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ABSTRACT  

Since its inception in the nineteenth century, the Internal Combustion Engine (ICE) remains the 

most prevalent technology in transportation systems to date. In order to minimize emissions, it is 

important that ICE is operated according to its optimized design conditions. As such, condition 

monitoring and Fault Detection and Diagnosis (FDD) tools can play an important role in detecting 

conditions that would affect the operability of the engine. In this research, different signal-based 

Fault Detection and Diagnosis (FDD) techniques are researched and implemented for fault 

condition monitoring of ICE. The implementation of prognostics for the engine in an automated 

form has important consequences that include cost savings, increased reliability, reduction of GHG 

emissions, better safety, and extended life for the vehicle.   

In this research, in order to carry out FDD onboard, a low-cost and flexible internet-based data-

acquisition system (DAQ) was designed and implemented. The main part of the system is an 

embedded hardware running a full desktop version of Linux. This sensory system leverages the 

positive aspects of both real-time and general-purpose architectures to ensure engine monitoring at 

high sampling rates. Unlike other commercial DAQ systems, the software of this device is open-

source, free of charge, and highly expandable to suit other FDD applications. 

In addition to data collection at high sampling rates, the FDD system includes advanced FDD 

strategies. The Fault Detection and Diagnosis strategies considered use a combination of Fourier 

Transforms (FT), Wavelet Transforms (WT), and Principal Component Analysis (PCA). 

Meanwhile, Fault Classification was carried using Neural Networks consisting of the Multi-Layer 

Perceptron (MLP). Three strategies were comparatively considered for the training of the Neural 

Network (NN), namely the Levenberg-Marquardt (LM), the Extended Kalman Filter (EKF), and 
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the Smooth Variable Structure Filter (SVSF) techniques. The proposed FDD system was able to 

achieve 100% accuracy in classifying a set of engine faults.    
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Chapter 1. Introduction 

1.1. Overview 

When first invented, the early prototypes of the Internal Combustion Engine (ICE) used gun powder 

to drive the pistons inside the engine cylinders [1]. These first attempts paved the way to solving 

two main problems: finding the right ignition fuel and having controlled combustion between 

cycles. Eventually, the first successful gas engine was created by Etienne Lenoir, in 1859, and was 

refined 20 years later by Nikolaus Otto, in 1878, allowing the commercialization of this machinery 

[1]. In his invention, Otto adopted the four-stroke cycle, otherwise known as the Otto cycle that 

entails induction, compression, firing, and exhaust. In thermodynamics, this cycle translates into 

an isentropic compression (where entropy is constant), an isothermal heat supply, an isentropic 

expansion, and an isothermal heat rejection [2]. These different engine-steps produce work and 

power by subjecting a mass of gas to changes in pressure, temperature, volume, and heat.  

In broad terms, categories of engine technologies include: spark ignition engines, diesel engines, 

and gas turbines [3]. While the first 2 types of engines are highly tailored towards the automotive 

industry, the last category is mainly used in the aerospace sector as a result of its high power-to-

weight ratio. Conversely, gas turbines produce power through a continuous process of combustion, 

whereas both diesel and gasoline engines follow the same discretized steps of intake stroke, 

compression stroke, power stroke, and exhaust stroke.  

For the case of the Otto cycle gasoline engine, see Figure 1.1, a new cycle starts when the piston 

inside the cylinder moves from the top-dead center (TDC) to the bottom-dead center (BDC) brining 

a mixture of air and fuel into the cylinder. This is followed by a compression step where the piston 

moves in the opposite direction (from BDC to TDC) which results in a hot air-fuel mixture. The 

third stroke begins when the spark plug induces the combustion inside the cylinder which generates 
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power and moves the piston down toward the BDC. Finally, the cycle ends with the exhaust stroke 

where the burned fumes are driven out from the cylinder by the upward motion of the piston.  

 

Figure 1.1 Four-Stroke Spark Ignition Engine [4] 

 

Internal combustion engine technologies can be further subcategorised according to their principle 

of operation (2, 4, 6-stroke engines), their size (2.0L, 4.6L, etc.), their fuel type (gas fuel versus 

liquid fuel), their air-fuel mixing methods (internal versus external), their arrangement of cylinders 

(in-line, V, radial type), amongst others. These subcategories provide more flexibility and tailoring 

of the engines for their application in terms of power throughput and efficiency while adding to its 

complexity. Engine advancements have been enabled in parts due to the improvement of digital 

control technologies. The Engine Control Unit (ECU) is used to ensure optimal performance at 

every cycle and provide diagnostics capability. In this never-ending quest for optimal working 

conditions of the ICE, this research presents a functioning prototype of a fault detection and 
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diagnosis sensory system that monitors automatically the activities of a 4.6L Ford Single Over 

Head Cam (SOHC), V8, 4-stroke internal combustion engine, see Figure 1.2 and Table 1.1. The 

diagnostic system is mounted on a Ford Crown Victoria 2011 model, with specifications mentioned 

in Table 1.2. It is tailored to monitor the health of the engine in real-time in order to guarantee its 

optimal working performances.  

 

 

Figure 1.2 Ford 4.6L/5.4L SOHC V8 Engine [5] 

 

ITEM SPECIFICATION 

Base Engine Size 4.60 L 

Cylinders V8 

Valves 16 

Cam Type Single Over Head Cam (SOHC) 

Torque 281 ft-lbs. at 4100 rpm 

Horsepower 239  at 4900 rpm, 250 at 5000 RPM 

Firing Order  1-3-7-2-6-5-4-8 

Engine Weight 4129 lbs. 

Table 1.1 Ford Crown Victoria Engine Specifications  
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ITEM SPECIFICATION 

Car Type  Police Interceptor Sedan 

Year Model  2011 

Total Seating 6 

Construction body-on-frame "Panther" 

Transmission 4-speed Automatic 

Engine Type Flex-fuel (FFV) (unleaded/E85) 

Drive Type Rear Wheel drive (RWD) 

Rear Axle 3:27 (129 mph) or 3:55 (119 mph) 

Dimensions 212” (length), 78.3” width, 58.3” height, 114.7” wheelbase 

0-60 MPH 7.61 sec 

Fuel Tank Capacity  19.00 gal. 

Curb Weight 4,129 lbs. 

Fuel Economy (City/Highway) 16/24 mpg 

Range In Miles (City/Highway) 304.0/456.0 mi. 

Safety 2 front headrests, 4-wheel disc brakes ABS, Electronic brake 

force distribution, Engine immobilizer, Front and rear 

ventilated disc brakes, Tire pressure monitoring 

Table 1.2 Ford Crown Victoria Specifications 

 

1.2. Research Motivation 

The latest internal combustion engines are considerably more efficient than their predecessors of 

the late ‘60s and early ‘70s when, emission control and fuel economy were just becoming of major 

concern for automotive manufacturers. Generally speaking, the amount of exhaust emissions 

produced by the car is tightly linked to the efficiency of its running engine; the lower the emissions, 

the more efficient is the engine in terms of power-to-fuel ratio.  

Exhaust emission standards are continuously more stringent by forcing car manufacturers to adopt 

advanced closed-loop control techniques. In North America, the two main standards that have 

shaped the evolution of the ICE are: the Corporate Average Fuel Economy (CAFE) standards of 

the National Highway Traffic Safety Administration (NHTSA), and the Greenhouse Gas (GHG) 
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Emission Standards of the US Environment Protection Agency (EPA). As of 2016, all passenger 

car-manufacturers have had to comply with a CO2 emission level of 225 g/mi and a CAFE fuel 

economy threshold of 37.8 mpg [6]. These limits were also applicable throughout Canada under 

the Canada-US Air Quality Agreement (AQA) that reduces the overlap in engine emission testing, 

minimizes automotive industry burden for performance monitoring, and allows for more effective 

use of resources (avoid duplication). To ensure compliance with these standards, all light-duty 

vehicles and most of heavy-duty vehicles are required to monitor selected emission system 

components, such as catalytic converters and fuel filler pipes, in order to notify the driver about 

potential inspection and maintenance checks. This vehicle’s self-diagnostics status reports are 

accessible through the On-Board Diagnostics (OBD) port.  

These standards for control and inspection technologies implicate the diagnosis and the prognostics 

models of the engine’s condition. These models can grow in complexity as vehicles become rolling 

computers with ample processing power. Since the silicon chip has become very cheap, the current 

regular car models have on average 25 to 50 CPUs onboard. This computerization of vehicles is a 

segway to Artificial Intelligence (AI) that fuses all the information in a single brain and weighs all 

the acquired knowledge to make accurate prognostic decisions. 

1.3. Research Objectives 

This work has three main objectives:  

1- Developing a Data Acquisition (DAQ) system that is powerful enough to provide high-

frequency sampling of multiple sensory channels.  

2- Establishing a valid FDD and prognostics that accurately combine feature extraction 

techniques with machine learning algorithms.  
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3- Comparing the implemented FDD strategies in terms of their detection, isolation, and 

classification capabilities.  

This research is a continuation of past projects conducted at the Centre for Mechatronics and Hybrid 

Technologies (CMHT) of McMaster University. These include work done by:  

1- Mr. Sean Hodgins (2017) [7] who developed a non-invasive wireless sensory system that 

is placed on the engine block to estimate its health. The setup used a wireless 

microcontroller unit for sampling and data transmission.  

2- Mr. Feng Yifei (2016) [8] who proposed a new FDD signal processing algorithm that 

combines all of Crank Angle Domain (CAD) transform, different time-frequency 

techniques, and neural networks to detect all single-cylinder misfiring conditions with 

100% accuracy.   

3- Dr. Mahmoud Ismail (2015) [9] who introduced the Industrial Extended Multi-Scale 

Principle Components Analysis (IEMSPCA) to rapidly and accurately detect defective car 

alternators and starters. The proposed algorithm encompasses three principle stages. The 

first stage is a background noise filtration; the second stage is a combination of discrete 

wavelet transform and principal component analysis; and the third stage is a logistic 

discriminant classifier.  

1.4. Contributions and Novelty  

The following are the main contributions of this research:  

I. The FDD data acquisition system that has a powerful microprocessor, which runs on a 

Linux operating system, and uses a microcontroller capable of sampling up to 8 analog 

channels at a high resolution of 16 bits.  
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II. The free reprogrammable firmware that allows the system to sample multiple sensory 

channels simultaneously at 40 kHz and individually at 125 kHz. 

III. The Application of Feng's signal processing algorithm on knock sensor data to produce 

100% accurate misfire fault detection and diagnosis.  

IV. The development of a fast time-based FDD method that can detect and isolate single, dual 

and even triple-cylinder misfire conditions with a 100% success rate using crankshaft and 

camshaft only. 

V. The adjustment of the extensive IEMSPCA algorithm to suit the automotive application 

and the addition of a neural network classifier for accurate fault classification.  

VI. The recommendations of future design revisions for the next hardware prototypes and 

firmware updates. 

1.5. Thesis Structure  

This thesis has 7 chapters and they are organized as follows: chapter 2 is the literature review and 

covers the mathematical tools and concepts that constitute the basis of the proposed FDD 

algorithms. Chapter 3 considers the real-time application of the FDD algorithms to the internal 

combustion engine. Chapter 4 describes the data acquisition system requirement specifications to 

set the guidelines for building the hardware prototype. Chapter 5 illustrates in details all previous 

CMHT’s FDD implementations. It concludes by describing the current FDD sensory system that 

monitors the ICE’s health. Chapter 6 summarizes the experimental set-up and compares the results 

produced by each of the FDD algorithms. Chapter 7 reports the conclusions as well as the 

recommendations for future work. Appendices A, B, and C describe how to build the system, 

program it, and run it on the engine, and they provide all the important software codes. 
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Chapter 2. Literature Review  

This chapter presents the literature review and covers the essential mathematical tools that make 

up the fault detection and diagnosis techniques considered in this work. The first section reviews 

the main characteristics of Fault Detection and Diagnosis (FDD) strategies. The second section 

covers the well-established signal processing techniques and information extraction from measured 

signals. An overview of neural networks is presented as well as three algorithms used in this 

research for their training, namely: Levenberg-Marquart (LM), Extended Kalman Filter (EKF), and 

Smooth Variable Structure Filter (SVSF).  

2.1. Fault Detection and Diagnosis  

The field of Fault Detection and Diagnosis (FDD) has been an important area of research both in 

industry and academia. FDD has found a wide range of applications in domains such as the process 

industries, microelectronics, automotive, and manufacturing, [10]. In its core, FDD aims to 

accomplish three main functions as follows, [11]. 

 

Figure 2.1 Generic FDD Algorithm Steps [9]  

 

These functions can be automated using baseline models and intelligent algorithms to achieve 

Abnormal Event Management (AEM). These abnormal events, also known as faults, failures, or 

malfunctions, can be classified into three categories [12]: 
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i. Gross parameter changes in the model: refers to non-modelled parameters such as 

environmental parameters that disturb the process through one or more exogenous 

variables. When this is the case, this type of fault requires remodeling of the operations by 

adding the unwanted dynamics. 

ii. Structural changes: refers to changes in the process itself, and usually they are closely 

linked to failures in the equipment, e.g. failure of a controller. When this is the case, this 

type of fault requires the deletion of a specific structure model as well as the update of the 

remaining equations to describe better the current situation of the process.  

iii. Malfunctioning sensors and actuators: refers to fixed failures, e.g. permanent damage, 

constant biases, and out-of-range failures. This category directly influences the 

performance of the process’ control system. 

On top of these abnormal events, FDD usually operates under tight constraints related to 

unstructured uncertainties (non-modelled a priori faults), process noise (mismatch between the 

actual process and the prediction from model equations), and measurement noise (unwanted high 

frequency components in sensor measurements) that affect the overall performance [12]. The FDD 

performance is commonly assessed according to a set of characteristics such as: detection and 

diagnosis rates, robustness, classification, adaptability, as well as storage and computational 

requirements.  

According to Venkakasubramanian [12], all diagnostic methods can be viewed as a specific set of 

transformations or mappings carried on the measured data. Looking at Figure 2.2, these sets of 

transformations map the measurements recorded (measurement space) into fault conditions (class 

space) using a three-stage process. The first mapping transforms the measured data, with no prior 

knowledge of the problem, into few selected features using techniques such as feature extraction 
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and feature selection. Reducing the data set to fewer features facilitates the decision making process 

later on. In the second stage, the decision space is usually obtained through a complex learning 

algorithm, such as neural networks or other types of classifiers. The final step involves symbolic 

logic discriminant (if-else conditions) accompanied by threshold functions. Across these three 

stages, there are two important components that constitute the foundation of every diagnostic 

method; these are the a priori process knowledge and the search technique. A priori process 

knowledge plays a crucial role in diagnostic decision making, and it highly depends on the user’s 

understanding of the process. This knowledge can be captured in the form of invariant relationships 

between transducers’ outputs and actuators’ inputs [13] or in the form of a transformed model of a 

process which is summarized by a bank of filters [14] [15]. 

 

Figure 2.2 Transformations in a Diagnosis System [12] 

 

As discussed earlier, there are two main components in designing the right FDD method: the type 

of knowledge that the user has about the system and the type of search in the diagnostic strategy. 

The latter component is usually a very strong function of the knowledge representation scheme 

which is a direct depiction of the a priori knowledge available [12]. Hence, due to the inherent 

differences in the industrial applications, there is an abundance of FDD techniques ranging from 

analytical methods to artificial intelligence and statistical approaches. From a modelling point of 

view, FDD methods can require either accurate process models, semi-quantitative models, or 

qualitative models. On the other end of the spectrum, there are other FDD methods that do not 
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assume any form of model information and rely solely on historic process data. Further 

classification of diagnostic approaches is summarized in Figure 2.3. 

 

Figure 2.3 Classification of Diagnostic Algorithms [8] [12] 

 

The model-based a priori knowledge can be broadly classified into qualitative and quantitative 

subclasses. Starting off with quantitative model-based approaches, the most important class of 

models that have been heavily investigated are input-output and state-space models [16]. Here, 

Kalman filters and observers are widely used for state estimation [17]. Coupled with least square 

methods, these tools can monitor the parameter estimates online [18]. In more recent work, more 

advanced techniques relying on parity equations for residual generation were developed [19]. On 

the other hand, qualitative model-based approaches rely heavily on the knowledge base of the 
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system. They are essentially a large set of if-then-else rules and inference engines which search 

through the knowledge base and derive conclusions from the given facts [20]. In such searches, 

what is termed as “abductive” reasoning is used to generate hypotheses for the source of faults 

resulting in an efficient bottom-up fault examination [21].  

In contrast to the aforementioned model-based approaches where a priori knowledge (either 

qualitative or quantitative) is required, process history-based methods only need historical process 

data. This data provides the system with a priori knowledge about the process through means of 

feature extraction. The extraction can be classified further into statistical (principal component 

analysis and partial least squares) [22] [23] and non-statistical methods (neural networks) [24] [25].  

Looking at the big picture, both qualitative and quantitative model-based methods have several 

desirable characteristics. In fact, when all inputs and outputs of the system, including all forms of 

interactions with the environment, are completely modelled, fault diagnosis becomes a well-defined 

problem regardless of the number of occurring faults. However, these approaches can be highly 

limited to the state of the sensors, their resolution, and the type of models that are used. In fact, 

most present models are limited to linear and some very specific non-linear systems [26]. Besides, 

any problem associated with the sensors used directly result in an ambiguity of the reasoning. And 

for that reason, these biases and drifts in the recordings have to be updated into the model in the 

form of uncertain parameters. 

 All these observations make fault detection and diagnosis applications depend heavily on the last 

type of methods: process history-based methods. This category of FDD techniques is easy to 

implement, requires very little modelling efforts and prior knowledge, performs better in terms of 

robustness to noise, and bypasses the need to develop dynamic models of very complicated 

processes, such as internal combustion engines. Nonetheless, these techniques remain limited by 

their generalization capabilities outside the scope of the training data. With that, any practical FDD 
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technique combines these complementary features to develop a hybrid method that could overcome 

the limitations of individual solution strategies [27]. The resulting FDD scheme has a knowledge 

base that combines heuristic knowledge, analytical models, input/output database, and inference 

engines.  

In this work, since the internal combustion engine is very complex, the proposed FDD solution is 

a quantitative signal based method. It is a hybrid solution that combines statistical tools, e.g. PCA, 

with a trained model of neural network. To record improved performances, the applied method has 

to address the problem of optimal sensor location to enhance its observability, detectability, and 

data reconciliation capabilities, such as automatic detection of sensor faults and biases.  

2.2. Signal Processing Techniques for FDD 

This section addresses the theory and the practical-implementations of signal processing techniques 

that are used for feature extraction. This extraction is done in either frequency domain (Fourier 

transforms) or time-frequency domain (wavelet transforms). Other techniques are statistical in 

nature and ensure feature extraction through a defined set of analytical indices, such as Principal 

Component Analysis (PCA), and Multi-Scale PCA (MSPCA).  

2.2.1. Fourier Transform  

Fourier Transform allows spectral analysis of time-domain signals. The frequency-domain 

representation, also known as spectrum of the signal, helps to detect and isolate any recurrent events 

in a signal. Nowadays, Fourier transformation is a fundamental tool used across different 

applications stretching from image compression [28] to speech recognition [29] [30].  

Fourier analysis techniques are broadly categorized as Fourier transforms and Fourier series and, 

have been derived for both continuous as well as discrete time analysis. While the Fourier series 
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apply to periodic signals only, Fourier transforms apply to any signal. The majority of application 

involve sampled data and signals and rely on the discrete time formulation of the Fourier transforms 

(DFT) and its more computationally efficient form of Fast Fourier Transform (FFT) [31] [32]. 

The ability of Fourier transforms to extract and isolate the signal component frequencies associated 

with fault conditions makes this tool very useful. Chinmaya et al. [33] proposed a method that relies 

on a multiresolution Fourier transform to carry fault diagnosis in a multistage gearbox which was 

subject to transient loads. The signal-based FDD scheme used vibration transients, which were 

recorded from an accelerometer located at the tail-end of the gearbox, and current transients from 

a motor. The vibration data demonstrated that the gearbox load removal had negligible effect on 

the frequency content of this signal. Meanwhile, measured current proved that gearbox defects 

result in transients that smear the spectral interpretation of the FFT results. In this application the 

Fourier transform served to highlight the high-frequency components resulting from faults in both 

vibration and current signals and, enabled the development of a fault-monitoring scheme for a 

gearbox with varying load conditions.  

Rai et al. [34] combined FFT results with Intrinsic Mode Functions (IMFs) which are derived from 

Hilbert-Huang Transform (HHT) to maximize the efficiency of Hilbert Transform (HT) spectrum 

analysis related to bearing faults. As these bearing faults constitute the most common cause of 

machinery breakdown, it was mandatory to develop a robust technique to detect any incipient 

defects. The developed method was able to clearly detect and isolate all bearings’ defect 

frequencies up to the fourth harmonic. Besides capturing these faults accurately, the additional 

FFT-step demonstrated the presence of an amplitude modulation between Inner Race (IR) and 

Outer Race (OR) faults which allowed to better the performance of the model-based FDD approach. 

Wu et al. [35] used FFT to establish vibro-acoustic predictions to discern the mechanism of claw 

pole alternators. The research was dedicated to reducing the noise level along with the 
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electromagnetic vibrations present by this common type of alternators. To achieve that, FFT was 

used to generate and analyse the spectrum of nodal forces felt by the stator’s inner surface. 

Furthermore, this technique allowed to compare the different spectrums produced between the 

measured and the simulated vibration and noise results. In doing so, the numerical benefits of FFT 

contributed to the creation of an accurate model of a three-phase 12-pole/36-slot claw pole 

alternator. This model showed that the electromagnetic noise and vibration are mainly caused by 

the zeroth-order force (circumferential spatial-order) whose harmonics occupy specific set of 

spatial-frequency bins. Additionally, the created model proved the strong correlation between the 

magnetic forces (not the torque ripples) and electromagnetic vibration/noise in such type of 

alternators. By that, all these findings improved the installation conditions of both stator core and 

armature windings. This resulted in a higher efficiency and a better output performance of modern 

automobiles’ power generators (alternators).  

2.2.2. Wavelet Transform 

As mentioned in the previous paragraph, the Fourier transform is an effective mathematical tool to 

highlight frequency components of a certain process. Although this transform provides the 

frequency contents of a particular fault, it lacks the capability of pinpointing the specific time when 

these frequency contents emerge. The Wavelet transform, on the other side, overcomes this 

problem by allowing the analysis of the spectrum in both time and frequency domains 

simultaneously. This enables the development of FDD algorithms that are applicable to transient, 

non-stationary, and time-varying phenomena. Initially, the driving equation of wavelet transform 

was proposed by the mathematician Alfrd Haar in 1909. The concept of wavelets was later 

introduced by the geologist Jean Morlet who coined the term ‘wavelet’ in 1984 [36]. By definition, 

a wavelet is a small wave that has an oscillating wavelike characteristic and an energy concentrated 

around a specific time. By that, wavelets are waveforms that are limited in duration and have an 
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average value of zero. Figure 2.4 draws the differences that exist between a smooth, predictable, 

and everlasting wave (sine wave) and a limited, irregular, and sometimes asymmetric wavelet.  

 

Figure 2.4 Wave (left) Versus Wavelet (right) [37] 

 

Wavelet transforms are the inner product of the signal and a specific family of the wavelet, see 

equation (2.1). For this equation, 𝜓(𝑡) constitute the mother wavelet which represent the prototype 

function of a family of wavelets. The other elements within the same family are a series of children 

wavelets 𝜓𝑎,𝑏(𝑡) that are generated by dilation and translation from the mother wavelet 𝜓(𝑡), see 

equation (2.2). 

 
𝑋𝑤(𝑎, 𝑏) =

1

|𝑎|
1
2⁄
∫ 𝑥(𝑡)𝜓 (

𝑡 − 𝑏

𝑎
)𝑑𝑡

∞

−∞

, 𝑎 𝜖ℝ + 𝑎𝑛𝑑 𝑏 𝜖ℝ  (2.1) 

Where  

 
𝜓𝑎,𝑏(𝑡) =

1

|𝑎|
1
2⁄
𝜓(

𝑡 − 𝑏

𝑎
) (2.2) 

In the above two equations the variable 𝑎 stands for the scale factor, and it directly reflects the 

frequency contents of the wavelet. Meanwhile, the variable 𝑏 symbolizes the shift factor that 
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mirrors the time component of the wavelet. Finally, the factor 
1

|𝑎|
1
2⁄
 ensures energy preservation of 

the final transform results.  

As described earlier, the prototype function 𝜓(𝑡) represent the mother wavelet and in order to be 

one, it has to satisfy the admissibility condition: 

 
𝐶𝜓 = ∫

|𝜓(𝜔)|

𝜔

∞

−∞

𝑑𝜔 <  ∞ , 𝑤ℎ𝑒𝑟𝑒 𝜓(𝜔) = 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚(𝜓(𝑡))  (2.3) 

 

In practice, 𝜓(𝜔) has sufficient decay that makes the wavelet act as a band-pass filter. When this 

is the case, the above condition (2.3)  reduces to: 

 
∫ 𝜓(𝑡)𝑑𝑡 =  Ψ(0) = 0
∞

−∞

 (2.4) 

Wavelet transform has two main categories: Continuous Wavelet Transform (CWT) and Discrete 

Wavelet Transform (DWT). CWT driving pair of equations is defined as the inner product in the 

Hilbert space of the ℒ2(ℂ) norm, and they are as follows:  

 
𝐶𝑊𝑇𝑓(𝑎, 𝑏) =  ∫ 𝜓𝑎,𝑏

∗ (𝑡)𝑓(𝑡)𝑑𝑡 = < 𝜓𝑎,𝑏(𝑡), 𝑓(𝑡) >
∞

−∞
   (CWT) (2.5) 

  
𝑓(𝑡) =  

1

𝐶𝜓
∬ 𝐶𝑊𝑇𝑓(𝑎, 𝑏)
∞

−∞
𝜓𝑎,𝑏(𝑡)

𝑑𝑎 𝑑𝑏

𝑎2
              (Inverse CWT) (2.6) 

In the above two equations (2.5) and (2.6), the basis function 𝜓𝑎,𝑏(𝑡), also known as the child of 

the mother wavelet 𝜓(𝑡), can also be seen as a filter bank of impulse response. In fact, as the scale 

factor 𝑎 increases in value, 𝜓𝑎,𝑏(𝑡) gets dilated in time to focus on long-time characteristics of the 

process’ signal 𝑓(𝑡). In other words, a very large scale factor of the child wavelet means a global 
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view of the signal, while a very small scale factor means a detailed view of the same signal. This 

scale factor constitutes the resolution of the wavelet transform and it is limited by the frequency 

content of 𝑓(𝑡). 

Similar to continuous time Fourier transforms, CWT is redundant and impractical with digital 

computers, and it often requires longer computing times. In practice, the parameters 𝑎 and 𝑏 can 

not take continuous values. They have to be evaluated on a discrete grid of time-scale plane (𝑎 =

𝑎0
𝑗
, 𝑏 = 𝑘𝑎0

𝑗
𝑏0, 𝑤ℎ𝑒𝑟𝑒 𝑗, 𝑘 𝜖 Ζ) leading to a discrete set of children wavelet functions described 

by: 

 
𝜓𝑗,𝑘(𝑡) =  𝑎0

−𝑗/2
𝜓(𝑎0

−𝑗
 𝑡 − 𝑘 𝑏0) (2.7) 

These discrete children wavelets constitute the basis for the discrete wavelet transform pair: 

 
𝐷𝑊𝑇𝑓(𝑗, 𝑘) = ∫ 𝜓𝑗,𝑘

∗ (𝑡)𝑓(𝑡)𝑑𝑡 = < 𝜓𝑗,𝑘(𝑡), 𝑓(𝑡) >
∞

−∞
  (DWT) (2.8) 

  
𝑓(𝑡) =  ∑ ∑ 𝐷𝑊𝑇𝑓(𝑗, 𝑘)𝑘𝑗 𝜓𝑗,𝑘(𝑡)                     (Inverse DWT) (2.9) 

The above equation (2.9) can be approximated for a given scaling function 𝜙 and a wavelet function 

𝜓. The reconstructed discrete signal 𝑓(𝑛) can be approximated as such:  

 
𝑓(𝑛) =

1

√𝑀
∑𝑊𝜙[𝑗0, 𝑘]𝜙𝑗0,𝑘[𝑛] + 

𝐾

1

√𝑀
∑∑𝑊𝜓[𝑗, 𝑘]𝜓𝑗,𝑘[𝑛]

𝐾

∞

𝑗=𝑗0

  (2.10) 

Where 

 
𝜙𝑗,𝑘[𝑛] =  2

𝑗 2⁄ 𝜙(2𝑗𝑛 − 𝑘) 𝑎𝑛𝑑 𝜓𝑗,𝑘[𝑛] = 2
𝑗 2⁄ 𝜓(2𝑗𝑛 − 𝑘)  (2.11) 
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For both equations (2.10) and (2.11), 𝑀 represent the number of samples of the discrete signal. 

Accordingly, both 𝜙𝑗,𝑘[𝑛] and 𝜓𝑗,𝑘[𝑛] are defined only in the interval [0, 𝑀-1]. Finally, both 

𝑗 𝑎𝑛𝑑 𝑘 are respectively the scaling and the shift parameters of the discrete wavelet transform. To 

obtain the approximate DWT coefficients, 𝑊𝜙 𝑎𝑛𝑑 𝑊𝜓, from the original signal 𝑓(𝑛), the 

following two equations are applied:  

 
𝑊𝜙[𝑗0, 𝑘] =

1

√𝑀
∑ 𝑓(𝑛)𝜙𝑗0,𝑘[𝑛]      𝑛 (DWT approximation Coefficients)  (2.12) 

  
𝑊𝜓[𝑗, 𝑘] =

1

√𝑀
∑ 𝑓(𝑛)𝜓𝑗,𝑘[𝑛]𝑛 , 𝑗 ≥ 𝑗0          (DWT detail Coefficients) (2.13) 

 

These aforementioned equations pave the way to an analogous technique to FFT known as fast 

wavelet transform [38]. Wavelet coefficient-approximation is explained by Figure 2.5 and the 

reconstruction of the original signal is summarized in Figure 2.6. For both figures, 𝐺0(𝑧) & 𝐻0(𝑧) 

are low-pass filters, 𝐺1(𝑧) & 𝐻1(𝑧) are high-pass filters, 𝐴𝑗,𝑗=1..𝐿 are the approximation 

coefficients, 𝐷𝑗,𝑗=1..𝐿 are the detail coefficients, and 𝐿 is the level of the DWT. The forward pass of 

Fast DWT produces the wavelet coefficients through a sequence of filtering and down-sampling 

steps applied on the original signal 𝑓(𝑛). Meanwhile, the Inverse Fast DWT takes the produced 

wavelet coefficients and applies a train of up-sampling and filtering steps until the original signal 

𝑓(𝑛) is recovered. 
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Figure 2.5 Schematic Diagram for Fast Wavelet Transform [38] 

 

 

Figure 2.6 Schematic Diagram for Inverse Fast Wavelet Transform [38] 

 

Wavelet functions, either discrete or continuous, can take any form as long as the admissibility 

condition, described by equation (2.3), is satisfied. All order and scaling variations of the same 

function are grouped into classes of wavelet families. Based on their common properties, e.g. 

advantages and disadvantages, these wavelet families can be clustered into 5 main groups. Table 

2.1 illustrates the aforementioned points in details. For a given task, it is challenging to select the 

most optimum mother wavelet. Added to that, different selections of the mother wavelet lead to 

completely different results. Besides, considering that many wavelet families share the same 

properties, there is no fixed standard yet that defines the selection process. However, generally 

speaking, to decide on a particular mother wavelet, properties, such as orthogonality, compact 
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support, symmetry, and vanishing moment, represent a good selection reference. As a rule of 

thumb, this selection is based on the shared energy and entropy with the original signal. While the 

energy reflects the similarity points between the wavelet and the signal, entropy mirrors the amount 

of data missing between the signal and mother wavelet. A selected mother wavelet should have a 

high energy and a low entropy. Following on this, Table 2.2 presents the shape of some of the most 

common wavelet family functions. 

Group Name  Wavelet examples Advantages Disadvantages 

Crude Wavelets Gaussian, Morlet, 

Mexican hat 

Symmetry, explicit 

expression available 

Fast algorithms + 

reconstruction are 

unavailable  

Infinitely Regular 

Wavelets 

Meyer, Discrete 

Meyer 

Symmetry, infinite 

regularity  

Fast algorithm is 

unavailable  

Orthogonal and 

compactly 

supported wavelets 

Daubechies, Symlets, 

Coiflets  

Compact Support, 

vanishing moment, 

FIR filters 

Poor regularity  

Biorthogonal and 

compactly 

supported wavelet 

pairs 

B-splines 

biorthogonal 

wavelets 

Symmetry with FIR 

filters 

Orthogonality is lost  

Complex wavelets Complex Gaussian, 

Complex Monet, 

Complex Shannon 

Symmetry, explicit 

expression available 

Fast algorithms + 

reconstruction are 

unavailable 

Table 2.1 Different Wavelet Families [9] 
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Family 

Name  

Order Wavelet Function Scaling Function  

Haar 1 

  

Daubechies 10 

  

Coiflets 5 

  

Meyr - 

  

Table 2.2 Few Examples of Wavelet Family Functions [9] 
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Wavelet transform is a very powerful tool in FDD applications. Wu and Liu [39] used an orthogonal 

type of discrete wavelet transform to extract the features from an internal combustion engine’s 

sound emission signals. Fault diagnosis was carried using three different scaling orders of 

Daubechies, ‘db4’,’db6’, and ‘db20’. These scaling orders helped differentiate between five 

synthetic faults, including air leaking of intake manifold, Electronic Control Thermal (ECT) sensor 

fault, cam-shaft sensor fault, one-cylinder miss-firing , and two-cylinder miss-firing that were 

recorded at different engine speeds of 750 rpm, 1000 rpm, 2000 rpm, and 3000 rpm. Combined 

with neural networks, the extracted features were all classified with a performance over 95%. This 

work has also shown that ‘db20’ was particularly more accurate than the lower order Daubechies, 

notably ‘db4’ and ‘db6’. To sum up, the combined solution of DWT and NN techniques was able 

to detect and classify several faults of a V-type, 6-cylinder internal combustion engine.  

Kozionov et al. [40] used wavelet transform as a viable validation method to differentiate between 

sensor faults and system dynamics. The proposed solution logged multiple temperature sensors 

scattered across a gas turbine to create a two-step multidimensional validation scheme. In the first 

step, wavelet transform was applied to detect the signal changes both at high and low frequencies. 

The produced results were then inspected using dynamic methods, e.g. universal threshold method 

and median threshold subtraction. The final multi-dimensional method flagged all sensor faults and 

identified all gas turbine dynamic stages despite the incurrent harsh conditions.  

Lin and Qu [41] used the Morlet wavelet family as an effective feature-extraction method for 

processes that have low signal-to-noise ratio (SNR). The Morlet showed to be a very effective de-

noising tool when carrying impulse component extraction of mechanisms that operate in loud 

industrial environments. To test these assumptions, the researchers applied this FDD scheme on 

rolling bearings. There, defects often produce vibrational impulses as rollers pass through a crack 

in either Outer Race (OR) or Inner Race (IR) of the bearing. And by using Morlet wavelets 
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researchers were able to pick up early symptoms of gearboxes’ tooth damage which can prevent 

related car accidents. Therefore, like with the aforementioned cases, wavelet transform is 

undeniably a required step when developing FDD schemes for internal combustion engines.  

2.2.3. Wavelet Packet Transform (WPT) 

The Discrete Wavelet Transform (DWT) highlights mainly the high-frequency components. This 

transform is different from the Wavelet Packet Transform (WPT) that divides the frequency 

spectrum equally. Considering that there is no prior knowledge of the system’s fault characteristics, 

this second approach presents a better mathematical tool for FDD applications as faults can 

manifest both in high and low frequencies with equal probabilities. Figure 2.10 shows the 

difference between DWT and WPT where WPT solves the frequency-band disagreement produced 

by the DWT. 

 

(a) Discrete Wavelet Transform (DWT) 
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(b) Wavelet Packet Transform (WPT) 

Figure 2.7 Comparison Between WPT and DWT [9] 

 

In calculating the next level approximation and detail coefficients of the WPT, the following two 

equations are used:  

 
𝑊𝑗+1,2𝑘[𝑛] = 𝑊𝑗,𝑘  ∗  𝑔𝑗[2𝑛] (2.14) 

 
𝑊𝑗+1,2𝑘+1[𝑛] = 𝑊𝑗,𝑘  ∗  ℎ𝑗[2𝑛] (2.15) 

Where 𝑊𝑗,𝑘 are the wavelet coefficients at the level 𝑗 for the frequency bin 𝑘.  𝑔𝑗 𝑎𝑛𝑑 ℎ𝑗 are 

respectively high-pass and low-pass filters coupled with a decimation of order 2. Depending on the 

parity of the index 𝑘, the computed coefficients result in a low-pass filter (𝑘 even) or higher-pass 

filter (𝑘 odd). At the last level 𝑗, the above two equation (2.14) and (2.15) distribute the frequency 

bandwidth equally for all coefficients (𝑊𝑗,𝑘). Figure 2.8 provides an example of a 3-level WPT for 

an original signal with a sampling frequency 𝐹𝑠. The WPT is applied on the Nyquist sampling 
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frequency range of 
𝐹𝑠
2⁄ . At the first level, this Nyquist frequency is divided into high-frequency 

contents (𝑊1,0) and low-frequency contents (𝑊1,1) with equal size ∆𝑓=
𝐹𝑠
2⁄

2𝑗
|
𝑗=1

=
𝐹𝑠

4
. This 

decomposition repeats until the 3rd level is reached where the WPT coefficient (𝑊3,𝑘 , 𝑘 = 1. .7) 

represent a frequency ranges that are equal to ∆𝑓=
𝐹𝑠
2⁄

2𝑗
|
𝑗=3

=
𝐹𝑠

16
 in size. This balanced division of 

the original frequency interval makes WPT the superior time-frequency analysis for nonstationary 

signals with middle and high frequency contents  

 

Figure 2.8 Frequency Content of WPT Coefficients [9] 

 

Wavelet Packet Transform is a viable tool for Fault Detection and Diagnosis. Wu et Liu [42] 

employed WPT with Shannon entropy in order to carry the feature extraction of fault conditions 

from an engine’s sound recordings. A microphone was connected to the National Instruments (NI-

6024E) data acquisition system and logged the engine activities under different operating 

conditions: healthy, air leakage of the intake manifold, camshaft sensor fault, electronic control 
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thermal (ECT) sensor fault, and misfiring faults. The engine was the Mitsubishi V type, four-stroke, 

six cylinder, and 3.0L Gasoline Direct-Injection (GDI), and it operated at three speeds: 750 rpm 

(idle), 2000 rpm, and 3500 rpm. The results produced by the WPT trained two different networks: 

the conventional Back-Propagation Network (BPN) and the Generalized Regression Neural 

Network (GRNN). The classification results were compared between the two topologies which 

produced an overall accuracy above 95%.  

Wang et al. [43] proposed the Waveform Feature Manifold (WFM) method which is based on the 

Wavelet Packet Transform (WPT) to extract weak bearing faults signals. The targeted faults are 

known for having a weak transient signals with wide spread frequency characteristics and a low 

signal-to-noise ratio as shown by the red waveform in Figure 2.9. The diagnostics capabilities of 

the WFM was compared to kurtogram-based methods which computes the kurtosis to extract the 

presence of transient impulse responses. To test the validity of the new method, two experimental 

fault conditions were considered: weak outer race defects, and weak rolling element defects. The 

bearing speed was kept fixed at 2000 rpm. The accelerometers were mounted on the housing of 

each bearing and were sampled at 20 kHz. The results of the experiment demonstrated that WFM, 

in particular WPT, outperformed the kurtogram-based methods to effectively extract the bearing 

faults signatures from weak signals. This makes the WFM technique reliable for flagging early 

stage faults before they lead to fatal breakdowns in rotating machinery.  

 

Figure 2.9 Simulated Weak Bearing Transient Impulses (red) 
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Zarei and Poshtan [44] used the Wavelet Packet Transform (WPT) on the induction motor’s stator 

current signal to detect bearing faults. Monitoring the stator current provided a non-intrusive 

approach, compared to vibration signal analysis, in order to localize common type of bearing 

defects, namely outer race, inner race, and distributed defects. Meyer was selected as the mother 

wavelet for the WPT. The diagnostics technique started by using WPT to decompose the stator 

current which was measured under different conditions. The WPT isolated the defect frequency 

range which allowed to calculate the coefficient energies on the zoomed defect frequencies. The 

obtained results were compared against the healthy measurement to produce fault indices for a 

viable diagnostics. To test the WPT-based FDD technique, a three-phase, 1.2 KW, 380V, 50 Hz, 

1400 rpm, four pole induction motor was used. 5 holes with different thicknesses were drilled both 

on the inner and outer race of the motor’s bearing. WPT demonstrated great capabilities to detect 

the lightest defects in the bearings (smallest drilled holes). Therefore, the stator current analysis 

combined with WPT represent a reliable alternative to vibration-based fault detection and diagnosis 

techniques.  

2.2.4. Principal Component Analysis (PCA) 

Principal component analysis’ origins can be traced back to 1829 with Cauchy [45] and later with 

Pearson [46] in 1901. However, its name was first coined by Hostling [47] in 1933. PCA is a 

multivariate statistical technique that uses orthogonal transformation to convert a set of values of 

potentially correlated variables into a set of values of linearly uncorrelated variables (smaller in 

size), called ‘Principal Components’ (PC). PCA reduces the multidimensional data into lower 

dimensions with negligible information loss, and it is relevant to applications such as dimension 

vectors reduction for face recognition and image compression.  

In most cases, when examining the directions with the largest variations, PCA is performed on a 

square symmetric matrix representation of the data set. The most common types of such matrices 
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are: SSCP matrix (pure sums of square and cross products), covariance matrix (scaled sums of 

square and cross products), and correlation matrix (sums of squares and cross). By transforming 

the data set, PCA can manage data without considering its fundamental class structure (no bias), 

and it remains computationally efficient even when the data set is big. Nevertheless, PCA suffers 

from accuracy issues especially when trying to evaluate either of the aforementioned square 

matrices. 

According to Abdi et al. [48], PCA has mainly 4 goals: extract the most important information from 

the data set; compress the size of the data set; simplify the description of the data set; and analyze 

the structure of the observations and variables from the data set. And to achieve these goals, PCA 

computes the principal components, which are a linear combination of the original variables, as 

follows: the first principal component is calculated to have the largest possible variance. Similarly, 

the second component is computed with the same principle but under the constraint of being 

orthogonal to the first component. Similarly, the remaining PCs can be generated according to this 

rule. In order to illustrate this point better, let x1 and x2 be the input variables and t1 and t2 the output 

variables of the PCA. As shown in Figure 2.10, both principal components (t1 and t2) are orthogonal 

to each other. On top of that, the axis along t1 has a higher variance than that of the axis lead by t2. 

This means that the information contents residing in t1 are considerable compared to those 

prescribed by t2.  
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Figure 2.10 Principal Component Analysis [49] 

 

The main driving equation for Principal Component Analysis is as follows:  

 
𝑇 = 𝑋𝑃 (2.16) 

Where 𝑋 represent the original n x m data-matrix that contains n measurements of m variables. 

Furthermore, 𝑃 and 𝑇 are respectively called the principal components loading and the principal 

component scores. While the columns of the m x m square-matrix 𝑃 represent the basis vectors 

of the new principal component space, the columns of the n x m 𝑇 matrix are the resulting 

uncorrelated signals of the cross-correlated data which was extracted from the matrix 𝑋.  

PCA is a great candidate for fault detection and diagnosis, as it is capable of exposing faulty 

recordings that usually manifest by an increase in variance from the normal healthy signals. To 

demonstrate this, according to equation  
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(2.17) [50], the data matrix 𝑋 can be decomposed into two orthogonal subspaces. The first 

subspace �̂� contains the first 𝑙 principal components that accounts for the major portion of the 

variance in the system. The second subspace is made up of the (𝑚 − 𝑙) residual principal 

components that mirror the amount of noise and error in the faulty signal. 

 

𝑋 = �̂� + �̃� 

        =  �̂��̂� + �̃��̃� 

                  = [�̂�   �̃�] [�̂�   �̃�]
𝑇
  

=  𝑇𝑃𝑇 

 

 

 

(2.17) 

In the above equation, the principal component subspace �̂� is the approximated (filtered) version 

of the original data matrix 𝑋. In order to make such approximation, there are several threshold 

techniques developed in the literature. Two of the most common ones are: Heuristic rule and 

Kaiser’s rule. While the first rule selects the main principle components so that 95% of the total 

variance is kept, the second technique selects all PCs with a higher variance than the mean 

computed variance.  

Once the above decomposition of the data matrix is accomplished, all recorded PCs get translated 

into appropriate statistical indices in order to carry FDD using PCA. Joe Qin [50] summarized 

three main indices: Hotteling’s 𝒯2, Squared Prediction Error (SPE) 𝒬, and the combination of 

the two previous indices in 𝜑. All these indices provide the baseline for comparing a new 

observation data, xnew, with respect to the previously recorded healthy data. 

The first index, Hotteling’s 𝒯2, measures the variation in the PCs’ space that exists between the 

new recording and the baseline measurements. This index picks up easily any fault that cannot 
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preserve the covariance relationship with the baseline measurements. And it is described by the 

following equation:  

 
𝒯2 = 𝑥𝑛𝑒𝑤�̂�𝑥𝑛𝑒𝑤

𝑇  ,       where �̂� = �̂�Λ̂−1�̂�𝑇 and Λ̂ =
1

𝑛−1
�̂��̂�𝑇 (2.18) 

 

 

In the above equation (2.18), xnew is a (1 x m) vector containing the new observation recording,  �̂� 

is positive semidefinite matrix, and Λ̂ reflects the principal eigenvalues of the filtered training data 

contained in �̂��̂�𝑇 product. In this respect, the definition of 𝒯2 index is very suitable for real-time 

applications where every new data is directly fed to the trained model while updating this last at 

the same time. 

 The second index, 𝒬 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 or Squared Prediction Error (SPE), records the variations in the 

residual space of the residual data represented by �̃�. It is defined as follows:  

 
𝒬 = ‖�̃�𝑛𝑒𝑤‖

2 = ‖𝑥𝑛𝑒𝑤�̃�‖
2
, 𝑤ℎ𝑒𝑟𝑒 �̃� =  �̃��̃�𝑇  (2.19) 

In the above equation (2.19), �̃� is the residual subspace where every new recording, xnew, is 

projected onto this space in order to log the variations with respect to previously monitored noise 

and errors in the process. With that, 𝒬 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 directly reflect all unstructured elements that 

the in-control PCA model cannot account for.  

To produce more reliable FDD schemes using PCA, Henry and Qin [51] proposed a new global 

index, 𝜑 − 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠, which is a uniform combination of the 2 aforementioned indices.  

 
𝜑 =  

𝒬

𝛿2
+ 
𝒯2

𝜏2
 , 𝑤ℎ𝑒𝑟𝑒 𝛿 = 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 (𝒬) 𝑎𝑛𝑑 𝜏 = 𝑢𝑝𝑝𝑒𝑟 𝑙𝑖𝑚𝑖𝑡(𝒯2)   (2.20) 
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Or  

 
𝜑 = 𝑥𝑛𝑒𝑤Φ𝑥𝑛𝑒𝑤

𝑇  , 𝑤ℎ𝑒𝑟𝑒 Φ =  
�̃�

𝛿𝛼
2 + 

�̂�

𝜏𝛼
2   (2.21) 

In the above two equations (2.20) and (2.21), the joined index 𝜑 balances both  𝒬 𝑎𝑛𝑑 𝒯2 with 

respect to each other after normalizing their contributions using their upper limits. To be able to 

estimate these upper limits, many researchers developed different models for 𝒯2. For example, 

Jackson [52] stated that 𝒯2 is tightly linked to Ƒ-distribution which allows to estimate the upper 

control limits of this index as follows:  

 
𝜏2 = 𝜏𝛼

2 = 
𝑙(𝑛 − 1)

𝑛 − 𝑙
Ƒ𝛼(𝑙, 𝑛 − 𝑙), 𝑤ℎ𝑒𝑟𝑒 ∀𝒯

2,  𝒯2 ≤ 𝜏2 (2.22) 

In equation (2.22), 𝛼 is the pre-assigned significance level of the statistical distribution, 𝑙 and 𝑛 − 𝑙 

are the degrees of freedom that define the Ƒ-distribution where 𝑙 represent the number of 

representative principal components PCs and 𝑛 the number of samples in the original data matrix 

𝑋. On the other hand, when it comes to the second statistical index 𝒬, Box et al. [53] showed that 

the upper limits of any quadratic form, in this case 𝒬 = ‖𝑥𝑛𝑒𝑤�̃�‖
2
, can be approximated by a 

weighted chi-squared distribution. With that, 𝒬’s upper limit is expressed as follows: 

 
𝛿 = 𝛿𝒬,𝛼 = 𝑔𝒳𝛼

2 (ℎ),      𝑤ℎ𝑒𝑟𝑒 𝑔 =
𝑣

2𝑚
, ℎ =  

2𝑚2

𝑣
, 𝑎𝑛𝑑 ∀𝒬, 𝒬 ≤  𝛿2 (2.23) 

 In equation (2.23), 𝑔 and h are respectively the weight and the degree of freedom for the chi-

squared distribution (𝒳𝛼
2 ). Meanwhile, 𝑣  and 𝑚  are respectively the sample variance and the 

sample mean. Any transgression of these two aforementioned limits, 𝜏2 𝑎𝑛𝑑 𝛿2,  signals the 

presence of faults in the system. Since both 𝒬 and 𝒯2 work in a complementary manner, there is a 

need to define a third threshold of their combined index 𝜑 for flagging faults in the system. Doing 
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so reduces the number of false negatives when carrying FDD prognostics. And in this respect, Yue 

and Qin [51] showed that 𝜑 −index, like 𝒬 −index, can be approximated using chi-squared 

distribution, and the established upper limit is defined as follows. 

 
𝜁2 = 𝜁𝛼

2 = 𝑔𝜑𝒳𝛼
2 (ℎ𝜑), where ∀𝜑, 𝜑 ≤  𝜁2 (2.24) 

where  

 
𝑔𝜑 = (

𝑙

𝜏𝛼
4 + 

𝜃2

𝛿𝛼
2) (

𝑙

𝜏𝛼
2 +

𝜃1

𝛿𝛼
2) ⁄  (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑤𝑒𝑖𝑔ℎ𝑡) (2.25) 

  
ℎ𝜑 = (

𝑙

𝜏𝛼
2 + 

𝜃1

𝛿𝛼
2)
2 (

𝑙

𝜏𝛼
4 +

𝜃2

𝛿𝛼
4)⁄  (𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚)   (2.26) 

 and 

 
𝜃1 = 𝑡𝑟𝑎𝑐𝑒 (Λ̃) , 𝜃1 = 𝑡𝑟𝑎𝑐𝑒 ( Λ̃

2), 𝑎𝑛𝑑 Λ̃ =
1

𝑛 − 1
�̃��̃�𝑇   (2.27) 

 

By generating all of 𝒯2, 𝒬, and 𝜑 and their respective control limits 𝜏2, 𝛿2, and 𝜁2, PCA can 

successfully carry fault detection and diagnosis. Yue and Qin [51] were able to detect and 

reconstruct the faults along a given fault direction using a modified version of the above 𝜑 statistics. 

In this new definition, both 𝒯2 𝑎𝑛𝑑 𝒬 were normalized using 2 dynamic control-limits weights. By 

doing so, the researchers were able to approximate the fault estimation task to solving a typical 

optimization problem, also known as Quadratic Constrained Quadratic Programming (QCQP) 

problem. This approach carried accurate fault identification of 5 different types of process defects 

including single-sensor and multiple-sensor malfunction. These faults were induced in a Rapid 

Thermal Annealing (RTA) process, which is a common operation in microelectronics 

manufacturing. This process thermally treats semiconductor wafers after ion implantation. The 
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proposed FDD solution led to a fault reconstruction that was unbiased from both the normal process 

and the recorded fault magnitudes.  

Evan et al. [54] compared all of PCA, Dynamic PCA (DPCA), and Canonical Variate Analysis 

(CVA)’s performances. They mainly focused on finding the best FDD technique with regards to 

robustness, sensitivity, and promptness. The researchers chose these three multivariate techniques 

because of their proven ability to detect multiple faults simultaneously. To establish the comparison 

grounds, the researchers simulated 21 various faults using the Tennesse Eastman Process 

Simulator. This study confirmed some general trends, such as the superiority of 𝒬-statistics over 

𝒯2-statistics in picking up different faults (sensitivity). Added to that, this work demonstrated that 

both CVA’s indices (𝒯2 𝑎𝑛𝑑 𝒬) recorded the smallest detection delay (promptness), while PCA 

and DPCA’s indices gave the lowest false alarm rates (robustness). At last, the researchers 

concluded that both DPCA and PCA have similar FDD performances for the particular studied test, 

even though DPCA has the advantage of augmenting each observation vector with the previous 

recorded observations (dynamic update of samples).  

Cho et al. [55] proved the superiority of Kernel PCA over normal PCA in monitoring nonlinear 

processes. To do so, the researchers defined two new statistics that reflect the contribution of both 

Hotteling’s 𝒯2, represented by ∁𝒯2 coefficient, and Squared Prediction Error 𝒬, represented by ∁𝒬 

coefficient. These new statistics were directly derived from the Kernel PCA formulation using the 

gradient kernel function. By doing so, these coefficients bypassed the need to do any approximation 

or data reconstruction procedure for fault identification that is generally required by the other type 

of nonlinear-PCA. In the end, these newly-established coefficients demonstrated satisfactory 

performances in detecting both ramp-type and bias-type faults in a simulated non-isothermal 

chemical process (CSTR).  
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2.2.5. Multi-Scale Principle Component Analysis and Mod-MSPCA 

As described in the previous section, PCA is a great tool to reduce the dimensionality of the original 

data matrix by capturing the most important underlying variations and relationships between the 

variables. This characteristic makes it suitable for application involving multiple sensors. However, 

by itself, PCA is capable of feature extraction along only one localization, either in time or 

frequency; it lacks the capabilities to determine events with energy and power spectrums changing 

in both time and frequency. Another shortcoming to this technique is its limited capacity to reduce 

the error inherent in the original data matrix which deteriorates the reliability of the produced 

results. Unlike principal component analysis, wavelet transforms ensure the reduction of error by 

filtering the original data, and they have the ability to represent deterministic features with a small 

number of relatively large coefficients. Added to that, wavelets can easily isolate events in both 

time and frequency. However, they lack the capability to carry multivariable processing that is 

required by most industrial processes in order to distinguish sensor faults from process faults. 

That’s why combining PCA and wavelets in one powerful method, known as Multiscale Principal 

Component Analysis (MSPCA) introduced by Bakshi [56], harnesses the advantages of each 

technique simultaneously. With that, MSPCA combines the extraction of deterministic features, 

done by wavelet transform, with the decorrelation and isolation of linear relationships which is 

carried by PCA. Figure 2.11 presents an overview of the technique where 𝑔 and ℎ are the low and 

high pass filters respectively.  



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

37 

 

Figure 2.11 Schematic Diagram of a Three-Scale MSPCA Technique [9] 

 

To explain the above Figure 2.11, each column in the measurement data matrix 𝑋 undergoes the 

wavelet decomposition first. For each scale in the resulting decomposition, the wavelet coefficients 

serve as inputs to the PCA’s covariance, SSCP, or correlation matrix. After that, both of PCA 

loading and scores matrices, T and P, are calculated for each wavelet coefficient. Finally, MSPCA 

builds the PCA in-control model (upper limits of 𝒯2, 𝒬, and 𝜑) by selecting both wavelet 

coefficients and number of principal components through either Kaiser or Heuristic method. To 

sum up, process monitoring using MSPCA results in determining the independent PCs and their 

limits at each wavelet scale. 

Although MSPCA provides many advantages over PCA and wavelet stand-alone techniques, it still 

lacks the ability to detect quickly and continuously the presence of shifts between operational states, 

e.g. abnormal to normal process state. In fact, Yoon and MacGregor [57] showed that MSPCA, due 

to the inherent scale decomposition, continues to flag false alarms even after the process has 

returned to its normal operations. Added to that, since the wavelet transform down-samples the 

signal, it can lead to numerical errors and statistical anomalies which explain the presence of these 

false alarms. To go around these limitations, the modified version of MSPCA, Mod-MSPCA [57], 



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

38 

adds a final step that combines up-scaling and Reconstruction Based Charts (RBC) which allows 

to diagnose the faults better. Furthermore, in this modified version, all produced wavelet coefficient 

are reconstructed using reconstruction filters before going as inputs to the PCA. Figure 2.12 

describes this concept in details.  

 

Figure 2.12 Schematic Diagram of a Three-Scale Mod-MSPCA Technique [9] 

 

One common characteristics between MSPCA and Mod-MSPCA is present in the calculation of 

the final PCA statistical indices. In fact, these last are applied on each individual scale of the 

wavelet transform. Therefore, the previously defined 𝒯2, 𝒬, and 𝜑 in (2.18) ~ (2.21) can be 

rewritten as:  

 
𝒯𝑗
2 = ∑

𝜏𝑖

𝜆𝑖,𝑗

𝐴
𝑖=1  , where j = 1,2, ..., J+1 (2.28) 

  
𝒬𝑗 = ∑ �̃�𝑖,𝑗

2𝐴
𝑖=1  , where j = 1,2, ..., J+1 (2.29) 

  
𝜑𝑗 = 

𝒬𝑗

𝛿𝑗
2 + 

𝒯𝑗
2

𝜏𝑗
2  , where j = 1,2, ..., J+1 (2.30) 
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Where J is the number of levels in the wavelet transform, 𝐴 the number of principal components, 

and  𝜆𝑖,𝑗  eigenvalues of the ith variable’s variance at the jth level. To recover the overall indices 

from the individual scales, the following three equations are employed:  

 
𝒯2 = ∑𝒯𝑗

2

𝐽

𝑗=1

 (2.31) 

  
𝒬 = ∑𝒬𝑗

𝐽

𝑗=1

 (2.32) 

  
𝜑 = 

𝒬

𝛿2
+ 

𝒯2

𝜏2
 ,    where 𝛿2  = ∑ 𝛿𝑗

2𝐽
𝑗=1  𝑎𝑛𝑑  𝜏2 = ∑ 𝜏𝑗

2𝐽
𝑗=1  (2.33) 

 

As mentioned before, unlike MSPCA, Mod-MSPCA takes these computed PCA statistics one step 

further by generating the reconstruction based charts. Dunia and Qin [58] showed that the 

combination of RBC with PCA results guarantees a higher rate of correct diagnosis. This is the 

case as faulty variables produce the highest contribution to the reconstructed results. To prove this, 

they modelled the faults using the equation 𝑥 = 𝑥∗ + 𝑓, where 𝑥∗ reflects the normal operation 

sample vector, and 𝑓 reflects the faulty vector defined as 𝑓 =  𝔣 𝜉𝑖. The m x 1 vector 𝜉𝑖 =

 [0…0 1 0…0 ]𝑇, with the ith element equal to unity, is the fault direction vector. Consequently, 

the RBC technique aims at reconstructing 𝑥∗ from every new sample vector x along all possible 

fault directions. The final minimum 𝑥∗direction, where 𝑓 contribution is maximum, is used to 

identify the faulty variable. The RBC formulas combined with PCA’s  𝒯2, 𝒬, and 𝜑 statistics are 

as follows:  
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𝑅𝐵𝐶𝑖,𝒯2 =  

(𝑥 �̂� 𝜉𝑖)
2

�̂�𝑖𝑖
 ,where �̂�𝑖𝑖 = 𝜉𝑖

𝑇�̂�𝜉𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑖
𝑡ℎ𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑒𝑡 𝑜𝑓�̂�   (2.34) 

  
 𝑅𝐵𝐶𝑖,𝒯2 =   

(𝑥 �̃� 𝜉𝑖)
2

𝑐̃𝑖𝑖
 , where �̃�𝑖𝑖 = 𝜉𝑖

𝑇�̃�𝜉𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑖
𝑡ℎ𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑒𝑡 𝑜𝑓�̃� (2.35) 

  
𝑅𝐵𝐶𝑖,𝜑 =  

(𝑥 Φ 𝜉𝑖)
2

Φ𝑖𝑖
 , where Φ𝑖𝑖 = 𝜉𝑖

𝑇Φ𝜉𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑖
𝑡ℎ𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑒𝑡 𝑜𝑓Φ (2.36) 

In the above equations (2.34) ~ (2.36), �̂�, �̃�, 𝑎𝑛𝑑 Φ are the matrices defined in equations (2.18), 

(2.19), and (2.21) respectively. These equations ensure fault isolation through reconstruction-based 

contribution analysis. And by that, Mod-MSPCA is a powerful tool to detect, identify, and analyze 

different types of faults.  

Yoon and MacGregor [57] highlighted the validity of Mod-MSPCA as a reliable FDD technique 

using a Monte Carlo simulation with a Continuous Stirred Tank Reactor (CSTR) system. A total 

of 500 sets of training and testing data were generated to cover different types of faults regarding 

the inlet temperature measurements. Mod-MSPCA performance was compared with PCA in order 

to detect and isolate sensor spikes, sensor drifts, sensor biases, and other complex phenomena like 

scaling effects. In the end, Mod-MSPCA was more effective than regular PCA methods, and it was 

specifically insightful for faults that are localized in frequency or appear in wavelet scales with 

small variances.  

Lachouri [59] relied on MSPCA stand alone technique to monitor bearing faults. To put this method 

to the test, he used known recordings of both healthy and faulty bearing’s vibrational signals. The 

results of this work demonstrated that most faults violated the 95% upper limit threshold for SPE 

statistics (𝒬) which was used to signal their presence. Besides, Lachouri showed that SPE alone 

(without 𝒯2 statistics) can detect most of machinery faults that are related to bearings.  
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Wenying [60] combined MSPCA with a powerful classification technique using Support Vector 

Machines (SVM) to diagnose the health of induction motors. In this method, both  𝒯2 𝑎𝑛𝑑 𝒬 results 

were fed directly as inputs to the SVM. To test the validity of the method, vibration data was 

collected from 4 accelerometers mounted on the motor in all 4 directions. The combination of 

MSPCA and SVM was very accurate in detecting and isolating 4 induced faults: abnormal stators, 

non-uniform air-gap, unbalanced rotor, and faulty rolling bearings. 

2.2.6. Summary 

This sections covered the fundamental mathematical tools that contribute to FDD diagnosis. All of 

Fourier Transform (FT), Wavelet Transform (WT), and Principal Component Analysis (PCA) 

theory and practical FDD applications were described in details. As these stand-alone techniques 

were limited, both MSPCA and Mod-MSPCA were introduced. By combining WT and PCA, the 

resulting techniques are reported to provide an increase in their feature extraction performances.  

 

2.3. Neural Networks and Training Algorithms  

This section starts by covering the basic concepts behind machine learning, notably the Multi-Layer 

Perceptron (MLP) architecture. It defines the steps that make up back propagation algorithm. This 

section concludes on three different training algorithms used in this research: Levenberg-Marquart 

(LM), Extended Kalman Filter (EKF), and Smooth Variable Structure Filter (SVSF). 

2.3.1. Multi-layer Perceptron Neural Network  

Like the human brain, neurons constitute the fundamental building bocks for Neural Networks 

(NN). In fact, clustering these neurons in one layer and connecting them to neurons of another layer 

makes up a Multi-Layer Perceptron (MLP) neural network. Figure 2.13 represent a common 
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nonlinear model of the neuron that contains m different inputs with their respective synaptic 

weights, a bias, and an activation function.  

 

Figure 2.13 Nonlinear Model of a Neuron [61] 

In the above model, both the inputs and the bias of the neuron get multiplied with their respective 

weights to be added together in the summing junction resulting in the signal 𝑣𝑘 = ∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=0 . This 

signal acts as input for the activation function 𝜑(𝑣𝑘) which produces the output of the neuron 𝑦𝑘 =

𝜑(𝑣𝑘). There are mainly two common activation functions generally used: sigmoid and tangent 

hyperbolic functions. Figure 2.14 demonstrates the differences between the two. 

 

Figure 2.14 Two Common Neural Networks Activation Functions [62] 
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The above activation functions represent the nonlinear component in the neuron making it suitable 

for nonlinear applications. With that, depending on the activation function used, the output of the 

neuron 𝑦𝑘 can be expressed as:  

 
𝑦𝑘 = 

1

1+exp(−𝛼∑ 𝑤𝑘𝑗𝑥𝑗
𝑚
𝑗=0 )

 , when 𝜑(𝑣𝑘) =
1

1+exp(−𝛼𝑣𝑘)
  

Or 
𝑦𝑘 = tanh(∑ 𝑤𝑘𝑗𝑥𝑗

𝑚
𝑗=0 ), when 𝜑(𝑣𝑘) = tanh (𝑣𝑘) (2.37) 

Given the neuron model, more complex structure can be built such as the MLP shown in Figure 

2.15. The graph shows a fully connected NN with two hidden layers and one output layer that 

contain three nodes (neurons). The signal inside the MLP is indicated by the arrows’ direction 

(from left to right).  

 

Figure 2.15 A Multilayer Perceptron With Two Hidden Layers [61] 

 

To fully train such a structure for a particular application at hand, two types of signals have to be 

considered. The first type represent function signals that carry the forward propagation, from 
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neuron to neuron and from layer to layer, to transform all the input signals into a set of output 

values that reflect the network’s estimate for that particular set of inputs. This estimate is then 

compared with the expected value of the output to generate an error signal which propagates 

backwards (layer by layer) from the output layer to the input layer. Figure 2.16 illustrates these 

function signals.  

 

Figure 2.16 The Direction of Function and Error Signals in an MLP [61] 

 

The propagation of both the function and the error signals represent the fundamental principle of 

supervised learning where each weight inside the network is readjusted based on the error signal 

from a training set produced at the output layer. This supervised learning presents two main types 

of learning methods: batch learning where the adjustments of synaptic weights is performed after 

all N training samples are fed to the network, and online learning where the weight adjustment is 

continuously done from one sample to another. What makes online learning the better candidate 

for the purpose of FDD is its inherent stochastic nature that prevent the network weights to be 

trapped in a local-minimum. Another added features is the lower requirement in both storage and 

computational capabilities that are usually limited in nature for most data acquisition (DAQ) 

systems.  



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

45 

To fully train a network using the online learning method, there are 5 main steps that have to be 

performed in sequence. These steps constitute the back-propagation learning from the training 

sample {𝑥(𝑛), 𝑑(𝑛)}𝑛=1
𝑁  where 𝑥(𝑛), 𝑑(𝑛), and 𝑁 are the input, the expected output , and the 

number of training samples respectively. These steps are summarized as follow: 

 

Figure 2.17 Signal Flow of Back-propagation Learning [61] 

 

I. Initialization Step: initialize all the weights in the network using a uniform distribution 

with a zero-mean and a variance. This ensures that every neuron’s local field 𝑣𝑘  is lying in 

the transitional part of either of sigmoid or tangent hyperbolic activation functions.  

II. Training Samples Preparation Step: order the training set either randomly or according to 

a certain rule. This step presents the network with the predetermined sequence of samples 

that is used for training purposes.  
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III. Forward Computation Step: feed the MLP’s first layer (Input layer) with the input 𝑥(𝑛) 

extracted from the training set {𝑥(𝑛), 𝑑(𝑛)}𝑛=1
𝑁 . After that, using the equation (2.38), 

compute the local field  𝑣𝑗
(𝑙)(𝑛) produced by every neuron 𝑗 in the layer 𝑙 at the time step 

n. Once the local field in obtained, compute the output of every neuron using the 

appropriate activation function, see equation (2.39). This step is repeated for all layers 

present in the network where 𝑙 ∈ [1, 𝐿]. The final layer produces results in the output of 

the MLP 𝑜𝑗(𝑛) for a particular input signal 𝑥(𝑛). This computed output is then compared 

with the desired response vector 𝑑𝑗(𝑛) to produce an error signal described by equation 

(2.40). 

 
𝑣𝑗
(𝑙)(𝑛) =  ∑𝑤𝑗𝑖

(𝑙)(𝑛)𝑦𝑖
(𝑙−1)(𝑛)

𝑖

 (2.38) 

Where 
  

 
𝑦𝑗
(𝑙)
= 𝜑𝑗 (𝑣𝑗(𝑛)) , 𝑦𝑗

(0)
= 𝑥𝑗(𝑛), 𝑎𝑛𝑑 𝑦𝑗

(𝐿)
= 𝑜𝑗(𝑛),   (2.39) 

And : 
  

  

 
𝑒𝑗(𝑛) =  𝑑𝑗(𝑛) − 𝑜𝑗(𝑛) (2.40) 

 

IV. Backward Computation Step: determine the local gradients and update the weights 

accordingly. Each local gradient, 𝛿𝑗
(𝑙)(𝑛), is computed using equation (2.41); at every layer 

𝑙 and for every neuron 𝑗 the backward-propagating error signal is multiplied with the 
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derivation of the activation function of the local field 𝜑𝑗
′ (𝑣𝑗

(𝐿)(𝑛)). Once the local 

gradients are obtained, the synaptic weights at each layer of the MLP are updated in order 

to adjust for the intensity of the error signal, see equation (2.42). This adjustment is tweaked 

further using two additional terms of momentum constant 𝛼 in the term: 𝛼 [Δ𝑤𝑗𝑖
(𝑙)(𝑛 − 1)], 

and learning rate 𝜂 in: 𝜂 𝛿𝑗
(𝑙)
(𝑛)𝑦𝑖

(𝑙−1)
(𝑛). 

 
𝛿𝑗
(𝑙)
(𝑛) =

{
 

 𝑒𝑗
(𝐿)(𝑛)𝜑𝑗

′ (𝑣𝑗
(𝐿)(𝑛)) ,                              𝑗 = 𝐿 (𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟)

𝜑𝑗
′ (𝑣𝑗

(𝑙)(𝑛))∑𝛿𝑘
(𝑙+1)

𝑘

(𝑛)𝑤𝑘𝑗
(𝑙+1)(𝑛), 𝑗 = 𝑙 (ℎ𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟)

 (2.41) 

 
𝑤𝑗𝑖
(𝑙)(𝑛 + 1) =  𝑤𝑗𝑖

(𝑙)(𝑛) +  𝛼 [Δ𝑤𝑗𝑖
(𝑙)(𝑛 − 1)] + 𝜂 𝛿𝑗

(𝑙)(𝑛)𝑦𝑖
(𝑙−1)(𝑛) (2.42) 

V. Iteration Step: iterate both forward and backward computation steps until one of the 

stopping conditions is met, e.g. minimum local gradient or minimum RMS error. 

Through the above example of weight adjustment, neural networks are able to learn and store 

information about different processes via their associative memory. This diagnostic ability allows 

such tools to classify non-linearly separable data. Thus, it is suitable for FDD applications. Samanta 

[63] compared the performance of both support vector machines with MLP architectures in 

detecting different gear faults. To do so, the generated gearbox vibration signals were used. From 

these recordings, different features were extracted using Genetic Algorithm (GA). These features 

included, mean, variance, root mean square (rms), and kurtosis and were applied to distinguish 

between healthy and defective gears. Furthermore, Samanta used a three layer MLP network to 

investigate its general classification capabilities under different sensor locations, signal pre-

processing features, and sampling rates. This work demonstrated that the classification accuracy of 

both MLP and SVM were spot-on 100% and comparable with each other especially when an 
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additional step of pre-processing is applied. Nevertheless, without genetic algorithm feature 

extraction for both classifiers obtained an accuracy above 97%.  

Jack and Nandi [64] carried a similar research by comparing SVM and MLP’s ability to detect 

defective roller bearings. Four different faults were introduced to the machine while it was running 

at constant speed: inner race fault, outer race fault, rolling element fault, and cage fault. A total of 

156 different features (90 statistical and 56 spectral) were extracted from a biaxial accelerometer 

mounted on the machine. The results from the training demonstrated that having a high number of 

features correlates with having a network with poorer generalization performance. This is mainly 

due to the overlap that exists between certain features that confuses both MLP and SVM classifiers. 

To curve this problem, the researchers filtered the number of features using genetic algorithm and 

were able to increase the accuracy of both classifiers up to 99%.  

Kajiro et al. [65] implemented a two-stage multilayer neural network, see Figure 2.18, to detect 

typical faults in chemical processes, such as fouling of the heat exchanger surface, physical 

deterioration of the catalyst, partial plugging of the pipeline, and decrease in the heater 

performance. In this two stage network, the first stage is used to classify between different types of 

faults, while the second stage is used to estimate the level of deterioration (from 1 to 5) of the 

classified faults. To train the network, the researcher relied on the aforementioned 5-step method 

to carry back propagation algorithm (learning rate constant 𝜂 = 0.1, and momentum constant 

𝛼 =0.9, in equation (2.42)). All of the outlet concentration, the heater outlet’s temperature, and the 

controller’s output signal were used as inputs to train both the first and the second stage 3-layer 

MLP architectures. By doing so, the researchers were able to reduce the amount of calculation 

needed when compared to one big multilayer neural network. As a matter of fact, if the number of 

deterioration levels or the number of faults were to change, the two stage approach does not require 

training the whole network from the beginning; the acquired old knowledge about the system would 



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

49 

be still viable for classification. By that, this research demonstrated that multistage detection 

process using NNs is a robust and accurate classification technique to do fault diagnostics in noisy 

environments, such as chemical reactors. 

 

Figure 2.18 Two-stage Artificial Neural Network for Fault Diagnosis of Chemical 
Processes [65] 

 

2.3.2. Neural Networks Training Algorithms  

To be able to use neural networks as a viable classifier tool, the weights have to be trained to meet 

the requirements of the application at hand. This section covers three different training algorithms 

of the MLP networks, and they are: Levenberg-Marquart (LM), Extended Kalman Filter (EKF), 

and Smooth Variable Structure Filter (SVSF). Within each subsection, the main driving equations 

and the training steps are outlined in details.  
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Levenberg-Marquart (LM)  

The back-propagation algorithm (gradient descent) remains one of the most important training 

methods for multi-layer perceptron architectures in neural networks. It employs the steepest descent 

approach where the step size for updating the weights, see equation (2.42), is always constant 

regardless of the gradient (reflect by Δ𝑤𝑗𝑖
(𝑙)(𝑛 − 1)). This makes the algorithm inefficient and slow 

to converge. In fact, to obtain a stable convergence towards the minima, the steepest descent 

employs small increments to update the elements of the weight vector. This allows to reduce any 

unwanted oscillations around the minima that usually occur due to the presence of steep (large) 

gradients. And these small updates directly translate in a slow convergence rate of the algorithm 

which constitute its main limitation. To make this method faster, Levenberg and Marquardt [66] 

[67] proposed a solution that blends the gradient descent with a faster algorithm: Gauss-Newton 

method. This method employs the second order derivative of the sum square error (SSE) function, 

𝐸(𝑥, 𝑤), to detect the proper step size of every error direction and to converge faster. With that, 

this combined implementation inherits the stability of gradient descent along with the speed of 

Gauss-Newton and can even guarantee convergence at the first iteration when the error function 

𝐸(𝑥, 𝑤) has a quadratic surface [68].  

To derive the Levenberg-Marquardt algorithm, the global error function used to update the weights 

needs to be defined. As mentioned earlier, Sum Square Error (SSE) function is a common type of 

function used in the training process and it is evaluated as follow:  

 
𝐸(𝑥,𝑤) =  

1

2
∑ ∑ 𝑒𝑚(𝑛)

2

𝑀

𝑚=1

𝑁

𝑛=1

 (2.43) 

Where 𝑥, 𝑤,𝑁, 𝑎𝑛𝑑 𝑀 are respectively the input vector, the weight vector, the number of examples 

in the training set, and the number of output nodes . 𝑒𝑚(𝑛) is defined in equation (2.40), and it 

represent the training error at output 𝑚 when the training sample with index 𝑛 from the set 
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{𝑥(𝑛), 𝑑(𝑛)}𝑛=1
𝑁  is provided. From this error function, the gradient 𝑔, which uses the first-order 

derivative of the total error function with respect to the weight vector, is defined as such:  

 
𝑔 =

𝜕𝐸(𝑥,𝑤)

𝜕𝑤
= [

𝜕𝐸

𝜕𝑤1
  
𝜕𝐸

𝜕𝑤2
  … 

𝜕𝐸

𝜕𝑤𝑃
]
𝑇

 (2.44) 

In the above equation 𝑃  represent the total number of weights in the Neural Network. With this 

new definition of the gradient 𝑔, the gradient descent update equation (2.42) can be simplified as 

such: 

 
𝑤(𝑛 + 1) ≈ 𝑤(𝑛) −  𝛼𝑔(𝑛)            (𝛼 learning constant)  (2.45) 

Following on this, Newton’s method [68] has shown that the gradient 𝑔 in (2.44) and the weight 

difference Δ𝑤 in (2.42) are related after expanding the Taylor series approximation of the equation 

(2.44), deriving the results with respect to the weight vector (𝜕𝑤), and solving it to obtain the 

minima of the total error function 𝐸(𝑥,𝑤). This relationship is defined by the following equation 

(2.46) where the matrix H is called the Hessian matrix and it is defined in equation (2.47):  

 
−𝑔 = 𝐻Δ𝑤 ↔   Δ𝑤 =  −𝐻−1𝑔 (2.46) 

Where 

𝐻 =  

[
 
 
 
 
 
 
 
𝜕2𝐸

𝜕𝑤1
2

𝜕2𝐸

𝜕𝑤1𝜕𝑤2
𝜕2𝐸

𝜕𝑤2𝜕𝑤𝑃

𝜕2𝐸

𝜕𝑤2
2

… …

     

…
𝜕2𝐸

𝜕𝑤1𝜕𝑤𝑃

…
𝜕2𝐸

𝜕𝑤2𝜕𝑤𝑃… …

𝜕2𝐸

𝜕𝑤𝑃𝜕𝑤1

𝜕2𝐸

𝜕𝑤𝑃𝜕𝑤2
         …

𝜕2𝐸

𝜕𝑤𝑃
2 ]
 
 
 
 
 
 
 

 (2.47) 
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Levenberg-Marquardt Algorithm updates the neural network’s weights using the inverse of the 

above Hessian matrix. However, deriving both the Hessian and its inverse is very computationally 

expensive due to the presence of partial second derivatives. To curve this problem, many 

approximation to the Hessian matrix have been provided, such as the Gaussian method. However, 

unlike the other methods, Levenberg-Marquardt approach [68] ensures that both the Hessian and 

its inverse are always definite and easy to compute. And by that, the Hessian matrix can be 

approximated using the outer product of a new matrix: The Jacobian matrix 𝐽, see equation (2.48) 

and (2.49). Therefore, the LM technique, which is well designed for nonlinear least-square 

estimation problems, approximates computing the second-order derivatives of the total error 

function in the Hessian matrix by relying solely on the first-order derivatives of the individual error 

signal defined by the Jacobian matrix. 

 
𝐻 ≈ 𝐽𝑇𝐽 +  𝜇𝐼, 𝐼: 𝐼𝑑𝑒𝑛𝑡𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 (2.48) 

Where: 
𝐽 =  

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑒1(1)

𝜕𝑤1

𝜕𝑒1(1)

𝜕𝑤2
…

𝜕𝑒2(1)

𝜕𝑤1

𝜕𝑒2(1)

𝜕𝑤2
…

… … …

    

𝜕𝑒1(1)

𝜕𝑤𝑃
𝜕𝑒2(1)

𝜕𝑤𝑃…
𝜕𝑒𝑀(1)

𝜕𝑤1

𝜕𝑒𝑀(1)

𝜕𝑤2
…

… … …
𝜕𝑒1(𝑁)

𝜕𝑤1

𝜕𝑒1(𝑁)

𝜕𝑤2
…

    

𝜕𝑒𝑀(1)

𝜕𝑤𝑃…
𝜕𝑒1(𝑁)

𝜕𝑤𝑃
𝜕𝑒2(𝑁)

𝜕𝑤1

𝜕𝑒2(𝑁)

𝜕𝑤2
…

… … …
𝜕𝑒𝑀(𝑁)

𝜕𝑤1

𝜕𝑒𝑀(𝑁)

𝜕𝑤2
…

     

𝜕𝑒2(𝑁)

𝜕𝑤𝑃…
𝜕𝑒𝑀(𝑁)

𝜕𝑤𝑃 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (2.49) 

 

 In the above equation (2.48), the additional term 𝜇𝐼 in the Hessian matrix approximation 

guarantees that the matrix is always positive definite. This is a necessary mathematical condition 
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when computing the inverse 𝐻(𝑛)−1 in the update equation (2.50) for the MLP weights using 

Levenberg-Marquardt algorithm:  

 
𝑤(𝑛 + 1) = 𝑤 (𝑛) − 𝐻(𝑛)−1𝐽(𝑛)𝑒(𝑛) (2.50) 

To sum up, the procedure in training an MLP using LM algorithm is similar to the back propagation 

aforementioned 5 steps. Except for step 4, the Backward Computation Step, which encompasses 

and additional Jacobian and inverse-Hessian matrix computation, all the other steps are identical 

with back propagation algorithm. The Levenberg-Marquardt algorithm constitute a fast and stable 

combination between steepest descent and Gauss-Newton algorithms. 

Extended Kalman Filter (EKF) 

The introduction of the Kalman filter in 1960 provided an efficient computational recursive solution 

of the least-squares method. However, Kalman Filter (KF) is only relevant to linear state and 

parameter estimation problems subject to white noise assumptions. For nonlinear problems, the 

Extended Kalman Filter (EKF) has been proposed. EKF tackles state estimation for nonlinear 

processes by linearizing the system model using a prediction of the current mean and covariance 

matrices. 

EKF assumes that systems are modeled using the state-space representation as follows:  

 
𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘) + 𝑤𝑘 (2.51) 

  
𝑧𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 (2.52) 

Where 𝑤𝑘  (process noise) and 𝑣𝑘 (measurement noise) are multivariate Gaussian noises with zero 

mean and covariance matrices 𝑄𝑘  𝑎𝑛𝑑 𝑅𝑘 respectively. 𝑢𝑘 represents the input control vector of 

the system. Both 𝑓 and ℎ are nonlinear functions that are used in getting both the predicted state 
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and the predicted measurement respectively. These functions are approximated with their partial 

derivatives by computing the Jacobian matrices, 𝐹𝑘& 𝐻𝑘, defined as such:  

 
𝐹𝑘 = 

𝜕𝑓

𝜕𝑥
|
�̂�𝑘−1|𝑘−1,𝑢𝑘 

 (2.53) 

  
𝐻𝑘 = 

𝜕ℎ

𝜕𝑥
|
�̂�𝑘|𝑘−1 

 (2.54) 

The Discrete EKF governing equations can be clustered in to prediction and update equations. 

Prediction equations are as follows, see table of nomenclature:  

 
𝑥𝑘|𝑘−1 = 𝑓(𝑥𝑘−1|𝑘−1, 𝑢𝑘)         (2.55) 

 
𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘

𝑇 + 𝑄𝑘        (2.56) 

Following the prediction step are the update equations, and they should be computed in the 

following sequence:  

 
�̃�𝑘 = 𝑧𝑘 −  ℎ(𝑥𝑘|𝑘−1)                (2.57) 

  
𝑆𝑘 = 𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘

𝑇 + 𝑅𝑘          (2.58) 

 
𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻𝑘

𝑇𝑆𝑘
−1                (2.59) 

 
𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘�̃�𝑘              (2.60) 

 
𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1         (2.61) 
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The EKF can be used to estimate the weights of the neural network which represent a nonlinear 

dynamic system. To carry this training, it is necessary to rearrange all inputs, outputs, and network 

weights in the state space format. For the following training sample set {𝑥(𝑛), 𝑑(𝑛)}𝑛=1
𝑁  where 

𝑥(𝑛) and 𝑑(𝑛) are the input and output to the MLP network respectively, the MLP neural network 

can be represented by the following two equation: 

 
𝑤𝑛+1 = 𝑤𝑛 + 𝜔𝑛   (2.62) 

  
𝑑(𝑛) =  𝑔(𝑤𝑛, 𝑥(𝑛)) + 𝑣𝑛 (2.63) 

Where 𝑤𝑛 denotes the parameters of the MLP, e.g. weights and biases between the nodes, 𝑔 

represent the measurement function which is defined by equation (2.37), and both 𝑣𝑛 and 𝜔𝑛 denote 

white Gaussian noises with zero mean and with covariance matrices 𝑅𝑛  𝑎𝑛𝑑 𝑄𝑛 respectively. 

The EKF-based training is summarized by the following 8 steps:  

I. Initialize all the weight estimates �̂�𝑛|𝑛 of the MLP with random values ∈ [−1,1]. 

II. Compute the predicted state’s Jacobian matrix approximation 𝐹𝑛+1 using: 

 
𝐹𝑛+1 = 

𝜕𝑓

𝜕𝑤
|
�̂�𝑛|𝑛 ,𝑢𝑛+1

 (2.64) 

 

III. Compute the predicted a posteriori weight (�̂�𝑛+1|𝑛) and covariance matrix (𝑃𝑛+1|𝑛) 

estimates: 

 
�̂�𝑛+1|𝑛 = �̂�𝑛|𝑛 (2.65) 
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𝑃𝑛+1|𝑛 = 𝐹𝑛+1𝑃𝑛|𝑛𝐹𝑛+1

𝑇 + 𝑄𝑛+1 (2.66) 

 

IV. Compute the measurement function’s Jacobian matrix  𝐻𝑛+1 using the obtained a posteriori 

weight (�̂�𝑛+1|𝑛): 

  𝐻𝑛+1 = 
𝜕ℎ

𝜕𝑤
|
�̂�𝑛+1|𝑛 

 (2.67) 

 

V. Obtain the measurement residual error (�̃�𝑛+1|𝑛) and the residual covariance matrix (𝑆𝑛+1) 

using:  

 
�̃�𝑛+1|𝑛 = 𝑑(𝑛 + 1) − 𝑔 (�̂�𝑛+1|𝑛, 𝑥(𝑛 + 1)) (2.68) 

 
𝑆𝑛+1 = 𝐻𝑛+1𝑃𝑛+1|𝑛𝐻𝑛

𝑇 + 𝑅𝑛 (2.69) 

 

VI. Obtain the EKF gain using: 

 
𝐾𝑛+1 = 𝑃𝑛+1|𝑛𝐻𝑛+1

𝑇 𝑆𝑛+1
−1   (2.70) 

 

VII. Update both the state estimate and the covariance estimate using:  

 
�̂�𝑛+1|𝑛+1 = �̂�𝑛+1|𝑛 + 𝐾𝑛+1�̃�𝑛+1|𝑛         (2.71) 
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𝑃𝑛+1|𝑛+1 = (𝐼 − 𝐾𝑛+1𝐻𝑛+1)𝑃𝑛+1|𝑛 (2.72) 

 

VIII. Compute the mean square error (MSE) using equation (2.73) . Repeat the sequence of step 

starting from step (II) until the MSE error is below a certain training threshold.  

 
�̃�𝑛+1|𝑛+1 = 𝑑(𝑛 + 1) −  𝑔 (�̂�𝑛+1|𝑛+1, 𝑥(𝑛)) (2.73) 

By considering the weights as dynamic, EKF can be used to estimate the weights of a neural 

network. This being said, linearization in both 𝐹𝑛& 𝐻𝑛 Jacobian matrices introduces inherent errors 

in the computed weight estimates. This limits the performance of the EKF. That is why, a more 

robust estimator may be considered such as the Smooth Variable Structure Filter (SVSF).  

 

Smooth Variable Structure Filter (SVSF) 

The EKF’s robustness and stability can be improved by combining it with the Smooth Variable 

Structure Filter (SVSF). This nonlinear filter was proposed by Habibi [69], in 2007, and it requires 

the system to be differentiable and hence the word “smooth”. SVSF is based on Sliding Mode 

Control (SMC). Similarly, it defines a hyperplane of state trajectory, known as sliding surface, as 

shown in Figure 2.19. In its basic form, this filter forces the estimated states to the hyperplane by 

using a switching technique that causes the estimated states to cross this hyperplane continuously 

and remain confined to its neighborhood referred to as the existence subspace. This method 

guarantees convergence given bounded uncertainties.  
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Figure 2.19 Concept of SVSF State Estimation [70] 

 

SVSF presents two main performance indicators: the a posteriori output error and the chattering. 

This chattering can be sorted into two main categories: a priori and a posteriori chattering. At its 

core, SVSF’s structure contains both prediction and update stages, shown in Figure 2.20.  

 

Figure 2.20 SVSF Structure [69]  

The SVSF assumes that systems are modeled using the state space representation as follows:  
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𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) + 𝑤𝑘   (2.74) 

and  
𝑧𝑘+1 = 𝐶𝑥𝑘+1 + 𝑣𝑘 (2.75) 

Where 𝑥𝑘 and 𝑥𝑘+1 are the system states at time step 𝑘 and 𝑘 + 1 respectively. 𝑧𝑘+1 is the 

measurement vector at time step 𝑘 + 1. 𝑢𝑘 , 𝑤𝑘, and 𝑣𝑘 are the system input, system noise, and 

measurement noise respectively. The matrix 𝐶 represent the measurement matrix and it is 

considered linear, positive, and pseudo diagonal when the system has a linear measurement 

equation. In case the measurement equation becomes nonlinear, e.g. 𝑧𝑘+1 = 𝑔(𝑥𝑘+1) + 𝑣𝑘, the 

measurement matrix is linearized using a Jacobian matrix which is derived as follows:  

 
𝐶 = 

[
 
 
 
 
 
 
 
𝜕𝑔1
𝜕𝑥1

𝜕𝑔1
𝜕𝑥2

𝜕𝑔2
𝜕𝑥1

𝜕𝑔2
𝜕𝑥2

    

…
𝜕𝑔1
𝜕𝑥𝑛

…
𝜕𝑔2
𝜕𝑥𝑛

⋮ ⋮
𝜕𝑔𝑚
𝜕𝑥1

𝜕𝑔𝑚
𝜕𝑥2

    

⋮ ⋮

…
𝜕𝑔𝑚
𝜕𝑥𝑛 ]

 
 
 
 
 
 
 

 (2.76) 

The SVSF filter is an iterative algorithm that starts by predicting the a priori estimate of both the 

state and the output measurement of the system: 

 
𝑥𝐾+1|𝑘 = 𝑓(𝑥𝑘|𝑘 , 𝑢𝑘) (2.77) 

 
�̂�𝐾+1|𝑘 = 𝐶𝑥𝐾+1|𝑘 (2.78) 

From the predicted a priori estimates, the SVSF filter updates the a posteriori estimates of both the 

states and the measurements, as follows:  
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𝑥𝐾+1|𝑘+1 = 𝑥𝐾+1|𝑘 + 𝐾𝑘+1

𝑆𝑉𝑆𝐹 (2.79) 

  
�̂�𝐾+1|𝑘+1 = 𝐶𝑥𝐾+1|𝑘+1 (2.80) 

The SVSF gain, 𝐾𝑘+1
𝑆𝑉𝑆𝐹,  is obtained as:  

 
𝐾𝑘+1
𝑆𝑉𝑆𝐹 = 𝐶+ (|𝑒𝑧,𝑘+1|𝑘|𝑎𝑏𝑠

+ 𝛾|𝑒𝑧,𝑘|𝑘|𝑎𝑏𝑠
) ∘ 𝑠𝑎𝑡 (

𝑒𝑧,𝑘+1|𝑘

𝜓
) (2.81) 

Where  

 
𝑠𝑎𝑡 (

𝑒𝑧,𝑘+1|𝑘

𝜓
) = {

𝑠𝑔𝑛(𝑒𝑧,𝑘+1|𝑘), 𝑖𝑓 |𝑒𝑧,𝑘+1|𝑘| >  𝜓
𝑒𝑧,𝑘+1|𝑘

𝜓
,                    𝑖𝑓 |𝑒𝑧,𝑘+1|𝑘| ≤  𝜓

 (2.82) 

and  
𝑒𝑧,𝑘+1|𝑘 = 𝑧𝑘+1 − �̂�𝑘+1|𝑘  (2.83) 

  
𝑒𝑧,𝑘|𝑘 = 𝑧𝑘 − �̂�𝑘|𝑘  (2.84) 

  
𝐶+ = 𝐶𝑇(𝐶𝐶𝑇 + 𝜌2𝐼)−1 (pseudo inverse of 𝐶) (2.85) 

In the above equations, 𝜓, 𝜌, and 𝛾 are respectively the smoothing boundary layer’s width, singular 

values’ damping parameter, and a positive constant less than unity. As described by equation (2.81), 

inside the smoothing boundary layer, the corrective action (SVSF gain) depends on the ratio of the 

amplitude of the output's a priori estimation error and the smoothing boundary layer's width, 𝜓. 

This width plays a key role in the overall performance of the filter and should be selected carefully. 

In fact, while larger widths directly translate into slower convergence rates, smaller widths cause 

unwanted chattering that degrade the filter’s performance.  
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The purpose of training of the network is to determine its weights. Ahmed [71] demonstrated the 

ability of SVSF to train the MLP’s weights. In order to use SVSF with a training set 

{𝑥(𝑛), 𝑑(𝑛)}𝑛=1
𝑁 , the MLP neural network is represented by the following two equation:  

 
𝑤𝑛+1 = 𝑤𝑛 + 𝜔𝑛  (2.86) 

  
𝑑(𝑛) =  𝐶𝑛(𝑤𝑛, 𝑥(𝑛)) + 𝑣𝑛  (2.87) 

Where 𝑤𝑛 denotes the parameters of the MLP, e.g. weights and biases between the nodes, 𝐶𝑛 

represent the measurement function, and both 𝑣𝑛 and 𝜔𝑛 are white Gaussian noises with zero mean. 

Training the MLP using SVSF involves 9 different steps, and they are as follows:  

I. Initialize all the weight estimates �̂�𝑛|𝑛 of the MLP with random values ∈ [−1,1]. 

II. Deduce the predicted a posteriori weight estimates �̂�𝑛+1|𝑛 using:  

 
�̂�𝑛+1|𝑛 = �̂�𝑛|𝑛 (2.88) 

 

III. Compute the Jacobian matrix 𝐶𝑛|𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 as follows:  

 
𝐶𝑛|𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑 = 

[
 
 
 
 
 
 
 
𝜕𝑑(1)

𝜕𝑤1

𝜕𝑑(1)

𝜕𝑤2
𝜕𝑑(2)

𝜕𝑤1

𝜕𝑑(2)

𝜕𝑤2

    

…
𝜕𝑑(1)

𝜕𝑤𝑃

…
𝜕𝑑(2)

𝜕𝑤𝑃
⋮ ⋮

𝜕𝑑(𝑁)

𝜕𝑤1

𝜕𝑑(𝑁)

𝜕𝑤2

    

⋮ ⋮

…
𝜕𝑑(𝑁)

𝜕𝑤𝑃 ]
 
 
 
 
 
 
 

 (2.89) 

Where 𝑃 is the total number of connected node weights in the network.  
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IV. Generate the MLP network estimated output �̂�(𝑛 + 1|𝑛) using:  

 
�̂�(𝑛 + 1|𝑛) =  𝐶𝑛|𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑�̂�𝑛+1|𝑛 (2.90) 

 

V. Calculate the measurement error 𝑒𝑛+1|𝑛 using:  

 
𝑒𝑛+1|𝑛 = 𝑑(𝑛) − �̂�(𝑛 + 1|𝑛) (2.91) 

 

VI. Compute the SVSF Gain using the following equation:  

 
𝐾𝑛+1
𝑆𝑉𝑆𝐹 = 𝐶𝑛|𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑

+ (|𝑒𝑛+1|𝑛|𝑎𝑏𝑠
+ 𝛾|𝑒𝑛|𝑛|𝑎𝑏𝑠

) ∘ 𝑠𝑎𝑡(
𝑒𝑛+1|𝑛

𝜓
) (2.92) 

 

VII. Get the new State Estimates �̂�𝑛+1|𝑛+1 using:  

 
�̂�𝑛+1|𝑛+1 = �̂�𝑛+1|𝑛 + 𝐾𝑛+1

𝑆𝑉𝑆𝐹 (2.93) 

 

VIII. Obtain the updated state estimates and error. 

 
�̂�(𝑛 + 1|𝑛 + 1) =  𝐶𝑛|𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑧𝑒𝑑�̂�𝑛+1|𝑛+1 (2.94) 

  
𝑒𝑛+1|𝑛+1 = 𝑑(𝑛 + 1) − �̂�(𝑛 + 1|𝑛 + 1) (2.95) 
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IX. Calculate the Mean Square Error (MSE) and repeat the sequence of step starting from step 

(II) until the MSE error is below a certain training threshold.  

2.4. Summary   

A review of the different fault detection and diagnosis techniques was presented in this chapter. 

While some of these methods were suited for time-frequency analysis, others were useful for multi-

sensory set-ups. To improve the accuracy of feature extraction, hybrid techniques, such as MSPCA 

and Mod-MSPCA, were discussed and their respective practical applications were reviewed. This 

chapter considered neural networks as well as the different algorithms used for their training. The 

combination of feature-extraction techniques along with feature-classification methods constitutes 

a valid FDD scheme suited for internal combustion engines. There are several ways to realize such 

combinations. Some of them are discussed in the following Chapter 3.  
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Chapter 3. FDD Strategies for ICE  

This chapter builds on the concepts considered in the previous chapter under literature review. 

Three additional concepts that combine the basic tools used in FDD are discussed and further 

presented as follows: 

 Method 1 (M1): the Average Crank-Angle Domain transform (M1-Average-CAD). 

 Method 2 (M2): the Crank-Angle Domain transform of Industrial Extended Multi-Scale 

Principal Component Analysis (M2-CAD-IEMSPCA). 

 Method 3 (M3): the Crank-Angle Speed Analysis (M3-CASA). 

While the first two, notably M1-Average-CAD and M2-CAD-IEMSPCA, were repurposed for the 

ICE application and rely heavily on neural networks for classification, M3-CASA was introduced 

in the work and bypasses the classification step which makes it the fastest among the three. 

Nevertheless, all the implemented techniques apply the crank-angle transformation for maximum 

reliability.  

3.1. FDD Strategies for ICE  

The internal combustion engine technologies have been around for more than a century. Therefore, 

the literature is rich with different associated FDD techniques. What makes these methods differ 

from one another is the choice of the sensor used for perception and the mathematical tools used 

for analysis. With that, this section covers briefly other potential solutions that carry engine 

diagnostics. 

Chang et al. [72] introduced a new method for misfire and knock detection using wavelet transform 

of high frequency engine block vibration signals. They defined a new Combustion Noise Intensity 
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factor CNICWT that is derived from the continuous-time wavelet transform’s scalogram; this factor 

averages the absolute value of the CWT for a specific scale factor 𝑠 and a crank-angle interval 

(𝜃1, 𝜃2), see equation (3.1). The scale of the CWT was fixed to 8 and the mother wavelet used was 

the Meyer wavelet. To test the validity of this new factor, the researcher used different engine 

conditions (rpm, load, and faulty cylinders) and detected both misfire and knock using high 

frequency vibration signals of one-axial accelerometer which was attached to the engine block. 

Although CNICWT threshold was kept fixed across all the engine conditions, it detected both 

aforementioned faults with an overall accuracy of 96.7%. In conclusion, this method is more 

efficient and accurate than FFT power spectrum density techniques. It can detect misfire and knock 

without the need of an additional tuning stage. 

 

𝐶𝑁𝐼𝐶𝑊𝑇(𝑠, 𝜃1, 𝜃2) ≡
∫ | 𝑊𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑜𝑚𝑒𝑡𝑒𝑟(𝑡(𝜃), 𝑠)|𝑑𝜃
𝜃2
𝜃1

𝜃2 − 𝜃1
 (3.1) 

 

Daniels et al. [73] detected both heavy (audible) knock and light (inaudible) knock using in-cylinder 

ionization signal under different engine speeds and loads. To have a comparative study, this 

sensor’s detection capabilities were measured against a knock sensor, a mounted accelerometer, 

and an in-cylinder pressure sensor. To obtain the test results, the researchers used a 2L, 4-cylinder 

engine and sampled the data using the dSPACE PX-10. At 5000 rpm and under WOT (Wide Open 

Throttle) conditions, all of knock, accelerometer, and pressure sensors failed to detect the induced 

knock as the recorded noise levels were high. Under the same conditions, ionization sensors 

provided a better detection of inaudible knock. What is more, the ionization sensor successfully 

detected partial misfire (partial-burn) conditions especially at cold start conditions of the engine. 

This fault is common during the expansion stroke and can result in increase of the HC (Hydro-

carbon) emissions. Therefore, using a FDD technique that applies ionization sensor increased the 
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engine efficiency and limits the harm to engine components. In conclusion, the ionization signal 

provides a lot of valuable insights regarding the combustion process inside the cylinder and allows 

for an increased speed-range for fault detection when compared with conventional methods.  

Bogus and Merkisz [74] used an analogous technique to Short Time Fourier Transform (STFT). 

The technique applies a small sliding-window to extract different statistical parameters used in a 

multidimensional parameter space in order to highlight the time evolution of the system (engine), 

see equation (3.2).   The parameters can be either FFT lines or statistical-in-nature like median, 

mean, and higher order moments. Some of these parameters were nonlinear as well, like Lyapunov 

exponents and correlation factors. Once the multidimensional space is created, the fault condition 

is detected using the c-mean clustering algorithm that optimizes the objective function which 

depends on the Euclidian distance between a particular data point and the center of the cluster. To 

test the validity of this technique, the researchers simulated a misfire condition on a 12V, one-

cylinder engine and logged the data using a tri-axial accelerometer. The test was carried for three 

main engine speeds: 650 rev/min (at idle), 1100 rev/min, and 1500 rev/min. After that, 7 misfire-

detection parameters were selected among 5 FFT-lines, 5 moments, a mean, and a median. Figure 

3.1 shows an example of a 7 dimensional parameter space that was projected onto a 3D space 

(Fourier lines 2, 3, and 4). The figure highlights the evolution of the computed parameters between 

a misfire condition (a) and a healthy condition (b). The final step assigns the different parameter 

clusters to different engine states in order to detect misfire condition of diesel engines.  

 
𝑋(𝑓, 𝑛) = ∑ 𝑥(𝑘)ℎ(𝑛 − 𝑘)𝑒−𝑖2𝜋𝑓𝑘𝑇

∞

𝑘=−∞

 (3.2) 
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(a) Cylinder 1 disconnected                                 (b) Healthy Engine      

Figure 3.1 Evolution of the 3D Parameter Subspace at 1500 rev/min 

 

Cavina et al. [75] applied a similar sliding window technique on the analog recordings of the 

crankshaft position sensor. After applying time-frequency analysis of the instantaneous engine’s 

angular speed, the presence of misfire was easily detectable. By doing so, all damped torsional 

vibration of the crankshaft were isolated signaling the presence (or absence) of combustion. To test 

these assumptions, the researchers used an Alpha Romeo 2L,V6, SI engine and validated the 

produced results on a Lamborghini V12 engine. For both testing and validation, A Virtual ECU 

(VECU) was used to control both the ignition and the injection to various cylinders in order to 

generate misfire at different engine operating conditions. For the V6 engine, this experiment 

showed that a single-misfire condition induces a torsional damped vibration with a natural 

frequency of f = 85 Hz. The recorded frequency was constant for different engine speeds and loads. 

Therefore, STFT was applied around this natural frequency in order to reduce the overall 

computational complexity. The final joint angle-angular frequency analysis is suitable for detecting 

misfire conditions when the number of engine cylinders is very high. However, this technique did 
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not localize the faulty cylinder, detect the presence of double-cylinder misfire, and remain accurate 

when the road profile is rough.  

3.2. Crank-Angle Domain (CAD) Transform  

Rotating systems, like internal combustion engines, often create reoccurring periodical phenomena 

based on their angle of rotation. Fault conditions manifest themselves only in a certain position 

inside the system, e.g. defective gear or combustion cylinder. The frequency of these events 

correlates directly with the rotational angle and speed of the system. With changing rotational 

speeds, it is hard to localise such events using traditional time-based techniques, such as FFT. In 

the case of the ICE, the speed differs from cycle to cycle even when the engine is at a fixed rpm. 

These variations are caused by a change in both mechanical and electrical loads as well as the 

operating temperatures inside the cylinders. For example, the engine’s speed is tightly linked to the 

torque; as this torque fluctuates in the form of power-stroke pulse-train, the speed wavers according 

to this pulsation. For these reasons, the analysis of the engine’s noise and vibration is rarely 

performed in time domain. Crank Angle Domain (CAD) is used instead to represent the same 

information with respect to the relative position of the crankshaft of the rotary machine. CAD 

transform is the mathematical tool that converts the data from time domain to angle domain.  

By isolating a complete revolution of an engine, the CAD transform extracts the exact position of 

specific types of abnormalities, e.g. piston stroke and slap, irregular valve opening/closing, 

injection/ignition events, and even combustion events like knocking. Added to that, this new 

domain detects torsional vibrations by simplifying the engine dynamics and the models that control 

it. CAD domain requires detecting the start and the end of each cycle by sampling the engine 

synchronization signals, notably crankshaft and camshaft position sensors, at high angular 

resolutions. These sensors monitor the relationship between the pistons and the valves in the engine 

and ensure signal synchronization to different engine cycles. Figure 3.2 presents a synchronization 
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example of vibration data with respect to the Camshaft Identification (CID) signal. Every recorded 

pulse in the lower graph signals the beginning of a new engine cycle (720°). These cycles are 

extracted (red dotted lines) and processed further according to the selected FDD strategy.  

 

Figure 3.2 ICE-Vibration CAD Synchronization 

 

After detecting the beginning of each engine cycle, both noise and vibration data are reconstructed 

in CAD through means of interpolation. The interpolation can be linear, cubic spline, or sinc. 

Arasaratnam and Habibi [76] showed that the reconstruction is more precise using sinc 

interpolation. Furthermore, they have demonstrated that both truncated sinc, equation (3.3), and 

windowed sinc, equation (3.4), perform equally for the vibration signal registration problem.  
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𝑠𝑖𝑛𝑐𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒(𝑡) =  {

sin (𝜋𝑡)

𝜋𝑡
, 𝑡 ≠ 0

         1    ,         𝑡 = 0 
  (3.3) 

  
𝑠𝑖𝑛𝑐𝑤𝑖𝑛𝑑𝑜𝑤(𝑡) =

cos (
𝜋𝛽𝑡
𝑝 )

1 − 4(
𝛽2𝑡
𝑝
)
𝑠𝑖𝑛𝑐 (

𝑡

𝑝
) (3.4) 

In the above equation (3.4), 𝑝 represents the sampling interval and 𝛽 is the roll-off factor (0 ≤

𝛽 < 1). When 𝛽 = 0, the windowed sinc function reduces to a truncated sinc function. With 

increased 𝛽 values, the oscillations become shorter in time and smaller in amplitude. Both these 

functions are used along with the sampled time domain noise and vibration, 𝑥[𝑛], to obtain the 

equivalent CAD signal, 𝑦[𝑛], using convolution (∗), see equation (3.5).  

 
𝑦[𝑛] = 𝑥[𝑛] ∗ 𝑠𝑖𝑛𝑐𝑓𝑐𝑡[𝑛] = ∑ 𝑥[𝑘]𝑠𝑖𝑛𝑐𝑓𝑐𝑡[𝑛 − 𝑘]

∞

𝑘= − ∞

 (3.5) 

Despite the well-documented performance of both sinc-interpolation methods (truncate and 

window), they remain computationally expensive and cannot be implemented online as they require 

all of past as well as future recordings. For that, this research employs the other types of 

interpolations, notably linear and cubic spline. The interpolated signal 𝑦[𝑛] is the CAD 

representations of the time domain signal (vibration and noise). This interpolation is a preliminary 

step that is common among all of the processing techniques covered by this work. And depending 

on the choice of the FDD technique, this signal can be either used directly to carry the diagnosis or 

processed further before being used as input to the neural network.  

3.3. M1-Average-CAD FDD Techniques 

In this FDD technique, the logged time-domain raw data is transformed in Crank-Angle Domain 

(CAD) by means of linear interpolation. This transformation is followed by a moving-average step 
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that acts as a filter. Finally the produced average-CAD data is processed further using Fast Fourier 

Transform (FFT) or Wavelet Transform (WT) to produce three sets of data that act as three separate 

inputs to the neural network classifier. Figure 3.3 breaks down these steps in details.  

As mentioned in section 3.2, after the interpolation step, the obtained CAD data is refined through 

a moving-average low-pass filter. It is a type of Finite Impulse Response (FIR) filter that removes 

the unwanted spikes and errors. This processing step is mandatory to obtain a reliable training data 

set that speeds up the training of the NN and maximizes its accuracy. As the size of the moving-

average window gets tuned to the application, the filter smooths the short-term fluctuations due to 

noisy environment and highlights the long-term trends which ultimately results in a shorter 

averaged-CAD signals.  

There are several types of FIR filters, for example simple, cumulative, weighted, and exponential. 

The simple moving-average filter, described by equation (3.6), was selected in this work. In 

equation (3.6), 𝑁 represents the number of samples, while 𝑥𝑎 and 𝑥𝑎+𝑁 are, respectively, the lower 

and higher sample points within the averaging window. By fixing the value of 𝑁, the filter gets the 

average of the first 𝑁-samples. Then, the filtering window moves one step forward by excluding 

the first sample 𝑥𝑎 and replacing it by the next sample 𝑥𝑎+𝑁+1. After traversing the entire dataset, 

the filter produces the average-CAD data that brings out the dynamics components within the 

system. Throughout this work, the moving average window size was fixed to 10 samples to produce 

consistent comparison scheme the different techniques.  

 
�̅� =  

𝑥𝑎 + 𝑥𝑎+1 +⋯+ 𝑥𝑎+𝑁
𝑁

=
1

𝑁
∑𝑥𝑎+𝑖

𝑁

𝑖=0

 (3.6) 
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In fast-changing rotating systems, the dominant noise and vibration components manifest 

themselves in both time and frequency simultaneously. To account for such variations, the 

transformed averaged-CAD data trains three different neural networks. Figure 3.3 summarizes the 

M1-Average-CAD FDD technique. This technique relies on three neural networks. The first neural 

network trains based on the CAD vibro-acoustic data that has been low pass filtered using moving 

average. The second neural network trains based on the Fast Fourier Transform of the averaged 

crank-angle domain representation of the vibro-acoustic data. This classification happens solely 

based on the frequency content of the different engine faults. At last, the third neural network uses 

the faults’ time-frequency features, and it trains using the Wavelet Transform of the averaged-CAD 

modification of the raw signals. The fixed parametric values used in this technique are presented 

in Chapter 6. 
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Figure 3.3 M1-Average-CAD FDD Technique Flow Chart 

 

3.4. M2-CAD-IEMSPCA FDD Technique 

At the heart of this second FDD scheme lies the Industrial Extended Multi-Scale Principle 

Component Analysis (IEMSPCA) [9]. What makes IEMSPCA unique and robust is the assembly 

of two steps:  

1- Background noise filtration 
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2-  Extended Multi-Scale Principal Component Analysis (EMSPCA).  

These constituting units (EMSPCA + Background Noise Filtration = IEMSPCA) are described in 

the first two subsections. In this work, IEMSPCA is modified to carry out the feature extraction on 

the Crank-Angle Domain (CAD) representation of the noise and vibration. The combination of 

IEMSPCA with CAD is referred to as the M2-CAD-IEMSPCA FDD technique, and it is explained 

in details in the third subsection.  

3.4.1. Back Ground Noise Filtration  

Most of FDD applications are located in an industrial environment where the presence of noise can 

distort the final result of the diagnosis. This distortion is particularly critical when working with 

both accelerometers and microphones (sound and vibration). One common technique to remove 

the background noise is to apply noise gating [77]. It is a threshold-technique that allows the input 

signal to go through, only if the real measurement is higher than the background noise level. When 

this is not the case, the noise gating technique attenuates the signal by filtering out most prevalent 

noisy components. To maximize the reliability of such filter, any pre-recorded noise signal is 

broken into time and frequency. By applying noise gating on both domains simultaneously, the 

background noise of each individual frequency bin corresponding to each individual time-segment 

is filtered. Figure 3.4 depicts this process in details.  
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Figure 3.4 Time-Frequency Noise Gating Overview [9] 

 

3.4.2. Extended Multi-Scale Principal Component Analysis (EMSPCA) 

The EMSPCA processing algorithm was proposed by Ismail [9], and it responsible for the feature 

extraction from the engine measurements. According to Figure 3.5, the main difference between 

EMSPCA and Mod-MSPCA lies in the applied wavelet transform and the placement of the 

normalization step. While Mod-MSPCA uses the Discrete Wavelet Transform (DWT) that 

highlights high frequency contents, EMSPCA uses the Wavelet Packet Transform (WPT) which 

breaks down the frequency spectrum equally. As faults can occur both in high and low frequencies 

with equal probabilities, EMSPCA is a better feature extraction technique for this FDD application.  
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(a) Mod-MSPCA 

 

(b) EMSPCA 

Figure 3.5 EMSPCA Versus Mod-MSPCA [9] 

 

EMSPCA employs the normalization step at the beginning which improves its generalization 

capability. By doing so, this technique is less affected by the sensitivity of the sensors, and it 

produces repeatable results between measurements with different scales and variances due to 

calibration mismatch. The normalization step is implemented as follows:  

 
𝑠𝑖𝑔𝑛𝑎𝑙𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝑠𝑖𝑔𝑛𝑎𝑙𝑟𝑎𝑤 −𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑐𝑒𝑛𝑡𝑒𝑟)

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑟𝑎𝑤 𝑠𝑖𝑔𝑛𝑎𝑙
 (3.7) 

 
𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝑥𝑟𝑎𝑤 −
1
𝑛
∑ 𝑥𝑟𝑎𝑤,𝑖
𝑛
1

1
𝑛 − 1

∑ (𝑥𝑟𝑎𝑤,𝑖 − 
1
𝑛
 ∑ 𝑥𝑟𝑎𝑤,𝑖

𝑛
1 )

2
𝑛
1

 (3.8) 

 

As described in Figure 3.5, the normalized signal in processed in time-frequency domain through 

the Wavelet Packet Transform (WPT). This procedure is carried for both healthy and faulty 

recordings. Principal Component Analysis uses the WPT coefficients from the healthy recordings 

as a baseline to measure the intensity of the fault. To do so, PCA extracts the principal component 

matrices for both healthy Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 and faulty Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 measurements. According to equations 

(3.9) and (3.10), these PCs are generated from both types of measurements by computing the 

covariance matrix of the principle component score matrix 𝑇 using equation (3.11). 
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Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 = 𝐶𝑂𝑉(𝑇ℎ𝑒𝑎𝑙𝑡ℎ𝑦) (3.9) 

 
Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 = 𝐶𝑂𝑉(𝑇𝑓𝑎𝑢𝑙𝑡𝑦) (3.10) 

Where  

 
𝐶𝑂𝑉(𝑇) = 𝐸(𝑇𝑇𝑡) − 𝐸(𝑇)𝐸(𝑇)𝑡 (3.11) 

To be able to generate diagnostics from the results produced by the PCA, Haqshenas [78] used both 

healthy and faulty principal components matrices (Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑎𝑛𝑑 Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦) to define two indices: 

the first index 𝑆𝑐, which is described by equation (3.12), detects the presence of the fault, and the 

second index 𝐹𝑐, which is characterized by equation (3.13), isolates the fault. 

 
𝑆𝑐,𝑗 =∑

∑ (Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑗
∘ (Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑗

𝑚
𝑖=1

𝜆𝑖,𝑗

𝑚

𝑖=1

 (3.12) 

  
𝐹𝑐,𝑗 = (∑𝐶𝑂𝑉(𝐹) ∘ 𝐶𝑂𝑉(𝐹)

𝑚

𝑖=1

)

𝑗

∘  Σ𝜆𝑗 (3.13) 

Where  

 
𝐶𝑂𝑉(𝐹) = 𝑃 (Σ𝑇,𝑓𝑎𝑢𝑙𝑡𝑦 − Σ𝑇,ℎ𝑒𝑎𝑙𝑡ℎ𝑦)𝑃

𝑇 (3.14) 

 

In the above equations, the symbol 𝜆𝑖 is the variance of the faulty principle components with respect 

to the baseline principle components extracted from the healthy measurement. The multiplication 

(∘) is Hadamard’s entry wise multiplication. To use these indices as a fault detection and diagnosis 
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tool, 𝑆𝑐 is first compared against a pre-tuned threshold. If the threshold is exceeded, 𝐹𝑐 is computed 

and compared against a secondary threshold to isolate the detected fault condition. 

As it is described in equations (3.13) and (3.14), the index 𝐹𝑐 contains information that is also 

represented by the index 𝑆𝑐. To take advantage of this observation, Ismail [9] proposed a combined 

index, also named 𝐹𝑐, that has a better fault detection capabilities. This defined index ensures the 

same quantitative representation of faults and limits the number of thresholds involved in the tuning 

stage. This new 𝐹𝑐 index is described by equations (3.15) and (3.16).  

 
𝐹𝑐,𝑗 = 𝑠𝑖𝑔𝑛 (𝐿𝑗) ∘ √|𝐿𝑗| (3.15) 

where 
𝐿𝑗 = ∑𝑠𝑖𝑔𝑛(𝐶𝑂𝑉(𝐹))

𝑗
∘ [𝐶𝑂𝑉(𝐹) ∘ 𝐶𝑂𝑉(𝐹)]𝑗

𝑚

𝑖=1

 (3.16) 

 

The new coefficient 𝐹𝑐 takes into account the prior normalization step of the data. Added to that, 

the presence of the term ‘𝑠𝑖𝑔𝑛(𝐶𝑂𝑉(𝐹))’ in equation (3.16) allows for negative indices 𝐹𝑐. This 

feature enhances the classification capabilities of the neural network which uses hyperbolic 

tangent activation function. With that, the network can classify not only 𝐹𝑐 indices that have 

different amplitudes, but also indices with different polarities. For a diagnostics to be complete, 

the 𝐹𝑐  coefficients are generated for all the sensors. 
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(a) Knocking Condition                              (b) Healthy Condition  

Figure 3.6 Comparison of Fc Coefficient for Knocking Fault Condition 

 

Figure 3.6 shows an example of computed 𝐹𝑐 results for 7 different sensors (4 knock, 2 

accelerometers, and one microphone) that were sampled at 200 KHz under moderate knocking 

condition. Daubechies mother wavelet was selected with a pre-set depth level of 4. Therefore, 

the spectrum is divided in to 24 = 16 equal in length wavelet bins. By comparing the generated 

features between the two cases (faulty and healthy), it is noticeable that knocking occurs at lower 

frequencies for all sampled sensors. Added to that, the recorded amplitudes are very significant 

for the knocking condition case with 𝐹𝑐  amplitudes above unit. These amplitudes were 

particularly high for the 4 knock sensors which emphasizes their capabilities in detecting 

knocking fault conditions. This difference between the features is used to train a neural network 

for later classifications.  

Hence, the combination of 𝐹𝑐 and 𝑆𝑐 into one index allows to identify and isolate fault signatures 

simultaneously. Added to that, having to generate only one index reduces the amount of the 

computations and the time required to tune the involved thresholds that would flag the presence of 
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faults. Generating the combined 𝐹𝑐 coefficient represent the feature extraction results of the 

EMSPCA which is incorporated inside M2-CAD-IEMSPCA.  

3.4.3. M2-CAD-IEMSPCA  

As discussed earlier, M2-CAD-IEMSPCA technique combines all of the CAD transform and the 

IEMSPCA algorithm (Background Noise Filtration + EMSPCA). In this second FDD technique of 

this work, the final step in M2-CAD-IEMSPCA is to use the obtained 𝐹𝑐  coefficients to give an 

intuitive output from the algorithm. For this purpose, a multi-layer perceptron neural network 

dynamic classifier is applied along with the aforementioned three training algorithms, LM, SVSF, 

and EKF. The classifier is trained using an extensive dataset of labelled faults, such as misfire, 

knocking, and pre-ignition. By comparing the new measurement to the trained database, the neural 

network labels the fault in the new measurement based on its signatures which correlate with the 

past trainings. To improve both the training speed, and the classification performance of the 

network, an additional moving average window described by equation (3.6) is applied to the results 

obtained from EMSPCA. Averaging the features is applicable as they are derived from the same 

engine cycle. With that, the following Figure 3.7 summarizes the processing steps that make up the 

M2-CAD-IEMSPCA FDD technique. 
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Figure 3.7 M2-CAD-IEMSPCA Algorithm Overview 



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

82 

3.5. Crank-Angle Speed Analysis (M3-CASA) FDD Technique 

This FDD technique is introduced by this work, and it focuses particularly on the detection and 

isolation of engine misfire using crankshaft speed fluctuations. Misfire detection is very important 

as it directly reflects the characteristics of the combustion torque which is critical for engine control 

strategies and performance analysis. The misfire diagnostic methods range from relatively simple 

threshold criteria to sophisticated model-based deconvolution to isolate the contribution of each 

engine cylinder. Regardless of their differences, these methods are usually very reliable at detecting 

a specific faulty cylinder at an idle operating condition of the engine. Their reliability and 

performance generally deteriorate at high speeds, low loads, and rough road profiles.  

There is a strong correlation between the produced torque in the combustion chamber and the 

instantaneous speed of the crankshaft wheel. In fact, at every firing event, a torque pulse is injected 

to the crankshaft throw. The resulting periodic torque-energy pulses causes the engine and the 

driveline’s angular velocity to fluctuate. When a misfire event happens, the torque applied to the 

crankshaft changes and results in an altered angular velocity. This shift is mainly due to the lack of 

positive impulsive torque acting on the crankshaft during the corresponding expansion stroke. 

Therefore, such events result in the sudden decrease of the engine speed in the analogous pre-

defined angular sector. For example, in the case of a 4-cylinder engine with equally spaced 

combustions of 180°, the sum of the applied torques for a 180°-interval is negligible as the positive 

torque contributions from the expansion strokes compensate the negative torque contributions from 

the compression strokes. When misfire violates these normal operating conditions, the resulting 

sum of the torques becomes negative which causes the crank-angle speed to decrease. These 

considerations also apply to engines with higher number of cylinders even when the torque 

contribution of some of the cylinders partially overlap. However, when this is the case, the 

corresponding angular sector of the misfire event becomes smaller and its effect on the engine’s 

speed becomes negligible.  
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The Crank-Angle Speed Analysis (M3-CASA) technique requires no prior modelling step, and it 

relies heavily on the experimental data. According to Figure 3.8, this technique starts by looking at 

a full engine cycle (720° in CAD) which corresponds to 2 full revolutions of crankshaft wheel. By 

optimally allocating all combustion events with the corresponding angular interval and by 

measuring the length of each sector, all single-cylinder contributions can be isolated and their 

respective angular speeds can be computed using equations (3.17) and (3.18). 

 

Figure 3.8 Angular Speed Measurement [79] 

 

 
∆𝜑 =

2𝜋

𝑁
 (3.17) 

  
𝜔(𝑛) =

∆𝜑

𝜏(𝑛)
 (3.18) 

 

In the above equations, ∆𝜑 represents the corresponding angular interval that embodies each tooth 

of the crankshaft. 𝑁 is the total number of teeth (including one missing tooth at TDC) and is 
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generally equal to 36. 𝜏(𝑛) represents the time taken by each tooth to pass in front of the crankshaft 

position sensor. Finally, 𝜔(𝑛) reflects the instantaneous speed at each time step 𝑛. 

After obtaining the angular speeds, the next step computes the difference between consecutive 

cylinders’ speeds and compares the produced results against a threshold. This threshold is fixed for 

a particular engine speed and load, and it flags the presence of misfire. It is also worth noting that 

the chosen threshold can be applied in either time or crank-angle domain (CAD) to determine the 

maximum allowed variation of the velocity over one engine cycle.  

The final step in M3-CASA FDD technique differentiates between the two cylinder banks and 

localizes the specific faulty cylinder by using an additional synchronization signal, such as the 

camshaft position sensor. This step is required for engine with higher number of cylinders (due to 

cylinder overlap), e.g. 8-cylinder V-engine. As depicted in Figure 3.9, for the case of ICE, the 

sensor fusion between camshaft and crankshaft allows to perfectly isolate the faulty cylinders and 

carry an accurate detection of single-, double-, or even triple-cylinder misfire conditions. 

 

Figure 3.9 Separation of the two Cylinder Bank Using Camshaft Position Sensor 
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Other techniques that rely on crank-angle speed analysis include pattern recognition using modelled 

velocity and torque profiles as well as temporal filtering of torque profiles [80]. However, these 

models are established on limiting assumptions such as: having a rigid crankshaft where excitation 

of all cylinders is in phase to produce a null cumulative torsional excitation; the ability to temporally 

filter the composite torque in order to detect individual cylinder contributions; a constant load 

torque; and a constant clutch stiffness. Additionally, all these methods assume that both stiffness 

and damping characteristics involved with the driveline are constant. This is not the case in most 

situations, especially when the vehicle encounters rough road profiles. As such, model-based 

techniques remain ineffective for misfire detection. 

3.6. Summary  

This chapter has covered three main Fault Detection and Diagnosis techniques that were 

implemented in this research as follows:  

1- The Average Crank-Angle Domain (M1-Average-CAD) FDD technique that was proposed 

by Feng [8]. 

2- The Crank-Angle Domain representation of Industrial Extended Multi-Scale Principal 

Component Analysis (M2-CAD-IEMSPCA) FDD technique which uses Ismail’s [9] 

IEMSPCA algorithm. 

3- Crank-Angle Speed Analysis (M3-CASA) FDD technique which is proposed for misfire 

fault detection.  

All these techniques employ crank-angle domain transformation of the raw data for better 

synchronization with the engine events. While M1-Average-CAD and M2-CAD-IEMSPCA used 

computationally expensive tools, e.g. PCA, wavelet, and neural networks. The M3-CASA FDD 
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technique used a fast algorithm to analyze the engine’s speed. Furthermore, this chapter discussed 

other published work and other potential techniques to diagnose the health of internal combustion 

engines. The following Figure 3.10 provides a summary of all of the FDD techniques applied in 

this work.  

 

Figure 3.10 Summery of FDD Techniques for ICE 
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Chapter 4. System Design Requirement Specs  

This chapter aims at defining the requirements needed for developing an FDD system that monitors 

the general health of internal combustion engines. The approach is derived from ‘The Engineering 

Design of Systems Models and Methods’ [81]. There are mainly 5 activities associated with this 

method: developing the operational concept; defining the system boundary; developing an 

objectives hierarchy; developing the requirements; and, ensuring that the requirements are feasible. 

The system design is used for developing an FDD system prototype hardware that could run the 

algorithms described in Chapter 3. This system should have enough computational power to run 

the FDD algorithms in real-time and have wireless communication capabilities amongst others.  

4.1. FDD System Physical Architecture  

The FDD system contains both physical and non-physical components. According to Figure 4.1, 

the non-physical components are summed up under the software umbrella with components such 

as user manuals, Computer-Aided Design (CAD) tools, device drivers, and operating systems to 

name a few. The physical components can be separated into 4 main categories. 

- Mechanical Components: Provide the framework and casing for the system. 

- Electrical Components: Provide the required circuitry for both signal and power transmission 

and conditioning. Sensors and interfacing elements are also present. 

- Maintenance Components: Provide the necessary structural environment, e.g. the lab and a test 

vehicle, and industrial tool sets, e.g. oscilloscope and power supply, in order to carry a proper 

maintenance of the system. 

- Safety Components: Maximise safety overhead to potential perturbations in order to ensure a 

system that allows for a multi-stage degradation. 
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Figure 4.1 FDD Physical Architecture [81] 
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The FDD system is primarily shaped by its electrical components. These elements are defined based 

on their added functionalities to the over all system, and they are summed up into 5 principal 

categories as follows, see Figure 4.2: 

 The power conditioning hardware provides the required voltage rails to power the board 

and its sensors.  

 The computation hardware makes the system both faster and smarter.  

 The sensing elements enhance the system’s perception capabilities of its surrounding.  

 The communication features facilitate the usability and the controllability of the device.  

 The storage capabilities ensure that all processed data is available for later usage. 

 

Figure 4.2 FDD Electrical Components [81] 
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4.2. System Level Functional Design 

The FDD system, as the name indicates, is a device that is used solely to carry performance 

monitoring for Internal Combustion Engines (ICE). The hardware of this device interfaces with 

sensors some of which are proprietary to the vehicle. The FDD system detects and diagnoses 

existing engine faults. Its signal processing software isolates and localizes the faults and notifies 

the user in real-time. In this section, system level design concepts are considered, including: 

1. The Operational Concept that introduces the general working theory of the FDD device.  

2. The Modes of Operation that describe in details the different functionalities that the FDD 

device accomplishes once installed in the vehicle.  

3. The Operating Environment that coins the limitations and harsh environment that the 

design of the FDD device should consider.  

4. The Objectives Hierarchy that isolates the most important design features to prioritize 

when building up the FDD device.  

4.2.1. Operational Concept 

The Fault Detection and Diagnosis system is placed in the vehicle. In doing so, the system has two 

main external connections with its environment as shown in Figure 4.3. In the first one, the FDD 

system records all sensors that log the engine’s operations. The main sensory components are 

vibration (knock sensor and accelerometers) and noise (microphones). To synchronize the recorded 

data with different engine events, both crankshaft and camshaft position sensors are sampled. The 

FDD system includes a computational platform that is capable of transferring telematics 

information, fault signatures, and other data such as system device status. The monitoring system 
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controls the FDD system wirelessly through different queries and commands. Finally, the FDD 

system power requirements are met by connecting it to the car battery.  

 

Figure 4.3 The FDD System External Connections [81] 
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4.2.2. Modes of Operation  

When the system is added to the vehicle, it has 9 modes of operations which are described in Table 

4.1 . These modes define all possible states that the system takes when operational. When no power 

is available, the system is in its 'OFF Mode'. Every time the power is provided, the system enters 

an 'Initialization Mode' where all hardware components are powered and all required 

communication channels are established. The system exits this mode when recording of the sensory 

channels has started which puts the system in 'Normal Mode'. Under this mode, the system filters 

and samples all configured sensory channels and processes the collected raw data. The 'Display 

Mode' goes hand-in-hand with the previous mode where the system displays the prognostics results 

to the user. The system has also other modes such as ‘Maintenance Mode’ where both hardware 

and software updates are undertaken, 'Repair Mode' that allows components' replacement and 

system reset, 'check Mode' that puts the system in wait state to allow for sensors check, 

'Transmission Mode' to move the data from the system to other stations, and a 'Shut Down Mode' 

to turn off the system. These modes are highlighted within one operational cycle of the device 

which is described in Appendix A.  

OFF 

Mode  

 No Power  

 No Operation 

Initialization 

Mode 

 Powering all H/W Components (Sensors, Circuitry, µC, µP)  

 Establish the Communication With the System (Wi-Fi)  

 Start Recording -> Green LED  

 Start the Wi-Fi Communication 

 Check for Faults in the System  

Normal  

Mode  

 Sample all the Sensors  

 Carry the Appropriate Signal Conditioning  

 Carry the A/D Conversion  

 Fill Buffer (length > 4 engine cycles )  

 Send the Data to the Main Processor  

 Process the Data 
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Display  

Mode 

 Determine the Fault 

 If Faulty 

      Display the Fault condition  

             else  

                   Display Healthy Condition  

Maintenance  

Mode 

 Update S/W + H/W 

 System Fault Detection Report 

 Manage Sensors’ Degradation 

Repair  

Mode 

 Replace H/W Components (µP, µC, Sensors ) 

 Update the Firmware  

 Reset the System 

Check  

Mode 

 Check Sensors 

 Check Communication 

 Check S/W 

Transmission  

Mode 

 Wireless Update of the Data to the Cloud 

 Wired Update the Data Through USB Cable or a Flash Drive  

Shut Down  

Mode 

 Complete Shut Down of the System  

 No Power -> Keep Saved Data in the Memory 

Table 4.1 The FDD system Modes of Operations 

4.2.3. Operating Environment  

The FDD system will be operating under harsh environmental conditions. In fact, the car engine is 

known for producing fast temperatures changes (shock) that leads to operating points above 100 

degree Celsius [82]. Added to that, constant high pressure, noise, and RF interference affect the 

quality of recorded sound and vibration [83]. The infiltrated dust, humidity, and solar radiation 

affect the cooling capabilities of the system [84], while the road profile and engine dynamics takes 

a toll on the internal connections between the different modules [85].The system is also subject to 

many other unwanted elements highly delineated as shown in Figure 4.4. 

 



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

94 

 

Figure 4.4 The FDD System Uncontrollable [81] 

 

4.2.4. Objectives Hierarchy  

To build the first prototype of the FDD device, the main operational objectives are separated into 

Cost Objectives and Performance Objectives, as shown in Figure 4.5. In order to build a fully 

performing system that meets the FDD research goals, the cost objectives are highly insignificant 

(weight = 0.1) compared to the target performances (weight = 0.9). Accordingly, the key player in 

the FDD system’s performance is its processing power and communication capabilities. These two 

performance criteria are highly needed to achieve the engine diagnosis in real-time using heavy 

algorithms such as machine learning and wavelet transforms. Furthermore, the final design (Figure 

4.6) should be both reliable and flexible to ensure extended normal operations under the hood of 

the vehicle. Finally, the system should be cheap, power-efficient, and user friendly. 
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Figure 4.5 Functional Objectives Hierarchy [81] 
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Figure 4.6 Deep Performance Objectives Hierarchy [81] 
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4.3. System’s Functional Architecture 

The FDD system, as the name indicates, has the function to provide a comprehensive assessment 

about the internal combustion engine’s health. To do so, it needs sensory data under the right 

queries and commands to display the fault flags and the diagnosis results. 

 

Figure 4.7 Top Level Functional Diagram [81] 
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On a deeper level, the FDD signal processing technique represent the main function that makes the 

sensory system unique. To produce viable results, the system samples and synchronizes raw data. 

The sampling is carried by the A/D module, and the Synchronization is carried by a software 

module to produce the crank-angle domain representation of the measurements. The signal 

processing block removes both the noise and the bias. The results of the analysis are communicated 

to the user. Figure 4.8 depicts these functionalities more in details.  
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Figure 4.8 Deep Functional Diagram [81] 
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4.4. System’s Operational Architecture  

Primarily, The FDD system carries fault detection and diagnosis for the car’s engine. To do so, the 

system has 11 functions accomplished by 11 components. These components are sorted into 

physical (hardware) or non-physical (software) elements. Some functions such as "buffering" are 

carried by components belonging to both categories. Figure 4.9 clearly demonstrate that the system 

relies heavily on two main components: the CPU and the operating system (OS). As a matter of 

fact, these two components represent the brain power of every embedded application and the FDD 

system is no exception. 

 

Figure 4.9 FDD Operational Architecture [81] 
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4.5. Summary  

The FDD system is a data acquisition hardware with enough processing power to carry fault 

detection and diagnosis of internal combustion engine on board of the vehicle. Through 9 modes 

of operations the system collects the data at rates of at least 40 kHz from several vibro-acoustic 

sensors. The FDD system processes these measurements and communicates back the prognostics 

results to the user. After defining the general requirement specifications of the FDD device, the 

next step is outlined in Chapter 5 and describes a prototype device that meets these requirements. 

This is followed by extensive testing, analysis, and validation of the target performances.  
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Chapter 5. The FDD System Design  

5.1. Introduction  

Since the release of the first data acquisition prototype by IBM, IBM 7700 [86], in 1963 [87], Data 

Acquisition (DAQ) technologies have evolved to act as the interface between digital computers and 

the outside world. In fact, DAQs mainly gather signals from sensors and digitize them for storage 

and later analysis. Depending on the collected data, other functions may include taking a specific 

action, e.g. sound alarm and light control.  

 

Figure 5.1 DATA Acquisition System Flow Process [88] 

 

According to Figure 5.1, in order to build a custom DAQ system, the following five elements need 

to be defined:  

 Signals of interest to the application: there are mainly two types: analog signals and digital 

signals. In this FDD application, all of the logged signals are analog, e.g. vibration, sound, 
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and crankshaft relative position: they are sampled at a frequency of 40 KHz to meet the 

human hearing range (8 Hz ~ 20 KHz) [89] [90]. 

 Transducers that detect and convert physical data into electrical signals. The FDD DAQ is 

capable of interfacing 4 accelerometers, 4 microphones, one camshaft position sensor, and 

one crankshaft position sensor. The physical properties of all vibro-acoustic transducers 

are selected to ensure a coverage of the aforementioned required-frequency ranges. 

 The signal conditioning circuit that filters the recorded data and maximizes the accuracy 

of the system: this element is critical when dealing with high voltages, noisy environments, 

and extreme high/low amplitude signal measurements [91]. For the FDD application, the 

signal conditioning filters the unwanted components in sound and vibration and digitizes 

the analog signals for both the camshaft and the crankshaft position sensors. In parallel to 

that, the FDD signal conditioning circuits guarantee all recorded signals’ amplitudes to be 

within the tolerance of the DAQ hardware.  

 The DAQ hardware which carries the final step of the signal conversion: the Analog to 

Digital Converter (ADC or A/D converter), is responsible for converting the analog signal 

into readable binary codes [92].  

 The software that is composed of both drivers (firmware) and application software: the 

firmware provides a software interface with hardware devices in order to carry the 

sampling of the environment and the scheduling of different DAQ tasks. Meanwhile, the 

application software customizes the device for the acquisition application by setting up the 

right configuration. 

DAQ systems are key players in robotics and the industrial internet-of things (IoT). The choice of 

the DAQ's parameters, e.g. resolution, accuracy, channel count, and speed, are all application 
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specific. For this reason, a DAQ can be created using different types of technologies, e.g. using the 

TMS320C31 digital signal processor from Texas Instruments [93] [94], to perform key functions 

in different applications [95] [96] [97] [98] [99].  

This chapter starts by covering the DAQ implementations done by previous CMHT researchers, 

notably the dSPACE and the CC3200MOD prototypes. After that, it addresses the limitations faced 

by the fist DAQ prototype based on Intel Curie. Finally, this chapter concludes with the current 

working implementation which is based on Teensy 3.6 ARM Cortex-M4 processor.  

5.2. Previous Data Acquisition Methods  

This section covers the previous Data Acquisition (DAQ) systems that were developed within the 

Centre for Mechatronics and Hybrid Technologies at McMaster University in order to carry Fault 

Detection and Diagnosis of Internal Combustion Engines. There are mainly two setups: the 

dSPACE-based and the CC3200MOD-based implementations. The last subsection compares the 

characteristics of the two designs. 

5.2.1. dSPACE-Based Implementation 

This subsection covers the work done by Feng [8]. In order to carry fault detection and diagnosis 

of the internal combustion engine, Feng used a dSPACE (Figure 5.2) to gather the necessary 

sensory data. dSPACE MicroAutoBox 1401/1501 is a DAQ system [100]. It is based on the IBM 

PPC 750FX RISC microprocessor [101] that provides clocking speeds of up to 800 MHz.  
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Figure 5.2 dSPACE MicroAutoBox 1401/1501 

 

The dSPACE contains 16 ADC channels; each A/D channel offers a resolution of 12 bits and an 

input voltage range between 0 and 5V. Each input can be sampled with speeds up to 20 kHz. The 

DAQ has also some signal conditioning capabilities that offer overvoltage, overcurrent, and short 

circuit protections. Furthermore, dSPACE provides extra useful features such as CAN serial bus 

interface [102] as well as general serial communication protocols, e.g. SPI [103]. Connecting this 

device with the computer is done through the Local Intermodule (LIN) bus [104] [105]. All the 

communication involving the dSPACE, whether with the computer or with the sensors, is wired. 

The final implementation uses mains power to drive all connected hardware components. To 

identify the available options provided by the dSPACE, the following Figure 5.3 illustrates its 

detailed functional units. 
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Figure 5.3 MicroAutoBox 1401/1501 Functional Units [106] 

 

In his research, Feng permanently mounted 4 industrial accelerometers directly to the engine block; 

see Figure 5.4. The accelerometers are the AC240 series [107] from Connection Technology Center 

Inc. (CTC). The selected sensors have a resonant frequency of 34 kHz, a dynamic range of ±50 g, 

and a measurement resolution of 100mV/g. These accelerometers require an external 18V (2 x 9V 

batteries) power supply, CTC PS01 [108], that provides enough current to excite the transducers.  
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Figure 5.4 Accelerometers Mounted on Engine  

 

To this end, this first DAQ implementation involves a good number of wires. This solution is costly 

and requires an additional budget to unlock all the features of the hardware as well as maintain the 

licencing requirements by the dSPACE’s software.  

5.2.2. CC3200MOD-based Implementation 

This subsection covers the work done by Hodgins [7]. In this second attempt, the main component 

that carries the fault detection is a microcontroller from Texas Instruments Inc., CC3200MOD 

[109]; see Figure 5.5. This module was selected due to its built-in wireless capabilities. In fact, this 

microcontroller can handle general internet protocols, e.g. TCP/IP with throughput at 13 Mbps. 

Finally, this module is based of the ARM Cortex-M4 processor that offers clocking speeds of up 

to 80MHz. 
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Figure 5.5 CC3200MOD Module [110] 

 

CC3200MOD has 4 ADC channels. Each converter has a 12-bit resolution with an input range 

between 0 and 1.8V. The device offers a wide range of serial interfaces, e.g. UART [111], SPI, and 

I2C [112], which extends its limited capabilities by connecting more modules to it. Furthermore, 

this microcontroller-based DAQ offers some control features through a 16-bit PWM [113] module 

and 25 individually programmable GPIO pins [114]. The overall hardware overview is shown in 

Figure 5.6 
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Figure 5.6 CC3200MOD Hardware Overview 

 

To be able to diagnose the internal combustion engine’s general health, Hodgins prototyped a 

Printed Circuit Board (PCB). The final PCB (Figure 5.7) contained a 3-axis accelerometer, 832M1 

[115] from TE connectivity, with a ±25g-dynamic range, a 6 kHz-frequency response, and a ±50 

mV/g-sensitivity. The board had also a microphone, INMP401 from InvenSense Inc. [116], with 

its required signal conditioning (amplifier). The microphone has a Signal to Noise Ratio of 62 dBA, 

a sensitivity of - 42 dBV, and a flat frequency response from 60 Hz to 15 kHz which covers most 

of the audible range. Another added feature was the incorporation of a temperature sensor to 

monitor the engine’s heat.  
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Figure 5.7 The Finished PCB Prototype [7] 

 

Unlike the dSPACE specifications, this implementation requires no licence. Users have full access 

to the running firmware and can modify it accordingly with no additional cost. The communication 

between the board and the PC can be both wired and wireless. Booting the firmware is done through 

JTAG port [117] after connecting the PC through CC3200 Launchpad programmer [118]. After 

booting the necessary firmware, and once the device is sitting in the engine (Figure 5.8), the user 

receives all the acquired data through the internet. Last but not least, the device is battery-powered 

where the Li-Po battery [119] [120] is charged using the engine’s available energy by means of 

induction [121] [122].  
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Figure 5.8 FDD Sensor Mounted on the Engine [7] 

 

Downgrading from a microprocessor-based implementation to a microcontroller-based 

implementation came with a cost. Both the microphone and the accelerometer were sampled 

individually at 13 kHz which sits below the minimum required sampling frequency of 40 kHz. The 

addition of wireless capabilities reduced the number of wires hooked to the engine. However, the 

transmitted data suffers from corruption due to RF interference coming from the engine [83]. 

Finally, the ICE’s extreme temperatures [82] makes any battery powered application redundant. 

5.2.3. Comparison of Previous FDD Implementations   

The previous sub-sections briefly introduced two working prototypes of fault-monitoring DAQ 

systems prior to this work. While dSPACE carried the sampling through a microprocessor, the 

second implementation used a microcontroller. The choice of the processing unit made the two 

implementations differ from one another. In fact, adopting a specific processor model restricts the 

number of sensory channels that can be used, the communication capabilities that can be 
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implemented, and the control features that the final system contains. To illustrate these points 

clearly, the following Table 5.1 summarizes the main differences between dSPACE and 

CC3200MOD approaches.  

 dSPACE CC3200MOD 

Processor Microprocessor IBM PPC 

750FX RISC (800 MHz) 

microcontroller ARM Cortex-

M4 (80MHz) 

 

ADC 16 Channels (12 bit, [0, 5V]) 4 Channels (12 bit, [0,1.8V]) 

Sampling Rate 20 kHz Simultaneously 13 kHz Individually 

Sampling Type Sampling by Polling Sampling by Interrupts 

Accelerometer (X4) 1-axis, 34 kHz, ±50g, 

±100mV/g 

(X1) 3-axis, 6 kHz, ±25g, 

±50mV/g 

Microphone No Microphone (X1) 60 Hz to 15 kHz 

Communication with user Wired Wireless 

Power supply Mains power Battery power 

Advantages Powerful and robust Compact and open source 

Disadvantages Expensive, too many wires Not powerful, Short life-cycle 

Table 5.1 Summary of Previous FDD Implementations  

 

Both implementations carried fault detection and diagnosis by finding and classifying all 8 cylinder 

misfire conditions with high accuracy. As indicated in the above table, each DAQ solution 

leveraged unique assets to carry the ICE diagnosis. This led to the current and final implementation 

where a working combination of both microprocessor and microcontroller was selected. The final 

prototype allows for on-board-processing which reduces the overhead coming from data 

transmission. In doing so, the resulting hybrid solution combines the advantages of both the 

CC3200MOD and dSPACE implementations.  
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5.3. FDD System designs  

The FDD system design process starts by selecting the hardware components that meet the 

requirement specifications mentioned in the previous chapter. In addition to that, the observations 

made about dSPACE and CC3200MOD implementations provide valuable insights about the new 

data acquisition solution. In fact, the sensory system shall contain both a microcontroller to carry 

the necessary sampling at the rate of 40 kHz and a powerful microprocessor to run computationally-

heavy machine learning algorithms. The final design is a system-on-chip (SoC) that diagnoses the 

engine’s general health automatically.  

The UDOO X86 ULTRA [123] presents a suitable solution to the FDD problem. It stands as the 

most powerful maker board ever created by year 2017. This SoC has a Quad Core 64-bit x86 

Braswell 14-nm processor [124]. Its CPU is the Intel® Pentium N3710 that clocks up to 2.56 GHz 

[124]. What makes this board suitable for neural network applications is the added GPU Intel® HD 

Graphics (700 MHz) and the fast 8 GB DDR3L dual channel RAM [124]. The UDOO makes a 

good use of an additional microcontroller that is used to interface the board with its external 

environment. This microcontroller is the Intel® Curie™ module (Quark SE core 32 MHz plus 32-

bit ARC core at 32 MHz) that features not only an additional Bluetooth LE capabilities but also a 

6-axis accelerometer/gyro. As seen in Figure 5.9, all these features come in place in one PCB board.  
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Figure 5.9 UDOO X86 ULTRA [124] 

 

The UDOO X86 ULTRA is a junction point between the PC world, represented by the Braswell 

microprocessor, and the Arduino world, represented by the Intel Curie microcontroller. This board 

offers both wired (Ethernet) and wireless (Wi-Fi) internet connectivity allowing for the remote 

control of the UDOO. When it comes to its wired capabilities, the board offers three USB 3.0 [125] 

suitable to power any external circuitry connected to it. What’s more, the board contains a wide 

range of serial interfaces, e.g. SPI, I2C, and UART (Figure 5.10) that can be used to extend its 

capabilities. 
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Figure 5.10 UDOO X86 ULTRA Block Diagram [126] 

 

In turning the UDOO X86 into a suitable DAQ for engine diagnostics, two attempts were made. 

The first one utilizes the existing microcontroller. However, after countless attempts of increasing 

the sampling rate, the Intel Curie failed to provide a reliable sampling rate at 40 kHz. This failed 

attempt led to a second solution that integrates the 32-bit 180 MHz ARM Cortex-M4 processor that 

comes with the Teensy 3.6 board.  

5.3.1. First Attempt: The Intel Curie Microcontroller DAQ Implementation  

The Hardware Design  

This section discusses the supplementary hardware components that make the UDOO board 

applicable for Fault Detection and Diagnosis of Internal Combustion Engines. These features are 

summarized into: a main microcontroller, few selected sensors with their appropriate signal 

conditioning circuits, and some general purpose power electronics components.  
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The Intel Curie’s processor is the Intel® Pentium® x86 ISA with a 32 MHz clock and a 32 bit 

address bus CPU. The module contains other industry-standard I/O peripherals, e.g. 4 Timers, 4 

PWM pins, 2 I2S channels, and 2 UART serial interfaces just to name a few. What is more 

important, the module avails of 19 channels 12-bit ADC for measurement and 16 GPIOs for control. 

Figure 5.11 delineates all Intel Curie driving components.  

 

Figure 5.11 Intel Curie Module Block Diagram [127] 
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According to the above figure, the selected microcontroller chip incorporates a Bosch BMI160 6-

axis accelerometer/gyroscope [128]. This sensor communicates with the microcontroller using the 

general I2C protocol which is slow for the FDD application. To take advantage of the existing 

industrial sensors, all of the AC240 series accelerometers [107] from Connection Technology 

Center Inc. (CTC) were recycled. External accelerometers offer more flexibility on the final 

mounting location when linked to the engine. In order to connect these accelerometers to the ADC 

of the microcontroller, appropriate signal conditioning was employed. Looking at Figure 5.12, the 

signal conditioning adjusts the output voltage of the accelerometers from [-10V, 10V] to [0, 3.3V], 

removes unwanted frequencies outside the bandwidth of interest (1 Hz – 20 kHz), and protects the 

ADC module from unwanted spikes that may occur during the logging process. Because the general 

purpose operational amplifier [129], LM 741 from Texas Instruments Inc. [130], was selected, the 

circuit design and simulation tool TINA-TI [131] was used. The following 3 stage signal 

conditioning was prototyped.  

 

Figure 5.12 Accelerometers Signal Conditioning  
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From right to left, the signal conditioning starts by filtering the raw vibration using a first order RC 

High-Pass Filter (HPF) with a cut-off frequency of 𝐹 =
1

2𝜋𝑅𝐶
= 1.6 𝐻𝑧 [132]. This removes not 

only the bias voltage for later amplifications but also the low frequency disturbances coming from 

the engine’s environment. Right after this step, the centred signal undergoes an amplification of a 

factor of 4 which was calibrated manually using the idle engine’s vibrations. Later on, the amplified 

signal gets filtered one more time using an RC Low-Pass Filter (LPF) with a cut-off frequency of 

𝐹 =
1

2𝜋𝑅𝐶
= 35 𝑘𝐻𝑧 [133] which eliminates all resonant frequencies outside the dynamic range of 

the accelerometer. Once all filtering is done, an additional bias voltage of  
3.3𝑉

2
= 1.65𝑉 centers the 

vibration wave at the middle point of the ADC’s voltage range. The next step involves adding a 

voltage-follower op-amp circuit to reduce the capacitance of the input signal which allows for faster 

ADC sampling intervals [134]. Finally, to protect the A/D converters from spikes, two parallel 

diodes were added as shown in Figure 5.12. The final values of all passive components were 

selected after testing with different voltage ranges on a breadboard. These tests were first carried 

using a function generator then using the actual vibration data coming from the engine. 

Aside from logging the vibration signals, the UDOO also records the sounds emitted by the running 

ICE. For that purpose, the MAX4466 Microphone was connected. It is a pre-amp audio evaluation 

board from Adafruit Inc. [135]. This electret condenser type microphone operates in frequencies 

between 20 Hz ~ 20 kHz [136]. The sound data gets amplified using the maxim MAX 4466 op-

amp [137]. The selected sensor is easy to interface with the microcontroller [138] and provides 

operating voltages within the limits of UDOO’s ADC module. 
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Figure 5.13 MAX4466 Microphone Pre-Amp Audio Evaluation Board [135] 

 

On top of the accelerometers and microphones, the system logs both the camshaft and the 

crankshaft position sensors. These recordings ensure synchronization of the sound and vibration 

with the different engine events. To decrease the data bandwidth, both the crank and cam sensory 

data were conditioned from their original analog shape to digital binary data. For this modification 

to happen, a simple inverting comparator Schmitt Trigger [139] was used, see Figure 5.14. Here 

again, by using the general op amp LM 741 [130], from Texas Instruments Inc., the prototype 

circuit was simulated using the software package TINA-TI [131]. The output of the Schmitt Trigger 

goes through a voltage divider with an adjustable factor that guarantees a suitable voltage threshold 

for the GPIO pin of the microcontroller. This threshold was calibrated and tested manually on a 

breadboard using recorded data from the engine. 
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Figure 5.14 Inverting Comparator Schmitt Trigger 

 

The final necessary hardware component is a DC-DC power converter circuit [140] to meet the 

power needs of the UDOO board. This last requires a constant +12VDC, ± 5% and consumes on 

average 36W to do the basic FDD functionalities. This DAQ prototype is powered from the car’s 

battery which does not provide a constant 12V throughout the different vehicle’s modes of 

operation. In fact, when the engine is at rest, the measured battery voltage at the OBD-2 terminal 

[141] is around 11.8 V. Once the ignition system is activated, the voltage drops to around 7.8V. 

Finally, when the engine is running, the recorded voltage sits at 14.3V. Figure 5.15 presents the 

schematics of the switching buck-boost converter [142] that is used eliminate these variations, 
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Figure 5.15 XSELMI Switching Buck-Boost DC/DC Converter [142] 

 

With all these aforementioned implementations, Figure 5.16 illustrates the complete hardware 

design of the DAQ prototype. The next step adds the software elements that make up a fully 

functioning FDD system.  

 

Figure 5.16 FDD System Hardware Components   



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

122 

The Software Design 

The software design for the DAQ accommodates both the firmware and the application software. 

For fault detection and diagnosis purposes, the firmware provides low-level control of the data 

acquisition hardware components by sampling the sensors, managing the microcontroller’s 

computational resources, and communicating with the host PC (Braswell microprocessor). This 

section covers mainly design issues faced while developing the firmware of this first 

implementation. The firmware failed to provide reliable data at 40 kHz. For that reason, the 

application software, which depends on the appropriate firmware, is investigated in details 

throughout the second implementation.  

The firmware’s main function is sampling the sensors connected to the microcontroller. When it 

comes to sampling procedures, there are two possible implementations. First, sampling by polling 

[143]. In this approach, the microcontroller constantly checks the ADC block for incoming data. 

This means, while the ADC is busy carrying the conversion, the microcontroller is locked in a wait-

state until the next data is available for collection. For that reason, this sampling scheme is wasteful 

of the microcontroller capabilities. Added to that, the sampling rate is not constant as the ADC’s 

conversion times are not fixed and depend on many factors, e.g. voltage reference and external 

capacitance. The solution to this limitation is sampling by interrupts [143]. In this second approach, 

the interrupt, which is a signal sent from the ADC to the microcontroller, requests the immediate 

attention from the microcontroller. When that happens, the processor stops performing the current 

program to service the action required by the interrupt. The taken-response is saved in the callback 

function of the interrupt, also known as the Interrupt Service Routine (ISR). In this application, the 

ISR function samples the ADC block and fills the communication buffer with the acquired data. 

This process repeats until all the sensors are sampled.  
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According to Figure 5.17 and Appendix B, the sampling scheme starts by the initialization process. 

This step loads all the libraries needed, initializes all global variables, and configures the parameters 

that are changed by the user, e.g. the buffer length and the number of sensors connected to the 

device. After that, the algorithm sets up all of the analog channels, communication channels, and 

interrupt routines. When entering the main scheduling loop, the firmware turns on the onboard 

LED. This visual output signals to the user the beginning of the sampling process. Once the FIFO 

(First In, First Out) buffer is full, the data is entirely transmitted to the main microprocessor. This 

process repeats until all the analog sensors are sampled during a fixed period of time predefined by 

the user.    
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Figure 5.17 Intel Curie Sampling Flow Chart 
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To have a real-time application, this firmware directly connects with its application software which 

resides inside the microprocessor. To exchange information between the two chips, the Intel Curie 

(µC) and the Braswell (µP) connect with one another through an internal USB channel [124]. 

Additionally, the user needs a serial console to intercept the data packets coming from the 

microcontroller and save them into a .txt file. For this purpose, Putty Telnet and SSH client1 were 

used [144]. Once the sampling of all attached sensors is finished, the user can either sample again 

to collect more data or process and display the prognostics results using MATLAB software 

package. The following Figure 5.18 summarizes the FDD system software flow chart. Detailed 

codes and pseudocodes are included in Appendices B and C.  

 

Figure 5.18 The FDD System Software Flow Chart  

                                                

1 Putty is an open-source terminal emulator that acts as a serial console for network file transfer applications. 
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Assuming that the sampling is carried at the right rate, the above flow chart represents a valid data 

collection scheme. At each cycle the data is collected from one digital channel, either crank or 

camshaft position sensor, and one analog channel, either knock, accelerometer, or microphone. 

From one cycle to the other, the tapped analog channel is changed accordingly to log all the sensors. 

At the default configuration, the Intel Curie achieves a maximum sampling rate of about 9.8 kHz. 

This default limit was increased to meet the application needs of 40 kHz after tuning the processor’s 

clock speeds, lowering the delays in the device drivers, adjusting the ADC performances, and 

reconfiguring the interrupts and communication channels. The below points describe these attempts 

in details.  

 Increase the clocks’ speed: The quark-C1000 contains three main clocks: a system clock 

(32MHz), a USB clock (48 MHz), and an RTC clock (32 kHz) [127]. Added to this variety, 

this chip supports multiple root clock frequencies: a 32MHz high frequency crystal 

oscillator for highly accurate applications, a 4/8/16/32MHz silicon oscillator for low-power 

operating mode, and a 32 kHz ultra-low power “doze” oscillator which allows quick 

wakeup times of the processor. In order for the microcontroller to operate under different 

clock frequencies, the C1000 supports both Dynamic Frequency Scaling (DFS), to scale 

the root system and the peripherals clock frequencies, and Dynamic Clock Gating (DCG), 

to allow for low power operations. According to Figure 5.19, the system’s clock can be 

toggled between ‘sys_clk_32mhz’ and ‘rtc_clk_32khz’. 
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Figure 5.19 Intel Curie General System Clocking Diagram [127] 

 

To increase the system’s processing speed, the system clock was set to the maximum of 32 

MHz. Before synchronizing the X86 core and sensor subsystems, this clock signal gets 

scaled through the 2-bit ‘CCU_SYS_CLK_DIV’ pre-scaler register. To achieve higher 

sampling bandwidths, CCU_SYS_CLK_DIV was set to lower values (2 or 1). The scaled 

clock signal is further divided before reaching the ADC block, as shown in Figure 5.20; 

‘adc_clk’ register was set to lower values from its original 128 pre-scaling factor. Before 

carrying this configuration, the divisor must be selected such that the 45:55 duty cycle of 

the ADC clock is not violated. Carrying these changes requires updating the flash before 

the actual clock frequency is changed. Increasing the speed of the processor worsens the 

ADC performance as the conversion cycles do not have enough time to be completed. In 

other words, a faster ADC conversion times translate in lower effective number of bits 

(ENOB) [145] that can be used to represent the data. For that reason, tuning these 

parameters was done carefully according to the application at hand.  
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Figure 5.20 Intel Curie Peripheral’s Clocking Diagram [127] 

 

 Alter the configured time delays: Increasing the system clock speed barely affects some 

of the processes, such as the serial communication. This type of event is programmed with 

additional delays that ensure comfortable time limits within which the microcontroller 

operates flawlessly. To change these added delays, all source codes and device drivers 

related to the application were investigated and their respective default delays were reduced 

while carefully monitoring the overall performance. 

 Reconfigure the ADC block: Added to the timing performances, the ADC’s configuration 

plays an important role in having faster sampling rates. For example, lowering the ADC 
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resolution from 12 bits to 10 bits and lowering the reference voltage from 3.3V to 1.8V 

doubles the data acquisition speeds of the Intel Curie. However, such modifications lower 

the quality of the data collected. In this application, the ADC speed was improved by 

lowering the input capacitance of the signal conditioning module after adding the voltage-

follower described in Figure 5.12. By doing so, the ADC block has a smaller RC time-

constant (𝜏 = 𝑅𝐶) that enables faster conversion times. Furthermore, all of the ADC’s 

internal pull-up resistances were set active while their PWM capabilities were eliminated 

through the allocated control register ‘IO_ADC0_CTRL’ [127]. Finally, the ADC 

preprogrammed gain of 2 was eliminated by putting the entire A/D module in free-running 

mode to ensure a maximum bandwidth.  

 Tune the data transfer baud rate: After increasing the ADC sampling speeds, it is 

necessary to increase the data transmission speeds between the microcontroller and the 

microprocessor. After all, the C1000 microcontroller has a limited built-in SRAM of 32 

kB [127] which is not enough to hold sensory data of one engine cycle. To solve this 

problem, the serial communication speeds defined in the source codes were reconfigured, 

e.g. setting ‘i2c_speed’ variable to ‘i2c_fast’ in i2c.c source code. Then, all parity options 

that add overhead to the communication were eliminated. To further reduce the overhead, 

the readings coming from one analog (12-bit resolution) and one digital channel were 

combined together to form a 2-byte data packet. This maximizes the effective storage 

capacity of the buffer. Finally, the baud rate [146] of the UART controller was increased 

from its default value 9600 baud to 2M baud. Before making such change, it is important 

to note that baud rates tightly correlate with the base frequency of the system, 32 MHz, 

along with the defined pre-scaler divisors that lie between the UART peripheral and the 

system clock, as seen in Figure 5.20. In fact, this step was done carefully as the 

microcontroller can only accept a set of specific baud rates to ensure flawless data 
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communication. After increasing the baud rates, it is necessary to deal with another 

problem: buffer overflow. To go around it, the size of the communication buffer was 

increased dynamically from its original 16 Bytes to a length that maximizes the capabilities 

of the 32 kB SRAM when the code is running.  

To sum up, the modifications carried above are the main drivers to increase the sampling rate of 

sensory system. Other adjustments include giving higher interrupt priorities to both sampling and 

communication events and copying all used source code functions to the main FDD firmware. This 

makes the microcontroller highly customized for the data-acquisition application.  

After making all the aforementioned changes, the required sampling rate of 40 KHz was met. 

However, due to the intermittence in the data transfer, the recorded signals contained glitches. This 

was noticed after applying Fast Fourier Transform on the raw data. To eliminate the recorded 

discontinuity, the Intel Curie should sample and send the data simultaneously due to the limited 

RAM capabilities. However, this new scheme took around 45~47 microseconds which lead to 

setting the interrupts at 50-microsecond intervals (20 kHz sampling rate). Not discouraged, a new 

microcontroller was selected by giving much emphasis to its CPU maximum clocking speed as 

well as its RAM storage capabilities. The following section highlights this new implementation in 

details.   

5.3.2. Second Attempt: The Teensy 3.6 Microcontroller DAQ 

Implementation  

The Hardware Design  

In this second attempt, the Teensy 3.6 development board was selected. Its CPU is the 32-bit, 180 

MHz ARM Cortex-M4 processor. The board comes with a prepackaged bootloader that allows 

simple USB connection with the UDOO X86 board [147]. 
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Figure 5.21 Teensy 3.6 Microcontroller [147] 

 

The teensy 3.6 offers many features including a 1 Mbyte Flash memory to save the FDD firmware 

and a 256 Kbyte RAM memory to save intermediate buffer data for the serial communication. The 

main processor is the MK66FX1M0VMD18 chip which belongs to a high performance K66 sub-

family arm processors [148]. This processor offers High USB communication speeds 

(480Mbit/sec) which match the speeds of the available USB 3.0 of the UDOO X86. The board also 

has 62 I/O pins amongst which there are 22 PWM outputs. When it comes to Teensy’s ADC 

capabilities, the board has 2 ADC converters with 13-bit resolution and 2 DAC outputs with 12-bit 

resolution. 
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Figure 5.22 K66 Block Diagram [148] 

 

Having 2 Analog-to-digital converters is not enough for FDD applications.  The sensory system 

requires at least 8 analog channels (4 vibration + 4 sound). This limitation is circumvented using 

an external ADC module. The module uses the LTC 1867 chip from Analog Devices Inc. [149] 

that offers 8-channel of 16-bit A/D converters. All channels can be configured either for single-

ended or for differential inputs. Added to that, the conversion can be either unipolar or bipolar to 

allow both positive and negative voltage readings. To use this module with the signal conditioning 

circuits designed before, the LTC 1867 channels were configured single-ended and unipolar. This 

module connects with the Teensy board using the SPI serial protocol that allows sample rates of up 

to 200 ksps (kilo-samples per second).  
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Figure 5.23 LTC 1867 Block Diagram [149] 

 

With all the hardware components selected and their respective integration completed, the next step 

in the hardware design is to prepare a comprehensive circuit schematic that encompasses all these 

elements in one board. This board contains the signal conditioning for 4 accelerometers (Figure 

5.12), the signal conditioning for both the crankshaft and the camshaft position sensors (Figure 

5.14), and few circuit elements to provide the needed voltage rails for power purposes. The signal 

conditioning circuits are directly connected to the LTC 1867 ADC module. This module interfaces 

with the teensy 3.6 using SPI’s 4 lines, MOSI, MISO, Clock, and Chip Select as shown in Figure 

5.24. 
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Figure 5.24 FDD System’s Circuit Schematics 
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With the circuit schematics ready, all elements were placed into a double-layer general purpose 

PCB. To increase the SNR performances of the FDD system, both layers were fully grounded and 

both grounds were connected with the chassis of the vehicle. While the upper layer contains all 

signal conditioning for the accelerometers (Figure 5.12), the bottom layer contains the signal 

conditioning for the crank/cam (Figure 5.14) along with the ADC module, shown in Figure 5.25. 

The new PCB board is designed to host the teensy 3.6 on top of it, see Figure 5.26. The final 

prototype fits the UDOO as an add-on shield for its microcontroller side. While this solution offers 

an overall compact design, it remains practical as well by keeping the original GPIO pins of the 

UDOO exposed for other applications. The final UDOO X86 DAQ hardware is presented in Figure 

5.27.  

 

Figure 5.25 FDD System’s PCB Wiring  
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Figure 5.26 The FDD System Top and Bottom Layer 

 

 

Figure 5.27 The FDD System DAQ Prototype 
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The Software Design 

Similarly to the previous implementation, the software design relies on both firmware and 

application software. The choice of this second microcontroller provides two main advantages: the 

fast clocking speed that goes up to 180 MHz and the available 256 kB RAM. Faster clocking 

correlates with quicker execution times in all of A/D conversion and serial communication 

channels. On the other side, the increase in memory capacity allows to store up to 5 engine cycles 

of 6 different analog channel (16-bit each) at 20 kHz simultaneously. With these valuable updates 

in the hardware, the firmware for this set up offers to the user three main different sampling schemes 

to choose from. In all these options, the A/D resolution is set to 16 bits. 

 6 analog channels at 20 kHz simultaneously.  

 3 analog channels at 40 kHz (X2 using synchronization signals from Cam/Crankshaft 

position sensors). 

 1 analog channel at 125 kHz (X6 using synchronization signals from Cam/Crankshaft 

position sensors). 

Similarly to the previous implementation, the FDD system samples the connected sensors using 

interrupts. This sampling scheme allows for a fixed sampling interval that is configurable by the 

user. Every interrupt callback function uses the SPI serial protocol to communicate with the 

external A/D module. This is a full duplex communication channel [150] where the microcontroller 

initiates the process by sending 2 bytes to the ADC for configuration (channel number, channel 

type: single-ended versus differential). On the receiving end, the ADC seizes message, configures 

itself accordingly, and sends the suitable ADC channel’s output (16-bit resolution) back for storage. 

The microcontroller collects the data and store it in a FIFO buffer inside the RAM. Once the buffer 

is full, the microcontroller stops the interrupt routine and proceeds with emptying the buffer into 
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the USB channel that links it with the microprocessor.  In case higher sampling rates are selected 

(40 and 125 kHz), the microcontroller repeats the above process until it logs all the attached sensors. 

The following flow diagram depicts in details one data acquisition cycle of all sensors.  

 

Figure 5.28 Teensy 3.6 Sampling Flow Chart  

 

To reduce the amount of codes involved, the serial communication between the microcontroller 

and the microprocessor was first coded in MATLAB. This allowed having both the serial 

communication and the signal processing in one file. Unfortunately, after testing this 

implementation, it took on average 50 seconds to send a 2-second sampled data. This goes against 
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any practical real-time application of the DAQ system. So the second attempt was carried out using 

the C language. By applying the Termios serial library for POSIX operating systems [151], the data 

transmission overhead was reduced to 3 seconds. This additional firmware was compiled and 

loaded onto the Linux kernel with a high priority to tailor this general operating system to the DAQ 

application. Furthermore, to prevent the serial buffer from overflowing a full duplex 

communication between the microprocessor and the microcontroller was implemented. To this end, 

one cycle of data-collection averaged a 5-second period which allows the engine prognostics to be 

done in real-time. The following flow chart summarizes all elements in the software design of the 

FDD system.  

 

Figure 5.29 The FDD System Software Design Flow Diagram  
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When it comes to the FDD application software, all coding was carried in MATLAB. With that in 

mind, application software codes can be clustered into 2 categories: Offline Application Software 

and Online Application Software. The former category is responsible to generate all necessary 

elements required to carry the real-time online prognostics, e.g. train the neural network needed for 

the M1-Average-CAD FDD implementation or prepare a database of healthy-engine recordings for 

M2-CAD-IEMSPCA algorithm. Meanwhile, the latter category is responsible for carrying the 

diagnostics in real-time, and it provides the user with three main options to choose from: M2-CAD-

IEMSPCA FDD which requires an extensive library of healthy recordings, M1-Average-CAD FDD 

which requires a pre-trained neural network model, and M3-CASA FDD which requires signals 

from both the cam and crankshaft position sensors. The last type of online application software is 

the least complex, the fastest, and yet the most accurate of the three in detecting misfire related 

faults. Furthermore, this algorithm bypasses the need to using a microprocessor and can be 

integrated within the firmware of the Teensy microcontroller directly. Finally, to enhance the 

usability of the DAQ system, the processed results are displayed for the user as follows.  

 

Figure 5.30 The FDD SystemUser Interface  



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

141 

5.4. Conclusion  

This chapter starts by covering previous DAQ implementations within the Centre for Mechatronics 

and Hybrid Technologies at McMaster University for engine diagnostics. While the first attempt 

used a proprietary dSPACE hardware that was costly, the second implementation used a wireless 

microcontroller with limited computational capabilities and powering options.  Both 

implementations were not practical as raw data needed to be communicated back to the user’s 

computer for further processing. To have the processing done on board, a System on Chip (SoC) 

was selected, and it combines the computational power of both a microcontroller (for sampling) 

and a microprocessor (for processing). The selected board was then tailored for FDD. With this 

third attempt complete, the following table can summarize all Fault Detection and Diagnosis DAQ 

implementations.  
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 dSPACE CC3200MOD UDOO X86 

Processor µP: IBM PPC 750FX 

RISC (800 MHz) 

µC: ARM Cortex-

M4 (80MHz) 

 

µP: Intel  Pentium 

N3710  (2.56GHz) 

µC: ARM Cortex- 

M4 (180MHz) 

ADC 16 Channels  

(12-bit, [0, 5V]) 

4 Channels  

(12-bit, [0,1.8V]) 

8 Channels  

(16-bit, [0, 3.3 V]) 

Sampling Rate 20 kHz Simultaneous 13 kHz Individual 20 kHz Simultaneous 

40 kHz Simultaneous 

125 kHz individual 

Sampling Type Sampling by Polling Sampling by 

Interrupts 

Sampling by 

Interrupts 

Accelerometer (4X) 1-axis, 34 kHz, 

±50g, ±100mV/g 

(1X) 3-axis, 6 kHz, 

±25g, ±50mV/g 

(4X) 1-axis, 34 kHz, 

±50g, ±100mV/g 

Microphone No Microphone (1X) 60 Hz to 15 

kHz 

(4X) 20 Hz to 20 

kHz 

Knock Sensor 

Interface 

NO NO Yes 

Synchronization Camshaft Camshaft Cam + Crankshaft 

Communication with 

user 

Wired Wireless Wireless 

Power supply Mains power Li-Po Battery power Car Battery Power 

Advantages Powerful and robust Compact and open 

source 

Compact, open 

source, powerful 

Disadvantages Expensive, too many 

wires 

Not powerful, Short 

life cycle 

Not rugged, 

Relatively expensive 

Table 5.2 Summary of All CMHT FDD Implementations  
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Chapter 6. Results and Discussions  

This chapter starts by describing the experimental setups for Fault Detection and Diagnosis. Then, 

the results from the application of the three FDD strategies discussed in Chapter 3 are reported, 

namely for the M1-Average-CAD, the M2-CAD-IEMSPCA, and the M3-CASA algorithms. A 

comparison of their performance is then presented and discussed.  

6.1. Experimental Setup  

Two experimental setups were used in this research project:   

 In-vehicle testing supported the main thrust of the experiments. The set up enabled FDD 

application to the operation of a 4.6L ICE within a Ford Crown Victoria vehicle. In this 

first setup, only single- and double-cylinder misfire conditions were physically simulated.  

 The second experimental platform was a 5L Ford Coyote engine on an engine 

dynamometer at the Centre for Mechatronics and Hybrid Technology at McMaster 

University. This setup enabled data collection pertaining to advanced faults, such as 

knocking and pre-ignition, presenting challenging fault conditions for the FDD techniques. 

In addition to the experimental platforms, this section covers the fault-simulation procedures. The 

tests involved physical simulation of faults on healthy engines to collect the data of multiple sensors 

over the course of at least one engine cycle. 

6.1.1. Setup 1: The Ford Crown Victoria Engine 

The first experiment setup hosts the FDD system, and it is summarized in Figure 5.16. The FDD 

data acquisition system is interfaced with three main elements: the engine, the car battery, and the 

user’s computer. In its connection with the engine, The DAQ system samples all connected sensory 
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channels to perform the diagnostics. Both microphones and accelerometers are used externally to 

the engine and mounted accordingly on it. Meanwhile, all of camshaft, crankshaft, and knock 

sensors are proprietary to the ICE and require signal processing circuit to meet DAQ’s electrical 

characteristics. To tap into these signals, the Ford Crown Victoria’s electrical diagram was used. 

The power needs of the DAQ system are met by connecting it to the OBD-2 port. This connection 

incorporates an intermediate switching buck-boost configuration. Once the connection with the 

OBD-2 port is established, all voltages in both the sensory and the communication lines are 

referenced with the car’s chassis ground. Finally, in this first setup, the DAQ system is controlled 

remotely through the user’s computer.  

The FDD system can connect a maximum of 4 accelerometers and 4 microphones with its ADC 

module. There are several possible positions and orientations for mounting these different sensors. 

In this regard, the microphones have flexible mounting options in comparison with the 

accelerometers as a direct contact with the engine block is not required. In this experiment, to 

exploit the inherent symmetry of the V8 engine, all sensory inputs were mounted on the right side 

of the engine block. Two of the accelerometers are mounted on the cylinder head, namely, the right 

front head (RFH), the right rear head (RRH) as shown by the blue coloring in Figure 6.1. These 

one-axis accelerometers were seated perpendicular to the piston movement. The microphones were 

placed to achieve a maximum coverage of the noise emitted by the engine’s right bank. The setup 

used 3 microphones with different mounting locations, as depicted in Figure 6.2 
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Figure 6.1 Mounting the Accelerometers [8] 

 

 

Figure 6.2 Mounting the Microphones  
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After completing the instrumentation and hardware connections, the FDD sensory system and the 

accelerometers driver circuit are grouped inside one box that was placed in the front passenger seat 

as shown in Figure 6.3. Figure 6.4 illustrates a simplified diagram that shows the mounting location 

and direction of all vibro-acoustic sensors that were available in the first experimental setup.  

 

Figure 6.3 The FDD System Enclosure  

 

 

Figure 6.4 Simplified Sensor Diagram for Setup 1 
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6.1.2. Setup 2: The Ford Coyote Engine 

This research project employed a secondary setup to further test the diagnostic capabilities of the 

FDD techniques. While the first setup was used to generate misfire faults, the second setup was 

used to introduce knocking and pre-ignition fault conditions. This secondary implementation is 

based on the Ford Coyote engine, with specifications summarized in Table 6.1. This engine is 

currently used in the Ford F150 truck and the Mustang sports car. The Ford Coyote engine was 

installed on the Titan T 250 dynamometer with specifications summarized by Table 6.2. The Kisler 

Kibox and its optical encoder were used to collect the data in crank-angle domain. Table 6.3 

summarizes the environment in which the engine was placed. 

Item  Specification  

Displacement  5.038 L   

No. of cylinders  8  

Bore  93.0 mm (3.661 in)  

Stroke  92.7 mm (3.649 in)  

Firing order  1-3-7-2-6-5-4-8  

Spark plug  12405  

Spark plug gap  1.25-1.35 mm (0.049-0.053 in)  

Compression ratio  12:1  

Engine weight (W/O accessory drive 

components)  
453.0  lb ( 205.5  kg)  

Table 6.1 Ford Coyote Engine Specifications  

 

Item  Specification 

Torque 400 (600) Nm 

Power 220 kW 

Speed 8000 1/min 

Idle speed > 700 1/min 

Mass moment of inertia > 0.15 kgm2 

Table 6.2 HORIBA Titan T 250 Engine Dynamometer  
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Facility Explanation 

Gasoline Engine 
Gen 3, 2018 Ford Coyote Engine 

(5.0L 32V Ti-VCT/5.0L Ti-VCT V8 (308kW/418PS)) 

Engine Dynamometer Horiba Schenk T 250 

Emission Analyser CAI 

Engine Control Unit EFI Technologies Open Access ECU 

Combustion Analyzer Kistler KiBox Combustion Analyzer 

Crank Angle Position Sensor Kistler Optical Encoder  

Engine Dyno Accessories 
Oil Cooling Circuit, Engine Coolant Circuit, Fuel Supply 

System, Electrical Power Supply System 

Table 6.3 Second Experimental Setup Facility  

 

In this second experimental setup, seven sensors were logged in order to conduct FDD testing. The 

engine has 4 internal knock sensors: Right Front Knock, Left Front Knock, Right Rear Knock, and 

Left Rear Knock. The mounting position and direction of these 4 sensors are shown in a simplified 

form in Figure 6.8. In addition to the knock sensors, two one-axis accelerometers and one 

microphone were added to engine. Figure 6.5 shows the overall setup, and it highlights the location 

of the microphone which is placed on top of the engine block pointing downwards as well as the 

location of the two accelerometers which were mounted on the right front side of the engine block 

(close to cylinder # 1). Figure 6.6 zooms on the mounting location and direction of the microphone. 

Furthermore, Figure 6.7 shows the 2 accelerometers which were attached to the engine through an 

intermediate bracket. This bracket allowed for two mounting options: accelerometer1 was mounted 

perpendicular to the piston movement, and accelerometer 2 was mounted in parallel with it. Having 

the accelerometers aligned in perpendicular directions provides useful insight fault detection and 

isolation. Figure 6.8 provides a simplified diagram of the 7 sensors used this secondary setup.  
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Figure 6.5 The Second Experimental Setup: Ford Coyote Engine 

 

 

Figure 6.6 The Placement of the Microphone 
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Figure 6.7 The Placement of the Accelerometers 

 

 

Figure 6.8 Simplified Sensor Diagram for Setup 2 
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The following Table 6.4 compares the two setups that were used to carry fault detection and 

diagnosis of internal combustion engines.  

Specifications Setup 1  Setup 2 

Engine  Ford Crown Vic (V8, 4.6L) Ford Coyote (V8, 5.038 L) 

Engine Environment  Inside the Vehicle  On the Dynamometer 

DAQ System  Udoo X86 Ultra  KiBox (from Kistler) 

Sensors Accelerometer (X2), Microphones 

(X3), Knock (X1), Crankshaft + 

Camshaft 

Accelerometer (X2), Microphone 

(X1), Knock (X4), Crankshaft  

Faults  Single and Double misfire faults  Pre-ignition and knocking faults  

Fault simulation  Manually  Using Open Access ECU 

Engine Speed ~800 rpm (idle) 3500 rpm  

Table 6.4 Summary of FDD experimental Setups 

 

6.1.3. ICE Fault Induction  

To test the performance of the three FDD strategies considered in this research namely M1-

Average-CAD, M2-CAD-IEMSPCA, and M3-CASA, different faults were physically simulated 

using the two experimental setups. There are mainly 3 tests that were carried:  

 Test 1: 8 single-cylinder misfire conditions were simulated on the Ford Crown Victoria 

engine (setup 1). 

 Test 2: 8 single- and 4 double-cylinder misfire conditions were introduced on the Ford 

Crown Victoria engine (setup 1). 

 Test 3: knock and pre-ignition faults were simulated with different intensities on the Ford 

Coyote engine (setup 2).  

For each test, every fault condition is labelled in order to train a neural network classifier. Table 

6.5 summarizes the labelling scheme that was adopted. Furthermore, Figure 6.9 depicts the different 

cylinders’ ordering schemes that were adopted for the two engines. In the case of the Ford Coyote 
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engine, cylinder 1 refers to the front cylinder which belongs to the right bank. Meanwhile, for the 

Ford Crown Victoria engine, the same labelling refers to the rear cylinder which sits at the left bank 

of the engine. Although the experiment was carried through three different tests, the M3-CASA 

technique was implemented with Test 1 and Test 2 only. As mentioned earlier, the Crank-Angle 

Speed Analysis technique was derived to detect misfire conditions only.  

Condition Index TEST 1 TEST 2 TEST 3 

1 Cylinder 1 Misfire Cylinder 1 Misfire Light Knocking  

2 Cylinder 2 Misfire Cylinder 2 Misfire Moderate Knocking  

3 Cylinder 3 Misfire Cylinder 3 Misfire Large Knocking 

4 Cylinder 4 Misfire Cylinder 4 Misfire Severe Knocking 

5 Cylinder 5 Misfire Cylinder 5 Misfire Onset Knocking 

6 Cylinder 6 Misfire Cylinder 6 Misfire Moderate Pre-ignition 

7 Cylinder 7 Misfire Cylinder 7 Misfire Severe Pre-ignition 

8 Cylinder 8 Misfire Cylinder 8 Misfire Healthy Condition 

9 Healthy Condition Cylinders 1 & 7 misfire X 

10 X Cylinders 2 & 8 misfire X 

11 X Cylinders 3 & 5 misfire X 

12 X Cylinders 4 & 6 misfire X 

13 X Healthy Condition X 

Table 6.5 Summary of the ICE Fault Conditions 

 

 

Figure 6.9 Ford Engines Cylinder Numbering Scheme [8] 



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

153 

 

 TEST 1 TEST 2  TEST 3 

M1-Average-CAD √ √ √ 

M2-CAD-IEMSPCA √ √ √ 

M3-CASA √ √ X 

Table 6.6 Summary of the FDD Techniques used with the 3 Tests 

 

To generate the faults summarized in Table 6.5, the two experimental setups followed a similar 

data collection procedure. Figure 6.10 illustrates the fault-simulation flowchart that was 

implemented as follows. Before acquiring the data, initially the engine needs to be in its healthy 

condition. While the engine is warming up to reach its normal operating conditions of oil and 

coolant temperatures, the data acquisition system is powered up, its communication with the user’s 

control PC is established, and all its running firmware is compiled and booted. Once the engine 

reaches its normal operating condition, at least 50 engine cycles of healthy data are collected 

(setup1 at 800 rpm, setup2 at 3500 rpm). After collecting data on the healthy condition, the fault 

conditions are physically simulated on the engines. The experiment considers 3 different types of 

faults (misfire, knocking, and pre-ignition) and these are introduced to the engine as follows:   

 To simulate the misfire fault in a particular cylinder chamber, the corresponding spark 

plug and oil injector are disconnected simultaneously in order to avoid unwanted 

accumulation of unburnt oil inside the combustion chamber.  

 To simulate the knocking fault, the ignition timing of all cylinders are advanced using the 

Open Access ECU. This achieved knocking condition across all 8 cylinders of the Coyote 

engine.  

 To simulate the pre-ignition fault, an inadequate spark plug (heat range) was installed in 

cylinder 1 of the Ford Coyote engine. As this modified component is unable to dissipate 
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heat effectively from one engine cycle to another, it ignites prior to the standard time of 

combustion.  

After introducing faults in the system, data is collected and labelled according to the fault condition 

(min 50 engine cycles). This process was repeated until for all fault conditions are tested.  
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Figure 6.10 Data Collection Flow Chart  
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6.1.4. Fault Classification 

Fault classification is carried by a Multi-Layer Perceptron neural network which is depicted by 

Figure 2.15. To prepare its training set, all the gathered data using the previous methodology 

(Figure 6.10) are labelled according to Table 6.5. The training is then carried out using the three 

methodologies discussed in Chapter 3, namely LM, SVSF, and EKF. In these experiments the 

structure of the neural network is different based on the test type (Test 1, 2, and 3) and the FDD 

technique (M1-Average-CAD and M2-CAD-IEMSPCA). The number of output nodes is 

dependent on the number of labelled categories as follows:  

 Test1: the number of nodes in the output layer is equal to 9 (categories).  

 Test 2: the number of nodes in the output layer is equal to 13 (categories).  

 Test 3: the number of nodes in the output layer is equal to 8 (categories). 

The number of nodes in the input layer is relative to the FDD techniques, and it is defined as 

follows:  

 M1-Average-CAD: the number of nodes in the input layer is equal to 720 which represents 

one engine cycle’s sample measurement (1° crank-angle resolution). 

 M2-CAD-IEMSPCA: the number of nodes in the input layer is equal to the number of 

wavelet bins produced by the WPT (2𝑤𝑎𝑣𝑙𝑒𝑡 𝑙𝑒𝑣𝑒𝑙) multiplied by the number of connected 

sensors to the FDD device. For example, the best performance was achieved using setup 2 

which has 7 sensors when the wavelet level is set at 6. For that case, the number of nodes 

in the input layer is equal to 26 X 7 = 448 nodes. 

As depicted by Figure 6.11, the neural network contains 3 layers (one input, one hidden, and one 

output layer). While the number of nodes in the input and output layers varies based on the test 
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type and the selected FDD technique, the number of nodes in the hidden layer is fixed to 10 nodes. 

The neural network is fully connected and its weights and biases initialized using Nguyen-window 

layer initialization function. This initialization scheme is done in Matlab using the 'initnw' 

parameter option. While the activation function for the output layer is pure linear transfer function, 

the activation function used with the remaining layers (input and hidden layers) is the log-sigmoid 

transfer function described by Figure 2.14.  

 

Figure 6.11 Multi-Layer Perceptron Structure 

 

To assess the diagnostic capabilities of the above network, two main charts are compiled: the 

Confusion Matrix and the Mean Square Error (MSE) graph. Confusion matrices are validation tools 

of the network’s training error with respect to a set of labelled data. This tool isolates the 

contribution of every error that happens during the classification task. These errors directly reflect 

the similarity between the different simulated conditions and isolate the type of faults that the 



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

158 

network is unable to discern. On the other hand, MSE graphs highlight the number of epochs needed 

to fully train the network. The training is finished when one of the training criteria is met. These 

criteria are, the maximum number of iterations (epochs), the maximum training time, the minimum 

gradient error, the minimum mean square error, and the maximum number of validation checks. 

Aside from the classification accuracy and the number of training epoch, other performance criteria 

include the duration of the training and the number of correct test cases.  

 

(a)                                                                         (b) 

Figure 6.12 Validation Metrics: (a) Confusion Matrix, (b) MSE Graph  

 

6.2. M1-Average-CAD FDD Results 

The M1-Average-CAD FDD technique is used to carry the diagnostics of the engine using sensors 

separately. This technique highlights the contribution of each sensor using time, frequency, and 

time-frequency generated features. These features are all derived from the CAD transform of the 

vibro-acoustic raw data. This first FDD methods uses three different feature extraction components: 

Average-CAD (time), Average-CAD-FFT (frequency), and Average-CAD-WT (time-frequency). 
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The following Figure 6.13 plots an example of the generated features from the accelerometer when 

the engine is healthy. The first subplot (a) depicts the CAD transform of the vibration data that was 

sampled at 200 kHz. The CAD transform interpolates the raw vibration (time) into 720 angular 

samples which make up one engine cycle at 1° resolution of crank angle. The following subplots, 

namely (b) Average-CAD-FFT and (c) Average-CAD-WT, are respectively generated by applying 

the Fast Fourier Transform and the Wavelet Transform on the Average-CAD data.  

 

(a) Average-CAD  
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(b) Average-CAD-FFT 

 

(c) Average-CAD-WT 

Figure 6.13 The Three Features of M1-Average-CAD FDD Technique 
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The above features are generated for all fault conditions and are used separately to train The Multi-

Layer Perceptron classifier. This FDD technique is implemented with the three test scenarios which 

are summarized in Table 6.5. 

Test 1: Single Misfire Condition  

The first test was carried in setup 1 where 8 single cylinder misfire conditions were introduced on 

the Ford Crown Victoria engine. To classify the extracted features using M1-Average-CAD FDD 

technique, three training methods were chosen: the LM, the EKF, and the SVSF algorithms. The 

implementation of these training algorithms were derived from the MATLAB codes which were 

developed by Feng [8]. Table 6.7 summarizes all combinations of training algorithms and feature 

extraction FDD techniques that were implemented in this first test. As mentioned in section 3.3, 

M1-Average-CAD FDD technique is carried out for each recording (sensor) separately. For the 

same sensory data, 3 training algorithms were implemented. Each training algorithm used either of 

Average-CAD, Average-CAD-FFT, or Average-CAD-WT generated features. 

  

Sensors  Training Algorithms Feature Extraction 

 

 

Knock (X1) 

 

Accelerometer (X2) 

 

Microphone (X3) 

 

LM 
Average-CAD 

Average-CAD-FFT 

Average-CAD-WT 

EKF 
Average-CAD 

Average-CAD-FFT 

Average-CAD-WT 

SVSF 
Average-CAD 

Average-CAD-FFT 

Average-CAD-WT 

Table 6.7 Test 1 Framework  

 



M.A.Sc. Thesis - Ahmed Doghri   McMaster - Mechanical Engineering 

 
 

162 

Table 6.8 reports the training parameters used with the MLP Neural Network. In this test, 50 engine 

cycles were collected for each fault condition. Therefore, a total of 450 training features (50 engine 

cycle X 9 categories) were generated. These features constitute the training dataset for the MLP, 

and they are separated into three sets: the first set (270 features [60%]) is used to train the network, 

the second set (90 features [20%]) is used to validate (verify) the training of the network, and the 

third set (90 features [20%]) is solely used for testing purposes. That is to say, once the training is 

complete, the testing data is fed to the network to assess its classification performance. Other 

parameters include the SVSF’s boundary thickness and conversion rate as well as the number of 

hidden layers that constitute the MLP network. Additionally, Table 6.8 includes 3 parameters that 

are used to stop the training of the network, and they are: the maximum number of training epoch 

which was set to 20, the minimum RMS error threshold which was set to 10−3, and the minimum 

gradient error threshold which was set to 10−5. 

 

Parameter  Value  

Total Number of Features 450 

Ratio of Training : Validation : Testing  60% : 20% : 20% 

Maximum Number of Epochs  20 

Stopping RMS Error  10−3 

Stopping Gradient Error  10−5 

SVSF Conversion Rate  0.1 

SVSF Boundary Thickness  0.1 

Table 6.8 Test 1 Parameters 

 

 

Test 1 results are summarized in Table 6.9 as follows:  
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Sensor  Training 

Algorith

m 

Feature  

Extraction 

Accuracy  Training 

Epochs 

Training  

Time (sec) 

# of 

Failed 

tests /90 

Knock  LM AVG-CAD 100% 12 275 0 
AVG-CAD-FFT 100% 11 339  1 
AVG-CAD-WT 100% 12 345 0 

SVSF AVG-CAD 11.1% 3 415 80 
AVG-CAD-FFT 11.1% 3 417 80 
AVG-CAD-WT 0% 3 429 90 

EKF AVG-CAD 11.1% 2 211 79 
AVG-CAD-FFT 13.3% 2 211 79 
AVG-CAD-WT 11.1% 2 212 80 

Accelerometer 

1 

LM AVG-CAD 100% 9 207 0 
AVG-CAD-FFT 100% 10 235 0 
AVG-CAD-WT 100% 12 338 0 

SVSF AVG-CAD 11.1% 3 416 80 
AVG-CAD-FFT 16.7% 3 416 74 
AVG-CAD-WT 11.1% 3 418 80 

EKF AVG-CAD 11.1% 2 211 80 
AVG-CAD-FFT 12.2% 2 211 79 
AVG-CAD-WT 5.6% 2 212 84 

Accelerometer 

2 

LM AVG-CAD 100% 14 365 0 
AVG-CAD-FFT 100% 12 281 1 
AVG-CAD-WT 100% 10 308 0 

SVSF AVG-CAD 11.1% 3 415 80 
AVG-CAD-FFT 10% 3 417 79 
AVG-CAD-WT 11.1% 3 417 80 

EKF AVG-CAD 11.1% 2 211 80 
AVG-CAD-FFT 15.6% 2 213 75 
AVG-CAD-WT 11.1% 2 212 80 

Microphone 1 LM AVG-CAD 90% 20 682 6 
AVG-CAD-FFT 100% 14 330 1 
AVG-CAD-WT 100% 21 700 0 

SVSF AVG-CAD 15.6% 3 417 79 
AVG-CAD-FFT 5.6% 3 416 85 
AVG-CAD-WT 11.1% 3 415 80 

EKF AVG-CAD 11.1% 2 212 80 
AVG-CAD-FFT 11.1% 2 212 80 
AVG-CAD-WT 11.1% 2 212 80 

Microphone 2 LM AVG-CAD 100% 6 158 0 
AVG-CAD-FFT 100% 14 340 0 
AVG-CAD-WT 100% 5 131 0 

SVSF AVG-CAD 15.6% 3 415 75 
AVG-CAD-FFT 17.8% 3 417 75 
AVG-CAD-WT 11.1% 3 417 80 

EKF AVG-CAD 11.1% 2 211 80 
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AVG-CAD-FFT 10% 2 212 81 
AVG-CAD-WT 12.2% 2 213 80 

Microphone 3 LM AVG-CAD 100% 8 247 0 
AVG-CAD-FFT 97.2% 10 240 0 
AVG-CAD-WT 100% 9 259 0 

SVSF AVG-CAD 11.1% 3 531 80 
AVG-CAD-FFT 11.1% 3 447 80 
AVG-CAD-WT 11.1% 3 498 80 

EKF AVG-CAD 13.3% 2 216 81 
AVG-CAD-FFT 20% 2 215 72 
AVG-CAD-WT 11.1% 2 217 80 

Table 6.9 Test 1 Results  

 

 

The following figures present the confusion matrices and MSE graphs for Acceleromter1 using 

Average-CAD feature components:  

 

 

Figure 6.14 Accelerometer 1 Average-CAD LM Training Results 
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Figure 6.15 Accelerometer 1 Average-CAD SVSF Training Results 

 

Figure 6.16 Accelerometer 1 Average-CAD EKF Training Results 

 

Taking into consideration the above results, the following observations are made:  

 The LM algorithm achieved the best results among the 3 considered training algorithms 
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 On a consistency basis, it took the SVSF 3 epochs and the EKF 2 epochs to reach the 

stopping condition of minimum gradient error without fully training the network.  

 By isolating the number of training epochs and the total training time, it is clear that 

both EKF and SVSF are slower than LM algorithm. 

 From the LM results, it can be deduced that microphone 1, when compared with the 

remaining 5 sensors, had the worst performance. This could be related to its location 

in the car which is highlighted by Figure 6.2. Nevertheless, all sensors classified the 

90 tests cases with high accuracy (error < 6.66%).  

 The two accelerometers and the knock sensor achieved similar classification 

performances which affirms the ability of the knock sensor to carry misfire FDD. 

 All of Average-CAD, Average-CAD-FFT, and Average-CAD-WT feature extraction 

algorithms achieved similar performances. However, generating the features using the 

Average-CAD technique is simpler than the other two which require an additional step 

to compute the Fourier transform (Average-CAD-FFT) and the Wavelet transform 

(Average-CAD-WT). 

Test 1 demonstrates that all vibro-acoustic sensors were able to individually achieve high 

classification accuracies of the 9 conditions (8 misfire + 1 healthy). The knock sensor, which is 

usually used to detect knocking conditions in the vehicle, can also detect the occurrence of all 

single-cylinder misfire faults. What is more, this first test showed that only LM algorithm was able 

to achieve acceptable training characteristics (speed and accuracy) using the labelled data. For that 

reason, the subsequent tests apply the Levenberg–Marquardt algorithm only to carry the 

classification of the neural network.  
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Test 2: Double Misfire Fault Condition  

In the second test, 8 single- and 4 double- cylinder misfire faults were simulated on the Ford Crown 

Victoria engine (setup1). With the addition of the healthy condition, the neural network should 

classify 13 different categories. From Table 6.5, it is obvious that test 2 presents a challenging 

classification task for the network; all double misfire faults are relatively similar to single cylinder 

misfire conditions. For example, fault category 10 (dual misfire 2 and 8) is made up of fault 

categories 2 (single misfire 2) and 8 (single misfire 8). To account for the increased total number 

of categories (test 1= 9, test 2= 13), the number of training epochs was increased from 20 to 30. 

The remaining parameters are similar to those presented in test 1 which allows to compare the 

results from the two tests later on.  

Sensors Training Algorithm  Feature Extraction 

Knock (X1) 

Accelerometer (X2) 

Microphone (X2) 

 

LM 

Average-CAD 

Average-CAD-FFT 

Average-CAD-WT 

Table 6.10 Test 2 Framework 

 

Parameter  Value  

Total Number of Features 635 

Ratio of Training : Validation : Testing  60% : 20% : 20% 

Maximum Number of Epochs  30 

Stopping RMS Error  10−3 

Stopping Gradient Error  10−5 

Table 6.11 Test 2 Parameters  

 

Sensors Feature 

Extraction 

Accuracy Training 

epochs 

Training  

Time (sec) 

# of Failed 

Tests /127 

Knock  AVG-CAD 98.4% 20 698 2 
AVG-CAD-FFT 70.9% 30 1115 42 
AVG-CAD-WT 88.2% 18 1096 20 

Accelerometer 1 AVG-CAD 100% 19 604 0 
AVG-CAD-FFT 89% 30 1485 15 
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AVG-CAD-WT 90.6% 30 628 0 

Accelerometer 2 AVG-CAD 95.3% 18 567 7 
AVG-CAD-FFT 50.4% 30 1346 65 
AVG-CAD-WT 90.6% 19 944 14 

Microphone 1 AVG-CAD 97.1% 20 708 3 
AVG-CAD-FFT 76.4% 27 946 28 
AVG-CAD-WT 95.3% 22 762 14 

Microphone 2 AVG-CAD 96.1% 14 467 2 
AVG-CAD-FFT 93.7% 19 665 13 
AVG-CAD-WT 88.2% 17 570 18 

Table 6.12 Test 2 Results  

 

The following figures are samples of the obtained confusion matrices and MSE graphs for Knock, 

Accelerometer 1, and Accelerometer 2:  

 

Figure 6.17 Knock Average-CAD-WT LM Training Results 
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Figure 6.18 Accelerometer 1 Average-CAD-WT LM Training Results 

 

Figure 6.19 Accelerometer 2 Average-CAD-WT LM Training Results 

 

Taking into consideration test 1 and test 2 results, the following observations are drawn:  
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 The results obtained in test 1 are considerably better than those of test 2. In fact, in this 

second test, only accelerometer 1 was able to achieve an accuracy of 100%. Furthermore, 

both the number of training epochs and training time increased considerably for all sensors.  

 The highest number of failed tests was recorded by accelerometer 2 which had a success 

rate of 48.8%.  

 Except for microphone 2, Average-CAD-FFT technique had the worst performance among 

the three feature extraction methods.  

 Average-CAD consistently produced the best classification results across all sensors with 

the lowest accuracy level of 95.3% (accelerometer 2). 

 The knock sensor achieved better classification performances than accelerometer 2. 

 Similar to test 1, microphone1 ability to classify misfire faults was lower than that of  

microphone 2 

In this second test, M1-Average-CAD FDD technique detected and classified single and dual 

misfire conditions simultaneously. Only Accelerometer 1 was able to achieve 100% accuracy 

which correlates with its location on the engine block. Similarly, microphone 1’s mounting position 

affected considerably its ability to do FDD. Finally, processing the Average-CAD features further 

using FFT or WT did not achieve better FDD diagnostics of misfire conditions.  

Test 3: Knock & Pre-ignition Fault Condition   

In the third test, knock and pre-ignition faults were simulated at different intensities on the Ford 

Coyote Engine (setup 2). According to Table 6.5, the knocking fault occurred across all engine 

cylinders and was introduced at 5 levels of severity (category 1 ~ 5). On the other hand, the pre-
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ignition fault was applied to cylinder #1 with 2 levels of intensity (category 6 ~ 7). As the number 

of faults is relatively similar between Test 1 and 3, their parameters are identically set as shown in 

Table 6.14.  

Sensors Training Algorithm  Feature Extraction 

Knock (X4) 

Microphone (X1) 

Accelerometer (X2) 

 

LM 

Average-CAD 

Average-CAD-FFT 

Average-CAD-WT 

Table 6.13 Test 3 Framework 

Parameter  Value  

Total Number of Features  720 

Ratio of Training : Validation : Testing  60% : 20% : 20% 

Maximum Number of Epochs  20 

Stopping RMS Error  10−3 

Stopping Gradient Error  10−5 

Table 6.14 Test 3 Parameters  

Sensor Feature 

Extraction 

Accuracy Training 

epochs 

Training  

Time (sec) 

# of Failed 

Tests /144 

Knock 1  AVG-CAD 100% 6 140 0 
AVG-CAD-FFT 98.6% 20 757 3 
AVG-CAD-WT 100% 7 166 0 

Knock 2 AVG-CAD 100% 7 190 0 
AVG-CAD-FFT 99.3% 20 714 1 
AVG-CAD-WT 100% 7 150 0 

Knock 3 AVG-CAD 100% 6 140 0 
AVG-CAD-FFT 100% 20 802 0 
AVG-CAD-WT 100% 6 127 0 

Knock 4 AVG-CAD 100% 6 171 0 
AVG-CAD-FFT 70.1% 20 761 36 
AVG-CAD-WT 100% 7 152 0 

Microphone 1 AVG-CAD 100% 7 213 0 
AVG-CAD-FFT 100% 5 172 0 
AVG-CAD-WT 100% 13 346 0 

Accelerometer 1 AVG-CAD 100% 7 216 0 
AVG-CAD-FFT 97.2% 20 720 6 
AVG-CAD-WT 100% 5 121 0 

Accelerometer 2 AVG-CAD 100% 11 382 0 
AVG-CAD-FFT 75% 20 590 34 
AVG-CAD-WT 100% 6 137 0 

Table 6.15 Test 3 Results 
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The following figures present a sample of the obtained confusion matrices and the MSE graphs for 

Microphone 1:  

 

Figure 6.20 Microphone 1 Average-CAD LM Training Results 

 

 

Figure 6.21 Microphone 1 Average-CAD-FFT LM Training Results 
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Figure 6.22 Microphone 1 Average-CAD-WT LM Training Results 

 

Taking into consideration the results obtained by the three tests, the following 2 observations are 

derived:  

 Similar to tests 1 and 2, Average-CAD-FFT had the poorest performance among the three 

feature extraction techniques in terms of accuracy, convergence rate, and training time.   

 By analysing the sensors’ results separately, it is clear that Knock 4 and accelerometer 2 

had the lowest performance among all 7 sensors. This is highly linked to the mounting 

location and direction of these sensors. According to Figure 6.8, Accelerometer 2 is set in 

parallel with the piston motion of cylinder 1. On the other hand, Knock 4 which is close to 

cylinder 8 is diagonally the farthest sensor from the pre-ignition location at cylinder 1.  

The results of this third test reiterate the conclusions drawn from the previous two tests regarding 

the Average-CAD-FFT feature extraction algorithm. What it more, this test proved that individual 

sensors can detect and classify faults with different intensities using the M1-Average-CAD FDD 
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technique. Finally, the above results highlight the importance of the mounting direction and 

location of the sensors on the engine block. 

Summary  

In order to assess the performance of the M1-Average-CAD FDD technique, three different tests 

on two engine setups were conduced. The results confirmed the effectiveness of the M1-Average-

CAD signal processing method to detect single misfire, pre-ignition, and knocking fault conditions. 

However, this FDD technique was unable to classify dual misfire with high accuracies. To be able 

to achieve that, the combined contribution of all sensors is required. This sensor consolidation is 

implemented by M2-CAD-IEMSPCA, and the results of this second FDD technique are described 

in the following section.  

6.3. M2-CAD-IEMSPCA FDD Results  

The M2-CAD-IEMSPCA technique derives further information about the system by exploiting the 

inherent correlation between the logged sensors. This FDD technique generates the fault 

coefficients 𝐹𝑐, see Figure 3.6, which are used to train the MLP neural network classifier. In 

preparing the input vector for the network, there are two cases that were considered:  

 Training the neural network using the 𝐹𝑐 coefficients of each individual sensor separately. 

In this case, the number of trained neural networks is equal to the number of sensors that 

are connected to the FDD system. This allows to compare M2-CAD-IEMSPCA and M1-

Average-CAD results.  

 Training the neural network by combining all sensors’ 𝐹𝑐 coefficients in one input vector. 

There are two possible merging solutions described in Figure 6.23. In the first type, named 

‘Block Combination’, the features from individual sensors are concatenated together to 
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form the neural network input vector. The second type, defined as ‘Mixed Combination’, 

merges the individual 𝐹𝑐 coefficients one by one to generate the input vector to the network. 

 

Figure 6.23 Combining 𝑭𝒄 Coefficients  

  

The following three subsections are the same tests that were implemented with the first FDD 

technique (M1-Average-CAD).  

Test 1: Single Misfire Condition 

The following Table 6.16 summarizes the fixed parameters that were predefined to generate the 

results of test 1. In addition to the network parameters, M2-CAD-IEMSPCA uses the Daubechies 

mother wavelet which was set with a scaling factor ‘db16’ and a depth level of 4. The maximum 

number of training epochs was initially set to 200. Due to the performance produced by the first 

classification results, another test was carried by allowing the maximum number of training epochs 

to reach 600.  
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Parameter  Value  

Total Number of Features 36090 

Ratio of Training : Validation : Testing  60% : 20% : 20% 

Maximum Number of Epochs  200 or 600 

Stopping RMS Error  10−3 

Stopping Gradient Error  10−5 

Mother wavelet   Daubechies 

Wavelet Scaling Factor  db16 

Wavelet Level  4 

Table 6.16 Test 1 Parameters 

 

Sensors Accuracy Training Epoch Training Time 

(sec) 

# of failed tests 

/ 7218 

Knock  48.6% 200 122 3658 

Accelerometer 1 56.7% 200 130 3200 

Accelerometer 2 54.6% 200 136 3267 

Microphone 1 57.6% 200 117 3128 

Microphone 2 70% 200 139 2212 

Microphone 3  63.5% 200 132 2673 

Block Combination  83.1%  200 2056 1166 

Mixed Combination 80.7% 200 3154 1406 

Table 6.17 Test 1 Results (200 epochs) 

Sensors Accuracy Training Epoch Training Time 

(sec) 

# of failed tests 

/ 7218 

Knock  50.5% 297 204 3542 

Accelerometer 1 57.3% 335 195 3113 

Accelerometer 2 55.3% 266 189 3261 

Microphone 1 60.5% 310 195 2791 

Microphone 2 75.6% 493 290 1744 

Microphone 3  64.1% 531 331 2590 

Block Combination 86.7% 475 6342 923 

Mixed Combination 85.5% 507 7689 1035 

Table 6.18 Test 1 Results (600 epochs) 

 

The subsequent figures present the confusion matrix and the MSE graph generated by “Block 

Combination” and “Mixed Combination” feature arrangements.  
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Figure 6.24 Block Combination Sensor Fusion (max 200 epochs) 

 

Figure 6.25 Mixed Combination Sensor Fusion (max 200 epochs) 

 

From the above results, the following observations are asserted:  

 When separate, the sensors were not capable of achieving good classification outcomes for 

detecting single cylinder misfire conditions. This is opposite to the M1-Average-CAD 

technique where accurate fault classification was achieved using the sensors’ features 

independently.  
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 According to Table 6.17, the maximum number of training epochs was reached by all 8 

MLP networks. That is why, this limit was increased to 600 to allow for more training. 

However, this parameter change barely improved the recorded performance.  

 Combining the features together achieved better classification results than the stand alone 

sensors. In addition to that, the ‘Block combination’ arrangement recorded a better 

performance than the ‘Mixed combination’ arrangement.  

 By analyzing the number of training epoch and the training time together, it is clear that 

M2-CAD-IEMSPCA’s classification speed was higher than that of M1-Average-CAD 

technique. 

 Microphone 1 had the poorest classification results which confirms what was discussed in 

the previous section.  

 The performance of the two accelerometers was slightly better than that of the knock 

sensor. 

M2-CAD-IEMSPCA results demonstrate that this technique is a powerful FDD tool especially 

when all sensors’ features are combined together. Furthermore, the accuracy of this FDD method 

was barely affected by the increase in the number of training epochs.  

 

Test 2: Double Misfire Fault Condition 

In this test, M2-CAD-IEMSPCA is tuned based on the wavelet scaling factor. Three scaling factors 

were considered: db10, db16, and db20. The remaining parameters were kept fixed with respect to 

the first test.  
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Parameter  Value  

Total Number of Features 45125 

Ratio of Training : Validation : Testing  60% : 20% : 20% 

Maximum Number of Epochs  200 

Stopping RMS Error  10−3 

Stopping Gradient Error  10−5 

Mother wavelet   Daubechies 

Wavelet Scaling Factor  db10, db16, db20 

Wavelet Level  4 

Table 6.19 Test 2 Parameters 

 

Sensors Debauchies Accuracy  Training 

Epoch  

Training 

Time 

# of Failed 

tests / 9025 

Knock  db10  33.9% 200 314 5878 

db16 35.3% 200 312 5766 

db20 34.7% 200 285 5923 

Accelerometer 1 db10 42.1% 200 299 5234 

db16 40.1% 200 345 5307 

db20 42.2% 200 300 5272 

Accelerometer 2 db10 85.8% 200 279 1605 

db16 81.5% 115 188 1760 

db20 80.6% 74 115 1712 

Microphone 1 db10 50% 146 264 4570 

db16 48% 167 259 4750 

db20 46.6% 143 280 4879 

Microphone 2 db10 50.8% 200 311 4443 

db16 51.3% 200 330 4413 

db20 53.1% 200 284 4258 

Block 

Combination  

db10 84.5% 76 1672 1458 

db16 90.9% 92 1743 833 

db20 82.8% 82 1482 1570 

Mixed 

Combination 

db10 83.7% 96 47933 1500 

db16 82.8% 105 3797 1593 

db20 81.4% 95 38471 1732 

Table 6.20 Test 2 Results 
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The following figures are samples of the classification results for Accelerometer 2: 

 

Figure 6.26 Accelerometer 2 with Scaling Factor (db10) 

 

 

Figure 6.27 Accelerometer 2 with Scaling Factor (db16) 
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Figure 6.28 Accelerometer 2 with Scaling Factor (db20) 

 

Based on the above results, the following observations are derived:  

 The best performance was achieved by the ‘Block Combination’ arrangement when the 

scaling factor was set to db16. The maximum accuracy recorded was 90.9%. 

 ‘Block Combination’ arrangement achieved better results than ‘Mixed Combination’ 

arrangement.  

 The wavelet scaling factor ‘db20’ achieved the worst results among the tested scaling 

factors (db10, db16, and db20).  

 Accelerometer 2 results were considerably better than the remaining sensors while 

achieving an accuracy average of around 81%. 
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Similar to test 1, changing the wavelet scaling factor had little effect on the overall performance of 

M2-CAD-IEMSPCA technique. For that reason, db16 was kept as a suitable scaling factor. 

Regardless, this FDD technique was able classify dual misfire conditions with an accuracy of 

90.9%.  

Test 3: Knock & Pre-ignition Fault Condition   

In this third test, M2-CAD-IEMSPCA performance was monitored with respect to three wavelet 

levels: 4, 5, and 6. Similar to the previous two tests, the detection capability of the sensors (either 

alone or combined) is reported. In addition to that, this experiment considers two main cases:  

 In the first case, faults of the same type, but with different levels of severity, are clustered 

together as one classification output category. Meaning, training the neural network is 

reduced to classifying only 3 categories: Knocking, Pre-ignition, and healthy conditions. 

 In the second case, faults with different severities are considered as separate categories. 

This case is similar to the 3rd test that was previously implemented to assess the M1-

Average-CAD FDD technique.  

 

Parameter  Value  

Total Number of Features 19920 

Ratio of Training : Validation : Testing  60% : 20% : 20% 

Maximum Number of Epochs  200 

Stopping RMS Error  10−3 

Stopping Gradient Error  10−5 

Mother wavelet   Daubechies 

Wavelet Scaling Factor  db16 

Wavelet Level  4,5, and 6 

Table 6.21 Test 3 Parameters 
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Faults 

Clustering 

Sensors Wavelet 

level 

Accuracy  Training  

Epoch 

Training 

Time 

(sec) 

# of 

Failed 

Tests / 

3984 

Combined 

Faults 

Knock 1  4 100% 139 7 0 

5 100% 66 4 0 

6 100% 18 4 0 

Knock 2 4 99.9% 95 5 1 

5 100% 90 5 0 

6 100% 25 5 0 

Knock 3 4 99.9% 119 6 0 

5 100% 49 3 0 

6 100% 24 5 0 

Knock 4 4 99.9% 151 7 0 

5 100% 136 6 0 

6 100% 19 10 0 

Microphone 

1 

4 99.9% 101 5 0 

5 100% 48 3 0 

6 100% 40 16 0 

Accelerometer 

1 

4 100% 52 4 0 

5 100% 39 3 0 

6 100% 17 6 0 

Accelerometer 

2 

4 100% 200 9 0 

5 100% 92 5 0 

6 100% 68 17 0 

Block 

Combination 

4 100% 6 10 0 

5 100% 6 15 0 

6 100% 5 43 0 

Mixed 

Combination 

4 100% 8 14 0 

5 100% 7 17 0 

6 100% 6 52 0 

Separate 

Faults  

Knock 1  4 79% 200 59 848 

5 97.4% 154 34 27 

6 99.9% 196 122 2 

Knock 2 4 84% 109 36 659 

5 98% 113 27 22 

6 98.5% 184 119 22 

Knock 3 

 

4 78% 125 47 897 

5 98.5% 118 29 29 

6 100% 166 107 0 

Knock 4 4 83% 113 40 649 

5 98.7% 114 27 23 

6 100% 159 103 0 

Microphone 1 4 89% 200 63 438 

5 98.3% 200 46 19 

6 100% 123 80 0 

Accelerometer 

1 

4 79% 200 62 810 

5 95.4% 183 43 50 
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6 99.4% 200 130 11 

Accelerometer 

2 

4 86% 200 64 546 

5 92.6% 200 47 109 

6 100% 200 130 0 

Block 

Combination 

4 100% 35 318 0 

5 100% 24 367 0 

6 100% 28 1502 0 

Mixed 

Combination 

4 100% 30 269 0 

5 100% 21 309 0 

6 100% 18 951 0 

Table 6.22 Test 3 Results 

 

The following figures are sample of the classification results produced by Accelerometer 1:  

 

 

Figure 6.29 Accelerometer 1 Classification Results 

 (Combined Faults, Wavelet level 6)  
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Figure 6.30 Accelerometer 1 Classification Results 

 (Separate Faults, Wavelet level 6) 

 

By examining the above results, the following observations are stipulated:  

 Increasing the wavelet level improved the classification capabilities of M2-CAD-

IEMSPCA. For that reason, wavelet level 6 should be used with this FDD technique. 

 The training times achieved by M2-CAD-IEMSPCA were shorter than those obtained by 

M1-Average-CAD.   

 Combining faults with different severities did not confuse the network and its training was 

successfully achieved.  

 Setting the wavelet level at 6 allowed M2-CAD-IEMSPCA to record similar classification 

accuracies to those obtained by the M1-Average-CAD FDD technique. This was the case 

even when the sensors’ features were used separately for the training.  
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 M2-CAD-IEMSPCA recorded similar performance across all sensors. This is opposed to 

M1-Average-CAD where knock 4 (farthest from the cylinder 1) and accelerometer 2 

(parallel to the piston movement) had the lowest performances due their mounting location 

and direction respectively. With that, M2-CAD-IEMSPCA was proven to be a multivariate 

FDD technique.  

M2-CAD-IEMSPCA successfully detected all the faults and classified them accordingly when the 

wavelet level is 6. Treating the faults separately or combining them together had no effect on the 

diagnostics capabilities of this technique. Finally, the training time can be reduced by cascading 

two MLP topologies, one for classifying the faults and the other for classifying the severities within 

each fault category. 

Summary  

To improve the performance of the M2-CAD-IEMSPCA, three attempts were made. In the first 

test, the maximum number of training epochs was increased. In the second test, the wavelet scaling 

factor was modified. In the last test, the wavelet level was increased from 4 to 6. These three tests 

clearly showed that the results achieved by M2-CAD-IEMSPCA are highly dependent on the 

wavelet level. This being said, this second FDD method is a multivariate technique that requires 

using all the sensors together for maximum reliability.  

6.4. M3-CASA FDD Results  

This third and last FDD technique is tailored to misfire fault detection. It requires at least two 

synchronization signals to extract the engine cycles. In this work, both the camshaft and the 

crankshaft position sensors were sampled. According to Figure 6.31, the camshaft signal (top 

graph) is used to distinguish the right from the left cylinder bank, and it is used to localize the 

beginning of a new engine cycle. As shown in the below figure, 5 complete cycles ( 2 revolutions 
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of crank = 720°)  are extracted from this recording. The next step is to isolate the contribution of 

each cylinder, as described by Figure 3.9 using equations (3.17) and (3.18). 

 

Figure 6.31 Synchronization Between Camshaft and Crankshaft 

 

Figure 6.32 and Figure 6.33 plot the time intervals that represent each cylinder in crank angle 

domain. To detect misfire, the time difference between consecutive cylinders is computed. If the 

difference is above a fixed threshold, which is specified in Table 6.23, the misfire condition is 

detected and localized. The misfire threshold is a function of three variable: engine speed, engine 

load, and sampling frequency. Table 6.23 summarizes the two thresholds that were used in the 

subsequent tests to detect single and dual misfiring conditions. This being said, the threshold used 

to flag double misfire is lower than the threshold used to detect single misfire. This allows to detect 

two misfiring cylinders that are successive to one another in the engine’s firing order.  
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Figure 6.32 Misfire Cylinder 4 

 

 

Figure 6.33 Healthy Engine  
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Threshold Parameters (800 rpm, 20 kHz) Values (ms) 

Single Misfire Threshold 0.25  

Dual Misfire Threshold  0.2 

Table 6.23 M3-CASA FDD Parameters 

 

Test 1: Single Misfire Condition 

Test 1 was carried on the Ford Crown Victoria Car. In this test a total of 4275 cycles (2475 healthy 

+ 225 faulty X 8 cylinders) were used to asses the FDD capabilities of the M3-CASA technique. 

Unlike the previous two FDD technique, the detection is carried without using neural networks. 

Table 6.24 summarizes the results of the experiment.  

  

Condition Accuracy  Average Time (sec) 

Cylinder Misfire 1 100% 0.097444 

Cylinder Misfire 2 100% 0.099070 

Cylinder Misfire 3 100% 0.096045 

Cylinder Misfire 4 100% 0.096424 

Cylinder Misfire 5 100% 0.093456 

Cylinder Misfire 6 100% 0.092875 

Cylinder Misfire 7 100% 0.093771 

Cylinder Misfire 8 100% 0.093645 

Healthy 100% 0.106125 

Table 6.24 M3-CASA Test 1 Results  
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Figure 6.34 Misfire Cylinder 6 

 

 

Figure 6.35 Misfire Cylinder 2 
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As shown in the above table, M3-CASA FDD technique achieve 100% accuracy with processing 

times less than a second. This recorded performance exceeds both M2-CAD-IEMSPCA and M1-

Average-CAD in all aspects.  

Test 2: Double Misfire Fault Condition 

In this second test, 4 dual misfire conditions was simulated on the Ford Crown Victoria Engine. A 

total of 2025 engine cycles (1125 healthy + 225 X 4 dual misfire) were collected to asses the 

detection capabilities of M3-CASA FDD technique with dual misfire conditions. Table 6.25 

summarizes the findings of the experiment.  

 

Condition Accuracy Average Time 

Cylinder Misfire 1 & 7 100% 0.111434 

Cylinder Misfire 2 & 8 100% 0.110169 

Cylinder Misfire 3 & 5 100% 0.112701 

Cylinder Misfire 4 & 6 100% 0.103929 

Healthy 100% 0.106778 

Table 6.25 M3-CASA Test 2 Results  

 

Figure 6.36 Cylinder Misfire 2 and 6 
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Figure 6.37 Cylinder Misfire 4 and 8 

 

Similar to the first test, the accuracy and speed of the M3-CASA FDD technique were better than 

those recorded by the other 2 FDD techniques. Detecting dual misfire conditions was also achieved 

for successive cylinders in engine’s firing order.  

Summary  

The M3-CASA FDD technique was able to detect single-, and double- cylinder misfire conditions 

quickly with 100% accuracy. This technique does not involve training a neural network. However, 

it requires defining the threshold limits that depend on the engine speed and load as well as the 

sampling frequency of the data acquisition system. For that, tuning these parameters initially is a 

necessary step to use the M3-CASA FDD technique as a reliable tool to detect misfire in Internal 

Combustion Engine.  
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6.5. Summary  

This chapter described the two experimental setups of this work. They were used to test the 3 FDD 

techniques discussed in Chapter 3, namely M1-Average-CAD, M2-CAD-IEMSPCA, and M3-

CASA. Three different tests were conducted.  

 Test 1 and Test 2: misfire fault conditions (Setup 1: Ford Crown Victoria engine) 

 Test 3: knocking and pre-ignition (Setup 2: Ford Coyote engine) 

The tests’ results were used to compare the three FDD techniques: although the M3-CASA FDD 

method detected misfire faults accurately and rapidly, it lacked the capability to detect faults 

occurring across all cylinders, such as knocking. On the other hand, M2-CAD-IEMSPCA and M1-

Average-CAD techniques had comparable classification accuracies. Finally, M2-CAD-IEMSPCA 

was faster in classifying the faults, whereas M1-Average-CAD was faster to generate the features 

needed for training. 
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Chapter 7. Conclusions and Future Work 

Fault Detection and Diagnosis is an important consideration for the operation of Internal 

Combustion Engines (ICEs). This work presents the development of a FDD data acquisition system 

for ICEs. To perform engine diagnostics using this device, three different FDD strategies were 

considered. Furthermore, their diagnostic capabilities were experimentally verified against three 

faults conditions: misfire, pre-ignition, and knocking.  

The following are the contributions of this work:  

1. The development of all the hardware components that make up the FDD system. The 

proposed device integrates a microcontroller to sample a number of sensors and a 

microprocessor to analyse the data onboard. The sensors’ signal conditioning circuits were 

developed and prototyped on a compact printed circuit board (PCB). The FDD device sits 

inside the car, and it is powered by the vehicle’s battery.  

2. The development of the firmware that allows the FDD system to sample sound and 

vibration sensors at a maximum rate of 125 kHz. The firmware implements the SPI 

protocol to configure and control an external ADC module. The data transfer between the 

microprocessor and the microcontroller was implemented using Termios library for 

maximum bandwidth. The firmware of the FDD device is user friendly and open source.  

3. The Industrial Extended Multi-Scale Principal Component Analysis (IEMSPCA) 

algorithm was revised for crank-angle domain processing that is more applicable to ICE. 

The M2-CAD-IEMSPCA FDD technique was developed, and it incorporates two 

additional steps: Crank-Angle Domain (CAD) transform and a moving average (LPF) for 

the generated 𝐹𝑐 coefficients. Furthermore, the fault detection capabilities of this new 

technique were compared with the M1-Average-CAD FDD method.  
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4. The development of the Crank-Angle Speed Analysis (M3-CASA) FDD technique that 

flawlessly detected all simulated misfire fault conditions. This FDD technique had the 

fastest processing speed compared to the others methods in this research. 

This research also highlighted the importance of both the mounting location and the direction of 

the vibro-acoustic transducers when placed on the engine. The limitations coming from the sensors’ 

arrangement were mitigated using multi-variate techniques, such as M2-CAD-IEMSPCA. Finally, 

this work validated the reliability of the knock sensors to detect other defects than knocking fault 

conditions.  

Future Work  

Both the FDD device and the FDD techniques can benefit from the following improvements: 

 Combining all FDD system’s hardware elements in one compact design. This makes the 

device robust against RF interference (from exposed wires) and vibration. Accordingly, the 

new PCB prototype should include the accelerometer drivers and the switching buck boost 

converter.   

 Modifying the firmware and the source codes of the teensy microcontroller to sample 

simultaneously 8 analog channels with rates above 100 kHz. 

 Conducting the sensitivity analysis on all of M1-Average-CAD, M2-CAD-IEMSPCA, and 

M3-CASA FDD techniques. The analysis should tune the parameters of the 

aforementioned FDD techniques in order to detect faults at different engine speeds and 

loads for any practical application to be considered.  

Once all the parameters for the FDD techniques are tuned, the succeeding designs of the FDD 

system should adopt Application-Specific Instruction Set (ASIP) processors. Such types of 
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processing units will be optimized for the Internal Combustion Engine applications, so they reduce 

the size, the power consumption, and the total price of the FDD device.  
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Appendix A.   

 

Operating the FDD System 

The FDD system is a general purpose computer that was tailored to carry data acquisition for Fault 

Detection and Diagnosis. To run the system as a DAQ device, there are two steps to follow: 

Initialization and Data Collection. 

Initialization  

1- Install the Linux operating system on the UDOO x86 ULTRA device. In this work, the 

used version was Ubuntu 18.04.1 LTS. The ISO file should booted on the USB flash drive 

with a minimum capacity of 8 GB to be able to load the Operating System (OS) on the 

board (no CD or DVD drive on the UDOO board). Once the USB is connected, the device 

should be powered while pressing the ‘esc’ key to reach the boot manager of the BIOS. 

Once in the boot manager window, select the ‘legacy USB’ (orange rectangle) in the boot 

option menu which allows the board to boot from the USB flash drive automatically the 

first time.  

 

 

Link 1: https://help.ubuntu.com/community/Installation/FromUSBStick 

https://help.ubuntu.com/community/Installation/FromUSBStick
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2- Connect the device to McMaster Wi-Fi. For that, the University Technology Services 

(UTS) compiled an extensive that can be used as a good reference. You will need to use 

your McMaster ID and Password for this step. Once the Wi-Fi connection is established, 

you will need to update the operating system to ensure compatibility with the software 

packages needed for the FDD application. Updating the system is done through the 

commands :  

Command 1: $ sudo apt-get update -y 

Command 2: $ sudo apt-get upgrade -y 

 

Link 2: https://www.mcmaster.ca/uts/network/wireless/linux_settings.htm 

3- Install the Arduino IDE on the operating system. This software package is responsible for 

booting the firmware of the microcontroller (teensy 3.6). After finishing the installation, is 

it important to check for errors relating serial port (e.g. Error opening serial port…) which 

https://www.mcmaster.ca/uts/network/wireless/linux_settings.htm
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requires setting the serial port permission as depicted by the link 3. To boot the firmware 

part that relate to the Braswell microprocessor, it is mandatory to compile and execute .c 

files on the operating system. For that, install the GCC package using command 1 and 

verify the installation using command 2: 

Command 1: $ sudo apt install gcc 

Command 2: $ gcc --version 

 

Link 3: https://www.arduino.cc/en/guide/linux 

Link4: https://linuxconfig.org/how-to-install-gcc-the-c-compiler-on-ubuntu-18-04-bionic-

beaver-linux 

4- Install the Teensyduino on the Arduino IDE.  For that, Linux Installer (X86 64 bit) should 

be selected among the available options provided by link 5. When the installer is running, 

you will be prompted to choose the location for the installation. This location should be 

redirected to Arduino IDE’s file location. To allow non-root users, such as serial 

peripherals, to have access to the teensy board, the rules depicted in link 6 should be saved 

to a file named : 49-teensy.rules (.rules is the extension of the file). Later on, this file should 

https://www.arduino.cc/en/guide/linux
https://linuxconfig.org/how-to-install-gcc-the-c-compiler-on-ubuntu-18-04-bionic-beaver-linux
https://linuxconfig.org/how-to-install-gcc-the-c-compiler-on-ubuntu-18-04-bionic-beaver-linux
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be copied to the following directory: /etc/udev/rules.d/. This is carried out using the 

following terminal command.  

Command : sudo cp 49-teensy.rules  /etc/udev/rules.d/ 

 

Link 5: https://www.pjrc.com/teensy/td_download.html 

Link 6: https://www.pjrc.com/teensy/49-teensy.rules 

5- Install Matlab software package along with the following toolboxes: Wavelet Toolbox, 

Statistics and Machine Learning Toolbox, Signal Processing Toolbox, DSP System 

Toolbox, and Deep Learning Toolbox. The signal processing codes were tested for two 

version of Matlab: R2017a and R2018b. Older versions of Matlab, such as R2010a, might 

have some problems using the aforementioned toolboxes.  

https://www.pjrc.com/teensy/td_download.html
https://www.pjrc.com/teensy/49-teensy.rules
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Data Collection 

1- Power the system, and establish the required USB connections as indicated by the figure 

on the left. Once this is done, you need to upload the code to the Teensy using Arduino 

IDE. After selecting the sampling scheme (20 kHz, 40 kHz, and 125 kHz) and making the 

right adjustments to the code, you need to click on the upload button as depicted by the 

figure on the right. This compiles the code and uploads it to the teensy board. Once this is 

done, the teensy executes the setup section of the code and remains in ‘waiting mode’ until 

the second firmware is booted to the microprocessor to carry out the communication with 

it.   

 

 

2- Before compiling and executing the C codes for the microprocessor, you need to make sure 

that the serial peripheral number matches the teensy board’s (ttyACM0 or ttyACM1). 

Furthermore, the data path used to save the sensory information in .txt file should match 

the one used by Matlab which reads the same file later on.  
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3- Run and compile the C codes on Linux kernel. The appropriate code should be selected to 

either do testing or data collection. To carry a test, only one data file is saved to the pre-set 

path. To carry data collection, the FDD system logs a pre-set number of data files into the 

saving directory. To compile the code, command 1 is used where ‘collect_40KHZ.c’ is the 

name of the .c code. Meanwhile, to execute the code and start the logging process, 

command 2 is typed on the terminal which boots the code on the kernel with the highest 

priority. To further carry either testing or data collection, the second command is repeated 

accordingly.  

Command 1: gcc collect_40KHZ.c –o collect  

Command 2: sudo nice –n -20 ./collect 
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4- Once the text file is saved in the appropriate directory, the applicable Matlab code 

(depending on the FDD technique) is executed. This code opens the text file under its 

working directory and runs the appropriate signal processing technique.  
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Appendix B.   

 

The Pseudocode of the Teensy’s Firmware C/C++  

Note: Every text indicated by ‘//’ is a comment on the pseudocode 

//Teensy 3.6 Sampling Code 

//Section 1: Initialization Process 

INCLUDE the required libraries 'SPI' and 'TimerOne'  

SET the SPI chip select variable 'ss_pin' to be pin#10 of the Teensy board 

SET the data transfer 'buffer_size' variable to 15000 

SET the 'InnSamp' variable to 25  

SET the 'OutSamp' variable to 600 

SET the 'SerLen' variable to 950   

INITIALIZE the ADC channels to be sampled in the 'channel[7]' array variable 

INITIALIZE 6 data buffers’ content (data_1[buffer_size] .. data_6[buffer_size]) to 0  

INITIALIZE the content of the ‘camshaft[buffer_size]' to 0  

INITIALIZE the global buffer '_data_[SerLen]' to 0  

INITIALIZE all the loop indices i,j, and k to 0  

CREATE a new timer interrupt named 'myTimer' 

// Section 2: the setup function of the Code 

Function setup () {  

//Used to setup the FDD environment  

 CALL SPI.begin() function with no arguments to initialize the SPI communication 

CALL SPI.beginTransaction() function with arguments: 8000000, MSBFIRST, and 

SPI_MODE0 to set the SPI baud at 8000000, the bit order at MSBFIRST and the SPI mode 

at mode 0 

CALL Serial.begin() function with argument equal to 1000000 to Initialize the Serial 

Communication's baud rate 
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CALL Serial.println() function with argument Serial.read() function to Empty the serial 

buffer from garbage bits 

CALL pinMode() function with arguments: 'ss_pin' and OUTPUT to set SPI Chip select 

'ss_pin' as OUTPUT 

 CALL Serial.read() function with no arguments to read the serial channel 

 WHILE the output of Serial.read() is not equal to 'y' 

  CALL Serial.read() function with no arguments  

CALL myTimer.priority() function with input argument 10 to set the timer priority to 10 

(1 being the highest priority) 

CALL myTimer.begin() function with two input arguments: Sample() function and 50 to 

initialize the timer interrupt callback function Sample () with sampling interval of 50 

microseconds. 

}  

//Section 3: All defined functions in the code  

Function sample (){  

//The sampling callback function to the interrupt  

 FOR channel 'i' in all sensory channels  

CALL digitalWrite () function with input arguments: ss_pin and LOW to set the 

chip select pin 'ss_pin' to LOW which enables the ADC module. 

  CALL SPI.transfer16() with the i-th channel's 2-bytes HEX address as argument 

  SAVE the incoming 2 bytes from the function into the 'i'th data buffer 

  SET the chip select pin 'ss_pin' to HIGH which disable the ADC module 

  DELAY 3 microseconds 

 CALL digitalRead() function with argument 3 which represent the camshaft pin address 

 SAVE the output of digitalRead() in the camshaft[] buffer array. 

} 

// Section 4: the loop function of the code 

Function loop () { 

// the main function  
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 IF the variable ‘i’ is bigger or equal the buffer_size  

  CALL myTimer.end() function with no arguments to stop the interrupt routine  

  DELAY 100 microseconds  

  SET k equal to 0 

  WHILE k less than OutSamp 

   ADD 1 to k  

   CALL Serial.read() function with no arguments  

   WHILE the output of Serial.read() is not equal to 'a' 

    CALL Serial.read() function with no arguments  

   SET i equal to 0  

   WHILE i less than InnSamp 

    ADD 1 to i  

    FILL the main buffer _data_ with samples from all 6 data buffers  

FILL the main buffer _data_ with samples from the camshaft 

buffer  

    ADD the end of line character '\n' to the _data_ buffer 

   CALL Serial.write () function with 2 arguments: _data_ and SerLen 

  CALL Serial.read() function with no arguments  

  WHILE the output of Serial.read() is not equal to 'y' 

   CALL Serial.read() function with no arguments 

  SET i to 0  

CALL myTimer.begin() function with two input arguments: Sample() function 

and 50 to initialize the timer interrupt callback function Sample () with sampling 

interval of 50 microseconds. 

} 
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Appendix C.   

 

The Pseudocode of the Microprocessor Firmware C/C++ 

// Pseudo code for the Braswell Microprocessor  

// SECTION 1: Load the required libraries  

INCLUDE the required libraries 'stdio', 'stdlib', 'time', 'fcntl', 'termios', 'unistd', 'errno', 'sys/time', 

'string', 'sys/resource' 

// SECTION 2: Define the used functions 

Function delay(number_of_seconds){ 

//function that adds delay to the operations 

 INITIALIZE 'milli_seconds' to be equal to 1000 times the variable 'number_of_seconds' 

 CALL the function clock() with no input arguments  

INITIALIZE the variable 'start_time' using the function clock() which is called with no 

argument  

WHILE the result of clock() function is less than the sum of 'start_time' and 'milli_seconds' 

variables 

  CALL the function clock() with no input arguments  

} 

// SECTION 3: The main function of the code 

Function main (argc, argv){ 

 // PART 1: Define the variables  

 IF argc is strictly bigger than 1  

  PRINT the message "waiting for 40 secs ..... \n" 

  CALL the function sleep() with the input argument 40 

 INITIALIZE the variable 'fd' which is used to open the serial peripheral  

 INITIALIZE the 'read_buffer[950]' char array to save the incoming messages from teensy  

 INITIALIZE the 'garbage_buffer[950]' char array to read any garbage data in the buffer 
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 INITIALIZE the variable 'i' to 0 to save the number of loggings that are carried 

INITIALIZE the variables 'tv','ed','ptv', and 'ped' to save the time elapsed of different 

functions within the main() function 

INITIALIZE the variable 'exp_num' to 15 which saves the maximum number of files to 

be sampled during data collection 

INITIALIZE the variable 'exp_typ' to the fault category that is being induced on the 

engine during data collection 

INITIALIZE the variable 'n' that saves the number of reads that are carried out by the 

microprocessor  

INITIALIZE the 'numconv[13]' char array that acts as an intermediate step to generate the 

file names 

INITIALIZE the 'file_name[13]' char array that saves the name of the text files that are 

being logged  

 INITIALIZE the 'path[52]' char array to "path/of/the/collected/data" 

INITIALIZE the pointer variable 'f' to objects of type FILE which saves the return of 

fopen() function 

INITIALIZE the 'pid' variable that saves the output of the function getpid() which returns 

the current process id that is running on linux kernel 

 INITIALIZE the 'ret' variable to save the return of the setpriority() function 

CALL the function gettimeofday() with 2 agruments: &ptv and NULL to log the current 

time of the execution into ‘ptv’ variable 

CALL the nice() function with argument equal to -20 to set the main thread with the highest 

priority in the Linux Kernel 

// PART 2 : Launch the serial Communication and set its parameters  

CALL the open() function with the following arguments: "/dev/ttyACM0" and O_RDWR 

| O_NOCTTY | O_NDELAY. The first argument is the peripheral path. The second 

argument is the opening options of the peripheral 

 SAVE the result of the open() function into the variable fd 

 IF fd is equal to -1 

  PRINT the message "\n Error! in Opening USB port \n" 

 ELSE 

  PRINT the message "USB port Opened Successfully \n" 
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 INITIALIZE the 'SerialPortSettings' termios structure  

CALL the function tcgetattr() with the following arguments: fd and &SerialPortSettings 

(& reference operator) to get the current attributes of the serial port 

CALL the functions cfispeed() and cfospeed () with the two arguments: 

&SerialPortSettings and B38400 to set respectively the read and write speeds to 38400 

Baud 

INITIALIZE the bits in 'SerialPortSettings.c_cflag' settings to ~PARENB, 

~CSTOPB,~CSIZE, CS8,CREAD | CLOCAL, and ~CRTSCTS which correspond to 8 data 

bits, no parity bit, 1 stop bit, and no flow control serial communication option (8N1) which 

matches data packets received from the Teensy 

CALL the function fcntl() with the following arguments: STDIN_FILENO,F_SETFL, and 

O_NONBLOCK which makes the reads of the Teensy's data packets non blocking 

INITIALIZE the bits in 'SerialPortSettings.c_iflag' settings to ~(IXON | IXOFF | IXANY) 

which turns off all software flow control of the serial communication  

INITIALIZE the bits in 'SerialPortSettings.c_lflag' and 'SerialPortSettings.c_oflag' 

settings to ~(ICANON | ECHO | ECHOE | ISIG) and ~OPOST respectively to collect the 

raw packets from the serial communication  

SET the element VMIN in the array 'SerialPortSettings.c_cc[VMIN]' to 12 which reflects 

the number of chars that determine the completion of a read functions 

SET the element VTIME in the array 'SerialPortSettings.c_cc[VTIME]' to 0 which reflects 

the time it takes between two consecutive byte transfers  

CALL the tcsetattr() function with the following arguments: fd, TCSANOW, and 

&SerialPortSettings to set the serial port with all aforementioned configuration options 

 IF the return value of the tcsetattr() function is strictly less than 0  

CALL the perror() function with "init_serialport: Couldn't set term attributes" 

argument  

  //PART 3: The Data transfer between Teensy and the Braswell 

 SET the index 'i' to 1  

 WHILE 'i' is less or equal to the variable 'exp_num' 

  ADD 1 to 'i' 

CALL strcpy() function with the arguments path and "path/of/the/collected/data" 

to save the data path into the variable 'path' 

CALL strcpy() function with the arguments file_name and "data" to save the string 

"data" into file_name  
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CALL sprintf() function with the arguments numconv and "%02d",exp_typ to 

save the 'exp_typ' as a 2 digit number at the intermediate file name variable 

'numconv' 

CALL strcat() function with the arguments file_name and numconv to concatenate 

the string 'numconv' to the string 'file_name' 

CALL sprintf() function with the arguments numconv,"%02d", and i to save the 

current file number 'i' as a 2 digit number at the intermediate file name variable 

'numconv' 

CALL strcat() function with the arguments file_name and numconv to concatenate 

the string 'numconv' to the string 'file_name' 

CALL strcat() function with the arguments file_name and ".txt" to concatenate the 

string ".txt" to the string 'file_name' 

CALL strcat() function with the arguments path and file_name to concatenate the 

string 'file_name' to the string 'path' 

CALL fopen() function with the arguments path and "w" to open the text file 

indicated by the path in writing mode  

  SAVE the return value of fopen() in the variable 'f' 

  IF f is equal to NULL  

   PRINT the message "Error opening file!\n"  

   CALL exit() function with argument 1 to stop the program from running  

CALL tcflush () function with the arguments fd and TCIFLUSH to flush the serial 

buffer from garbage bits 

  INITIALIZE the buffer 'write_buffer[]' to "y" 

CALL write() function with the arguments fd, write_buffers, and sizeof 

(write_buffers) to send the character "y" to teensy board which initializes the 

sampling of the sensors by the microcontroller 

CALL usleep() function with 800000 acting as argument. 800000 is in usec (0.8 

seconds) which is the required time by teensy to run the setup() function 

  INITIALIZE the buffer 'write_buffer[]' to "a" 

CALL the function gettimeofday() with 2 arguments: &tv and NULL to log the 

current time of the execution 

  SET the index 'k' equal to 0  

  WHILE the index 'k' is strictly less than 600 
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   ADD 1 to k  

CALL write() function with the arguments fd, write_buffers, and sizeof 

(write_buffers) to send the character "a" to teensy board which signals to 

the teensy that the microprocessor is ready to read the next data batch in 

the communicating buffer 

CALL usleep() function with 10000 acting as argument. This guarantees 

enough time for the teensy to fill the buffer with the next data batch 

CALL read() function with the arguments fd, &read_buffer, and 950 

which reads the common buffer between the microcontroller and the 

microprocessor 

   SAVE the return value of read() function in the variable 'n' 

   IF 'n' is strictly smaller than 896 

    PRINT the values of 'n' and 'k' for troubleshooting purposes  

    DECREMENT the index 'i' by 1  

   ELSE  

CALL fprintf() function with the arguments f,"%950s", and 

read_buffer to save the results of read_buffer into the accessed 

text file represented by 'f' 

CALL the function gettimeofday() with 2 arguments: &ed and NULL to log the 

current time of the execution 

  PRINT the value of the time elapsed in seconds to log one data text file 

  CALL fclose() function with the argument f to close the current text file  

 CALL fclose() function with the argument fd to close the current serial peripheral  

CALL the function gettimeofday() with 2 arguments: &ped and NULL to log the current 

time of the execution 

 PRINT the value of the time elapsed in seconds to run the whole program  

} 

 


