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I. INTRODUCTION 

The computational complexity of che~lca! processes has been 

reduced by the development of generalized procsss simulators for use 

on a digital computer. Excel lent reviews describing the process 

• I t ors ava1· Iab I e have b pu b I · h d e 1a..L' e 1v ( C4' E11 J I 1 L 1' R I ) s1mu a een ts 1 


. Sh. ' P"CER CC4, 52)
0ne. o f these execu i ·tve programs .IS annan s A M2, wh"tch 

has been widely utilized at McMaster University for simulation of 

'chemical plants such as a sulphuric acid plant, an alkylation process 

unit, and the Bayer process for alumina extraction. 

The underlying principle of most of these simulator programs 

is that of modularity. A real chemical plant is made up of processing 

units such as disti I Jafion columns, reactors, heat exchansers, pumps, 

compressors, and so on. Each unit (e~uipment) has a set of fundamental 

laws of chemistry or physics which can be used to model the unit 

mathematically or by empirical equations. The assembly of such a set 

of mathematical equations and of the mathematical techniques for solving 

them, so that the unit is simulated, is defined as a unit computation. 

Each unit computation computes alI the output streams from t~e unit, 

given alI the input streams and the relevant parameters which describe 

the unit. 

The process simulator controls and diracts the calculation of 

the unit computation of the chemical plant. Thus, the unit computations, 
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together with the information .from the· process flow diagram, can be 

uti I ized by the simulator to set up a mathematical model of the 

complete process. 

The essence of a simulator which uses the modular approach is 

that it provides an easy means of describing the entire process itself, 

and the relevant data and specifications, so that modifications can be 

readily made and the calculations carried out without the need for any 

spe~ial programming by the user, other than of the necessary unit 

computations. The simulation of the complete process can be used as 

many times as required to evaluate the performance, either for different 

input conditions or for different values of the design or operating 

parameters. 

If the process flow diagram contains no recycle streams, it is 

possible to work syste~atical ly through the process, unit. by unit, using 

computed output streams as the inputs. to succeeding units. This is not 

possible if a recycle stream is present, since this wi I I always be 

required as an i npui- before it has been computed as an output. A I I the 

simulator programs deal with this situation by breaking a sufficient 

number of streams, cal led assumed or recycle streams, by treating the 

downstream half of each as an input to the process and The other half 

as an output, and by using a suitable iterative procedure to match the 

two halves. The user must provide the initial estimates for these 

"inputs", although it has been claimed by Kesler and Griffiths (KI) that 

in some cases convergence is assured from an initial estimate of zero. 

Typical recycle process is given in Figure 2. I. 
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Determining the sequence in which the units are computed, the 

computational sequence, and hence the identification of the recycle 

~treams 7 is the first step essential in the calculation of recycle 

processes. Extensive research has been do~e (C21 L2, 537 F2, Nl) to 

determine the minimum number of recycle streams (assumed streams), by 

analyzing the topological description of the flowsheet, although the 

computational sequence which is obtained from these streams wil I not 

necessarily yield the most rapid convergence. 

The method of successive substitutions is probably the most 

( E I ) 
• commonly 	 used for computing the recycle processes. The major 

advantage of this method is its simp I icity, but unfortunately its rate 

of convergence can be intolerably slow and sometimes it may not 

converge at a I I. 

For this reason, various kinds of convergence accelerators 

. . I t . ( C3 1 K I ' K2 1 R3 " R5 )Iare f requen1· Iy used Jn process s1mu a 1on worK 

(C3) .


Cavett presented ~ comprehensive review of techniques for 

obtaining solutions for steady state,process simulations. In particular, 

Cavett discussed the application of convergence acceleration such as 

• (WI) 	 (N3)
Wegste1n's method and Newton's method. Naphtal i Ravicz and 


(R5) .

Norman have also discussed the application of Newton's method for 

obtaining the steady state solution of recycle processes. 

• (N2)
Nag 1ev, who has not app I i ed the rr,odu I a r approach to so I ve 

recycle problems, formulated the simulation problem as a system of 

I ine~r equations. Linearization was achieved by I inearly characterizi.ng 

the operation of the processing units in terms of split fractions and 

http:characterizi.ng
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the solution was obtained simultaneously by inverting the matrix of 

constant coefficients. Rosen (R2) extended Nagiev's formulation 

technique to allow for varying of the split fraction. Rosen used 

this method for promoting the convergence of heat and material balance 

calculation of recycle processes. 

Despite extensive studies and wide attention given to the 

convergence problem in the past, the need sti I I exists to develop more 

efficient convergence promotion techniques for large and complex 

chemical processes. The recognition of this need initiated this study. 

The objective was to evaluate methods for promoti~g the 

convergence of complex che~ical plants and thus, for reducing the 

number of iterations and overal I computation time. 

The formulation of the iterative calculation technique for 

recycle process is discussed in Section 2. In addition, the existence 

of the so Iuti on and the convergence condition of I i near and non- I i near 

iterations are studied. The asymptotic behaviour of the iteration is 

thoroughly examined. 

In Se~tion 3, the convergence promotion methods are discussed. 

The ful I matrix method and the geometric extrapolation technique are 

demonstrated in two case studies (Section 5). Section 4 bring~ out the 

residual method of formulation of recycle processes. A few solution 

techniques for solving sets of non-1 inear algebraic equations are 

discussed such as, Newton's m-3thod, a modified form. of Newton's method 

and the Quasi-Newton method. Two methods for solving multi-component 

disfi I lation columns are studied in Section 6. 



2. STEADY-STATE PROCESS SIMULATION 

The widespread use of computers for simulation and design of 


la.rge chemical processes has led to the development of executive 


(C4 I E I I L I ) computer programs These master programs coordinate the 

tomputation of the unit process modules and perform simulation or 

optimal design of complex chemical plants. The computational complexity 

of chemical processes has been reduced by the development of these 

generalized process simulators. 

The successive substitution iteration is the most common 

technique to solve recycle problems. The formulation and conditions 

.for convergence of the iteration wi I I be discussed in this section. 

In addition, the asymptotical behaviour of the iteration wi II be studied. 

2. I Formulation 

In order to reduce the total computation time, the first step 

in calculation of complex recycle processes is to partition the plant 

equipment into blocks, such that alI the recycles are within the 

blocks, and then to order the blocks, such that completion of the 

computation in one block assures that alI the streams, needed to perform 

the computation of the next block in order, would be known. The block 

contains one or more equipments (nodes) where the connections between 

the nodes are such that it is pass i b I e to reach from any node a I I the 

others in the same block, by a finite number of steps in the direction 

5 
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of the arrows. A block, which can be represented by direct graph, 

. (C I ) 
sometimes is cal led a maximal eye! 1cal net 

Example of partitioning recycle process into two blocks is 

given in Figure 2.3. Nodes Cequipments) I and 2 are in the first 

block and nodes 3, 4, and 5 are in the second block. The computation 

in the second block would be made only after completing the compufation 

of the first one. 

Norman (NI) and Himmelblau (HI>. detect blocks by taking 

successively higher powers of the "Association Matrix" of the process. 

(53)Sargent and Westerberg performed partition directly with a list-

type representation of the ."flow diagram" of the process. A similar

. CC2)
technique was also used by Christensen • 

Any block that contains more than one equipment (node), has 

one or more recycles and thus may be so!ved iteratively. Before 

starting the sequential calculation within a block having recycle, 

a set of streams must be chosen, the values of their variables assumed 

and the sequence of calculation of the equipment imp I ied by this set 

of assumed streams should be found. 

2. 1. I Assumed Streams and Sequence of Calculation 

Norman CNI), Himmelblau (HI) and Chartrand CCI) used the 

"Association ~~atr i x" for i dent if i cation of the eye I es within the 

blocks. Lee and Rudd (L2 ) start from this point, assuming that some 

method is avai !able to trace out all the recycles, and use the 

"eye I e matrix" to f i nd mini mum number of assumed streams. In PACER 

by testing alI the feasible stream combinations and increasing 
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successively the number of assumed streams, the minimum number of 

assumed streams can be found. But the number of cdmbinations to be 

examined is excessive when the block is of moderate size, or when the 

number of streams that need to be assumed, for solving this block, is 

bigger than three. 

(53)Sargent and Westerberg reduce the number of combinatLons 

by merging edges and nodes (streams and equipments). Christensen (C2 ) 

reduc"ed the combinator i a I p rob I em by e I i mi nat i ng "i ne I i g i b I e" edges 

(streams). 

In all these works (C2 , L2, 52 ' F2), assumptions were made 

that the sequence of calculation which results from a minimum set of 

~ssumed streams is that sequence of calculation of the equipment within 

the blocks which would minimize the calculation time. However, there 

is neither a numerical nor a theoretical proof of this assumption. 

(53)Truly, Sargent and Westerberg were concerned about the problem 

that the minimum number of assumed streams might not lead to minimum 

over-a! I computation time. 

Furthermore, it can be shown that the same· sequence can resu It 

from another set of assumed streams, larger than or equal to the minimum 

set, by simply starting the calculation from another equipment in the 

sequence, and therefore the rate of convergence wil I be the same. 

To e,xp I a in the statement above we may examine a case that was 

( L2) .given by Lee and Rudd (See Frgure 2.2). For this recycle ·flow-sheet 

they have given four avai !able sets of assumed streams which are 

sufficient to render the recycle problem .acyclic (Table 2.1 ). 
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Although case B has the minimum number·of assumed streams and was 

selected as the best by Lee and Rudd (L21 , alI four cases give the 

same computationa I sequence, differing on Iy in the starting point. 

TABLE 2. I 

Assumed Streams and Sequence of Calculation 

for Recycle Problem as given by Lee & Rudd (L2 ) 

( F i gure 2 . 2 ) 

Assumed SequenceCase Streams of Calculation 

A 59, SIO, S II 2, 3, 4, 5., 6, 7I ' 

B 53, 57 4, 5, 6, 7, I I 2, 3 

c 54, 58, 59 5, 6, 7, 2, 3, 4I ' 

D 56, 58, 59, SIO 7, II 2, 3, 4, 5, 6 

Therefore, in_order to get the best computational sequence it is not 

necessary to locate th~ minimum set of assumed streams. Furthermore, 

it appears tha~ it is not always sufficient to locate the minimum set 

of assumed streams, in order to get the best computational sequence, 

since we may have more than one minimum set. 

However, for solving recycle problems some set of streams 

must be assumed and this set ought to be feasible in order to get some 

suitable computational sequence, where a feasible set is defined as 

fo II ows: 
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"A set of assumed streams of size m is a feasible set if 


and only if this set is sufficient to render the recycle 


problem acyclic but no proper sub-set of this set is 


sufficient to do sott 


2.1.2 Calculation Techniques 

By breaking each assumed stream and treating one half as an 

"input" to process and other half as an "output" a suitable iterative 

pr~cedure may be used for matching the two halves. 

If the assumed streams and their related sequence of calculation 

have been correctly chosen, the 11 output" half of the assumed streams 

depends only on the "input11 half (if alI the design and operating 

variables of the process remain constant). These relations can be 

represented by the following set of functions: 

X ) ( 2. I ) 
m 

== I, 2, ..• m 

or in vector form: 

? = F <x> (2.2) 

where: 

X- is the "input" vector 

Y - is the 11 output" vector 

F - is the function vector 

m- is the number of elements in vectors X, Yand F. 

Vectors Xand Yrepresent the same set of ·assumed streams and the 

e I ements of these vectors contain a I I the components of these streams. 
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Therefore, the number of elements, m, in vectors Xor Yare equal to 

the number of assumed streams multiplied by the number of components 

in those streams. 

The aim of any calculation technique is to find vector Xsuch 

that X= Yor to satisfy the following equation 

x = F <x> (2.3) 

Here, Xis the variable vector and ~ is the solution of the recycles 

problem which satisfies equation (2.3), such that 

X = F (X ) (2.4)
s s 

After evaluating X , that is the values in the assumed str~ams, the 
s 

remaining streams of the recycle process may be calculated directly .. 

(S2) .Most of the executive programs as PACER use successive 

substitution for solving recycle problems. This technique may be 

described by the following two equations: 

y = F ex ) (2.5)
n n 

y (2.6)xn+l= n 

n = 0, 2, 3,I ' 

where n is the number of the iteration and vector X is the initial 
.0 

point. 

If the initial value X of the assumed streams is close enough
0 

to the solution X the iterative procedure (Equations (2.5) and (2.6))
s 

hopefully wi I I converge within a specified tolerance after a sufficient 
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number of iterations. 

( K I)
Kesler and Griffiths have also applied this successive 

substitution method and they compared their results with the method 

of · Itaneous Iut· descr1"b dby Nag"1ev (N2 ) and Rosen s1mu so 1on e (R2). 

The initial composition of the assumed streams X is assumed to be 
0 

.zero in their study. 

Cavett (C3 ) and Kliesch (K2 ) discussed the application of 

convergence promotion routines to replace the successive substitution 

(Equation 2.6). Cavett (C3) presented a comprehensive .review of 

iteration techniques used to obtain solutions of recycle proc~sses. 

Direct iteration (successive substitution), Wegstein'~ method, 

hyperbolic extrapolation and Newto~ Raphson were reviewed and used 

to solve example problems. Cavett found the hyperbolic method to be 

very effective and useful for accelerating the convergence of recycle 

processes containing only one recy~le stream. 

Kliesch (K2) claimed success in accelerating the convergence 

. (WI) . . CWI)
using the bounded Wegste1n method. Wegste1n used his method, 

. (A3 A4)which is in fact a modification of Aitken's ' method, for 

accelerating the convergence of mono-variable iterative processes. 

Hence, it is expected that this method, as Cavett's hyperbolic extra

. . (C3)
polat1on method , wi I I be useful only for promoting the convergence 

of a mono-recycle process where the interaction between the components 

are weak. 

The sum of the equations (2.5) and (2.6) gives the general 

iterative equation 
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F ex > (2. 7) 
n 

n = 0, I, 2, 3 .•. 

This equation (2.7) is the basic iterative equation that describes 

calculation of recycle processes or calculation of heat and material 

balances which are solved iteratively. 

In case of recycle processes the functions F.(X) represent in 
I 

fact.the numerical procedure which is carried out as the calculation 

progresses from unit to unit. It is possible to find the value of the 

set of functions for any point X but the first derivative can be taken 

only numerically (by a finite difference). 

Although it was said that it is possible to evaluate ~ for 

.any point Xit should be noted that in practice only when X is located 

within a desired distance from the solution can the set of functions 

be evaluated. It mainly happens if some modules within the recycle 

process have a constraint on their feed composition. 

Now, if the solution ~ exists in the desired interval and 
s 

satisfies equation (2.4) and the initial point X·is close enough to 
. 0 

the solution, for material balance calculations the iteration (2.7) 

usually converges. Non-convergent iteration sometimes appears in the 

calculation of h1ghly intefactive heat and material balances. The 

problem of how_to obtain a good initial point ~0 that wi I I be close 

enough to solution X Is unresolved in general. Frequently, a good 
. 5 

estimate of the solution is known to the problem formulator, i.e. the 

process engineer. 
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2.1.3 ·Recycle of Heat 

In many chemical processes +he output flows from a unit 

exchange heat with the input flows, which constitutes a recycle of 

heat. Considering the case which is given in Figure 2.4, El is a 

heat exchanger and E2, which could represent an evaporator, disti I lation 

column etc., is a computational unit which consists of heat anq material 

balance calculations. 

It can easily be shown that it is preferable to select stream 

number 2 as the assumed stream instead of stream number 4 (See Figure 

2.4) .. If stream number 2 is selected then the temperature of this 

stream becomes the only variable of the recycle calcutation. AI I the 

components which flow in stream 2 are identical to those ih stream I, 

the feed stream. If stream number 4 is chosen as assumed stream, th~ 

variables of the recycle calculation are the temperature and alI the 

components of stream 4. 

Hence the computation of recycle of hea~ can be reduced to a 

one dimensional problem which can be solved by successive substitution 

or any other one dimensional search technique where the variable is 

the temperature of stream 2. 

If the recycle of heat (Figure 2.4) is part of another main 

recycle, such that streams I and 5 are included in it, it may be better 

to converge the recycle of heat separately, every time the computational 

sequence reaches this section of the flowsheet. 

Sometimes, the temperature of stream number 2 is control led 

(See Figure 2.5). In this case, the computation of the recycle of 
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.heat can be solved directly. The calcu.lation procedure can be as 

follows: 

I. 	 Transfer the components f I ow from stream I to 

stream 2 and fix the temperature of stream 2 

as des i r·ed. 

2. 	 Calculate equipment E2, El, and E3 in sequence. 

Extracting all the recycles of heat in the slmulated processes 

and treating them in the way discussed above can reduce the number of 

recycles and simplify the calculation. Ah example is given in Section 

5. I • 
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FIGURE 2.4 RECYCLE OF HEAT 


---);~ 

FIGURE 2.5 RECYCLE OF HEAT 

WITH TEMPERATURE CONTROL 
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2.2 Iteration and Fixed Point 

Considering again the general equation of iterati'on (2.7), 

x =F(X> (2.8)
n+l n 

n = 0, I, 2, ... 

(I I) isaacson and Keller showed that for any set of functions F and 

some initial appro~<imation X, the convergence of this iteration
0 . 

process is assured if the mapping ~(~) carries a closed and bounded 

setS C: Rm into itself and if the mapping Is contracting, i.e., if 

1-1 F ( ~) - F ( y) II 2. M II X - yII (2.9) 

for some norm, the "Lipschitz" constant M < _ I and a I I X, Y £ S. 

It can be shown under these conditions that f(~) has a unique fixed 

point X in S satisfying equation (2.8), as s 

x 
s 

= F ex 
s 
) 

The vector norm may be chosen as any one of the following 

II xJ L>'J = max jx.j (2.10)
I

i 

m 
llxll = E jx.j (2. I I ) 

1 I
i=l 

m 
= { r x~ }~ (2. 12)llxll2 

!.-, 

.t= I I 
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2.2. I Convergence Conditions 

The fo I I owing two theorems stated by Isaacson and Ke I I er (I 1 ) 

give sufficient conditions for the existence of a solution X and for 
s 

convergence. 

Theorem 

Let F(X) satisfy 

(2 0 13) 

for a! I vectors, X, Ysuch that 

II x - xo II < r 

and II? - xo II < r 

with the Lipschitz constant, M, satisfying 

0 < M < I (2. 14) 

and let the initial, ~0 , satisfy 

II F(X ) - X II < ( 1-M) r (2.15)
0 0 

Then, i) alI iterates X (2.8) satisfy
n 

llx - x II < r n o 

ii) the iterates converge to some vector say, 


J!-im x ->- x 

n sn-+co 

iii) X .is the only root of (2.8) in the inte~val,s 

(The proof is given in Appendix C). 
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.. 
The iterate, X , can be shown as follow~ to satisfy

n 

11x+ - xI(< Mn.<I-M).r
n 1 n 

as from (2 .8) 

11x +I- x II= !IF<x >- Fcx 
1 

>.11n n n n-

Thus, by (2. 13), the Lipschitz condition yields, 

II xn+ I - xn II 	 < M II xn - xn-1 II 

< M2 II xn- I - xn-211 

arrd applied condition (2. 15), then 

(2. ~7) 

As a consequence of th i_s resu It (2. 17) it is seen that the 

iterates converge geometrically, and at least as fast as Mn + 0. 

It also can be shown from (2. 16) and (2.8) that, 

jjFCX)- X II< M.j]FCX I)- X Ill 	 (2. 18)
n n - n- n-

A s i rrii I a r theorem, "Subcontracting Mapping Theorem", is given 

by Goldstein (GI). In his theorem the 1nitial point X satisfies the 
. 0 

following condition 

or with (2.8) 
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·which replaces the initial condition (2. 15). 

A more useful result can be 6btained if we are wi I I ing to place 

more restrictions on F(X) and assume the existence of a solution X . 
s 

Theorem 2 

. Let the iteration (2.8) have a root X and let the functions 
s 

F.(X) have continuous first order partial derivatives,
I 

CIF. CX)
IF.. cX> 

lj ax. 
(2. 19) 

j 

and satisfy 

m 
max 

i 
L: 

j= I 
IF .. <X> I < 

I j 
M < (2.20) 

for all X in 

!lx- x II < (2. 21 )rs 00 

(for the norm see equation (2. 10)) 


Then, i) · for any X satisfying (2.21) alI the iterates X of 

o n 

(2.8) also satisfy (2.21) 

i i) for any X satisfying (2.21) the iterates (2.8)
0 

converge to the solution X which is unique in (2.21)
s 

(See Appendix C) 

The iteration can be shown as follows to satisfy 

From (2.8) and (2. 10) 

Using the mean value theorem 
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m 
F. (X ) F. (X ) ::: ~ F.. (~.).(x . X • ) 

1 n I S I J I . n 1 J S,Jj:::l 

m 
or II F(X ) - F<xs >II = max { L: F.. (~.).(x . - X • )} 

n 00 
I J I n, J s ,Ji j:::J 

where ~- is a point on the open I i ne segment joining x and x 
1 n s 

Thus with (2. 10) and (2.20) yields 

m 
= max { L: F.. (~.).(x . - x .)} 

IJ I n,J S 1 Ji j=l 

m 
< max { L: F.. <~.>l.Jix- x II

IJ I n S oo
i j= I 

< Mn+ I • r 

and llxn - xs II < ~1 
n

• r (2.22) 

Here again, from (2.22), it is seen that the iterates approach 

nthe solution geometrically, and at least as fast as M ~ 0. 

As theorem 2 is only a sufficient condition for convergence, 

the iterate might converge to solution without X sati~fying (2.20)
0 

and (2.21) .. Therefore, it may be that if equation (2.20) is satisfied 

for Xwithin a sphere of radius r around the solution Xs, then the 
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iteration may converge to X if X is cIose eno.ugh to so Iuti on Xs, but 
5 0 

not necessarily within that sphere, as required by (2.21). 


For example, we may examine one dimension iterative calculation 


as 

= g(x )
n 

(2.23) 

n = 0, I, 2, 3 ••. 

Then (2.20) and (2.21) become 

Ig' ( x) I < M < I (2.24) 

for a I I x in 

lx (2.25) 

Thus in Figure 2.6, although x is outside of the interval of 
0 

(2.25) and x does not satisfy (2.24) since 
0 

jg'(x >I> I 
0 

the iteration sti I I converges. 

2.2.2 Convergence Test 

If the iterative calculation is a convergent process, the 

iterate X would approach the solution X asyrnptotically, that is, 
n s 

that X would approach X arbitrarily closely as n approaches lnfinity.
n s 

In a practical case it may be sufficient tb iterate unti I reaching 

some point X , close enough to the solution X , and to consider this c s 

point as the solution. 

However, the test of convergence used in iterative calculations 

commonly is to examine the fractional change of every element in vector 

~~ between two successive it~rations. Hence, the test vector may be 
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g(x) 

~--------~----------~~-------~ 
X X X X 


s s+r o 

FIGURE 2.6 SINGLE EQUATION ITERATIVE CALCULATION 
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written as, 

0 :::: [IX ]-I (X + I - X ) (2.26)n n n n 

where [IX] is to be interpreted as a diagonal matrix with elements x. 
I 

throughout this thesis. The iteration is considered to have converged 

when every element in vector 8 is less in modulus than some smal I 
n 

tolerance. This kind of convergence test gives an indication of the 

fractional change of every element in the vector X, but does not show 

how far X is from the tr·ue solution X. In addition, in order to 
n s 

obtain the same deviation from the true solution for two different cases, 

the tolerance of the test vector (2.26) ought to be chosen according to 

the rate of convergence. It is wei I known that the slower the iteration 

converges 1 the srna! Ier the to Ierance must be for the same absolute 

accuracy. Later in this work a technique for choosing the right tolerance 

wi II be discussed. 

Another indicator for convergence is the deviation vector which 

is defined as follows 

5 = [I X ]- 1 cX - X ) (2.27)
n s s n 

The elements in the deviation vector give the fractional difference 

between X and the solution X . The deviation vector is hardly ever 
n s 

used as the convergence indicator· because X is unknown. However, if 
s 

a relation between B and ~ can be found, 5 may be used in choosi.ng 
n n n 

the right tolerance for the test vector 0 such that X is sufficiently
n n 

close to X as given by a specified 0 • 
s n 

The test of convergence can also be done on the process itself 

(2.5) separately from the computation method. In other words, the 

http:choosi.ng
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test would examine the fractional difference between vector~ and? n n 

regard less of the kind of convergence technique used for eva I uat i ng 

~n+l' such as successive substitution (2.6). or some accelerating method. 

This kind of test may be called fixed-point test vector and 

can be written as, 

T ::: [I X]- I {y - X ) (2.28)
n n n n 

Since the fixed-point test vector is independent of the convergence 

technique, it was used for comparison of the various accelerating 

methods. It is worthwhile mentioning that for successive-substitution 

iteration {2.6) the test vector 0 {2.26) and the fixed point test T 
n n 

{2.28) are the same. 

T _ e (2.29)
n n 

if ~ 	 = yn+l n 

2.3 	 Linear Iteration 

It is we/ I established that modern linear system theory has 

. (S5)been highly successful when applied to pract1cal cases , in spite 

of the need to use approximations. That is, that equation {2.5) may 

be approximated by I inear equation as 

{2.30) 

or 

A x + 5 (2.31)
n 

where A is an m x m matrix of the I inear coefficients 

b is a vector constants 

and successive substitution as in equation {2.6) applied to linear 
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system (2.31) gives, 

= A x + 5 (2.32)
n 

for some given X . 
0 

The linear iterative system (2.32) is useful because the 

mathematical knowledge of this system is wei I established (A2 , Fl) • 

Iterative calculations of chemical plants are. often I inear or very 

close to I inear, and convergence promotion techniques that are suitable 

for I inear systems may be used for practical non-1 inear cases as an 

approximation. 

2.3. I Convergence Condition of Linear Iteration 

The two theorems (I and 2) that were applied for general 

iterative process are obviously true for linear systems. Applying 

(2. 19), the partial derivatives of the set of I inear functions (2.30) 

gives, 
aF. <X> 

F.. ::: 
I = a .. (2.33)

I J IJax. 
J 

where a .. is the element ( i ' j) of the matrix A. Therefore the maximum
IJ 

absolute row sum (2.20), for a I inear system is 

m 
max E Ia .. 

lj 
j 

-
< M < I (2.34) 

j=l 

This maximum absolute row sum Is usually known as the matrix norm I lA! loo 

m 
I/ AII oo = max E ja .. j < M < I (2.35)

IJ j=l 

As the elements of the matrix A are constant, (2.35) is independent of 


X, therefore if (2.35) is satisfied the iteration wi I I converge (Theorem 2). 
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Faddeeva (FI) shows that in order that the process of linear 

iter·ation converge, it is sufficient that any norm of the matrix A be 

less than unity. That is, that 

(2.36) 


Faddeeva also has given ~~~y_ and sufficient conditions for-

convergence of I inear systems as follows: 

Theorem 3 

For convergence of the process of linear iteration (2.32) with 

any initial vector X and with any value of the vector b, it is 
0 

necessary and sufficient that a! I the eigenvalues of the matrrx A be 

less than unity in modulus. Thus, 

A. 
j 

I < I (2.37) 

j = I, 2, 3 . . . m 

2.3.2 The Solution of the Linear Iteration 

The linear iteration equation (2.32), which is a I inear 

.difference equation, may be solved gener~l ly for some initial value X ,
0 

(See Appendix A) to give, 

m W~[X - X ] 
j 0 sL __T___ (2 .38)X = z. 

n jj= I W. Z. 
j j 

-I
X = (I -. A) b (2.39)

s 

where X - is the steady state so Iuti on of (2.32)
s 

A. - the eigenvalue of matrix A 
j 

Z. - the eigenvector of matrix A 
j 

w. the e i genr-ow of matrix A 
J 
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W~[X ·- X ] 
If _ J o ·s 

Co - · T (2.40) 
J ~J. z 0 

J J j = I, 2, ..• m. 

then· the solution becomes 

m x = E c. Zo A~+ X (2. 41)
n J J J sj=l 

Examining the solution of the difference equation, it is clear that if 

the eigenvalues of matrix A are less than unity in modulus the iteration 

wi I I converge, (Thea rem 3), as 

iim ).~-+ 0 
n-+co J 

j = I, 2, 3 •.. m. 

and 
m 

- n
iim X = tim { E C.Z.A. + X } = X sn n-+oo j=l J J J sn~oo 

Furthermore, the rate of convergence ~epends on the absolute value of 

the eigenvalues (2.41 )~such that, the s~al ler the eigenvalues in 

modu Ius, the faster the iterate wi II ,converge. Also, the rate of 

convergence depends on the coefficients C. (2.40) which are linear 
J 

functions of the distance between the initial point X and the solution 
0 

Xs. Obviously, the number of iterations needed for con\'erging would 

be less if the initial point X is closer to solution X . 
0 s 

2.3.3 Dominant Eigenvalue 

The so Iuti on of the I inear d if fe renee equation (2.41), that is 

the I i near iterative ca I cuI at ion, is a I i near combination of the eigen

vectors Z. with the scalar coefficients C.A~. Every single coefficient j
J J J 
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dec! ines ~eometrical ly as n increases. The bigger the eigenvalue in 

modulus the slower the coefficient decreases. Therefore, if Ak is the 

biggest eigenvalue in modulus of_ the matrix A, then after sufficient 

number of iterations, only one term of the summation remains since alI 

the other coefficients have become very smal I. The solution (2,41) 

then becomes 

(2.42) 


Thus, after a sufficient number of iterations the biggest eigenvalue 

in modulus controls the rate of· convergence of the iterative process 

and the iterate conve_rges geometr i ca I I y to X ( 2. 42) . 
s 

This ~eometric behaviour of the iteration may be uti I ized for 

determining the tolerance for the test vector (2.26) and for promoting 

the convergence. 

2.3.4 	 The Convergence Tolerance for the 

Test Vector (Linear Iteration) 


The tolerance of the deviation vector (2.27) can be chosen 

independently of the iterative process. The problem formulator may 

choose It according to the necessary accuracy. 

For determining the tolerance of the test vector (2.26) from 

the selected tolerance of the ~eviation vector, equation (2.42) may 

be used. This equation (2.42) can be assumed valid as the iteration 

approaches convergence. 

Substituting equation (2.42) into equation (2.27) the deviation 

vector becomes 
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and substltuti~g equation (2.42) into the numerator of equation (2.26) 

the test vector becomes 

(2.45) 

Assume first that [ I X- T' ~ [r X]-I, then from equations (2.44) and 
n s 

~2.45) the fo/ lowing relation between 8 and Bcan be found 

8 = B • <Pk (2.46)
n n . 

A more general relatio~ between 8 and D can be found by
n n 

substituting equation (2.42) into the denominator of equation (2.45) 

and then with equation (2 -~ 11e get 

- J-18 = [ I - ID (2.47)
n n 

Now, if ~ is very close to the solution ~ , that is, if every element 
n s 

in vector Bn is sm~l I, then the first part of equation (2.47) is almost 

the unit matrix I and (2.47) becomes equivalent to equation (2.46). 

Equation (2.46) or (2.47) can be used for determining the 

tolerance for the test vector if the tolerance for the deviation 

vector had been chosen and the biggest eigenvalue Js known. If B is 

the tolerance for the deviation vector, then 

1/B II < s (2.48)n oo

and the iteration converges if the vector 5 satisfies (2.48). Now,
n 

using (2.46) 

and substituting (2.48) we get 
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Therefore the iteration satisfies (2.48) if the vector test 8 satisfies 
n 

{2.49). 

As an example of the tolerance calculation, suppose 

s = 0.001 

= 0.9Ak 

then = 0. I<Pk 

II e II < 0.0001 
n oo 

The tolerance for the test vector is ten times smaller ·than the tolerance 

for the deviation vector, when the biggest eigenvalue is 0.~. Table 2.2 

gives the correction factor ¢k as a function of "k· 

· TABLE 2. 2 

The Correction Factor ¢k 

'-k <Pk 1/<Pk 

0.5 0.5 2.0 
0.6 0.4 2.5 
0.7 0.3 3.33 
0.8 0.2 5.00 
0.85 0. 15 6.67 
0.90 0. I 0 10. 
0.95 0.05 20. 
0.97 0.03 33.3 
0.98 0.02 50. 
0.99 0.01 100. 
0.999 0.001 1000. 
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The bi~gest ~igenvalue in modulus of matrix A (2.30) can be 

obtai ned from the iteration by equafi on (2. 42) us i .ng three success i.ve 

values of vector~ (X 2 , X 1, X). The method for general iteration 
n- n- n 

wi II be discussed in detai I later in this work. The biggest eigenva·lue 

(L4) · 
in modulus can· be also calculated by the power · method. 

2.4 The General· Iteration 

Geometric convergence was observed in iterative calculation of 

recycle processes (AI) or heat and material .balance of distillation 

2 )co I u m n s (p Thus, not only I inear iterations (2.32) approach the 

form 6t equation (2.42) but also non-lineaf iteration (2.7) asymptotically 

approach the geometric progression. Although it is not a general 

statement for any non-1 inear iteration, in practical calcufation of 

chemical engineering processes when the rate of convergence is very 

slow or the iterates close to ~elution, the iteration can be approximated 

by a geometric progression in form of equation (2.42) as, 

X 
n 

= 0 lln + X' 
s 

(2.50) 

where 0 is vector of coeff1cients 

~,
s 

is the approximation to the solution X 
s 

11 is the geometric coefficient 

When the iteration (2.7) approaches a geometric progression, 

equation (2.50) can be used to obtain the geometric coefficient 11 which 

may be used for determining the tolerance for the test vector (2.26) 

' 
and for determining the rate of conver-gence. Furthermore, if the 

iteration has approached geometric progression in a small number of 
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iterations, equation ~2.50) may be uti I ized, as a convergence promotion 

method, for approximating the solution. 

2.4. I Evaluation of the Geometric Coefficient 

The value in modulus of the geometric coefficient can be 

calculated directly from the iterate vectors (X 
1
, X, •.• ) if the n- n 

number of iterations is sufficient for the iteration (2.7) to have· 

approached geometrfc progression (2.50). Therefore the iterate vectors 

may be examined f i r·st in order to detect when (2. 50) becomes v a I i d and 

then to ca I cu late the geometric .coefficient. 

We may define an error vector E, which wi I I be used in the 
n 

derivation and later wi I I be· replaced by the test vector (2.26), as 

x (2.52)
n 

and we may define lln as the ratio betweer~ the norms of two successive 

error vectors, as 

II En II /lxn+l - x nI I 
ll = = (2.53)

n 
II En_ 111 1/x - xn_,l!n 

with any nor·m (2.10), (2.11) or (2.12). Now, if (2.50) is valid the 

error vector (2.52) becomes 

and (2.53) becomes 

(2.54) 


(2.55) 


From (2.55) we can see that as the iterate approaches the geometric 

progression, 11 appr-oaches a constant value equal to the absolute value n . 
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of the geometric coefficient ~· 

Now, if An is the fractional change of ~n in two successive 

iterations, 

(2.56) 


then if A is less than some smal I tolerance y, (2.50) .is assumed to 
n 

be valid and the geometric coefficient in modu.lus is~ (equation (2.55).
n 

That )s, if 

(2.57) 

then 

I ~ I =: 11 n 

Practically, ~ , 11 and A can be calculated every iteration,n n n 

and if An is satisfied (2.57) then ·1111 =: 11n· The sign of the geometric 

coefficient can be calculated by using one of the elements of the error 

vector ~ . Suppose E . is the largest element in the error vector, then n n,J 

the sign of the geometric coefficient 11 is the same as the sign of 11 .
n,J 

that is obtained by the following ratio 

E . X I . - X •n,J n+ ,J n,J 
11n,j =: X • - X .E I . 

=: 

n- 'J n,J n-l,j 

Actually, the test vector (2.26) can be used instead of the 

error vector (2.52) for obtaining the geometric coefficient. Equation 

(2.55) becomes 
II enII 

(2.58)lJn = 

If the iterate approaches geometric progression (2.50), then by 
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substitution of (2~50) into (2.26) the test vector becomes 

- ]-1 u- ne = [I X ·~ c~-ll (2.59)
n n 

and equation (2.58) becomes 

Jlen II (2.60)lln = 

since [IX ]-I ~ [rx J- 1• Practically,. it is preferable to use the 
n n- 1

test vector 0 as it gives fractional change between the two iterations. 
n 

For the case of I inear !teration (2.32), the biggest eigenvalue 

in modulus can be calculated by the same procedure as above. If the 

number of iterations is sufficient and the I inear iteration has approached 

a geometric progression which is dorninated·b·y the biggest eigenvalue in 

modulus, equation (2.42) becomes valid and by subst~tuting equation (2.45) 

into equation (2.58) we get, 

II en I! 
(2 0 61). lln = 

llen-111 

s i nee Crx J 1 ~ [IX ]-I • The sign of the b i .ggest e i genva Iue in 
n n- 1 

modulus can be obtained in the same way as the sign of the geometric 

coefficient ~ was obtained. 

Finally, if the fixed point test vector (2.28) is obtained in 

every iteration instead of the test vector (2.26) we may define~' as 
. n 

the ratio between the norms of two successive fixed point test vectors, 

as 

~' = ---- (2.62)
n 
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Now, if the computational method, which was used instead of the 

successive substitution equation (2.6) in order to accelerate the 

conve_rgence, has the _fo I I owing I i near form as 

x · = x + f<Y - x > (2.63)n+ I n n n 

where r is a non-singular matrix, and if the· iteration approaches 

geometric progression so that equation (2.50) becomes valid, then 

~~ approaches a constant value /~' /, as 

111nll 
~' = (2.64)

n 
1/ Tn-111 

and it wi I I be shown in the following pag~that 

where ~ is defined. by equafi6n (2.60). 

Thus, assuming that the iteration has approached a geometric 

progression and equation (2.50) is valid and also assuming that 

- -1 - -1[IX] ~[IX ] then from (2.50) we get
n n- 1


x = 0 ~n + X'

" n s 

and 

n
X = 0 }1 (~-I ) (2.65)xn+l n 

and from (2.63) we get 

x = rc? x ) (2.66)xn+l n n n 

From (2.65) and (2.66) we get 

ny (f)- IX - 0 ).1 (~-I)
n n 
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or 

and 

(2.67) 


(2.68) 


and from (2.64) and (2.68), we get 

lltnll 
(2.69) 

II Tn-1·11 

s i nee [IX ]- 1 ~ [IX ] -I • 
n n- 1

The convergence promotion equation in form of equation (2.63) wi l I be 

discussed in detai I in Section 3. 

2.4.2 The Convergence Tolerance 

The mathematical relation between the test vector (2.26) and the 

deviation vector (2.27) can be obtained for the general iteration in a 

way similar to that for linear iteration (Section 2.3.4). As the 

iterate X approaches the solution X , geometric progression usuallyn s 

dominates the iteration a~d equation (2.50) can be assumed to be valid. 

Substituting equation (2.50) into equation (2.27), the deviation 

vector becomes 
- [- J-1 - nD = - IX U ~ (2.72)

n s 

and substituting (2.50) into the numerator of equation (2.26) the test 

vector, becomes 

(2.73) 
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- -1 ~[IX ]-I, from equations (2. 72) andNow, assumi~g that [IXn] s 

(2. 73) we_ get 

e = B (2.74)
n n 

where 

~ = ( l-11) 

which is the same result as equation (2.46). Equation (2.74) can be 

used for obtaining the tolerance for the test vector e when the 
n 

geometric coefficient 11 is known and the tolerance for the deviation 

vector has been chosen prior to iteration (See the example in Section 

2.3.4}. Thi·s equation (2.74), may be used for calculating the 

deviation vector or its norm from the test vector, e , and the geometric
n 

coefficient as the iteration proceeds. 

2.4.3 Rate of Convergence 

Let it be required to reduce the amplitude of the error by a 

factor of at least 10-P .. From equation (2.22), we see that, the norm 

of the error I l~n- ~5 1 loo is reduced by- at_least a factor of Mn. 

The number of iterations required is the least value of ·n for which 

if 0 < M < I, by taking logs we obtain 

p p
n>---= R. (2.75) 

-log M 

Thus, the number of iterations required to reduce the initial 

error by the factot- 10-P is inversely proportional to R, the rate of 

convergence. 
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Now, for iterative calculations Ci.7) which asymptotically 

approach geometric conv~rgence, that is, when the iterate satisfies 

(2.50), the factor M can be replaced by the geometric coefficient~. 

If k is the number of iterations necessary for the iteration to reach 

geometric behaviour then (2.50) becomes 

and with 

= 0 ~k + X' 
s 

we get 

(2.76) 


The· quantity ~ is frequently cal led the asymptotic convergence 

factor and the rate of convet~gence is 

R = -log 1~1 (2.77) 

The rate of convergence R as a function of the asymptotic convergence 

factor ~ (the geometric coefficient or the biggest eigenvalue for 

I inear iteration) is given in Table 2.3. The value 1/R, also given 

there, is the number of iterations necessary to reduce the norm of 

the error by a factor of one-tenth ( 1/10). 
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TABLE 2.3 

The Rate of Convergence R as a Function of 

the Asymptotic Convergence Factor ll* 

ll R 1/R 

0.50 .301 3.322 

0.55 .260 3.852 

0.60 .222 4.508 

0.65 . 187 5.345 

0.70 • 155 6.456 

0.75 • 125 8.004 

0.80 .097 10.319 

0.85 .0706 14. 168 

0.86 .0655 15.267 

0.87 .0605 16.534 

0.88 .0555 18.012 

0.89 .0506 19.759 

0.90 .0458 21.854 

0.91 .0410 24.415 

0.92 .0362 27.615 

0.93 .03152 31.729 

·0.94 .02687 37.213 

0.95 .02228 44.891 

0.96 .01773 56.406 

0.97 .01323 75.596 

0.98 .008774 113.974 

0.99 .004365 229. 105 

* The geometric coefficient or the biggest eigenvalue X.k. 



3. 	 CONVERGENCE PROMOTION TECHNIQUES 

In this section various acceleration techniques for promoting 

the rate of convergence wil I be discussed. A few of these techniques 

can be included in the form of a general equation of convergence 

promotion which replaces the successive substitution equation (2.6). 

This. general equation of convergence promotion is applied every 

iteration and becomes a part of the iteration procedure. The convergence 

promotion coefficients of the general equation are _constant and are 

chosen prior to the calculation. 

Another method to be discussed is the geometric extrapolation 

method. This method can be appl led only when the iteration approaches 

geometric behaviour, that is when equation (2.50) becomes valid. Hence 

the geometric extrapolation method does not constitute a part of the 

iteration procedure and it is applied when the variables of the 

iteration reach geometric progression. This method is very useful for 

cases of slow convergence when the geometric progression is achieved 

in smal I number of iterations, (suppose less than ten). 

The third method that wi I I be discussed is the multi-dimensional 

extrapolation. This method can be useful for cases which have a small 

number of variables (m < 10). 

The last one, the partition recycle method belongs to the class 

of problems which deal with the structure of the recycle calculation. 

43 
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3. I The General Equation 

The successive substitution equation (2.6) can be replaced by 

the general equation of convergence promotion which is 

==X + t.G.<Y x > (3. I) 
n n· n 

n == 0, ·1, 2, 3, .•. 

and by substituting (2.5) into (3. I) the iteration with convergence 

promotion becomes 

= ~ + t.~.<~cx > - x > (3.2)
n n n 

where ~ - matrix of convergence promotion coefficients 

t re I a xat i on f actb r ( s ca I a r) . 

The successive substitution equation (2.6) is a particular case 

·of equation (3. I) when t = I and G is the unit matrix I. 

The various techniques which are represented by the general 

equation (3. I) are first distinguished by the structure of matrix G, 

which may be divided into two main sets: 

I. ful I matrices of convergence ·coefficients. 

2. diagonal matrices of convergence coefficients. 

The first qne, the ful I matrix G, is more comprehensive, demands 

more computer storage and manipulation, but can overcome most of the 

recycle calculation problems. The second one, the diagonal matrix, is 

a simpler technique, it saves computer storage and calculation time, 

but can be used only for a I imited number of cases. 

The problem of slow convergence appears usually in some 

neighbourhood close to the solution X , where the process can be 
s 



45 

approximat"ed by a linear equation as (2.30). The general process can 

be I inearized in some neighbourhood of the solution and the I inear 

equation can be used to obtain the conv.ergence promotion coefficient. 

The following mathematical development is mainly concerned with linear 

iteration, however, we should bear in mind that the general iteration 

can be linearized and represented by a linear equation as an approximation. 

The I inearization procedures are given ip Appendix B. 

By substituting the linear equation (2.30) into (3.2) we get 

the I inear iterative calculation with convergence promotion as 

=X + t.8.<A X + b x > n n n 

or 

= {I+ t.G.CA-I>}.x + t.8.5 (3.3)
n 

let B=I+ t.G.(A- I) (3.4) 

then equation (3.3) becomes 

= B.X + t.G.5 (3.5)
n 

where (3.5) is a new iterative process. 

The rate of convergence of (3.5) depends upon the eigenvalues of 

matrix B. Therefore, we wish to find the convergence promotion matrix G 

such that the biggest eigenvalue in modulus of matrix 8 wi I I be as small 

as possible. 
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. 3. I. I Ful I Matrices of Convergence Coefficients 

If ~ is to be a ful I matrix of coefficients, the matrix should 

be chosen as 

(3.6) 

.and t = 11 so that B (3.4) is the zero matrix, with a! I eigenvalues also 

·zero. That is, that I inear iterative process (3.3) would be converged 

in o~e iteration if matrix G were chosen as (3.6) and t = I. 

For a general case (2.5), the prbcess may be I inearized in 

order to get matrix A* (See Appendix 8) and equation (3. f) wi I I be 

used in the convergence promotion routine, as 

; ~ + t~(I- ~*)-I.(? ~ ) (3.7)
n n n 

where A* is the I inearization matrix an,d t is a relaxation factor. 

This relaxation factor is there to prevent osci I lation of vector ~n+l 

around the solution. 

This technique, with a ful I matrix of coefficients G, is similar 

to the modified form of Newton's method for solving a set of algebraic 

. . ( L3)
equattons where the Jacobian matrix has been evaluated only once 

at the point X and used unchanged through all the iterations. 
0 

The linearization can be made around the initial point~ or 
0 

any other P?int of the iteration ~n· Practically it may be better to 

iterate (2.7) until the rate of convergence becomes s(ow and then, 

since X is closer to the solution X , to I inearize the process for 
n s 

obtaining A* to use in equation (3.7). 
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3. 1.2 Diagonal :Matrices of Convergence Coefficients 

Two kinds of diagonal matrices wi I I be discussed in this 


section. 


(a) G = a I (3.8) 

(t = I) 

··where a is a sea lar. 

Substituting (3.8) into (3.4), then 

8 = I + ai(A - I) 

or B = ( I -a) I + aA (3.9) 

Now, as before, we wish to find a coefficient a such that 


the eigenvalues of matrix 8 wi I I b~ as smal I as possible in modulus. 


Hence, sfnce ~ is a matrix polynomial of A (3.9), then each eigenvalue 


of B is the same scalar polynomial of the respective eigenvalue of A, 


therefore 


(3. I0) 

Now, if AA b and A8 b are the biggest eigenva.lues of matrix A and 
I I 

B respectively, and A and A are the smallest eigenvalues ofA,s B,s 


A and B respectively, then for a> 0 


A = ( I - a) + aAA (3. I I)
B,s ,s 

AI I the other eigenvalues of the two matrices are located between the 

extreme values as 
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A < AB < AB b.B,s , 

Figure 3. I i I lustrates the behaviour of equation (3. I1), where 

the upper I ine is and the lower line is AB ,s , and both of them 

vary with a. Obviously, when a= I, the eigenvalues of matrix Bare 

equal to the eigenvalues of matrix A, as the two matrices are identical 

(3.9). 

For accelerating the convergence the best a that may be chosen 

is the one that wi I I satisfy (3. 12), (the dashed I ine in Figure 3. 1). 

(3. 12)-AB = AB b 
,s ' 

and f rom ( 3 . I 2 ) and ( 3 . I I ) a i s 

2 
a = . (3. 13) 

2 - A - AA bA,s , 

This n~thod of a diagonal matrix with one coefficient a (3.8) 

is very useful as an accelerating method when alI the eigenvalues of 

matrix A are squeezed together as shown in Figure (3. Ia). For example 

suppose 

AA b = 0.95 and A = 0.65A,s
' 

Since the biggest eigenvalue is 0.95, the iterative process converges 

very slowly(See Table 2.3). From equation (3.13) 

2 = 5 
2 - 0.75 - 0.95 
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the new eigenvalues of matrix 8 are 

A b =-A = (1~5) + 5 x 0.95 = 0.758, B,s 

Reducing the biggest eigenvalue from 0.95 to 0.75 increases the rate 

of convergence significantly. From Table (2.3) it can be seen that 

the rate of convergence for eigenvalue 0.95 is 0.0223 and for eigenvalue 

0.75 is 0.125 which means that the rate of convergence increases by 

factor 5.6 . However~ if the eigenvalues of matrix A are not squeezed 

together, this method improves the rate of convergence very I ittle, as 

shown ·in Figure (3. !b). For example, suppose 

'-A,b = 0.95 ·and A = -0.45A,s 

then from (3. 13) a is 

::: 2 4 
------- = '3 - I • 3333 
2 + 0.45 - 0.95 

The new eigenvalues 

A =-A = (I - i) + i 0 95 = 0.9333B,b B,s 3 3 • . 

reduce the biggest eigenvalue from 0.95 to 0.93333, a very small 

improvement. 

This method of diagonal matrix (3.8) can also be used as a 

rel.axation method for non-convergent iterative processes as wei I as a 

convergence promotion technique. 

Three examples of non-convergent iterative processes are given 

i n F i gu re (3. 2) . In the first one (a) where A < -1 and >..A b < I,A,s 
' 
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the iterate osci I lates and diverges. Here a as a damping factor, has 

the range of 

0 < a < I 

and it can be calculated by (3. 13) (See the dashed line Figure 3.2a). 


In the second case (b), AA > I and 
 so that the iterate 
,s 

·diverges (blowup). The coefficient a, which in this case is a negative 

factor, can be calculated also by (3. 13). 

In the last example (c), when and A < I, there
A,s 

is no value of a which can transfer the non-conv~rgent iterative 

process to a convergent one, as seen in.Figure (3.2c). 

Consider again equation (3. 12); although this condition gives 

·the smallest eigenvalue in modulus,· the negatfve eigenvalue A mayB,s 

cause. undesirable oscillation. Therefore it may be better that AB,s 

would be smal fer than AB b in modulus; that is, that 
1 

and condition (3.12) may be replaced with· 

-A.B
15 

= 0 ·A.s 
I 
b (3. 14) 

where 

0 < 0 < I 

From this condition (3.14)~ and equation (3. I I) a becomes 

+ 0 a. 	 = (3. 15) 

I + 8 - A - 0.AA bA,s , 
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Fina fly, it is worthwhile mentioni:ng that the relaxation factor 

t, equation (3. 1), and the coefficient a play the same role, and it 

is pass i b I e to use the reI axat ion factor t i.n_stead of a in the 

development above, where matrix G is considered as the unit matrix I. 

In addition it is important to emphasize that this diagonal method may 

be used as a supplemental method to the ful I matrix.of coefficient 

techniques where the factor t is usually chosen smal fer than unity 

for relaxation. 

(b) 	 G = cr aJ (3. 16) 

(t = I ) 

a = 	 )where -T 
(a I ' a2, 	 a3 ... a m 

Substitute ( 3. 16) to (3.4) to get 

8 = I +[Ia]<A I) 	 (3. 17) 

Here again, the objective.is to find vector a such that the biggest 

eigenvalue in ~odulus of matrix B wi I I be as smal I as possible, that is 

min { max A. I} 	 (3. 18)
Ja j 

where A. are the eigenvalues of matrix B. 
J 

This multi-variable minimization procedure (3.18) wi I I become 

too expen~ive in_computer time when the number of variables m is bigger 

than about three. Pract i ca II y it is not a usefu I method for eva !'uat ing 

the set of coefficients a. However, under particular conditions the 

set of coefficients a can be found, when the objective is to minimize 

the norm of matrix 8 (2.35) instead of us.ing (3. 18), that is 

http:objective.is
http:matrix.of
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m 
mln. {jj(3jj=}::: min { max L Ib.. 1} (3. 19) 

. . I I Ja. a. . I J= 

where b.. is the element of matrix§. The rate of convergence may be 
IJ 

increased as the norm of B is decreased (2.35 and 2.22). 

The particular condition under which set a. can be found is 

that matrix A should satisfy the following condition, 

jl - a .. 1 > E Ia .. 1 .( 3. 20) 
I I jfi ' IJ 

i == I, 2, 3, m 

~hus, the absolute row sum of matrix B is dependent on the coefficient a 

C3. 17), and becomes 

m 
R.(cx~) = E I b .. 1 = 11-a.(l-a .. )I+Ja.[ E ja .. ! (3.21)

I I IJ I I I I . -1 • I Jj==l j/1 

i == I, 2, 3, •.• m. 

The first term of equation (3.21) has a minimum value of zero at 

a. * -~ (a .. i I) 3.22)
I I I 

- a ... 
I I 

Condition (3. 20) guarantees that any decrease of !a.! from Ia.j* 
I . I 

wi I I increase the first term faster than the decrease of the second term. 

Clearly any increase of Ia.! increases both terms. The minimum value 
I 

of R. (a.) is given by
I I 

R.(cx.)* = E I a .. 1 (3.23)
I I jl- a .. [.j:::i 'J 

I I 

i == I, 2, 3, ••. m. 

Finally, alth~ugh the tonditions (3.20) seem severe they are 

frequently satisfied in practice. 
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3.2 Geometric Extrap61ation 

The solution of iterative calculation (2.7) can be wei I 

approximated by extrapolation if the iterate has approached a geometric 

progression. This technique is particularly suited to cases where the 

geometric progression is obtained after a relatively small number of 

iterations. 

Let it be assumed that the number of iteration n is sufficiently 

large so that the iterate has approached a geometric progression and 

satisfied (2.57). Therefore the iterate can be expressed by equation 

(2. 50) , which is 

x = 0 ~n + X-' 
n s 

This equation (2.50) can be written for any component as 

x . = U. ~n + x' . (3.25)
n, I I S, I 

= I, 2, 3, •.. m. 

The approximate solution of component i, x' ., can be evaluated from - s, I 

the last three iteration points (x 
2

, x 1, x ), by eliminating U. 
n- n- n 1 

and ~ to get 

(~2 
. xn.xn-2 - An-I 

x' . (3.26)-· { X 2 X + X . }.1S, I n - • n-1 n-2 

= I, 2, 3, •.• m. 

Proceeding from the evaluation of the new point X~, the iteration 

is reapplied with the point X' as initial value. The iteration wi I I 
s 

proceed unti I the iterate again approaches a geometric progression. 
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Any time that the iterate approach~s a geometric progression 

the solution can be approximated by {3.26) and thereby accelerate the 

conv~rgence. Thus, the difference between this method and other 

convergence promotion techniques is that equation (3.26) is not a part 

of iteration procedure, but should only be used repeatedly as an 

extrapolation method when the iterate ·approaches a geometric progression. 

Furthermore, the geometric extrapolation method (3.26) can be 

used asa supplementary acceleration method to the convergence promotion 

technique (3. I) with a fixed matrix G. 

Aitkfns o2 process (A3, A4), which was developed specifically 

for solving characteristic value problems iteratively, yields the same 

expression as equation (3.26). 

Equation (3.26) may be transferred to the following form as 

x' . = x . + a.. ( x . X I . ) (3.27)
S 1 I n- 11 I I n 1 I n- , 1 

=- I, 2, 3, •.• m. 
where 

xn-2 - xn-1 
Ct. = 2 ) . (3.28)

I X - .x I + X 2 In n- n-

In order to prevent osci I lation, a relaxation factor t may be added 

to equation (3.27) as 

x' . = x . + t.a .• (x . X . I . ) (3.29)
s,t n- 1,t 1 n,1 n- ,, 

= I , 2, 3, • . • m. 

Equation (3.29) may be written in vector notation as 

X' =X +t.[Ia]<x -x > (3.30)
s n-1 n n- 1 
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·where 

-T a == .(a I' a2, ... a 
m

) 

Equation (3.30) is in the form of equation (3. I) with matrix G 

as (3. 16) but as it has been said before equation (3.30) is not part of 

the iteration and should on Iy be app I i ed when the iterate approaches a 

geometric pr_ogress ion. 

Now, examining the coefficient a. (3.28) for any element 
I 

X - Xn-2 n-1 a == 

Using equation (3.25) it can easily be shown that 

(3. 31) 

(3.32) 

a 
m 

and if -1 < y < I 

Ithen 0 < - ::: - y < 2 
a 

and I 
a (3.33)2 < 

Now, combining (3.32) and (3.30) th,e soluti'on approximati_ng 

X' becomes s 
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X' = x .+ _!_ ex (3.34)
s n-1 · 1-lJ n 

C(l)
Liusternik's technique for improving the conv~rgence of 

the iterative process for solving systems ot I inear equations yields 

a simi Jar expression to (3.34). 

Summarizi~g the geometric extrapolation technique, we may say 

that if the iterate satisfies (2.57), lJ may be evaluated by (2.57) 

and'equation (3.34) can be used for calculating the approximate solution 

x'.s 

·However, when the geometric extrapolation technique is applied 

for practical cases of chemical recycle problems, it is apparent that 

it may be preferable to use equation (3.30) for calculating the 

approximate solution~' where a. is calculated by (3.28) for every
S I 

component. 

In practice, we may have a recycle problem where the components 

of vector Xdo not have. fu II interaction among themse I ves or the 

components form a few groups, each of which has a different geometric 

coefficient lJ. Truly, if the components of vector Xcan be divided into 

groups where there is no interaction between them, then the problem can 

be solved separately for every group of components. When working with 

an executive program like PACER it is not feasible to separate the 

calculation and it may be cheaper to solve alI the components together. 

Therefore, a. ought to be calculated for every component by (3.28).
I . 

We may conclude that the above technique seems to be very useful 

and simple to operate but it should be noted that from the point of view 
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·of the total calculation time it performs best in cases where the 

. geometric pr.ogress i ve st.age is achieved in sma II number of iterations. 

3.3 Multidimensional Extrapolation 

The convergence of iterative calculation (2.7) may be promoted 


by fitting a set of I inear equations (2.32) to the last m + 2 point 


vectors X, and then approximating the solution by (2.39). Consider 


m + iterations of equation (2.7) 


= F<x 
\) 
) (3.36) 

v = I , 2 , 3 , m+ I . 


where x is some initial point. The (m+2) vectors of ~that result 

1 

from this iteration can be used to calculate the I inear coefficients 


of the linear iteration (2.32) as 


- A x + 5 (3.37)
v 

v = I , 2., 3 , • • • m+ I • 


By arranging the m+2 vectors of Xin partitioned matrices, equation 


(3.37) may be expanded to the following form, 

I. 

,-I 

I l
: xm+2 

I I 
I I_x , (3.38)x, 2 I Xm+l 
I I_, -

II I 

or 0 = (3.39) 

Postmu/tiplyi~g of (3.3g) by ~-I we get 

= = =-1c = u v (3.40) 
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(for more details see Appendix B, the second method of linearization). 

After C has been calculated, the solution can be approximated 

by (2.39) usi.ng matrix ~ and vector 5, 

(3. 41 ) 

The approximate solution <3.41> may be used as an initial point x1-for 

a new set of m+l iterations. 

This technique is wei I suitable for cases where the number of 

elements, m, in vector X, is relatively smal I, as m+l iterations are 

necessary for collecting data for matrices 0 and V. In additiqn, the 

computation time for the inversion of matrix V, needs to be taken into 

consideration if m is large since the size of matrix V is (m+l) x (m+l). 

3.4 Partition Recycle 

In an executive program such as PACER, all the recycles in a 

block are solved simultaneously. Thus, the iteration takes place on a! l 

the assumed streams at once. This kind of iteration is represented by 

equation (2.7~ and for I inear processes, by equation (2.32). 

Now, it may be worthwhile to perform a partition of the recycle 

process which has more than one recycle, into two groups: the main 

group and the secondary group of recycles, such that, for every iteration 

of the main recycle, the secondary one may be iterated a few times or 

may be even converged. 

For i I lustration we may examine Figure 3.3 which is a second 

order recycle problem. To solve this recycle problem as one group, we 

may choose streams S7 and S4 as assumed streams and the related sequence 
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of unit calculations wi I I be 

4, I, 2, 3 

This recycle problem (figure 3.3) may also be solved by partitioning 

the prob I em into two groups; the recyc I e around the nodes I and 2 is 

the secondary iteration and the nodes 4 and 3, ~ogether with the 

.secondary iterations are the main group. The sequence wi I I be as 

follows 

4, (1, 2)k' 3 

That is, that the secondary recycle iterates k times for every iteration 

of the main group. The number of iterations, k, of the secondary 

recycle can be chosen as a fixed number or the secondary recycle may be 

iterated unti I convergence is obtained. The secondary iteration can 

also be chosen as the recycle around nodes 3 and 4. Thus, any recycle 

in the process can be chosen as secondary, but obviously we wish the 

secondary recycle to have a small number of equipments (nodes) or, more 

precisely, the calculation time of the secondary needs to be small 

compared to that of the main iteration. 

A method for analyzing multi-recycle problems, that can be 

represented by I inear equation (2.32), is given in Appendix D. This 

method can be used to evaluate the eigenvalues of the process which 

includes secondary iteration. The number of iterations k of the 

secondary recycle can be a finite number or if the ~econdary iteration 

is converged, k can be considered as k + oo. It appears that the 

00calculation of the eigenvalues for the case that k + is relatively 
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·simple, and by calculati~g the biggest ~igenvalue in modulus for this 

case it is possible to evaluate if there is any benefit from the sub-

iteration of the secondary recycle. 

Any recycle in the process can be chosen as secondary one and 


the biggest eigenvalue in modulus may be calculated. Obviously, the 


secondary recyc I e which reduces the b i.ggest e i genva I ue in modu Ius the 


-most, is the best one to choose. But, for gaining a reduction in the 

avera! I calculation time it is also important that the calculation time 

of the secondary recycle wil I be smal I compared to the overal I 

calcul9tion time. 
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4. RESIDUAL APPROACH 

4 • I I n t rod u ct i on 

Thus far, we have been concerned with the conve_rgence of 

iterative calculations In the form of equations (2.5) and (2.6) which 

have been represented by equation (2.7); Convergence promotion 

techniques have been applied in order to accelerate the convergence 

of the iterative calculation. The general form of the convergence 

promotion is given by equation (3. I) which replaced equation (2.6). 

Equations (2.5) and (3. I) represent the iteration with convergence 

promotion where matrix G, the matrix of convergence promotion 

coefficients, may be chosen beforehand as a diagonal matrix (3.8) or 

(3. 16) or as a ful I matrix (3.6). Undoubtedly the ful I matrix technique 

(3.6), when appl led, give~ a more powerful method which can cover a 

wider range of cases. The full matrix technique, compared to diagonal 

matrix in a case of a truly I inear iterative process, gives the 

solution in one step. We may say that the more non- I inear the process 

is, the more sophisticated ought to be the methods applied. Logically 

the next step is to deal with methods which would recalculate matrix G 

every iteration. Although these techniques would be more powerful in 

solving recycle processes, and may reduce the number of iterations 

they would consume more computer time and storage. 
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Actually we. discussed previously two methods which do not use 

a fixed value of mafrix G. The first one was the geometric extrapolation 

technique where the convergence promotion coefficient a. (3.28) was 
. I 

recalculated every time the iterate approached~ geometric progression. 

The second one, the multi-dimensional extrapolation technique, approximates 

th~ solution every m+l iterations by I inearizing the process repeatedly. 

The Quasi-Newton method (R4, Zl) has been found very attractive 

for redetermining the matrix G. This method has been developed primarily 

for solving sets of non-1 inear algebraic equations. 

Before discussing the Quasi-Newton method we may reconstruct 

the problem to represent the recycle process, or any iterative calculation, 

as a set of algebraic equations. This form wi I I enable us.to apply the 

Quasi-Newton method more smoothly and might give us a new outlook on 

the problem. 

4.2 Formulation 

Rubin (R3) has considered the error vect6r (2.52) as a set of 

residual equations as 

x= 5 C4. I ) 

Rubin has used the "generalized false position" method, for solving 

this set of equation~ ,4. 1). As the components in vector~ or? may 

not be of the same magnitude, working with the absolute difference, 

as in equation (4.1 ), can create difficulties in the solution. Hence, 

it wi I I be more practical to normalize the set of ~quations to give 

the fixed-point test vector (2.28). Therefore the iterative calculation 
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can be represented in form of set of a. Igebra ic equations as fo I lows: 

f I (X I, x2" X m 
) = <y, x

1
)/x 1 

= 0 

t <x- , xz, ... X ) = (y2 - x2)/x2 = 0 (4.2)
2 1 m 

f ( x
1
, x2, . • . x ) = ( y - x )I x = 0 

rn m· m m m 

where from equation ( 2. I ) 

= I, 2, 3 ... m 

And in vector notation the set of equations gives, 

(4.3) 

and by substituting equation (2.2) into (4.3) we get 

(4.4) 

The aim of any calculation technique is to find vector Xwhich 

satisfies equation (4.4). It may be assumed that at least one real 

solution exists and that the functions (4.4) are continuous and possess 

continuous first derivatives. Now, the functions themselves are often 

long and expensive to evaluate, since any evaluation of the functions is 

equivalent to one iteration ar-ound the recycles, and the value of the 

functional derivatives can only be obtained by finite difference 

approximation. Therefore, solution methods which keep the number of 

functional evaluations to a minimum become very attractive. 
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Practically, instead of satisfyi~g the set of equation (4.4) 

exactly, it may be sufficient to find a vector~ which is close en~ugh to 

solution and reduces the norm of the functions below a certain tolerance. 

The norm may be chosen as (2. I 0), thus 

.(4. 5) 

or one of the norms (2. I I) or (2.12). 

4.3 Solution Techniques 

The most widely used method for solving the set of functions 

(I I)
(4.4) is the Newton-Raphson technique The method can be defined 

by two equations, as 

;:: x + P 
n n 

(4.6) 

;::where p - < J r' f (4.7)
n n n 

for det (J ) 1 0 . n 

The Jacobian J is the matrix of partial derivatives of 1<~> 
n 

evaluated at point R , 1 is the vector of functions evaluated at~ n n n 

(f ;:: f(X )), and P is the correction to be applied to~ such that n n n n 

the value of Xn+l wil I be closer to the solution of the equations (4.4). 

The disadvantage of the Newton-Raphson method is that for every iteration 

the Jacobian ought to be evaluated and its inverse ought to be calculated. 

Evaluating the Jacobian numerically by finite difference means evaluating 

the functions (4.4) m+l times. 

Before continuing to the next method tor solving the set of 

functions (4.4) it is worthwhile to show that the successive substitution 
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technique (2.5) and <i.6) can be achieved ~y choosi.ng 

p = [I XJ f (4.8)
n · n n 

then 

p = [I X][I. X]- I ( y x ) = y x n n n n· n n n 

and with equation (4.6) 

= x + y X = yXn+ I n n n n 

as equation (2.6). 

In order to reduce the number of function-evaluations a modified 

form of Newton's method has been introduced. Lohr and Ral I (L3 ) used 

Kantorovich theorems to compare the overal I efficiency of Newton's method 

and its modified form. They have given criteria for choosing the method 

of ac~ieving a solution in minimum time. 

The modified form of Newton's method can be described by the 

following two equations, 

= X + t.P (4.9)
n n 

p =-(J)-1 f (4. I 0)
n o n 

for det (J ) f. 0 
0 

The Jacobian matrix J is evaluated only once in point X and 
0 0 

used unchanged throughout alI the calculation. As P would be a poor
n 

estimate of the true correction, relaxation factor t may be used in 

order to prevent asci I lation, where 0 < t < I. 

http:choosi.ng
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In a case where the initial point X is far away from the 
0 

solution X , the Jacobian may be evaluated a few times as the iterate 
s 

(4.9) p~ogress toward the solution. The sum of equations (4.9) and 

(4.10) gives an iterative equation in form of equation (2.7); hence, 

if the convergence is slow, the geometric extrapolation technique for 

accelerating the convergence may be applied. 

Actually, if the first estimate of the solution X is sufficiently
0 

close to X the modified form of Newton 1 s method gives good convergence s 


in a calculation of heat and material bal~nce. The technique wi I I be 


demonstrated in detai I in Section 6.4. 

4.4 Quasi-Newton Method 

. . CR4 B I 82 Z I ) Recently the Quasi-Newton 1.terat1ve schemes ' ' ' 

·have been. proposed. Unlike the Newton's method they do not require th~ 

Jacobian, but do use an approximate Jacobian (or its inverse). The 

method can be defined by the following equations 

X + t .P. ( 4. I I ) xn+l 
::: 

n n n 

p = R f (4.12)
n n n 

where R is an approximation to the Jacobian inverse. At each stage of 
n 

the calculation the approximate Jacobian inverse is recalculated until,· 

at convergence; it hopefully becomes the Jacobian inverse corresponding 

to the solution of the system of equations. 

The appr6ximation to the Jacobian inverse is improved by the 

following procedure: 
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-T( t p + R Af ) z R n n n n n nR (4. 13)Rn+l ·n -Tz R ·Af n n n 

where f 
n 

The vector Z has been selected differently in the various articles 

m~ntioned. Barnes (BI) selects·~ as the direction which is orthogonal 

to the previous m-1 directions of the correction vector~. Thus, 

(4. 14) 


fork= n-1, n-2, n-3, ... , n-(m-1). 

The reason for- this choice is that if the ful I step P is taken 
n 

at each iteration (t =I) then for a linear system of equations the n 
(B2)

process wi I I converge after rr~2 functional evaluations. Broyden 

has selected Z equal to the correction vector P,
n 

z = p
n 

(R4)
Rosen has applied the last two methods of selecting Z, 

Barnes's (4. 14) and Broyden's (4, 15) and in addition he has calculated 

~ by averaging, component by component, the Z calculated by both methods. 

Rosen claimed that the latter procedure gave better results than either 

procedure a I one. It is worthwh i I e mentioning that equation (4. 14) 

means solving a set of m-1 linear equation? at every iteration. 

The scalar tn in equation (4. I I) is not only a damping factor 

as in the modified Newton's method (4.9), but can be used as a one-

dimensional search parameter. After the direction P is determined, a 
n 
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search al~ng this direction may be carried out to find a point which 

has a smaller value of some norm of the. functions f., say~~ where 
I 

or ~ = Jl f n+ I I J, 

and min =min. {llf"<x + t .P> 11 .} ( 4. 16)<P 
t n n 2t 

n n 

This one-dimensional search is crucial to the performance of the 

algorithm and may be carried out in a number of ways. Whether or not 

to attempt to minimize the norm or simply find a point which reduces 

the norm, is to be decided by the user. The main aim is to find 

the solution with a minimum total number of functional evaluations. 

( R4) Rosen suggested a·continuing study of this problem and recommended 

applying norm minimization in the initial stages of the calculation 

followed by norm reduction later as the calculation proceeds. 

The initial value of the matr.ix R has also been selected 
0 

differently in the various articles mentioned. The initial matrix R 
0 

can be chosen as the unit matrix I or as the Jacobian inverse evaluated 

at the initial point X,
0 

R = - CJ >-I (4.17)
0 0 

It is strongly recommended to select the matrix R as per (4.17) when 
0 

heat and material balance calculations are· involved. However, m+l 

function evaluations are necessary. 
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Further study of the Quasi-Newton method is recommended. 

Possibly·a technique could be fofmulated whereby the Quasi-Newton 

method is used in conjunction with the modified form of Newton's 

method. That is, the matrix R would not be recalculated (by 4. 13) 

for each iteration. This would reduce computation time, and may 

increase numerical stabi I ity. 



5. PROCESSES STUDIED 

Two case studies of process simulation are presented in this 

section. First, in the simulation of the alkylation unit the 

convergence was accelerated by the ful I matrix technique (Section 3. I. 1). 

In the second example, the hydrate wash section of the Bayer process 

for alumina extraction, the convergence was promoted by the geometric 

extrapolation technique (Section 3.2). 

5. I Alkylation Plant Simulation 

During the 1967/68 academic session a simulation of an 

alkylation unit was carried out as fourth-year student project. The 

4th year students were divided into groups, each group supervised by 

a faculty member assisted by graduate students. Each group was 

designated tQ study a part of the process and prepare mathematical 

modules for the equipment in their section. Finally a! I the modules 

were combined ~nd the simulation of the whole plant was done. As the 

rate of convergence of the iteration was very slow, convergence 

promotion was applied. 

5. I .I General Description of the Alkylation Unit (AS, _MI, S4) 

A general flow diagram of the alkylation unit is shown as 

Figure 5. I. The alkylation unit is part of the She/ I Oakvi I le 

Refinery which was designed by C.F. Braun·and started· in 1963. The 

alkylation unit was originally designed for 1200 b~l/day of alkylate, 

72 
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however, the production of alkylate increased to 1800 bbl/day. The 

olefins for the alkylation process are produced by catalytic cracking. 

The alkylation reaction is carried out in the Stratco Reactor 

(equipment E-3). The sulphuric acid, which acts as a catalyst, 

circulates between the acid settler (E-2) and Stratco reactor with 

the withdrawal of spent acid (stream 9) .and the addition of make-up 

acid taking place between the settler and the reactor (E-1). The 

Stratco reactor is a horizontal continuous stirred tank, the sulphuric 

acid to organic volume ratio in the inlet is generally maintained at 

unity and the organic phase is dispersed in the acid at the inlet by 

an impeller driven by a 400 Hp motor. 

The alkylates are produced from the reaction of olefin with 

excess of isobutane in the presence of sulphuric acid. The olefins 

used are mainly propylene and ·butylene. The isobutane to olefin ratio 

in the organic feed is usually greater than 4. The temperature of the 

reacting dispersion is maintained at about 50°F with the heat of reaction 

being removed by flashing the organic product from the emulsion settler 

( E-2) in a co i I immersed in the dispersion in the reactor (E-5). 

The acid emulsion settler (E-2) is a horizontal vessel 

approximately 50 ft. long and 12 ft in diameter. It operates at about 

70 psig and is used to separate the organic dispersion in acid which 

leaves the reactor as product. The organic layer which leaves the 

emulsion settler passes through a reducing valve which drops the 

pressure from 70 psig to approximately 27 psia and then flashes through 

coi Is in the Stratco reac-t-or (E-5). The gas- I iquid mixture flows to 
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the product separator (~~4) where c3 and ~4 hydrocarbons are separated 

as~ gas phase and are sent to the depropanizer (E-9). The liquid phase, 

which contains alkylate, n-butane and fsobutan~, is sent to the deisobu

tanizer (E-19). The product separator has an internal heating col I 

through which the bottoms from the depropanizer pass. 

The vapour stre~m from the product separator passes to a three

stage compressor unit (E-8) with a 1000 Hp motor. The vapour, mainly 

propane and butane, is compressed finally to 60 psig and 155°F. 

Both the vapour and the I iquid streams from the product 

separator may contain entrained and dissolved sulphuric acid. Therefore, 

wash units CE-12, E-21), water settlers (E-13, E-22) and coalescers 

(E-14, E-23) are used for washing and drying the vapour and I iquid streams. 

After washing, the overhead stream from the product separator is 

separated in the depropanizer (E-9)·, into an overhead propane product 

which is sold as LPG by She/ I, and a c4 bottoms stream which is recycled 

to the Stratco reactor. The depropanizer has 40 Koch flexitrays. 

After being vJashed the bottom stream from the product separator 

enters the deisobutanizer CE-19), which has 80 Koch flexitrays. This 

column separates isobutane and n-butane from alkylate with the isobutane 

coming off as overhead and n-butane taken off as a side draw. It is 

important that both the n-butane content in the overhead and the isobutane 

in the side draw be minimized. 

The overhead stream from the deisobutanizer(E-19) is recycled 

to the Stratco reactor. The side draw is used for gasoline blendi~g, 

and the bottoms stream is the desired alkylate stream for enhancing the 
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FIGURE 5.1 COMPREHENSIVE PLANT MODEL, SHELL ALKYLATION UNIT 
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octane number of gasoline. 

In this work we wil I concentrate only on the iteration problem 

and thi convergence promotion technique that was used. More information 

on the alkylation unit and detai Is of the various equipment modules are 

(S4)
given by Shaw and in the final report of the simulation of the 

.alkylation plant (MI) 

5. I .2 The Assumed Stream and Sequence of Calculation 

Before starting the calculation of the alkylation plant the 

assumed streams have been selected and the related computational 

sequence of the equipment modules has been found. 

Examination of the information flow diagram, Figure 5. I, 

·indicates that it is essentially first order with respect to the flows 

of compon~nts. However if one examines the heat exchange loops in the 

process, around the product separator and depropanize~ (E-4, E-9), and 

exchanger (E-27), it is apparent that the recycle process has a 

considerably higher "order" for both heat and mass flow. Since most 

of the heat exchange loops are control led it Is possible to calculate 

them direct I y (See Section 2. I. 3). The Ioop around the depropan i zer 

(E-9) has temperature control (E-16), and the temperatures of the flows 

from E-27 are also contol led by (E-20) and (E-28). 

The only recycle of heat which may interact with the flows of 

the componehts is the return flow from the bottom of the depropanizer 

(E-9) which exchanges heat in the product separator (E-4). This recycle 

was studied and it was found that the rate of convergence of this 

recycle was relatively fast. Further, the separation in the product 
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separator (E~4) was not very sensitive to changes in the component 

flows of stream 36, (the temperature of stream 36 is controlled by 

( E-17 )). Therefore it was decided not to consider it as a "recyc Ie" 

when the assumed streams were selected, although ~good initial value 

is necessary for each component in stream 36. 

The feed stream to the reactor, stream number 4, has been· 

selected as the assumed stream. It should be noted that the acid make 

up module CE-1) fixes the flow of acid to the reactor (Stream 10) and 

calculates the acid consumption (Stream 17) and acid withdrawal 

(Stream 9), Therefore it is not necessary to consider the acid recycle 

in the iteration and the assumed stream was chosen as stream number 4 

. instead of stream I I as might be expected. 

Starting the calculation from stream number 4, the assumed 

stream, the computational sequence of the equipment modules has been 

chosen as: E-3, E-2, E-1, E-5, E-6, E-4, E-7, E-8, E-1 0, E-33, E-1 I, 

E-12, E-13, E-14, E-15, E-16, E-9, E-15, E-17, E-18, E-27, E-20, E-21, 

E-22, E-23, E-24, E-19, E-34, E-26, E-27,. E-28, E-30, E-29, E-31, E-36. 

The heat exchangers (E-15, E-27) are calculated twice for every 

iteration to ensure the flows of information around alI the process in 

one iteration. 

In order to transfer the flow from stream 36 to stream 37, one 

might attempt to recalculate the product separator (E-4) which in fact 

ties together the compressor (E-8) and the special control module (E-33). 

The special control module (E-33) balances the pressure and the flow 

between the product separator and the compressor. However, it is 
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undesirable to repeat the lengthy ~alculation of the product separator 

only for transferring the information from stream 36 to stream 37, where 

in fact, only the temperature is adjusted. As a result module E-34 was 

written to pick up flows from stream 36 ana the temperature from stream 

37, passi~g the combined information into stream 57. Equipment 36 is 

the convergence promotion module. 

5. 1.3 	 Accelerating the Convergence 

In Table 5. I, alI the components and their~location in the 

stream vectors (SN) are listed. Only sixteen components from the I ist 

' 	of twenty-six are i nvo I ved in the recyc Ie. These sixteen components 

from stream 4, the assumed stream, arE~ the var iabIes of the iteration 

and have been located in vector~. The initial value~ and the steady
0 

state ~s for these sixteen components are given in Table 5.2. 

Conve_rgence promotion with a fu II matrix G (See Section 3.1.1) 

was used. The process was first I in~~rized around the initial value~ 
0 

(See Appendix 8 the 1st method) to give A* and then the convergence 


promotion matrix G was calculated by.equation (3.6) as 


(5. 	I) 

The 	convergence promotion equation (3 .. I) has been app I i ed to promote 

the 	convergence as 

x ) 	 (5.2)
n 

Seventeen iterations have been used for evaluation of matrix A*. 

It was done by a separate computer run prior to the iteration. The 

matrix A* was punched as output on computer cards, I isted row by row. 
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TABLE 5. I 

Component List for the Alkylation Unit 

Component Location in The Component Flow 
Number Stream Vector lb mole/hr 

I 6 Water 

2 7 Sulphuric Acid 

3 ·8 Sodium Hydroxide 

4 9 Sodium SuI ph ate 

5 10 Propy I Sulphate 


6 II G2 and Lighter 

7 12 Prop.ane 

8 13 Propene 

9 14 n-Butane 


10 . 15 Iso-Butane 

II 16 n-Butene 

12 17 Iso-Butene 

13 18 n-Pentane 

14 19 Iso-Pentane 

15 20 lso-Pentene 

16 21 c6 

17 22 2,3 - Dimethyl-Butane 

18 23 c
7
19 24 	 2 4 - Dimethyl-Pentane

' 20 25 2,3 - Dimethyl-Pentane 

21 26 Cg 

22 . 27 	 !so-Octane 
23 28 	 2,4 - Dimethyl-Hexane 

2,5 - Dimethyl-Hexane 
2,2,3 - Trimethyi-Pentane (Group I ) 

24 29 	 2,3,4 - Trimethyi-Pentane 

2,3,3- Trimethyi-Pentane 

2,3 - Dimethyl-Hexane (Group 2) 


25 30 Cg 

26 31 c,o and Greater 




80 

TABLE 5.2 

Initial and Steady-StCJte Va I ues 

of Recycle Components in Stream No. 4 

No. Component Number Initial Value 
and Name x 

Steady-State 
x 

s s 
!b mole/hr lb mole/hr 

~later 0.4282 .3839 

2 7 Propane 199.0555 297.6203 

3 ·8 Propene 65.00 65. 

4 9 n-Butane 652.3950 612.8264 

5 10 Iso-Butane 900.0348 881 .5224 

6 12 !so-Butene 1:20.5.. 120.5 

7 13 n-Pentane 2.3724 2.31 16 

8 14 Iso-Pentane 12.4159 II .2492 

9 17 2,3 Di~ethyi-Butane 1.4286 I .2058 

10 19 2,4 Dimethyl-Pentane 0.2664 0.1989 

II 20 2,3 Dimethyl-Pentane 0.1843 0. 1218 

12 22 !so-Octane 0.0402 0.0297 

13 23 Group 0.0514 0.0402 

14 .24 Group 2 0.0169 0.0101 

15 25 Cg 0.0155 0.0150 

16 26 c9+ 0.01~37 0.0224 
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A small computer sub-pr.ogram was used -t-o calcula-t-e matrix G (5.1) which 

was al~o punched on cards. Before starting the iterative calculation 

of the alkylation unit, matrix G was n:3ad i·n and stored, row by row, on 

f i I e. 

The results of the iteration, with relaxation factor t = 0.7, 

are given in Tables5.3 and 5.4 and Figures(5.2) and (5.3). To demonstrate 

the success of this scheme, two sampl~ runs have been made. Table 5.3 

shows the flows of propane in stream 4, with and without convergence 

promotion. These results have been plotted in Figure 5.2 to emphasize 

the considerable difference in the rates of convergence. Table 5.4 shows 

the value of the second norm (2. 12) of the fixed point -t-est vector (2.28) 

which is 

T = [I x ]-I <Y - x > (5.3)
n n n n 

and the geometric coefficient ~n which has been calculated as 

I!Tn112 
(5.4)lJn = 

I!Tn-1112 

for the iteration with and without convergence promotion (2.62) and 

(2. 69) ·. The second norm of the fixed po.i nt test vector versus the number 

of iterations has been plotted in Figure 5.3. 

Comparing the rate of convergence of the two sample runs, where 

the relaxation factor was chosen as t = 0.7, using equation (2.77) as 

R = -log(lJ )
n 

then for the run without convergence promotion, lln ~ 0.94 and R ~ 0.02687, 
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TABLE 5.3 

Two Comparison Runs 

Without and With Convergence 

Promotion 

Without 
Loop Convergence 

Promotion 

I 199.05 
2 204.79. 
3 210.03 
4 214.83 
5 219.24 
6 223.34 
7 227. 17 
8 230.75 
9 234.09 

10 237.22 
II 240.16 
12 242.91 
13 245.50 
14 247.93 
15 250.22 
16 252.38 
17 254.41 
18 256.33 
19. 258. 14 
20 259.85 
21 261 .46 
22 262.99 
23 . 264.44 
24 265.81 
25 267.10 

Propane 
Ib-mo Ie/hr 

With 

Convergence 


Promotion Ct=0.7) 


199.05 
242.31 
253.09 
266.22 
273.88 
288.01 
284.32 
287.60 
290.04 
291 .90 
293.32 
294.41 
295.25 
295.89 
296.38 
296.77 
297.07 
297.30 
297.48 
297.62 steady-state value 



83 


TABLE 5.4 

Results from the Iteration 

of the Alkylation Unit 

Iteration Without Iteration With 
Convergence Promotion Convergence Promotion (t=0.7) 

Number of 
Iteration 

Norm of the 
Fixed Point 
Test Vector 

Geornetri c 
Coefficient 

Norm of the 
Fixed Point 
Test.Vector 

Geometric 
Coefficient 

llrn ll2 lln Jlrnll 2 lln 

3 .0359 .I 0107 
. 

4 .0329 .08335 

5 .0315 .957• .01694 

6 .0281 .8921 .02579 

7 .0265 .9431 .01348 .523 

8 .0250 . .9434 .0 I 131 •839 

9 .0235 .940 .00770 .681 

10 .0219 .932 .00584 .7584 

.II .02056 .9388 .00430 0 7363 

12 .01927 .9373 .003253 .7565 

13 .01807 .9377 .002463 .757 

14 .01696 .9386 .001879 .7629 

15 .01593 .9393 .001440 .7664 

16 .01498 • 940 . .001 I 06 . 7681 

17 .01410 .9413 .000853 .7712 

18 .01328 .942 .000657 .7702 

19 .01253 • 9435 .000509 .7747 

20 .0 I 182 ..9433 .000393 .7720 

21 .o 1117 .945 

22 .01056 .945 

23 .00998 .945 

24 .00945 .947 

25 .00895 .947 
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and for the run with convergence promotion ~n ~ 0.77 and R ~ 0. I 1351. 

The rate of convergence when the convergence promotion was appl led is 

approximately 4.25 tjmes faster than the run without convergence 

promotion cd.l /351/0.02687 ~ 4.22)~ 

5.1 .4 The Relaxation Factor t 

In the previous section (Section 5.1.3) the relaxation factor t 

was chosen, prior to the iteration, as 0.7 (t = 0.7). As it was said 

in Section 3.1 .I the relaxation factor tis applied in order to prevent 

undesired osci I lation. In order to demonstrate the relation between 

the relaxation factor t and the iteration, four comparison runs were 

made with different values of relaxation factor as follows: t = 0.7, 

0.8, 0.9 and 1.0. The results of these four comparison runs ar·e given 

in Table 5.6 and Figure 5.7. 

It has been shown before (Section 5. 1.3), where the relaxation 

factor was 0.7, that the geometric coefficient ~ approaches a constant 

and positive value (~ ~ 0.77). Therefore the iteration has approached 

the solution without oscillation (Figure 5.2). 

Now, for the case where the relaxation factor is unity Ct = I .0) 

the geometric coefficient ~ approaches constant negative value as 

u = -0,81. Therefore the iterate approaches the solution~ with s 

osci I ration (2.50). The flow of propane and its fixed point test in 

stream number 4, the assurred stream, for the c.ases where the reI axat ion 

factors were chosen as t = 0.7 and t = 1.0 are given in Table 5.5 

and Figures 5.4 and 5.5. 
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For the purpose of clarifyi~g the case, let us assume for a 

moment that the above case is a I inear iteration and the geometric 


coefficient can be assumed to be the biBgest eigenvalue in modulus 


(2.61). Usi.ng the analysis method described in Section 3. 1.2a 


(Figure 3. Ia), a simi Ia~ graph may be drawn where the upper line used 


.the point (t 0.7, Ab = ~ = 0.77) and lower line used the pol~t · 

(t = 1.0, A = ~ = -0.81) as intersection (See Figure 5.6). Thfs s 

graph demonstrates how the biggest and the smallest eigenvalues depend 

upon the value of t and it can help us to select the desired value 

of the relaxation factor. First, using Figure 5.6, we may fi~d the 

biggest and smallest eigenvalues for the following four values of the 

. relaxation factor, t = 0.7, 0.8, 0.9 and 1.0 

The Relaxation The Bi 9flest The Sma I lest 
Factor· Eigenvalue Eigenvalue 

t AAb s 

0.7 + 0.77 0.27 

0.8 + 0.736 - 0.45 

0.9 + 0.7 0.63 

I. 0 + 0.67 - 0.81 

Second, we may calculate the value of the relaxation factor which causes 

the biggest and the smallest eigenvalues to be equal in modulus by using 

equation (3. 13) as 

2t = = 0.9346 
2 - 0.67 + 0.81 

and the eigenvalues .are 


A --As =(I - 0.9346) + 0.9346.0.67 = 0.6916
b 

http:0.9346.0.67
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TABLE 5. 5: 

Two Comparison Runs Using Different 

Number 

of Iteration 


3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

Relaxation Factors t (Eq.5.2) 

t == 0.7 t == I. 0 

Propane Fixed Point Propane Fixed Point 
Ib-mo le/hr Test of Propane lb-mole/hr Test of Propane 

253.09 .005186 259.58 -.001682 

266.22 .005865 283.54 +.007533 

273.88 .003012 279.19 -.001459 

288.01 .002395 292.55 +.003895 

284.32 .001659 288.25 -.001241 

287.60 .001266 296.18 +.002248 

290.04 .000947 292.78 -.000945 

291 .90 .000723 297.64 +.001356 

293.32 .000552 295. 14 -.000685 

294.41 .000424 298.18 +.000840 

295.25 .000327 296.41 . -. 000482 

295.89 .000252 298.34 +.000530 

296.38 .000195 297. 12 -.000333 

296.77 .000151 298.35 +.000338 

297.07 .000117 297.51 -.000228 

297.30 .000090 298.31 +.000218 

297.48 .000070 297.75 -.000154 

297.62 .000054 298.26 +.000141 

297.88 -.000104 

298.22 +.000092 

297.96 -.000069 

298. 18 +.000060 

298.01 -.000046 
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TABLE 5.6 

Results of the Iterations Using 

Four Different Relaxation Factors 

The Norm of the Fixed Point Test 

Number 
11Tnll 2 

of Iteration t = 0.7 t == 0.8 t = 0.9 t = I .0 

2 .36974 .36974 .36974 .36974 

3 • I 0107 • 19029 ~29114 .40330 

4 .08335 . 14026 .22163 .32167 

5 .01694 .04147 . 13620 .32072 

6 .02579 .04253 .10100 .22719 

7 .01348 .008778 .05682 .21305 

8 .01 131 .013678 .04384 .15602 

9 .007696 .003756 .02338 • 13964 

10 .005844 .005262 • 0 I 882 . I 0569 

II .004299 .002391 .00952 .09144 

12 .003253 .002407 .00806 .07092 

13 .002463 .001446 • I 003839 .05998 

14 .001879 .001225 .003469 .04730 

15 .001440 . 000835 .001533 .03942 

16 .00 I I 06 .000659 .001502 .03143 

17 .0008525 .000475 .000606 .02594 

18 .0006573 .000363 .02084 

19 .0005086 .01709 

20 .0003931 .01379 

21 .o 1127 

22 .00912 

23 .00744 

24 .00603 

25 .00491 
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Thus, if the reI axat ion factoc wi I I be chosen as 0. 9346, the two 

~igenvalues, the ~iBgest and smallest, wil I dominate the iteration which 

wi I I never approach a_ geometric progrE:ssion in the form of equation 2.50. 

Truly, for the case of t = 0.9, the ~igge~t and the smallest eigenvalues 

are close in absolute value, and as ft is given in Figure 5.7, the norm 

of the fixed point test approaches the solution not as straight line. 

Now, in this case study which is a non-1 inear iteration, the 

bfggest and smallest eigenvalues of th(~ first order partial derivatives 

matrix (2.19) and (2.33) may slightly change as the iteration proceeds. 

'However, it is clear that for a relaxa-~ion factor of 0. 7, the positive 

geometric coefficient dominates the iteration and for t = I .0 the 

negative georP.etric coefficient dominates the iteration. If the 

relaxation factor is between these two values, for example t = 0.8 

or t = 0.9, the biggest and the smallest eigenvalues ar~ very close in 

modulus and the iterationshardly.app~6ach geometric progress1on · 

(See Figure 5.7). 

5.1.5 Conclusions and Remarks . 

The fu I I matrix technique for a-::ce Ierat ing the convergence 

is demonstrated (Table 5.4 and Figure 5.3). The rate of convergence 

has been increased by factor of about 4.25. Although sevent~en iterations 

were necessary for evaluating the matri>< of the convergence promotion 

coefficients, this matrix was uti I ized unch~nged for series of.runs for 

evaluating the performance of the alkylation unit under different 

operation conditions. 
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It is important to point out that when the iteration approaches 

a geometric pr?gression after a smal I number of iterations (See Table 

5.4), the. geometric extrapolation technique. (Section 3.2) can also be 

.applied to promote the convergence. 

5.2 	 Simuration of the Hydtate Wash Section of·the 
Bayer Process for Alumina Ext~acti6n 

The convergence of the hydrate wash section was studied duri~g 

the simulation project of the Bayer process for alumina extraction, 

which was carried out as a 4th year student project duri~g the academic 

• CM3)sessron 	1968/69 • This section, the hydrate wash, consists of four 

recycles and the convergence appeared to be slow (See Figure 5.8). 

The hydrate wash section washes soluble impurities .from the 

product alumina hydrate, and then filters the excess moisture from the 

hydrate before it proceeds to the ki In for drying. 

5.2. I General Description of the Hydr~te Wash Section 

Alumina and other components from the precipitators enter the 

hydrate washing for processing. This feed enters the primary classifier 

(Equipment 18, Figure 5.8) where a split in sol ids takes place. The 

solids in the underflow are passed thr~ough a washing circuit, consisting 

of three washing stages in series (Eqtlipments 23, 24, 25) then are 

f i Ite red (Equipment 26) to increase the so I ids con cent ration, washed 

(Equipments 58 and 29) and then dehydr-ated and calcined (Stream 34) in 

a rotary k i In to give the f ina I product of a I umi num. oxide (A~2o3 ). 

The overflow from the primary classifier (Stream 42) is again 

classified into fine and coarse sol ids i~ the secondary classifier. 
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Washi~g is carried out usi~g a 3-st~ge countercurrent system 

of wash tanks (Equipments 23, 24, 25). The operational lows for a .few 

percent of sol ids to be carried in the overflow stream. 

The hydrate is filtered on a nJtary drum filter (Equipment 26) 

(to reduce moisture to 'V 15%) and the I i quor is returned as wash I i quor 

to the countercurrent wash. 

The sol ld is washed again CEqu~pment 58) with fresh water 

(Stream 23) and the hydrate is filtered on a rotary drum fi Iter 

(Equipment 29) • The I i quor is a I so rei"u rned . as wash I i quor to the 

countercurrent wash section. 

5.2.2 The Equipment Modules 

The classifier, the wash, and the fi Iter are repres~nted by 

the same module SEPA02 which calculates the split of one or more feeds 

according to the fraction of i~let solids passing overflow and the 

weight fraction of sol ids in the underflow stream. These parameters 

are stored in the equipment parameter matrix. 

The program calculates the total weight of feed (lb/hr) from 

the known in~ut components multiplied by their respective molecular 

weight (Tab I e 5. 7). From the specified w·e i ght fraction of feed as 

sol ids out the top, that total sol ids flow in the overflow (Jb moles/hr) 

is calculated~ The underflow of sol Ids (Jb moles/hr) is determined by 

difference. The weight of solids (Jb/ht~) in the underflow can .now be 

calculated from the molecular weights. 

The total weight of liquid comp6nents (lb/hr) enterJ~g the 

modules is calculated. Then the weight of I iquid (lb/hr) in the underflow 
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stream is calculated knowi~g the w~1ght of sol ids and weight fraction 

of sol ids in the bottom stream. 

A split of ·I iquid is calculated by the ratio of the we.ight of 

I iqu id in the bottom str·eam to the tota I I iquid entering the rrodu Ie. 

Knowing the split, the amounts of I iquid Clb moles/hr) in the overflow 

and underflow are calculated. EquipmE~nts 18, 23, 24, 25, 26, and 29 

are represented by the SEPA02 module. 

Equipments 17, 22, 28, 58 are simple mixer-splitter module, 

JUNO~ I {J 1) Program I istings are given in Appendix E. 

5.2.3 The Computational Metho~ 

The hydrate wash section has four recycles, therefqre four 

streams ought to be assumed in order to carry out the calculation. 

Streams 22, 30, 31 and 100 have been chosen as assumed strea~s and 

the computational sequence of the equipment is then.as {26, 58, 29, 28, 

18, 23, 17, 24, 25, 22} •. The number of components in every stream is 

22; the I ist of the components and their molecular weights is given 

in Table 5.7. 

The two coefficients that are necessary for every "SEPA02" 

model and which are located in the Equipment Parameter Matrix, are 

given in Table 5.8. The feed streams to the wash section, streams 19, 

21, 23 ar:e given. in Table 5.9. In addition the initial and the steady 

state values of the components in every assumed stream (X and X ) are 
0 s 

presented i n Tab Ies 5 . I 0, 5 . I I , 5 . I 2 and 5 . I 3 . I n i t i a I v a I u e s of the 

components were taken from pi ant data. 
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First, the successive substitution technique (2.5) and (2~6) 

was applied to solve this recycle p~oblem but the conv~rgence was slow. 

Then, the geometric extrapolation technique has been applied as a 

supplement.to succes~ive substitution in order to prorrote the convergence 

(See Section 3.2). 

After every iteration the test vector (2.. 26) and its second norm 

· (2.~12) were calculated. The ratio between two successive norms of the 
·, 

test vector (2.58) were also calculated as 

118n112 
::: 

llen-1112 

and the fractional change of (2.56) was also obtained 

A <~ - v 1> I v n 
::: 

n n- n- 1 

In addition, a test was made every iteration to detect if the iterate 

approaches a geometric progressio·n, thus if A satisfies (2.57) where 
n 

the tolerance was chosen in this case ~tudy as y == 0.005. 

5.2.4 The Comeutational Results 

The norm of the test vector I l~nJ 12, and th~ geometric 

coefficient for every iteration are represented in Table 5. 14. 

The norm of the test vector is also plotted in ~igure 5.9. 

Considering first the iteration without convergence promotion 

and examining the change of the norm of the test vector with the number 

of iterations it appears that the iterate has two regimes. The first 

one, from iterate 5 to 10, the rate of cbnv~rgence is relatively rapid 

http:supplement.to
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and th~ geometric coefficient is around 0.57 (See Table 5. 14, ~igure 

5.9). ·The second r~gime, from iterate 15 to 60, the rate of convergence 

is much slower, and the. geometric coefficient is around 0.88. 

This unique behaviour is due to the fact that the components 


in the streams can be divided into two groups. The solid components 


which control the first regime and the I iquid components which control 


the second one. 


The so.! i d components are independent of the I i quid and they 


converge relatively quickly. The liquid components are strongly 


dependent on the solid components and in addition they converge slowly. 


Therefore after the solid components converge c~ 10 iterations) the 


I iq~idstake control of the iteration process, which converges relatively 

slowly. The reason for the dependence of the I iquid components on the 

solid flow is that, ·in the module "SEPA02", the I iquid underflow is 

only a function of the solid underflow. 

The geometric extrapolation technique for- promoting the 


convergence was appl Jed to the second regime. Three times the iterGte 


approachedgeometric pr-ogression, in iteration 21, 30 and 39 (See Table 

5.14). Each time, the last three iterations were used to calculate 

a (3.28) and equation (3.30) was applied for approximating the solution1 

~ 1 • The relaxation factor t, in equation (3.30), was chosen as t = 0.7. s 


The number of iterations due to the convergence promotion were 


reduced from 60 to 40. 
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TABLE 5.7 

List of Components and thE~ i r Mo I ecu I a r We_ i ght 

Component Location in The Component Flow Molecular 
Number Stream Vector !I b mo le/hr We.i ght 

6 WATER 18.020 

2 7 Na 2co
3 

105.993 

3 8 · NaOH (as Free Caustic) 40.001 

4 9 3(Na20.A1
2 

03 .2Si02 .0.6Na
2 

0. 

.At2o3.0.2?Na2so4 .0.23Na2co3 1006.3602 

5 10 A1203 .3H2D (SOL I 0) 156.020 

6 II A120
3 

.2Si02 .2H20 (SOL I D) 258.180 

7 12 Fe2o
3 

.H20 (SOLI 0) 177.720 

8 13 P205 (SOLI 0) 141.950 

9 14 GaO (SOLID) 56.080 

10 15 Ti02 
(SOL I 0) 79.900 

II 16 Caco3 
(SOL I0) 100.091 

12 17 Carbon compounds (SOL I 0) 44.011 

13 18 Unknown inert solid (SOL I 0) 119.980 

14 19 NaA1 2 
(01 SSOLVED) 81 .971 

15 20 A1203 .2Si02 .2H20 (OJ SSOLVED) 258. 180 

16 21 Fe2o
3 

(01 SSOLVEO) 159.700 

17 22 P205 (DISSOLVED) 141.950 

18 23 (3CaO.A1
2

03 l.Si02 (01 SSOLVED) 600.490 

19 24 Ti02 (DISSOLVED) 79.900 

20 25 Na2so4 (OJ SSOLVED) 142.048 

21 26 Carbon compounds (DISSOLVED) 44.011 

22 27 Na 2H2c2o2 (DISSOLVED) 104.024 
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TABLE ~>.8 


Equipment Parameters Matrix 


Data for SEPAv~2 Modu I es 


Wt. Fraction Wt. Fraction 
Equipment of Feed as of So. I ids in 
Number So I ids in the the Bottom 

Top Str-eam Stream. 

18 0.6 0.6 

23 0.036 0.6 

24 0.045 0.6 

25 0.00:25 0.6 

26 0.00 0.855 

29 0.00 0.855 
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TABLE 5.9 


Feed Streams to the Hydrate 


Wash Section 

Component 
Number 

Location 
in Stream 
Vector 

Stream 
No. 19 

[lb.mole/hr:-] 

Stream 
No. 21 

[lb/mole/hr] 

Stream 
No. 23 

[lb.mole/hr] 

6 87989 ."7969 84277 0 1416 6125.0 

2 7 862.7023 887.8482 

·3 8 3516.6652 3500.5645 

4 9 .0043 0.0036 

5 10 1166.6548 2846.943 

6 II 0.2'870 0.287 

7 12 .3'0 II .2994 

8 13 .0001 0.0 

9 14 . ·.0004 0.0003 

10 15 .0117 0.0099 

II 16 .0017 0.0014 

12 17 .0019 .0016 

13 18 .0022 .0018 

14 19 2065.B810 2100.5155 

15 20 5.7058 5.1675 

16 21 0.0 0.0 

17 22 3.9451 3.5907 

18 23 0.0 0.0 

19 24 60.2>192 41.0175 

20 25 35.4092 27.8576 

21 26 1580.4762 1438.4926 

22 27 0.0 0.0 
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Component 

Number 


2 

.3 

4 

5 

6 

7 

8 

9 

10 

II 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

TABLE 5. I 0 


The Initial Value and Steady-State 


Solution i~ the Assumed Stream 22 


·Location Initial Value 
in SN [lb.mole/hr] 

6 16:iOOO. 0 

7 1639 .'o 
8 6570.0 

9 0.007 

10 2>600 .o 
II 0.54 

12 0.54 

13 0.0001 

14 0.0006 

15 0.0180 

16. 0.0027 

17 0.0033 

18 0.0036 

19 2)800. 

20 9.90 

21 0.0 

22 7. I 

23 o.o 
24 90.0 

25 59.4 

26 2700.0 

27 0.0 

Steady-State Value 
[I b. mo Ie/h r] 

183348.8105 

1821 • 1220 

7300. 1219 

.008 

4074.9445 

0.5826 

.6097 

.0001 

.0007 

.0219 

.0031 

.0036 

.0041 

4334.3598 

II ,3116 

0.0 

7.8396 

. 0.0 

105.4220 

65.8173 

31:40.6749 

0.0 
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TABLE 5. II 

The Initial Value and Steady-State 

So Iuti on in the Assumed Stream 30 

Component . Location Initial value Steady-State Value 
Number in SN [lb.mole-hr] [lb.mole/hr] 

6 10710.0 1191 0. 2351 

2 7 28.0 32.5206 

3 8 117. 130.3625 

4 9 0.0 0.0 

5 10 3.6 3.9 

6 II 0.0005 0.0006 

7 12 0.0005 0.0006 

8 13 0.0 0.0 

9 14 0.0 0.0 

10 15 0.0 0.0 

II 16 0.0 0.0 

12 17 0.0 0.0 

13 18 0.0 0.0 

14 19 69.0 77.4004 

15 20 o. 18 0.202 

16 21 0.0 o.o 
17 22 0. 13 0. 1400 

18 23 o:o 0.0 

19 24 1.7 I . 8826 

20 25 0.99 I. 1753 

21 26 50.0 56.0839 

22 27 0.0 0.0 
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TABLE 5. 12 

The Initial Value and Steady-State 

Solution in the Assumed Stream 31 

Component Location Initial Value Steady-State Value 
Number in SN [lb.mole/hr] [lb.mole/hr] 

6 10800.0 I 1800.9294 

2 7 45.0 49.3985 

3 8 180.·0 198.0187 

4 9 O.OQOI 0.0001 

5 10 66.0 74.0998 

6 II 0.009 0.0106 

7 12 0.009 0.0111 

8 13 0.0 0.0 

9 14 0.0 o.o 
10 15 0.0004 0.0004 

II 16 0.0001 0.0001 

12 17 0.0001 0.0001 

13 18 0.0001 0.0001 

14 19 108.0 I 17.5704 

15 20 0.27 0.3068 

16 21 0.0 0.0 

17 22 0. 18 0.2127 

18 23 0.0 0.0 

19 24 2.6 2.8596 

20 25 I • 6 I. 7853 

21 26 76.0 85.1911 

22 27 0.0 0.0 
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TABLE 5. 13 

The Initial Value and Steady-State 

Solution in the Assuned Stream 100 

Component Location Initial~ Value Steady-State Value 
Number in SN [lb.mole/hr] [ I b . mo I e I hr-J 

6 30600.0 34327.7861 

2 7 6=5. 0 68.8231 

3 8 265.0 275.8855 

4 9 0.0029 0.0031 

5 10 1440.0 1568.6310 

6 II 0.18 0.2243 

7 12 0 18 0.2347 

8 13 0.0 0.0 

9 14 0.0003 0.0003 

10- 15 0.0070 0.0084 

II 16 0.0010 0.0012 

12 17 0.0012 0.0014 

13 18 0.0014 0.0016 

14 19 144.0 163.8013 

15 20 0.36 0.4275 

16 21 0.0 0.0 

17 22 0.27 0.2963 

18 23 0.0 0.0 

19 24 3.6 3.9841 

20 25 2.3 2.4873 

21 26 95.0 118.6893 

22 27 o.o 0.0 

0 
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TABLE. 5. 14 


Results from the Iteration 


of the Hydrate Wash Section 

Iterate without Iterate with 
Convergence Promotion Convergence Promotion 

·Iteration 
Number 

Norm of the 
Test Vector 

Geometric 
Coefficient 

Norm of the 
Test Vector 

Geometric 
Coefficient 

lien 11 2 lln 110n112 lln 

3 . 1898 E+O 0.2465 

4' .1378 E+O 0.7260 

5 .7840 E-1 0.5688 

6 .4465 E-1 0.5696 

7 .2572 E-1 0.5760 

8 . I 502 E-1 0.5840 

9 .9462 E-2 0.6299 

10 .7264 E-2 0.7676 

II .6755 E-2 0.9266 

12 .6687 E-2 0.9899 

13 .6572 E-2 0.9829 

14 .6319 E-2 0.9614 

15 .• 5951 E-2 0.9418 

16 .5513 E-2 0.9264 

17 .5043 E-2 0.9148 

18 .4570 E-2· 0.9061 .4570 E-2 0.9061 

19 .4111 E-2 0.8996 •411 I E-2 0.8996 

20. .3678 E-2 0.8947 .3678 E-2 0.8947 
* 

21 .3277 E-2 0.8909 .3277 E-2 0.8909 

22 .2910 E-2 0. 8881 

23 .2578 E-2 0.8859 

24 .2280 E-2 0.8842 .5622 E-3 0.8805 

*Applying convergence promotion 
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TABLE 5. 14 Cont' ed 

l.terate without Iterate with 
Conve_rgence Promotion Conve_rgence Promotion 

Norm of the Geometric Norm of the Geometric
Iteration Test Vector Coefficient Test Vector Coefficient
Number 


118n112 lln 118n112 lln 


25 ~2013 E-2 0. 8829 .5196 E-3 0.9241 


26 .1775 E-2 0.8819 .4742 E-3 0.9127 

I27 • 1564 E-2 0. 8811 14286 E-3 0 9038 

28 • 1377 E-2 0.8805 .3846 E-3 0.8974 

29 . 1212 E-2 0.8800 ..3434 E-3 0.8928 

30 .1066 E-2 0.8797 .3054 E-3 0.8894* 
31 .9374 E-3 0.8794 

32 •8241 E-3 0.8791 

33 .7243 E-3 0. 8789 .5469 E-4 0.8839 

34 .6365 E-3 0.8788 .5030 E-4 0.9198 

35 .5593 E-3 0.8787 .4573 E-4 0.9091 

36 .4914 E-3 0.8787 .4121 E-4 0 .. 9011 

37 .4317 E-3 0.8785 .3693 E-4 0.8962 

38 .3792 E-3 0.8785 .3293 E-4 0.8915 

39 .3332 E-3 0.8786 .2925 E-4 0,8883* 
40 .2927 E-3 0.8783 

42 .2258 E-3 o. 8784 

44 1741 E-3 0.8781o I 

46 • 1344 E-3 0.8786 

48 .I 037 E-3 0.8785 


50 .7994 E-4 0.8779 


52 .6165 E-4 0.8779 


54 .4751 E-4 0.8776 


56 .3665 E-4 0.8772 


58 .2830 E-4 0.8779 


60 .2180 E-4 0.8773 
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6. MULTI-COMPONENT DISTILLATION COLU~NS 

6. I Introduction 

The solution of multi-stage separation problem requires mass 

balances, heat balances, and equilibrium conditions to be obeyed over 

each stage of the process. The basic equations are often simple but 

the counter-current operation interconnects a! I stages. Amund~on and 

Pontinen (A6 ) describe the prob~em as the solution of series of non

linear simultaneous equations. 

Many methods have been proposed for the computer solution of 

these equations (H2, R6 , PI, P2, W2, Til The 0-method (H2 , PI) and 

the relaxation method (R6 , PI) are most widely used although these 

techniques converge very slowly for the calculation case~ where pure 

disti I late is ~equired. The direct iteration (successive substitution) 

(YJ2) •method 1s also proposed to solve these equations. 

In this present work two methods have been applied for 

calculating the multi-component disti I lation column where, in each 

of which a tridiagonal matrix ~lgorithm for the solution of the 

component material balances has been used. 

In the f . t meth d · 1 IOQ "1terat"1onb t"tut" (W2 )1rs o, success1ve su, s 

was employed. The profiles of the temperature and liquid flow in 

the column have been assumed in order to start the calculation and 

they have been redetermined in every iteration. The geometric 

Ill 
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extrapolation technique (Section 3.2) has been applied to accelerate 

the conve.1·gence of the i terat l on. 

The second method so Ives the d i si i I I at ion co I umns as a set 

·of algebraic equations where the profl les of the temperature and the 

I iquid flow are used as the variables. The modified form of Newton's 

method (L3) has been employed to solve the set of equations. The 

calculation has been accelerated by the geometric extrapolation method. 

6.2 The Mathematical ModGI 

The basic equations for a distl I lation column are derived by 

making material and heat balances around the "jth" tray of the model 

(Figur-e 6.1). The standai-d assumptions of constant column pressur-e 

and theoretical equilibrium trays are made. Heat and mass balances 

plus equl librium relationships comprise the five sets of equations 

to be solved, narrely 

a) Material balance 

L. I + V. I L. v. = 0 ( 6. I ) 
J- j+ J j 

b) Componen~ material balance 

= 0 (6.2)L. I x. . I + VJ.+ I y. '+I - L.j- l,j- I,J J 
x.. 

I 'J 

c) Heat balance 

L. h. V. H. = 0 (6.3)
J J J j 

d) Vapour-liquid equi I ibrium 

y.. K.• x .. 0 (6.4)
l,j I , J I , J 
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e) The summation condition 

l: x .. - I = 0 (6.5a)
I ,J 

or l: y.. - I = 0 (6.5b) 
I 'J 

where 

L. =liquid flow from "jth" tray [lb mole/hr.]
J 


·V. =vapour flow from "jth" tray.[lb mole/hr.]

J 


x.. = mole fraction of component ln liquid 

I' J 

phase of tr·ay j 

y.. = mole fraction i component in vapour 
I' J 

phase at tray j 

h. = enthalpies of the li~uid stream L., [B.T.U/Ib ~ole]
J J 

H. - enthalpies of the vapour stream V., [B.T.U/Ib mole]
J J 

K.. = equi I ibrium ratio of component i at stage j 
I 'J 

K.• = y.. I X.. 
11 j 1 1 j 1 J1 

Suppose that the number of components is Nc, then for every 

tray we have 'the (2.Nc + 3) equations shown above and (2.Nc + 3) 

variables which are L., V., T., x . . , y. ~, i = 1; 2, 3, ••• Nc,
j j J l,j l,j 

where T. =temperature at the 11 jth" tray.
J 

·Substitute equation (6.4) into equation (6.2) to eliminate 

y. . and then reduce the component materia I ba I ance equations (6. 2) 
I' J 

to a tridiagonal matrix form, as 



114 

V0=0 .,_____...---_ _____.;;;.. 

j=1 

F 

LH f-fvi H 

Lj r-r vj+l i 

FIGURE 6.1 STANDARD DISTILLATION. COLUM\J CONFIGURATION 
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B x. + c X. I = z 
0 I, 0. 0 I 1 ·o 

A. X. • ., + B. X. • + c. X. "+I = z. 
J I 1 J- J I 1 J J I , J J 

or in matrix form 

B c x. 
0 0 I, 0 

x. I 
I ' 

A. B. x.. 
j J I' J 

or simply 

[AB J . {X . . } = { z . } 
C 1 1 J J 

where 

A = 0 
0 

B = -V L = -0( I+R) (total condenser)
0 0 0 

c 
0 

A. _::. j _::. NR 
J 

8. = -L. V. k. . _::. j :::_ N R 
J j J I,J 

< j 

= 

(6.6) 

< NR-1 (6.7) 

(6.8) 

z 
0 

(6.9) 
z. 

J 

< i < Nc 

< i < Nc (6.9a) 
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.::_ j < NR-1cJ = vJ+I Ki,J+I 


CNR = 0 .· 


z. = 0 j # N I & j f- N2 
J 


ZNI = -v y. f
f 
I ' 


ZN2 = -L x. f
f l , 

The material and heat balance equations (6. I) and (6.3) can be 

expressed as an overa I I ba Ia nee over a I I stages from the condenser through 

the "jth" stage. Now if the feed flow F, the disti I late flow 0 and 

reflux ratio Rare given, the material balance becomes, 

= L~ + W. C6_. I 0)
J. J 

w. 0 for <NI-l~JJ 
w. = 0 for j = NlvfJ 

w. = 0 F for N2 _:j < N3 
J 

and 

v = 0 
0 

(L O.R)
0 

= V + L = 0 C I +R) 
0 0 

( LNR= B = F - D) 

Vf is the vapour fraction of the feed, F = Lf + Vf. 

The heat balance (6.3) with material balance (6. I) around the 

upper part of the column become 

L . ( h . - HJ. +I ) •· D ( H . +I u. = 0 (6.11)
J J .J J 
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where 

u. == for .:_j <NI-l-:-00J 
u. = -Q for j == Nl 

J ' 0 
+ Vf(HV,f Hj+ I) 

u . == -Q + F(Hf - Hj+l) for N2 .:_j < N3 
J . 0 

where 

H == enthalpy of the vapour part of the feedv,f 


Rt == enthalpy of the feed 


cRt == HL, f + Hv, f) 

Finally, substitute equation (6.4) into (6.5a) t~ get 

Nc 
E K.•• x .. == 0 (6. 12)

i=! I,J I,J 

j == I, 2, 3, NR 

Thus, after eliminating the vapour compositions, y.. , the four 
I, J 

sets of equations, which remain to be solved, are (6.9), (6.10), · (6. II) 

and (6.12). If the ref lux ratio R and disti !late flow 0 are given 

then, for the case of a total condenser, the number of equations which 

we have to solve is NR.CNc + 3) - 2, where Nc is the number of components 

and NR is the number of trays including the reboiler. 

The two methods which were employed for solving these sets of 

equations wi I I be discussed in the fol lowi~g sections. Petryschuk's 

(PI P2)
multicomponent disti I lation program ' has been used as a basis 

for this work with the necessary changes. Thus, instead of Petryschuk's 

"block relaxation method", equation (6.9) has been applied. The 

equi I ibrium ratio K.• and the enthalpy routine remains the same as 
I, J 
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in Petryschuk's p~ogram where the equilibrium ratios are expressed ·as 

polynomial functions of temperature at the column pressure, and the 

enthalpy for both I iquid and vapour streams is calculated by usi~g the 
. . . 	 . (YI)

enthalpy correlation of Yen and Alexander · . 

6.3 The Successive Substitution Method of Iteration 

The successive substitution method of iteration was reported 

2by Wa_ng and Henke (W. ). AI tho_ugh they indicated good convergence of 

the "iteration in their case studies it appears that the iteration 

converges very slowly where pure disti I late is required. Thus, the 

iteration converges slowly when the reflux ratio is high or the 

disti I late flow 0 is relatively smal I. Very good results were· 

obtained where geometric extrapolation was used for promoting the 

· conve_rgence. 

6.3. I The Computational Procedure 

When the flow rate and compositions of the feed stream are 

given and the amounts of the product streams and ref I ux ratio are 

specified, F,, o, B and R are constants. ·If an initial set of {L.} 

I' j 

j 0 

and {T.}
j 0 

is assumed, the prof i Ie of the vapour flow {Vj} can be 

calculated by equation (6. 10), matrix and · {Z.} 
j 

( 6 • 9 ) are a Iso 

constants, provided that the equi I ibrium ratio K.. can be expressed 

as function of T .• Then equation (6.9) is a linear system and by
j 

inverting the tridi~gonal matrix the solution of . {x .. } can 
I 'J 

be easily obtained as 

{x	.. } -- [A c]-l· {Z.} (6. 13)' 
I ,j 8 . J 

= 	I, 2, 3 ~ ••• Nc 



119 

I 

After applyi.ng the tridi.agonar matrix calculation for all the 

components (6~13), the set of equations (6. 12). is used to calculate 

a new temperature profIle, as 

Nc 
S. 	 <T., x. ~> = E K.. X •• - I ::: 0 (6. 14)

J J I' J I' J I ,ji=l 

j = I , . 2, 3, • . . NR. 

This is readily rec.ognized as the bubble-point determination 


of the temperature T .. Newton's iteration technique is uti I ized to 

J 


seek the temperature that satisfies equation (6, 14), where the 


eq u i I i b r i u m rat i os K.. are expressed as polynomial functions of the 
I' J 

(W2)temperature T .• It is worthwhile mentioning that Wang and Henke 
J 


used Muller's method for seeking the root of equation (6. 14) and they 


have claimed a better convergence than with Newton's method. 


After calculating the temperature profile· {Tj} the heat 


balance equation (6. II) can be used to calculate the new I iquid flow 


prof i I e { L j}, as 


(6.15) 

j = I, 2, 3 • • • NR- I • 

where U. is given in equation (6. II). The enthalpy is calculated 
J 

from Yen and Alexander's correlation (Y/) as it is programmed by 


(P2)

Petryschuk • 


The new temperature and liquid flow profiles of the column 


can be transferred to become initial values for a new iteration. 


http:applyi.ng
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· These two prof i Ies can be arra_nged in vector X and Y and the iteration 
. 

can be expressed i~ general by equations in the form of (2.5) and (3. I) 

as 
y = F cx > (6. 16) 

n· n 

X 	 = X + t <Y x > (6.17)
n+l n r n n 

-Twhere 	 X = [ {T.} ' {L.} JT 
n J n J n 

and 	 y-T 
n = [{Tj}new' { L .J JJ 

J ne~ 

and 	 t is relaxation factor that is used in case the iteration. r 


asci llates or is unstable. Vector x is the " i nput'~ and y is 

n n 


the "output". (See Figure 6.2). The set of functions F (6.16) 


represents the calculation procedure which can be summarized by the 


following steps: 


I ) Assume an initial temperature profile {T.} and I iquid flow 

j 0 

prof i I e · { L.} where the two of them are combined in vector X • 
j 0 	 0 

2) 	 Calculate the vapour profile {V.} by equation (6~10)
j 

3) 	 Calculate the elements of matrix [A c] (6.9) and solve the
8

. 	 " 

rratrix equations for every component to_ get · {x .. }
I ,j 

4) 	 Solve equations (6. 14) by Newton's. method to get new temperature 


prof i I e {T.} 
 .. 
J new 


5} Calculate the enthalples of the internal vapour and I iquid 


streams by using Ye~ and Alexander CYI) correlation and then 


calculate the new I iquid profile · {Lj}~ew by equation (6. 15) 




{T.}
j 0 

{ L.}
--J_Q 

{T.}
J n 

OVERALL I : { L.}
MATERIAL i J n 
BALANCE I 

EQ. (6.10) · {V.} 
1 n _ 

' 1' 

{T .} { Lj} nJ n 

-T [X = {T.} , 
n J n 

{x. ·.} 
1 ,J n 

~ 

BUBBLE 
MATERIAL 

CbMPONENTS 
{T.} POINT ___ _,.J n CALCULATIONBALANCE 

EQ. (6.13) EQ. (6. 14) 

I 
JT{L.} I r 

· J n 

·('CONVERGENCE )
PROMOTION 

ROUTINE 

{x .. } 
1 ,J n 

HEAT I {T_j} new 
{T.} BALANCE

J new ~CALCULATION I{L.}
EQ • ( 6 . I 5 ) J new 

yT = .[{T } . {L } JT 
n j new' j new 

FIGURE 6.2 INFORMATION FLOW DIAGRAM 


MULTI-COMPONENT DISTILLATION COLUMNS SOLVED BY SUCCESSIVE SUBSTITUTION 

N 
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6) Arra.nge the two new profiles, {T .}
J new 

and · {L .} ,
J new 

in vector 

9n· and then equation (6.17) may be used to calculate ~n+l. 

7) Repeat steps Ct)_thr~ugh (6) unti I conv~rg~nce is achieved. 

The fixed-point test vector (2.28) and its norm are calculated 

in the end of every iteration as 

T ::: [I XJ- 1 (Y X ) (6.18) 
n n n· n 

The test for convergence has been made with the second norm (2. 12) 

(6.19) 

and the iteration has achieved the convergance when the fixed point 

test satisfies (6. 19). 

6. 3. 2 Acce 1e rating thf? _ Co!1VG ,-gence 

The geometric extrapolation technique has been employed for 

promoting the convergence of the above iteration. Thus, at the end 

of each iteration the fixed-point test vector (6.18) and its second 

norm have been calculated. In addition, the geometric coefficient 

lln (2.62) and (2.69). and its fractional change A (2.56) have been 
n 

obtained as 
llrn 112 

(6.20) 

IITn-1112 
and 

(6.21) 

respectively. 
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Now, if the number of iterations n is sufficiently la_rge such 

that A satisfies equation (2.• 57), where y is the specified tolerance, 
n 

it cou I d be assumed that the iteration· has approached a geometric 

progress ion and can be expressed in form of equation (2. 50). Therefore, 

the solution can be approximated by equation (3.30) which, in this case 

study, has been written in different form as 

(6.22) 

where vector Bcan be calculated in a few different ways as 


(6.23)
a) 


where ex! is def i nea as 

I 

xn·-2 - xn-1 
ex! = { -···------------ }. (6.24) 

i = l, 2, 3, ••• m. 

1 I 

b) (6.25) 

= I, 2, 3, ... m. 

where T is the "ith" element of vector T n, i n 


(x 2- x I) ll
n- n
c) B. = { } (6.26)

I l1 •• I 

In this case study, equation (6.22) has been employed, where 

vector 8 was calculated by equation (6.25). The scalar factor t c 

has been used as relaxation factor. The following coefficients have 
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been used in the conve.rgence promotion routine, 

t = I. 0 (e.quati on 6. /7) 
r 

t = 0.7 (equation 6.22)c 

y = 0.01 (e.quation 2.57) 

= 4.5 X I0- 7 (equation 6. 19)£2 

6.3.3 The Results of the Case Study 

A conventional fractionator is .considered (figure 6.1). The 

column has thirty one equilibrium stages, includi.ng a total condenser 

and a reboi ler, thus NR = 30. Two hundred moles of feed have the 

composition; 0.25 propane, 0.25 iso-butane, 0.25 n-butane and 0.25 

pentanes. The feed is entered ~t the thirteenth tray. The column is 

operated at 290 psia. Products of 50 moles of distil late and 150 moles 

of bo+toms are to be obtained. The feed temperature is 195.0°F where 

the bubble point of the feed is 215.40 F. The reflux ratio R is chosen 

as 6.0. Equi I ibrium coefficients and physical property data are given 

in Tables 6. I and 6.2. 

The lnitial and final values of the temperature and I iquid flow 

prof i I es are given in Tab I e 6.3 and Figures 6.3 and 6. 4. Two comparison 

runs, with and without convergence promotion have been made. The norm 

of the fixed-point test vector versus the number of iterations is 

represented in Table 6.4 and Figure 6.5. The geometric coefficients 

are a I so given in Tab I e 6.4. The compos it ion prof i Ies· in the co I umn at 

the last iteration are given in Table 6.5 and Figure 6.6. 

http:includi.ng
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Consideri~g first the iteration without conv~rgence promotion 

(Table 6.4 and Figure 6.5). The rate of convergence appears ·to be 

very slow. The iteration has approached geometric progression after 

less than ten iterations. As the system is non- I I near, the geometric 

coefficient gradually ch~nges as the iteration proceeds. 

The rate of convergence duri_ng the iteration can be calc~lated 

by equation (2.77), as 

R = - Iog C11- ) 
n 

and for example the rate of convergence for the following three points 

was calculated as 

Iteration Geometric Rate of 
Number Coefficient .Convergence 

10 0.910 0.04096 

20 0.948 0.02319 

120 0.979 0.00922 

Thus, the rate of convergence has been substantially decreased as 

the iteration has proceeded toward the solution. 

In the last part of the iteration, after-hundred and twenty 

iterations, the rate of convergence is very slow CR = 0.00922), and 

almost hundred and nine iterations are required to reduce the norm of 

·the fixed-point test by the factor of one tenth ( 1/10), as 

I = = 108.46R 0.00922 

The geometric coefficient can be also used for calculati~g the 

norm of the deviation vector (2.27). The relation between the fixed 
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point test vector (2J28) and the deviation vector (2~27), in the case 

of usi~g successive substitution (2~6) can be obtained ~y using C2A29) 

and (2 .• 74), as 

B = T I 1> n n· 

where = I - l-In 

or 

As the iterate has approached the· solution, l-1 = 0.979,
n 

~ = 0.021, 1/1> = 47~62 • Thus, the deviation vector is almost forty 

eight times _bigger than the fixed point test vector. Ca I cuI at ing 

- -7the norm of the deviation vector for the .last iteration, I ITnj 12 = 4.45.10 

and 

This case· study is ideal for using geometric extrapolation type 

of convergence promotion as a smal I number of iterations is necessary for 

achieving geometric progression. Five times the iterate approaches 

geometric progression, in iteration 7, 13, 20, 25 and 33 (See Table 6.5). 

Each time, equations (6.22) and (6.25) were used to approximate the 

so Iuti on X'. The number of iterations that are required to achieve the s 

solution has been reduced from two hundred and sixty-three to thirty-nine. 

(See Figure 6.5). Thus, the number of iterations has been reduced by 

factor of about 6.74, whereas the computation time was reduced by a 

factor of about four, from 80.3 seconds to 19.2 seconds, usi~g the 

CDC 6400 computer. 
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TABLE 6. I 

·Equi llbrium Coefficients 

K... = a+ b T. + c T~ + d T~
I,J J J j 

P = 290 psia 

(T. is in degrees Fahrenheit)
j 

No. 

2 

3 

4 

Component 

Propane 

Iso-butane 

n-butane 

Pentanes 

a 

0.1995 

0.. 0923 

0.200 

0.0447 

Coefficients 

b X 102 

0.510 

0.2215 

0.0 

0.0 

C X 10
4' 

0.0745 

0.0985 

0. 1420 

0.0919 

d 

0.0 

o.o 

0.0 

0.0 
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TABLE 6.2 

Physical Properties of the 

Components for the Enthalpy Correlations 

No. Component Mo I ecu I ar 
Weight 

Crit i ca I 
Pressure 

·P c 

Critical 
Temperature 

T c 

Criti.cal 
Compress i b iIi ty 

z 
c 

[Atm] [oF] [-J 

Propane 44. I 42.0 666.3 .277 

2 Iso-butane 58. I 37.4 766.0 .274 

3 n-butane 58.1 37.4 766.0 .274 

4 Pentanes 72. I 32.6 846.5 .269 
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TABLE 6.3 -

The Initial and Final Values of the 

Temperature and Liquid F I ow Prof i Ies 

Temperature Profile Liquid Flow Prof i I e 

Tray 
j 

{T.}
J 

[Fo] {L.}[Ib-mole/hr]
J 

Initial Final Initial Final 

0 75.0 75.0 300.0 300.0 
I 138. I 132.3 416.9 417.2 
2 144.5 132.8 4 6.9 416.3 
3 151.0 133.5 4 6.9 414.9 
4 157.4 134.8 4 6.9 412.7 

·5 163.9 136.7 4 6.9 409.5 
6 170.3 139.6 4 6.9 405.0 
7 176.7 143.8 4 6.9 399. I 
8 183.2 149.7 4 6.9 392.2 
9 189.6 157.3 4 6.9 ~84.8 

10 196. I 166.2 4 6.9 377.6 
I I 202.5 176.1 4 6.9 370.2 
12 209.0 187. I 4 6.9 361.6 
13* 215.4 199.8 605.8 598.9 
14 217.5 . 204.1 605.8 600.4 
15 219.7 208.4 605.8 602.3 
16 221 .8 212.5 605!8 604.6 
17 223.9 216.2 605.8 607.0 
18 226. I 219.4 605.8 609.4 
19 228.2 222. I 605.8 61 I .6 
20 230.3 224.4 605.8 613.5 
21 232.5 226.3 605.8 615. I 
22 234.6 227.8 605.8 616.5 
23 236.7 229.1 605.8 617.4 
24 238.9 230.3 605.8 618.1 
25 241 .0 231 .4 605.8 618.3 
26 . 243 .·1 . 232.7 605.8 617.9 
27 245.3 234.5 605.8 616.3 
28 247.4 237.5 605.8 612.8 
29 249.5 242.6 605.8 606.9 
30 251.7 251 .5 150.0 150.0 

* Feed tray 
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TABLE 6.4 


Results from the Iterations 


Applyl~g Geometric Extrapolation for Promoti~g the Conve.rgence 


Iterate Without Iterate With 
Conve.rgence Promotion Convergence Promotion 

Iteration 
Number 

Norm of the 
Fixed Point 
Test Vector 

Geometric 
Coefficient 

Norm of the 
Fixed Point 
Test Vector 

Geometric 
Coefficient 

lltn112 lln llrn ll2 lln 

I 4.838 E-3 4.838 E-3 
2 4.609 E-4 .095 4.609 E-4 .095 
3 5.546 E-4 1.203 5.546 E-4 I .203 
4 5.483 E·-4 .989 5.483 E-4 .989 
5 4.881 E-4 •890 4.881 E-4 .890 
6 4.280 E-4 .877 4.280 E-4 .877 
7 3. 783 E-4 •884 3.783 E-4 .884* 
8 3.382 E-4 .894 1.689 E-3 
9 3.053 E-4 .903 I .693 E-4 • I 00 

tO 2.779 E-4 .910 I .286 E-4 • 760 
I I 2.548 E-4 .917 I .199 E-4 .932 

. 12 2.350 E-4 .922 I. 142 E-4 .952 
13 2. 179 E-4 .927 I. 091 E-4 .956* 
14 2.029 E-4 .931 6.598 E-4 
15 I. 896 E-4 .935 9.497 E-5 . 144 
16 I. 779 E-4 .938 3.954 E-5 .416 
17 1.674 E-4 .941 3.362 E-5 .850 
18 I. 579 E-4 .944 3.221 E-5 .958 
19 I .494 E-4 .946 3. 132 E-5 .973 
20 I. 416 E-4 .948 3.053 E-5 .975* 
21 I .345 E-4 .950 2.416 E-4 
22 1.280 E-4 .952 I. 969 E-5 .082 
23 1.220 E-4 .953 9.517 E-6 .483 
24 I I 165 E-4 .955 8.654 E-6 .909 
25 I • I 14 E-4 .956 8.400 E-6 .971 
26 1.066 E-4 .957 8.211 E-6 • 978* 
27 I~022 E-4 .958 1.047 E-4 
28 9.802 E-5 .959 I .359 E-5 • 130 
29 9.414 E-5 .960 2.723 E-6 .200 
30 9.051 E-5 .961 .1.892 E-6 .695 
31 8.709 E-5 .962 I. 797 E~6 .950 
32 8..387 E-5 .963 I. 754 E-6 .976 
33 8.084 E-5 .964 I. 717 E-6 .979* 
34 7.797 E-5 .965 7.219 E-6 
35 7.526 E-5 .965 I .217 E-6 • 169 

* apply.ing convergence promotion 
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TABLE 6.4 Cont1ed 

Iterate Without Iterate With 
Conve.rgence Promotion C'.onve.rgence Promotion 

Norm of the Norm of the
Iteration Geometric Geometric

Fixed Point Fixed Point
Number Coefficient Coefficient

Test Vector Test Vector 

lltn112 lln Jltn112. lln 

36 7.268 E-5 .966 5.221 E-7 .429 
37 7.024 E-5 .966 4.704 E-7 .901 
38 6.792 E-5 .967 4.569 E-7 .971 
39 . 6. 572 E-5 .967 4.471 E-7 .978 
40 6.361 E-5 .968 
45 5.443 E-5 .970 
50 4.702 E-5 .972 
60 3.581 E-5 .974 
70 2.780 E-5 .976 
80 2. 185 E-5 .977 

90 I. 733 E-5 .977 


100 1.383 E-5 .978 

110 I .I 08 E-5 .978 

120 8.915 E-6 .979 

130 7.187 E-6 .979 

140 5.806 E-6 .979 

150 4.696 E-6 .979 

160 3.803 E-6 .979 

170 3.082 E-6 .979 

180 2.499 E-6 .979 

190 2.028 E-6 .979 

200 I. 646 E-6 .979 

210 1.337 E-6 .979 

220 1.086 E-6 .979 

230 8.822 E-7 .979 

240 7. 169 E-7 .979 

250 5.826 E-7 ' • 979 

260 4.735 E-7 .979 

263 4.450 E-7 .979 
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TABLE 6·.5 

The Composition Profiles at 

the Last lterat ion 

Composition Prof i Ie: {x ... } 
[mole fraction] I,J 

Tray Propane !so-butane n-butane pentanes 
j c3 iC4 

N c
4 c5 

0 .9944 .0054 .0002 .0000 
I .9899 .0097 .0005 .0000 

'2 .9825 .0165 .00\0 .0000 
3 .9708 .0271 .0021 .0000 
4 .9524 .0435 .0041 •oo·oo 
5 .9240 .0681 . .0079 .0000 
6 .8818 .I 033 .0149 .0001 
7 .8224 • 1505 .0268 .0003 
8 .7447 .2083 .0460 .0009 
9 .6518 .2710 .0741 .0030 

10 .5518 .3283 . II 03 .0090 
II .4542 .3688 • 1523 .0241 
12. .3665 .3822 • 1932 .0580 
13-l< .2922 .3626 .2214 .1238 
14 .2510 .3907 .2325 . 1258 
l5 .2106 .4181 .2436 ; 1276 
16 . • 1728 .4435 .2543 .1293 
17 .1389 .4659 .2644 • 1308 
18 • 1097 .4846 .2737 • 1320 
19 .0852 .4995 .2822 . 1331 
20 .0653 .5104 .2903 .1340 
21 .0495 .5176 .2981 .1348 
22 .037"1 • 5212 .3060 .1357 
23 .0275 .5213 .3144 • 1367 
24 .0202 .5177 .3235 • 1385 
25 .0147 .5100 .3337 • 1417 
26 .0105 .4970 .3445 • 1480 
27 .0073 .·4768 .3548 • 1610 
28 .0050 .4460 .3615 • 1875 
29 .0032 .3995 .3579 .2395 
30 .0019 .3315 .3333 .3333 

* Feed tray 
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· 6.4 Solving Disti I lation Columns·as a 
Reduced Set of Functions 

The successive substitution method of iteration can be 

rep I aced by a method which wou I d find the temperature and the I i quid 

f I ow prot i Ies, {T.} and {L.}, such that equations (6. II) and C6. 12)
J J 

are satisfied. Thus, instead of using equations (6.• 11) and (6.12) for 

calculating new temperature and I iquid flow profiles, the residual 

valuesof these equations are taken as a set of functions which ~ught 

to be solved. 

The modified form of Newton's method was uti I ized successfully 

to solve this set of functions. In addition, geometric extrapolation 

was applied for convergence promotion. 

An attempt was made to solve this set of equations by the 

Quasi-Newton method (See Section 4.4) but the result was unsatisfactory. 

Thus, if pure disti I late is required as in the case study discussed 

in Section 6.3.3, the Qu~si-Newton method appea~s to be unstable 

although the modified form of Newton's method easily overcame this 

difficulty. 

A si~i far technique for solving multicomponent disti I lation 

CT I) hcolumns was presented by Tomich were the set of functions which 

(82) . .
he proposed was solved· by Broyden's method (Quasr-Newton). 

Tomich did not give much detail on his case studies and results. 
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6.4. I The Computational Procedure for the 

Function Evaluation 


The computational procedure for the function evaluation is 

very similar to the previous method. For any set of. {T.} and {L.},
J J 

it is possible to calculate the vapour flow profile {V.} by using
J 

equation (6.10), then evaluating matrix [A c] (6.9) and solving8

equation (6. 13) for each component in order to get · {x .. } (See Figure
I,J 

6.7). 

Now the temperature profile {Tj}, ·th~ liquid and vapour flow 

prof i I es, · { L.} and {V.} and the component concentration prof i I es 
J J 

{x .. } can be ~ti I ized for evaluating the residual values of equations
I ,j 

(6.11) and (6.12). Hence, these equations depend o~ly on the temperature 

and I iquid flow profiles and may be expressed as 

Nc 

E K.. x .. (6.28)


IJ IJi=l 

j = I_, 2, 3, ••• , N R 

and 

u. (6.29)L. (h. Hj+ I)J J J 

j = I, 2, 3, .•. , CNR-1). 

where 

u. :::: -Q for _:_j < Nf-1 
J 0 

u. = -Q + for j == N I 
0 Vf(Hv,f Hj+ I)J 

u. = -Qo + F<Hf - Hj+ I) for N2 .:_j < NR-1 
J 

The two sets of residual functions (6.28) and (6.29) are not 

of the same magnitude. The value of the first set {S.} is about 
J 
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unity whereas the second set. {IT.} has a ~agnitude of mil lions of 
J 

BTU's. Therefore it is desirable to normalize the two sets. The 

first one . {S.} may be divided by unity and the second set, . {IT.}1 J J 

by the amount of heat which f I ows to the st_age in the vapour phase, 

(Vj+l HJ+I). Thus, equation (6.29) becomes 

(6.30) 

J = I, 2, ;3, ••• , CNR-1) 

In addition, as equati6n (6.28) was derived from equation 

(6.5b), it is worthwhile mentioning that equation (6.5a) ~an also be 

·used to obtain the residual functions as 

Nc 
I: X •• ( 6. 31) 

I I ji= I 

J = I, 2, 3 1 1 NR• o • 

New,· locating the sets of the residual functions (6.28) and 

(6.30) in a function vector 1, as 

-Tf = [{Si}, {ITk}]T (6.32) 

i = I I 2, 3, ... , NR 

k = I, 2, 3, " .... NR-1I 

and arrang i_ng the temperature and I iqui d f Iow pro f i I es in vector Xas 

R, = I '1 2 ' 3 ' • 0 N R 0 I 

k = I, 2, 3, ... ' NR-1 
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the distfl lation column problems have been reduced to a problem of 

solvi~g a set of non-linear ~lgebraic equations in form of 

t. <x> = o (6.34)
I 

-· I, 2, 3 1 •• • , m. 

where m = 2.NR-I 

Solution techniques for set of non-1 inear algebraic equations 

have been discussed in Section 4. 

6.4.2 The Solution Procedure 

The modified form of Newton's method has been applied to solve 

the set of functions- (6.34) for the same case study described in 

Section 6.3.3. In addition, the geometric extrapolation technique has 

been employed for promoting the convergence. 

The modified form of Newton's method can be written as follows 

= x + t.<-J >-I tcx > (6.35)
n o n 

The Jacobian matrix J, of partial derivatives of the function vector,
0 

at. 
I )( J .. ) 

I J 0 ax. o 
J 

has been evaluated only once around the point X and used unchanged
0 

thr~ughout the calculation. The Jacobian matrix has been calculated 

numerically by finite difference approximation for which, m+l functional 

evaluations are necessary, where m is the number of elements in the 

vectors 1 and~~ (m = 2*NR-I , for column with total condenser). 

The "jth" column of the Jacobian matrix may be obtained by the 

http:functions-(6.34
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differences between the function vector at points <x + e.o) and 
0 J 

<.X_ ) as 

(6.36) 

= I, 2, 3, .•• , m. 

where 6 is a smal I deviation from (x.) which in the fol lowi~g case 
J 0 

study was chosen as- 0 = 0.01 .(x.) • e. is a vector with unity in the 
J 0 j 

"jth" place and zero elsewhere. 

At the end of each functional evaluation, the norm of the 

function vector q> and the ratio between two successive norms, ~ 
n n 

and ~ , are obtained, as n- 1 

(6.37) 

and 
~ 

n (6.38)11 fn = ~ 
n-1 

respectively.· The iteration (6.35) \'Jould continue unti I the norm 

(6.37) is less than a specified tolerance Ef' as 

~ (6.39)
n 

Thus, the indicator for- conve_rgence in this case is not the fraction a I 

change of the iteration ~ , but the value of the functions themselves. 
n 

Therefore, it is much more reliable an indicator for conv~rgence. 

In addition, the iteration (6.35) may be accelerated by the geometric 

extrapolation method if it approaches geometric progression. Now 

if the approach a constant value, it can be shown that the iterate 
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X approaches a. geometr·ic p~ogression in the form of equation (2.50).
n 

It also can be shown that if the become constant value thenllfn 

-litn II II x~+ ,· -~ xn II 
~--~- = lln

ll xn - xn- I rI 

(See Section 2.4.1) 

Th~ geometric extrapolation can be used in the same form as in 

Section 6.3.2 with minor cha.nges. InsTead of using equation (6.25) 

B. may be calculated as 
I 

~ (xn-2- xn-1) fn-1
B. } (6.40)

I 
(fn-1 - fn-2) 

where f . is the ith element of vector f(X ).n, 1 n 

6.4.3 The Results 

For the same case study described in Section 6.3.3 the modified 

form of Newton's method was uti I ized for solving the equations. The 

column has 30 trays, including the reboi ler, and the number of equations 

which we have to solve is fifty-nine (m =59). Sixty functional 

evaluations have been used to obtain the Jacobian matrix l-6.36) and then, 

after calculating the Jacobian inverse, the iteration (6.35) has been 

proceeded unti I the norm of the functions satisfies (6.39). The 

relaxation factor t (6.35) has been chosen, in this case study, as 

t = 0.9. 

The initial and the final values of the temperature and I iquid 

flow. profiles are given in Table 6.3 and Figures 6.3 and 6.4. The norm 

of the function vector versus the number of iterations is presented in 
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table 6.6 and ~igure 	6.7. The geometric coefficients ~fn are also 

given in Table 6.6 where it can easily be seen that the geometric 

coefficient has approached an almost constant value after eight 

jteratlons. 

The rate of convergence R has been calculated by equation 

(2.77) 	as 

R = -l?g ~f ~ -l?g 0.844 = 0.07366 
.. _ 

Iand R = 13.58 Thus, almost fourteen iterations are required to 

reduce the norm of the functions (6.37) by one tenth Cl/10). 

As the geometric coefficient has approached constant value in 

a smal I number of iterations, geometric extrapolation was applied to 

achieve faster convergence. The results of the iteration with 

convergence promotion are given in Table 6.6 and Figure 6.7. The number 

of iterations was reduced from 45 to 27 due to the convergence promotion, 

an improvement of forty percent. The tolerance y, equation (2.57), was 

chosen as 0.005. 

As it was discussed previously, equation (6.31) can be used 

instead of eqt,Jation (6.28). Thus, for demonstration, the calculation 

was repeated usi~g equation (6.31) and th~ results, which are very 

similar to those in the first case, are_ given in Table 6.7 and Figure 6.8. 
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TABLE 6.6 

Resu Its from the Iteration ( 6·.. 35) 

So lv i.ng Equations <6.2ff) and .<6~30) 

Iteration Without Iteration V.Jith 
Functional Convergence Promotion Convergence Promotion Iteration Evaluations-Number /lfn112 ilfn112 llfnNumber llfn 

I .049 E-3 . 192 
I 61 I .049 E-3 . 192 6.722 E-4 .641 
2 62 6.722 E-4 .641 5.675 E-4 .844 
3 63 5.675 E-4 •844 4.608 E-4 •8/2 
4 64 4.608 E-4 .812 3.805 E-4 .826 
5 65 3.805 E-4 . 826 3. 166 E-4 • 832 
6 66 3. 166 E-4 .832 2.654 E-4 • 838 
7 67 2.654 E-4 .838 2.234 E-4 .842' 
8 68 2.234 E-4 .842 I. 887 E-4 .845* 
9 69 I. 887 E-4 .845 6.208 E-4 

10 70 I .597 E-4 .846 9.899 E-5 .160 
I I 71 I .353 E-4 .847 3.791 E-5 .383 
12 72 I. 146 E-4 .847 3. 195 E-5 .843 
13 73 9.714 E-5 .848 2.764 E-5 .865 
14~ 74 8.231 E-5 • 847 2.358 E-5 . 853 
15 75 6.973 E-5 .847 I. 998 E-5 .847 
16 76 5.905 E-5 .847 I .689 E-5· .846* 
17 77 4.999 E-5 .847 9.556 E-6 
18 78 4.230 E-5 • 846 4.234 E-6 .443 
19 79 3.578 E-5 .846 3.510 E-6 .829 
20 80 3.026 E-5 .846 2.996 E-6 .854 
21 81 2.558 E-5 .845 2.540 E-6 .848 
22 82 2.162 E-5 .845 2.146 E-6 .845* 
23 83 I. 827 E-5 .845 8.302 E-7 
24 84 I .543 E-5 .845 5.317 E-7 .640 
25 85 1.303 E-5 .845 4.497 E-7 .846 
26 86 I. 100 E-5 .844 3.823 E-7 .850 
27 87 9.290 E-6 .844 
28 88 7.843 E-6 .844 
29 . 89 6.620 E-6 .844 

30 89 5.587 E-6 .844 

32 . 92 3.979 E-6 .844 

34 94 2.833 E-6 .844 

36 96 2.017 E-6 .844 

38 98 1.436 E-6 .844 

40 /00 1.022 E-6 .844 

42 102 7.274 E-7 .844 

44 104 5.177 E-7 .844 

45 105 4.367 E-7 .844 


applying geometric extrapolation 
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6.4.4 Conclusions and Remarks 

The technique for so I v i_ng d i st i I I at ion ro I umns as a reduced 

set of equations has been demonstrated. 

The modified form of Newton's method has been uti I ized to 

seek the solution. The iteration (6.. 35) appears to be very stable 

. ·with a rate of convergence almost eight times fasterth.an the res.ults 

obtained by successive substitution (Section 6.3). 

The disadvantage of this method i~ the necessity of evaluating 

the Jacobian matrix J prior to the iteration (6.35). However, the 
0 

Jacobian matrix may be used more than once, under various operating 

conditions of the disti I la~ion column. Hence, if the performance of 

-the disti I lation column is studied. for different feed composition, 

·disti I late rate and reflux ratio, and if the variation of these 

parameters is sufficiently small, the Jacobian matrix which was 


obtained for the base case condition can be used unchanged. 


In addition, we may point out, that the equilibrium ratio 


(K .. ) is evaluated fewer times for every ·iteration than in successive 

I J , 


substitution (Section 6.3). This is due to the fact that in successive 


substitution the set of equations (6.14) is solved for every iteration. 


Thus, the present technique wi I I be very 	suitable when more comprehensive 

<P3)methods for evaluating equilibrium ratio are implemented. 

http:fasterth.an


7. SUMMARY AND CONCLUSIONS 

This thesis has presented the mathematical analysis of 

iterations which result mainly from the calculation of recycle 

p~ocesses of chemical plants. 

The formulation of the iteration, the existence of a solution 

and the convergence conditions have b~en discussed. In addition, 

I i near iteration and its asymptotic behaviour were studied. It was 

shown that I inear iteration usually approaches a geometric progression 

whereby the_ geometric coefficient is the largest eigenvalue in modulus. 

It was also demonstrated, in the case studies, that_ the iteration 

generally approached a_ geometric progression. This unique behaviour 

of the iteration was uti I ized for determining the relation between 

the test and the deviation vectors and, more important, for 

approximating the solution. 

The geometric extrapolation technique for accelerati~g the 

convergence' has been developed and demonstrated .. This technique 

appears to be very powerful for a case of slow convergence, particularly 

when the absolute value of the_ geometric coefficient is_ greater than 0.9. 

However, it 1s a suitable technique only when the geometric progression 

is achieved in a smal I number of iterations. 

The a pp I Lcat ion of the "fu II matrix" technique for acce Ierat ing 

the convergence was demonstrated in the simulation of the Alkylation 

151 
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unit. Very stable and relatively fast conv~rgence was achieved. 

However, (m+l) iterations were necessary for evaluati.ng the matrix 

of the convergence promotion coefficients, where m is the number of 

variables. 

Two methods for solvi~g the multi-component distillation 

·column were given. In the first method, successive substitution-was 

·uti I ized to seek the solution, and since the convergence was slow, 

the"geometrfc extrapolation technique ~as applied to promote the 

convergence. Thus, the number of i~erafions was reduced by a factor 

of about six. 

In the second method, the disti I I at ion column was represented 

by a set of algebraic equations and the modified form of Newton's 

method was employed to seek the solution. 

The modified form of Newton's method, ·which is iterative in 

form, appears to be very stable. The results obtained showed rates 

of convergence which were almost eight times faster than those obtained 

by successive substitution. Unsuccessful attempts were made to solve 

this set of equations by the Quasi-Newton method~ A further examination 

of this method is recommended. 

http:evaluati.ng


NO~~ENCLATURE 

a. . e I ement of matrix A. 
IJ 

A m x m matrix of linear coefficients <2~30) 

m x vector of linear c6efficients Ci.30) 

§ matrix defined by equation <5.4) 

cj coefficient defined by equation <2.40) 

B deviation vector Ci.27) 

E error vector (2.52) 

f function vector (4. I) 

f function vector <2.2) 

F element i of the function vector (2.1)1 

F.. partial derivatives of the function vector (2. 19)
lj 

F feed flow rate 

g si~gle iterative function <2.23) 

G matrix of convergence promotion coefficients 

h. enthalpies of the I i quid stream L. 
J J 

H. enthalpies of the vapour stream v. 
J J 

R approximation to the Jacobian i'nverse 

I unit matrix 

J Jacobjan matrix 

Kij equilibrium ratio of component ~t tray~ 

L. I iquid flow from "jth" tray
J 

Lf liquid fraction of the feed (6. 10). 

153 
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·m number of variables 

M Lipschitz constant (2.9) 

n iteration number 

NR number of trays includ i.ng the reboiler 

p correction vector (4·. 7) 

Q ,QNR condenser and reboi ler cool i_ng and heating loads respectively
0 

r i nterva I 

R rate of convergence (2~77) 


R ref Iux ratio 

I 

T. temperature at the "jth" tray
J 


0 vector of coefficients (2.50) 


vapour fraction of the feed (6. 10) 

vapour f I ow from. 11 jth 11 tray 

w ei gen row of matrix A 

x variable vector ("input" vector) 

x solution points 

x. element ·i of vector X 
I. 

x .. mole fraction of i component in liquid phase at tray j
lj 

y variable vector ("output" vector) 

element i of vector Y 

y .. mole fraction i component in vapour phase at tray j
IJ 

z eigenvector of matrix A 
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Greek Symbols 

a conv~rgence promotion coefficient 

a vector of conv~rgence promotion coefficients 

S tolerance for the deviation vector 

y tolerance for the fixed point test vector 

~ test vector (2.26) 

A • ~igenvalue 

Ak biggest eigenvalue 

A fractional cha~ge of the geometric coefficient (2.56) 

p geometric coefficient (2.50) 

T fixed point test vector <i.28) 

$ correction factor (2.74) 

¢k correction factor (2~46) 
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APPENDIX A 

2THE SOLUTION OF MATRIX DIFFERENCE EQUATION (A ) 

Consider the matrix difference equation 

= A x + 5 (A-I)
n 

for initial value X . For solving (A-1) we may consider first the 
0 

homogeneous equation 

= A x (A-2)
n 

and assume it has a solution of the form 

(A-·3) 

where Z is a vector of constants and A is an unknown parameter. 

Equation (A-3) has to satisfy equation CA-2). Therefore, 

and if A t- 0 

or (A - A I) z = 0 ( A--4) 

and because we desire vectors Z which are not the zero vectors (not 

the trivial solution) the condition that equation CA-3) be a solution 

161. 
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is that A be an e_i genva Iue of A·I and Z be an e_ i genvector be I o_ng ing 

to the eigenvalue. Therefore let :\. be an e_i genva Iue which satisfies 
J 


det <A - A.I) =·0

J 

and z. be a non-zero co I umn of 
J 

adj (A - A.1) 
J 

then there are m solutions in the form of equation (A-3) 

x = Z. A~ 
n J J 

j = I, 2, 3, ••• m. 

·A particular solution of the nonhomogeneous equation CA-l) can be found 

easily. Consider constant vector X which is a particular solution,
s 

then 

x = A x + 5 
s s 

and (A-6) 

Therefore the ·genera I solution that contains m linear independent 

so Iuti ons is 
m ,...x = L v. z. A~ + x (A-7)

n. J J J s
j=l 

If (A-7) satisfies the initial value X then 
0 

m 
x = L c. Z. + X <A-8)

0 J J sj=l 

and C. may be determined from (A-8). No\v, if w. is the associated 
J J 

eigenrow of A, then 
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-T wk z. = 0 k f- j
J 

and (A-8) becomes 

-T 
m -T 

:::wk ex 
0 

x s 
) I: c. wk z. 

J . Jj=l 

:::; -T 
ck \~ k zk 

Therefore -T [ xw. - x J 
c. = J 0 s CA-9)

J -T z.w. 
J J 

• and the desired solution is 

-T [xm w. - x J 
0 sx = I: J 

. . z. A~ + x (A-I 0)
n -T sj:::l w. z,. J J 

J ,j 



APPENDIX 8 

THE LINEARIZATION PROCEDURE 

The recycle process can be represented by a set of functions that 

gi~es the relation between the two hqlves of the assumed streams, as 

y. = F. <X> (8-1) 
t· I 

= I, 2, 3, ._. . m 

or in vector notation, 

Y = F<X> (8-2) 

where F - set of functions 

X - the "input" part of the assurn-ed streams 

Y - the "output" part of the assumed streams 

Two methods for linearization of iterative processes are given here. 

The first one ! inearizes the process·around certain point XL by series 

of m perturbations in all the main directions of the vector space. 

The second method I inearizes by way of fitting set of linear equations 

to m+l points of vectors Xand Y, which have been obtained by m+l 

evaluations of the process. 

A. The process functions (8-2) can be linearized around any point 

XL to give linear set of equations in form of 

Y=AX+b (8~3) 

'164 
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where A is the matrix of partial der·ivatives of F as 

a .. = (8-4)
IJ ax. 

J 

where XL is the I inearization point and a .. is an element of matrix 
IJ 

A. The derivative (8-4) can only be found numerically as the set of 

functions (B-1) have no analytical derivatives. 

For calculating matrix A, m+l .evaluations of the set of functions 

are necessary. That is, the recycle process has to be calculated 

, for m+ I different "inputs" X, to eva I uate m+ I "outputs" Y. 

The varying "inputs" X are as fo I I ows: 

and 

(8-6) 

j = I, 2, 3, ... m 


where e. is the vector with unity in the jth position and zeroes 

J 


elsewhere. 8 .is a smal I perturbation. Thus Xvaries in each of the 


main directions in the m dimension space. The perturbation value 


is usually taken as· a fraction of x. L' the jth element in vector

J, 

XL. Now using (8-3) and (8-5) 

:=yL· A XL+ b (8-7) 

and from (8:--3) and (8-6) we get 

Y. = A<XL + se. > + b 
J· J 

-Y. = A XL+ 5 + SA e. 
J J 
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(B-8) 

where a. is the jth column in matrix A. And finally from (8-7) and 
J 

(8-8) 

(8-9) 

j = I, 2, 3, • • . m 

After m+l evaluations of the process, all the columns of matrix A 

are calculated (8-9), and the matrix of the linear coefficients may 

be used for further ana lysis of the proc.ess. The matrix A can be 

also used to evaluate convergence prorrotion data. 

B. By this method it is possible to obtain the matrix linear 

equation by any m+l points X. and the related points Y .• In other
J j· 

words, by ro+l evaluations of the process with some random "input" 

~-to obtain Y., it is possible to fit tha matrix I inear'equation to 
J J 

these m+l points xj and yj as 

(B-10) 

j = I, 2, 3, ... m+l 

These m+l matrix equations (B-10) can be rearra.nged in partitioned 

matrices as follows: 
I 

y 2·' .... 
I 

I 

or 

0 = 

- I 1
x2 I 1 Xn+ I 

I I 
I _..! __ _ (8-11) 

I 

(B-12) 
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"The matrix 0 has m rows and m+l columns where the co I umns 0. are 
j 

u. = Y. (8-13)
j j· 

j = I, 2, 3, ... m+-1 

I he matrix v has m+l rows and m+l columns where the columns v. 
J 

are 

x, .
,j 

x2 . 
"Jx. 

J (B-14)=v. = x3 . 
I jJ 

X . 
m, J 

j = I, 2, 3, m+l 

where x. . is the "i th" e Iement in vector X.• 
I' J J 

The matrix C has m rows and m+l columns where the columns C. 
J 

are 

= a. (8-15)
J 

j = I, 2, 3, ... m 

and 

cm+l = b 

Now, postmultiplyi~g ot (B-12} by ~-I gives 

=-Ic = 0 v (8-16} 

where 

The matrix I inear equation (8-10) with A and b which has been obtained 

by (8-16}, represents I inearization'among the m+l points of X .• 
J 
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These m+l points of x. can be chosen independently by some random 
J 

way or by the fol lowi~g two methods: 

I. Applyi~g the same technique as in case A, usi~g (8~5) and 

(8-6) to obtain ~j around certain po~nt ~L 

2. 	 Using successive substitution, where 


= y.

J 

Th,pt is, during m+ I iterations we can collect m+2 points of X. as 
J 

= FCX.> 
J 

j = I, 2, 3, ••• m+l 

and these m+2 points can be used to calculate matrix C (8-16). 

The only change is in the columns of matrix 0, which were Y.,
j· 

would 

be replaced by Xj+l" Thus, equation (B-13) have to be replaced by 

0. = 	 (8-17)
J 

j = I, 2, ••• m+l 



APPENDIX C 

ITERATIVE CALCULATION OF SYSTEMS OF EQUATIONS 


(Proof for Theorems I and 2 which are given in Section 2.2.1) 


Consider the iterative calculation 

= F<x > (C-1)
n 

n = 0, I, 2 •.• 

where X is an m-dimensional column ivector with components x
1
, x2, •• xm' 

and F(X) is an m-dimensional vector valued functions, i.e. a column vector 

with components F
1

(X), F
2 

CX), •.. Fm(X). The solution of the iteration 

is some vector, say X , which is some point in them-dimensional space.
s 

And the initial point, say X,·is some initial estimate of the solution. 
0 

Considering the iterate CC-I) with some initial point X, Isaacson and 
0 

I · (I I ) · · t t It . 1-h f th.Ke 1er g1ve an 1mpor an resu concerning ) e convergence o IS 

procedure and prove the existence of a unique solution. 

Theorem 

Let F(X) satisfy 

IIF\X) - F(Y)/1 < M //X- ?/I (C-2) 

for alI vectors X, Ysuch that 

II X - X I <J! r 
0 

II ? - xo Ill < r 

169 
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wJth the Lipschitz constant M satisfyi~g 

0 < M< (C-3) 

and let the initial iterate, X , satisfy
0 

II~<~) -~/I < (I-- M).r CC-4)
0 0 

. ·rhen 

i) all iterates (C-1 ), satisfy 

cc-5> 

ii) the iterates converge to some vector, say. 


·R-im x + x 

n sn-rco 


iii) X is the only root of (C-1) in the interval,

s 

llx- x
0 

II < r 


where the norm may be chosen as any one of the following 


m 
- L: jx.J CC-6)

Ii=l 

2 } ~ X. 
I 

Proof: We prove (i) by induction. Since x
1 

= F(X
0 

), we have by 

(C-3) and (C-4) 

II X1 - X 
0 
II < < 1-M) r < r CC-7) 
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and hence x
1 

is in the interval <c~5·). Assume the above to be true 

for the iterates • • • X • Then from cc~ I ) 
n 

and by the inductive assumption, Xn and Xn-l are in the interval (C-5). 

Thus, by (C-2), the Lipschitz condition yields 

< Mn (I - M) • r cc~s) 

Here we have used (C-1) and (C-2) recursively and then applied (C-7). 

Hov1ever, 

x
0 

>II 

< II xn+ I - xn II + II xn - xn-1 II+ . . . +II XI . - xo II 

n · n-1 n+ I . 
< ( M + M + • . . + I ) ( I -~·'I) r = ( I - M ) r 

< r 

which completes the proof of (i). 


To prove part (i i), from (C-8) we can see that the iterate converges, 


and it is possible to show that the sequence {X } is a Cauchy sequence.

n 
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Suppose the limit is~ I then usi~g ct~l) and cc~2) 
. s 

• r 

and if n -)- oo, then II x - x II ;:: 5 s i n ce M < I. 
n s 

For part (iii), the uniqueness, let X be another root in the interval 
r 

CC-5). Then, since X and X are both in this interval, (C-2) and (C-3)
s r 

II x - x Ill ~ II Fcx l -. F<x l II s r s r 

< Mil X - X II - s r 

< llx -xll . s r 

This contradiction imp! ies that X s = Xr' and the proof of the theorem 

is concluded. 

Theorem 2 

Let (C-1) have a root X and let the function F.(X) have continuous 
S , I 

first order partial derivatives, 

aF.. cX)
1

F •. (X) = - -- (C-9)
IJ ax . 

•.1 
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and satisfy 
m 

max E /F .. (~)/ < M~ (C-10) 
i j= I I J 

for a II X in 

1/5<-x/1 <r 	 CC-II)s 00

(See CC-6)) 

-"Then 

i) for any X satisfying CC-I I) all the iterates ~n of (C-1)
0 

a!so satisfy (C-1 I) 


i i) for any~ satisfying (C-1 ~) the iterates (C-1) converge

0 

to the solution X which is 	unique in CC-I f).s 

Proof: for any two points~ .. ? in CC-I I) we have by Taylor's theorem: 

. m -< i > 
F. <X> F. <Y> = I: F.. (~ ).(x. y.) (C-1.2)

I I j= I I J J J 

where ~(i) is a point on the open li.ne'segment joining XandY. 

Thus, ~( i) is in CC-II) and using (C-6) and (C-10) yields 

m . 
- -I I -<i> I I IF.(X)- F.(Y) < E f .. (t,: 	 ) • x.- y.I 

I 	 I . - j= I I J J J 

m 
< IJx- Y/.1 

00 
E• 

j=l 

< M. II X - y II .. co 

Since the i~equality holds 	for each i, we have 

/IFCX)- F<Y>/1 < M.I/X- ?1/ 	 CC-13) 
. 00- .co 

and it has been proven that FCX) is Lipschitz continuous in the domain 
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(c-~ I I), with respect to the indicated norm. Now, for any X in <C-11),
0 

< M.ll X - X II 
- 0 s 

< M . r 

-so x1 is also in (C-1 1). By induction we have then 

• r CC-14) 

and hence alI ~ 
n 

I ie in (C-1 1). The convergence Immediately follows 

from (C-14) since M < 1. The uniqueness follows as before. 



APPENDIX D 

PARTITION ITERATIVE MATRIX 

The question whether to converge alI the recycles simultaneously or to 

converge some of them as the calculation proceeds in the main recycle 

is raised frequently while performing simufati.on of complex recycle 

processes. Thus, if the process has more than one recycle, that is, 

that more than one stream ought to be assumed in order to render the 

recycle process acyclic, then the recycles may be d~vided in two groups; 

the main and the secondary recycles. For any iteration of the main 

recycle the secondary may be iterated few times or even be iterated 

unti I convergence is obtained.· 

If the general iterative calculation was I inearized to give 

x = ( 0-1) 
n 

then by anal~zing matrix A it is possible to indicate how to divide 

the iterative process. 

Suppose the secondary recycles have p variables and it is iterated 

k times for any iteration of the main group "that contains £, 

variables. 

Equation (0-1) can be written in partitioned form,· as 

175 
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( n) ( n~ I ) 
A . A . x,x, E,I 2 

= -----I (0-2)+
I 


I 

x2 b2A3 I A4 x2 

where x, 	 is the secondary recycle variables vector of p X I 

elements. 

is the main recyc I e variable vector of Q, X I e I ements. x2 


is p X p matrix
AI 


is p X Q,- matrix
A2 

is Q, X p 	 matrixA3 


is Q, X Q, matrix
A4 

E, is p X vector 


'b2 is Q, X vector 


and m = p + Q. where m is the total number of variables in the 


assumed streams. 


Equation (0-2) can be written as two matrix equations: 


X (n) =AI 	X (n-1)+ A X (n-1> + bl (0-3a)
I 	 I 2 2 

(0-3b) 

Now, introducing the k sub-iterations of the secondary group of 

variable x
1
, such that (0-3a) gives 

x< n-1 ' i ) 
I 

(D-4a) 

I, 2, 3, .•• k 
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( n:- I , o) ( n:-1 )
where x, - x, 

( n-:- I , k) Cn,o) 

-
XI XI 

Then after k iterations of the secondary' recycles equations (0-3a) 

and (0-3b) we get 

X Cn,o) (0-5a)
I 

X (n) (n- I , k- I ) X ( n-I )
X (0-5b)= A3 I + A4 2 + b22 

It can easily be shown that for any I inear iterative calculation as 

- ( k) = - ( k-1 ) -dy = B y + 

- ( k)where Y(o) is the initial value , Y can be expressed as 

y<k) = Bk y<o) + (I + 8 + 82 + +Bk-1) •d (0-6) 

Using (0-6) for the iterate in (0-4a) gives 

X ( n- I , i ) = A i X ( n- I ' o) + ( Ii-A I +A21 + --- A i - I ) [A X ( n- I ) + b J (0-7)
I · I I I 2 2 I 

Now, using equation (0-7) with i=k instead of equation (0-5a) and 

substituting (0-7) with i=k-1 to equation (0-5b) we get: 

x<n,o) = Ak X(n-l,o) + CI+AI+A2 + ___ +Ak-I)A x<n-1) + 
I I I 1 I 2 2 

Ak-1) b (0-8a)
I . I 

( D-8b) 
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·This new iterative procedure can be compressed in a partitioned matrix 

form as 

(0-9) 

where 

I (0-10) 
I

A Ak-1 I A ( I + A +A2, +
3 I 3 I I1 

and 
k-1Cl + A + --- +A ) b1I . I 

(0-1 I) = 

for k > I 

Now, by comparing the biggest eigenvalue in modulus of matrices~ and 

Bk it can be evaluated if the sub-iteration of the secondary recycle 

reduces the rate of convergence of the main recycle. We may study first 

the_extreme case were k + oo, that is, that the sub-iteration of the 

secondary recycle is conve_rged for every iteration of the main recycle. 

If k + oo and alI the eigenvalues of the partition matrix A are less
1 

than unity in modulus then 

A k 
I 

:::R-im 
k-~ 

and 

R-im(l + A1 + Af + 
k+oo 
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then matrix Bk (0~10) becomes 

6 ( 1 - A )-1 A2I 
_!_ (0-12)=Bk+co 

(I A )-1 6 I A - A2 + A4 
I 3 I 

·The eigenvalues of matrix Bk where k-+ co (0-12) are 

A.. 
_I 

= 0 

= I I 2, 3, p 

and the remaining 1 ~igenvalues are the eigenvalues of the partitioned 

matrix 

( 0-13) 


-Comparing the eigenvalues of matrix (0-13) with the eigenvalues of the 

original llBtrix A, it is possible to evaluate if there is any benefit 

from the sub-iteration of the seco~dary recycle. If the bi~gest 

eigenvalue is reduced in modulus, we may consider ,Iterating around the 

secondary iteration a few times or even to converge it. But this 

iteration wi I I be worthwhile only if the calculation time of the 

secondary recycle is smal I in comparison to that of the main iteration. 

NUMERICAL EXAMPLE 

Second Order Recycle Problem with One Component 
(See Figure 0-1) 

assumed streams: S3, 57 

Sequence of calculation: I, 2, 6, 4, 5, 3 

After elimination we get 

2 
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0.36 0.072·] • [S7J(n,-:) [264.8] 
[ 0.36 0.79i 53 912.8 

that is, that 

A == [ 0.36 0.072] b == [264 .8] 
0.36 0.792 912.8 

·and the eigenvalues of matrix Aare 

. A I = 0. 84 54 . 

. Az = 0.3066 

The rate of convergence calculated by equation (2.77) is 

R ==-log AI = -log(0.8454) == 0.07294 

or 1/R = 13.71 

51 
900 

400 
52 

FIGURE D-1 SECOND ORDER RECYCLE PROBLEM 
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CASE. 

53 is the main iteration and 57 is the secondary one. Iterate k 

times around 57 where the sequence is, 1,(2~6,4)k,5,3,·1,(2,6,4)k'5'3' 1, .. 

and if k ~ oo then 

0 (1-0.36)-l 0.072 
I8 =-------

k~oo I -1 o . B.36(1-0.36> 0:.0~2+0.792.1 

and the new eigenvalues are 

. AI == 0.0 

A == 0.83252 

A very smal I decrease of the bisgest eigenvalue, from 0.8454 to 0.8325, 

. is seen. 

CASE 2 

57 is the main iteration and 53 is the secondary, iterate k times 

around 53 where the sequence is, 1,2,6,4,(5,3, f)k 1 2,6,4,C5,3,1 )k 

and if k ~ oo.then 

.0.072(1-0.792)-l 0.36 + 0.361 0 
I 

_!_ __
§ == 
k~oo I 

( 1-0.792)-I 0. 36 I o 
I 

The new eigenvalues are 

A · ::: 0.4846 . I 

A == 0.0
2 

;: 

0.48461 0 

I 

I . 73081 0 

The big~est eigenvalue in modulus decrea~es significantly from 0.8454 

to 0.4846. 
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As case 2 gives a better result we may examine the ~igenvalues for 

this case, ·wh~~~ k is equal to 2 ~nd 3. 

CASE 2a k == 2 

0.36 + 0.072 (J.) 0.36 0.072 (0.792)
I 

=Bk==2 == - - - - - -1 - - - - 

( '" + 0 . 7 9 2) 0 . 3 6 

0.38592" 0.057024 

- - --1---
I 


0.64512 ~ 0.627264 

and the eigenvalues are 

).I = 0. 7334 

).2 = 0.27984 

and the rate of convergence is 

R~= 2 = -lo~(0.7334) = 0.13466 

or 

I - 7.426 
Rk=2 

CASE 2b k == 3 

I 2
0.36 + 0.072 < 1.792) 0.36 I 0.072 C0.792) . 

= 

0.40645 0.045163 

-- ~ -1~8 = 
k=3 

I 
o. 870935 I 0.4968 
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and the ~rgenvalues are 

>.. = 0.655
1 

)..2 = 0.2482 

and the rate of conve.rgence is 

= -log (0.655) = o. 18376Rk=3 

or 
I = 5.44 

Rk=3 

The extra time for the secondary iteration need to be included in 

order to achieve a true compa:i son. , Therefore if and are 

the calculation time of the main and secondary recycles respectively 

then the normalized rate of convergence is 

co~ 14) 

Thus, if we assume that alI the computation units in this example have 

the same calculation time then 

and 

Rk=l = o.o7294 

0.1:3466 = = 0.08977I -ti- 0.5 

0.18376 
= = 0.09188

I + 2(0.5) 
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( 

( 

C S U R R 0 U T I N t J UN C0. t ( ~.q X E R - i'~ 1\ S S P1\ L t\ :\~ C F ) 
C REVISED BY T. TOONG Ff8.20,l968 
c 
c 

c 
c * 1v~ A X I ~~ lJ '.! V.ALUF OF 1<0(0\'P, NtJi-..1 f?:ER OF FLO\·' CO'JDQ,"-~FI'lT S, IS 26 


~~ N I ~-.J , I I·~ D LJ T .STRE/\!V:S, 5
' ' ' ' c NOUT' Qt_ITPUT s T ~~ E .l\ '·.ts , 5* ' ' ' ' c 
c 
C E i'l , EQ U I P t•1 F ~,; T V E C T 0 R 
C 1. EOUIPi'-'1ENT NLJVP,FP 
C 2 • T E 'v1 P F R /, T ~ JD F 0 F 0 U T P U T S T P E A ~l S ', f) E G F , I F 0 • , 0 U T P I JT TEM P E R fl. T U R E 

. C A. I~ F S E T FQ l' t\ L T Cl T E tv1P F FU\ Tll R E 0 F 1 S T I r--.! PUT S T R E /\ ~-1 


C ~. pqESSURF nF CHJTDUT STRF!I..\~::._, D.c:-~IJ\, IF n., OtJTOt!T PPF:SSU~E 


C f\. P E 5 E T F Q! ! .f', L T 0 P P F S SUP J=" 0 F ] S T If·: P 1 .1 T ::. T P f 1\ ~.~ 


C 4. (BLANK) 

c 5. (9LANK) 

c 6. F R/-~,CT I ON OF TOTi\L I /'lPUT I f,: 1ST OUTPUT STREA!·l 

c 7. 2ND
' ' ' ' c Rt 3RD' ' ' ' ( 9. tf TH' ' ' ' c 10. STH' ' ' ' ( 

( 

C Er\ C , E 0 U I P \-~ F :"-l T C0 1-..' T R 0 L V F C T n r< ( 0 P T I ~ ~\· /~ L ) 
C 1 • E 0 U I P ;\'i E N T N U \': P. E P 

C ? • FL.A.G 

C 3 • L f r·! G T H 0 F E f\l L I S T CF 0? P D I !'.' T I ~! G ) 

c 
(' 

C SN, STRFAM Vr(TOR 
c 1. STRFL1V1 i\!tP·!b,fR 

c 2 • S T R F./1. ~-1 F L 1\ G 


·c 3. TOTAL FLOW IN LP~OLE/H? 
c 4. TE~PERATURE IN DEGREE F 
c 5. DRFSSURF IN.PSIA 
c 6. FLOW OF co~rONFNT 1 r r,! L~~lOL t=' /HP 
c 7. ? ' '' ' c 8. 3'' ' ' ' c 9. ETC. 
c 
c 
C SNC, STREA~ CONTROL VECTOR - NOT REQUI?~D 
( 

( 

( 
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SUR ROUT I ~\F JUNCO 1 

C -}i- -* -~HHHHH~ :··11\ C S I 1\~ C 0 ~:': rv~ 0 N DE C K , F 0 q ~3 A Y E R P f~ 0 C E S S • T • T • J A N • 3 1 , 1 9 6 3 • 
( () !··:~ ~.1 0 N N() ( () ,_, P ' I( S E T S ' . 1\1 J f' 1 

' ~.! () U T ' \1 [ ' S TF~ ;\'1 ( ( 5 ' 3 C) ) ' S TR fv' () ( 5 ' 3 0 ) t E1\) ( 8 0 ' 2 () ) 
c 
C T 0 C H F C v I F I N. P l JT S T R [ A1··1 S A R E N() T ~~1 0 f~ E T H td\] 5 

IFCNIN.LE.5l GOTO JO 
't!R IT E ( 6, 9 0) f,J F 
NIN= 5 

10 JJ= NOCOflP+5 
c 
c 
C \1 1\ S S P. A L /\f\~ ( F 
c < r ~·tour > 

nn 1 ..J=6,JJ 
STR~lO(NOUT,Jl=O. 

D.O 1 I = 1 , r-.1 I ~I 


1 S~RMOCNOUT,Jl= STRVQ(NOUT,Jl+STR~!(J,J) 


C (OUTPUT) 
DO? I=l,NOUT 

STR~n1J,4J= FNCNF,?> 

I F ( F:"-.1 ( i'J E , 2 l • F 0 • G • l S T R ,'! 0 ( I , 4 l =S T R ;·.n ( 1 , t~ ) 


STR~O(I,5l= FNCNF,3l 

I F C EN ( :\1 E , 3 J • EQ • 0 • ) S T R ':I 0 ( I , 5 ) = ;:, T R 1~, I ( 1 , 5 l 

STR~10( I ,3 l=O. 

DO 2 J=6,JJ 

S T R ~v~ 0 ( I , J l = S T R t•l 0 ( r..: 0 U T , J ) -:~ E r\~ C~.IF , ·I + 5 ) 


2 S T R 'J 0 C I , 1 l = S T R '.~ 0 C I , 3 l +S T f.? ~\1n C I , J ) 
c 
( 

C FOR\1,1\TS 
9 C F 0 R :; A T ( I j I I 1 X , 

1 7 3 H , N L"·l E X C E E D S 
?l!T S TREI\"'1.':)1 I I I) 

c 
P F:T! JR1\J 
Ff\!fJ 

2 5 H ~~- ~- E R ~ 0 F\ ~H~- I ~< J Uf< C 0 1 ~~ J D U L F , I 3 , 

5 , C A L C U L /\ T I 0 ~.~ C 0 ~,J T I ~.J Uf S U.S I N G T H E F I R .S T F I V E It·! s> 


http:IFCNIN.LE.5l


<tl I P F T r <: r- P l\"? 	 187 
S 1.1 q R 0 lJ T I ~~ F S F P /\. 0 2 

C T H I S rI 0 n1. JL ~~ C A. L C lJ L /'· T ~- S S P L I T 0 F F E r.· D 1\ C C C f\ D I N G T 0 F R r~ C T I 0 N 0 F I 1'J L E T 
C SOL IDS THAT Lfl"VES OlJT JHE TOP AND FR/\CT I Q;\! HY l/Jr~ I GHT- OF SOL IDS IN 
C THE BOTTO~ STREA~ 

c 
C -X-0"1 F I~!PtJT STR~;\r·-" t\~.Jf1 T'·'O Ot!TPUT STRE!-''..t.c, 

C S T P \.~o ( 1 , J ) == Tn P S T R E ~~ r,~ 


c ~ T R ~~o (? , J l == o, n r r n t.l .s r R ~ 
t~ H 

( 

1C EQ 1.J I P ~_, f ~- T V F CTr; ~ 
C 1· EOLJ I P:'vH=-~..'T ~-~~ Jl'lPER 
C 2. WT. FRACTIO~ OF FEED AS SOLIDS OUT TOP 
C 3. WT. F~ACTION OF SOLIDS IN GOTTOY STREA~ 

C 4. ( R LA r·l K) 
~ 	 5. ( PLf'-~ 1 K) 

c 
C NO AEN VECTOR 
c 
C 	 -r.- -~ -x- -x- ,.., -x- -iH~- '··1 ,t, C S I j-l C 0 t/ ~· 0 ''-~ DEC f( , F 0 R H !1. Y E R P R 0 C F S S • T • T • J At\~ • 3 1 , 1 9 6 8 • 

C 0 '" '·i () ~) r\! n ( n \" D ' ~( S E T S ' ~. 1 I r-1 ' ~1 0 ll T ' "' E , .S T R ~--" I ( 5 , 3 () ) , S T r:? ~~ 0 ( 5 ~ 3 0 ) , E r--.1 { 8 0 , 2 r. ) 
( 	 ***************~**********************~~****~**********X~********* 

DJ~FNSION WTSOL(30),AA(;Ol 
((_)i'~·- 1 r)!'·l j!:~.L t( 1 / 1·!T '·NIL ( 2?) 
.J J = ~,_, ncn ·. ~ o + ~ 
DO rs J = 6, JJ 

A!\(J) = ·'J.J 

D 0 .] 5 == 1 , ~-! I t...l 

t., .!!.. ( .J ) = f'.. t {J } + S T P ~/ I ( I , J ) 


1 S CC '\1T I N U E 

r:n ltJ 	 1 = 6,J,J 

1 ~~ 	 1.·' Ts 0 L ( I ) = /\ t\ ( I ) -~ '.:·.1 T ~ ~ 0 L ( I - r; ) 


DO 1 1 I = q , 1 8 

~~ T R ~.~ 0 ( l , I ) = .A A. ( I ) ~~ F h: ( "J F , 2 ) 


J 1 c, T F '-t. 0 ( ? , I ) = ~~ (',_ ( I ) - _c-, TP u 0 ( 1 , T ) 


'·.''.' .s 8 ::: 0 • (_I 


!1() 1.? 	 J=CJ,lP 
1? 	 1:;:-)fJ,=':fSP+STr:~~'(; ( 2, I l -~-':'T~·'OL ( I-C::.) 


'/L=r.n 

DO ')0 1=0,8 


5 ti '·' L =1'.il_ +1: 1T .c.. nL ( T ) 


DO 51 I= 19, 2 7 

:;, 1 1·1L =\·-'L +t·.IT SCL { I ) 


WLR=WS2*(1.0/EN<NE,J)-i.O) 

s p L I 0 ::: 1-'/ L f) I 1·! L 
r:o 61 r = 6 , e 

S T FU/ 0 ( 2 , I ) = /1, !\ ( I ) -:~ S P L I CJ 


60 	 c. T R r_A o < 1 , I ) = /., t\ < I l - .c TR "An < 2 , I l 

ro 7n T==JC:,?7 

S T ~~ r- '0 ( ? , I ) == t-../':. ( I ) * _c P L J 0 


7(', S T R '-1 0 ( l , I ) = fl.!\ ( I l - S T r~: r--_.. 0 ( 2 , I ) 

c 	 SET T E ~-: P • t, ~-l D PRE .S ,c: U r~ ~ _c; 

DO P.O I=4,S 
5TR~0{1,I) = STRVI (},I) 

p,r-. 	 _c, TP '-1 .~; ( / , I ) = c.. T9 '·' T { 1 , J } 
c 	 c t\ Lc '· 1L fl. TE TnT.!\ l. o~ ! r P t 1T r Lo I·.' ::; 

S T!? ~,A 0 ( 1 , ?, ) = 0 • rt 

s Tr~ '/o ( ? , 3 ) = n • 0 
DO 90 I :.: 6,JJ 



S T !-~ ~J 0 { 1 , 3 l = S T R \ ~ 0 ( 1 , ? l + S T R'V: 0 <1 , I ) 188 
9 0 S T R ~'~ 0 ( 2 , 3 ) = S T R .'" 0 ( ? , 3 ) + 5 T R M 0 ( 2 , I ) 

R F T I If::' ;\1 

F="~·'D 

<tTP.FTC D.t\T/\ 
PLOCK. D/\Tl\ 
C0:'-~'.,10f'~l I P.L~ 1 I \·.IT~-lOL { 22) 

DATA WT~OL I ls.ozn, 105.99~, 40.001, ln06.36015, 156.0?0, 
T 2~A.lRn, 177.7?0, 141.95~, ~6.0PO, 79.on0, 10n.n91, 
? 44.011, 119. 0 80, Rl.G7}, ?~~.180, ]5n.?nn,}bl.9~r, 

~ 6nr.4no, 79.9n~, 14?.04R, 44.011, lOh.024 1 
E~-JD 
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SU8ROUTINE CONV40 

c 
C 	 GEOMETRIC EXTRAPOLATION TlCHNIUUE 
C ~>JR ITT EN BY 0. ORBACH fv1CfV\AS TEr~ UN IV. DEC. 23 1968 
c 
c 
C EN' EQUIPMENT VECTOR 
C 1. EQUIPMENT NUNBER 
C 	 2. NUMBER OF ITERATIONS 8EFORE E~TRAPOLATION IS 

C APPLIEO IN THE FIRST TIME. 

C 3. RELAXATION FACTOR. 

C 4. TOLERANCE OF THE FRACTIONAL CHANGE OF THE 

C GEOMETRIC COEFFICIENT CEG). 

C 5. NUMBER OF ITERATION BEFORE EXTRAPOLATION 

C IS APPLIED • 

C 	 ****1H~-**i'--iACSI1vi COfid.JiOI,~ DE(K, FOR 8AYER Pt-<UCESS• T.T. JAN.3l,l968. 

COMMON NOCOMP,KSETS,NIN,NOUT,NE,ST~MIC5,30),STRM0{5,30),EN(80,20) 
C 0 i~~'t H 0 N S T f<f·/1 C I ( 5 , l 0 ) , S T f~ 1"1 C. 0 ( 5 , l U ) , EN C ( 8 u , 1 0 } , A EN ( 3 0 , 3 0 > 

COMMON SN(l2u,3U},AAA(3655),LOOP 
c 

DIMENSION X<l8u),F(l80),X0(18U),FOC180) 
c 
C 	 THE ASSUMED STREAMS. 

DIMENSION NS(8} 
NN==4 
DATA NS/22,3v,3l,lOU,u,u,o,G/ 

c 
LP=ENCNE,2) 

TC=EN(NE,3) 

EGT=ENCNE,4) 

LK==EN<NE,S) 


c 
NNN =NOCOrVlP*NN 

IF(LOOP.GT.1) GOTO 200 

ENCNE,6)=l.U 

DO lUU K=1,NNN 

XO(K)=O.O 

FO<Kl=O.O 

X<Kl~o.o 

F(K)=O.O 

100 CONTINUE 

200 CONTINUE 


KOUNT=EN<NE,6) 
c 

c 
50 	 CONTINUE 


DO 51 I~l,NN 


II=NS(I) 

DO 51 J=1 ,NOCQ,\1P 

K = ( I -1 ) -:tNOCOiv';P +J 

X0(K)=SN{II,J+5) 


51 CONTINUe 
GOTO 79 

c 
c 
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( 

r, ~ 	 c c: ,,, T p-: tr-: 
c: r r\ ='1 • .~, 

nn r~ 1_ T =J 'f'-1~,~ 


T!=~IC(T) 


~": n (-. 1 J =1_ • !' ; n ( n '· ' P· 


'r =-- { T - 1 ) -::- 'l " r r--.. ' ·' D + , I 

y ( 1.:' } =c. ,\, ( T I ~ -J ·+ t:) l 

F r• ( t' ) :-:- ~: ~· (\ 

I F- ( ·\ ~ . c: ( X 0 ( r'~ l l .. L. T • ( 1 ., " f _- 1 U ) C· Cl T :~; (; 1 
F-. r: ( ~~ ) :-:- ( X ( I/ J -X,-, { :..:-_ ) l I X '1 ( v. 1 

c F ··, =c) F '\ + r r- ( ~< ) -Y- F .~, ( f~ ) 

(. 1 	 I (' ~- I T 1 ·'· " ! !-=' 


c.rn:::cn':'T ( c:r~n) 


COTn 70 

r 
·-

7 1 	 C 0 r-: T I ' !! 1 ~-~ • 

Cf::::>.,·,--1 

r~ 0 7 1 r ~ 1 ~ ;-. 1 r-.~ 

IJ:-:~'C(I) 

v ::: ( I - 1 ) ;~ r-,_: r"'C ··" ' f ) -1· J 
XJ. :-: c__ IJ ( I I ~ J + ~; ) 

F('<'):::r•.,n 

I F f :\ : ' ::; ( Y. ( '< J J .. l_ T ., ( J • ,., ;:- - 1 -~ · J 1 

F { :< ) == ( / 1 - ': ( r/ ) ) I / ( : :_ } 
C, F ::-: c ~-~ ..1. r,~ ( '( ) _,_. ,-- ( t( ) 

71 	 r·0f 1T T ,., '~ 

C. F ::-: C n :·;.> T ( C F 


r G :: c r. 1 c r ,, 


( 

'· • ::-? I T r~ ( r: ~ ;:; :· : . 

~~ -:-:: r:' :· · !\ T ( I I ? - ' " ~ 6 c...t 


l F c~., 1: ) 


r 

( 

c:f~(l::: ::--,F 
f: r:, r) = F (j 

r. n 7 r:: T =- 1 , 1\: ·'-I 


!~() 7'J ,l= l. ~ r.',.'C''··~-, 


T 1 =i'.' c. ( T ) 


'/ = ( T-- l ) -':- ' I ,--... r n ., ' i'J + ' ) 


X,-; ( •.-: ) =Y (f.:) 


X ( <l =S ;.1 ( I I ! J + ::- l 

7 ~~ ' ( ':' ) = :- ( (~ ) 

7 o r· r,: ( '-1 ~~- ~ r, }=,~- r~ ( \I~- , r~. l + 1 • o 


f.'f~TlJF:~-~ 
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r 

P :" 	 rn~'T! :-1• ~~ 


c ~- c = /', :~ ~ ( ( f- c; - ~ c~ :1 l 1 :-- C: :", ) 

I F ( C :-~ C • r T • ::_ r ·· T ) C~ U T 0 9 n 


· P ~~ ! ·' ':! T T :::: ( r-.. ., ~ • • r, ) 1 ('\ ~~: P '!- '·' n t_!' : T 
5 i_ :r: r c, R · 1.-'\ r ( .1 1. (\'< ~ ? 7 H.-\ P l. y r: c: i" v f-;: ~~Fr.<;::.: D :-;._·) ~ • -~~~ r I c r: , ~3 x , 5 ;-: L c.c ~~, = , r !+ , -::_ >' ~ 

1 (, H '/ r\! ! r,' T:: ' I !~I ) 
r 

Il='dS(Il 

r~ () Q 1 _J = 1 ' : ' :• ( _,.-, .'.' D 


~~ = ( I - l ) -;; i'.i f) c•": . ~ D + J 

f' ::: X ( ~~- ) -r- F { .< ) 

f·.· bj = ~ ..\ ( ~~ ) - c ( ( ) 


(' 

r-
r>r=r:p ~~~~~ ( V) 

IF(':f.LT.(J..'-r))) CUT0 r;;: 

J F ( . ' C • C f~ e 2 • : · ) C r) T :~· P. ? 


r 

P.? 	 (!·''T T ~ !_rr 


Y"(V):::X(V) 


::~r\{1/) ::::~{~/) 

-(~ r: ( I l ~ .J + r; I :::: / ( ~-~ J + T C ~~ i . 

cc:·!T r :·· ;_;r:

f·· =~ '!- (, ) ::: 1 ., . ' 

o~:·TI p;· 





