefully becomés the Jacobian inverse corresponding
To the solution of the system of eguations.

The approximation to the Jacobian inverse is improved by the

following procedure:
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: _ r B o+ AaT)zl A
A, =H - AL o (4.13)
il VARt
n n n
where e = -
Ay = o~

The vector Z has been selected differently in the various articles
mentioned., Barnes (BD selects Z as the direction which is orthogonal

to the previous m-l directions of the correction vector P. Thus,

T B =0 | 4, 14)
n ‘k :

for k = n~f, n=-2, n-3, ..., n=-{m-1).
The reason for this choice is that if the full step ﬁn is taken

at each itferation (+n=|) then for a linear system of equations the

process will converge after mt2 functional evaluations. Broyden (82)
has selected Z equal to the correction vector ﬁn’
Z = P (4.15)

Rosen (R4) has applied the last two methods of selecting z,
Barnes's (4.!4) and Broyden's (4,15) and in addition he has calculated
Z by averaging, component by component, the Z calculated by both methods.
Rosen claimed that fThe latter procedure gave befter results than either
procedure alone. It is worThth!e‘ mentioning that equation (4.14)
means solving a set of m-1 [inear equations at every iteration,

The scalar Tn in equation (4.11) is not only a damping factor
as in the modified Newfon{s method (4.9), but can be used as a one-

dimensional search parameter. After the direction ﬁn is defermined, a
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search along this direction may be carried out to find a poinf which

has a smaller value of some norm of Thleuncfions fi’ say ¢, where

¢ = [1fll;
or o =I5, 11,
and m.:'_n ¢ = min'{][?(in:F RIS | (4.16)

) n n
This one-dimensional search is crucial to the performance of the
‘a!gori%hm and may be carried out in a nuhber of ways. Whgfher or not
to afTempf to minimize the norm or simply find a'poinf which reduces
fhe norm, is to be decided by the user. The main aim is fo find
the solution with a minimum total number of functional evaluations.
~ Rosen (R4) suggested a continuing sfudy of this problem and recommended
applying norm minimization in the initial stages of the calculation
followed by norm reduction later as the calculation proceeds.

The inifial value of the matrix ﬁo has also been selected
differently in the various arTicleé mentioned. The initial matrix ﬁo'
can be chosen as the unit mafrix I or as the Jacobian inverse evaluated
at the initial point io’

A= -3 (4.17)

It is sTrohgly recommended to select the matrix ﬁo as per (4.17) when
heat and material balance calculations are involved. However, mtl

function evaluations are necessary.



Further study of the Quasi-Newton method is recommended.
Possibly a technique could be. formulated whereby the Quasi-Newton

method is used in conjunction with the modified form of Newton's

method. That is, the mafrik fi would not be recalculated (by 4.13)

for each iteration. This would reduce computation time, and may

increase numerical stability.
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5. PROCESSES STUDIED

Two case studies of process simulation are presented in this
section. First, in the simulation of the alkylation unit the
convergence was accelerated by the full matrix technique (Section 3.1.1).
In the second example, the hydrate wash secfion of the Bayer process
fér alumina exTrachon, the convergence was promofed by the geometric
extrapolation technique (Section 3.2). |

5.1 Alkylation Plant Simulation

During the 1967/68 academic sessfonra simulation of an
alkylation unit was carried out as fourth-year student project. The
4th year students were divided info groups, each group supervised by
a faculty member assis}ed by graduate students. Each group was
designated fo study a par% of the précess and prepare mathematical
modules for the equipment in their section, Finally all the modules
were combined and the simulation of the whole plant was done. As The
rate of convergence of the iferation was very slow, convergence
promotion was applied.

5.1.1 General Description of the Alkylation Unit (A2, MI, S4)

A general flow diagram of the alkylation unit is shown as
Figure 5.1. The alkylation unit is part of the Shell Qakville
Refinery which was designed by C.F. Braun-and started in 1963. The

alkylation unit was originally designed for 1200 bbl/day of alkylate,
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however, the production of alkylate increased to 1800 bbl/day. The
olefins for the alkylation process are produced by catalytic craéking.

The alkylation reaction is carried out In the Stratco Reactor
(equipment E~3). The sulphuric acid, which acts as a catalyst,
circulates between the acid settler (E-2) and Stratco reactor with
the withdrawal of spent acid (stream 9) and the addition of make-up
acid taking place between the settler and the reactor (E-I1). The
Stratco reactor is a horizontal continuous stirred tank, the sulphuric
acid to organic volume ratio in the inlet is generally maintained at
unity and the organic phase is dispersed in the acid at the inlet by
an impeller driven by a 400 Hp motor.

The alkylates are produced from Tﬁe reaction of olefin with
excess of isobutane in the presence of sulphuric acid. The olefins
used are mainly propylene and butylene. The isobutane to olefin ratio
in the organic feed is usually greater than 4. The temperature of the
reacting dispersion is méinfained at about 50°F with the heat of reaction
being removed by flashing the organic product from the emulsion settler
(E-2) in a coil immersed in the dispersion in the reactor (E-5).

- The acid emulsiéh settler (E-2) is a horizontal vessel
approximately 50 fT; long and 12 f+ in diameter, IT'operaTes at about
70 psig and is used to separate the organic dispersion in acid which
feaves the reactor as product. The organic layer which leaves the
emulsion settler passes through a reducing valve which drops the
pressure from 70 psig to approximately 27 psia and then flashes Through

coils in the Stratco reactor (E-5). The gas-liquid mixture flows to
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the product separator (E-4) where C3 and,C4 hydrocarbons are separated
as a gas phase and are sent to the depropanizer (E-9). The liquid phase,
which contains alkylate, n-butane and isobutane, is sent to the deisobu-
tanizer (E-19). The product separator has an internal heating coil
through which the bottoms from the depropanizer pass.

The vapour stream from the product separator passes to a three-
stage compressor unit (E-8) with a 1000 Hp motor. The vapour, mainly
propane and butane, is compressed finally fto 60 psig énd 155°F.

Both the vapour and the liquid streams from the product
separator may contain énTrained and dissolved sulphuric acid. Therefore,
wash units (E-12, E-21), water settlers (E-13, E-22) and coalescers
(E-14, E-23) are used for washing and drying the vapour and fiquid streams.

After washing, the overhead stream from the product separator is
separated in the depropanizer (E-9), inlo an overhead propane pfoducf

which is sold as LPG by Shell, and a C, bottoms sfream which is recycled

4
to the Stratco reactor. The depropanizer has 40 Koch flexitrays.

After being washed the bottom sfream from the product separator
enters the deisobutanizer (E-19), which has 80 Koch flexitrays. This
column separates isobuTaHe and n-butane from alkylate with The isobutane
céming off as overhead and n-butane taken off as a side draw. It is
important that both the n-butane content in the overhead and the isobutane
in the siae draw be minimized.

The overhead stream from the deisobutanizer(E-~19) is recycled

to the Stratco reactor. The side draw is used for gasoline blending,

and the bottoms stream is the desired alkylate stream for enhancing the
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octane number of gasoline.

In this work we will concentrate only on the iteration problem
and fhe'convergencebpromofion technique that Qas used. More information
on the alkylation unit and details of the various equipment modules are

~given by Shaw (54) and in the final reporf of the simulation of the

_alkylation plant MD

5.1.2 The Assumed Stream and Sequence of Calculation

Before starting the calculation of the alkylation plant the
assumed streams have been selected and The related compuTaTiohal
sequence of the equipment modules has been found.

Examination of the information flow diagram, Figure 5.1,
‘indicates that it is essentially first order with régpecf to the flows
of components. However if one examines the heat exchange loops in the
process, around the product separator and depropaﬁizer (E-4, E-9), and
exchanger (E-27), it is apparent that the recycle process has a
considerably higher "order™ for both heat and mass flow. Since most
of the heat exchange foops are controlled it is possible to calculate
them directly (See Section 2.1.3). The loop around the depropanizer
(E-9) has temperature conirol (E-16), and the temperatures of the flows
from E-27 are also contolled by (E-20) and (E-28).

The on[y recycle of heat which may interact with the flows of
the components is the return flow from the bottom of the depropanizer
(E-9) which exchénges heat in the product separator (E-4). Thiskrecycle
was studied and it was found Thaf the rate of convergence of this

recycle was relatively fast. Further, the separation in the product
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separator (E-4) was not very sensitive to changes in the component
flows of stream 36, (the temperature of stream 36 fs controlled by
(E-{7). Therefore it was decided not to consider it as s "recycle"
when the assumed streams were selected, although a good initial value
is necessary for each component in stream 36.

The feed stream fto the reactor, sTreamrnumber 4, has been-
selected as the éssumed stream. |t should be noted that the acid make
up module (E-i) fixes the flow of acid to the reactor (Stream 10) and
calculates the écid consumption (Stream 17) and acid withdrawal
(Stream 9). Therefore it is not necessary fo consider the acid recycle
in the iteration and the assumed stream was chosen as stream number 4'
-instead of stream Il as might be expected.

Starting the calculation from stream number 4, the assumed
stream, the computational sequence of the equipment modules has been
chosen as: E-~3, E-2, E-I, E-5, E-6, E~4; E-7, E-8, E~-10, E-33, E-11,
E-12, E-13, E~14, E-I5, E-16, E-9, E-I5, E~17, E-18, E-27, E-20, E-21,
E-22, E-23, E-24, E-19, E-34, E-26, E-27, E-28, E-30, E-29, E~-31, E-30.

The heat exchangers (E-15, E-27) are calculated twice for every
iteration to ensure the flows of information around all the process in
one iteration,

In order to Trénsfer the flow from stream 36 to stream 37, one
might attempt to recalculate the product separator (E-4) which in fact
ties together the compressor (E-8) and the special con%rol module (E-33).
The special control module (E~33) balances the pressure and the flow

between The product separator and the compressor. However, it is
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undeéirable to repeat the lengthy calculation of the product separator
only for Transferring The informaTién from stream 36 to sTream 37, where
in fact, only the ftemperature is adjusted. As a result module E-34 was
written to pick up flows froﬁ stream 36 and the temperature from stream
37, passing the combined information into stream 57. Equipmenf 36 is
The convergence promofion module, |

5.1.3 Accelerating the Convergence

In Table 5.1, all the components and Theirilocafion in the
stream vectors (SN) are listed. Only sixfteen components frém the list
of fwenty-six are involved in the recyclé. These sixteen components
from stream 4, the assumed stream, are the variables of the iteration
and have been located in vector X. The initial value Xo and the steady
state Xs for these sixteen components are given in Table 5.2.

Convergence promotion with a full matrix G (See Section 3.1.1)
was used. The process was first fineérized around The initial value 20
(See Appendig B the Ist method) fo give A* and then the convergence

promotion matrix C was calculated by.equation (3.6) as

G = (I -A%)" (5.1)

The convergence promotion equation (3.1) has been applied to promote

The convergence as
X =X 4+ +.6.(Y - %) (5.2)
Seventeen iterations have been used for evaluation of matrix ﬁ*.

It was done by a separate computer run prior to the iteration. The

matrix A* was punched as output on computer cards, listed row by row.
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-TABLE 5.1

Component List for the Alkylation Unit

Component . Location in The Component Flow
Number Stream Vector Ib mole/hr

I 6 Water

2 7 Sulphuric Acid

3 - 8 Sodium Hydroxide

4 9 Sodium Sulphate

5 10 Propy! Sulphate

6 1 C, and Lighter

7 12 Propane

8 13 Propene

9 14 n-Butane

10 15 _ I'so-Butane

I 16 n-Butene

12 S Isc~-Butene

I3 18 n-Pentane

4 19 Iso-Pentane

15 20 fso-Pentene

16 21 Ce

17 22 2,3 - Dimethyl-Butane

18 23 Cy

19 24 2, 4 - Dimethyl-Pentane
20 ‘ 25 2,3 - Dimefhyl—PenTane
21 ' 26 Cg
22 - 27 | so-Octane
23 28 © 2,4 - Dimethyl-Hexane

' 2,5 - Dimethyl-Hexane

: 2,2,3 - Trimethy!-Pentane (Group 1)
24 29 2,3,4 - Trimethy!-Pentane
: 2,3,3 = Trimethyl-Pentane
2,3 - Dimethyl-Hexane (Group 2)
25 30 Cq
C,, and Greater

'26; . 31 {0



No.

20
22

23

24

25

26

TABLE 5.2

Initial and Steady-State Values

of Recycle Components in Stream No. 4

Component Number
and Name

Water

Propane

Propene

n-Butane

!so—BuTané
|so-Butene

n-Pentane
lso-Pentane

2,3 Dimethyl-Butane
2,4 Dimethy|-Pentane
2,3 Dimethyl-Pentane
Iso—OcTane‘

Group |

Group 2

C

9

C9+

IniTigI Value

X
s

Ib mole/hr
‘0.4282
199.0555
65.00
652,3950
900.0348
120.5. -
2.3724
12,4159
1.4286
0.2664
0.1843
0.0402
0.0514
0.0169
0.0155

0.0187

Steady-State

X
s

Ib mole/hr
.35839
297.6203
65.
612.8264
881.5224
120.5
2.3116
11.2492
|.2058
0.1989
0.1218
0.0297
0.0402
0.010l
0.0150

0.0224

80
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A small computer sub-program was used to calculate matrix G (5.1) which
was also punched on cards. Before starting the iterative calculation
of the alkylation unit, matrix G was read‘in and stored, row by row, on
file.

The resulfs of the iteration, with relaxation factor + = 0.7,
'are given in Tables5.3 and 5.4 and‘FIgures(S.Z) and (5.3). To demonstrate
the success of this scheme, two sample runs have been made. Table 5.3
shows the flows of propane in stream 4, with and without convergence
promotion. These results have been plotted in Figure 5.2 to emphasize
the considerable difference in the rates of convergence. Table 5.4 shows
the value of the second norm (2.12) of fhe fixed point test vector (2.28)
which is |

Tn.=.[1 >"<n]‘| (¥, - X (5.3)

and the geometric coefficient L which has been calculated as

T, ,
yo= 2z (5.4)

n—I|I2

for the iteration with and withoul convergence promotion (2.62) and
(2.69). The second norm of the fixed point test vector versus the number
of ifterations has been plotted in Figure 5.3.

Comparing the rate of convergence of the two sample runs, where

the relaxation factor was chosen as 1 = 0.7, using equation (2.77) as

R = -Iog(un)

then for the run without convergence promotion, M, = 0.94 and R = 0.02687,
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TABLE 5.3

Two Comparison Runs

Without and With Convergence
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Promotion
Propane
[b-mole/hr
Without With
Convergence Convergence
Promotion Promotion (+=0.7)
199.05 199.05
204.79 . 242.31
210.03 253,09
- 214.83 266,22
219.24 273.88
223,34 288.01
227.17 284,32
230.75 287.60
234,09 290.04
237.22 291.90
240.16 293,32
242.91 294.4]
245,50 295.25
247.93 295.89
250.22 296,38
252.38 296.77
254.4] 297.07
256.33 297.30
258. 14 297.48
259.85 297.62 steady-state value
261,46 . T
262.99
. 264.44
265.81
267.10
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TABLE 5.4

Results from the lteration
of the Alkylation Unit

lteration Without Iteration With

Convergence Promotion Convergence Promotion (1=0.7)
Wmberof  Fhosrom  emetrie plogomi  Semeiiie
Test Vector Test Vector R
HE L, LI : HT | oo
3 .0359 - 10107 -
4 .0329 - .08335 -
5 .0315 957" .01694 -
6 .0281 .8921 02579 -
7 .0265 943 | 01348  ~ .523
8 .0250 - .9434 L0113 .839
9 .0235 .940 .00770 .68
10 .0219 932 .00584 7584
I .02056 .9388 .00430 . 7363
¥. .01927 9373 ,003253 L7565
13 .01807 L9377 .002463 757
14 ~.01696 ©.9385 .001879 .7629
15 .01593 L9393 .001440 . 7664
16 .01498 .940 . .001 106 .7681
17 ' .01410 L9413 ©.000853 7712
18 .01328 942 .000657 7702
19 .01253 . 9435 .000509 L7747
20 .01182 L9433 .000393 7720
21 01117 .945
22 .01056 .945
© 23 ' .00998 .945
24 : .00945 .947

25 .00895 .947
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and for the run with convergence promotion Hy = 0.77 and R = 0.11351,
The rate of convergence when the convergence promofion was applied is
approximately 4.25 times fasfer than the run without convergence
promotion (0.]1351/0;02687 = 4;22);

5.1.4 The Relaxation Factor

In the previoﬁs'secfion (Section 5.1.3) the relaxation factor t
was chosen, prior to the iteration, as 0.7 (f = 0.7)., As it was said
in Section 3.1.1 the relaxation factor + is applied in order to prevent
undesired oscillation. In order to demonstrate the relation beftween
the relaxation factor t and the iteration, four comparison runs were
made with different values of relaxation facfor as follows: + = 0.7,
0.8, 0.9 and 1.0. The results of these four comparison runs are given
in Table 5.6 and Figure 5.7,

It has been shown before (SecTion 5.1.3), where the relaxation
factor was 0.7, that the geometric coefficient u approaches a constant
and positive value (u = 0.77). Therefore the iteration has approached
the solution without oscillation (Figure 5.2).

Now, for the case where the relaxation factor is unity (t = 1.0)
the geometric coefficient u approaches constant negative value as ‘

u = -0.81. Therefore the iterate approaches the solution Rs with
oscillation (2,50). The flow of propane and its fixed point test in
stream nﬁmber 4,‘The assumed stream, for the cases where the relaxation
factors were chosen as t = 0.7 and * = 1.0 are given in Table 5.5

and Figures 5.4 and 5.5.
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For the purpose of clarifying the case, let us assume for a
moment that The above case is a linear iferation and'fhelgeomefric
coefficient can be éssumed to be the biggest eigenvalue In‘modulus
(2.61). Using the analysis method described in Section 3.1.2a
(Figure 3.la), a similar graph may be drawn where the upper line used
0.7, A == 0.77) and lower line used the polnt -

b

f = I.O,‘AS = u = -0.81) as intersection (See Figure 5.6), This

.the point (+

tl

_ grapﬁ demonstrates how the bigges+ and the smallest eigenvalues depend
upon The value of T and it can help us to select the desired value
of the relaxation factor. First, using Figure 5.6, we may find the
biggest and smallest eigenvalues for the following four values of the

-relaxation factor, t+ = 0.7, 0.8, 0,9 and 1.0

The Relaxation The Biggest The Smallest
Factor Eigenvalue Eigenvalue
T A ' A
b s
0.7 + 0,77 - 0.27
0.8 -+ 0.736 : ~ 0.45
0.9 + 0.7 ' - 0.63

.0 + 0.67 - 0.8l

Second, we may calculate the value of the relaxation factor which causes
the biggest and the smallest eigenvalues fo be equal in modulus by using
equation (3.13) as

+ = 2 = 0.9346

2 - 0.67 + 0.81

and the eigenvalues are

Ay =7 A S (1 - 0.9346) + 0.9346. 0.67 = 0.6916


http:0.9346.0.67
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TABLE 5.5

Two Comparison Runs Using Di fferent
Relaxation Factors t (Eq.5.2)

Number t = 0.7 : t=1.0
of lteration Propane Fixed Point Propane Fixed Point
: Ib-mole/hr  Test of Propane  lb-mole/hr  Test of Propane
3 253,09 .005186 259.58 _ -.001682
4 266.22 .005865 283,54 +.007533
5 273.88 .003012 279.19 -.001459
6 288.01 .002395 292,55 +.003895
7 284,32 . .001659 288.25 -.00124|
8 287.60 .001266 296.18 +.002248
9 290,04 .000947 292.78 -.000945
10 291.90 .000723 297.64 +.001356
11 293,32 .000552 - 295. 14 ~.,000685
12 294,41 .000424 298.18 +.000840
13 ‘ 295.25 .000327 ' 296.41 - -.000482
4 295.89 .000252 298.34 +.000530
I5 ' 296.38 .000195 297.12 -.000333
16 296.77 .000151 298.35 +.000338
17 ‘ 297.07 .000117 297.51 -.000228
I8 . 297.30 000090 298.3| +.000218
19 1297.48 .000070 297.75 ~ -.000154
20 297.62 .000054 . 298,26 +.000141
21 N 297.88 - -.000104
22 298.22 +.000092
23 297.96 -.000069
24 298.18 +.000060

25 | | 298,01 -.000046



TABLE 5.6
Results of the Iterations Using

Four DifferenT Relaxation Factors

The Norm of the Fixed Point Test

’ Number ||Tn[|2
of Iteration + =0.7 t = 0.8 t = 0.9
2 .36974 .36974 .36974
3 .10107 19029 . .29114
4 .08335 . 14026 22163
5 .01694 04147 13620
6 .02579 .04253 .10100
7 .01348 .008778 .05682
8 .0113] .013678 .04384
9 007696  .003756 .02338
10 .005844  .005262 .01882
¥ .004299  .002391 .00952
12 .003253 .002407 .00806
13 002463 .001446 .003839
14 .001879 .001225 .003469
15 ' .001 440 .000835  .00i533
16 .001106 .000659 .001502
17 .0008525 .000475 000606
18 .0006573 .000363
19 .0005086 ‘
20 000393 |
21
22
23
24

t=1.0

36974
. 40330
.32167
.32072
22719
21305
.15602
. 13964
. 10569
.09144
.07092
.05998
.04730
.03942
.03143
.02594
.02084

01709
01379

01127
.00912
.00744
.00603
.00491

89
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Thus, if the relaxalion factor will be chosen aé 0.9346, Thé two
eigenvalues, the biggest and smallest, will dominate Thé iteration which
will never approach a geometric prpgression in the form of equation 2.50.
Truly, for the case of + = 0.9, the biggest and the smallest eigeﬁvalues
are close in absolute value, and as it is given in Figure 5.7, the norm
of the fixed point test approaches the solution not as straight [ine.

Now, in this case study which is a non-linear iteration, the
bfggesf and smallest eigenvalues of the first order-parfial derivatives
matrix (2.19) and (2.33) may slighf[y change as the iTeraTién proceeds.

However, it is clear that for a relaxa*ion factor of 0.7, the positive

| - geometric coefficient dominates the iteration and for t = 1.0 the

hegafive_geomefric coefficient dominates the iteration. If the
relaxation factor is between these two values, for example t+ = 0.8

or 1t =0.9, the biggest and the smallest eigenvalues are very close in
modulus and the iterationshardly approach geometric progression -

(See Figure 5l7).

5.1.5 Conclusions and Remarks

The fuil matrix fechnique for accelerating the convergence
is demonstrated (Table 5.4 and Figure 5.3). The rate of convefgence
has.been increased by factor of about 4.25. Although seventeen iterations
were necessary for evaluating the matrix of The convergence promofjon
coefficients, this matrix was utilized unchanged for series of,ruﬁs for
evaluating the performance of the alkylation unit under different

operation conditions.
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It is important to point out that Qhen the iteration approaches
a geometric prpgreséion after a small number of iterations (See Table
5.4), the geometric extrapolation technique (Section 3.2) can also be
applied To promote the convergence. |

5.2 Simulation of the Hydrate Wash Section of the
Bayer Process for Alumina Extraction

The convergence of the hydrate wash section was studied during
the simulation project of the Bayer process for alumina exfraction,
which was carried out as a 4th year student project during the academic

- session 1968/69 (M3)

. This section, the hydrate wash, consists of four
recycles and the convergence appeared to be slow (See Figure 5.8).
The hydrate wash section washes soluble impurities.from the

product alumina hydrate, and then filters the excess moisture from the

hydrate before it proceeds to the kiln for drying.

5.2.1 General Descripfioﬁ of the Hydrate Wash Section

Alumina and ofher‘componenTS from Thg précfpifafors enter the
hydrate washing for processing. This feed enfers the primary classifier
(Equipment 18, Figure 5.8) where a split in solids takes place. The
solids in the underflow are passed through a washing circuit, consisting
of three washing stages in series (Equiﬁmenfs 23, 24, 25) then are
filtered (Equipment 25).+o increase the solids concentration, washed
(Equipments 58 and 29) and then dehydrated and calcined (Stream 34) in
a rotary kiln to give the final product of aluminum oxide (A£203).

The overflow from the primary ciassifier (Stream 42) is again

classified into fine and coarse solids in the secondary classifier.
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Washing is carried out using a 3~sfége countercurrent sysTém
of wash Tanks (Equiphenfs 23, 24, 25). fhe operation allows for a .few
percent of solids to be carried in the overflow stream.

The hydrate is filtered on a rotary drum filter (Equibmenf 26)
(to reduce moisture to &IS%) énd the liquor is refﬁrned as wash liquor
to the gounfercurrenf wash,

The sb!id is washed again (Equ'pment 58) with fresh water
(Stream 23) and the hydrate is filtered on a rotary drum filter
(Equipment 29), The liquor is also reTurnedAaé wash liquor to the
countercurrent wash section.

5.2.2 The Equipment Modules

The classifier, the wash, and the filter areurepresénTed by
the same module SEPAZ2 which calculates the split of one or more feeds
according to the fraction of infeT solids passing overflow and the
weight fraction of solids in the underflow stream. These parame%ers
are stored in the equfpmenT parameter matrix.

The program calculates the total weight of feed (Ib/hr) from
the known input components multiplied by their respective molecular
weight (Table 5.7). From the specified weight fraction of feed as
solids out the tfop, ThaT total solids flow in the over%low (Ib moles/hr)
is calculated. The underflow of solids (lb moles/hr) is determined by
difference. The weight of solids (Ib/hr) in the underflow can now be
calculated from the moleculaf weights.

The total weight of liquid compdnen%s (Ib/hr) entering the

modules is calculated. Then the weight of liquid (ib/hr) in the underflow
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stream is calculated knowing the weight of solids and weight fraction
of solids in the bottom stream.

A split of liquid is calculafed by the ra%io of the weight of
liquid in the bottom stream to the total liquid entering the module.
Knowing the split, the amounts of liquid (Ib moles/hr) in the overflow
and underflow are calcuiafed. Equipments I8, 23, 24, 25, 26, and 29
are represented by the SEPAB2 module. '

- Equipments |7, 22, 28, 58 are simple mixer-splitter module;

(J1

JUNC@ | Program [istings are given in Appendix E.

5.2.3 The Computational Method

The hydrate wash section has f0ur'recycles, therefore four
streams ought to be assumed in order to carry out the calculation.
Streams 22, 30, 3| and 100 have been chosen as assumed streams and
the égmpufafional sequence of the equipment is then.as {26, 58, 29, 28,
18, 23, 17, 24, 25, 22}. . The number of components in every sTreém is
22; the list of fthe components and thelir molecular weights is given
in Table 5.7.

The two coefficients that are necessary for every "SEPAp2"
mode! and which are located in the Equipment Parameter Matrix, are
given in Table 5.8, The feed streams to the wash secT%on, streams 19,
21, 23 are given in Table 5.9. In addition the initial and the steady
state values of the components in every assumed stream (?o and is) are
presented in Tables 5.10, 5.11, 5.12 and 5.13. Initial values of the

components were taken from plant data.
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First, the successive subsfifufion'fechnique f2.5) and (2;6)
was appifed to solve this recycle problem but the convergence was slow.
Then, the geometric exfrapolation technique has been app[ied as a
‘supplemenT,To successive substitution in order to promote the convergence
(See Section 3.2).
_ After every iteration the test vector (2.26) and its second norm
(2.12) were calculated. The ratio between two successive norms of the

test vector (2.58) were also calculated as

15,11,

LTS

and the fractional change of o (2.56) was also obtained |

l)/u

n n-1{

L

In addition, a test was made every iteration to detect if the iterate
approaches a geometric progression, thus if A satisties (2.57) where
the tolerance was chosen in this case study as y = 0.005,

5.2.4 The Computational Results

The ngrm of the test vector [Iénllz, and the geometric
coefficient Mo for evefy iteration aré represented in Téble 5.14.
The norm of the test QeéTor is also plotted in Figure 5.9,

Considering first the iteration without convergence promotion |
and examining the change of the norm of the test vegTor with the number
of iterations it appears that the iTeréTe has two regimes. The first

one, from iterate 5 to 10, the rate of convergence is relatively rapid
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and the geometric coefficienf.is around 0.57 (See Table 5.i4, Figure
5.9). The second regime, from iterate |5 to 60, the rate of convergence
is much slower, and the geometric coefficient is around 0.88.

This unique behaviour is due to the fact that the components
in the streams can be divided info two Qroups. The solid components
‘which control the first regime and the liquid.componenfs which control
The second one.

The solid components are indepaendent of the liquid and they
converge relatively quickly. The liquid components are strongly
dependent on the solid components and in addition they converge slowly.
Therefore after the solid components converge (i 10 ITeraTiéns) the
liquidstake control of the iteration process, which converges relatively
slowly., The reason for the dependence of the liquid components on the
solid flow is Tha$; in the méddle "SEPAZ2", the liquid underfiow is
‘only a function of +he‘so[id underf low,
| The geometric extrapolation technique for promoting the
convergence was applied to the second regime. Three Times the iterate

approachedgeo%efric progregsion, in iteration 21, 30 and 39 (See Table
5.14). Each time, The last three iterations were used to calculate
a; (3.28) and equation (3.30) was applied for approxfmafing the solution
ié . The relaxation factor ¥, in equation (3.30), was chosen as + = 0.7.

The number of iterations due to fhe convergence promotion were

reduced from 60 to 40.



Component
Number

HWN

| 4
15
16

18
i9
20
2|
22

TABLE 5.7

List of Components and their Molecular Weight

location in
Stream Vector

O 0 N O

10

12
13
[4
15
16
7
18

19
20
21
22
23
24
25

26
27

The Component Flow

b mole/hr

WATER

Na2603

-NaOH (as Free Caustic)

3(Na20.A£203.25i02.O.6Na20.

+AL,05.0.22Na,S0

A2203.3H20

 A2,0,.25i0,.2H,0

2°3 2 2
FeZOB'HZO
P,05
Cal
Ti02
Ca003

Carbon compounds

Unknown inert solid

NaAJ?,2

AQZOB.ZSiOZ.ZHZO

Fe203

P205

(30a0.A%,,0,).510
Tio,

Na, 50,

Carbon compounds

Na,H,C,0,

2

2 4.0.23NaZCO

3

(SOL D)
(SOLID)
(SOLID)
(SOLID)
(SOLID)
(SOLID)
(SOLID)
(SOLID)
(SOLID)

(DISSOLVED)

(DISSOLVED)
(DISSOLVED)
(DISSOLVED)
(DISSOLVED)
(DISSOLVED)
(DISSOLVED)
(DISSOLVED)
(DISSOLVED)
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Molecular
Weight
18.020
105,993
40,001

1006.3602

156,020
258.180
177.720
141.950
56,080
79.900
100.091
44,011
119.980

81.971
258,180
159.700
141.950
600.490

79.900
(42,048

44,011
104.024
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TABLE 5.8
Equipment Parameters Matrix

Data for SEPA®¥2 Modules

" Wt. Fraction Wt. Fraction
Equipment of Feed as of Solids in
Number Solids in the . the Bottom
Top Stream Stream.
18 0.6 ’ 0.6
23 - 0.036 0.6
24 0.045 0.6
25 ' 0.0025 - 0.6
26 0.00 0.855

29 ‘ 0.00 0.855
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TABLE 5.9

Feed Streams to the Hydrate

Wash Section

Component Pocafion Stream Stream Stream
Number in Stream No. 19 No. 21 No. 23
Vector [Ib.mole/hr] [1b/mole/hr] [Ib.mole/hr]
| 6 87989.7969 84277.1416 6125.0
2 7 862.7023 887.8482
3 8 3516.6652 3500.5645
4 9 .0043. 0.0036
5 10 1166.6548  2846.943
6 N 0.2870 0.287
7 12 } L3000 .2994
8 13 .000] 0.0
9 14 -, 0004 0.0003
o 15 L0117 0.0099
I 16 L0017 0.0014
12 17 L0019 .0016
13 18 ©,0022 .0018
14 19 2065.8810 2100.5155
(5 20 5.7058 5.1675
6 Y 0.0 0.0
17 22 3.945] 3.5907
18 23 0.0 0.0
19 24 60.3192 41.0175
20 25 35,4092 27.8576
21 26 1580.4762 1438.4926

22 . 27 6.0 0.0
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TABLE 5.10

The Initial Value and Steady-State

Solution in the Assumed Stream 22

Component ‘Location Initial Value Steady-State Value
Number in SN [Ib.mole/hr] [Ib.mole/hr]
| 6 165000.0 183348.8105
2 7 1639.0 1821.1220
i 3 8 6570.0 7300.1219
4 9 0.007 .008
5 10 3600.0 4074.9445
6 [ 0.54 0.5826
7 12 0.54 . 6097
8 I3 0.0001 . 0001
9 14 0.0006 .0007
10 I5 0.0180 .0219
i 16 . 0.0027 .0031
12 17 0.0033 .0036
i3 18 0.0036 .0041
14 19 3800. 4334,3598
15 20 9.90 I1.3116
16 20 0.0 0.0
17 22 7.1 7.8396
18 23 0.0 - 0.0
19 24 90.0 105.4220
20 25 59.4 65.8173
21 26 2700.0 3140.6749
22 27 0.0 0.0
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TABLE 5.11
The Initial Value and Steady-State

Solution in the Assumed Stream 30

Component . Location Initial value  Steady-State Value
Number in SN Cib.mole-hr] [ib.mole/hr]
i 6 10710.0 11910,2351
2 7 28.0 32.5206
3 8 7. ©130.3625
4 9 0.0 - 0.0
5 10 3.6 ' 3.9
6 ¥ ' 0.0005 0.0006
7 12 | 0.0005 : 0.0006
8 13 0.0 , . 0.0
9 14 0.0 0.0
10 15 0.0 0.0
N 16 ' 0.0 0.0
12 17 ' 0.0 0.0
13 18 0.0 I 0.0
14 19 69.0 77.4004
15 20 0.18 0.202
16 21 0.0 0.0
17 ' 22 0.13 0. 1400
8 23 | 0.0 | 0.0
19 24 1.7 |.8826
20 25 0.99 1.1753
21 26 50.0 56,0839

22 27 0.0 0.0
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TABLE 5.12 -
The Initial Value and Steady-State

Solution in the Assumed Stream 3|

Component Location ~Initial Value Steady-State Value

Numbe r in SN Cib.mole/hr] [lb.mole/hr]
| 6 10800.0 11800.9294
2 7 45.0 49.3985
3 8 180.0 198.0187
4 9 0.000! 0.000!
5 10 66.0 74.0998
6 I 0.009 | 0.0106
7 12 _ 0.009 A 0.0111
8 3 0.0 , 0.0
9 14 0.0 0.0
o 5 0.0004 0.0004
H 16 0.0001 0.000]

2 17 0.0001  0.000]
13 18 © 10,0001 0.0001
14 19 108.0 117.5704
5 20 0.27 0.3068
16 : 21 0.0 _ 0.0

17 22 0.18 0.2127
18 23 0.0 0.0

I9 24 2.6 2.8596
20 25 1.6 [.7853
21 26 76.0 85.1911

22 : 27 0.0 0.0
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TABLE 5.13
The Inifial Value and Steady-State

Solufion in the Assumed Stream 100

Component Location Initial Value Steady~State Value
Number in SN (Ib.mole/hr] Cib.mole/hr]
| 6 30600.0 34327.7861
2 7 63.0 68.823|
3 8 265.0 275.8855
4 9 0.0029 0.0031
5 10 14400  1568.6310
6 I 0.18 0.2243
7 12 : - 0.18 0.2347

8 13 0.0 , 0.0

9 14 ~ 0.0003 0.0003
10 15 0.0070 0.0084
NI 16 0.0010 ~0.0012
12 17 0.0012 0.0014
13 I8 ©0.0014 0.0016
14 19 | 144.0 163.8013
15 20 0.36 0.4275
6 ' 21 0.0 - 0.0

17 22 0.27 : 0.2963
18 23 0.0 0.0

19 24 3.6 3,984
20 25 2.3 2.4873
21 26 95.0 118.6893

22 ' 27 0.0 0.0



"Iteration
Number

W N — O O 0 N O U B~ W

EaN

E
16
17
E
19
20
21
22
23
24

Norm of the
Test Vector

118,11,

. 1898
L1378
. 7840
4465
.2572
. 1502
.9462
. 7264
.6755
.6687
.6572
L6319
»5951
.5513
.5043
.4570
Al
.3678
3277
.2910
2578
.2280

TABLE 5.14
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Results from the lteration

of the Hydrate Wash Section

Iterate without
Convergence Promotion

E+0
E+0
E-1

E-I

E-

E-1

E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2
E-2

E-2.

E-2
E-2
E-2
E-2
£E-2
E-2

Geometric
Coefficient
t
0.2465
0.7260
0.5688
0.5696
0.5760
0.5840
0.6299
0.7676
0.9266
0.9899
0.9829
0.9614
0.9418.
0.9264
0.9148
0.9061
0.8996
0.8947
0.8909
0.888l
0.8859
0.8842

* Applying convergence promotion

Iterate with
Convergence Promotion
Norm of the Geometric
Test Vector Coefficient

H@nHZ'. un
.4570 E-2 0.9061
A1l E-2 0.8996
.3678 E-2 0.8947

*
3277 E-2 0.8309
.5622 E-3 ' 0.8805



- TABLE 5.14 Cont'ed

Iteration
Number

25
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
42
44
46
48
50

52
54
56
58
60

Norm of the
Test Vector

15 11,
22013

775

. 1564
1377
1212
. 1066
L9374
. 8241
. 7243
.6365
.5593
4914
L4317
.3792
.3332
. 2927
.2258

e !74|

1344
1037
.7994
6165
4751
.3665
.2830
.2180

lterate without
Convergence Promotion

E-2

E-2

Geometric
Coefficient

Hn

0.8829
0.8819

0.8811
0.8805
0.8800
0.8797
0.8794
0.8791
0.8789
0.8788
0.8787
0.8787

1 0.8785
0.8785
0.8786
0.8783
0.8784
0.878l
0.8786
0.8785
0.8779
0.8779
0.8776
0.8772
0.8779
0.8773

Iterate with

Convergence Promotion

Norm of the
Test Vector

15 11,

.5196
4742

L4286
.3846
.3434
.3054

.5469
.5030
. 4573
4121
.3693
.3293
.2925

E-3

E-3

"n

0.9241
0.9127

0.9038
0.8974
0.8928
¥
0.8894

0.8839
0.9198
0.9091
0.9011
0.8962
0.8215

. *
0.8883

109

Geometric
Coefficient



THE NORM OF THE TEST VECTOR |{3 |1,

b .
—-—

°

001

.0001

I

- O W[TH CONVERGENCE PROMOTION
- a WITHOUT CONVERGENCE PROMOTION
-
-
-
-
|
B 1
4 v \
I | ! | I | | | 1 i
0 10 20 30 40 50

ITERATION NUMBER

FIGURE 5.9 RESULTS OF THE ITERATION OF THE
HYDRATE WASH SECTIO!



6. MULTI-COMPONENT DISTILLATION COLUMNS

6.1 Introduction

The solution of multi-stage separation problem requires mass
balances, heat balances, and equilibrium conditions to be obeyed over

each stage of the process. The basic equations are often simpleAbuT

the counter-current operation interconnects all stages. Amundson and

Pontinen (A6) describe The problem as the solution of series of non-

linear simultaneous equations.
Many methods have been proposed‘for the computer solution of

(H2, R6, PI, P2, W2, TI) (H2, PI)

these equations The ©-method and

the relaxation method (R6, PI)

are most widely used although these  ~
techniques converge ve%y slowly for the calculation cases where pure
distillate is required. The direct iteration (successive substitution)

method W2)

is also proposed to solve these. eguations.

In Thi; present work two methods have been applied for
calculating the multi-component distillation coluﬁn where, in each
of which a tridiagonal matrix algorithm for the solution of *hé
component material balances haé been used.

In the first method, successive substitution iteration (W2)
waé employed., The profiles of the temperature and liquid flow in

the column have been assumed in order to stari the calculation and

they have been redetermined in every iteration. The geometric

FI
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.exfrapolaTion Technfque (Section 3,2) has been applied to accelerate
the convergence of The iteration. |

The second method scolfves the distillation columns as a set
-of algebraic equations where the profiles of the femperature and the
liquid flow are used as the variables. The modifiéd form of Newton's

method (3!

has been employed to solve the set of equations. The
“calculation has been accelerated by the gedmefric extrapolation method.

6.2 The Mathematical Model

The basic equations for a distillation column are derived by
making material and heat balances around the "jth" tray of the model
(Figure 6,1). The standard assumptions of constant cofumn pressure
and theoretical equilibrium frays are made. Heal and mass balances
plus equilibrium relationships comprise the five sets of equations
to be solved, namely

a) Material balance

L. ,+ V., , -L.-V. =0 (6.1)
J-1 Jri J J

b) Component material balance

e K P Yiga T ey T Yyt 0 e
c) Heal balance
L. h. , + V. H. -L.h, -V, H =20 (6.3)
J-t -l JHbo g JodU
d) Vapour-liquid equilibrium
y. . =K . x . =0 (6.4)



e) The summation condition

H3

Ix, .-1=020 (6.5a)

P '
or ? Yi g~ 1 =0 k6,5b)
where
LJ = Ifquid roQ from "jth" tray [1b mole/hr.]
‘VJ = vapour flow from "jth" tray [Ib mole/hr.]]
Xi,j = mole fraction of i component in quuid
phase of tray j
yi,j = mole fraction I‘componenf fn vapour
phase at fray j
hJ = enthalpies of the liquid stream LJ., [B.T.’U/rlb molej
Hj ‘= enthalpies of the vapourysfream Vj’ [B.T.U/Ib mole] -
Ki,j = equilibrium ratio of component i at stage | |
Ki,j =Yi; / Xi

J
Suppose that the number of components is Nc, then for every

tray we have the (2.Nc + 3) equalions shown above and (Z2.Nc + 3)

Loi=1, 2,3, ... Nc,

variables which are L., V., T., x, ., v.
J yJ

J JT
where TJ = temperature at the "jth" tray.

‘Substitute equation (6.4) into equation (6.2) to eliminate
£ J.,and then reduce the component material balance equations (6.2)

H

to a tridiagonal matrix form, as
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< .
L,
L - - J=1
F - N
] j=N2
e
bapy HY
el J
] j:‘NB

FIGURE 6.1 STANDARD DISTILLATION COLUMN CONFIGURAT ION



B + C_ x, =7

o "i,o0. o i, | e}
A, x. ., +B, 4+ C.x, .., =1,
J T, N J T, gl J
AR Xi NR-1 1 Bar X0,NR = INR

_or in matrix form

B -C
o) o
A Bl
or simply
where
A =20
o)
B ==~V
e} o)
C "=V, K
o] [
A. = L.
J J-1
B, = -L

¢
A. B.
J _J
[ABcj  {x
- L
O

ij!°

Z,
¢ J

A

I A
.

Ny B
X.
i,0
i,
X, .
i)
NR || XLNR
}

~-D(I+R) (total condenser)

A
=
s

| A
=
s

b <J <NR-I
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(6.6)

(6.7)

(6.8)

(6.9)

(6.9a)
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C = Vipy Ki e |;'J'§NR—1
Cyp=0 |

z; =0 JANI & AN
2 T Ve Yie

Iz = by % g

The material and heat balance equations (6.1) and (6.3) can be
expressed as an overall balance over all stages from the condenser through
the "jth" stage. Now if fThe feed flow F, the distiliate flow D and

reflux ratio R are given, the material balance becomes,

V.., = L.+ W, ' : (6.10)
R AL N R
where
W, =0 for 1 < < NIl
Wj =D - Vf for j = NI
Wj =D -F for NZ < j <NS3
and
v =0D
o
(L = D.R)
o .
v, =

V + L =D (I+R)
o o

NR

Vf is the vapour fraction of the feed, F = Lf + Vf.

(Lip=B=F~-D)

The heat balance (6.3) with material balance (6.1) around»fhe

upper part of the column become

LJ (hj - Hj+1) - D (Hj+l - HD) - Uj =0 6.11)
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where

U =0, for 1’_'<_J' < NI-|

Uj = 7QO + Vf(Hv,f - HJ+I) for J = NI

Uj = fQO + F(Hf - Hj+l) for NZ <J N3
where

Hv £ = enthalpy of the vapour part of the feed

’
H, = enthalpy of the feed
(Hf = HL,f + Hv,f)

Finally, substitute equation (6.4) into (6.5a) to get
r K :.x. . -1=0 (6.12)

i=1 -
j=1,2,3, ...NR

Thus, after eliminéfing the vapour compositions, yi,j' Thebfour
sets of equations, which remain to be Qolved, are (6;9), (6.10);‘(6.[I)
and (6.12). If the reflux ratio R and distillate flow D are given
then, for the case of a foftal condenser, the number‘of equations which
we have to solve is NR.(Nc + 3) - 2, where Ne is the number of components
and NR is the number of trays including the reboiler.

The two methods which were émployed for solving these setfs of
equations will be discussed.in the following sections. Petryschuk's

Pl PZ)'has been used as a basis

multicomponent distillation program
for this work with the neceséary changes. Thus, instead of Petryschuk's
"block relaxation method", equation (6.9) has been applied. The

equilibrium ratio Ki . and the enthalpy routine remains Thé same as
, ;
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in Petryschuk's program where the equilibrium ratios are expressed as
polynomial functions of temperature at the column pfessure, and The
enthalpy for both liquid and vapour streams is calculated by using the
| Y |

enfhélpy correlation of Yen and Alexander

6.3 The Successive SubsfiTuTion Method of lteration

The successive szsTf%uTion method of iTerafién was reported
'by Wang and Henke (WQ?. Although they indicated good convefgence of
the ‘iteration in their case studies iT.appears that the iteration
converges very slowly where pure distillate is réquired, Thus, the
iteration converges slowly when the reflux ratio is high or the
distillate flow D fs relatively small. Very good resultfs were -
obtained where geometric extrapolation was used for'promofjﬁg the

- convergence.

6.3.1 The Computational Procedure

When the flow rate and compositions of the feed stream are
given and the amounts of the product streams and reflux ratio are

specified, F, D, B and R are constants. "If an initial set of ’{Lj}o

and {Tj}o is assumed, the profile of the vapour flow A{VJ} can be
calculated by equation (6.10), matrix [ABC] and ‘{ZJ} (6.9) are alsd

constants, provided that the equilibrium ratio Ki j can be expressed
2

as function of Tj‘ Then equation (6.9) is a linear system and by
inverting the tridiagonal matrix [ABC] the solution of {x, j} can
‘ ’

be easily obtained as

iz (6.13)

{x. .} = [ABC] Z |

PN
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After applying the tridiagonal matrix calculation for all the
components (6.13), the set of equations (6.12). is used to calculate

a new temperature profile, as

S. (T, x, )= % K. ..x, .=1=0 (6.14)
NN PR

i=1,2,3, ...NR.

- This is readiiy recognized as the bubble-point determination

of the temperature Tj' Newton's iteration tfechnique is utilized to
« seek the temperature that satisfies equation (6.14), where the
equilibrium ratios Ki,j are expressed as polynomial funcfions of the
temperature TJ' It is worthwhile mentioning that Wang and Henke L
used Muller's method for seeking the root of equation (6.14) and they
have claimed a better convergence than with Newfon's method.
After calculating the femperature profile '{TJ} ’fhe heéT

balance equation (6.11) can be used fo calcutate the new quuid flow

profile'{Lj}, as

(6.15)

j=1,2,3 ... NR-I.

where Uj is given in equation (6.11), The enthalpy is calcu[afed

“from Yen and Alexander's correlation ¥

(P2)

as it is programmed by
Petryschuk
The new Temperature and fliquid flow profiles of the column

can be transferred to become initial values for a new iteration.
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" These two profiles can be arranged in vector X and ¥ ~and the iteration

‘can be expressed in.genergl by equations in the form of (2.5) and (3.1)

as .
Y = F (X)) (6.16)
n ‘ n
X =X ++ (K =% (6.17)
.n+[ n rn n

‘ =T _ . i T

. where Xn = [{Tj}n’ {Lj}n]
5T o . T

and Yo = LT3 e {Lj’}new:l

and Tr is relaxation facTOfifhaf is used in case the iteration

oscillates or is unstable. Vector Xn is the "input™" and ?6 is

the "oquuT”. (See Figure 6.2)., The set of functions F _(6.]6)

represents the calculation procedure which can be summar i zed by the

following steps: '

1) Assume an initial Temperafﬁre profile ’{TJ}O and liquid f!dw
profile .{LJ}O Awhere'The two of them are cqmbined in vector io'

2) Calculate the vapour profile {VJ} by equation (6.10)

3) Calculate the elements of matrix [ABC] (6.9} and solve the
matrix equations for ev;ry compoﬁenf.fq geT"{inJ}

4) Solve equations (6.14) by Newton's method to get new temperature
profile  {Tj}new.l

5) Calculate the enthalpies of the internal vapour and liquid

streams by using Yen and Alexander o correlation and then

calculate the new liquid profile i{Lj}hew by eﬁuafion (6.15)
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6) Arrange the two new profiles, {Tj}new and {Lj}new’ in vector

an and then equation (6.17) may be used to calculate Rn+|'
7) Repeat steps (2) through (6) until convergence is achieved.

The fixed-point test vector (2.28) and its norm are calculated

in The end of every iteration as

T =[x F -%) (6.18)
n n n n

The test for convergence has been made with the second norm (2.12)
T H, < ey (6.19)

and the iteration has achieved the convergence when the fixed point
test satisfies (6.19).

6.3.2 Accelerating the Convergence

The geometric extrapolation technique has been employed for
promoting the convergencé of the above iteration. Thus, at the end
of each iteration the fixed-point test vécTor (6.18) and its secohd
norm have been calculated. In addition, the geomefric coefficient
My (2.62) and (2.69) and its fractional change An (2.56) have been

obtained as

T |
W= _—nz (6.20)
e 11,
and
An = (un - un—l) / Hoe | (6.21)

respectively,



Now, if the
that 'An satisfies
i+ could be assumed
progression and can

the sofufion can be
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number of iterations n is sufficienfly large such
equation (2.57), where y is the spgcified tolerance,
that the iteration has approached a geometric

be expressed in form of equation (2.50). Therefore,

approximated by equation (3.30) which, in this case

study, has been written in different form as

><1

' = X +t .B (6.22)
s n-| c ,

where vector B can be calculated in a few different ways as

a) B=[ral& , -%X D (6.23)
n-1 n-1i
where a; is defined as
. x.--x—- N
al = { n-2 “n-l ) (6.24)
Yol = Yn2 T Xao1 T Xn-2
i=1i, 2, 3, . m
: (xn—Z - xn-l) Tn~|
b) B. = { .} (6.25)
(T e anz) i
i=1,2,3,. m.
where T . is the "ifh" element of vector Tn
x ,=-x ) u '
¢) S G S R S (6.26)
i TRC T :

In this case study, equation (6.22) has been employed, where

vector B was calculated by equation (6.25). The scalar factor TC

has been used as relaxation factor. The following coefficients have
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been used in the convergence promotion routine,

t = 1.0 (equation 6.17)

r
TC = 0.7 (equation 6.22)
y = 0.0l (equation 2.57)
e, = 4.5x 1077 (equation 6.19)

-6,3.,3 The Results of The Case Study

A conventional fracTionaTor is .considered (Figure 6.1). The
column has thirty one equilibrium stages, including a total condenser
and a reboiler, thus NR = 30. Two hundred moles of feed have the
composition; 0.25 propane, 0.25 iso-butane, 0.25 n-butane and'0.25
pentanes, The feed is entered at the thirfeenth tray. The column is
‘operafed at 290 psia. Products ofA5O molesvof disTiliaTe and 150 moles
of bottoms are fo be obtained. The feed temperature is 195.0°F where
the bubble point of the feed is 215.4°F. The reflux Eafio R is chosen
as 6.0. Equilibrium coefficients énd physical propeffy daTa are given
in Tables 6.1 and 6.2,

The initial and final values of %he temperature and liquid flow
profiles are given in Table 6.3 and Figures 6.3 and 6;4. Two comparison
runs, with and without convergence promotion have been made. The norm
of the fixed~poin+ test vector versus the number of iterations is
represented in Table 6.4 and Figure 6.5. The geometric coefficients
are also gj&en in Table 6.4. The composition profiles:in the column at

the last iferation are given in Table 6.5 and Figure 6.6,
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Considering first the iferation without convergence promotion
(Table 6.4 and Figure 6.5). The rafe of convergénce appears to be
very slow. The iteration has approached geometric progression after
Iess.%han ten iterations. As the system is non-linear, the geometric
coefficienf gradual ly changes as the iférafion proceeds.

The rate of convéfgence.during the iteration éan be calculated

‘by equation (2.77), as

-

R = -log (u)

and for example the rate of convergence for the following three points
was calculated as

Iteration - Geometric Rate of

Number - Coefficient = .Convergence
10 -0.910 0.04096
20 0.948 0.02319
120 0.979 0.00922

Thus, the rate of coﬁvergence has been substantially decreased as
the iteration has proceeded toward the solﬁfion.

In the last part of the iteration, affer hundred and twenty
iterations, the rate of convergence is very sIoQ (R = 0.00922), and
almosT hundred a%d nine i+era+i§ns are required to reduce the norm.of

the fixed-point test by the factor of one tenth (1/10), as

= -~ os.46

|
R 0.00922

The geometric coefficient can be also used for calculating the

norm of the deviation vector (2.27). The relation between the fixed
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point test vector (2.28) and the deviation vector (2.27), in the case
of using successive substitution (2.6) can be obtained by using (2.29)

and (2.74), as

where ' |

or

o, 1= 17 [T, / ¢

As the iterate has approached the solution, u_ = 0.979,
¢ = 0.021, 1/¢ = 47.62 . Thus, the deviation vector is almost forty
eighT times bigger than the fixed point test vectfor. Calculating
the norm of the deviation vector for the last iteration, ]anIIZ = 4.45,1077

and

-7 -5

[lﬁnliz = 4.45 , 10" . 47.62 = 2.12 . 10

This case study is ideal for using geometric extrapolation type
of convergence promotion as a small number of iterations is necessary for
achieving geometric progression. Five Ttimes the iferate approaches “
geometric progression, in iteration 7, 13, 20, 25 and 33 (See Table 6.5);
Each fime, equatiocns (6;22) and (6.25) were used to approximate the
‘solufion Ré. The ﬁumber’of iTeraTions thatare required to achieve the
solution has been reduced from two hundred aﬁd sixty~three to thirty-nine,
(See Figure 6.5)., Thus, the number of iTéraTions has been reduced by
factor of about 6.74, whereas the computation time was reduced by a
factor of about four, from 80.3 seconds fo 19.2 seconds, using the

CDC 6400 computer.
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TABLE 6.1

‘BEquitibrium Coefficients

K. . =a+bT.+cT2+dT
J j J J

I)
P.= 290 psia

(TJ is in degrees Fahrenheit)

Coefficients

No. Componehf  a b x 102 , é X IO4 d
| Propane 0.1995 0.510 0.0745 0.0
2 Iso-butane  0.0923 0.2215 0.0985 0.0
3 ’n—buTane , 0.200 0.0 - 0.1420 0.0

4 Pentanes 0.0447 0.0 0.0919 0.0



No.

TABLE 6.2

Physical Properties of the

Components for the Enthalpy Correlations

Component

Propane
Iso-butane
n-butane

Pentanes

N Critical
Molecular
. Pressure
Weight p
c
[Atm]
44, 42.0
58. 37.4
58. 37.4
72. 32.6

Critical
Temperature
T

[°F1

666.3
766.0
766.0

846.5

Critical
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Compressibility

C

-]

277
.274
274

. 269
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TABLE 6.3
The Initial and Final Values of the

Temperature and Liquid Flow Profiles

Temperature Profile Liquid Flow Profile
{Tj} [F9] {LJ}[Ib-mole/hr]
Initial Final Initial Final
75.0 75.0 300.0 300.0
138, 1 132.3 - 416.9 417.2
144.,5 132.8 416.9 416.3
151.0 133.5 416.9 414.9
157.4 134.8 416.9 412.7
163.9 - 136.7 416.9 409.5
170.3 139.6 416.9 405.0
176.7 143.8 416.9 ‘ 399. |
183.2 149.7 416.9 392.2
189.6 157.3 416.9 384.8
196.1 166.2 416.9 377.6
202.5 176.1 416.9 370.2
209.0 187.1 416.9 361.6
215.4 199.8 605.8 598.9
217.5 "204.1 ‘ 605.8 600.4
219.7 208.4 605.8 602.3
221.8 212.5 605.8 604.6
223.9 216.2 605.8 607.0
226.1 219.4 605.8 609.4
228.2 2221 605.8 611.6
230.3 224.4 605.8 613.5
232.5 226.3 605.8 615.1
234.6 227.8 605.8 616.5
236.7 229.1 . 605.8 617.4
238.9 230.3 605.8 618. |
241.0 251.4 605.8 618.3
243, . 232.7 605.8 617.9
245,3 234.5 605.8 616.3
247.4 237.5 605.8 6(2.8
249.5 242.6 605.8 606.9
251.7 . 251.5 150.0 150.0

129
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TABLE 6.4

Results from the Iterations

Applying Geometric Extrapolation for Promoting the Convergence

|terate Without |terate With
Convergence Promotion Convergence Promotion
. Norm of the . Norm of the .
Terstion Fio oint  SRTTIE Fledfoin  SUEIrIc
Test Vector Test Vector R
7 11, u 17 11, u
i 4,838 E-3 - : 4,838 E-3 Co-
2 4,609 E-4 .095 4,609 E-4 .095
3 5.546 E-4 |.203 : 5.546 E-4 1.203
4 5.483 E-4 .989 5.483 E-4 .989
5 4.881 E-4 .890 4.881 E-4 .890
6 4,280 E-4 .877 4,280 E-4 .877
7 3.783 E-4 . 884 3.783 E-4 .884%
8 3.382 E-4 .894 |.689 E-3 -
9 3.053 E-4 .903 | .693 E-4 . 100
t0 2.779 E-4 .910 1.286 E-4 . 760
b 2.548 E-4 917 i.199 E-4 .932
2 2.350 E-4 .922 |.142 E-4 .952
13 2,179 E-4 .927 [.091 E-4 .956%
14 2.029 E-4 930 6.598 E-4 -
15 1.896 E-4 .935 9.497 E-5 . 144
16 1.779 E-4 .938 3.954 E-5 416
|7 |1.674 E-4 .94 3.362 E-5 .850
|18 1.579 E-4 .944 - 3.221 E-5 .958
19 1.494 E-4 .946 3.132 E-5 973
20 . l.416 E-4 .948 ' 3.053 E-5 .975%
21 }.345 E-4 .950 2.416 E-4 -
22 1.280 E-4 .952 1.969 E-5 .082
23 [.220 E-4 .953 9.517 E-6 .483
24 [.165 E-4 .955 8.654 E-6 .909
25 .14 E-4 .956 8.400 E-6 . 971
26 1.066 E-4 .957 8.211 E-6 .978%
27 1.022 E-4 .958 1.047 E-4 -
28 9.802 E-5 .959 1.359 E-5 . 130
29 9.414 E-5 .960 2.723 E-6 .200
30 9,051 E-5 .961 .. .1.892 E-6 .695
31 8.709 E-5 .962 1.797 E-=6 .950
32 8.387 E-5 .963 |.754 E-6 .976
33 8.084 E-5 .964 F.717 E-6 .979%
34 7.797 E-5 .965 7.219 E-6 -
35 7.526 E-5 E-6 . 169

.965 1.217

* applying convergence promotion
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TABLE 6.4 Cont'ed

Iterate Without tterate With
Convergence Promotion Convergence Promotion
|feration N9rm of The Geometric Ngrm of The Geometric
Number ~ Lixed Point oo tticient  Fixed Point oo fticient
Test Vector Test Vector
e, M Hr Hy

36 7.268 E-5 . 966 5.221 E-7 .429

37 7.024 E-5 .966 4.704 E-7 .90

38 6.792 E-5 .967 4,569 E-7 971

39 -6.572 E-5 967 4,471 E-7 .978
40 6,361 E-5 .968
45 5.443 E-5 .970
50 4,702 E-5 972
60 3.581 E-5 974
70 2.780 E-5 .976
80 2.185 E-5 977
90 1.733 E-5 .977
100 1.383 E-5 .978
1o - l.108 E-5 .978
120 8.915 E-6 .979
130 7.187 E-6 .979
140 5.806 E-6 979
150 4,696 E-6 .979
160 3.803 E-6 .979
170 3.082 E-6 .979
180 2.499 E-6 .979
190 2.028 E-6 .979
200 |.646 E-6 .979
210 © 1.337 E-6 .979
220 1.086 E-6 .979
230 8.822 E-7 .979
240 7.169 E-7 .979
250 5.826 E-7 +.979
260 4,735 E-7 .979
263 4,450 E-7 .979
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 TABLE 6.5

The Composi+ioﬁ Profiles at
the Last Iteration

Composition Profile. {x. .}
' [mole fraction] 7

Tray Propane Iso-butane n-buteane pentanes
J C3 iC4 N 04 C5
0 29944 .0054 .0002 .0000
! .9899 . 0097 .0005 .0000

~2 .9825 0165 .0010 ‘ .0000
3 .9708 .0271 L0021 .0000
4 .9524 L0435 .0041 .0000
5 .9240 L0681 .0079 .0000
6 .8818 . 1033 - .0149 .0001
7 .8224 <1505 .0268 . 0003
8 L7447 .2083 .0460 .0009
9 .6518 2710 .0741 .0030

10 .5518 .3283 L1103 . .0090

H L4542 .5688 . 1528 0241
12, .3665 .3822 . 1932 .0580
13% 2922 .3626 2214 . 1238
14 2510 . .3907 . W2325 . 1258
15 2106 L4181 2435 ;1276
16 . 1728 L4435 , .2543 L1293
17 .1389 L4659 : 2644 . 1308
18 . 1097 .4846 2737 1320
I9 . 0852 T .4995 .2822 L1331

20 .0653 .5104 .2903 L1340

21 . 0495 5176 o .2981 .1348

22 L0371 ©.5212 ' .3069 . 1357

23 L0275 5213 3144 . 1367

24 0202 5177 .3235 . 1385

25 L0147 .5100 .3337 417

26 L0105 .4970 ’ .3445 - .1480

27. 0075 .4768 .3548 1610

28 .0050 4460 .3615 . 1875

29 .0032 .3995 .357¢ .2395

30 .0019 3315 .3333 .3333

¥ Feed tray
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6.4 Solving Distillation Columns as a
Reduced Set of Functions

The successive substitution method of iteration can be
replaced by a method which would find the temperature and the liquid
" flow profiles, {TJ} and '{LJ}, su¢h that equations (6.11) and (6.12)
are satisfied. Thus, instead of using equations (é}ll) and (6.12) for
calculating new temperature and liquid flow profiles, fhe residual
valueéof these equations are taken as a set of functions which ought
to be solved.

The modified form of Newfon's method was utilized successfully
1o éolve this set of fqncfiéns. In addition, geometric extrapolation
was applied for ;onvergenée promotion.

An attempt was made to solve this set of equations by the

137

Quasi-Newton method (See Section 4.4) but the result was unsatisfactory.

Thus, 1f pure distillate is required as in the case study discussed
in Section 6.3.3, +He Quas i-Newton method appears to be unstable
although the modified form of Newton's method easily overcame this
difficulty,

A similar technique for solving multicomponent distillation

(Th

columns was presenféd by Tomich where the set of functions which

(B2)

he proposed was solved- by Broyden's method (Quasi-Newton).

Tomich did not give much detail on his case studies and results.
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6.4.1 The Computational Procedure for the
Function Evaluation

- The CémpuTaTional procedure for the fuﬁcTIon evaluation is
very similar to the previous method. For any set of {Tj} and '{LJ},
" it is possible to calculate the vapour flow>profile '{VJ} by using
gquanon (6.10), then evaluating matrix [ABC] (6.9) and solving
equation (6.13) for each componenf in Ofder to get '{xi’j} (See Figure
6.7).

Now the femperafure profile '{TJ},'The liquid and vapour flow

profiles,'{LJ} and {Vj} and the component concentration profiles
{xi,;} can be utilized for‘evaluaTing the residual vglues of equations

(6.11) and (6.12). Hence, these equations depend only on the femperature

and liquid flow profiles and may be expressed as

, \ Ne .
Sj({TR}’ {Lk}) = 'il KiJ xij - | (6.28)
J = L, 2) 3: » NR
and
AHJ({TR}’ {Lk}) = LJ(hJ - Hj+l) - D(Hj+l -~ HD) - Uj (6.29)
j=1,2,3, ..., (NR-1).
where
Uj = =Q L for | < Jj < NI-I
,UJ = —Qo + vf(Hv,f - Hj+l) for j = NI
Uy = e+ R - for N2 < j < NR-|

The two sets of residual functions (6.28) and (6.29) are not

of the same magnitude. The value of the first seT’{SJ} is about
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unity whereas the second set '{HJ}‘ has a magnitude of millions of

BTU's, Therefore it is desirable to normalize

the two sets. The

first one,'{SJ} may be divided by unity and the second set, '{HJ}

by the amount of heat which flows to the sfage

(Vj+l Hj+l)' Thus, equation (6.29) becomes

HJS{TR], {Lk}) = [Lj(hj —.Hj+l) - D(Hj+l

in the vapour phase,

- HD) - UJ.]/(VJ.+I HJ+I) (6.30)

J = I, 2, _3’ “o 0y (NR"'I)

In addition, as equation (6.28) was derived from equation

(6.5b), it is worthwhile mentioning that equation (6.5a) can also be

used to obtain the residual functions as
Nc

' =1
Sj ({Tz}, {Lk}) ii[ X.

Now, locating the sets of the residual

(6.30) in a function vector f, as

o= sy,

- | (6.31)

PN

functions (6.28) and

(6.32)
=1, 2,3 ..., NR.

=1, 2,3, ..., NR=I

and arranging the temperature and liquid flow profites in vector X as

=T -~ . T
X =L {1, {Lk} ]
1A

3

(6.33)

=1, 2,3 ..., NR

=1, 2,3, «.., NR-|
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the distillation column problems have been reduced to a problem of

solving a set of non-linear algebraic equations in form of

f.(X) = 0 (6.34)

where m = 2.NR-1
Sotution techniques for set of non-linear algebraic equations
have been discussed in Section 4.

6.4.2 The Solution Procedure

The modified form of Newton's method has been applied to solve
the set of functions (6.34) for the same case study described in
Section 6.3.3. In addition, the geomefric extrapolation technique has
been employed for promoting the convergenée.

The modified form of Newton's method can be written as follows

X =% + 1.0 )7 FXD (6.35)
n+l n o n

The Jacobian matrix jo’ of partial derivatives of the function vector,

of .,

(J. ) = (=)
- ij'o axj o

has been evaluated only once around the point Ro and used unchanged
throughout the calculation. The Jacobian maTEix has been calculated
numerically by finite difference approxima%ion for which, mtl functional
evaluations are necessary, where m is the number of elements in the
vectors f and X, (m = 2*NR-1 , for column with total condenser).

The "jth" column of the Jacobian matrix may be obtained by the
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differences between the function vector at points (?O + éj6) and
(X ) as
O — - 5 = . - :
3f, f. (X +e.8) - f (X))
it T i "o

( e (6.36)
X, O 5

where 8 is a small deviation from (x.) which in the following case

j'o
study was chosen as § = OfOI'(XJ)o' e. is a vector with unity in the
"jTh"vplace and zero elsewhere.

' At the end of each funcfﬁonal evaluation, the norm of the
function vector @n and the ra%io between two successive norms, @n

and @ _ , are obtained, as
n-1| ;

¢ = ][ﬂxn)ll2 - (6.37)
and
<I>n »
Mo T , (6.38)
n-|

respectively. The iteration (6.35) would continue until the norm

(6.37) is less than a specified tolerance éf, as
¢ = Hf(xn)HZisf | (6.39)

Thus, the indicator for'ﬁohvergence in This case is not The fractional
change of the iteration Rﬁ’ but the value of the functions themselves.
Tﬁerefore, it is much more reliable an indicator for convergence.
In addition, the iteration (6.35) may be accelerated by the geometfric
extrapolation method if it approaches geometric prggression. Now

if the e approach a constant value, it can be shown that the iterate
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Xn approaches a geometric progression in the form of equation (2.50).

Men

It also can be shown that if the become constant value then
Wl HR =% 01 16 Il
]J — = o - = u
f = _ — , _ |
T T T N TR T TR

(See Section 2.4.1)
The geometric extrapolation can be used in the same form as in
Section 6.3.2 with minor changés. Instead of using equation (6.25)

Bi may be calculated as

B, = { n-2 _nzl o=l (6.40)
(fn |- fn-2) i
. .th - =
where fn i is The i element of vector f(Xn).

6.4.3 The Results

For the same case study described in Section 6.3.3 the modified
form of Newton's method was utilized for solving the equations. The
column has 30 trays, including the reboiler, and the number of equations
which we have to solve is finy-nine.(m = 59). Sixty functional
evaluations have been used to obtain the Jacobian matrix £6.36) and then,
after calculating the Jééobian inverse, the iteration (6.35) has been
proceeded until the norm of the functions satisfies (6.39). The
relaxation factor T (6.35) has been chosen, iﬁ this case study, as
+ = 0.9.

The initial and the final values of the ftemperature and liquid
flow profiles are given in Table 6.3 and Figures 6.3 and 6.4. The norm

of the function vector versus the number of iterations is presented in
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are also
ufn

~given in Table 6.6 where it can eési]y be seen that the geometric

Table 6.6 and Figure 6.7. The geometric coefficients

coefficient has approached an almost constant value affer eight
iterations, | |
The rate of convergence' R has been calculated by equation
(2.77) as |
R = -log He = ~log 0.844 = 0.07366

® .

and -% = 13.58 . Thus, almost fourteen iTeraTﬂons ére required to
reduce the norm of the functions (6.37) by one tenth (t/10).

As the geometric coefficient has approached constant value in
a small number of iterations, éeomefric extrapolation Qas applied to
achieve faster convefgence. The results of the iferé%ion W}Th
Convergénce promotion are given in Table 6.6 and Figure 6.7. The number
of iterations was reduced from 45 to 27 due to the convergence promotion,
an im@rovemenf of forty percent. The tolerance vy, equation (2.57), was
chosen as 0,005, |

As it was discussed prevfously, equafioh (6.31) can be used
instead of equation (6.28). Thus, for demonstration, tThe ca[cu]éfion

was repeated using equation (6.31) and the resuits, which are very

similar to those in the first case, are given in Table 6.7 andvFjgure 6.8.
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TABLE 6.6

Results from the [teration (6.35)
Solving Equations (6.28) and .(6.30)

|teration Without Iteration With
I+ . Functional  Convergence Promotion Convergence Promotion
eration . : . .
Number EvaluaTlonSf llf !I y I'f Il y
Number nttz2 fn . n''t2 fn
h 1,049 E-3 .92
[ 6f 1.049 E-3 . 192 6.722 E-4 64|
2 62 6.722 E-4 .64 5.675 E-4 .844
3 63 5.675 E-4 .844 4,608 E~4 .812
4 64 4,608 E-4 812 3,805 E-4 .826
5 65 3.805 E-4 . 826 3.166 E-4 . 832
6 66 3.166 E-4 .832 2.654 E-4 .838
7 67 2.654 E-4 .838 2,234 E-4 .842
8 68 2.234 E-4 .842 1.887 E-4 .845%
9 69 |.887 E-4 .845 6.208 E-4 -
10 70 1.597 E-4 . 846 9,899 E-5 . 160
N 71 1.353 E-4 .847 3,791 E-5 .383
12 72 I. 146 E-4 847 3.195 E-5 .843
I3 73 9.714 E-5 .848 2.764 E-5 .865
14- 74 8,231 E-5 . 847 2.358 E-5 . 853
15 75 6,973 E-5 .847 : 1.998 E-5 .847
e 76 5.905 E-5 . 847 | .689 E-5 .846%
17 77 - 4,999 E-5 .847 9.556 E-6 -
18 78 4,230 E-5 . 846 4,234 E-6 443
19 79 3.578 E-5 .846 3,510 E-6 .829
20 80 3.026 E-5 .846 2.996 E-6 .854
21 8l 2.558 E-5 .845 . 2.540 E-~6 .848
22 82 2.162 E-5 .845 2.146 E-6 .845%
23 83 . 1.827 E-5 .845 8.302 E-7 -
24 84 1.543 E-5 .845 5.317 E-7 .640
25 85 1.303 E-5 .845 4,497 E-7 . 846
26 86 l.100 E-5 .844 3.823 E-7 .850
27 87 9,290 E-6 .844
28 88 7.843 E-6 .844
29 -89 6.620 E-6 .844
30 89 5.587 E-6 .844
32" 92 3.979 E-6 .844
34 94 2.833 E-6 .844
36 96 2.017 E-6 .844
38 98 [.436 E-6 .844
40 100 1.022 E-6 844
42 102 7.274 E-T .844
44 104 5477 E-7 .844
45 105 4.367 E-7 .844
e

applying geometric extrapolation
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TABLE 6,7
Results from the Iteration (6.35)
Solving Equations (6.31) and (6.30)

|teration Without Iteration With

|teration EFuncT|9naf Convergence Promotfion Convergence Promotion
valuations- : . . :
B R N ] ! 15,11 :
n''2 ‘ n n'tz2 . fn
| 61 2.972 E-3 407 2.972 E-3 407
2 62 2.544 E-3 856 . 2,544 E-3 .856
3 63 2.159 E-3 .848 2.159 E-3 .848
4 64 1.813 E-3 .840 1.813 E-3 .840
5 T 65 1.531 E-3 . 845 |.53]1 E-3 . 845
6 66 }.297 E-3 .847 1.297 E-3 .847
7 67 l.10! E-3 .849 .10l E-3 .849
8 68 9.353 E-4 .850 9.353 E-4 .850%
9 69 7.948 E-4 .850 4,289 E-3 -
10 70 6.751 E-4 .849 [.234 E-3 .289
I 71 5.731 E-4 ~. 849 4,570 E-4 .370
12 72 4.861 E-4 .848 3.090 E-4 .676
I3 73 4,119 E-4 . 847 2.441 E-4 . 790
14 74 3.487 E-4 . 847 2.002 E-4 .820
15 75 2.949 E-4 . 846 |.661 E-4 .830
16 76 2.492 E-4 . 845 1.385 E-4 . 834
17 77 2.104 E-4 . 844 i.158 E-4 . 8356
18 78 1.775 E-4 .844 9.687 E-5 LB837%
19 79 1.497 E-4 .843 3.480 E-5 -
20 80 1.262 E-4 .843 2.735 E-5 . 786
21 81 {.063 E-4 .842 2.262 E-5 .827
22 82 8.945 E-5 .842 I.892 E-5 .837
23 83 7.528 E-5 .842 |1.586 E-5 .838
24 84 6.333 E-5 .84 1.331 E-5 .839%
25 85 .5.326 E-5 .841 4,908 E-6 -
26 86 4,478 E-5 .841 3.669 E-6 .748
27 87 - 3,765 E-5 .84 2.990 E-6 .815
28 88 3.164 E-5 .841 " 2.484 E-6 .831
29 89 2.659 E-5 . 840 2.077 E-6 .836 -
30 90 2.234 E-5 .840 1.741 E-6 .838
31 9l 1.877 E-5 .840
32 92 [.577 E-5 .840
33 93 1.325 E-5 .840
34 94 o113 E-5 .840
36 96 7.850 E-6 .840
38 98 5.537 E-6 .840
40 100 3,905 E-6 .840
42 102 2.754 E-6 .840
44 104 [.942 E-6 . 840
46 106 |.369 E-6 .840

¥ applying geometric extrapolation
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6.4.4 Conclusions and Remarks

The fechnique for solving distillation co!umﬁs as a reduced
set of equations has been demonstrated.

The modified forh of Newton's method has been utilized to
seek the solution., The ifefaffon (6;35) appears to be very stable
-with a rate of convergence almost eight times fasTerATHan the results
bbfainedvby successive substitution (Section 6.3).

) The disadvantage of this meThoa is The necessity of evaluating
the Jacobian méfrix jo prior fo the iférafion (6.35). However, the
Jacobian.maTrix may be used more than once, under vérious operating
conditions of the distillation column., Hence, if The performance of
the distillation column is studied for different feed composition,
‘distillate rate and reflux raTIo{ and if the variation of fthese
parameters is sufficiently small, the Jacobian matrix which was
obtained for the base case condition can be used unchanged.

In addition, we may point éuT, that the equilibrium ratio
(Kij) is eva]uafed fewer Times for every -iteration than in successive
substitution (Section 6.3). This is due to the fécf That in successive
substitution the set of equations (6.14) is solved for every iteration,

Thus, the present technique will be very suitable when more comprehensive

methods for evaluating equilibrium ratio (P3) are implemented.


http:fasterth.an

7. SUMMARY AND CONCLUS|ONS

This thesis has presented the mathematical analysis of
iterations which result mainly from;The calculation of recycle
processes of chemical planfs.

The formulation of the iteration, the existence of a solution
and_the convergence conditions have been discussed. In addition,
linear iteration and its asymptotic behaviour were studied. It was
shown that linear iteration usually approaches a geometric progressioﬁ
whereby the geometric coefficient is the largest eigenvalue }n modu lus.
It was also demonstrated, fn the case studies, that the iteration
general ly approached a geometfric brogressibn. This unique behaviour
of the iteration was utilized for determining the relatfion befween
the Teéf and the deviation vectors and; more imporfahf, for
approximating the solution.

The geometric extrapolation technique for accelerating the
convergence’ has been developed and demoﬁs+ra+ed.. This technique
appears to be very powerful for a case of slow convergence, particularly
when the absolute value of the geometric coefficient is greater than 0.9.
However, it is a suitable +échnique‘only when the geometric progression
is achieved in a small number of iterations.

Thé application of the ffull matrix" technique for accelerating

the convergence was demonstrated in the simulation of the Alkylation

51
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unit. Very stable and re!afivély fast convergence was achieved.
Herver, (m+1) iterations were necessary for evaluating the matrix
of the convergence promotion coefficients, where m_is The number of
variables,

Two methods for solving The‘mulfi—componenf distillation
_-column were given. In the first method, successive substitution.was
'ufilizéd to seek the solution, and since the éonvergence was slow,
the geometric extrapolation Tethnique was applied to promote the
convergence. Thus, the number of iterations was reduced by a factor
of about six.

In the second method, the distillation column was repreéenfed

. by a set of algebraic equations and the modified form of Newton's
- method was employed to seek the solution.

| The modified form of Newfon's method, which is iterative in
form, appears to be very stable. The resulfs obtained showed rates
of convergence which were almost eight times faster than those obtained
_by successive substitution. Unsuccessful é++empfs were made To solve
this set of'equafions by the Quasi-Newton method. A further examination

of this method is recommended.


http:evaluati.ng

NOMENCLATURE

element of matrix i.

3y
A mxm matrix of linear coefficients (2.30)
b m x | vector of linear coefficients (2.30)
B matrix defined by equation (3.4)
Cj coefficient defined by equation (2.40)
D deviation vector (2.27)
E error vector (2.52)
f function vector (4.1)
F function vector (2.2) .
F, element i of the function vector (2.1)
i partial derivatives of the function vector (2.19)
F feed flow rafe
e single iterative function (2.23)
G matrix of convergence promotion coefficients
hJ.' em‘hal.pies of the liquid stream L,
Hj énThalpies of the vapour sfream'VJ
H approximation to the Jacobian inverse
I unit matrix |
J Jacobjan matrix
K{j equiltibrium rafip of component i at tray J,
Lj liquid flow from "jth" tray
L tiquid fracfioﬁ of the feed (6.10).
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number of variables

Lipschitz constant (2.9)

iteration number

number of trays including the reboiler

correction vector (4.7)

condenser and reboiler cooling and heating loads respectively

intferval

rate of convergence (2.77)

reflux ratio

temperature at the "jth" fray

vector of coefficients (2.50)

vapour fraction of the feed (6.10)

vapour flbw from "jth" tray

eigenrow of matrix A

variable vector (Minput" vector)

solution point ‘

elemenf.i of vector X

mole fraction of i component in liquid phase at tray j
variable vector (ﬁoufpuf" vector)

ejemenf i of vecfor.V

mole fraction i component in vapour phase at fray j

eigenvector of matrix A
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_Greek Symbols

a convergence promotion coefficient
3 vector of convergence promotion coefficients
B tolerance for the deviation vector
Y. tolerance for the fixed point test vector
0 test vector (2.26)
A + eigenvalue
‘ Ak biggest eigenvalue
A fractional change of the geometric coefficient (2.56)
u geometric coefficient (2.50)
T fixed point test vector (2.28) _ ~
) correction factor (2;74) o

O correction factor (2.46)
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APPENDIX A

THE SOLUTION OF MATRIX DIFFERENCE EQUATION (A2)
Consider the matrix difference equation
X ., =AX +5b o (A-1)

n+i n

- for Initial value Xo' For solving (A~1) we may consider first the

- homogeneous equation

X =RX ' (A-2)

% =330 (A-3)

where Z is a vector of constants and A is an unknown parameter.

Equation (A-3) has to satisfy equation (A-2). Therefore,

AR UM AP\
and if ' | A#0
Zx=AZ
or (A-AD Z=0 | | (A-4)

and because we desire vectors Z which are not the zero vectors (not

the trivial solution) the condition that equation (A-3) be a solution

161 .
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is that X be an ejgenvalue'of K,*and Z be an eigenvector belonging

to the eigenvalue. Therefore IeT.Aj‘be an eigenvalue which satisfies

det (A —‘xji) =.0
and Zj be a non-zero column of
adj (A - AD)

then there are m solutions in the form of equation (A-3)

X = Z. 2" (A-5)

A particular solution of the nonhomogeneous equation (A-I) can be found

easily. Consider constant vector RS which is a particular solution,

then
X = AX +5b
s s
and - Xs - d -5 (A-6)
Therefore the géneral solution that contains m linear independent
solutions is
- m s n =
X = ¢ C.,Z. X, + X (A-7)
L J J J E
J .
If (A-7) satisfies the initial value Ro then
— m - -
X = 2z C,Z.+X (A-8)

and CJ may be defermined from (A-8). Now,'if Wj is the associated

eigenrow of A, then



=T = . i
Wy ZJ. 0 k#J
and (A-8) becomes ‘
. m
. -T
Wk (X0 - Xs) = »E Cj Wk
Jg=r -
_ =1 5
= Ok Ve %k
Therefore T _ _
W. [ X -X
- _ c. = 0O S
J Wz
)T
+ and the desired solution is
. -
m W, [X - X7
O Z;
j=1 W. Z.
J i
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APPENDIX B

THE LINEARIZATION PROCEDURE

The recycle process can be represented by a set of functions that

~gives the relation between the two halves of the assumed streams, as

y,. = F, (X0 (B-1)
or in vector notation,

Y = F(X ’ (B-2)

where F - set of functions

>

- the "inpuT"‘parT of the assumed streams
Y - the "output" part of the aésumed streams

Two methods for [inearization of iferative processes are given here.
The first one linearizes the process ‘around certain point RL by series
of m perturbations in all the main directions of the vector space.
The second method linearizes by way Qf fitting set of linear equations
to m+l points of vectors X and 7,‘which have been obtained by mt|
evaluations of the process.

A. The process functions (B-2) can be linearized around any point
X, to give linear set of equations in form of

L
Y=AX+5b , ' - (B-3)
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where A is the matrix of partial derivatives of F as

BF (X))
a,, = ———- (B-4)
N ax.
J
where RL is the linearization point and aiJ is an element of maftrix

A. The derivative (B-4) can only be found numerically as the set of
functions (B-1) have no analytical derivatives.

For calculating matrix ﬁ, m+1 evaluations of the set of functions
aré necessary. That is, the recycle process has to be calculated
for mtl different "inputs" i,‘fo evaluate mtl "outputs" Y.

The varying "inputs" X are as follows:

X, =#= Y - (B-5)
and

(X, +8e.) 3 Y. . (B-6)
L J J

where e. is the vector with unity in the jth position and zeroes
elsewhere. & -is a small perTurbaTién. Thus X varies in each of the
main directions in the m dimension space. The perturbation value

§ is usually taken as a fraction of x\j L’ the jth element in vector
XL" Now using (B-3) and (B-5)

Y =AX +5b , (B-7)
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V= AX

+ b+ 83, \ (B~8)
where 5J is the jth column in matrix A. And finally from (B-7) and

(B-8)

(Y. - Y) (B-9)

After mtl evaluations of the process, all the columns of matrix A
are calculated (B-9), and the ma+rix;of the linear coefficients may
be used for further analysis of the process. The matrix A can be
also Qsed to evaluate convergence promotion data.

B. By this method it is possible fo obtain the matrix linear
equation by any m+l points RJ and the related poigTs ?j’ in other
words, by mtl evaluations of the process with some random "input"
Rj to obtain ?J’ it is.possibie o fif the matrix |inear ‘equation to

these m+l points XJ and ?j as

Y =AX +5 (B~10)
j=1,2,3, ... ml

These mtl matrix equations (B-10) can be rearranged in partitioned

matrices as follows:

- o -
Vil Yol Yo

H
]|

or

(B-12)

[t}
1}

on
=<1}
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The matrix U has m rows and mtl columns where the columns U are

(B-13)

The matrix V has mtl rows and mtl columns where tThe columns V

are |
[ . ]
Iy J
_ %2,
_ X, |
V. = = » - (B-14)
J XB;J ! :
l .
X .
m, J
I J=1,2,3, .

is the "ith" element in vector ?J.

where Xx.
I’
The matrix é has m rows and m+! columns where the columns Cj
are
. = a. (B-15)
J J ‘
j=12,3, m
and .
- Cm+‘ =3b
Now, postmultiplying of. (B-12) by V7' gives
E =0.7! (B-16)
where - _ '_
: c =}A b '
i

The matrix linear equation (B-10) with A and b which has been obtained

by (B-16), represents linearization among the m*+l points of XJ.
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These mtl points of Rj can be chosen independently by some random
way or by the following two mefhods:

. Applying the same technique as in case A, using (B-5) and

L

2. Using successive substitution, where

(B-6) to obtain Rj around certain point X

e T Y

That is, during mtl iterations we can collect mt2 points of Rj as

Xj-H = F(XJ.) |
J=1,2,3 ... ml
and these mt2 points can be used to calculate matrix C (B-16).

The only change is in the columns of matrix ﬁ, which were ?j’ wou ld

be replaced by 2J+!' Thus, equation (B-13) have fto be replaced by

u. = X. . ’ (B-17)



APPENDIX C

ITERATIVE CALCULATION OF SYSTEMS OF EQUAT IONS

(Proof for Theorems | and 2 which are given in Section 2.2.1)

"Consider the iterative calculation

R, = F&) c-1)
n=20,1,2...

where X is an m;dimensionai column?vecfor with compqnenfs Xis Xos oo X

énd F(X) is an m-dimensionél vector valued funcTions! i.e..a column vector

(X), F

with components F Xy, ... FmCR). The solution of the iteratfion

| 2

is some vector, say ZS, which is some point in the m-dimensional space.,
And the initial point, say ?o,'is some initial estimate of the solution.
Considering the ITefaTe (C-1) with some initial point Ro’ Isaacson and
Kelier (xn give an important resulf concerning the convergence of this
procedure and prove the existence of é unique solution.

Theorem |

Let F(X) satisfy

[[FO - FOD[| <M |[X - 7] o (C-2)

for all vectors X, Y such that

1% - %[ < r '
7 - % )] <+

169
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with the Lipschitz constant M satisfying

0 < M.< | (C-3)

and let the initial iterate, 20, satisfy

HER) - X ]| < (= m.r (C~4)
o] (o] - -
."Then

1) all iterates (C~1), satisfy

HX - X I <r ' (C-5)

ii) the iterates converge To_some vector, say.
2im X > X
n

n—w s

i11) X, is the only root of (C-1) in the interval,

1% - % |1 <+

where the norm may be chosen as any one of the following

IR, = max ]|

, i

||x[[I = & x| (C-6)
|:
k m

X1, = ¢ 5 %537

Proof: We prove (i) by induction. Since X, = F(RO), we have by

|
(C-3) and (C-4)

|l>'<l - 20|| < (I-M) r<r (C-7)
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~ and hence 2‘ “is in the interval (C-5). Assume the above to be true
for the iterates i[; 22, - Rn' Then from (C-1)

-

HXn+l -

and by the inductive assumption, in and in-l are in the interval (C-5).

Thus, by (C-2), the Lipschitz condition yields

D |1

201 = -
M 'lxn-l n—2H
< MR, - X1
<M - M. | (C-8)

Here we have used (C-1) and (C-2) recursively and then applied (C-7).

However,
||>’<n+| - 20|] = |[<xn+] - X ),+‘(X” - Rn_I) + ... +(>’<l - io)ll
R oy = %L+ 1R =X+ e #]1% - %]
<o ey % DG = G
_<_r

which completes the proof of (i).

To prove part (ii), from (C-8) we can see that the iterate converges,

and it is possible to show that the sequehce {Rn} is a Cauchy sequence.
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Suppose the limit is Rs’ then using (C-1) and (C-2)

HX = X = [IFX ) - F&ROI
M Ilin_| - SZSH
n -—
< MIR, - %[
j_Mm . T
and if n > =, then [lin - §S|] =0 since M< I,

For part (iii), the uniqueness, [ef‘ir be another root in the interval
(C-5). Then, since X_ and X_are both in this interval, (C-2) and (Cc-3)

hold and we have, if I[YS - 2r|| 7 0

%, = X [ = [1FX) = FXO]

<mI%, - %]
< %, - % 1|

This contradiction implies that Rs = ir’ and the proof of the theorem
is concluded, -
Théorem 2

Let (C~1) have a root ié and let The function Fi(i) have continuocus

first order partial derivatives,

F.. (X) = (C-9)

[N oX .
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and satisfy

m _ .

max I |F..(X)] <M< (C-10)
. iJ :
i j=!

for all X in

X =Xl < r (c-11)
(See (C=6)) ‘

- Then
| i) for any RO satisfying (C-11) all the iterates 2n of (C-1)
a!s& satisfy (C-11) -

il) ‘fdr any Xo satisfying (C-11) Tﬁe iterates (C-1) converge
to the solution Rs which is unique in (C-11). |

Proof: for any two points X, Y in (C-I1) we have by Taylor's theorem:

. ©m .
FGO-F (=1 F G x -y (c-12)
i S i=1 iJ Jj j
where E(') is a point on the open line segment joining X and V.
Thus, E(') is in (C-11) and using (C-6) and (C-10) ylields
. 5 m (i)
IFi(X) - Fi(Y)Jf__E [Fij(g )].]xj - yjl
J=1
m T
< |IX -9 .z |F. G
doo 07 iJ
J=1
<M X - Y[
Since the inequality holds for each i, we have
[[FGO - FOO ] < M X - Y] (C-13)

and it has been proven that F(X) is Lipschitz continuous in the domain
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(C-11), with respect fo the indicated norm. Now, for any ?0 in (C-11),

[FX) - FxO ]
Q S @«

”X‘ - XSHOO =
<M. [xo- xsll
<M.r
‘So il is also in (C-l1). By induction we have then
11X, - %I, = [HFX ) - FXO 1,
<mlI% - %l
n - -
< MX) - X I
<M L - (C-14)
and hence all Rn lie in (C-I1). ‘The convergence ihmediafely follows

from (C-14) since M < |. The uniqueness follows as before.



APPENDIX D

PARTITION ITERATIVE MATRIX

' The question whether to converge all the recycles simultaneously or to
converge scme of them as the ca!cuiafion proceeds in The main recycle

is raised frequently while performing simulation of complex recycle
processes. Thus, if the process has more than one recycle, Thaf is,
ThaT.more than one stream oughf fo be assumed in or&er to render the
recycle process acyclic, fhen The recycles may be divided in two groups;
the main and the secondary recycles. For any iteration of the main
recycle the secondary may be iterated few times or even be iterated
until convergence is obtained.

If the general iterative calculation was linearized to give

X = AX ,+5b . (D-1)

then by analyzing matrix A it is pdssible to indicate how to diQide
the iterative process,

Suppose the secondary recycles have p variables and it is iferated
k times for any iteration of the main groﬁp;+haf contains %
variables.

Equation (D-1) can be written in partitioned form,: as

175
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R . N (.= D I
X| Ay A X |
- = - - +]--- (D-2)
X, | AR % 5, |
where Rl is the secondary recycle variables vector of p x |
elements. |
22 is the main recycle variaple vector of 2 x | elements.
K[ is pxp matrix
iz is px & matrix
RS is & xp matrix
E4 is L x & matrix
Bl is p x| vector
‘52 is 2 x | vector

and m=p+ 2 where m is the total number of variables in the
assumed streams.

Equation (D-2) can be written as ftwo matrix equations:

(n) _ (n-1) (n-1) _
X, = A X A, X, + b, (D-3a)

(n) _ (-1, oy (=) (D-3b)

Now, introducing the k sub-itferations of the secondary group of

variable'x|, such that (D-3a) gives

(n=1,1) _ , y(n=1,i-1) + b (D-4a)

xl Il 2°2 . b
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(n-1,0) _ X (n=1)

where Xl = X

XI(né-l,k) _ I(n;o)
Then after k iterations of the secondary recycles equations (D-3a)

and (D-3b) we get

XI(“:O) = x*(”“"k) = A, xl(n—l’k—l) + A, Xz(n—l) + b, (D-5a)

(=1, ¢ (D-5b)

>
—
)
1"
x>
>
+
=
>

It can easily be shown that for any linear iterative calculation as

?(k) -8 ?(k—l) + 3
where Y(?) is the initial value , 7 can be expressed as
TALUI- LIV S S G L (D-6)
Using (D-6) for the iterate i in (D—4a)rgives
("2 Al xhO) e sa? 4 e AT e T 0

[ Il P

Now, using equation (D-7) with i=k instead of equation (D-5a) and
substituting (D-7) with i=k-l to equation (D-5b) we get:

X(In,o) - AT an_l’O) N (I+A|+A? b o +AT-I)A2X§n_I) +

+ (I+A|+A? + —— AT"') b, (D-8a)

I R A (I+A1+Af+-~—+Ak RLRTYE P

‘ 2 -2
+ AB(I+A'+A‘+——~+AI )bI + b, (D-8b)
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"This new iterative procedure can be compressed in a partitioned matrix

for k > |

form as
stn) - _ = <(n-1)
X = Bk‘x + bk (D-9)
where
( k . 2 k=1
= I
Bk - — - -—I ————— T T T T Tmm (D-10)
; k=1 2 ‘ k-2
Ag A lAB(I FAFAL - AT ) A, A
and _ - -
(I + A+ ==+ AI" ) b,
by Tf— - = == - === (D-11)
k-2
A3(1,+ AI + -+ AI ) bl + b2

Now, by comparing the biggest eigenvalue in modulus of matrices A and

k

reduces the rate of convergence of the main recycle.

B, it can be evaluated if the sub-iteration of the secondary recycle

We may study first

the extreme case were k - «, that is, that the sub-iteration of the
secondary recycle is converged for every iteration of the main recycle.
If k> o and all the eigenvalues of the partition matrix AI are less

than unity in modulus then

2im A;k‘ = 0
kreo

and

2 I

gim(I + A+ A
| |
koo

boem 4 AT—Z) = (I-A)”
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then matrix §k»(DflO).bec0mes

ol

B = |- - L - - - - - — - (D-12)

k>0

.'The eigenvalues of mafrix §k where k » = (D-12) are

i=1,2,3 ...p
and the remaining & eigenvalues are the eigenvalues of the partitioned
matrix
|

DT Ay A ” (D-13)

[A,(I - A
-Comparing the eigenvalues of mafrix (D-13) with the eigenvalues of the
original matrix A, it is possible to evaluate if there is any benefit
from The-sub—iferafion of the secondary recycle. If the biggest
eigenvalue is reduced in modulus, we may consider -iterating around the
secondary i+era+i§n a few times or even to converge it. But this
iteration will be worthwhile only if the calculation time of the

secondary recycle is small in comparison to that of the main iteration.

NUMERICAL EXAMPLE

Second Order Recycle Problem with One Component
(See Figure D-1)

2 assumed éfreams: S$3, S7
Sequence of calculation: 1, 2, 6, 4, 5, 3

After elimination we get
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s71' [o0.36  0.072 571" [264.8
R = . . +
s3| 0.36  0.792. 53 912.8

0.36 0.072 |} - 264.8

that is, that

]
i

o
1l

0.36 0.792 912.8

~and the eigenvalues of matrix A are

i

A

| 0.8454

A 0.3066

1

2

The réfe of convergence calculated by equation (2.77) is

R ="‘99AA; = -log(0.8454) = 0.07294 -

or I/R = 13.71

FIGURE D-1 SECOND ORDER RECYCLE PROBLEM
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CASE.- |

S3 is the main iteration and S7 is the secondary one. Iterate k

times around S7 where the sequence is, I,(2;6,4)k,5,3,1,(2,6,4)k,5,3,l,..

and if k =+ « then

| " _ | .
0 | (1-0.36) 0.072‘ 0 :.||25
]

B, =|- —t%—— — — — -~ — — — S D —

koo | 7 _
0 -, 0.36(1-0.36)  0.072 + 0.792 0

-3

and the new eigenvalues are

A = 0.0

it

B 10.8325

2
A very small decrease of the biggest eigenvalue, from 0.8454 to 0.8325,

“is seen.

CASE 2

$7 is the main iteration and S3 is the secondary, iterate k times
around S3 where the sequence is, I,2,6,4,(5,3,l)k,2,6,4,(5,3,l)k cens

and if k = «. then

0.072(1-0.792)"" 0.36 + 0.36

jos/]
11

Koo

|
(1-0.792)"" 0.36 | of |1.7308] o
! L L

The new eigenvaiues are

0.4846

i

AZ = 0.0
The biggest eigenvaiue in modulus decreases significantly from 0.8454

to 0.4846.



As case 2 gives a better result weimay examine The eigenvalues for

this case, whére k is equal to 2 and 3.

CASE 2a

jsuli]

josli}

k=

K -

2

2 .

9

—

0.64512

and the eigenvalues are

and the rate of convergence is

CASE 2b

wn

k=3

ol

k=3

or

(1 +°0.792 + 0.792

—

0.40645

0.870935

0.38592

A
]

CA

Rk=2

2

0.36 + 0.072 (1) 0.36
| (1 +0.792) 0.36
0.057024

0.627264

1l

]

7.426

I

2

0.045163

0.4968

— e —

) 0.36 E 0.792

0.7334

0.27984

-10g(0.7334) = 0.13466

182
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and the eigenvalues are

‘ }\I = 03.655

A 0.2482

2

and the rate of convergence is

X
1

o3 = —log (0.655) = 0.18376

or | :
= = 5,44

R=3
The extra time for fthe secondary iteration need to be included in
ordeg>+§‘échfeve a True comparison.“Therefore if & and T, are
the calculation time of the main and secondary recycles respectively

then the normalized rate of convergence is

R
R = k (D-14)

|+ (kei).rz/(rl + T2).

Thus, if we assume that all the comﬁufafion units in this examplé have

the same calculation Time then

TZ/(Tt + T2) = 0.5

and
R, = 0.07294
- _0.13466 _
Re=2 = T¥o0.5° 0.08977
R = g;lgéZEL_. = 0.09188

k=3 I+ 2(0.5)



APPENDIX E

PROGRAM LISTINGS FOR SECTION 5.2
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SURROUTINE'JUMCQI (MIXFR - MASS PALANCE)
REVISED BY T. TOOMNG FEB«204+1968

*MAXIVUM VALUE OF NOCOVP, NUMBER OF FLOW COMPONENTS, IS 26

* s NIMNs s INBUT STREAMS s 5
* s NOUT » IR QUTPUT STREAMS, 5

ENs EQUIPMENT VECTOR -

le EQUIPMENT NUVRER

2« TEMPFRATURE OF QUTPUT STREAMSS DEG Fy IF 0. OUTPUT TEMPERATURE
ARE SET EQUAL TO TEMPERATURE OF 18T INPUT STREAM 4

3e PRESSURF NF OUTPUT STRFAME, DSIAs IF 0es OUTPUT PRESSURE
ARE SET FQUAL TO PRFSSURF OF 1ST NPT STREAM

Lo (BLANK) ‘

5 (SLANK)

6« FRACTION OF TOTAL INPUT TN 1ST OUTPUT STREAM

Te s 2ND s s
8 sy v ~3RD : 1
90 ' 3. ‘QTH ’s
17 ) :"TH L]

ENCs EQUIPNMENT COMTROL VFCTOR (NPTIONAL) -
le FQUIPMENT NUMRER :

7. FLAG :

3. LENGTH OF EN LIST (FOR PRINTIMG!

SNs STRFAM VEFCTOR -

le STREAM NUMPER

2+ STREAM FLAG : ,

2e TOTAL FLOW IN LEMOLE/HR

he TEMPERATURE IN DEGREE F

e PRESSURF IN PSIA .

Eo FLOW OF COMPONENT 1 IMN LRMOLF/HR

Te ’s 2 ')
e ' 3 s
Se ETCe

SNCs STREAM CONTROL VECTOR - NOT REGUIRED

aEaNANARANANaNaNaRaNaNaNaNa¥aNale lalle e lele ¥e e e tre ia e e e la e Wa e We e WaWa Wa Ve e Wa e Wa i e I The We W1
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SUBROUTINE JUNCD1 :
REH*EEXXXMACSTIM COMMON DECKs FOR SAYER PROCESSe TeTe JANG3151968.
L COMMON  NOCOMP oK SETS e NIN s NOUT oNE s STRMI (5430 3 STRMO(5430) sEN(80420)

TO CHECK IF INPUT STREAMS ARE NOT MORE THAN 5
IF(MINGJLESS) GOTO 10
WRITE (65900 NF
NIN= 5
10 JJ= NOCOMP4+5

MASS RALANCF
({ INDUT)
NO 1 J=hsJdl
STRMO(NOUT s J) =04 , :
DO 1 I=1sNIN ‘ , :
1 STRMO(NOUT sJ)= STRMO(NOUT ¢ JI+STRMI (1 ,4J)
(OUTPUT)
DO 2 1=1s4NOUT
STRMO(T+4)= EN(NF,?)
IF(FMI(MNES2) eFQeDe) STRMOUTIs4)=STRMI(144)
STRVMO(Ts5)= FN(MNFs3)
IFLEM(NES3)aFQaNe} STRMO(195)=STRMI(145)
STRMO(1+3)=0,
DO 2 J=6sJJ
STRMO(IsJ)= STRMO(MNOUT ¢ JIFEN(ME 9 1+5)
2 STRMO(Is3)= STR¥O(I43)+STRMO(TsJ)

FORMATS
9C FORMAT (/7//1Xs 25H#*XERROR#¥IN JUNCO1 MODULE, 13,
173Hs NIN EXCEEDS 5, CALCULATION CONTIMUES USING THE FIRST FIVE IND
PUT STREAMS////)

RETHRN
END


http:IFCNIN.LE.5l

TIRFETC CFRPAND

aNaNaNaRaNaNaNANANaNANaNA e le e Wala

)

S
H

15

1n

13

12

6N

70

Rl‘\

CSTRMO(251)

SUARQOUTIMNE SFPANY
THIS MODULFE CALCULATES SPLIT OF FEED ACCCRDING TO

187

FRACTICN OFINLET

SOLIDS THAT LEAVES OUT THE TOP AND FRACTION BY WEIGHT OF SOLIDS IN

THE BOTTOM STREAM

XONF INPUT STREAY AND TWO OUTPUT QTRFA”G
STRMO(15J) TOP STREAM
STRMO(25J) = BOTTNM STREAM

il

EQUIPMENT VECTNR -

ls ECQUIPMENT NIMRER

2 WTe FRACTION OF FEED AS QOLID% OuUT TOP
e WTe FRACTION OF SOLIDS IN BOTTOM STREAM
Lo (2LAMK)

He {(RLANK)

MO AEN VECTOR

COVMON  NNCOMD 3 SETS o MIM s NOUT o NE 3 STRMI (5,530) 5 STRVO(
DIMFNSTION WTSOL(230),AA(30)
COMMON /BT /UTMOL(22)
Jd=nncntbgs
DO 15 U = 69U
AB(J) = 2.0
DO 15 1T = 1sNIN
}

!

AR AL(J) + STRPMI(T14)
CONT INUE

Ia R AT BRI AN

WTSOL(T) = AA(T)Y®WTMOL(1=5)
DO 11 1 = 9,78

STR¥O(1s1) AA(T)IHFN(NE,2)
STRYO (24 1) AM(T)=STRMNO{1,1)
WSR=0

PO 12 T=0,19
WSOSVISPHSTRMO (2 T 1MW THROL(T-5)
VL=re 0

DO B0 I=hAs8

ML =LA TS0 (1)

o 581 I~10,?7

WL =L TSOL(T)
WLB=WS2¥(1.0/EN(NES3)=1.0)
SPLIQ=WLR /YL

DO 60 I=6,42
STRMC(2,1)
STRMO(1.1)
RO 70 1=19,

It

1

AA(T)*SPLIR
AMIT)=CTRMO(2, 1)
7

AM(TY®ePLIO
STRYMO(1s1) ANIT)I=STRMQO(247)
SET TEMP. AMD PRESSURES

DO 80 1=445

STRMO (1.1} STRVMI (1,1

STRMA (2, 1) = &TRMT(141)
CALCULATE TOTAL OUTPUT FLOWS

1 '\) 1

1

STRMO(1+3) = 0N
STRMO(?243) = 0.0

DO 90 T = 6s5JJ

L R T A A A VA VA A T VA I A AL VI VA VO VAR A VR A )
N WOTT ORI U a7 RO TR ST S0 ST

xR FEMACSTI COVYNMON DECKs FOR BAYER PROCESS. TeT. JANG3151968.

5.30) s ENIRN,20)

‘[\l\lll\)\l\’\l} v RIARY S
LR R SRR I I SR iR Sk o

e
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STRMC(142) + STRYC(1s1)

STRMO{1+73)
STRMO(?s3) + STRMO(2,11}

90 STRMO(253)
RETIRN
FAD

]

CIRFTC DATA
BLOCK DATA
COMMON / BLKY / WTINOL(22)
DATA WTMOL / 184020, 1054993, 40,001 1006426015, 1564020
‘ ' 2E841RNy 17747209 1414950y BALNRN, 72,900, 100,n9],

1
? 4440118 119980, 8149714 258,180, 1580,70N4141,0580,
g ENN (TN TTa9NTs 1424048 4440114 104,024 /
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a¥aNaFaNaNaVteNelaRaANONANSRARA!

100
200

50

51

SUBROUTINE CONV4U

GEOMETRIC EXTRAPOLATION TECHNIQUE
WRITTEN BY O. ORBACH MCMASTER UNIVe DECe. 23 1968

ENs EQUIPMENT VECTOR -
1o EQUIPMENT NUNBER '
2. NUMBER OF ITERATIONS BEFORE EXTRAPOLATION IS
APPLIED IN THE FIRST TIMEe
3¢ RELAXATION FACTOR.
4, TOLERANCE OF THE FRACTIONAL CHANGE OF THE
GEOMETRIC COEFFICIENT (EG)e
5. NUMBER OF ITERATION BEFORE EXTRAPOLATION
15 APPLIED ‘
X #%XFXFMACS IM COMMON DECKs FOR BAYER PROCESSe TeTe JANe31,1968.
CCMMON NOCOMP s KSETS s NINsNOUT sNE s STRMI (5530) s STRMC(5530) sEN(8020)
COMMON  STRMCI(5s10)sSTRMCO(5510) sENC(BUs10)sAEN(30530) :
COMMON SN({12Us30) sAAA(3655)sLO0P :

DIMENSION X(1B8U)sF(180)sX0(180)sF0O(180)

THE ASSUMED STREAMS.
DIMENSION NS(8)

NN=4 :

DATA NS/223309319100s0s0Ls0s0/

LP=EN(NEs2)
TC=EN(NEs3)}
EGT=EN{NEs4)
LK=EN(NEsS)

NNN=NOCOMP*NN
IF(LOOP.GTs1l)} GOTO 2V0C
EN(NEs6)=1s0

DO 1VUL K=1sNNN
X0(K)=0.0

FO(K)=0e0

X{K)=0.,0

F(K)=0.,0

CONTINUE

CONTINUE
KOUNT=EN{NE»+6)

IF(KOUNT=2} 5Us60s70

CONTINUE

DO 51 1=1sNN
1I=NS(1)

DO 51 JU=1,NOCOMP
K=(1-1)*NOCOMP+J
XO(K)=SN(ITIsJ+5)
CONTINUE

- GOTO 79
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HO

CEOO) = (X=X ()
o

o

C‘CHT LEE

CfFN=n, N

NOAT T=] 4 M

1 T:\kC (I )

RO AT =1 abincnve
V=T )M oDy )
YV Y=on({TTa]45)
Fr(uv)y=sigh

TR (AES(XO(K)).LT

SF T =GF A E0 () %F D
COMT [ MoE
CFENzcART ( DY
GOTN 72

CoMT I nE -

CFE=",0

POT7T T=1.00
T1=ta(1)

aTe T N IPS STVl obhla
Vo ([=1)%N0cr Dy
Y1=Sh(Ilsd+5)
Frey=n

TEAARS(A( ) ol Te (1 ani=10101)

F = (M1=X (1)) /410
CF=CEaE ()57 (¢)
COMT TR

C’F:C"‘EDT ( o )
r‘-r:.:(tr'./cf y

€ a=] =0

DITE (£5500) LOOP s 0F 4 6551 G
EORUAT (/7270 s B0 LOOD s 15,2

Faal)

TR A(LOND GE 1 P e A g

CoNMTIMOE
SHE
FOO=FG
PO TR T ] o MM
1
4.

no 7% 0=

RETURMN

COTO

61
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COY v
CHG=ac00(0

[F{CIGeGToi-T )

VRTTE (AsBT
FORMAT (/47

AMY AN Tz T

RIS
[1=

aQ
~ny Qn

(1)
i ‘J:],,

M= (11 ) 3000

DX (1) RF (L

AP=FO(K) -7

!"\l(‘:r‘.fj /Ff\(!’/
IF (el Tl

TF(CeCF &2

R=F(a)
COMT T
VoY Y=Y

o~

Ty
SMATT ald+5
1
i

cont

DETH

I=1,

(-
A

7

B S D VAR CTE

GOTO 90
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