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ABSTRACT 

Influent flow rate is essential to the operation and management of wastewater 

treatment plants (WWTPs). To support safe operation and effective management of 

WWTPs, a number of process-driven models were previously built for predicting the 

influent flow rate. However, in order to capture the complex nonlinear relationships in 

wastewater systems, these process-driven models require large-scale monitoring and 

complicated parameter tuning. In this research, to address those drawbacks, data-driven 

models are investigated for influent flow rate prediction. Three data-driven models, 

including multilayer perceptron (MLP), long short-term memory (LSTM) network, and 

random forest (RF), are introduced and developed. The developed models are applied to 

three WWTPs in Canada for influent flow rate prediction to demonstrate their 

applicability. Influent flow rate prediction with two temporal resolutions (i.e., daily and 

hourly) are provided. The results show that the proposed models have an overall good 

performance, especially the RF model. For both temporal resolutions, the performance of 

RF models is stable and satisfactory. In addition, an uncertainty analysis approach for the 

RF model is developed to provide more robust predictions. To the author’s knowledge, 

this is the first Canadian study of wastewater influent flow rate prediction based on 

advanced data-driven techniques. The high temporal resolution prediction and the 

probabilistic prediction approach proposed in this research represent a unique 

contribution to methodologies related to wastewater modeling. This research can provide 

valuable support for WWTPs to improve operational efficiency and management 

effectiveness.  
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CHAPTER 1 - INTRODUCTION 

1.1 Background  

Although often thought of as ordinary, water is the most valuable and remarkable 

substance. We are about two-thirds of water and life could not evolve without water 

(Chaplin 2001). Fortunately, the earth is originally allotted a finite amount of water. To 

sustain life, we must preserve and protect the water supply, and also purify and reuse the 

water we pollute (Chan 2006). As a result, wastewater treatment plants (WWTPs) 

emerge. Historically, the purpose of wastewater treatment is to protect the health and well 

being of communities (Chan 2006). With the continuous improvement of living standards 

and the awakening of the consciousness of protecting water resources, the purpose of 

wastewater treatment processes is not changed. However, the tasks of the wastewater 

treatment plants are becoming increasingly heavy and the effective management of 

wastewater treatment plants becomes more important.  

Influent characteristics are important parameters for the effective management and 

the stable operation of WWTPs. With the development of monitoring techniques, some 

influent characteristics, such as influent flow rate and chemical oxygen demand (COD), 

could be monitored on a real-time basis. However, real-time monitoring is limited by a 

lack of adequate equipment, high cost, and it is relatively immature and unstable for some 

characteristics, such as biochemical oxygen demand (BOD) (Kim et al. 2015). 

Meanwhile, although online monitoring could provide essential information for assessing 

real-time influent characteristics, it is still hard to set aside operation time for WWTP 

engineers to cope with the quality and quantity fluctuations. Therefore, it is desired to 
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develop reliable wastewater influent prediction models for process control and plan, so 

that WWTPs can meet discharge permit limits in an efficient way.  

 

1.2 Wastewater Influent Prediction Models 

Since 1960s, a number of mathematical models have been developed for 

predicting influent flow characteristics at WWTPs. Most of these models are process-

driven models (also known as knowledge-driven or physically-based models), which 

predict the quality and quantity of wastewater influent based on the simulation of 

wastewater collection systems. The process-driven models are generally used as a tool to 

increase the knowledge on the process and system behavior for optimization and process 

control (Langergraber et al. 2004). However, the performance of process-driven models 

might vary depending on the target, expertise available and resource spent; furthermore, 

these process-driven models requires complicated parameter tuning and large-scale 

monitoring (Kim et al. 2015; Langergraber et al. 2004). Additionally, these models face 

challenges rising from numerous complexities and uncertainties, such as the complex 

connections of the combined sewer system and uncertainties due to aging infrastructure.  

In the past decade, with the development of artificial intelligence technology, 

data-driven models are becoming popular and common for simulating various 

environmental systems. Meanwhile, alongside the improvement of sensor technology, a 

large amount of influent data from WWTPs becomes available. These data provide a 
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critical basis for the development and application of data-driven models in the wastewater 

treatment management field. 

Data-driven models are developed by analyzing the data pattern of one specific 

study area. With a limited number of assumptions about the physical behavior of a 

system, a model can be built based on the relationships between system state variables. In 

comparison with traditional process-driven models, data-driven models involve 

mathematical equations assessed not from the physical processes of a system but from the 

analysis of input and output data (Solomatine and Ostfeld 2007).  

Although data-driven models may have some deviations from the ‘real model’ (or 

the physically-based model), their results are equivalent to the ‘real model’ to some extent 

and within the error tolerance. Application of the data-driven methods can be regarded as 

finding a substitution for the “real model” and solving problems in a real-world 

application before the mathematical relationships are completely clear. Data-driven 

models can be particularly advantageous for modeling complex systems such as 

municipal sewer systems. Municipal sewer systems collect and deliver the sanitary 

sewage directly from households and/or stormwater runoff to WWTPs. They are complex 

networks of pipes that are intrinsically difficult to model. With data-driven techniques, 

the wastewater collected by municipal sewer systems and delivered to WWTPs can be 

estimated using historical data without describing the underlying processes. However, the 

potential application of data-driven models on wastewater influent flow rate prediction is 

not well studied. To the author’s knowledge, there are no well-established data-driven 
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wastewater influent flow rate prediction models available to WWTPs operators and 

managers in Canada. 

 

1.3 Objective 

The main objective of this thesis is to support stable operation and effective 

management of WWTPs by developing reliable wastewater influent flow rate prediction 

models based on data-driven techniques. This entails the following four tasks: 1) 

Developing data-driven models for wastewater influent flow rate prediction. Three 

models, including multilayer perceptron (MLP), long short-term memory (LSTM) 

networks, and random forest (RF), are investigated and developed. 2) Applying the 

proposed data-driven models for daily and hourly influent flow rate predictions at 

WWTPs in Canada. 3) Evaluating the performance of the proposed models using 

different statistical criteria. 4) Analyzing the uncertainties associated with the predicted 

results and providing more robust decision support. 

 

1.4 Thesis Outline  

Chapter 2 presents a literature review of the previous applications of data-driven 

models, particularly neural networks models, in the field of wastewater modeling and 

management. Advantages and limitations of existing data-driven models are discussed 

and summarized.  
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Chapter 3 explores the potential of RF models for influent flow rate prediction. An 

uncertainty analysis approach for RF models is developed for providing more robust 

decision support for the operation and management of WWTPs. This chapter includes a 

journal article that has been submitted and is under review.   

Chapter 4 investigates the performance of different models on influent flow rate 

prediction with a high temporal resolution. LSTM and RF models are built and the 

traditional MLP model is used for comparison purposes. In addition, hourly interval 

results obtained from the RF models are provided for these three tested WWPTs. This 

chapter includes an article that will be submitted for publication. 

Chapter 5 summarizes the conclusions and directions for future works.  
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CHAPTER 2 - LITERATURE REVIEW 

2.1 Wastewater Simulation Models  

Traditionally, the wastewater coming into a WWTPs can be simulated using 

process-driven models. For example, a benchmark simulation model (BSM2) was 

developed by the International Water Association for influent characteristics prediction 

(Vanrolleghem et al. 2007). Their study extended the prediction targets to energy usage in 

all units, sludge disposal costs, gas production, and use of chemicals. Kuo et al. (2010) 

developed a real-time storm sewer simulation system (RTS4) with a Storm Water 

Management Model (SWMM) for predicting the migration of sewer flows. Furthermore, 

Butler (2014) developed a model to predict the hydraulic conditions (variation of the flow 

in sewer networks) within sanitary and combined sewers during dry weather. Although 

these sophisticated models are available for simulating the quantity and quality of 

municipal wastewater, they often require a large amount of monitoring data as inputs, and 

the calibration processes are complex. As a result, these process-driven models are not 

widely used for influent predictions at WWTPs in Canada. 

 

2.2 Alternative Data-Driven Models  

Like many engineering modeling problems, wastewater prediction could be 

regarded as a regression problem, where the key is to find the mathematical relationships 

between input and target variable (Solomatine and Ostfeld 2007). As an alternative to the 

process-driven simulation models described in Section 1.2 and 2.1, data-driven models 

were demonstrated effective in finding such relationships in many previous studies. 
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Among various data-driven techniques, there are three most well-known and popular 

ones: multilayer perceptron (MLP), radial basis function (RBF), and support vector 

machine (SVM). 

MLP is one of the most widely used artificial neural networks. The MLP model 

consists of multiple layers of elements (nodes) or neurons that interact through weighted 

connections (Pal 1992). Generally, the MLP model includes three layers: the input layer, 

the hidden layer(s), and the output layer. For the model building process, initial weights 

are firstly assigned to the input variables. Subsequently, through a set of activation 

functions, the value of one specific cost function related to the input variables is 

calculated. Then, one gradient descent method can be used to find the optimal value of 

the cost function, and the weights of the input variables are updated through 

backpropagation. Finally, the optimum weights of the input variables can be determined, 

and the relationship between the input variables and the output target can be defined. 

Similar to MLP, the RBF model is a multilayer network that can be used for 

fitting function and classification. However, the MLP and RBF networks are built in a 

totally different way. To build an RBF network, firstly, the input layer and the hidden 

layer are not connected by weights and thresholds, but by the distance between input 

samples and the hidden layer point (the distance from the center point). After obtaining 

the distance, the distance is substituted into the radial base function to obtain a numeric 

value. By multiplying the numeric value with the weight between the hidden layer and the 

output layer and then seeking the sum, the output of the corresponding input is obtained. 

It is worth mentioning that the number of center points, the location of center points, the 
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“width” of radial base function, and the weights between the hidden layer and the output 

layer should be determined before training the model.  

The Support Vector (SV) algorithm is a nonlinear algorithm developed in Russia. 

In recent decades, the SV machine was largely developed at the AT&T Bell Laboratories 

by Vapnik and his co-workers (SMOLA 2004). There are three important components 

that characterize the support vector machine (SVM) networks: 1) the solution technique 

which allows an expansion of the solution vector; 2) the solution that has been extended 

from linear to non-linear; 3) the soft margins which allow errors on the training samples 

(Farhat 2002). SVM can be used to solve both classification and regression problems. 

 

2.3 Artificial Neural Networks for the Modeling of Wastewater Processes 

 Previously, various data-driven techniques were applied for modeling different 

geophysical processes including sewer processes. Among them, the artificial neural 

network (ANN) is the most common. For example, El-Din and Smith (2002) developed a 

neural network model for predicting wastewater inflow during rainfall events. A classical 

MLP model was built and rainfall at eight rain gauges which cover the major drainage 

basins of the city, an index to represent the day of the week, and another index to 

represent the hour of the day were chosen to be input variables. Additionally, rainfall data 

were also collected as inputs. The results demonstrated that the MLP model had great 

potential for providing excellent influent flow rate prediction. It was also found that the 

continuing training beyond 400 epochs in their case did not improve the model 
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performance in term of Coefficient of Determination (𝑅2). Wei et al. (2013) used the 

MLP model for short-term prediction of wastewater influent flow rate and the prediction 

horizon was extended to 180 min. There were small time lags between the predicted and 

observed influent flow rate when the prediction horizon exceeded 30 min, and the lag 

increased as the prediction horizon increased. Meanwhile, feed forward neural networks 

(FFNNs) were widely used in many hydrological contexts. For instance, Aqil et al. (2007) 

did a comparative study of artificial neural networks and neuro-fuzzy in modeling 

rainfall-runoff dynamics. Although the proposed FFNN models showed satisfactory 

results, it was found that the neuro-fuzzy model showed comparative performance in 

comparison with two FFNN models including the Levenberg-Marquardt-FFNN and the 

Bayesian regularization-FFNN. The performance of their proposed models were 

examined on both hourly and daily bases. The effects of data transformation on model 

performance were also investigated, and it was found that there were no significant 

differences between using raw data and transformed data. Taormina et al. (2012) used a 

feed forward neural networks model for long modeling of hourly groundwater levels. The 

FFNN model was first trained to perform one-step ahead prediction using previous 

observed data as input. Then the ability of FFNN for long-period prediction was assessed 

by replacing previous observed data with previous outputs of the FFNN model. The 

results showed that the FFNN model outperformed the linear autoregressive with 

exogenous terms (ARX) model in terms of long-term prediction. Although FFNN is 

widely recognized as a powerful tool, it works only with static patterns (Charaniya and 
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Dudul 2012). When it comes to long-term prediction or dynamic prediction, FFNN 

usually suffers from its limited ability to address time lag issues.  

To address the dynamic prediction problem, Charaniya and Dudul (2012) used a 

focused time delay neural networks (FTDNN) model for long-term rainfall prediction. In 

comparison with a classical static multilayer perceptron network (FFNN or MLP), the 

main difference is that FTDNN contains two special components tapped delay lines and 

recurrent connections. The main function of the delay line is storing the past results of the 

inputs. While for the recurrent connections, it reuses these past results as input variables 

for prediction. It was found that, in temporal problem, the observes are no longer an 

independent set of input but a function of time. Thus, the proper length of this time 

becomes important input variables for representing or predicting the target. Additionally, 

Verma et al. (2013) used five data-mining algorithms for predicting total suspended solids 

(TSS). And an iterative learning method (updating the input variables of the prediction 

model iteratively by using previous prediction results) based on MLP model was 

developed to reduce prediction error. Their results show that the week-ahead values of 

TSS can be predicted with about 68% accuracy. Furthermore, Wei and Kusiak (2015) 

used a dynamic neural network (DNN) with the online corrector for improving the 

prediction accuracy for a longer time horizon. The DNN model contains a memory 

structure and predictor. The memory structure captures the previous time series 

information, then the information is used by the predictor which make it learn the 

temporal pattern of the time series. Their results indicated that the prediction accuracy 

could not be improved but cost significant computation when more than five previous 
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influent flow were captured as memories. Basically, this DNN model is similar to the 

FTDNN model and the iterative learning method mentioned above, and all of these 

models share similar principles with the recurrent neural network (RNN).  

In recent years, to further improve long-term prediction accuracy and address time 

lag issues in time series forecasting problems, a number of advanced models based on the 

classical RNN structure were developed. LSTM is a special RNN model, and it was 

proved to have stable and powerful performance when modeling problems with relatively 

long-term dependencies (Hochreiter and Schmidhuber 1997; Ismail et al. 2018; Shi et al. 

2015). The LSTM model has the same neural connection structure as RNN but a different 

neuron cell. The LSTM neuron incorporates three gates (forget gate, input gate, and 

output gate), which allow the network to have memory. The LSTM model was widely 

employed to solve the long-term prediction problems. For instance, Pisa et al. (2018) 

developed a LSTM model for predicting wastewater effluent concentrations and dealing 

with time series information and temporal data. LSTM was also widely used in other 

fields. For instance, Zhao et al. (2017) used LSTM for short-term traffic forecast. The 

comparison with other statistical models including Autoregressive integrated moving 

average (ARIMA) indicated that the proposed LSTM model showed a better 

performance. It was pointed out that although RNN was widely recognized as a suitable 

method to capture temporal and spatial evolution, traditional RNNs were not able to 

capture the long-term evolution, and training an RNN for long-term prediction became 

difficult because of the vanishing and exploding gradient. Compared with conventional 
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RNNs, LSTM network could better capture the features of time series within longer time 

span.  

In summary, the artificial neural network technology is constantly improving. 

Advanced models based on the traditional neural network structure are constantly 

emerging, which brings valuable technical support for solving long-term prediction 

problems in a wide array of fields. However, the application of these advanced models in 

influent prediction area is limited and there are no well-established tools for the long-term 

prediction of wastewater influent characteristics.  

 

2.4 Other Data-Driven Models for the Modeling of Wastewater Processes 

Apart from artificial neural networks, there were also other data-driven models 

that have been used for the modeling of wastewater influent and other similar geophysical 

processes. Generally, data-driven models can be classified into the linear model and the 

nonlinear model, while some methods can convert between linear and nonlinear, such as 

neural networks. When the neural network uses a linear activation function, it is a linear 

model; while using a nonlinear activation function such as the sigmoid function, it turns 

to be a nonlinear model.  

Autoregressive integrated moving average (ARIMA) is one of the most popular 

linear models for time series forecasting. Because it is an autoregression model, it 

requires fewer input variables, which makes this method more advantageous when the 

feature data is scarce. Berthouex and Box (1996) used an ARIMA model and an 
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exponentially weighted moving average (EWMA) model for 1-5 days ahead effluent 

quality prediction. Ömer Faruk (2010) developed a hybrid neural network and ARIMA 

model for water quality prediction. Boyd et al. (2019) developed ARIMA models for 

daily inflow rate forecasting at a number of WWTPs in North America. Their results 

indicated that ARIMA was a simplistic model which could be interpreted and calculated 

easily, and although ARIMA relied only on historical data, this method was able to do 

time series analysis and provide support to plant operators. However, the main drawback 

of ARIMA was that it could only process a continuous time series, which means missing 

values in the dataset must be filled in and more time would be spent on preparing the data 

(Boyd et al. 2019).  

On the other hand, a number of nonlinear models were also developed for 

modeling wastewater influent. Kim et al. (2015) developed a k-nearest neighbor (KNN) 

method for forecasting the influent characteristics at WWTPs. This KNN model was used 

for predicting influent flow rate, COD, suspended solid, total nitrogen, and total 

phosphorus. The KNN model was developed under the assumption that part of a past time 

series will reappear in the future. It was found that the calibration results depend on 

various factors, such as water quality, influent flow rate, and weather condition, which 

makes it difficult to tune the KNN model. Meanwhile, the model performance was 

affected by the uncertainty associated with the dataset. Recently, Nadiri et al. (2018) used 

an ensemble of fuzzy logic (FL) models for effluent quality parameters prediction. 

Instead of looking for the best FL prediction model, this study introduced a supervised 

committee FL (SCFL) ensemble model. Generally, three FL models were built firstly 
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(including Takagi-Sugeno model, Mamdani model, and Larsen model). Then an ANN 

model was used to combine the prediction results from individual FL models. And they 

suggested that the fuzzy set can handle uncertainty in water quality parameters because 

the fuzzy logic theory is applicable to estimate inherently imprecise parameters. 

However, the discussion on how these methods can be used for long-term prediction is 

limited. Also, it is hard to determine each input variable’s contribution using any of the 

abovementioned methods.  

In summary, there are only a few applications of data-driven modeling techniques 

for predicting wastewater influent. The existing models could be improved significantly 

in order to address issues such as determining input variable’s contribution, long-term 

prediction and model uncertainties. Thus, the development of more advanced and robust 

data-driven models for influent prediction is desired.  

  



M.A.Sc Thesis - Pengxiao Zhou  McMaster University - Civil Engineering 

 

15 

 

CHAPTER 3 - DAILY INFLUENT FLOW RATE PREDICTION 
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Abstract 

Influent flow of wastewater treatment plants (WWTPs) is a crucial parameter for 

plant operation and management. In this study, a random forest (RF) model was 

developed for daily wastewater inflow prediction, and a new approach was proposed for 

quantifying the uncertainties associated with wastewater inflow forecasts. The RF model 

uses regression trees to capture the nonlinear relationship between wastewater inflow and 

various influencing factors, such as weather features and domestic water usage patterns. 

The proposed model was applied to the daily wastewater inflow prediction for two 

WWTPs (i.e., Humber and one confidential plant) in Ontario, Canada. For the 

confidential WWTP, the Coefficient of Determination (𝑅2) values for training and testing 

were 0.948 and 0.830, respectively. The 𝑅2 values at the Humber WWTP were 0.958 and 

0.582 for training and testing, respectively. In comparison with other approaches such as 

the multilayer perceptron neural networks (MLP) models and autoregressive integrated 

moving average (ARIMA) models, the results showed that the developed RF model 

performs well on forecasting inflow. In addition, probabilistic forecasts of daily inflow 

were generated to provide robust decision support for the operation, optimization, and 

management of WWTPs. 

 

Keywords: 

Random forest; WWTP; Wastewater prediction; Daily flow; Uncertainty analysis. 
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3.1 Introduction  

It is well acknowledged that the wastewater inflow to a wastewater treatment plant 

(WWTP) is an essential parameter for plant operation and management. The rate of 

wastewater inflow depends on local drainage characteristics, domestic water usage 

patterns, and meteorological conditions (Abunama and Othman 2017; El-Din and Smith 

2002; Szelag et al. 2017). In recent decades, in order to implement advanced control 

strategies, plant-wide monitoring networks and control systems have been widely used in 

WWTPs (Campisano et al. 2013; Dürrenmatt and Gujer 2012). A large amount of data are 

collected by these monitoring networks. The data collected could provide important 

information for wastewater inflow prediction and treatment process control. Therefore, 

utilizing these data to forecast wastewater inflow is desired.  

The accuracy of an influent flow forecasting model depends on how the 

relationships are described in the model between inflow and various influencing factors, 

such as meteorological conditions, sewer system characteristics, and human factors 

(Amatya et al. 1997; Li et al. 2015; Pagano et al. 2009). However, these relationships are 

often nonlinear and complex, which leads to challenges in wastewater inflow forecasting. 

In the past decades, alongside the development of artificial intelligence, numerous data-

driven models have been applied to predict the inflow of WWTPs. For instance, El-Din 

and Smith (2002) used artificial neural networks (ANNs) to predict wastewater inflow 

during storm events. Moreover, Kim et al. (2016) proposed a k-nearest neighbor (k-NN) 

method to forecast the influent characteristics of WWTPs. Although these methods can 

better solve the nonlinear problems in inflow prediction, there are still some drawbacks. 
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For example, the ANN method often has over-learning and low speed of convergence 

problems (Wang et al. 2015; Yeh and Li 2002). The k-NN method is affected by the 

search range and could be computationally expensive as the size of the problem increases 

(Ponomarenko et al. 2012; Zhe Zhou et al. 2015). Additionally, these methods cannot 

provide information on each input variable’s contribution to the inflow (Wang et al. 

2015), and they cannot tackle the uncertainties associated with the prediction process. In 

order to solve these problems, alternative and effective methods are still required. 

More recently, random forest (RF) has gained a lot of attention as an effective 

predictive modeling technique. RF is an ensemble classifier, proposed by Breiman in 

2001, and comprises a collection of tree-structured classifiers (Breiman 2001a). This 

method can be regarded as a modified version of bagging, which uses a similar but 

improved way of bootstrapping (Gislason et al. 2006). It has certain advantages compared 

to the traditional bagging method in terms of accuracy and computational intensity 

(Breiman 2001a; Gislason et al. 2006). In addition, there are variable importance 

measurements in the RF method, which help to determine each input variable’s 

contribution. As a promising method, RF has been applied in a wide range of areas.  For 

instance, Pal (2005) used an RF classifier for land cover classification. His study 

concluded that the RF classifier, compared with Support Vector Machines (SVMs), 

requires less user-defined parameters and is easier to define the parameters. Díaz-Uriarte 

and Alvarez de Andrés (2006) investigated the use of RF for gene selection and 

classification based on microarray data. The RF model showed comparable performance 

to other methods such as Diagonal Linear Discriminant Analysis (DLDA), K-nearest 
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neighbor (KNN), and SVMs. Abdel-Rahman et al. (2013) proposed a spectral band 

selection method for predicting sugarcane leaf nitrogen concentration using RF regression 

algorithm. The results showed that sugar leaf nitrogen concentration can be predicted by 

RF regression algorithm with a Coefficient of Determination (𝑅2) value of 0.67. The RF 

method has been proven to be an effective method for building predictive models in many 

previous studies; however, the use of this method in wastewater inflow prediction is 

limited.   

Therefore, the objective of this study is to explore the potential of RF for 

wastewater inflow prediction. This entails the following four tasks: (1) developing a data-

driven model based on random forest for wastewater inflow prediction; (2) applying the 

developed RF model and predict the daily inflow at two WWTPs in Ontario, Canada; (3) 

evaluating the performance of the proposed model using different statistical criteria; (4) 

developing an uncertainty analysis approach to provide probabilistic inflow forecasts for 

more robust decision support. This study will provide valuable support for WWTP 

management, as well as an insight into the uncertainties involved in wastewater treatment 

systems. 
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3.2 Methodology 

3.2.1 Random Forest 

3.2.1.1 The Principle of Random Forests  

The RF method was proposed by Breiman, who was inspired by the papers on 

written character recognition, the random subspace method, and random split selection 

(Amit and Geman 1997; Dietterich 2000; Ho 1998). A random forest is an ensemble 

classifier comprising a collection of tree-structured classifiers {ℎ(𝑥, 𝛩𝑘), 𝑘 = 1,… }, 

where the {𝛩𝑘} are independent and identically distributed random vectors, and 𝑥 is an 

input vector (Breiman 2001b). Each tree-structured classifier is a decision tree (DT). Each 

DT is independently constructed during the training process using a bootstrap sample of 

the original data set, and each node of the DT is split using the best variable among a 

subset of predictors (Liaw and Wiener 2002). After the ensemble classifier is constructed 

and finalized, a simple majority vote or an average value is taken for prediction. 

 

3.2.1.2 Regression Trees 

A regression tree is a forecasting model that can be described as a decision tree, 

and it deals with the forecasting of an output variable 𝑦, given a vector of input variables 

𝑥 (Loh 2008). The output variable 𝑦 can be continuous or discrete (e.g., the value of the 

inflow rate in this study). A regression tree consists of a root node, internal nodes, and 

leaf nodes. A classification and regression tree (CART) approach with mean squared 
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errors (MSE) as the node impurity criterion was used when growing a regression tree in 

this study. The MSE is calculated as follows: 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1   (1) 

 

where n is the number of samples; 𝑦𝑖 is the observed value on sample 𝑖; and 𝑦̂𝑖 is the 

predicted value on sample 𝑖. In this study, 𝑦̂𝑖 equals the mean value of the samples in the 

node. Thus, MSE can be regarded as the variance of the samples in the node.   

The root node and internal nodes are split using the best variable among a subset 

of 𝑚 variables which are chosen randomly from all 𝑀 input predictor variables. The best 

variable is the one that results in the lowest impurity of the samples in the node. In this 

study, there was no pruning for each tree. Therefore, each leaf node was labeled with one 

predicted value. A completed regression tree is presented in Fig. 3.1 as an example. The 

development of a wastewater influent flow forecasting regression tree is summarized as 

follows: (1) Start with an original training set including 𝑁 samples. Select 𝑁 samples, 

with replacement, from the original training set to form a new training set. Theoretically, 

for a training data set which includes 𝑁 samples, a maximum of 𝑁𝑁 new training sets can 

be generated. In this study, 𝑘 new training sets were created using the bootstrap method 

from the original training set. (2) Grow a regression tree for each of the 𝑘 new training 

set. In this study, the CART approach with MSE as the impurity criterion is used to grow 

internal nodes and eventually, leaf nodes. (3) After 𝑘 regression trees are formed, use all 

trees to generate predictions. Each DT produces one value, and the mean value of these 𝑘 

values is taken as the predicted value. 
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Fig. 3.1 A sample of the regression trees 

 

3.2.1.3 Variable Importance 

RF became popular because of its ability to address large numbers of variables 

with relatively small-scale observations and the advantages over other existing data-

driven methods in terms of assessing variable importance (Grömping 2009). Variable 

importance illustrates each input variable’s contribution to the target during the node split 

(Wang et al. 2015). There are four different methods to determine the variable importance 

in a random forest. Readers are referred to Breiman (2002) for more details. In this study, 

the sum of impurity criterion decreases is used to measure the variable importance. At 

every node split, one variable is used to form the split and as a result, there is a decrease 

in the splitting criterion. The sum of all decreases in all trees due to a given variable, 
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normalized by the total number of trees, is the sum of impurity criterion decreases 

(Breiman, 2002). The importance of a node 𝑗 on feature 𝑓 in a DT 𝑘 (𝐼𝑘𝑗𝑓) is computed 

as: 

 𝐼𝑘𝑗𝑓 = 𝐶𝑗 −
𝑀𝑙𝑒𝑓𝑡(𝑗)

𝑀𝑗
∗ 𝐶𝑙𝑒𝑓𝑡(𝑗) −

𝑀𝑟𝑖𝑔ℎ𝑡(𝑗)

𝑀𝑗
∗ 𝐶𝑟𝑖𝑔ℎ𝑡(𝑗) (2) 

 

where  𝐶𝑗 is the measure of the impurity of the node 𝑗; 𝑀𝑙𝑒𝑓𝑡(𝑗) and 𝑀𝑟𝑖𝑔ℎ𝑡(𝑗) are the 

number of instances in the left and right subset of node 𝑗,  respectively; 𝑀𝑗 is the number 

of the instances in the node 𝑗; and 𝐶𝑙𝑒𝑓𝑡(𝑗) and 𝐶𝑟𝑖𝑔ℎ𝑡(𝑗) are the impurity of the left and 

right subset of node 𝑗, respectively. 

The variable importance of feature 𝑓 (𝐹𝑓) can then be calculated as: 

 𝐹𝑓 =
∑ ∑ 𝐼𝑘𝑗𝑓

𝑗
1

𝑘
1

𝑘
 (3) 

 

where 𝑘 is the number of regression trees; and 𝑗 is the total number of nodes in a DT. 

 

3.2.2 Model Development  

The representativeness of training datasets is important to the effectiveness and 

overall performance of an RF model (Wang et al. 2015). To reflect the impacts of weather 

conditions and domestic water usage patterns on wastewater inflow, numerous weather 

and date/time variables are selected as predictor variables. The weather features include 

Maximum Temperature (℃), Minimum Temperature (℃), Mean Temperature (℃), 

Heating Degree Days (℃), Cooling Degree Days (℃), Total Rain (mm), Total Snow 

(mm), Total Precipitation (mm), and Accumulated Precipitation (mm); the date/time 
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variables are months of the year, and days of the week. More details regarding the 

weather features are given in Section 3.3.2. It is worth mentioning that the selection of 

weather features changes from one study area to another due to the different 

characteristics of each plant (Tehrany et al. 2013). In this study, the weather features were 

selected separately for each WWTP based on correlation analysis and a literature review. 

A list of the selected weather features is given in Table. 3.1. In this study, 75% of the data 

in the original dataset are selected randomly to generate a training dataset, while the other 

25% are used to form the corresponding testing dataset. This random selection process is 

considered effective in improving on the generalization error.  
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Table. 3.1 The selected input features for the two WWTPs 

Feature category                   Feature WWTP 

Weather Features 

Maximum Temperature (℃) Humber, Confidential plant 

Minimum Temperature (℃) Humber, Confidential plant 

Mean Temperature (℃) Humber, Confidential plant 

Heating Degree Days (℃) Humber, Confidential plant 

Cooling Degree Days (℃) Humber 

Total Rain (mm) Humber, Confidential plant 

Total Snow (mm) Humber 

Total Precipitation (mm) Humber, Confidential plant 

2-day Accumulate 

Precipitation (mm) 

Confidential plant 

3-day AP Confidential plant 

4-day AP Confidential plant 

5-day AP Confidential plant 

6-day AP Confidential plant 

7-day AP Confidential plant 

Date Features 

Month (Jan-Dec) Humber, Confidential plant 

Workdays (Mon-Sun) Humber, Confidential plant 
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The number of trees (𝑘), and the number of features tested at each split (𝑚) are 

the two most important parameters when building a RF model. In this study, three 

different numbers (300, 1000, 3000) are first assigned to 𝑘, and three different numbers 

(𝑀, 𝑆𝑞𝑟𝑡(𝑀) and 𝐿𝑜𝑔(𝑀)) are considered for 𝑚. Subsequently, the best combination of 

𝑘 and 𝑚 for each WWTP can be identified using a grid search and a 3-folds cross 

validation. The best combination of parameters is then used to build a random forest for 

predicting wastewater inflow. A flowchart of the training and testing processes is shown 

in Fig. 3.2. 

Fig. 3.2 Flow chart of the training and testing process 
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3.2.3 Evaluation of Modeling Performance 

Four statistical criteria, including Mean Absolute Percentage Error (MAPE), Root 

Mean Square Error (RMSE), Coefficient of Determination (R2), and Nash-Sutcliffe 

Efficiency (NSE) are used to evaluate the performance of the RF model. MAPE is 

defined by Equation 4. 

 

 MAPE =  
100%

𝑛
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑛

𝑖=1   (4) 

 

where n is the number of samples; 𝑦𝑖 is the observed value on sample 𝑖; 𝑦̂𝑖 is the 

predicted value on sample 𝑖. 

RMSE defined by Equation 5 is the squared root of the MSE, which prevents 

positive and negative errors to cancel each other out in order to express the error metric in 

the same units as the original data (Bennett et al. 2013).  

 RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)2
𝑛
𝑖=1  (5) 

 

𝑅2, given by Equation 6, isthe Coefficient of Determinination, and measures the 

correlation of the observed and modeled values. 𝑅2 ranges from 0 to 1, with 1 

corresponding to the strongest correlation.  

 𝑅2 = [
∑ (𝑦𝑖−𝑦̅)(𝑦𝑖̂−𝑦̃)
𝑛
𝑖=1

√∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1 √∑ (𝑦̂𝑖−𝑦̃)
2𝑛

𝑖=1

]2 (6) 

 

where 𝑦̃ is the mean of predicted values; and 𝑦̅ is the mean of observed values. 
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NSE (Nash and Sutcliffe 1970) defined by Equation 7 is a widely used criterion 

for calibration and evaluation of hydrological models (Gupta et al. 2009). The range of 

NSE can vary from negative infinity to 1, which indicates a perfect fit. 

 NSE = 1 −
1

𝑛
∑ (𝑦𝑖−𝑦̂𝑖)

2𝑛
𝑖=1

1

𝑛
∑ (𝑦𝑖−𝑦̅)

2𝑛
𝑖=1

  (7) 

 

3.3 Case Study  

3.3.1 Study Area 

Two wastewater treatment plants in Ontario, Canada (i.e., the Humber WWTP 

and one confidential WWTP), were used to demonstrate the applicability and 

performance of the proposed RF model. Humber WWTP is situated on the mouth of the 

Humber River, and is Toronto’s second largest WWTP. It serves a population of 

approximately 680,000 with a capacity of 473,000 𝑚3/𝑑 (www.toronto.ca/services-

payments/water-environment/). The confidential WWTP serves a population of 

approximately 141,500, and it consists of preliminary treatment, primary treatment, 

secondary treatment and tertiary treatment. This confidential WWTP is designed to 

collect only sanitary sewage. However, a significant amount of flow in the sanitary sewer 

system originates from sources like downspouts and illegal sump pump connections 

during storm events, and infiltration during rainfall events. 

 

http://www.toronto.ca/services-payments/water-environment/
http://www.toronto.ca/services-payments/water-environment/
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3.3.2 Data 

The influent flow data were obtained from Hydromantis Environmental Software 

Solutions, Inc., a software development company in the water and wastewater treatment 

sector. For the Humber WWTP, daily flow data from January 2, 2015 to December 31, 

2017 was used. For the confidential WWTP, flow daily data from November 1, 2015 to 

October 30, 2016 was collected. Time-series flow plot for Humber WWTP and the 

confidential WWTP are presented in Fig. 3.3. 

 

Fig. 3.3 Time-series flow graph for Humber (a) and confidential plant (b) 

The weather data were obtained from Weather Canada 

(https://weather.gc.ca/canada_e.html). The weather data was collected and matched with 

the corresponding flow data with the same data length and frequency. The weather 

variables include Maximum Temperature (℃), Minimum Temperature (℃), Mean 

Temperature (℃), Heating Degree Days (℃, defined by Equation 8), Cooling Degree 

Days (℃, defined by Equation 9), Total Rain (mm), Total Snow (mm), and Total 

Precipitation (mm).  

 𝐻𝐷𝐷 = (1 𝑑𝑎𝑦)∑ (𝑇𝑏 − 𝑇𝑚)
+

𝑑𝑎𝑦𝑠   (8) 

https://weather.gc.ca/canada_e.html
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 𝐶𝐷𝐷 = (1 𝑑𝑎𝑦)∑ (𝑇𝑚 − 𝑇𝑏)
+

𝑑𝑎𝑦𝑠   (9) 

 

where 𝑇𝑏 is the base temperature;  𝑇𝑚 is the daily mean temperature; and the plus signs 

indicate that only positive values count (Büyükalaca et al. 2001). 

 

3.4 Result Analysis and Discussion 

3.4.1 Modeling Performance 

A RF model was built for each of the two WWTPs using the approach described 

above. For each WWTP, the parameters used for each RF model were different. For 

Humber, the original dataset had a total of 1,080 samples. Outliers in the original dataset 

were detected using the three-standard deviation (3𝜎) method and samples that included 

missing values were deleted, which resulted in a total of 1,053 samples. After pre-

processing, 789 data points were selected randomly to form the training set, and the 

remaining 264 data points were used for testing. The model with the best training results 

had 3,000 trees, and the number of the features tried at each split 𝑚 was equal to log𝑀. 

Fig. 3.4 shows the scatter plot of predicted and observed flow. 

 

Fig. 3.4 Scatter plot results of training and testing for Humber 
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At the confidential WWTP, flow data from November 1, 2015 to October 30, 

2016 was collected. Outliers in the data were identified manually after consulting the 

engineers at the WWTP, and samples with missing values were deleted. The pre-

processing resulted in a total of 359 data points. 269 data points were randomly selected 

as training data, and the remaining 90 points were used as testing data. After using the 

grid search method, it was found that the best performance model had number of the trees 

𝑘 equal to 1,000, and the number of features tried at each split 𝑚 was equal to M. The 

results of MAPE, RMSE, 𝑅2 and NSE, as well as the scatter plots of the predicted and 

observed flows are illustrated in Fig. 3.5. 

 

Fig. 3.5 Scatter plot results of training and testing for confidential plant 

Generally, the effectiveness of hydrologic models can be estimated by statistical 

parameters, such as NSE and 𝑅2. The required minimum value of NSE is 0.5, and 𝑅2 

with values greater than 0.5 are considered acceptable (Mello et al. 2008; Moriasi et al. 

2007). In addition, scatter plots were employed as NSE alone is not an adequate indicator 

(Jain and Sudheer 2008). In this study, according to the values of NSE and 𝑅2, the 

proposed RF models for the Humber station and the confidential station are considered 

satisfactory. Furthermore, to evaluate the performance of the proposed RF model applied 
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for wastewater inflow prediction, other algorithms used in previous studies, such as 

ARIMA used by Abunama and Othman (2017) and MLP proposed by Qianqian Zhang et 

al. (2018), are compared to RF. The results illustrate that RF can predict the wastewater 

inflows competently. Compared with ARIMA and MLP, the RF model for the 

confidential station shows better performance in terms of the statistical criteria. Although 

the RF model for the Humber station is not very good with regards to the values of NSE 

and 𝑅2, inflow prediction results based on RF (MAPE=6.623) show better performance in 

terms of MAPE when compare to the ARIMA model (Abunama and Othman 2017) 

which has a MAPE value of 8.012. To summarize, RF has significant potential to predict 

wastewater inflows, and it usually performs better than ARIMA and MLP. 

 

3.4.2 Variable Importance Analysis 

The variable importance was calculated by the sum of the MSE decrease as 

described in Section 2.1.3. This provides valuable support for decision makers to 

understand each variable’s contribution to the flow volume. Fig. 3.6 shows the variable 

importance of each station. For Humber, it is shown that 2-day accumulative precipitation 

(2DAP) and the 3-day accumulative precipitation (3DAP) are the main contributing 

factors. This is consistent with the work of El-Din & Smith (2002), where the authors 

suggested that the influent flow to a WWTPs may increase substantially during storm 

events. However, the results of variable importance for the confidential plant imply a very 

different pattern. The month of the year has the highest variable importance. It is worth 

mentioning that the input variables used for these two stations are different. When using 
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the Humber input variables for the prediction of the confidential plant, although month of 

the year is still the most important variable, the testing results are worse, with a 𝑅2 value 

of 0.589. If month of the year is not included as an input, the goodness of fit would be 

even worse. This illustrates that the selection of input variables has a significant impact 

on the model performance. It is recommended to carefully select input variables through 

literature review, system characaterizaion, and correlation analysis when building a RF 

model. To some extent, the variable importance analysis can also help identify the proper 

input variables (Wang et al. 2015).  

 

Fig. 3.6 Variable importance for Humber (a) and confidential plant (b) 

 

3.4.3 Uncertainty Analysis  

In the developed RF models, each tree can generate one predicted value under no 

prone conditions. The final predicted inflow rate was estimated using the mean value of 

predicted values generated by all the trees in the forest. In general, uncertainties 

associated with the predicted results can be quantified by analyzing all the generated 
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predicted values. For example, the probability density function (PDF) and cumulative 

distribution function (CDF) of the predicted inflow could be generated using results from 

𝑘 trees as samples. Similarly, the upper and lower bounds of predicted inflow could also 

be found to create the inflow ranges.  

As an example, the PDF and CDF graphs at a randomly selected point from the 

confidential plant’s testing dataset are presented in Fig. 3.7. Following the traditional RF 

modeling approach as described in Section 2.1.2, the predicted value is 2,383.7 𝑚3/ℎ𝑟. 

Using the proposed uncertainty analysis approach, as the final prediction value, the PDF 

graph illustrates that the relative likelihood of around 2,350 𝑚3/ℎ𝑟 is the highest. 

Furthermore, the CDF graph shows that the cumulative probability that inflow is less than 

or equal to 2,300 𝑚3/ℎ𝑟 is zero, while that for an inflow of greater than or equal to 2,450 

𝑚3/ℎ𝑟 is one. This implies that the range of the predictive values is [2,300, 2,450] 

𝑚3/ℎ𝑟. Furthermore, with the CDF graph, the probability that the predicted inflow 

exceeds a certain threshold can be assessed. For example, from the CDF graph shown in 

Fig. 3.7, the corresponding cumulative probability of flow at 2,400 𝑚3/ℎ𝑟 is 

approximately 0.7. Thus, the probability that the predicted inflow exceeds 2,400 𝑚3/ℎ𝑟 

is approximately 0.3. To summarize, the CDF graph can provide probability information 

about the risk of extreme inflow for each time step. Hence, knowing the probability of 

extreme events occurring will better support with the management and operation of 

WWTPs.  
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Fig. 3.7 Probability Density Function (a) and Cumulative Distribution Function (b) 

Additionally, the predicted daily inflow interval solutions for Humber and the 

confidential station during the testing period are presented in Fig. 3.8. These were slightly 

over-estimated for some points, especially the upper bounds of some points at the 

confidential plant (for instance, one point near November 2015). Overall, though the 

predicted interval solutions are slightly large for some data points, the interval solutions 

did capture almost all the observed flow values within the interval ranges.  

To evaluate the accuracy of the predicted intervals, the relative error of the 

interval solution is introduced as follows (Li et al. 2015): 

𝑅𝐸𝐼𝑆(%)

{
 
 

 
 

  

𝑐𝑖
𝑚𝑎𝑥 − 𝑞𝑖
𝑞𝑖

× 100,            𝑖𝑓 𝑞𝑖 > 𝑐𝑖
𝑚𝑎𝑥;

                 0,                                       𝑖𝑓 𝑐𝑖
𝑚𝑖𝑛 < 𝑞𝑖 < 𝑐𝑖

𝑚𝑎𝑥 ;

𝑐𝑖
𝑚𝑖𝑛 − 𝑞𝑖
𝑞𝑖

× 100,            𝑖𝑓 𝑞𝑖 > 𝑐𝑖
𝑚𝑎𝑥
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where 𝑐𝑖
𝑚𝑎𝑥 and 𝑐𝑖

𝑚𝑖𝑛 are maximum and minimum predicted results on sample 𝑖 

generated by 𝑘 trees, respectively; and 𝑞𝑖 is the observed value.  

For the Humber station, among the 264 samples used for testing, 248 samples of 

their observed values fall into its corresponding interval solution generated by the RF 

model, accounting for 92.4% of the total testing samples. The percentage of samples with 

the absolute REIS less than 5%, 10%, and 20% are 94.7%, 96.6% and 99.6%, 

respectively. For the confidential plant, 61 observed values of the total 90 samples fall 

into its corresponding intervals, accounting for 67.8% of the total testing samples. The 

percentage of samples with the absolute REIS less than 5%, 10%, and 20% are 82.2%, 

95.6% and 100%, respectively.  

Moreover, it can be seen from Fig. 3.8 that all the upper bounds of interval 

solutions for Humber are relatively stable in comparison to the confidential plant. For the 

confidential plant, the large upper bound points may be explained due to the large rate of 

flow change at the plant. For Humber, most of the observed influent flow values fall into 

the range from 150 MLD to 350 MLD, whereas for the confidential plant, the observed 

influent flow values change from 1750 𝑚3/ℎ𝑟 to 4000 𝑚3/ℎ𝑟. The interval solution was 

generated by using the maximum and minimum values generated by 𝑘 trees, and not all 

the trees were built using proper samples. Thus, some trees may become disturbances, 

and large changes of scale may lead to a large variance. 

The predicted flow interval solution provides an upper bound and a lower bound 

using the maximum value and the minimum value generated by 𝑘 trees. This work is the 
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first attempt to analyze the uncertainty of predicted flow by using this method. In this 

case study, most of the testing points fell into the predicted interval. The interval solutions 

combined with CDF graph analysis can not only provide range solutions of the predicted 

wastewater inflows, but also identify the probability of inflows exceeding a certain 

threshold. Thus, this strategy offers an excellent support for decision-makers and 

operators of WWTPs, especially during extreme weather events and domestic water 

consumption rush hours.  

 

Fig. 3.8 Range prediction for Humber (a) and confidential plant (b) 

 

3.5 Conclusions  

In this study, a RF model was developed for wastewater inflow prediction at 

WWTPs. A RF model is an ensemble model which comprises a collection of DTs. This 

model shows its significant potential for wastewater inflow prediction, as it avoids 

overfitting and analyzes each input variable’s contribution. The proposed model could 

address the nonlinear relationships between the influent flow of WWTPs and various 

influencing factors such as weather features, and domestic water usage patterns. In 
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addition, a new uncertainty analysis method was proposed to quantify the uncertainties 

with RF forecasts and thus, provide more robust support for the operation and 

management of WWTPs. 

The proposed model was applied to predict the daily influent flow at the Humber and the 

confidential WWTPs in Ontario, Canada. The 𝑅2 values for Humber and the confidential 

plant for training were 0.916 and 0.949, respectively; while those for testing were 0.606 

and 0.827, respectively. The NSE values of Humber for the training and testing were 

0.896 and 0.597, respectively; while those for the confidential station were 0.946 and 

0.822, respectively. The results demonstrate that the developed RF models could perform 

well for wastewater inflow prediction. Compared to other inflow prediction models such 

as the ARIMA and MLP, the RF model has the advantage of determining each variable’s 

contribution, an important factor for decision-makers. Furthermore, using the proposed 

uncertainty analysis approach, the PDF and CDF of wastewater inflow at each time step 

were generated. This can provide decision-makers with more information about the risks 

of extreme inflows. Performance of the RF regression model could be enhanced by 

increasing the quality and quantity of input data. For future studies, the RF model’s 

capability for predictions with a higher temporal resolution (e.g., hourly prediction) 

should be further investigated.  
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Abstract 

Influent flow rate prediction is of great importance to the operation and 

management of wastewater treatment plants (WWTPs). However, due to the complexities 

of wastewater collection systems, predicting WWTP influent flow rate with a high 

temporal resolution is a daunting challenge. In this study, three machine learning models, 

including multilayer perceptron (MLP), long short-term memory network (LSTM), and 

random forest (RF), are developed for hourly influent flow rate forecasting. The proposed 

models are applied for influent forecasting at three WWTPs (i.e., Humber, Woodward, 

and one confidential plant) in Ontario, Canada. For the confidential WWTP, all of the 

three proposed models show good performance. The Coefficient of Determination for the 

testing period are 0.829, 0.787, and 0.906, respectively. For the other two WWTPs, the 

performance of MLP and LSTM is barely satisfactory; however, the RF model results in a 

good fit between the observed and predicted hourly flow rate. After the model 

performance evaluation, interval predictions of hourly influent flow at each WWTPs are 

generated. To the authors’ knowledge, this work is the first attempt to predict wastewater 

influent with an hourly time step for WWTPs in North America. 

Keywords: 

Random forest; Long short-term memory; WWTP; Wastewater prediction; Hourly flow; 

Uncertainty analysis.  
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4.1 Introduction  

Considering the fluctuations in the influent flow rate is important for the stable 

operation and management of a wastewater treatment plant (WWTP). The influent flow 

rate entering a WWTP not only has an impact on effluent quality, such as total suspended 

solids and biochemical oxygen demand, it also affects the total energy consumption of the 

plant (Bechmann et al. 1999; Wei and Kusiak 2015). Particularly, for the combined sewer 

system, the influent flow rate is closely related to facility security during storm events. 

Therefore, the accurate prediction of wastewater influent flow rate is essential for 

improving treatment efficiency, optimizing energy consumption, and maintaining facility 

security.  

The forecasting of influent characteristics was a major challenge for wastewater 

treatment simulation and optimization (Wei and Kusiak 2015). In the recent decade, 

alongside the development of sensor technologies and advanced control strategies, plant-

wide controlling systems and monitoring networks were widely used in WWTPs 

(Campisano et al. 2013; Dürrenmatt and Gujer 2012). As a result, high-frequency and 

high-quality data were made available to plant operators and managers, and these data are 

extremely valuable for improving influent forecasting accuracy (Boyd et al. 2019; Chiang 

et al. 2018). Therefore, data mining approaches that could utilize wastewater monitoring 

data and provide reliable influent forecasts are desired.  

Previously, a number of data-driven models have been developed to predict the 

influent flow rate. For instance, El-Din and Smith (2002) applied artificial neural 

networks (ANNs) to forecast the wastewater influent flow rate during extreme weather 
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events. Fernandez et al. (2009) developed a neurofuzzy wastewater flow-rate forecasting 

model (NFWFFM) using only two input variables, day of the week and average daily 

flow-rate of day before. Wei and Kusiak (2015) considered the spatial feature of influent 

flow and compared the performance of static multi-layer perceptron (MLP) neural 

networks and dynamic neural network (DNN) on the short-term prediction of influent 

flow rate. Kim et al. (2016) evaluated the k-nearest neighbor (k-NN) method for 

forecasting influent flow rate, chemical oxygen demand, suspended solid, total nitrogen 

and total phosphorus. Although these models could provide fairly good influent forecasts, 

they do have some major drawbacks. For example, these models have difficulties in 

making long-term predictions and addressing the associated time lag problems (Charaniya 

and Dudul 2012). Also, the temporal resolution of prediction is mostly daily, which is not 

ideal for real-time facility operation and dynamic process control. Additionally, very few 

of the previous studies tackled the various uncertainties associated with the wastewater 

forecasting process. Therefore, more advanced data-driven modeling techniques that are 

reliable for high temporal resolution and long-term prediction and can provide robust 

decision support based on uncertainty analysis are still desired.  

More recently, recurrent neural networks (RNNs) based on Long Short-Term 

Memory (LSTM) cells emerged as a popular data-driven technique (Ismail et al. 2018). 

LSTM was systematically proposed by Hochreiter and Schmidhuber in 1997. The main 

advantage of LSTM is that can bridge long time lags (Hochreiter and Schmidhuber 1997). 

LSTM was applied to a wide range of areas. For instance, Shi et al. (2015) developed a 

convolutional LSTM network to predict the rainfall intensity in the near future and the 
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proposed model performs well. Zhao et al. (2017) used LSTM network for short-term 

traffic forecast and the proposed LSTM achieved better performance in comparison with 

some other models. In the meanwhile, another model called random forest (RF) has also 

gained a lot of attention. RF is an ensemble classifier, which comprises a collection of 

tree-structured classifiers (Breiman 2001a). It has certain advantages in terms of modeling 

accuracy and computational intensity (Breiman 2001a; Gislason et al. 2006). 

Furthermore, each input variable’s contribution could be analyzed in a quick and 

straightforward manner with the tree structure. As a result of these advantages, RF was 

wildly used in various areas in the past decade (Abdel-Rahman et al. 2013; Díaz-Uriarte 

and Alvarez de Andrés 2006; Pal 2005). Both LSTM and RF have great potential to be 

used as effective techniques for wastewater influent prediction at a high temporal 

resolution. However, there are very limited researchs on the application of LSTM and RF 

in this area.  

Therefore, the objective of this study is to develop advanced data-driven models 

based on LSTM and RF for hourly wastewater influent prediction. This entails the 

following four tasks: 1) developing influent prediction models using LSTM and RF, as 

well as a traditional neural network technique, i.e., MLP; 2) applying the developed 

models to predict hourly influent flow rate at three WWTPs in Ontario, Canada; (3) 

evaluating the performance of the proposed models using different statistical criteria; (4) 

providing interval prediction of hourly flow rate results for each WWTPs using the RF 

models. This study will provide innovative and robust tools for wastewater influent flow 
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rate prediction at a high temporal resolution, and thus provide valuable support for 

effective WWTP operation and management. 

 

4.2 Study Area and Data Collection 

Three WWTPs in Ontario, Canada (i.e., Woodward, Humber, and a confidential 

WWTP), were selected for this study. The Woodward WWTP is located in the City of 

Hamilton, Ontario. Both sanitary and combined sewage is processed by this WWTP with 

an average capacity of 409 MLD. The Humber WWTP is Toronto’s second largest 

WWTP and it serves a population of about 680,000 with a capacity of 473,000 𝑚3/𝑑. 

The confidential WWTP serves a population of approximately 140,000. This confidential 

WWTP is designed to collect only sanitary sewage. However, a significant amount of 

flow in the sanitary sewer system originates from sources like downspouts and illegal 

sump pump connections during storm events, and infiltration during rainfall events. 

The influent flow rate data are obtained from Hydromantis Environmental 

Software Solutions, Inc., a software development company that focuses on the water and 

wastewater treatment sector. For the Woodward WWTP, time series data in 5-minute 

intervals from January 1, 2015 to December 31, 2017 are collected. For the Humber 

WWTP, hourly flow rate data from January 2, 2015 to December 31, 2017 are used. For 

the confidential WWTP, hourly data from November 1, 2015 to October 30, 2016 are 

collected.  
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The weather data are obtained from Dark Sky, a company that specializes in 

weather forecasting and visualization. The weather data are collected and matched with 

the corresponding flow data with the same data length and frequency. The weather 

variables include temperature, humidity, precipitation, wind speed, and wind bearing. 

 

4.3 Methodology 

4.3.1 Multi-Layer Perceptron 

Artificial neural networks were proved to be a useful tool to build generalizable 

models in many disciplines (H.Taud and J.F.Mas 2018). One of the most widely used 

artificial neural networks, multi-layer perceptron (MLP), is used as a baseline model in 

this study. The MLP model comprises multiple layers of nodes (or neurons) that interact 

through weighted connections (Pal 1992). Generally, the MLP model consists of three 

layers: the input layer, the hidden layer(s), and the output layer. In this study, initial 

weights are first randomly assigned to the input variables. Subsequently, through a set of 

activation functions, the value of a cost function related to the input variables is 

calculated. Then, a gradient descent algorithm is used to find the optimal value of the cost 

function, and the weights of the input variables are updated through backpropagation. 

Finally, the optimum weights of the input variables are determined, and the relationship 

between the input variables and the output target can be defined.  
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4.3.2 Long Short-Term Memory Networks 

Although traditional neural networks such as the MLP model perform well in 

many disciplines, they can not well address problems with time series features. To 

address this issue, recurrent neural networks (RNNs) are developed. While full 

connections only exist between adjacent layers in MLP models, connections among nodes 

within the same layer are built in RNN models (Zhao et al. 2017). These connections 

allow information to persist, which makes it capable of retaining time series information. 

RNN’s unique architecture allows it to use all previous input information up to current 

time and the depth of these connections can be adjusted case by case (Zhao et al. 2017). 

However, there are still some problems with RNNs. For example, as the inter-layer 

connections grow, it may be computationally demanding for an RNN to use previous 

information. In practice, RNN models usually can not learn long-term dependencies 

(Bengio et al. 1994; Universit and Betreuer 1991). In order to solve this problem, Long 

Short-Term Memory (LSTM) network is developed. LSTM is a special RNN, and it has 

been proven to have stable and powerful performance when modeling problems with 

relatively long-term dependencies (Hochreiter and Schmidhuber 1997; Ismail et al. 2018; 

Shi et al. 2015). LSTM models have the same neural connection structure as a typical 

RNN but a different neuron cell. The LSTM neuron incorporates three gates (forget gate, 

input gate, and output gate), which allows this network to have memory. A typical LSTM 

cell is presented in Fig. 4.1. 
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Fig. 4.1 Structure of a typical Long Short-Term Memory Neuron 

 

The gates in the LSTM neuron are mainly used for information selection. For 

instance, in this study, the forget gate layer selects information by using the sigmoid 

function. When information 𝑥𝑡 and ℎ𝑡−1 enter the neuron, the result of this forget gate 

layer can be expressed as follows:         

 𝑓𝑡 = 𝜎(𝑤𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)         (1) 

 

where 𝑥𝑡 is the new input information at time 𝑡; ℎ𝑡−1 is the output information at time 𝑡 −

1; 𝑤𝑓 is the assigned weight for the forget gate; 𝑏𝑓 is the bias for the forget gate; and 𝜎 is 

the sigmoid function.  

The value of the sigmoid function is between 0 and 1. Thus, if 𝑓𝑡 = 0, it means no 

information can pass the gate. If 𝑓𝑡 = 1, it means that all of the information is allowed to 

enter the gate. The input gate decides the information that will be updated and entered: 
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 𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)         (2) 

 

 𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  (3) 

 

where 𝑖𝑡 decides the information that will be updated at time 𝑡; 𝐶̃𝑡 is a created candidate 

vector at time 𝑡; 𝑤𝑖  and 𝑤𝑐 are the assigned weight for the processes 𝑖 and 𝑐, 

respectively; 𝑏𝑖 and 𝑏𝑐 are the biases for the processes 𝑖 and 𝑐, respectively. Then the 

neuron state can be updated as:  

 𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡         (4) 

 

Finally, the output gate decides the information that will be outputted: 

 𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏0)         (5) 

 

where ℎ𝑡 is the output information; 𝑜𝑡 is the output gate for determining the information 

that will be outputted;  𝑤𝑜 is the assigned weight for the process o;  𝑏𝑜 is the bias for the 

process 𝑜.  

 

4.3.3 Random Forest 

RF is an ensemble classifier that consists of a cluster of decision trees (DT) 

{ℎ(𝑥, 𝛩𝑘), 𝑘 = 1,… }, where  𝑥 is the input vector, and {𝛩𝑘} are independent distributed 

random vectors and subsets of x (Breiman 2001a). The RF method can be used to address 

both classification and regression problems. When applying the RF model to regression 

problems, such as the wastewater influent flow rate prediction, regression trees can be 

constructed. The construction process of the RF model in this study is presented in the 

Fig. 4.2. Each regression tree is developed using a bootstrap sample of the original data 
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set. The regression tree deals with the forecasting of an continuous or discrete output 

variable 𝑦, given a vector of input variables 𝑥 (Loh 2008). In this study, the classification 

and regression tree (CART) algorithm is used when growing the regression tree (Breiman 

2017). Mean squared errors (MSE) as the variance of the samples in the node is used for 

node impurity criterion. After the trees and the forest are constructed and finalized, the 

average of all values predicted by the trees can be calculated as the predicted value of the 

random forest. Moreover, the sum of MSE decreases can be used to measure the variable 

importance, which quantifies each input variable’s contribution to the target (Breiman, 

2002; Zhou et.al). 

 

Fig. 4.2 The process of developing an RF model 

 

4.3.4 Model Development and Evaluation Criteria 

The accuracy of modeling results depends on how the non-linear relationship 

between the influent flow rate and other predictors is captured (Li et al. 2015). In 

addition, the representativeness of training datasets is critical to a data-driven model 
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(Wang et al. 2015). Therefore, the selection of predictors and training datasets has 

significant impacts on the overall performance of a model. Wastewater influent flow rate 

is affected by numerous factors such as the local sewage system, weather conditions, and 

domestic water usage pattern. In this study, temperature, humidity, precipitation, pressure, 

wind speed, and wind direction are used to describe the change of weather conditions. 

Months of the year, days of the week, and hours of the day are used to decode local water 

usage pattern. Seventy-five percent of the original data are randomly selected to develop 

and train the MLP and RF models; while the first seventy-five percent of the original data 

are directly selected for the LSTM model, in order to keep the sequence information 

intact. Furthermore, a grid search and cross-validation approach are used to calibrate the 

model. When there are several options for one parameter, the combined grid search and 

cross-validation approach can help find the best parameter. In this study, a total of four 

statistical criteria, including Mean Absolute Percentage Error (MAPE), Root Mean 

Square Error (RMSE), Coefficient of Determination (R2), and Nash-Sutcliffe Efficiency 

(NSE) are used to evaluate the performance of the proposed models (Bennett et al. 2013; 

Nash and Sutcliffe 1970).  

 

4.3.5 Interval Forecasts Based on the RF Model 

To further quantify the uncertainties associated with RF modeling outputs, 

interval flow rate forecasts are generated using a bootstrapping approach. In the 

developed RF model, each tree produces one predicted value without pruning the tree. 

While an exact influent flow rate value can be estimated using the mean value of 
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predicted values generated by all of the trees in the forest, all these predicted values can 

also be used to generate the distribution and provide probabilistic forecasting results. 

Therefore, the associated uncertainties can be quantified by analyzing the distribution of 

predicted values. For instance, the probability distribution, cumulative distribution, and 

confidence intervals of influent flow rates can be generated. 

 

4.4 Results and Discussion  

4.4.1 Modeling Results Analysis  

Three different models have been used in this study, including two neural 

networks model (MLP and LSTM) and one random forest model (RF). All three models 

were applied for hourly influent flow rate forecasting for three different WWTPs. For the 

confidential station, from 00:00:00 on November 1st, 2015 to 23:45:00 on October 31st, 

2016, a total of 35,133 data samples were collected at a 15-minutes time step. Outliers 

were manually detected by engineers at the WWTP. After removing the outliers, the data 

were upscaled to hourly, resulting in a total of 8,783 data samples. For the MLP model 

and the RF model, 75% (6,587 samples) of the hourly data were randomly selected and 

marked as training data, and the rest 2,196 samples were used for testing. Meanwhile, to 

build the LSTM model, the first three-quarter of the original time series were used as 

training data, and the rest were testing data. Hourly data from 21:00:00 on January 2nd, 

2015 to 00:00:00 on December 31st, 2017 at the Humber station, as well as  5-minute 

data from 00:00:00 at January 1st, 2015 to 23:55:00 on December 31th, 2017 at 

Woodward, were collected. After removing outliers using the three times standard 
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deviation method, in a total of 24,509 samples and 25,986 samples were fed to models, 

respectively. The modeling results of MLP, LSTM, and RF are presented in Figs. 4.3-4.5, 

respectively.  

 

Fig. 4.3 Results of the MLP model: (a) the confidential station, (b) the Humber station, 

and (c) the Woodward station 

 

Fig. 4.4 Results of the LSTM model: (a) the confidential station, (b) the Humber station, 

and (c) the Woodward station 
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Fig. 4.5 Results of the RF model: (a) the confidential station, (b) the Humber station, and 

(c) the Woodward station 

These scatter plots indicate that all of the three methods can obtain a satisfactory 

forecast of influent flow rate with an hourly time step for the confidential station. The 

NSE values of the MLP, LSTM, and RF models during the testing period are 0.828, 

0.766, and 0.906, respectively; those of 𝑅2 are 0.829, 0.787, and 0.906, respectively; 

while MAPE scores 6.712%, 27.447%, and 4.721%, respectively. Typically, for modeling 

purposes, the required minimum value of NSE is 0.5, and only R2 values greater than 0.5 

are acceptable (Mello et al. 2008; Moriasi et al. 2007). Thus, it is illustrated that these 

models could provide satisfactory hourly influent flow rate forecasts for the confidential 

WWTP.  

When applied to the Humber and Woodward WWTPs, the accuracy of the three 

models decreases drastically. The decrease is particularly significant for MLP and LSTM.  

The R2 values of MLP and LSTM during testing are both under 0.5. In addition, results of 
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the LSTM model indicate an obvious poor performance of testing. That may be the result 

of the non-linear relationship between hourly influent flow rate and the fact that the 

selected predictors are not representative enough. To better describe the complex 

nonlinear relationship accurately, more relevant input data should be collected. Despite 

the poor performance of MLP and LSTM, the RF model is more robust for resisting 

disturbance. Although the results are not as good as those at the confidential station, they 

still indicate that the RF model can obtain satisfactory forecasts at Humber and 

Woodward with 𝑅2 equals 0.654 and 0.738 for testing, respectively.  

It is worth mentioning that none these models included previous wastewater 

influent flow rates as predictors. When including previous flow as predictors, it would be 

the dominant impact factor of the flow to be predicted, and the modeling performance 

would improve dramatically, especially for hourly influent flow prediction (El-Din and 

Smith 2002; Herrera et al. 2010; Shen et al. 2009). That is because the autocorrelation of 

hourly influent rate between adjacent time steps is strong. Although introducing previous 

flow as predictors could improve the modeling results, it is not ideal for operation and 

management practices as it limits the prediction horizon. Long-horizon forecasting is very 

important for the design, operation, and management of WWTPs. One-day forecast of 

influent flow is generally not sufficient for operators to improve process control planning 

accordingly. This is why the LSTM model, which could provide long-term forecasts, 

presents a unique advantage. On top of that, in this study, it is implied that the RF model 

also has great potential for addressing long-horizon forecasting problems.  
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4.4.2 Interval Prediction Results  

The interval forecast of hourly influent flow rate during the testing period are 

presented in Fig. 4.6. For each time step, the interval forecasts are obtained from the 

maximum and minimum values generated by all the trees in the established forest. 

Overall, almost all of the observed data fall within the predicted ranges. For the 

confidential station and Woodward, the predicted intervals not only provide the range of 

influent flow rate but also present the pattern. While for the Humber station, although the 

intervals capture the observed influent flow rate very well, the lower bound of many 

predicted values is of 0 m3/s. That is because there are some nearly zero training samples 

in the original dataset. These data points could lead one or more predicted values of zero 

or near zero.  
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Fig. 4.6 Probabilistic results of (a) the confidential station, (b) the Humber station, and (c) 

the Woodward station 
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4.5 Conclusions   

In this study, three data-driven models, including MLP, LSTM, and RF, were 

developed for hourly wastewater influent flow prediction. The developed models were 

tested for three WWTPs in Canada, including Humber, Woodward, and a confidential 

plant. The proposed MLP model in this study showed a good performance at the 

confidential plant with the 𝑅2 value equals 0.829 for the testing period. The performance 

of MLP model deteriorates when applied to the other two stations. The results of the 

LSTM model showed a satisfactory fit between observations and predictions at the 

confidential plant. However, it is hard for the proposed LSTM model to capture the 

relationship between the influent flow rate and the predictors at the other two stations. 

The performance of the RF model was more stable compared to MLP and LSTM:, the 𝑅2 

values are 0.906, 0.650, and 0.733 for the confidential plant, Humber, and Woodward, 

respectively. Overall, the advanced machine learning models developed in this study can 

generate high temporal resolution forecasts of hourly influent flow rate, which is rare in 

previous studies. This study provides a set of effective tools for predicting the influent 

flow rate, which can provide valuable decision support for the management of WWTPs. 
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CHAPTER 5 - CONCLUSIONS  

The need for effective management of wastewater treatment plants is very clear 

due to the increasing water scarcity across the globe, which highlights the importance of 

wastewater influent prediction for wastewater treatment plants (WWTPs). Previous 

studies indicate that data-driven models have great potential to provide reliable influent 

flow forecasts and thus to support the operation and management of WWTPs. This thesis 

explored the practical applications of advanced data-driven techniques in the field of 

wastewater influent prediction. A number of advanced data-driven techniques were used 

to predict wastewater influent flow one- and multiple-step ahead using historical flow 

data, meteorological conditions and time series information such as day of the week. 

Several WWTPs in Canada were used as case studies, and uncertainty analysis was also 

conducted to provide more robust support for wastewater management.  

Firstly, a random forest (RF) model was developed for daily influent flow 

prediction. The results showed that RF models perform well in terms of accuracy. 

Compared to other influent flow rate prediction models, such as autoregression integrated 

moving average (ARIMA) and multi-layer perceptron (MLP), RF models have the 

advantage of quantifying each input variable’s contribution. Furthermore, an uncertainty 

analysis approach was proposed based on the structure of RF model, which allows it to 

generate probabilistic predictions and provide decision-makers with more information 

about the risks of extreme influent flow events.   

Secondly, three data-driven models including multi-layer perceptron (MLP), long 

short-term memory neural network (LSTM), and random forest (RF) were developed to 
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predict hourly influent flow rate. These models provided satisfactory influent flow 

forecasts with a high temporal resolution (i.e., hourly), which addresses a major research 

gap in the area of wastewater influent prediction. The results suggested that the RF model 

might be more robust than MLP and LSTM in terms of prediction accuracy when it 

comes to forecasting with high temporal resolution. 

In this research, a set of effective wastewater influent prediction tools were 

developed for WWTPs. These tools could help WWTPs make reliable and accurate 

predictions of performance and operating cost. The developed models could also be 

added to dynamic wastewater modeling software to help improve the design, operation, 

and management of WWTPs in Canada. This work could provide valuable technical 

support for making the maximum use of Canada’s existing and future wastewater 

treatment facilities.  

In future research, the prediction accuracy of the proposed models could be 

further improved by integrating with other models. Improving data quality could also be 

helpful. In addition, testing for more WWTPs is still needed to further demonstrate the 

reliability of the proposed models. More work could also be done to investigate other 

topics such as predictions with a longer horizon, predictions with smaller data samples, 

and model uncertainties. 
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