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Lay Abstract 

 Invasive common reed, Phragmites australis subsp. australis, is one of the most 

aggressive and problematic invasive species in North America. This species rapidly 

expanded in the late 1900s and now occupies large patches of our critical wetland habitats 

as monocultures, especially in the northeastern states and the Great Lakes basin. My 

thesis presents new methods to identify where invasive common reed is present at a 

landscape level so that it can be targeted for large-scale control and removal. With 

colleagues in Michigan we created the first basin-wide map of invasive common reed for 

the Great Lakes region using satellite image data. Within Ontario, I used imagery from 

satellites and planes to determine the extent of invasive common reed along our road 

networks. At a site-specific scale, I used drones or unmanned aerial vehicles to map a 

protected wetland with high precision and accuracy. I used many of these approaches in 

combination to determine how effective current invasive common reed removal efforts 

are along roadway corridors. I compare all of these mapping processes and techniques to 

showcase the strengths and weaknesses of each approach and to help managers decide 

which approach is most suitable for their unique case. With all of these data, I have 

created new mapping techniques that can show the rapid spread of invasive common reed 

and how effective current management plans have been in combatting this aggressive 

invader.  
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General Abstract 

 Phragmites australis (Cav.) Trin. ex Steud., the invasive common reed, is a 

perennial grass with a cosmopolitan distribution. Unlike the native subspecies 

(Phragmites australis subsp. americanus) in North America, this invasive haplotype is an 

aggressive competitor and has firmly established itself throughout the Great Lakes basin 

by dominating wetlands and wet habitat, forcing out native plants and creating 

monocultures of little use to native fauna. Growing clonally and from seed, invasive 

Phragmites can quickly dominate wet areas throughout North America. It has also 

become a prominent feature in roadside habitats, where native plants are subject to 

increased disturbance under which invasive Phragmites will thrive competitively. In 

order to effectively manage this aggressive invader, we must be able to accurately map its 

distribution at multiple spatial scales, understand its invasion ecology, and determine 

efficacy of current removal efforts.  

 In this thesis, I evaluated multiple remote sensing methods to determine the extent 

of invasive Phragmites.  The basin-wide wetland mapping project based on satellite 

image data was a collaborative effort between U.S. and Canadian scientists to document 

the current and potential distribution of invasive Phragmites throughout 10-km of the 

shoreline of the Great Lakes, including all coastal marshes.  To elucidate its distribution 

through road networks, I used provincial orthophotography databases to map changes in 

the distribution of Phragmites in road corridors between 2006 and 2010. Based on these 

data, I created a conceptual model to show the relationships among the main factors that 

govern the establishment of invasive Phragmites in roadsides within Ontario.  These 
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factors included habitat quality, habitat availability, and propagule dispersal.  I also 

showed how unmanned aerial vehicles can be used with very high accuracy to map the 

distribution of very small stands of Phragmites at the beginning of an invasion, and to 

determine short-term changes in habitat availability in smaller wetlands.  Using various 

remote sensing approaches, I was able to determine the efficacy of treatment programs 

implemented by provincial agencies on roadway corridors at the scale of the entire 

southwestern, southcentral and central regions of Ontario.  This is the first quantitative 

evidence of invasive Phragmites removal along roads and one of the largest spatial and 

temporal time scales used to evaluate these processes. Finally, I synthesized the 

capabilities and limitations of these remote sensing methods to create an evaluative 

framework that outlines how to best map invasive Phragmites across varying landscapes. 

This research integrates geography and biology to create novel mapping techniques for 

invasive Phragmites and has furthered our understanding of this aggressive plant and how 

its invasion can be controlled.  

 

  



 vi 

Acknowledgements 

Thank you to my supervisor, Dr. Pat Chow-Fraser, for being a fantastic supervisor 

throughout my tenure at McMaster. It was in your Introductory Ecology class that I came 

to realize and appreciate this field, and I am truly grateful that you gave me an 

opportunity to be a part of it. You have taught me how to become a successful student, 

researcher, and ecologist. I wonder how many times we have said Phrag or Phragmites to 

each other over the past six years.  

I am grateful to my supervisory committee, Dr. Jon Stone and Dr. Darren Scott, 

for their insights and comments throughout this period. You have helped shaped my 

thesis into what it is today. I also greatly appreciate the comments and engaging questions 

from my external committee member, Dr. Yuhong He.  

There were quite a few PCF lab members over my time here, and I’m so glad to 

have met you all. I think I made a lot of people hate Phrag and go cross-eyed looking at 

computer screens all year, but I am thankful for all your work and I am proud of what we 

have accomplished together. A special thanks to the crew of grad students who have 

helped me so much through these past years: Dallas, Amanda, Chris, Chantel, Julia, J.P., 

Dan, Stuart, Lindsey, Nick, Prabha, Morgan, Alana, Sawsan, Danielle, and Steve*; and 

former lab members who I’ve had the pleasure of meeting and learning from: Jon, Dan, 

Rachel, Maya, , Mel, Lyndsay, & Anhua (*honorary degree). We’ve had some great 

experiences, stories, and lessons come out of our time together in the lab. I would like to 

especially thank Chantel for convincing me to stay here and being an awesome co-author, 

Julia for your contributions to ‘Grand River 2.0’, Steve for being so qualified and an 



 vii 

amazing friend, Nick for keeping me up-to-date on internet things, and Dan for your 

continued guidance and help throughout our tenure together (even if you left me four 

months early).  

My family has been incredibly supportive throughout this time, and I could not 

have finished this without their support. Dad, you have been an inspiration to me your 

dedication to work while still remaining compassionate to all. Mom, your kindness knows 

no bounds and I will forever appreciate every single coffee we have had together. 

Andrew, thank you for keeping me sane throughout these six years and your inspiring 

ability to communicate. Alexandra, thank you so much for helping me wrangle this beast 

of a thesis and being my ‘Best’ friend. Somehow, I am the last one of us all to get a 

second degree.  

I would like to recognize all of my friends in cycling that have stopped me from 

becoming a hermit over the past four years. I can’t remember every pedal, turn, and crash, 

but I will cherish all the smiles and laughs we have had together. To keep the record 

straight, I own only four bikes. I believe that is quite reasonable.  

Finally, I have to give immense thanks and appreciation to the residents of 20 

York. Lewis, you have been a wonderful (if somewhat annoying) roommate that can be 

so demanding, but I appreciate your nonsense anyways. You’re basically a financial 

parasite, but I guess that’s what I get for bringing a cat into my life. To the wonderful 

Cayleih Robertson, you’ve been the best partner I could ask for through this time. Your 

love and support have made this all possible, and I am forever grateful.  

 
 



 viii 

Table of Contents 

 
Title Page…………………………………………………………………………………..i 

Descriptive Note…………………………………………………………………………..ii 

Lay Abstract……………………………………………………………………………..iii 

Abstract…………………………………………………………………………………..iv 

Acknowledgements………………………………………………………………………vi 

List of Figures…………………………………………………………………………....xv 

List of Tables…………………………………………………………………………..xxiv 

List of all Abbreviations and Symbols………………………………………………xxvii 

Declaration of Academic Achievement……………………………………………….xxx 

Chapter 1: Introduction………………………………………………………………….1 

Remote Sensing……………………………………………………………………1 

Invasive Common Reed…………………………………………………………...2 

Wetland Management……………………………………………………………...3 

Thesis Objectives………………………………………………………………….4 

Literature Cited…………………………………………………………………….6 

Chapter 2: Development of a Bi-National Great Lakes Coastal Wetland and Land Use 

Map Using Three-Season PALSAR and Landstat Imagery…………………………..11 

Abstract…………………………………………………………………………..12 

Introduction………………………………………………………………………13 

Background………………………………………………………………………16 

Methods…………………………………………………………………………..19 



 ix 

Study Area………………………………………………………………..19 

Field Data………………………………………………………………...20 

Image Area……………………………………………………………….23 

Landstat Data Selection and Processing…………………………………..24 

SAR Processing…………………………………………………………..26 

Mapping Technique………………………………………………………27 

Accuracy Assessment……………………………………………………..30 

Results……………………………………………………………………………31 

Discussion………………………………………………………………………..33 

Accuracy and Confusion Classes…………………………………………33 

Importance of SAR-Optical Fusion in Wetland Mapping………………...35 

Summary and Significance……………………………………………………….38 

Acknowledgements………………………………………………………………39 

Literature Cited…………………………………………………………………..41 

Chapter 3: Mapping Invasive Phragmites australis in Highway Corridors of 

Ontario…………………………………………………………………………………..65 

Abstract…………………………………………………………………………..66 

Introduction………………………………………………………………………67 

Methods…………………………………………………………………………..71 

Orthophotography Datasets……………………………………………...71 

Automated Image Classification…………………………………………72 

Manual Digitization of Invasive Phragmites…………………………….73 



 x 

Traffic Volume Data……………………………………………………...74 

Results……………………………………………………………………………75 

2006 and 2010 Road Datasets……………………………………………75 

Automated Image Classification of SWOOP……………………………...75 

Manual Digitization………………………………………………………77 

Traffic Volume Data……………………………………………………...78 

Discussion………………………………………………………………………..79 

Acknowledgements………………………………………………………………88 

Literature Cited…………………………………………………………………...89 

Chapter 4: Use of Fixed-Wing and Multi-Rotor Unmanned Aerial Vehicles to Map 

Dynamic Changes in a Freshwater Marsh…………………………………………105 

 Abstract…………………………………………………………………………106 

Introduction……………………………………………………………………..107 

  Study Sites………………………………………………………………109 

 Materials and Methods………………………………………………………….110 

  Piloted Aircraft Image Acquisition……………………………………...110 

  Multi-rotor Image Acquisition…………………………………………..110 

  Fixed-wing Image Acquisition…………………………………………..113 

  Field Validation Data…………………………………………………...114 

  Accuracy Analyses………………………………………………………115 

 Results…………………………………………………………………………..116 

  Image Data……………………………………………………………...116 



 xi 

  Accuracy Analyses………………………………………………………117 

 Discussion………………………………………………………………………119 

 Conclusion………………………………………………………………………122 

 Acknowledgements……………………………………………………………123 

 Literature Cited………………………………………………………………….124 

Chapter 5: Assessing Efficacy of Invasive Phragmites Removal in Highway 

Corridors with Orthophotography and Satellites Image Data: The Ontario Case 

Study……………………………………………………………………………………135 

 Abstract…………………………………………………………………………136 

 Introduction……………………………………………………………………..138 

 Methods…………………………………………………………………………142 

 Results ………………………………………………………………………….146 

 Discussion………………………………………………………………………148 

 Acknowledgements……………………………………………………………..154 

 Literature Cited………………………………………………………………….155 

Chapter 6: Mapping Options to Track Invasive Phragmites Australis in the Great 

Lakes Basin in Canada………………………………………………………………..174 

 Abstract…………………………………………………………………………175 

 Introduction……………………………………………………………………..176 

 Methods…………………………………………………………………………177 

  Study Area………………………………………………………………178 

  Remote Sensing Methodologies…………………………………………178 



 xii 

  Landsat………………………………………………….………………179 

  PASLAR…………………………………………………………………180 

  SWOOP…………………………………………………………………180 

  UAV……………………………………………………………………..181 

  Independent Accuracy Analysis…………………………………………182 

 Results…………………………………………………………………………..182 

  Mapped Invasive Phragmites……………….…………………………..183 

  Individual Accuracy Assessments……………………………………….183 

  Independent Accuracy Analysis…………………………………………184 

 Discussion………………………………………………………………………184 

 Conclusion………………………………………………………………………187 

 Literature Cited………………………………………………………………….189 

Chapter 7: Conclusion………………………………………………………………...197 

 Summary………………………………………………………………………..197 

 Recommendations………………………………………………………………200 

 Future Work…………………………………………………………………….201 

Chapter 8/Appendix A: Comparison of Remote Sensing Approaches to Map 

Phragmites in Coastal Areas of Southern Ontario……………………….…………205 

 Background………………………………………………………………….….206 

 Objective………………………………………………………………………..206 

 Methods…………………………………………………………………………207 

  Study Area………………………………………………………………207 



 xiii 

  Imagery………………………………………………………………….207 

  Field Data……………………………………………………………….208 

  Classification……………………………………………………………219 

 Results…………………………………………………………………………..211 

  Accuracy Assessment……………………………………………………211 

  Field Verification……………………………………………………….212 

  NDVI and PASLAR+ Comparisons……………………………………..213 

 Discussion………………………………………………………………………214 

 Conclusion………………………………………………………………………217 

 Literature Cited………………………………………………………………….219 

Chapter 9/Appendix B: Mapping Invasive Phragmites australis in Highway 

Corridors Using Provincial Orthophoto Databases in Ontario…………………….231 

 Abstract…………………………………………………………………………232 

 Executive Summary…………………………………………………………….233 

 Introduction……………………………………………………………………..236 

  Invasive Phragmites…………………………………………………….236 

  Orthophoto Databases………………………………………………….237 

 Methods…………………………………………………………………………240 

  Use of eCognition to Map Phragmites………………………………….240 

  Manual Digitization of Phragmites……………………………………..242 

  Modelling Expansion of Invasive Phragmites…………………………..243 

 Results and Discussion………………………………………………………….245 



 xiv 

  Areal Cover of Phragmites in Highway Corridors……………………..245 

  Modelling Expansion of Invasive Phragmites…………………………..248 

 Conclusions……………………………………………………………………..249 

 Recommendations………………………………………………………………251 

 Acknowledgements……………………………………………………………..252 

 Literature Cited………………………………………………………………….253 

Chapter 10/Appendix C: Assessing Efficacy of Treatment Programs to Control 

Invasive Phragmites in Highway Corridors of Southwestern Ontario…………….276 

 Abstract…………………………………………………………………………277 

 Executive Summary…………………………………………………………….278 

Introduction……………………………………………………………………..280 

 Methods…………………………………………………………………………281 

  McMaster Invasive Phragmites Database (MIPD)……………………..281 

  Assessing Effectiveness of Treatment…………………………………...282 

 Results and Discussion………………………………………………………….283 

  Overall Trends…………………………………………………………..283 

  Regional Analysis……………………………………………………….286 

 Conclusions……………………………………………………………………..287 

 Recommendations………………………………………………………………288 

 Literature Cited…………………………………………………………………292 

  



 xv 

List of Figures 

Figure 2.1: Multi-temporal and multi-sensor depiction of a large wetland complex  

on the St. Clair River Delta bordering the U.S. and Canada. Top row of 

images show spring, summer, and fall Landsat 5 TM imagery (bands 5, 3, 

2). Bottom row shows Landsat 5 TM thermal false-color composite (spring, 

summer, and fall); PALSAR spring, summer, and fall HH false-color 

composite; and PALSAR spring, summer, and fall HV false-color 

composite. Image dates: Landsat spring = 5 May 2011, summer = 8 July 2011, 

fall = 9 October 2010; PALSAR spring = 26 May 2008, summer = 17 July 

2010, fall = 17 October 2010………………………………………………56 

Figure 2.2: Plots showing spring, summer, and fall signatures for different  

land cover types: Landsat 5 TM band 6 temperature (top left), PALSAR L-

band backscatter for HH and HV polarizations (top right), and Landsat 5 

TM bands 1–5 and 7 for wetland classes and urban, water, and agriculture. 

Image dates are listed in Figure 1………………………………………….57 

Figure 2.3: Map of field data locations, color-coded by dominant cover type.  

“Other/mixed” green triangles include all peatland, shrub, and forested 

wetland, as well as mixed emergent and wet-meadow wetlands……………58 

Figure 2.4: Schematic showing the mapping methodology from field data,  aerial  

image interpretation, and satellite imagery to classified map……………..59 

Figure 2.5: Map of extent of each area of interest (AOI) mapped. The AOIs are  



 xvi 

based on PALSAR image extents within the 10 km coastline buffer. Due to 

overlap of scenes, some AOIs are smaller than the full 70 km × 70 km 

PALSAR extent……………………………………………………………60 

Figure 2.6: LULC map of the coastal Great Lakes, with a total accuracy of 94%..61 

Figure 2.7: Map of wetland type and LULC for the St. Clair Flats AOI. Overall  

accuracy is 97.5%.........................................................................................62 

Figure 2.8: Band importance for the wetland dominated Lake St. Clair Flats  

computed from Random Forests…………………………………………...63 

Figure 2.9: Average band importance for 40 AOIs in the upland dominated Lake  

Michigan Basin computed from Random Forests…………………………64 

Figure 3.1: Conceptual model of invasive Phragmites areal cover in road corridors.  

Three main factors influence their distribution: habitat quality, habitat 

availability, and propagule dispersal……………………………………….95 

Figure 3.2: Area covered by various Ontario orthophotography project databases  

This area covered by SWOOP for 2015 and 2010 is the same but that for 

2006 did not include portions around Hamilton and Niagara. SCOOP was 

complete in 2013 while COOP was completed in 2016…………………..96 

Figure 3.3: Total length by road type for a) southwestern Ontario, south central  

Ontario and central Ontario, calculated from SWOOP, SCOOP and COOP 

image data, respectively and b) total length by road type for subset of 

SWOOP data used in change detection (see Figure 3)…………………….97 



 xvii 

Figure 3.4: Roads in southwestern Ontario that were included in the 2006 and 2010  

automated classification analyses (black). See text for explanation of 

excluded road segments (light grey)……………………………………....98 

Figure 3.5: Total areal cover of invasive Phragmites (ha) calculated for each road  

type in 2006 and 2010 within southwestern Ontario. Calculations are based 

on automated classification of SWOOP images…………………………..99 

Figure 3.6: a) Percentage of 2006 land-use land-cover classes by areal extent that  

was colonized by invasive Phragmites in 2010 southwestern Ontario and b) 

percentage of 2010 land-use land-cover classes by areal extent that had been 

occupied by invasive Phragmites in 2006 in southwestern Ontario……100 

Figure 3.7: Comparison of total area occupied by invasive Phragmites and  

available space in corridors of different road types within southwestern 

Ontario. Automated classification was used to map invasive Phragmites in 

2010 SWOOP images…………………………………………………….101 

Figure 3.8: Distribution of invasive Phragmites in corridors of provincial highways  

in a) south western Ontario in 2015 b) by south central Ontario in 2013 and 

c) central Ontario in 2016. Phragmites were mapped digitally. Outlines of 

polygons have been thickened to allow them to be visible at this scale….102 

Figure 3.9: Invasive Phragmites areal cover and density on roadside habitats within  

the a) SWOOP, b) SCOOP, and c) COOP datasets. All roads are considered 

highways, but the most significant highways are the 400-series and Trans-

Canada highways (11 & 17)……………………………………………...103 



 xviii 

Figure 3.10: 2012 mean SE daily traffic (number of vehicles enumerated)  

calculated for provincial highways in Ontario for three named regions. The 

reference line in each panel corresponds to 15,000 vehicles/day………...104 

Figure 4.1: Location of study site:  impoundment along the northern shore of Lake  

Erie………………………………………………………………………..131 

Figure 4.2: Comparison of (a) mosaic image acquired with multi-rotor UAV (b)  

mosaic image acquired with the fixed-wing UAV and (c) SWOOP image. 

The red line indicates the boundary of the impoundment and survey site..132 

Figure 4.3: Flight path taken by the senseFly eBee. Each red dot represents the location 

of a photo and green lines show the connecting flight path………………….133 

Figure 4.4: Comparison of (a) mosaic image acquired with multi-rotor UAV (b) mosaic 

image acquired with the fixed-wing UAV and (c) SWOOP image.  Details 

associated with the floating and submersed aquatic vegetation in (a) and (b) are 

absent in (c)…………………………………………………………………..134 

Figure 5.1: Roads in West Region that had been treated with glyphosate between 2012 to 

2017………………………………………………………………………….165   

Figure 5.2: Automated image classification identifying invasive Phragmites (light grey) 

compared to manual digitization of invasive Phragmites (black)…………...166 

Figure 5.3: Comparison of 2010 and 2015 distribution of invasive Phragmites (black) in 

highway corridors……………………………………………………………167 



 xix 

Figure 5.4: Results of a change detection of invasive Phragmites occurring in highway 

corridors of southwestern Ontario between 2010 and 2015, based on SWOOP 

image data only………………………………………………………………168 

Figure 5.5: Top: Invasive Phragmites areal cover that had increased/grown (black) and 

decreased/removed(grey) between 2010 and 2015, by road. Middle: Invasive 

Phragmites present in 2010 by road. Bottom: Invasive Phragmites removed by 

road. The black line corresponds to an 80% removal rate…………………...169 

Figure 5.6: Percentage Phragmites removed for a) 400-series and non-400 series 

highways and b) roads grouped according to when they had been treated….170 

Figure 5.7: a) Total area that had changed as a function of original area in 2010 and b) 

Total area that remained unchanged as a function of original area in 2010…171 

Figure 5.8: a) Results of a change detection of invasive Phragmites occurring in large  

highway   corridors between 2016 and 2018, based on Sentinel-2 image 

classification.  Shown in insets, b) enlargement of the above; c) showing the 

results of a change detection of invasive Phragmites between 2016 and 2018 

based on manually digitized high resolution satellite data (2016: WV3; 2018: 

GE)……………………………………………………………………………...172 

Figure 5.9: Dependency of Sentinel-2 accuracy on minimum patch size along highway 

corridors for two classification protocols……………………………………173 

Figure 6.1: Research area located on the north shore of Lake Erie, Canada…………..195 

Figure 6.2: Remote sensing classification outputs. Invasive Phragmites appears in pink  

        on each map………………………………………………………………..196 



 xx 

Figure 8.1: Outline of the study area (in black) for accuracy assessment of both……..226 

Figure 8.2: Map showing areas of overlap in areas with Visual comparison of overlap 

and mismatched areas with Phragmites that were mapped and classified with 

both approaches for the Walpole Island region……………………………..227 

Figure 8.3: Visual comparison of overlap and mismatched Phragmites area classified 

between both approaches in the Long Point region………………………….228 

Figure 8.4: Visual comparison of overlap and mismatched Phragmites area classified 

between both approaches near the southern Grand River……………………229 

Figure 8.5: Big Creek National Wildlife Area, 2013 (Google Earth). Note the presence of  

small, sparse Phragmites stands throughout. The inset shows the NDVI and 

PALSAR+ comparison overlaid (image not to scale)……………………...230 

Figure 9.1: Area covered by various Ontario orthophotography project databases. The 

area covered by SWOOP for 2015 and 2010 is the same; that for 2006 did not 

include portions around Hamilton and Niagara……………………………258 

Figure 9.2: Roads analyzed in the MTO Western Region……………………………259 

Figure 9.3: Roads over 60 km/h in Ontario…………………………………………..260 

Figure 9.4: Photo of parcel of land taken in 2010 (top) and 2015 (bottom). Note the  

reduced contrast in the 2015 image and the peaking of values (bottom-right 

histogram) that led to our inability to perform automated image classification..261 

Figure 9.5: 2006 Phragmites distribution. The outlines of polygons have been thickened 

to allow them to be visible at this scale……………………………………...262 



 xxi 

Figure 9.6: 2010 Phragmites distribution. The outlines of polygons have been thickened 

to allow them to be visible at this scale…………………………………263 

Figure 9.7: Change in Phragmites distribution between 2006 and 2010. The total 

kilometres analyzed may not represent the actual number of roadway 

kilometres as only segments with Phragmites were assessed……………….264 

Figure 9.8: Change in Phragmites density between 2006 and 2010. The total kilometres 

analyzed may not represent the actual number of roadway kilometres as only 

segments with Phragmites were assessed……………………………………265 

Figure 9.9: Phragmites distribution in 2015. The outlines of polygons have been  

thickened to allow them to be visible at this scale……………………………..266 

Figure 9.10: Phragmites along Hwy 401, which had the largest areal cover of

 Phragmites in our dataset……………………………………………………….267 

Figure 9.11: Phragmites on Hwy 40, one of the most densely populated roads in this  

dataset…………………………………………………………………………...268 

Figure 9.12: Hwy 85 passes through Kitchener-Waterloo and has very unique land cover  

compared to roadsides of other highways………………………………………269 

Figure 9.13: Sample of orthophoto over Hwy 85 showing Phragmites classified in red.  

Although some error is expected and some Phragmites had been accurately 

classified, the unique configuration of the built-up area led to numerous errors of 

commission……………………………………………………………………..270 

Figure 9.14: Phragmites distribution within the SCOOP dataset (2013)………………271 

Figure 9.15: Areal cover of Phragmites within the SCOOP 2013 dataset……………..272 



 xxii 

Figure 9.16: Phragmites distribution within the COOP dataset (2016)………………..273 

Figure 9.17: Areal cover and density of Phragmites within the COOP dataset………..274 

Figure 9.18: Areal cover and density of Phragmites within the COOP 2016 dataset, with  

Highway 539A removed………………………………………………………..275 

Figure 10.1: Roads in West Region that had been treated with glyphosate between 2012 

to 2016.  In this study, we included several roads that had been treated but 

which are not managed by MTO (dotted lines)……………………………..300 

Figure 10.2: Results of a change detection of invasive Phragmites occurring in highway 

corridors of southwestern Ontario between 2010 and 2015, based on SWOOP 

image data only……………………………………………………………..301 

Figure 10.3: Images showing Phragmites in highway corridor that had:  a) a dark mottled  

appearance characteristic of living stands, b) a light mottled appearance 

characteristic of dead stands (presumed to have died from glyphosate treatment).  

Panel c) shows a mixture of dead and living specimens side by side, which may 

have resulted from imperfect treatment or regrowth from rhizomes of treated 

individuals………………………………………………………………………302 

Figure 10.4: Phragmites distributions in MTO-managed roads in southwestern Ontario  

during 2006, 2010 and 2015.  Distribution in 2010 was mapped by automated 

classification whereas that for 2015 was manually digitized…………………..303 

Figure 10.5: Percentage of Phragmites that had been removed shown separately by 

highways. Removal is inferred from decrease in Phragmites in 2015 



 xxiii 

relative to 2010 (see Figure 2). The black line corresponds to 80% 

removed………………………………………………………………..304 

Figure 10.6: % Phragmites removed for  a) roads grouped according to when they had  

been treated  and b) 400-series and non-400 series highways…………………305 

Figure 10.7: Results of a change detection showing amount of Phragmites that had  

decreased, remained unchanged or increased between 2010 and 2015.  Top panel:  

Mean±SE calculated for 1 km-segments for each highway; Middle panel: Total 

area present in 2010 and  Bottom panel:  % Phragmites removed as of 2015…306 

Figure 10.8: a) Total area that had changed as a function of original area in 2010 and b)  

Total area that remained unchanged as a function of original area in 2010…….307 

Figure 10.9: a) Map of Phragmites in 2015 (red) and in 2010 (white) superimposed on  

roads in southwestern Ontario.  b) Comparing areal cover of Phragmites in 

highways located between London and Sarnia.  Growth of Phragmites in 2010 

had been greater at the western end of Hwy 402 (near Sarnia) whereas growth in 

2015 had been greater in the eastern end (near London)……………………….308 

Figure 10.10: Growth of Phragmites in 2015 (red) on a segment of Hwy 403 that had not  

been treated (shown on the right), compared with few patches of Phragmites in 

segments of Hwy 24 and Hwy 403 that had been treated in 2014 (shown towards 

the left). Also shown are Phragmites in 2010 (white) that are no longer evident on 

these segments…………………………………………………………………..309 

 

 



 xxiv 

List of Tables 

Table 2.1: Sources of field data collection used to aid in image interpretation. The top  

four sources were used for the development of training and validation data for the 

coastal Great Lakes map. The bottom two sources provided ancillary 

information……………………………………………………………………….48 

Table 2.2: Number of scene footprints required from each satellite sensor to map the  

coastal Great Lakes. Note that scenes covering Lake St. Clair are included in 

Huron……………………………………………………………………………..49 

Table 2.3: Description of each class mapped……………………………………………50 

Table 2.4: Summary of area mapped by wetland class type (ha) and percentage of  

each class type mapped within the study area……………………………..52 

Table 2.5: Error matrix for all coastal Great Lakes. Numbers represent pixels. Some  

classes have been collapsed to higher-order classes for display purposes…53 

Table 2.6: Summary of classification accuracy by lake basin. Included is the  

accuracy for wetland classes with water removed………………………….54 

Table 2.7: Error Matrix for the St.Clair Flats AOI. Numbers represent pixels. Some  

classes have been collapsed into higher-order classes for display 

purposes……………………………………………………………………55 

Table 3.1: Classes included in the image classification process………………….94 

Table 4.1: Comparison of 3 methods for image data collection. *Southern Ontario  

Orthophotography Project (spring 2010 edition)…………………………128 

Table 4.2: Accuracy values calculated for each method when image data are  



 xxv 

compared to field data for respective types of dominant vegetation……..129 

Table 4.3: Accuracy values calculated for each method when image data are  

compared to field data. n/a indicates that no field plots exist for this class...130 

Table 5.1: Targeted survey of current control programs for invasive Phragmites in  

roadways and wetlands throughout N. America…………………………..161 

Table 5.2: Changes in areal cover (ha) of invasive Phragmites for 400-series  

highways based on automated image classification of Sentinel-2 satellite 

image data. Highways were classified as either “Treated” or “Untreated”, 

depending on whether they received glyphosate or not, respectively during 

2016……………………………………………………………………….163 

Table 5.3: Comparison of spatial attributes of invasive Phragmites patches  

identified with Sentinel-2 (S2), Worldview-3 (WV3), and GeoEye (GE) 

data………………………………………………………………………..164 

Table 6.1: Comparison of remote sensing approaches used in this study………..192 

Table 6.2: SWOOP method confusion matrix…………………………………...193 

Table 6.3: Results of the confusion matrix associated with external validation of  

remote sensing products; producer and user accuracy are for Phragmites 

classification only………………………………………………………..194 

Table 8.1: Comparison of the PALSAR+ approach and the NDVI approach to  

mapping Phragmites……………………………………………………..220 

Table 8.2: Comparison of Phragmites mapping between Arzandeh & Wang (2003)  



 xxvi 

and the NDVI approach (all units in ha) in the Walpole Island region.  % 

Match is calculated by observing the overlap divided by the total area 

mapped. (Taken from Young & Hog (2011)……………………………..221 

Table 8.3: Accuracy comparison of the PALSAR+ mapping of Phragmite with  

field data collected in the Long Point Bay region in 2014……………222 

Table 8.4: Accuracy comparison of the NDVI mapping of Phragmites with field  

data collected in the Long Point Bay region in 2014…………………..223 

Table 8.5: Accuracy comparison of the NDVI Phragmites mapping with field  

training sites used in the original PALSAR+ classification   (2013)…..224 

Table 8.6: Comparison of areas (ha) classified as Phragmites in the total study  

area………………………………………………………………………..225 

Table 9.1: Classes included in the image classification process…………………256 

Table 9.2: Phragmites invasion habitat modelling. Asteriks (*) indicate   

significance……………………………………………………………….257 

 

  



 xxvii 

List of All Abbreviations and Symbols 

AADT: Average Annual Daily Traffic 

AOI: Area of interest 

ASF: Alaska Satllite Facility 

C-CAP: Coastal Change and Analysis Program 

CAD: Canadian dollar 

cm: centimetre 

COOP: Central Ontario Orthophototgraphy Project 

CPU: Central processing unit 

ELC: Ecological Land Classification System 

EM: Emergent vegetation 

EPA: Environmental Protection Agency 

FBD: Fine beam dual 

FBS: Fine beam single 

FL: Floating aquatic vegetation 

FPV: First person view 

GB: gigabyte 

GE: Geo-Eye 

GLCWC: Great Lakes Coastal Wetland Consortium 

GLIC: Great Lakes Instrumentory Collaboratory 

GLM: Generalized linear model  

GLNPO: Great Lakes National Program Office 



 xxviii 

GLRI: Great Lakes Restoration Initiative 

GPS: Global Positioning System 

ha: hectare 

HIIFP: Highway Infrastructure Innovation Funding Program 

Hwy: Highway 

JERS-1: Japanese Earth Resources Satellite 1 

km: kilometre 

km/h: kilometres per hour 

L-HH: L-band horizontal send, horizontal receive 

L-HV: L-band horizontal send, horizontal receive 

L: Litre 

LEDPAS: Landsat ecosystem disturbance adaptive processing system 

LULC: Land-use, land-cover 

m: metres 

m/s: metres per second 

MTO: Ministry of Transportation, Ontario 

NDVI: Normalized difference vegetation index 

NIR: Near-infrared 

NOAA: National Oceanic and Atmospheric Administration 

NWI: National Wetland Inventory 

OBIA: Object-based image analysis 

OFAH: Ontario Federation of Anglers and Hunters 



 xxix 

OMNRF: Ontario Ministry of Natural Resources and Forestry 

PALSAR: Phase-array L-type Synthetic Aperture Radar 

RAM: Random access memory 

S2: Sentinel-2 

SAOCOM: Satéllite Argentino de Observación Con Microondas 

SAR: Synthetic aperture radar 

SAV: Submerged aquatic vegetation 

sbsp: subspecies 

SCOOP: Southcentral Ontario Orthophotography Project 

SE: Standard error 

SOLRIS: Southern Ontario Land Resource Information System 

spp.: species 

SWOOP: Southwestern Ontario Orthophototgraphy Project 

TOA: Top of atmosphere 

U.S., U.S.A.: United States of America 

UAV: Unmanned aerial vehicles 

USFWS: U.S. Fish and Wildlife Service 

USGS: U.S. Geologic Survey 

WV3: Worldview-3 

  



 xxx 

Declaration of Academic Achievement 

This thesis is comprised of a general introduction, 5 chapters, and 3 appendices. Chapters 

1 and 3 have been published in peer-review scientific journals, and chapter 5 is published 

in a conference proceedings. Chapter 2 is prepared for submission to a scientific journal 

and chapter 4 is being prepared for submission; both are subject to approval from the 

Ministry of Transportation of Ontario. Appendix 1 is published as an internal report for 

the Ministry of Natural Resources and Forestry of Ontario. Appendices 2 and 3 are 

published as an internal report for the Ministry of Transportation of Ontario.  

 

Chapter 1: General Introduction 

Author: James V Marcaccio 

Chapter 2: Development of a bi-national Great Lakes coastal wetland and land use 

map using three season PALSAR and Landsat imagery 

Authors: Laura Bourgeau-Chavez, Sarah Endres, Michael Battaglia, Mary Ellen Miller, 

Elizabeth Banda, Zachary Laubach, Phyllis Higman, Pat Chow-Fraser, & James 

Marcaccio 

Date Accepted: 30 June 2015 

Journal: Remote Sensing 

Comments: L.B-C. conceptualized and wrote the manuscript, S.E., M.B., Z.L. collected 

field data and analyzed image data and wrote sections of the manuscript, M.E.M. 

developed final Random Forest script and wrote sections of the manuscript, E.B. planned 



 xxxi 

field excursions, P.H. organized the field data collection; J.V.M. & P.C-F. collected field 

data and analyzed data for the Canadian portion of the study area. 

 

Chapter 3: Mapping invasive Phragmites australis in highway corridors of Ontario.  

Authors: James V Marcaccio & Patricia Chow-Fraser  

Journal: Presented in manuscript format and awaiting review from funding agency before 

submission.  

Comments: J.V.M. collected and analyzed all data and wrote the manuscript under the 

supervision of P.C-F. 

Chapter 4: Use of fixed-wing and multi-rotor unmanned aerial vehicles to map 

dynamic changes in a freshwater marsh.  

Authors: James V. Marcaccio, Chantel E. Markle, & Patricia Chow-Fraser 

Date Accepted: 13 April 2016 

Journal: Journal of Unmanned Vehicle Systems 

Comments: J.V.M. and P.C-F. conceptualized and planned the manuscript, C.E.M. and 

J.V.M. collected and analyzed the data, J.V.M. and C.E.M. wrote and edited the 

manuscript under the supervision of P.C-F. 

Chapter 5: Assessing efficacy of invasive Phragmites removal in highway corridors 

with orthophotography & satellite image data: The Ontario case study 

Authors: James V. Marcaccio & Patricia Chow-Fraser  

Journal: Presented in manuscript format and awaiting review from funding agency before 

submission.  



 xxxii 

Comments: J.V.M. collected and analyzed all data and wrote the manuscript under the 

supervision of P.C-F. 

Chapter 6: Mapping options to track invasive Phragmites australis in the Great 

Lakes basin in Canada 

Authors: James V. Marcaccio & Patricia Chow-Fraser  

Conference: Water Resources and Wetlands (2016) 

Editors: Petre Gâstescu, Petre Bretcan. 

Comments: J.V.M. collected and analyzed all data and wrote the manuscript under the 

supervision of P.C-F.  

Chapter 7: General Conclusion 

Author: James V. Marcaccio  

Chapter 8 / Appendix A: Comparison of remote sensing approaches to map invasive 

Phragmites in coastal areas of southern Ontario 

Authors: James V. Marcaccio, Laura Bourgeau-Chavez, & Patricia Chow-Fraser 

Date Accepted: March 2015 

Publisher: Ontario Ministry of Natural Resources & Forestry 

Comments: J.V.M. collected data with contributions from L.B-C.; J.V.M. analyzed all the 

data and wrote the manuscript under the supervision of P.C-F. 

Chapter 9 / Appendix B: Mapping invasive Phragmites australis in highway 

corridors using provincial orthophoto databases in Ontario 

Authors: James V. Marcaccio & Patricia Chow-Fraser 

Date Accepted: November 2018 



 xxxiii 

Publisher: Ontario Ministry of Transportation 

Comments: J.V.M. collected and analyzed all data and wrote the manuscript under the 

supervision of P.C-F. 

Chapter 10 / Appendix C: Assessing efficacy of treatment programs to control 

invasive Phragmites highway corridors of southern Ontario 

Authors: Patricia Chow-Fraser & James V. Marcaccio 

Date Accepted: November 2018 

Publisher: Ontario Ministry of Transportation 

Comments: J.V.M. collected data. P.C-F. analyzed all data and wrote the manuscript.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 1 

Chapter 1: General Introduction 

Remote Sensing: 

The field work required to accurately map multiple features of interest in a study 

area would require a significant investment of time, resources, and travel which may not 

be feasible. By using remote sensing and modern technologies, detailed and accurate 

maps of land cover and a feature of interest can be made rapidly with minimal site visits. 

Many different sensors can be mounted on airborne imaging systems to suit the unique 

needs of researchers and agencies looking to identify and map features of interest.  

Using remote sensing can be critically important for ecological research. Using 

these data, we can describe habitat complexity, changes in habitat over time, and species’ 

use and distribution throughout a landscape (Rose et al. 2014). In especially dynamic 

systems like wetlands, it is important to have both high resolution and up-to-date image 

data to properly interpret landscape processes and species’ use of these habitats (Gallant 

2015). Untimely data can skew our understanding of the landscape (Marcaccio et al. 

2016) which can lead to incorrect conclusions on how species utilize their habitat (Markle 

& Chow-Fraser 2014). If image data have insufficient resolution, small-scale processes 

are not visible (Ishihama et al. 2012, Chabot & Bird 2013). Coastal wetlands can be very 

small in size and they represent an important crossover point between aquatic and 

terrestrial ecosystems and must be mapped appropriately (Midwood 2012, Gallant 2015).  

Similarly, anthropogenically modified wet habitats can take many irregular shapes and be 

very difficult to collect data for with traditional remote sensing techniques (Maheu-
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Giroux & de Blois 2005, Brisson et al. 2010). Researchers must determine and use the 

correct techniques in order to best assess wetland habtat. 

Invasive Common Reed : 

Phragmites australis (Cav.) Trin ex. Steudel, the invasive common reed, is a 

perennial grass found worldwide in wet habitats. A native subspecies (americanus) exists 

in North America, but it is the invasive Phragmites from Eurasia that has become most 

dominant in wet habitats (Saltonstall 2003, Price et al. 2013). Invasive Phragmites is 

competitively superior to many other semi-aquatic and terrestrial species (Uddin et al. 

2017): it is tolerant of high disturbance (Chambers et al. 1999) and can grow clonally 

from suitable habitat into poor quality areas (Armstrong et al. 1999, Amsberry et al. 

2013). It is extremely efficient at taking up nutrients from the environment (Ge et al. 

2017) and can even displace other vegetation by injecting volatile compounds into the 

surrounding soil (Armstrong & Armstrong 2001).  

Invasive Phragmites landed in eastern North America and has rapidly spread 

throughout the Atlantic states, Great Lakes basin, and beyond (Meyerson et al. 2000, 

Catling & Mitrow 2011).  In Canada, the invasion started in the maritime provinces and 

Quebec with rapid expansion taking place in the latter following highway construction in 

the Montreal area (Lelong et al. 2007, Catling & Mitrow 2011). Multiple invasion events 

are predicted to have occurred in Ontario leading to a unique genetic population 

compared to the rest of the country (Kirk et al. 2011). It has rapidly expanded through 

road networks in the St. Lawrence region (Jodoin et al. 2008, Brisson et al. 2010) and 

heavily invaded Great Lakes coastal wetlands (Tulbure et al. 2007, Jung et al. 2017).  



 3 

From a remote sensing perspective, invasive Phragmites offers unique challenges 

to work through. As a whole, wetlands are incredibly dynamic systems that can undergo 

large inter- and intra-annual fluctuations (Gallant 2015). In the Great Lakes, an 

abundance of species are often present within a single wetland which can make 

differentiation between unique classes difficult. While we currently do not offer a means 

to delineate between species of Phragmites, the native subtypes do not grow with such 

vigor and abundance as the invasive (Saltonstall 2003). Compared to other emergent 

wetland species commonly found in the Great Lakes (specifically Typha and 

Schoenplectus) invasive Phragmites is much taller and due to its clonal growth often 

appears in circular patterns when unrestricted by habitat. Unlike many other wetland 

plants, invasive Phragmites also remains standing throughout winter; while the colour 

turns from green/blue to beige/yellow, invasive Phragmites still acts as a significant 

barrier and is easily observed.  

Wetland Management: 

To effectively manage our current and future wetland habitats, we must take 

control of the spread of invasive Phragmites throughout the Great Lakes basin. Millions 

of dollars have been spent on management and management outcomes have not always 

been achieved (Martin & Blossey 2013). Furthermore, insufficient monitoring has not 

allowed for tracking of management outcomes after initial eradication, such as regrowth 

of native vegetation (Hazelton et al. 2014). More money will not solve the problem if we 

cannot accurately report results and determine better solutions (Martin & Blossey 2013). 

By using novel remote sensing techniques consistently, we can obtain the necessary data 
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for proper management at multiple spatial scales. When we obtain these data, we can 

assess current trends and create new hypotheses on the expansion and necessary 

eradication of invasive Phragmites.  

Thesis Objectives: 

The goal of my thesis is to introduce novel remote sensing techniques to map 

invasive Phragmites so that we may further understand the species’ invasion and ecology. 

In order to effectively manage invasive Phragmites, we must be able to map it at multiple 

spatial scales throughout the Great Lakes basin. International, regional, and site-specific 

monitoring is necessary to fully understand how invasive Phragmites is distributed and 

how it is advancing in these areas. These data can be used by agencies and groups that are 

involved in wetland monitoring and invasive Phragmites control to give them the best 

chances of eliminating this species from their landscape.  

To accomplish international monitoring, chapter 1 defines a novel remote sensing 

methodology using sensor fusion and multi-seasonal image data. This method is 

described within the context of coastal wetlands but can be applied to any temperate zone 

near the Laurentian Great Lakes. Chapter 2 addresses regional mapping throughout 

roadside habitat in southern Ontario. Using a provincial orthophotography database, we 

delineate the distribution of invasive Phragmites over multiple years. We investigate the 

use of unmanned aerial vehicles (UAVs) in Chapter 3 to deliver very high-resolution site-

specific data which can be optimized by a team in order to provide the best possible end 

product. To address these approaches in unison and provide a framework for invasive 
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Phragmites mapping, chapter 5 compares each approach and shows the benefits of each 

approach and how multiple solutions may be required to successfully complete a project.  

In chapters 2 and 4, we address the expansion of invasive Phragmites in roadside 

habitat and associated removal efforts. A conceptual model of invasion is assessed in 

chapter 2 that synthesizes research and our outcomes from multiple years of mapping 

invasive Phragmites. Chapter 4 describes removal efforts by the Ontario Ministry of 

Transportation and their effectiveness over time. Using our mapping approach from 

chapter 2 and additional high-resolution satellite data, we show that invasive Phragmites 

expansion can outpace removal efforts even when they are highly effective in their 

targeted area. Combined, these two chapters present an image of the aggressive 

colonization of invasive Phragmites in roadsides and how this must also be treated 

similarly to its invasion in our Great Lakes wetlands.  

This thesis has three additional appendices which highlight additional work that 

has been undertaken. The first provides a direct comparison of the methods from chapter 

1 with a unique approach created by the Ontario Ministry of Natural Resources and 

Forestry. Appendix 2 provides more information on the creation of the roadside invasive 

Phragmites mapping protocol and relevant statistics for the Ministry of Transportation of 

Ontario. Appendix 3 looks at the efficacy of invasive Phragmites removal efforts in 

southwestern Ontario. Each appendix is presented as a document prepared for their 

respective Ministry (Appendix 1: Ontario Ministry of Natural Resources and Forestry; 

Appendix 2 & 3: Ontario Ministry of Transportation) and are targeted for this audience.  
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Abstract: 

 Methods using extensive field data and three-season Landsat TM and PALSAR 

imagery were developed to map wetland type and identify potential wetland 

stressors (i.e., adjacent land use) for the United States and Canadian Laurentian 

coastal Great Lakes. The mapped area included the coastline to 10 km inland to 

capture the region hydrologically connected to the Great Lakes. Maps were 

developed in cooperation with the overarching Great Lakes Consortium plan to 

provide a comprehensive regional baseline map suitable for coastal wetland 

assessment and management by agencies at the local, tribal, state, and federal 

levels. The goal was to provide not only land use and land cover (LULC) baseline 

data at moderate spatial resolution (20–30 m), but a repeatable methodology to 

monitor change into the future. The prime focus was on mapping wetland ecosystem 

types, such as emergent wetland and forested wetland, as well as to delineate 

wetland monocultures (Typha, Phragmites, Schoenoplectus) and differentiate 

peatlands (fens and bogs) from other wetland types. The overall accuracy for the 

coastal Great Lakes map of all five lake basins was 94%, with a range of 86% to 

96% by individual lake basin (Huron, Ontario, Michigan, Erie and Superior). 
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Introduction: 

As the link between land and water, coastal wetlands of the Great Lakes serve major 

ecologic and economic roles contributing to the overall health and maintenance of the 

Great Lakes. These coastal wetlands provide habitat, sources of food, and breeding 

grounds for many common and regionally rare bird, mammal, herptile, and invertebrate 

species (Albert et al 2005). They also provide many other ecosystem services including 

water filtration, flood control, shoreline protection, and recreation. Managing such an 

important resource requires periodic mapping of the extent, type, and location of the 

wetlands and adjacent land use and land cover (LULC), as well as field monitoring of 

indicator variables such as water chemistry, water levels, and biodiversity of flora and 

fauna. Wetlands are highly vulnerable to both climatic (Bates et al 2008) and 

anthropogenic changes such as drainage, dredging, filling, shoreline modification, water-

level regulation, nutrient enrichment, introduction of non-native species, and road 

development. Historically, more than two-thirds of wetlands in the Great Lakes region 

have been drained for agriculture and other development (Dahl et al 1990), making the 

management of the remaining wetlands essential. Monitoring at a regional scale is 

necessary for effective coastal land and water management to understand and mitigate the 

increasing risk posed to the Great Lakes from LULC change and climatic influences. 

The Great Lakes Coastal Wetland Consortium (GLCWC) developed a monitoring plan 

that is designed to not only assess the health and quality of the ecosystems, but also to 

provide a baseline for assessing effects of climate change and to provide key inputs to 

decision support for coastal management (Great Lakes Coastal Wetlands 2008). The 
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monitoring plan requires a baseline map of wetland type and areal extent and adjacent 

land, as well as periodic updates. Such a map has been lacking in comprehensive form for 

the basin. In the past, mapping efforts have stopped at political boundaries. On the United 

States (U.S.) side there are the U.S. Fish and Wildlife Service’s (USFWS) National 

Wetlands Inventory (NWI), National Oceanic and Atmospheric Administration’s Coastal 

Change and Analysis Program (NOAA C-CAP), and a host of state-based maps such as 

the Ohio Wetland Inventory and Michigan’s Integrated Forest Monitoring Assessment 

and Prescription. On the Canadian side, there are the Ontario Great Lakes Coastal 

Wetlands Atlas and the Canadian Wetland Inventory. To date, the best map of both the 

U.S. and Canada coastline has been the Great Lakes Coastal Wetland Inventory (Ingram 

et al 2004), which used a hydrogeomorphic classification scheme and integrated existing 

databases including the NWI, the Ohio Wetland Inventory, USFWS reports and hardcopy 

maps, and the Ontario Great Lakes Coastal Wetland Atlas. The Great Lakes Coastal 

Wetland Inventory includes the U.S. and Canada coastline and extends inland 1 km, but 

lacks information on wetland stressors (e.g., LULC categories such as agriculture and 

urban) and is outdated (circa 1970s–80s). The mapping methods were mixed and the 

accuracy varied among the sources. 

In 2010, under the Great Lakes Restoration Initiative, the U.S. Environmental 

Protection Agency (EPA) solicited the production of a map of the entire U.S. and 

Canadian coastal basin using a consistent methodology, such as the hybrid radar and 

optical satellite based approaches that had been demonstrated in a pilot study under the 

Great Lakes Coastal Wetlands Consortium (Bourgeau Chavez et al 2008). That 2008 pilot 
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study focused on archival Japanese Earth Resources Satellite 1 (JERS-1), Radarsat-1, and 

Landsat data and relied on existing maps and expert knowledge for training, rather than 

field data. The method included: (1) creating a categorical map from multi-date Landsat 

data; (2) creating a separate categorical map from multi-date JERS-1 and Radarsat-1 data; 

and (3) merging the two maps. A maximum likelihood classifier was used to create 

categorical maps for three 70 km × 70 km regions of the Great Lakes. The merged SAR-

optical maps were found to have greater detectability of wetlands and reduced 

commission and omission errors, particularly for the wetland classes (Bourgeau Chavez et 

al 2008). This pilot effort demonstrated the importance of using both optical and SAR 

data for mapping Great Lakes wetlands for three small areas of the Great Lakes and, thus, 

provided the basis for a complete mapping of the entire coastal basin. Since 2008, there 

have been many advances in remote sensing technology and software, as well as 

computing capability, which allow for such a large mapping effort with multiple datasets 

to be efficiently implemented. 

The goal of the mapping effort presented in this article was to create a high accuracy 

map of not only wetlands, but also adjacent LULC for the Coastal Great Lakes basin such 

that the map could be used for management purposes to better understand the wetland 

distribution and wetland health through indicators of wetland stressors (i.e., land use). 

The objective was to develop a mapping approach that utilized the fusion of moderate 

resolution (20–30 m) SAR and optical data from multiple seasons and integrated air photo 

interpretation and field data for training and validation to: (1) map broad land cover 

classes, with a focus on the wetland ecosystem classes (e.g., emergent, shrub wetland, 
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forested wetland); (2) distinguish forested bog, open, shrubby and treed fen versus 

inundated shrub and forested wetlands (non-peat, swamps); (3) delineate monocultures of 

wetland plant species including invasive (Typha spp. and Phragmites australis) and non-

invasive (Schoenoplectus spp.) species; and (4) target overall map accuracies greater than 

90% and individual class accuracies greater than 70%. In this article, the approach and 

methods are detailed and the map results are presented and tested through accuracy 

assessments of independent datasets. 

Background: 

Image fusion has long been used both to increase spatial resolution and classification 

accuracy by gaining additional spectral information (Wang et al 2010). Whereas several 

researchers have evaluated the use of optical or SAR data alone for mapping wetlands, 

until more recently few had evaluated SAR and optical fusion for wetland mapping 

(Bourgeau Chavez et al 2008; Loranzo Garcia et al 1993; Bourgeau Chavez et al 2004; 

Grenier et al 2007; Augustenijn et al 1998; Corcoran et al 2012; Fournier et al 2007; 

Margono et al 2014) and most ignored the coarser-resolution thermal bands. 

It has been well documented that multispectral data that include near-infrared (NIR) 

and shortwave infrared bands allow improved wetland detection and mapping over visible 

sensors alone because the near-infrared portion of the electromagnetic spectrum allows 

identification of plant and hydrologic wetland conditions (Ozesmi et al 2002). Similarly, 

the thermal wavelengths, although often neglected in mapping efforts due to the coarse 

spatial resolution on satellite systems (e.g., Landsat 5 TM band 6 at 120-m resolution), 

are of high utility for mapping wetlands. The fact that water has a high thermal inertia 
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results in temperature differences between uplands and wetlands, thus allowing them to 

be distinguished. Despite these advantages of infrared and thermal data, optical sensors 

have limitations in dense vegetation settings, particularly for detection of inundation 

beneath a dense shrub or forest cover. 

Synthetic Aperture Radar (SAR) data are capable of detecting flooding beneath a 

vegetation canopy, monitoring water levels and soil moisture, and distinguishing other 

biophysical vegetation characteristics such as biomass and structure. Several researchers 

have evaluated the utility of SAR for wetland mapping using single and multi-date single 

channel SAR data (Whitcomb et al 2009; Arzandeh and Wang 2002; Rao et al 1999) , and 

others have evaluated polarimetric SAR (Hess et al 1990; Bourgeau Chavez et al 2001; 

Pope et al 1991; Touzi et al 2007). The horizontal send and horizontal receive (HH) 

polarization of SAR systems have long been known to improve distinction of swamp from 

other wetland classes and uplands (Bourgeau Chavez et al 2004; Grenier et al 2007; Hess et 

al 1990; Lang et al 2008; Grenier et al 2007) due to an enhanced double bounce effect 

from the water surface to the tree trunks and back to the sensor (or vice versa). Non-

flooded forests have more diffuse scatter from the ground surface, and less energy is 

returned to the SAR sensor than for flooded forests. If the vegetation in a non-forested 

wetland is of great enough biomass relative to the L-band wavelength (~24 cm), then a 

strong return due to some double bounce scattering will occur in that case, as well, 

although the strength of the return is typically less than in a flooded forest. This allows 

for the detection of the large invasive Phragmites australis (Phragmites), for example, 
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which tends to dominate large patches of wetlands with tall (up to 5 m), dense stems 

(Baghdadi et al 2001). 

In addition to multi-sensor datasets, there are advantages to using multi-temporal 

imagery datasets, which capture differences in vegetation and flood condition over the 

course of a growing season (Bourgeau Chavez et al 2013; Fujimura et al 1999). A multi-

temporal and multi-sensor image fusion approach was applied in the work presented here 

using Landsat 5 TM and PALSAR imagery. The impetus for using this combination was 

based on the need for the detection of the presence of surface water, both in open areas 

and beneath canopies, as well as for improved detection of vegetation type. Previous 

research has noted that in practice it is difficult to accurately classify wetland species 

types based solely on optical spectral characteristics (Shang et al 2008; Schmidt and 

Skidmore 2003). However, fusion with a complementary sensor type, such as SAR, 

should allow for a larger set of wetland characteristics to be detected. Further, by using 

spring, summer, and fall imagery the phenological and hydrological characteristics that 

define different wetland types should be captured, allowing for improved mapping 

(Figures 2.1 and 2.2). As an example, much of the variation within the wetland 

landscape is confused when observing the region only at a particular time of year, such as 

in the summer Landsat 5 TM image of the St. Clair river delta (Figure 2.1 top center). 

However, when considering the phenological changes through the seasons (Figure 2.1 top 

row) better distinction of various wetland types in this river delta are revealed. The L-HH 

three-season false-color composite of this area (Figure 2.1 bottom center) shows 

variations in hydroperiod during spring, summer, and fall; and L-HV (horizontal send, 
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vertical receive) composite shows variations in biomass in the different seasons (Figure 2.1 

bottom right). The thermal channel of Landsat TM (band 6; Figure 1 bottom left and 

Figure 2.2) aids in distinguishing wetland (darker regions) from upland, but the specific 

wetland type classes are confused. The spectral signatures from Landsat 5 for the various 

wetland classes of the St. Clair River Delta show the importance of the NIR band (band 

4) and the seasonal patterns of reflectance for the wetland types (Figure 2.2). The 

reflectance signatures are based on the mean of a minimum area of 500 ha for each class. 

For Schoenoplectus, band 4 reflectance is much lower than all other wetland types and it 

peaks in the fall (Figure 2.2) whereas all other wetland types peak in mid-summer. There 

is a similar trend for L-band HV backscatter for Schoenoplectus, with a peak in the fall. 

Typha, on the other hand, peaks mid-summer in L-HV and L-HH backscatter, when most 

of the other wetland classes (except aquatic bed) are somewhat constant in backscatter 

between summer and fall. When using three seasons of data, each sensor appears to 

provide a unique set of information, which when used in combinations should provide a 

powerful means to distinguish different types of LULC, and in particular, different 

wetland types. 

Methods: 

Study Area 

The study area spans the United States and Canada coastline and the land within 10 km 

of the shoreline for lakes Ontario, Erie, Huron, Michigan, and Superior. In addition, 

included in the study area are the connecting waterways, consisting of Lake St. Clair and 
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the St. Mary’s, St. Lawrence, Detroit, and St. Clair rivers. The 10-km shoreline buffer 

provides coverage of coastal wetlands and additionally encompasses areas of hydrologic, 

biological, and geophysical transition between the interface of upland land cover and the 

deep-water boundary of the Great Lakes. Furthermore, a 10-km spatial extent captures the 

dynamics of anthropogenic influence, as land use interacts in a “downstream model” with 

surrounding land cover types. In total, the study area covers 9,056,410 ha inland in the 

U.S. and Canada, as well as captures all large offshore islands lying within the Great 

Lakes. Although the entire Great Lakes watershed affects the health of the coastal 

wetlands and the quality of water entering the lakes, mapping of areas further inland than 

the 10-km shoreline buffer was beyond the mapping goals and budget constraints. 

Field Data 

Field data on wetland ecosystem types were collected specifically for Great Lakes 

Restoration Initiative (GLRI) funded mapping projects and supplemented by other 

sources from independent projects throughout the 2007–2014 timeframe (Table 2.1). 

These supplemental datasets were systematically included or excluded, depending on 

their ability to assist image analysts. GPS locations had to have been collected within the 

wetland ecosystem for the field data to be usable, and the field data had to define an area 

that was at least the minimum mapping unit of the map to be produced (0.2 ha). 

The main source of training and validation data came from extensive field campaigns 

in 2010–2011 under GLRI cooperative agreements with the USGS Great Lakes Science 

Center and USFWS for mapping areas of the problematic invasive species, Phragmites. 
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That project was focused on mapping large stands of the invasive plant along the U.S. 

coastline; a detailed description of this methodology is outlined in Bourgeau-Chavez et 

al. (Baghdadi 2001). From May–October in 2010 and 2011 field data were collected by 

regionally located teams at 1191 locations. Field-visited locations represented a pool of 

randomly selected data points primarily within the emergent wetland category of the NWI 

and additional observer-selected points of interest (see Baghdadi 2001 for details). 

However, many of the field sites turned out to be forested or shrub wetlands. Field crews 

were instructed to supplement pre-selected random field points with additional 

opportunistic field points. The goal of additional observer-selected field points was to 

characterize and delineate areas of vegetative transition, possible unique spectral signals, 

and areas of likely classification confusion. At all field locations, data collections 

followed a standardized protocol. Field crews used a hand held GPS, a GPS camera, 

laminated maps of aerial photographs (30-cm to 1-m resolution), density grids, and tape 

measurers. At each location a vegetative index was constructed; wetland type was 

assigned, species diversity noted, dominant species composition assigned, water level 

measured, vegetation life stage recorded, and for Phragmites and Typha spp., height and 

density measures were collected. Additionally, hand drawn maps and delineations of 

laminated aerial photograph maps distinguished unique vegetation types and species 

transition areas within wetland complexes. Finally, geolocated photographs were taken in 

the four cardinal directions at a centralized location providing an additional layer of 

validation and ground truth for each data location. The Phragmites map product, as well 
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as the data characterizing other LULC features, was used in the coastal wetland and 

upland mapping. 

The field data collection methodology used as a part of the Phragmites mapping 

project provided the foundation on which subsequent field data collects were organized. 

During 2012–2014, the field campaign was extended to inform the basin-wide bi-national 

map on not only emergent wetland types, but also shrub, forest, and peatland classes, and 

to gather additional field data for the Canadian side of the basin. For this field effort, the 

locations of the field sampling were not random, but specifically selected to target those 

areas within the study region that were data-poor and/or for wetland classes that were 

unrepresented. An additional 560 field data locations were sampled in 2012–2014, with  

70 locations provided by McMaster University with their 2013 collections along lakes 

Erie, Ontario, and Huron using the project field collection protocol. Additionally, 

McMaster had collected 249 field locations in 2007–2008 in Georgian Bay that provided 

ancillary information. Another source of field data was the vegetation species dominance 

metrics from the Fish and Invert database of the Great Lakes Instrumentation 

Collaboratory (GLIC) project, also funded by the GLRI. These data were not included in 

classification training or validation, but provided ancillary information to inform the 

image analysts for specific wetland classes. Upland areas were not field visited because 

the identification and delineation of upland classes were conducted using air photo 

interpretation techniques. 

The wetland field data collection resulted in a total of 1751 sampled sites. All wetland 

field sites in the database were checked for quality by comparing the location and 
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information input to the database against the original field sheet, site description, field 

photos, and GPS location from both the GPS camera and the Garmin GPS unit. The 

breakdown of field sites by dominant cover type (Figure 2.3) shows a fairly good 

distribution of field samples, however, there were some regions along northern lakes 

Superior and Huron that were inaccessible due to lack of roads and/or rough terrain. Only 

those field collections that were sampled with the project-designated sampling design, as 

described above, are shown on the map. There were additional locations (GLIC and 

2007–2008 McMaster) used to aid the image interpreters in defining training polygons, as 

noted above. 

Image Area 

Satellite imagery from both Landsat 5 TM and PALSAR that were collected in three 

seasonal time frames (spring, summer, and fall) were used for the mapping. Most imagery 

was collected in 2010 for PALSAR, but additional years (2007–2011) were needed to fill 

gaps to obtain the triplicate datasets from the three seasons. Similarly, for Landsat 5 TM, 

due to cloud cover, multiple years of data were aggregated to obtain complete coverage of 

the entire coastline. Thus, the seasonal triplicates of Landsat 5 TM data spanned the time 

frame between the years of 2007 and 2011. Note that only spring data were available from 

PALSAR for 2011, as it went out of commission thereafter. Seasonal date cutoffs for 

imagery were based on an approximation of early growth after leaf flush (spring: April–

May), peak growth (summer: June–August), and early senescence (fall: September–

October). These dates were adjusted based on latitude within the basin; for example, 

spring was later in the northernmost reaches of the basin. 
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Both Landsat 5 TM and SAR sensors required independent pre-processing procedures 

before the data were suitable for building a classified map. These steps are detailed in the 

sections below. After pre-processing, the images were combined into image stacks before 

being classified. The number of seasonal PALSAR scenes required to obtain the spatial 

and temporal coverage of the study area was 520 and the number of Landsat scenes 

needed was 159 (Table 2.2). 

Landstat Data Selection and Processing 

Image interpreters used EarthExplorer to identify and download clear Landsat 5 TM 

scenes acquired between the years of 2007–2011. When possible, the seasonal dataset for 

each area of interest (AOI; a PALSAR frame area) was created using scenes from the 

same year, and efforts were made to use the most recent imagery possible. For lakes 

Ontario, Erie, Huron, and Michigan the spring scenes were acquired in April and May, 

summer scenes were from June, July, August, and fall scenes were from September and 

October. Lake Superior is farther north and green up typically occurs later, so the month 

of June was included in the spring scenes. Cloud-free imagery was not always available 

for the specified time frames; therefore, for some AOIs it was necessary to composite 

Landsat scenes from multiple dates. Julian day was included in each image stack to keep 

track of image sources. Multispectral Landsat TM data used in mapping coastal areas 

included bands 1–7 from spring, summer, and fall scenes. Optical bands were converted 

to radiance values, then to top-of-atmosphere (TOA) reflectance to normalize differences 

in illumination due to temporal changes in sun angle and earth-sun distance. The thermal 

bands were converted to TOA temperature brightness in degrees C assuming all pixels 
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had an emissivity of water (Becker et al 2005). This assumption resulted in a relatively 

small underestimation of land surface temperature. Typically, in the warmer months the 

thermal difference between land and water is greater than the underestimation, making 

such an assumption suitable for mapping purposes. 

Atmospheric correction using the latest Landsat Ecosystem Disturbance Adaptive 

Processing System (LEDAPS) software to convert Landsat digital counts to surface 

reflectance (Rebelo 2010) is considered by many to be the best correction; however, we 

found TOA to produce comparable results with less computational burden. The effects of 

atmospheric correction were tested by comparing classification results using TOA 

reflectance and surface reflectance. Image classification and error analysis was then 

carried out using both TOA reflectance and LEDAPS surface reflectance. Atmospheric 

correction did not improve classification accuracy, but added considerable computational 

burden to each scene. Other previous large-scale mapping projects have found that using 

TOA reflectance values for image classification yielded more accurate results than using 

atmospherically corrected data (Rebelo et al 2010; Masek et al 2006; Homer et al 2007). 

Normalized Difference Vegetation Index (NDVI) images created from the visible-red 

(band 3) and NIR (band 4) bands (Wulder et al 2003) were also produced for inclusion in 

the map classification. This ratio works well for mapping green vegetation, as the 

reflectance in the red band is low due to absorption by chlorophyll and high in the near 

infrared band due to chlorophyll reflectance. The thermal and spectral indices allow for 

improved wetland detection and mapping over the optical sensors alone. All Landsat TM 
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data and NDVI products were resampled using nearest neighbor to match the PALSAR 

Fine Beam Dual mode pixel size of 12.5 m and output as 32-bit data. 

SAR Processing 

SAR data for the study area were acquired from the Japanese ALOS PALSAR 

satellite, which has an L-band (~24 cm wavelength) SAR sensor. PALSAR data are 

collected in various modes, and for this project the single channel and dual channel 

modes were used. In Fine Beam Single mode (FBS), the sensor transmits and receives 

horizontally polarized signals (HH) with 10 m spatial resolution. In Fine Beam Dual 

mode (FBD), the sensor transmits horizontally polarized signals and receives horizontally 

and vertically polarized signals (HH and HV) with 20 m spatial resolution. PALSAR 

imagery used for this project was processed at the Alaska Satellite Facility (ASF) via a 

service contract. ASF downloaded the data from the ALOS satellite, processed, terrain 

corrected, and georeferenced it to within 1.5 PALSAR pixels (12.5 m), and delivered the 

32-bit data with 12.5 m pixel spacing for the FBD data and 6.25 m pixel spacing for the 

FBS. Upon receipt, the FBS data were resampled using bilinear interpolation to match the 

FBD PALSAR pixel size of 12.5 m. 

Once received from ASF, the data were checked to ensure geographic accuracy. 

Images that shared the same spatial extent were required to be within one pixel (12.5 m) 

of each other for mapping. If images did not meet this accuracy requirement they were 

processed through a co-registration algorithm. The SAR images were checked for 

alignment using Landsat TM images. If the SAR images were found to be misaligned 

they were georeferenced to a corresponding cloud-free Landsat 5 TM image. Spatial 
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accuracy was calculated for each image using the root mean square error (RMSE). Lastly, 

a 3 × 3 median filter was applied to the PALSAR images to reduce speckle. Speckle is the 

coherent addition of backscatter from multiple scatterers in the same resolution cell. The 

result is random constructive and destructive interference, manifesting itself in bright and 

dark neighboring pixels, a “salt and pepper” effect. Because of speckle, a single pixel in 

SAR imagery cannot be used to measure features on the ground. Filtering of the data must 

be applied to reduce inherent speckle when producing a map. 

Mapping Technique 

Several image classification methods were evaluated, including hierarchical 

classification, object based image analysis (OBIA with eCognition), maximum likelihood 

(Erdas Imagine) classification of optical and SAR data separately and then recombination 

of the classes (Bourgeau Chavez et al 2008), and Random Forests (in R). Each of these 

approaches has advantages and disadvantages, and was evaluated for accuracy, 

consistency (between scenes and image analysts), and time consumption. These 

approaches were assessed in three experimental study areas with varying amounts of 

developed land (Northern Lake Michigan coastal wetland, Lake St. Clair coastal wetland, 

and Lake Huron coastal wetland). Random Forests (Rouse et al 2001) provided the best 

combination of high classification accuracy and time efficiency and was selected for our 

study. As a machine learning algorithm, Random Forests is an ensemble classifier 

consisting of multiple decision trees generated from a random subset of training data sites 

and bands from a stack of all data. Once the forest of decision trees is created, an 

individual pixel’s classification is determined by which class receives the most “votes” 
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across all decision trees. Random Forests is able to handle datasets with a small number 

of observations and a large number of attributes, is well suited to parallel processing, and 

is relatively insensitive to non-predictive inputs (Brieman 2001). Additionally, the 

algorithm can easily handle missing attributes, such as cloud obscured pixels, as decision 

trees built without the missing attributes can be used to classify the compromised data. 

A minimum mapping unit of 0.2 ha was used for the project. This unit was determined 

by application needs and limitations of the SAR imagery. Although the original multi-

looked SAR imagery has 10–20 m resolution in the ground plane, due to inherent SAR 

image speckle the effective mapping unit must be a multiple of the resolution cell. Based 

on field data comparison with the fused Landsat-PALSAR map products and in reference 

to the coarsest SAR spatial resolution used (20 m), 0.2 ha, or 2 × 2.5 resolution cells, was 

the minimum size that could be confidently mapped (Bourgeau Chavez et al 2008). 

The classification scheme applied to the datasets consisted of a combination of Anderson 

Level I upland classes (Liaw and Weiner 2002), USFWS NWI classes, additional specific 

wetland classes (peatlands, invasive monotypic vegetation types including Phragmites, 

Typha spp., and Schoenoplectus spp.), and other upland classes that aided in improving 

map accuracy by reducing confusion (e.g., urban grass, fallow field). All upland and 

wetland classes are defined in Table 2.3. 

The mapping process was iterative (Figure 2.4). First, wetland vegetation types were 

identified using field data and air photo interpretation. Next, polygons were drawn in 

ESRI ArcMap to spatially expand the field sampled locations and avoid edges of 

transitions between covertypes or land categories. These polygons were used as training 
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and validation data, with a reserved priority of the field sampled sites for validation. 

Training data for uplands were created by image interpretation of current aerial 

photographs and were not field visited. Homeland Security Border 2009 Flight Imagery 

collected at 30-cm resolution was used for assessment of the coastlines of lakes Ontario, 

Erie, Huron, and Superior. The Border Flight data were not collected for Lake Michigan 

or Georgian Bay in Lake Huron, so a combination of publicly available satellite and aerial 

imagery was used. USDA National Agricultural Imagery Program (NAIP) 1-m data from 

2009 to 2010 were used for Lake Michigan. For Georgian Bay, ESRI’s World Imagery 

and Google Earth were used. These upland and wetland polygons provided the supervised 

training data and validation data (Figure 2.4). The supervised data were input to Random 

Forests with the three-date Landsat TM-PALSAR image stack that included all Landsat 

TM bands (21) and PALSAR bands (6), as well as an NDVI layer for each Landsat TM 

date (3), for a total of 30 input remote sensing bands. Post-classification, the classified 

images were filtered to eliminate isolated pixels and reduce the errors introduced by 

mixed pixels. Each classified pixel’s value was replaced by the majority class of its eight 

neighbors using the ESRI majority filter. This resulted in the reduction of some errors at 

the expense of some correctly classified small linear features. 

The mapping process (Figure 2.4) was applied individually to AOIs nominally defined 

by each 70 km × 70 km PALSAR frame area (Figure 2.5). This approach was required 

because even small differences in adjacent PALSAR scene collection dates can result in 

great differences in SAR backscatter, depending on moisture conditions. The study area 

also covered a transition in ecoregions from southern boreal in the north to temperate 



 30 

conditions in the south, and a range in LULC from primarily rural in the north to highly 

urban in the south. An effort was made to collect field data within each 70 km × 70 km 

frame area for training. Note that there were small areas of the map that did not have 

PALSAR imagery available. These were generally slivers of the map where overlapping 

PALSAR coverage was unavailable for the seasons used in mapping. In these cases the 

maps were produced solely from Landsat 5 TM data. Once all of the AOIs were 

completely mapped, they were mosaicked to the extent of each of the five lake basins and 

accuracy was assessed. 

Accuracy Assessment 

To ensure a robust set of validation data (polygons) for the Great Lakes coastal 

wetland maps, a percentage of the input training polygons was reserved for validation. 

Specifically, this was carried out by setting aside 20% of the training polygons as 

validation for each class. Whole polygons, not partial polygons, were set aside. The 

validation data were prioritized to include polygons derived from field verified sites. If 

less than 20% of a class’s training polygons included field sites, then polygons derived 

from photo interpretation were also reserved. When more than 20% of the polygons were 

field verified, then validation polygons were randomly selected to be included in the 

training data. The average number of validation polygons per class was 328, exceeding 

the 75–100 recommended by Congalton and Green 2008 for large areas (Anderson et al 

1976). 
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The Random Forests algorithm generates an “out of bag” estimate of classification 

accuracy using the random subset of training data not used in generating each tree. 

However, these data are used to generate other trees within Random Forests and, thus, 

they are not independent. The “out of bag” accuracy was typically inflated compared to 

the independent assessment. Therefore, to ensure a robust and independent validation set, 

all accuracies presented in this article are based on the twenty percent of the training data 

that were reserved for validation. 

Results: 

The mapping was completed in the summer of 2014 for all five lake basins (Figure 

2.6). The results are presented below for the whole Great Lakes Basin and can be viewed 

on a webpage and requested for download (Congalton et al 2008). The area of wetland 

mapped by class type in each lake basin is shown in Table 4. A total of 2,200,631 ha of 

wetlands were mapped in the bi-national Great Lakes coastal region to within 10 km of 

the coastline. This represents 24% of the total land area within the study extent 

(9,056,410 ha mapped). Of these coastal wetlands, a majority were forested or shrubby 

wetlands (18.2% of mapped area), with 3.7% of the mapped area representing emergent 

wetland types. Within the emergent wetland class, 24% of the area mapped was 

dominated by Typha spp. and 11% was dominated by invasive Phragmites. 

The targeted goal for overall accuracy was 90% and the goal for individual classes was 

70% accuracy. The overall accuracy of the entire basin map is 94% (Table 2.5), and for 

individual lakes it is greater than 90% for all lakes except Ontario, which is 86% (Table 
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2.6). If water is excluded, then overall accuracy reduces to 85%–87% and when all the 

wetland classes are lumped, overall wetland class accuracy is 75%–82%. 

The producer’s accuracy represents how well the reference pixels are classified, 

whereas the user’s accuracy represents the probability that a classified pixel actually 

represents that class on the ground. For individual classes for the entire basin, all of the 

producer’s class accuracies are greater than 69% and all of the user’s accuracies are greater 

than 61% except for one class, Schoenoplectus (35%; Table 2.5).  

A single AOI covering the St. Clair Flats area provides an example of the details of the 

map (Figure 2.7). The St. Clair Flats is home to a large river delta wetland complex with a 

variety of herbaceous and woody wetlands, including large expanses of the invasive 

Phragmites and Typha spp., as well as large areas of Schoenoplectus spp. along the 

coastline. For this AOI, most of the producer’s class accuracies are greater than 70%, 

except wetland, which is 65%, and all of the user’s accuracies are greater than 70%, 

except wetland (38%), Schoenoplectus (59%), and forested wetland (60%; Table 7). 

One of the outputs of Random Forests is a plot of band importance (mean decrease in 

accuracy). The mean decrease in accuracy is computed by permuting the out-of-bag data 

(Liaw and Weiner 2002). For each tree, the prediction error on the out-of-bag portion of 

the data is recorded and then the calculation is repeated after permuting each predictor 

(input band) variable. The difference between the two are then averaged over all the trees, 

and normalized by the standard deviation of the differences. The band importance from 

the mean decrease in accuracy plot for the St. Clair Flats AOI, which is dominated by 
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wetlands (Figure 2.8), was very different than the plot for all 40 AOIs over Lake 

Michigan, of which a majority of the landscape was upland classes (Figure 9). For the 

wetland dominated AOI (Figure 8), the three most important bands were spring Landsat 

TM NDVI, spring Landsat TM thermal, and spring L-HH, followed by L-HV from 

summer and L-HH from fall. In contrast, for the upland dominated landscape (Figure 9) 

the three most important bands were the Landsat TM thermal (band 6) from spring, NIR 

(band 4) from spring, and NIR from fall. PALSAR L-HV from spring was 12th in band 

importance, with the other two HV bands at 14th and 15th, and the HH bands at 17–19th in 

importance. 

Discussion: 

Accuracy and Confusion Classes 

The overall accuracy for the coastal Great Lakes maps was 94%, with a range from 

86% to 96% overall accuracy by lake basin (Huron, Ontario, Michigan, Erie, Superior). 

This overall accuracy is slightly higher than the rates of 80%–89% achieved in other 

large-area mapping projects around the world (Margono et al 2014; Fujimura et al 1999; 

Becket et al 2005; Bourgeau Chavez et al 2015; Draper et al 2014) and comparable with 

the rate of 95% achieved for Alaska (Whitcomb et al 2009) For the coastal Great Lakes 

maps, a few wetland classes had individual accuracies below the targeted 70% producer’s 

and user’s accuracies. For example, Schoenoplectus spp. had a producer’s accuracy of 

83% and a user’s accuracy of only 35% for all the Great Lakes (Table 2.5). The low 

user’s accuracy suggests only 35% of all Schoenoplectus spp. pixels are indeed 
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Schoenoplectus spp. on the ground. Schoenoplectus spp. proved difficult to map because the 

plants often grow in narrow, patchy stands along the coast. Schoenoplectus stands are also 

much less prevalent than the more common large monotypic stands of Typha spp. or 

Phragmites. Schoenoplectus spp. are often seen mixed with other vegetation and patches 

of open water or floating aquatics which can explain the confusion with the generic 

wetland class, aquatic bed, and open water classes. In areas dominated by wetlands, such 

as the St. Clair Flats AOI, the accuracy of Schoenoplectus spp. improves, with a 

producer’s accuracy of 98% and a user’s accuracy of 59% (Table 2.7). The specific 

dominant cover wetland classes could be collapsed into a higher-order class (e.g., Typha 

and Phragmites could be collapsed into “wetland” (NWI emergent wetland class; see 

Tables 2.4 and 2.6) to increase the map accuracy. However, in many cases the major 

confusion is with similar or higher-order wetland classes, and lower accuracy of a specific 

cover type is compensated by the general ability to distinguish differences among classes. 

Schoenoplectus may be better collapsed with open water in many regions. For this genus 

a shorter wavelength SAR, such as C-band (~5.7 cm), would likely improve mapping. 

In some regions of the map, specifically those areas that are more developed, 

accuracies are slightly lower because of the higher variability in LULC over small spatial 

extents. In these areas, there are some noticeable classification discrepancies because of 

mixed pixel effects. For example, an area that transitions from urban to emergent wetland 

may show false instances of other classes in pixels where the transition occurs. Another 

example is fallow fields along woodlots, which result in false identification of Phragmites 
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in a linear patch along the treeline. These errors were reduced as much as possible by 

clumping and sieving, but further filtering would actually remove true classes. 

There is some confusion of agriculture with many of the LULC classes (Table 2.5). 

Agricultural land often borders many of these LULC types and, depending on the crop 

planted, it can look spectrally similar to various LULC types. In addition, many of the 

agricultural lands are former wetlands and therefore may exhibit hydrological changes 

similar to intact wetlands, thus appearing “wet” in the PALSAR data. 

Due to the high confusion of Schoenoplectus with open water, the maps were adjusted  

post-classification to correct the problem. Using all available field data, a spatial query 

was conducted to retain areas mapped as Schoenoplectus that were field verified and 

relabel all other areas mapped as Schoenoplectus to open water. Unfortunately, using all 

field data to make the correction did not allow for an independent assessment of the new 

Schoenoplectus class accuracy. In making this adjustment some true Schoenoplectus areas 

are likely lost, but with the high errors from the unadjusted map it was justifiable. 

Importance of SAR-Optical Fusion in Wetland Mapping 

The plot of band importance for the St. Clair Flats AOI (Figure 2.8) shows that the 

most important bands for wetland type mapping when using three-season Landsat TM 

and PALSAR data were spring Landsat TM NDVI, spring Landsat TM thermal, and 

spring L-HH, followed by L-HV from summer and L-HH from fall. The PALSAR L-HH 

band (which is sensitive to moisture/inundation), along with the spring Landsat TM 

NDVI and thermal band, are particularly important to the classification, and that 

importance was consistent across AOIs with large regions of wetland cover. However, for 
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classifications generated in areas with a greater percentage of urban and suburban 

coverage (Figure 2.9), the output maps relied more heavily on the visible Landsat TM 

bands, and the PALSAR L-HV bands were ranked 12th, 13th and 14th, slightly above the 

L-HH bands (ranked 17–19th). L-HV is more sensitive to biomass than moisture and 

Landsat TM bands are most useful for distinguishing upland cover types. It is for the 

wetland classes that PALSAR L-HH is of such high utility, as seen in Figure 8. However, 

the L-HV band, with its sensitivity to structure and biomass, aids in distinguishing shrub 

from forest from herbaceous wetland. It is notable that the thermal channel is of high 

importance (ranking 1st or 2nd) for both wetland-dominated AOIs and urban/suburban-

dominated AOIs. The thermal band, in conjunction with NDVI, has been shown to be 

effective for LULC classification (Evans et al 2014; Baker et al 2006; Melesse 2003). Water 

has a high thermal inertia, therefore the temperature of water and wetlands changes more 

slowly than for surrounding uplands. In the summer, water is generally cooler than the 

land, and in the winter, it is warmer. Additionally, evapotranspiration from vegetation 

results in cooler temperatures than from barren or sparsely vegetated LULC classes 

(Baker et al 2006). Urban environments are also typically warmer due to solar heating of 

paved surfaces and heat generated from anthropogenic sources (Melesse et al 2003). 

Other researchers have noted the importance of L-band in detection of woody wetlands  

(in particular Hess et al 1995; Lang et al 2008; Southworth 2004) and for detection of the 

large, dense forming invasive wetland grass Phragmites in the coastal Great Lakes 

(Baghdadi et al 2001). L-band fused with optical data has been helpful in overall wetland 

mapping, such as for tropical peatland types in Peru (Bourgeau-Chavez et al 2015), and 
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when combined with C-band dual-band/dual-season data for distinguishing and mapping 

a diverse set of ecosystems in the vast wetland complexes of the Pantanal in South 

America (Draper et al 2014). Whereas most researchers find the L-HH band to be of 

greatest utility for wetland mapping due to its ability to detect inundation, others note the 

usefulness of the L-HV band for differentiating vegetation structure in wetlands (e.g., 

Bourgeau-Chavez et al 2015). 

For the coastal Great Lakes map presented here, both L-HH and L-HV were found to 

be of high importance in wetland mapping. The methods developed for mapping coastal 

wetlands of the Great Lakes are unique in fusing three season Landsat 5 TM, including 

the thermal band, and three-season PALSAR L-HH/L-HV data over a large region. 

Whereas others have investigated multi-sensor fusion, and some have used dual-season 

multi-sensor fusion, few have used three-season datasets and most remove the Landsat 5 

TM thermal band. The three-season data are crucial because they capture the phenologic 

differences in the vegetation and the seasonal variation in the hydrology. For example, 

Typha stands are typically fallen over in the spring with high water; in summer they are at 

peak vegetation height and density with lower water tables and less distinguishable from 

other wetland types. In contrast, stands of Phragmites have significant standing dead 

biomass in the spring that remains in the summer as new shoots sprout up. Using summer 

data alone makes distinguishing these two genera difficult, but using the phenology of the 

vegetation aids in distinguishing them, and the patterns of hydroperiod distinguish the 

wetlands from the uplands. Some of the wetlands are wet in spring and fall, such as the 
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forested wetlands, and that provides two chances to detect the inundation, depending on 

the timing of the satellite collections. 

The SAR-optical technique for mapping Great Lakes wetlands was demonstrated as a 

repeatable, high accuracy, and timely method (3.5 years including development of 

mapping methodology) that can be applied to large regional areas while integrating high 

accuracy image interpretation, field data and moderate spatial resolution remote sensing 

in a sophisticated machine-learning approach. Such an approach has wide applicability 

beyond the coastal wetlands of the Great Lakes. This approach to wetland mapping has 

been applied to non-coastal temperate regions, including the state of Michigan and the 

state of Maine, as well as to boreal peatlands of Alberta (Townsend 2002) and is currently 

being applied to map tropical peatlands of Peru. 

Summary and Significance: 

The Great Lakes bi-national coastal wetland product represents a current, circa 2010, 

comprehensive basin-wide inventory of coastal wetlands, as defined by USFWS NWI 

types with additional classes for dominant plant species Phragmites, Schoenoplectus spp. 

and Typha spp and adjacent LULC classes as defined in the GLCWC Monitoring Plan 

protocol (Bourgeau-Chavez et al 2008). This effort represents the first comprehensive 

wetland delineation of the bi-national coastal Great Lakes using a consistent mapping 

technique. The map provides information not only on wetland extent and type, but also 

contemporary information on potential wetland stressors (e.g., invasive plant species and 

level and type of development surrounding the wetlands). More specifically, the map is 

designed to assist in identifying indicators of wetland health defined through the State of 
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the Lakes Ecosystem Conference, including: (1) land cover adjacent to coastal wetlands; 

(2) land cover/land conversion; (3) urban density; (4) non-native terrestrial species, and 

(5) wetland extent and composition [48]. It was also developed to provide reference and 

input for the GLIC, which has a five-year plan for collection of biologic and other field-

based indicators of wetland health throughout the Great Lakes (Bourgeau-Chavez et al 

2008). 

Although the map produced represents a static point in time depicting the distribution 

of wetlands by type across the basin, it serves as a baseline for future mapping of change. 

The mapping methodology used is reproducible, allowing for the continual development 

of future maps for monitoring and detecting change in the Great Lakes Basin. With the 

launch of Landsat 8 in 2013 and PALSAR-2 in 2014, map updates and changes can be 

made in the next few years. The German Aerospace Center (DLR) has plans to launch L-

band satellites (Tandem-L), as do NASA, India with NISAR (L-band and S-band SAR 

sensors), and Argentina with SAOCOM–1, thus extending the mapping capability into the 

longer-term future. In addition, mapping past conditions circa 1997 is possible with 

JERS-1 (predecessor to PALSAR) and Landsat 5 TM. A change mapping technique, such 

as is conducted by NOAA for C-CAP, could be applied to the hybrid PALSAR-Landsat 

methodology for efficiency. 
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Table 2.1: Sources of field data collection used to aid in image interpretation. The top  
four sources were used for the development of training and validation data for the 
coastal Great Lakes map. The bottom two sources provided ancillary information. 
 

Source Region Years of Collection No. of Sites 
MTU 1 (USGS 2/USFWS funded) USA: All 5 Lakes 2010–2011 1191 

MTU (EPA funded) 
USA and Canada: Lakes Huron, 

Superior, Erie, Michigan 
2011–2014 147 

McMaster University 
Canada: Lakes Huron,  

Erie Ontario 
2013 70 

Michigan State  
University (EPA funded) 

Canada: Lakes Superior,  
Huron, USA: Lake Michigan 

2012–2013 343 

Great Lakes Instrumentation  
Collaboratory (GLIC) 

USA and Canada:  
All Lakes 

2011–2013 -- 

McMaster University Canada: Georgian Bay 2007–2009 249 
1 Michigan Technological University; 2 U.S. Geological Survey. 
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Table 2.2: Number of scene footprints required from each satellite sensor to  
map the coastal Great Lakes. Note that scenes covering Lake St. 
Clair are included in Huron. 

 
 

Lake Basin Number of PALSAR 
Scenes 

Number of Landsat 5 TM 
Scenes 

Erie 57 27 
Huron 117 27 

Michigan 107 26 
Ontario 66 12 
Superior 173 67 
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Table 2.3: Description of each class mapped 
 

Class Description 
Urban Residential areas, cites, towns, industrial areas, utilities, commercial services where the manmade structures have >75% coverage. 

Suburban 
Primarily residential areas where manmade structures (i.e., buildings, farm equipment)  
are present, with more than or equal to 25% vegetation (trees, shrubs, grass) interspersed. 

Urban Grass Lawns, golf courses, athletic fields, urban parks, and mowed transitional zones such as medians or airfields. 

Urban Road 
Linear transportation routes, large driveways, and parking areas. Transportation routes can include highways,  
small two-lane roads, railroad beds, airfield landing areas, parking lots, and off- and on-ramps. 

Agriculture 
Hay fields and croplands where row crops such as corn, beans, and grains are in production. Land used for production of  
food or fiber; land use distinguishes agricultural land from similar natural ecosystem types (i.e., wetlands and rice paddies). 

Fallow Field Agriculture fields not in row crop production, such as areas of native grasses or meadows and pastures. 
Orchard Orchards, vineyards, and ornamental plants/trees. 

Forest 
Broadleaf and needle leaf deciduous and evergreen trees and dead forests.  
Characterized by woody vegetation with a height >6 m. Crown closure percentage (i.e., aerial view) >75%. 

Pine Plantation 
Needle leaved deciduous and evergreen trees with distinct row structure and typically planted in defined  
geometric plot. Crown closure percentage (i.e., aerial view) >75%. 

Shrub 
True shrubs, immature trees, or stunted growth trees/shrubs. Characterized by woody vegetation with a height <6 m.  
May represent a successional growth stage that has not yet matured to forest,  
or stable communities of shrubs and stunted growth trees. Crown closure percentage (i.e., aerial view) >50%. 

Barren Light 
 Salt flats, beaches, sandy areas, bare rock, strip mines, quarries, gravel pits, and transitional areas (on gray scale >50% white).  
Land with limited ability to support life. Contains less than 33% vegetative cover. May include thinly dispersed scrubby vegetation. 

Barren Dark 
Salt flats, beaches, sandy areas, bare rock, strip mines, quarries, gravel pits, and transitional areas (on gray scale ≥50% black).  
Land with limited ability to support life. Contains less than 33% vegetative cover. May include thinly dispersed scrubby vegetation. 

Water 
Streams, canals, rivers, lakes, estuaries, reservoirs, impoundments, and bays. Areas persistently inundated by water that do not  
typically show annual drying out or vegetation growth at or above the water’s surface. Depth of water column is >2 m, such that  
light attenuation increases significantly and surface and subsurface aquatic vegetation persistence declines or is less detectable. 
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Table 2.3: cont’d 
 

Class Description 

Aquatic Bed 
Algal beds, aquatic mosses, rooted vascular plants (e.g., eelgrasses and sea grasses, pond weeds, lily pads, milfoil) and floating  
vascular plants (e.g., lemna, water hyacinth, coontails, and bladderwarts). Inundated wetlands or water <2 m (excluding  
deep water zones). Habitats dominated by plants that grow principally on or just below the water’s surface. 

Wetland 
Emergent wetland and wet meadow vegetation not represented by other classes. These are areas where the water table is at or  
near the Earth’s surface. Seasonal inundation and/or drying are common. Vegetative species distributions are strong  
indicators of wetland condition. Does not include cultivated wetlands, such as rice paddies or cranberry farms. 

Schoenoplectus Dominate species is Schoenoplectus spp. and crown closure percentage (i.e., aerial view) >50%. 
Typha Dominate species is Typha spp. and crown closure percentage (i.e., aerial view) >50%. 
Phragmites Dominate species is Phragmites australis and crown closure percentage (i.e., aerial view) >50%. 

Open Peatland 
Brown and graminoid moss dominated with >30 cm peat. Connected ground and surface water flow;  
minerotrophic. Crown closure percentage (i.e., aerial view) >75%. 

Shrub Peatland 
Brown and graminoid moss dominated with >30 cm peat. Connected ground and surface water flow; minerotrophic.  
May represent a successional stage growth that has not yet matured to forest, or stable communities of  
shrubs and stunted growth trees. Crown closure percentage (i.e., aerial view) >50%. 

Treed Peatland 
Brown and graminoid moss dominated with >30 cm peat. Connected ground and surface water flow; minerotrophic.  
Characterized by woody vegetation with a height >2 m. May represent a successional growth stage that has not yet  
matured to forest, or stable communities of shrubs and stunted growth trees. Crown closure percentage (i.e., aerial view) >75%. 

Wetland Shrub Wetlands dominated by shrubs <6 m in height. Crown closure percentage (i.e., aerial view) >50%. 

Forested Wetland 
Wetlands dominated by woody vegetation (dead or alive) >6 m in height. Includes seasonally flooded forests.  
Crown closure percentage (i.e., aerial view) >50%. 
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Table 2.4. Summary of area mapped by wetland class type (ha) and percentage  
  of each class type mapped within the study area. 

 

Wetland Type 
Lakes Erie  

and St. Clair 
Lake  

Ontario 
Lake 

Michigan 
Lake 

Huron 
Lake 

Superior 
Emergent (including Typha and Phragmites) 63,216 53,800 54,921 97,201 63,166 

Typha 18,707 19,552 15,190 18,906 6509 

Phragmites 20,129 2036 8851 6266 0 

Woody Wetlands (Ha: Shrub and Forest) 111,049 108,738 361,307 525,446 539,624 

Peatland (Bogs and Fens—open and woody) 0 0 11,522 33,439 46,635 

Total Wetlands 194,527 179,570 447,005 708,647 670,882 

Total Mapped Area 1,280,800 1,224,930 1,746,030 2,508,840 2,295,810 

% Area Mapped as Wetland 15.2% 14.7% 25.6% 28.2% 29.2% 

% Area Mapped as Emergent Wetland 4.9% 4.4% 3.1% 3.9% 2.8% 

% Area Mapped as Woody Wetland 8.7% 8.9% 20.7% 20.9% 23.5% 
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Table 2.5. Error matrix for all coastal Great Lakes. Numbers represent pixels. Some classes have been collapsed to  
   higher-order classes for display purposes. 

Classified 
Ground Truthed Values 

Urban Agriculture Forest Shrub Barren Water 
Aquatic  

Bed 
Wetland 

Schoeno-

plectus 
Typha Phragmites Peatland 

Shrub 

Wetland 

Forested 

Wetland 
Sum 

Comm-

ission 

User 

Acc. 

Urban 55,555 7257 315 519 4222 204 26 31 0 139 64 11 94 9 68,446 19% 81% 

Agriculture 1575 650,640 452 3051 1149 65 82 585 0 121 61 13 394 43 658,231 1% 99% 

Forest 88 1714 108,758 3027 39 15 14 145 3 12 14 173 1174 5069 120,245 10% 90% 

Shrub 381 5625 3034 123,911 290 44 32 470 8 78 34 351 2775 3097 140,130 12% 88% 

Barren 534 1979 7 80 43,168 566 0 38 0 63 1 0 24 0 46,460 7% 93% 

Water 0 0 0 20 363 184,5154 324 1 96 7 0 15 4 8 1,845,992 0% 100% 

Aquatic Bed 40 1034 0 31 64 7597 17,777 534 233 144 103 92 153 157 27,959 36% 64% 

Wetland 165 3232 37 372 83 70 362 13,083 99 848 226 319 2359 92 21,347 39% 61% 

Schoenoplectus 2 2 0 2 1313 2065 375 290 2256 52 12 32 22 0 6423 65% 35% 

Typha 15 1514 16 175 38 43 423 1143 22 17,631 333 44 207 70 21,674 19% 81% 

Phragmites 52 2360 47 26 10 114 99 667 1 694 7775 0 210 77 12,132 36% 64% 

Peatland 19 427 236 878 28 13 45 168 1 83 0 14,945 1475 165 18,483 19% 81% 

Shrub 

Wetland 
209 1676 1595 3454 33 7 105 1432 8 250 84 828 27,942 3910 41,533 33% 67% 

Forested 

Wetland 
30 183 4261 4523 8 42 36 52 2 13 1 353 3804 63,097 76,405 17% 83% 

Sum 58,665 67,7643 118,758 140,069 50,808 1,855,999 19,700 18,639 2729 20,135 8708 17,176 40,637 75,794    

Omission 5% 4% 9% 13% 15% 1% 10% 30% 17% 14% 11% 13% 31% 17%    

Prod. Acc. 95% 96% 92% 88% 85% 99% 90% 70% 83% 88% 89% 87% 69% 83%   94% 
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Table 2.6: Summary of classification accuracy by lake basin. Included is the  
   accuracy for wetland classes with water removed. 

 
Lake 
Basin 

Overall 
Accuracy 

All Classes Except 
Water 

Wetlands Classes 
Only 

Erie 92% 85% 82% 
Ontario 86% 85% 81% 
Huron 93% 85% 75% 

Michigan 96% 87% 82% 
Superior 95% 86% 82% 
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Table 2.7. Error Matrix for the St.Clair Flats AOI. Numbers represent pixels. Some classes have been collapsed into  
   higher-order classes for display purposes. 

Classified 

Ground Truthed Values 

Urban Agriculture Forest Shrub Barren Water 
Aquatic  

Bed 
Wetland 

Schoeno-

plectus 
Typha Phragmites 

Shrub 

Wetland 

Forested 

Wetland 
Sum 

Comm-

ission 

Urban 1744 46 0 0 175 0 0 0 0 0 8 0 0 1973 12% 

Agriculture 5 30,197 5 147 0 0 2 19 0 0 13 43 0 30,431 1% 

Forest 0 1 214 11 0 0 0 0 0 0 0 52 0 278 23% 

Shrub 0 44 0 2700 0 0 0 4 0 0 0 153 0 2901 7% 

Barren 123 89 0 0 860 0 0 0 0 0 0 0 0 1072 20% 

Water 0 0 0 0 0 80,981 0 0 5 2 0 0 0 80,988 0% 

Aquatic Bed 0 0 0 0 0 15 347 0 0 0 0 0 0 362 4% 

Wetland 0 56 0 0 0 0 0 53 0 0 23 9 0 141 62% 

Schoenoplectus 0 0 0 0 0 166 1 0 283 27 0 0 0 477 41% 

Typha 0 2 0 0 0 0 25 0 0 1000 0 1 0 1028 3% 

Phragmites 0 76 0 0 0 4 17 5 0 100 1170 13 0 1385 16% 

Shrub Wetland 0 0 0 17 0 0 0 0 0 1 32 733 0 783 6% 

Forested 

Wetland 
0 2 45 0 0 0 1 0 0 0 0 22 106 176 40% 

Sum 1872 30,513 264 2875 1035 81,166 393 81 288 1130 1246 1026 106   

Omission 7% 1% 19% 6% 17% 0% 12% 35% 2% 12% 6% 29% 0%   

Prod. Acc. 93% 99% 81% 94% 83% 100% 88% 65% 98% 88% 94% 71% 100%  97.5% 
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Figure 2.1. Multi-temporal and multi-sensor depiction of a large wetland  

complex on the St. Clair River Delta bordering the U.S. and Canada. 

Top row of images show spring, summer, and fall Landsat 5 TM 
imagery (bands 5, 3, 2). Bottom row shows Landsat 5 TM thermal 

false-color composite (spring, summer, and fall); PALSAR spring, 

summer, and fall HH false-color composite; and PALSAR spring, 

summer, and fall HV false-color composite. Image dates: Landsat 

spring = 5 May 2011, summer = 8 July 2011, fall = 9 October 2010; 

PALSAR spring = 26 May 2008, summer = 17 July 2010, fall = 17 
October 2010. 
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Figure 2.2: Plots showing spring, summer, and fall signatures for different  

land cover types: Landsat 5 TM band 6 temperature (top left), 
PALSAR L-band backscatter for HH and HV polarizations (top right), 

and Landsat 5 TM bands 1–5 and 7 for wetland classes and urban, 

water, and agriculture. Image dates are listed in Figure 1. 
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Figure 2.3: Map of field data locations, color-coded by dominant cover type.  

“Other/mixed” green triangles include all peatland, shrub, and forested 

wetland, as well as mixed emergent and wet-meadow wetlands. 
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Figure 2.4: Schematic showing the mapping methodology from field data,  

     aerial image interpretation, and satellite imagery to classified map. 
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Figure 2.5: Map of extent of each area of interest (AOI) mapped. The AOIs are based  

on PALSAR image extents within the 10 km coastline buffer. Due to 

overlap of scenes, some AOIs are smaller than the full 70 km × 70 km 

PALSAR extent. 
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Figure 2.6: LULC map of the coastal Great Lakes, with a total accuracy of 94%. 
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Figure 2.7: Map of wetland type and LULC for the St. Clair Flats AOI. Overall  

    accuracy is 97.5%. 
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Figure 2.8: Band importance for the wetland dominated Lake St. Clair Flats  

          computed from Random Forests. 
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Figure 2.9: Average band importance for 40 AOIs in the upland dominated  

    Lake Michigan Basin computed from Random Forests. 
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Abstract: 

Invasive Phragmites australis is a highly aggressive grass that has become firmly 

established in wetlands throughout the Great Lakes basin, displacing native plant 

biodiversity and diminishing wildlife habitat. Roads have been implicated in their rapid 

dispersal but no study has yet documented the expansion rate at a large regional scale. In 

this study, we mapped Phragmites in corridors of 16,869 km roads with posted speed 

limits over 60 km/h within 7.04 million ha across southwestern Ontario in both 2006 and 

2010.  We also mapped Phragmites in provincially managed highways in southcentral 

(3.8 million ha; 2,586km) and central Ontario (13.7 million ha; 4,738 km).  Using high-

resolution aerial photography and an automated image classification protocol, we 

determined that Phragmites increased by over 700% from 80 ha in 2006 to 569 ha in 

2010, with majority of the new growth centered around roadways with large rights-of-

way/habitat. The most common land-cover class to change into Phragmites is low-lying 

grasses, with nearly 60% of Phragmites in 2010 coming from this class. As expected, 

approximately half of the areal cover of Phragmites was associated with three major 

highways in southwestern Ontario which were associated with significantly higher traffic 

volume than other road types; however, in southcentral Ontario, with similarly high 

traffic volume, these roads only accounted for 20% of the areal cover of Phragmites, 

while several highways that served large seasonal residences had relatively high areal 

cover. Results of this comprehensive mapping of highway corridors in one of the most 

populated provinces in Canada are interpreted according to a conceptual model relating 
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areal cover of invasive Phragmites to habitat characteristics, habitat availability and 

dispersal potential within road corridors. 

 
Introduction: 

Phragmites australis (Cav.) Trin. ex Steudel (the common reed) is a perennial 

grass that grows in many habitat types throughout the world. There are 27 genetically 

distinct haplotypes worldwide, of which 11 have been found in North America 

(Saltonstall 2002). Over the past two decades, Haplotype M, which originated from 

Europe, invaded coastal and inland wetlands throughout southern Ontario, replacing 

native vegetation and generally reducing biodiversity (Chambers et al. 1999; Markle and 

Chow-Fraser 2018). This invasive haplotype aggressively colonizes exposed mud flats 

sexually (through seeds), and then expand asexually (through rhizomes) to form dense 

monocultures. Its rapid spread has been attributed to it being a superior competitor against 

other emergent vegetation (Rickey and Anderson 2004; Uddin et al. 2017) and to being 

more tolerant of disturbances (e.g. road maintenance and changes in hydrologic regimes) 

and stress (Chambers et al. 1999; Saltonstall 2002).  

Past studies have shown that transportation corridors provide excellent invasion 

pathways for species such as invasive Phragmites (Saltonstall 2002, Lelong et al. 2007, 

Jodoin et al. 2008, Kirk et al. 2011, Brisson, de Blois, & Lavoie 2010; Kettenring, de 

Blois, & Hauber 2012). Linear ditches along roadsides or in the median can be readily 

colonized by invasive Phragmites (Leong et al. 2007; Brisson et al. 2010) as they have 

abundant seed dispersal through wind (Brisson, Paradis, & Bellavance 2008, Kirk et al. 

2011, Albert et al. 2015, Kettenring et al. 2016).  In addition, Medeiros et al. (2013) has 
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hypothesised that this haplotype can tolerate high salinity from road salts and require little 

moisture in comparison to other aquatic vegetation in the environment. Because roadside 

environments are highly disturbed (by traffic, maintenance, and construction activities), it 

is likely that any available habitat would be rapidly colonized by seeds of invasive 

Phragmites (Kettenring et al. 2016). Since the primary role of these habitats is water 

drainage, constant flooding and drying would likely cause increased stress to many 

common terrestrial plants while providing ideal ‘mudflat’ habitat for invasive Phragmites 

(Chambers et al. 2003, Baldwin et al. 2010). It is likely that the rapid spread of invasive 

Phragmites throughout wetlands of eastern North America (and now much of the rest of 

the continent) has been hastened by roadways and their associated ‘linear wetlands’ 

(Maheu-Giroux & de Blois 2006, Lelong et al. 2007, Brisson, de Blois, & Lavoie 2010, 

Kettenring, de Blois, & Hauber 2012, Albert et al. 2015) 

Previously, invasive Phragmites has been mapped on a large scale with satellite-

based imaging sensors in true colour, near-infrared, radar, and combinations thereof 

(Bourgeau-Chavez et al. 2015; CH2; Pengra, Johnston, & Loveland 2007, Samiappan et 

al. 2016, Deakin et al. 2016). These large-scale projects use satellite-based sensors that 

have a ground-based resolution of 10 to 30 m per pixel with repeat image times of two to 

four weeks. Although they provide us with important baseline data on the historic, 

current, and potential spread of invasive Phragmites in coastal and inland wetlands in 

large regions such as states, provinces, or watershed basins, these projects are typically 

unable to identify the extent of invasions in roadsides that are long linear wetlands, 

extending over hundreds of kilometers and that are known to be an important vector of 
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dispersal. This is primarily because the resolution of these sensors often exceeds the 

dimension of the average highway ditch (<20 m on large highways), which for these 

sensors is too narrow to be appropriately mapped. By comparison, orthophotography can 

provide a much smaller minimum mapping unit (<1m). The trade-off for this high 

resolution however, is the requirement for costly flights to be flown with acquisition of 

many thousands of images to cover large spatial scales and the associated problems with 

managing such large databases.  

Based on the literature, the three main drivers that influence the distribution of 

invasive Phragmites in road networks are habitat characteristics, habitat availability and 

dispersal potential (Figure 3.1).  Habitat characteristics are large landscape-level factors 

that provide optimal growth conditions for invasive Phragmites. Since this semi-aquatic 

plant thrives in high nutrient environments and is competitive in highly saline 

environments (Chambers et al. 2003; Rickey & Anderson 2004, Bellavance & Brisson 

2010; Medeiros et al. 2013; Mozdzer et al. 2013), the topography, geology (substrate), 

and land use can influence the habitat’s suitability. In addition to providing moisture 

(Jodoin et al. 2008; Brisson et al. 2010), highway ditches can select for invasive 

Phragmites when they receive additional runoff from adjacent agricultural and urban land 

with high nutrient and ionic content (Lelong et al. 2007). Therefore, habitat availability 

will be a function of the type of plants that already exist within roadside habitats prior to 

colonization; for instance, grass species that have typically been planted by transportation 

authorities would not be competitive against invasive Phragmites (Rickey & Anderson 

2004; Jodoin et al. 2008; Albert et al. 2015), while woody plants (such as shrubs and 
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trees) would be more resilient land cover that could inhibit colonization by invasive 

Phragmites (Albert et al. 2013). Finally sources of dispersal of invasive Phragmites along 

roadways will be dependent on 1) source populations from other roads and wetlands 

(Lelong et al. 2007; Kettenring et al. 2012), 2) increased traffic volume that directly 

provide physical movement and indirectly create artificial wind patterns for dispersal 

(Gelbard & Belnap 2003; Catling & Mitrow 2011), and 3) direct seeding of invasive 

Phragmites from propagules attached to infected vehicles used in road construction and 

maintenance projects (see Figure 3.1).  

 This research project was initiated to assist the Ministry of Transportation in 

Ontario (MTO) to control and possibly eradicate invasive Phragmites in the most 

populous provincial jurisdiction in Canada, with over 20,000 km of roads. Our challenge 

was to design a protocol to efficiently map the distribution of invasive Phragmites across 

large portions of the provincial road network at regular intervals. Using existing 

provincial orthophoto databases that spanned 10 years, we performed object-based image 

classification and manual digitization to delineate the extent of invasive Phragmites in 

southern and central Ontario roadsides in 2006, 2010, 2013, 2015 and 2016.  By 

conducting a change-detection analysis between 2006 and 2010 for southwestern Ontario, 

we were able to determine roads associated with the highest rate of expansion in a highly 

developed (both agricultural and urban) region of Ontario and use data from this early 

stage of colonization to test hypotheses proposed in our conceptual model (Figure 3.1). 

Our results will clarify the relative importance of factors such as land-cover, land uses 

and traffic volume on the colonization pattern of invasive Phragmites in road networks. 
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Methods: 

Orthophotography datasets 

In this project, we used images from multiple provincial orthophotography 

databases which are organized and funded cooperatively by multiple government 

agencies (municipal, provincial and federal) to obtain seamless aerial photos of the 

province at regular intervals (approximately every 5 years). In the Southwestern Ontario 

Orthophototgraphy Project (SWOOP), the dataset covers an area from Windsor east to 

Brantford/Niagara (2006; 2010 & 2015) and north to Tobermory (Figure 3.2). In 

addition, we analyzed roads managed by the provincial authority (Ministry of 

Transportation of Ontario; MTO) within areas covered by the SWOOP 2015, SCOOP 

2013 (Southcentral Ontario) and COOP 2016 (Central Ontario) databases. 

Because these projects were developed primarily for government planning 

purposes, the image data were acquired during spring when leaf-off conditions allowed 

for unobscured view of buildings and roads (April-May, weather dependent). These 

images are freely available to participating stakeholders and to research agencies and 

universities. The data are true-colour images with red, green, and blue bands and had a 

spatial resolution of 20 cm per pixel. Such high-resolution imagery would allow for a 

minimum mapping unit of <1m and is therefore suitable for mapping invasive Phragmites 

stands within roadway and/or highway ditches.  

In this study, we analyzed over 20,000 km of roads within the province of 

Ontario, covering a period from 2006 to 2016 (Figures 3.2 & 3.3). Roads in these 

datasets included arterial roads, city streets, collector roads, highways, highway ramps, 
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recreational roads, and suburban streets (Figure 3.3).  Arterial roads are high capacity 

roads that are used to distribute traffic to highways or between municipalities. City streets 

and suburban streets are roads within these municipalities which are connected to arterial 

roads via collector roads (low to medium capacity). Highways are very high-capacity 

roads designed to move traffic between large urban centres; in Ontario the largest 

highways are designated as 400-series roads. Recreational roads can be used by vehicular 

or non-vehicular traffic and include gravel and cycling paths.  

Automated Image Classification 

To process the large amount of high-resolution data, we used eCognition, an 

object-based classification software (Trimble Navigation Limited, Colorado, USA). 

Object-based approaches avoid problems associated with high-resolution data and very 

small pixels, by first splitting the image into segments that are spectrally similar and/or 

have a consistent parameter (e.g. shape, length, volume) associated with them. We 

created a base classification using 5% randomly selected images within a particular image 

subset. We conducted multiple accuracy assessments for these images until our base 

classification met or exceeded our accuracy threshold of 70% for total accuracy and 

minimum 80% for invasive Phragmites. We then applied this base classification to 

remaining images in the subset. The literature has shown that classifications created in 

one image can be transferred to another with a small decrease in total accuracy 

(Rokitnicki-Wojcik et al. 2011). While other studies have completed accuracy 

assessments for every image used, this was not logistically feasible given the large 

number of images we had in our dataset. To improve total accuracy of the classification 
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when the dates of image acquisition were not similar, we started with our previous base 

classification and then modified it to incrementally improve the accuracy until an 

acceptable level could be attained. The base classification was created to primarily 

identify invasive Phragmites but also included other land-cover types (see Table 3.1). 

These classes were subsequently used in our change-detection analyses to determine the 

land-cover type that invasive Phragmites were more likely to colonize.  No field data 

were used in this classification as this project was not started until 2015 and no historic 

field data were available. Because of the very high resolution of the image data (i.e. 20 

cm/pixel), lack of field data would not have affected the accuracy of the base 

classifications. Image data were extracted from a unique buffer for each road type, with 

larger roads getting a larger buffer (Highways 120m; arterial roads 80m; city streets 60m) 

Manual digitization of invasive Phragmites 

Following creation of the 2010 SWOOP database, another post-processing method 

was used to build the 2015 SWOOP database, and this resulted in image data that were 

too compressed for automated image classification (Ontario Ministry of Natural 

Resources and Forestry, pers. comm.).  Two trained technicians digitized all of the 

invasive Phragmites within MTO-operated roadways only in the SWOOP 2015, SCOOP 

2013 and COOP 2016 datasets. All technicians had been trained to identify invasive 

Phragmites as part of the eCognition classification procedure. To minimize differences in 

digitization between the two technicians, every road segment was digitized by both 

individuals and the overlap between the two was output to the final product. A typical 

accuracy report could not be generated for this protocol because we did not have any 
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independently classified image with which to compare. As a measure of precision, we 

noted that there was greater than 80% overlap in the digitization by the two technicians. 

Most of the mismatch corresponded to small differences in boundary delineation. In 

general, manual digitization tended to produce fewer but larger polygons whereas 

eCognition was able to pick out many of the smaller stands. These differences combined 

with invasive Phragmites removal efforts by MTO had a large influence on changes 

between the 2010 and 2015 SWOOP datasets. Knowing these biases, we refrained from 

conducting a large-scale change detection between these two periods. Even with these 

differences, however, we were able to assess large-scale changes in the distribution of 

invasive Phragmites between time periods and the three sub-regions within the province. 

All statistical analyses were conducted in JMP (SAS Institute, North Carolina, 

USA; v.13). The data were extracted as database files from ArcPro (v. 2.1; ESRI, 

California, USA) and analyzed in JMP. Relevant spatial statistics (i.e. area, location) were 

applied in ArcPro before data export. To appropriately analyze the data and reduce error 

associated with automated classification, the data were split into 1-km segment for each 

road, and the data were aggregated at this level. In this way, each road had multiple (>30) 

data ‘points’ with areal cover of each land-cover class.  

Traffic Volume Data 

Traffic volume data were provided by MTO and only included data on highways 

managed by the agency. The 2016 Average Annual Daily Traffic (AADT) was defined as 

the average twenty-four hour, two-way traffic per year. This statistic was measured 
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empirically for a portion of time and then estimated for each highway segment occurring 

between two exit ramps and was applied to 1,831 segments across the province.  

 
Results: 

2006 and 2010 road datasets 

In southwestern Ontario, we conducted automated image classification with 2006 

and 2010 image data on 16,270 km of roads (Figure 3.4). These data included all road 

types with speeds above 60 km/h to make the data analyses tractable.  Excluded roads 

were likely to be in residential zones and we have verified (from Google Earth images) 

that most residential streets lacked available habitat for growth of invasive Phragmites. 

Even if habitat existed, we believe that homeowners would likely have cut down this 

weed bordering their properties.  We did not include roads within the municipality of 

London (Ontario) in our analyses because the City had implemented an invasive 

Phragmites removal program prior to 2010, and this municipality is one of the largest 

cities in the study area with many residential streets. In summary, the distribution of roads 

in the dataset we analyzed had a similar distribution to the whole road dataset within 

southwestern Ontario, excluding the large proportion of city streets with posted speed 

limits below our 60 km/h threshold (Figure 3.3a).  

Automated Image Classification of SWOOP 

Based on our automated classification, the amount of invasive Phragmites grew 

from 275 ha in 2006 to 634 ha in 2010, representing an increase of 235% over the four-

year period, with a growth of nearly 60% per year. The distribution of invasive 

Phragmites in road types also differed between the two time periods (Figure 3.5). During 
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2006, invasive Phragmites were distributed disproportionately on arterial roads compared 

with highways (54% vs 12% respectively). By 2010, however, this dropped to 45% and 

8.4%, respectively. Most of the difference in distribution of invasive Phragmites came 

from collector roads, which grew from 17% in 2006 to 30%% in 2010. While 

representing a small total area, highway ramps had the largest percent increase between 

years, growing from 0.05% to 0.25%. The areal cover of invasive Phragmites per 1-km 

segment also increased from 3.073 ± 0.005 (maximum size 243.08 m2) to 4.269 ± 0.006 

m2 (maximum size 306.78 m2). The mean areal cover per kilometre of road in both years 

was associated with highway ramps, and these more than doubled in size from 2.957 ± 

0.229 in 2006 to 7.732 ± 0.286 in 2010; by comparison, dimensions of invasive 

Phragmites stands on most other road types were constant throughout these time periods. 

A change detection indicated that almost 60% of the invasive Phragmites in 2010 

had been classified as grasses in 2006 (Figure 3.6a). This rate of conversion was four 

times higher than that of any other cover class. Only 0.5% of invasive Phragmites in 2010 

had been mapped as invasive Phragmites stands in 2006 (32 ha).  The most resilient 

classes were the forests (deciduous and coniferous), which were least likely to be 

invaded. We also assessed which habitat category eventually took over areas occupied by 

invasive Phragmites in 2006. The dominant change of land cover was to coniferous trees, 

which is likely indicative of their growth between 2006 and 2010. Grasses was the next 

most abundant class; this may be the result of maintenance projects (such as ditching, 

where the topsoil and plants had been removed to restore proper drainage) for which we 

do not have comprehensive records. A change to built-up environments may also have 
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been due to construction projects or road maintenance projects between 2006 and 2010, 

during which new asphalt or concrete had replaced Phragmites stands. 

The areal cover of invasive Phragmites had been widely distributed in the study 

area in both 2006 and 2010.  We analyzed only road segments containing invasive 

Phragmites, and found that in 2006, invasive Phragmites occupied 3.07 m2/km of roads 

in southwestern Ontario; by 2010, this invader occupied a higher areal cover of 4.27 

m2/km of road and was distributed more widely within the road network. Assuming that 

invasive Phragmites had grown exponentially between 2006 and 2010, the exponential 

growth equation N = N0ert would predict a growth rate of 0.178.  If we apply this growth 

rate to the 634 ha in 2010, the total areal cover of invasive Phragmites by 2015 would 

have expanded to 1,544 ha within the study area associated with our automated image 

classification (i.e. as defined in Figure 3.4).  

We analyzed the amount of available space in corridors of different road types 

that had been colonized by invasive Phragmites in southwestern Ontario using the 2010 

SWOOP images (Figure 7).  Although there was 1.6 times more habitat associated with 

arterial roads than with collectors, the proportion of this space that had been colonized by 

invasive Phragmites was only 61% for arterial roads compared with 67% for collectors.  

Approximately 15% of the available habitat in ramps had been colonized compared with 

less than 12% of available habitat in expressways. 

Manual Digitization 

Due to the heavy investment of time and labour required for manual digitizations, 

we had to restrict our analyses to only roads managed by MTO within the most recent 
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orthophotography datasets (i.e. SWOOP 2015 (after treatment); SCOOP 2013 and COOP 

2016). We analyzed 2,624 km of roads in the 2015 SWOOP dataset, and mapped 331.47 

ha of invasive Phragmites (Figure 3.8a). Within the SCOOP 2013 dataset, we mapped 

151.95 ha of invasive Phragmites on 2,586 km of roads (Figure 3.8b).  By comparison, 

the total areal cover of invasive Phragmites in the COOP 2016 dataset was very low, with 

only 7.78 ha over 4,738 km of roads (Figure 3.8c). Similar to what we observed for the 

2010 SWOOP dataset, most of the areal cover of invasive Phragmites in 2015 occurred 

within corridors of the 400-series highways (Figure 3.9). When we analyzed the 2013 

SCOOP dataset, we found the greatest areal cover on Highway 400, although it was 

comparatively lower than the amount of invasive Phragmites found on Hwy 612 and 632. 

Currently, there are no major roads such as the 400-series highways within the 2016 

COOP dataset. In this central Ontario region, Hwy 539A had the highest density of 

invasive Phragmites, but only 2km of this road had been available for this study.    

Traffic Volume Data 

 An advantage of using MTO roads was the additional opportunity to compare the 

influence of traffic volumes on the distribution of invasive Phragmites on road rights-of-

way. We grouped roads in this portion of our study according to road name/route (i.e. 

400-series or Trans-Canada vs others) and excluded highways where less than 25 km 

were analyzed within our dataset. In the 2015 southwestern dataset, the abundance of 

invasive Phragmites was much higher on roads that had more habitat available (i.e. larger 

roadside rights-of-way in the Hwy 400 series highways) (Figure 9a).  Accordingly, 

approximately 50% of all invasive Phragmites mapped in this footprint of our study 
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occurred on the 400-series freeways. In the same areas in 2010, this number had been 

slightly lower at 45%. Traffic volume varied along and among roads, though without 

exception, traffic volume on major highways (i.e. 400-series) were significantly higher 

than that on any other road type (t-test, p>0.001; Figure 10).  Regardless of the region, 

when we regressed invasive Phragmites areal cover against traffic volume, we found a 

significant effect (P<0.0001), albeit the amount of explained variation was low (R2 = 

0.001, 0.022, and 0.057 for SWOOP 2010, SCOOP 2013, & COOP 2016 respectively). 

This effect was stronger on non-major highway types but still explained less than 10% of 

the overall variation in areal cover of invasive Phragmites.  

 
Discussion: 

Previous studies have noted that land cover and geography may influence the 

presence of invasive Phragmites on roadsides (Lelong et al. 2007, Maheu-Giroux et al. 

2005, Brisson et al. 2010). These studies were conducted in Quebec where invasive 

Phragmites had been established for a long time, whereas in roadway corridors of 

southwestern Ontario, the invasion occurred relatively recently, having been established 

initially in the late 1940s (Wilcox et al. 2003; Catling & Mitrow 2011).  Although 

invasive Phragmites has been spreading via a major highway from Quebec to Ontario 

since the 1970s (Lelong et al. 2007; Maheu-Giroux & de Blois 2005), our 2006 mapping 

results included many small invasive Phragmites patches on spatially restricted roadsides, 

suggesting that the invasion was at an early stage of invasion.  We did not see evidence of 

rapid growth and expanded distribution of invasive Phragmites in roadway corridors until 

2010.  Given that the expanded growth of invasive Phragmites had already been 
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documented in wetlands as early as 1988 (Wilcox et al. 2012), there may have been a lag 

from 2000 to 2006, before growth exploded on road sides during the subsequent decade 

(Crooks 2005).  

The extremely large size of our database (tens of thousands of image tiles) 

severely limited our ability to conduct automated image classification and accuracy 

assessments on most of our images. We were also limited by lack of field data to conduct 

accuracy assessments, and the timing of the image acquisition (during spring) also led to 

problems associated with accurate classification of vegetation other than invasive 

Phragmites. This is because invasive Phragmites overwinter with their stems and ramets 

in upright position and their clonal growth gives stands a characteristic round shape that 

are easy to identify when they are surrounded by senescent vegetation or bare ground.  

While transferal of a classification scheme from image to image in eCognition has 

been carried out successfully by Rokitnicki-Wojcik et al. (2011), this protocol could 

contribute an additional source of error when tiles used for calibration do not contain all 

of the land-cover classes.  These errors may have been greater in the 2006 mapping 

because there had been fewer stands of invasive Phragmites that were of smaller size and 

that had not been uniformly distributed among the image tiles. Under these 

circumstances, transfer of a classification scheme developed with tiles that did not contain 

invasive Phragmites could lead to errors when applied to tiles containing invasive 

Phragmites, and vice versa. Although we cannot estimate the extent of this error, we feel 

that our use of randomly chosen tiles for calibration should minimize this error.   
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In some portions of the dataset, the buffer we applied around the centreline 

included adjacent forests.  Since it is difficult to spectrally distinguish between invasive 

Phragmites and shadows cast by trees in forested areas, forests that fell within the buffer 

could artificially inflate the areal cover of invasive Phragmites on these road sides. This 

may explain the artifact we observed when some of the forested land in the 2006 image 

was transformed to invasive Phragmites in the 2010 image, since it is unlikely that a grass 

could displace mature trees.  The large change from deciduous trees is likely due to 

poorer accuracy of identifying that particular land-cover class due to leaf-off conditions 

and abundant shadows. The 400-series highways have very large roadside rights-of-way 

but limited forest cover; therefore, this issue likely applies to collector and arterial roads 

where forested landscapes are more common. In general, southwestern Ontario is an 

agriculturally dominated landscape and we believe our results are still indicative of 

general trends in the landscape.  

While invasive Phragmites can damage road infrastructure and directly replace it, 

changes in land cover from built-up land to invasive Phragmites are likely due to 

construction projects. Over the four years from 2006 and 2010, many constructions 

projects were carried out along roadsides in southern Ontario.  We were unable to find all 

possible locations where road work could have altered the landscape to make more 

habitat available for invasive Phragmites. These plants can grow very tall (> 4.5 m) and 

their canopy may appear over top of roads from an aerial perspective if they sag towards 

built up surfaces (such as sidewalks, roads, and parking lots) from their habitat in 

roadway rights-of-way.  
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Our conceptual model predicted that we should observe high replacement rate of 

grass-covered areas by invasive Phragmites, and this was borne out by our data.  In such 

roadside habitats, governments tend to seed with fast-growing short grasses and sedges. It 

is very likely that the higher salinity and physical disturbance in these highway ditches 

offer a competitive advantage to invasive Phragmites.  Future research should identify the 

mix of native seeds that are likely to compete effectively against invasive Phragmites.  

Re-seeding with an appropriate mix of road-side plants may be an important follow-up 

action following herbicide application (Kettenring & Adams 2011)  

During 2006, the highest areal cover of invasive Phragmites occurred on arterial 

roads and the size of stands were generally small; by 2010, dominance by invasive 

Phragmites occurred in collector roads, and the size of stands had grown considerably in 

size. This trajectory may be the result of higher volume of vehicular traffic on arterial 

roads initially which distributed seeds and plant fragments over long distances and 

eventually reaching adjacent roads that are used less frequently. Over time, the collectors 

would become invaded as seed dispersal continue to expand (Brisson et al. 2008; Albert 

et al. 2015).  Our results suggest that there is at least three or four years between road 

invasion when stands are small and distributed more locally until they become large and 

are distributed widely.  Since smaller stands of invasive Phragmites are more effectively 

treated than are larger stands (Marcaccio and Chow-Fraser 2019; CH 4), we recommend 

that arterial roads be preferentially targeted for eradication to prevent further spread of 

propagules and seeds within road networks.  
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Southwestern Ontario is the most densely populated subregion in Ontario and may 

have facilitated the rapid expansion of invasive Phragmites due to increased 

anthropogenic disturbance between 2006 and 2010. As defined in our conceptual model 

(Figure 1), high nutrient loading for agriculture and urban areas combined with a high 

density of roads would benefit invasive Phragmites. The areal cover we mapped for this 

region across only MTO-operated roads in 2015 was 331.5 ha.  This amount of invasive 

Phragmites is only half of what would have been expected (632.4 ha) if it had been 

allowed to grow exponentially (growth rate of 0.568 calculated for highways in this study 

area). The lower growth reflects the results of a large-scale removal program 

implemented by MTO in southwestern Ontario beginning in 2012.  It is sobering to think 

that if no treatment program had taken place at all, the amount of invasive Phragmites in 

MTO-operated roadways might expand to 4,445.0 ha by 2020. 

The SCOOP dataset had two major highways that accounted for approximately 

20% of all invasive Phragmites within the dataset, even though they occurred in a region 

with relatively low population densities.  Nevertheless, these highways are corridors to 

northern communities and have moderately high traffic volumes.  Unlike the 400-series 

highway segments in southwestern Ontario, those in southcentral Ontario did not support 

invasive Phragmites to the extent expected based solely on traffic volume.  To facilitate 

valid comparisons, we calculated the 2015 theoretical areal cover of invasive Phragmites 

using the instantaneous growth rate of 0.568 and the 2010 SWOOP and 2013 SCOOP 

data for southwestern and southcentral regions, respectively.  The predicted areal cover of 

632.4 ha for southwestern Ontario was 33% higher than that of 473.2 ha calculated for 
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southcentral Ontario.  This discrepancy between regions may be due to differences in 

bedrock geology between southwestern and southcentral Ontario. Southwestern Ontario is 

underlain by glacial till (luvisolic), which supports rich farm lands, whereas southcentral 

Ontario is forested and is underlain by nutrient-poor granitic rock that would not have 

given a competitive advantage to invasive Phragmites, given its requirement for a high-

nutrient environment (Mozdzer et al. 2013, Holdredge et al. 2010). This comparison 

illustrates the complex factors that must be considered when modelling the rate of 

expansion and colonization pattern of invasive Phragmites across different landscapes 

and the relative importance of various landscape and site-specific factors (Figure 3.1).    

There were no major highways (i.e. 400-series) associated with the COOP dataset, 

but it is noteworthy that most of the invasive Phragmites were found on two roads, Hwy 

11 and 17, though admittedly, their total areal cover were relatively low compared with 

those in the southwest and southcentral regions (Figure 3.9c). Hwy 11 connects southern 

Ontario with Minnesota and was recently twinned in the study area while Hwy 17 passes 

east-west through nearly all of Ontario. Both are part of the Trans-Canada highway 

system, so while they are not as wide as the 400-series highways, they play a major role 

in cross-country movements.  Given the high traffic volume and their juxtaposition 

between two infected regions, successful invasion would have happened even with a few 

invasive Phragmites propagules per vehicle. For these reasons, it is incredibly important 

to control invasion levels even if roads are located in remote regions.  

Even with an active eradication program, southwestern Ontario had the largest 

areal cover of invasive Phragmites by a large margin compared with the other two 
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regions.  Based on our conceptual model (Figure 3.1), we suggest that the invasion rate 

had been decreased in eastern and central Ontario compared with southwestern Ontario 

because of lower agricultural development. The southwest is also home to many of 

Ontario’s largest coastal wetlands (e.g. Walpole Island Wetland Complex, Rondeau Bay 

Wetland Complex and Long Point Bay Wetland Complex) that are known to support a 

large population of invasive Phragmites (see CH 2; Borgeau-Chavez et al. 2015) and 

would therefore provide a constant source of propagules. Partial support for this 

hypothesis is the observation that between 2006 and 2010, the distribution of invasive 

Phragmites on roadsides changed dramatically: the cover in arterial roads decreased 

while those in collector roads, highway ramps and suburban roads showed a 

corresponding increase.  Many of the arterial roads that were initially colonized were 

located close to wetland sites, and it would have taken more time before propagules could 

have spread to collectors, ramps, and other suburban roads.  

Previous studies have proposed traffic volume as being important for propagule 

distribution over road networks (Gelbard & Belnap 2003; Catling & Mitrow 2011). 

Although we found a statistically significant effect of traffic volume on the areal cover of 

invasive Phragmites, it alone did not have much resolving power. In our conceptual 

model (Figure 1), traffic volume was predicted to be only one of three variables that may 

influence the colonization pattern of invasive Phragmites. We speculate that even if 

traffic volume were high, invasive Phragmites would not establish dense stands unless 

habitat was available and suitable.  Our findings support this speculation since the density 
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of invasive Phragmites in Hwy 400 in southcentral Ontario was low, even though there 

was high traffic volume.  

As we did not analyze roads other than highways in the SCOOP and COOP 

datasets, we cannot conduct the same analysis to determine the distribution of invasive 

Phragmites in different road types.  Since both southcentral and central Ontario regions 

have many more kilometres of arterial roads than does southwestern Ontario, the 

possibility of invasive Phragmites invasion is high, and we believe that both southcentral 

and central Ontario will become infested with invasive Phragmites unless immediate 

coordinated management actions are taken to restrict their spread. 

Invasive Phragmites is present on nearly all roads in southern Ontario, and it 

continues to expand throughout these road networks. Divided highways with medians 

offer more habitat than other road types, which typically leads to greater areal cover of 

invasive Phragmites but not necessarily to the highest mean areal cover per km of road 

(see Figure 3.9 d-f). The greatest amount of invasive Phragmites currently occurs in the 

southern portion of the province, where there are both major highways and large wetland 

complexes. We are aware that small populations of the less aggressive native haplotype 

exist within southern Ontario, and do not exhibit invasive behaviours and therefore do not 

need to be treated or removed. The current remote-sensing techniques, however, cannot 

differentiate between native and invasive haplotypes.  

We speculate that invasive Phragmites is still at an early stage of invasion and 

will likely continue to expand into any and all available habitat unless they are treated 

with suitable herbicides (see Chow-Fraser & Marcaccio 2018; CH 4). This is necessary to 
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prevent the roughly ten-fold expansion that occurred between 2006 and 2010 in 

southwestern Ontario. While the growth rates between southwestern Ontario and the rest 

of the province are likely not the same due to other landscape factors, using our 

determined growth rate and manually digitized roads we could see 806 ha, 528 ha, and 8 

ha of invasive Phragmites in southwestern, southcentral, and central Ontario, 

respectively, as of 2016, when the last image data (Central Ontario) had been acquired. 

Our data serve as an important historical assessment of roadways in Ontario that could 

not have been achieved with other data sources. In the future, newer technologies and 

sensors should be explored for image classification along roadway corridors (see 

Rupasinghe & Chow-Fraser 2018). As defined in our conceptual model (Figure 3.1), any 

areas that have suitable habitat (high moisture, no existing woody plants) are likely to be 

colonized in short order, and existing stands will continue to expand until they meet a 

physical barrier. Results of this study, the first comprehensive time-lapse mapping of 

Phragmites in highway corridors of Ontario, illustrates how quickly and far-reaching this 

invader can expand over four short years if it is allowed to grow unchecked, and should 

be a stark warning to other jurisdictions not to be complacent. 
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Table 3.1: Classes included in the image classification process.  

Classes Explanation 

Phragmites Class of interest 

Grasses Small ground-covering plants that occupy majority of land cover 

Shrubs Small plants that are woody/more robust than grass 

Deciduous Trees Bare leafless tree, generally indicating it is deciduous 

Coniferous Trees Conifers; still green in early spring orthophoto 

Paved Any built-up surface, such as road, building, sidewalk, etc. 

Water Streams near roads 

Shadow Land cover obscured by shadow, resulting in dark/black area 
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Figure 3.1:  Conceptual model to show the relationship among three main factors and 
associated variables that influence the distribution of invasive Phragmites 
within corridors of road networks.   
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Figure 3.2:   Area covered by various Ontario orthophotography project databases. The 
area covered by SWOOP for 2015 and 2010 is the same but that for 2006 did 
not include portions around Hamilton and Niagara.  SCOOP was completed in 
2013 while COOP was completed in 2016. 
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a) 

 

b) 

 

Figure 3.3: Total length by road type for a) southwestern Ontario, south central Ontario 
and central Ontario, calculated from SWOOP, SCOOP and COOP image 
data, respectively and b) total length by road type for subset of SWOOP data 
used in change detection (see Figure 3). 
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Figure 3.4:  Roads in southwestern Ontario that were included in the 2006 and 2010 
automated classification analyses (black).  See text for explanation of excluded 
road segments (light grey).   
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Figure 3.5:  Total areal cover of invasive Phragmites (ha) calculated for each road type 
in 2006 and 2010 within southwestern Ontario.  Calculations are based on 
automated classification of SWOOP images. 
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a) 

 

b) 

 

Figure 3.6:  a) Percentage of 2006 land-use land-cover classes by areal extent that was 
colonized by invasive Phragmites in 2010 in southwestern Ontario and b) 
percentage of 2010 land-use land-cover classes by areal extent that had been 
occupied by invasive Phragmites in 2006 in southwestern Ontario.  
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Figure 3.7:  Comparison of total area occupied by invasive Phragmites and available 

space in corridors of different road types within southwestern Ontario.  
Automated classification was used to map Invasive Phragmites in the 2010 
SWOOP images.  
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Figure 3.8:  Distribution of invasive Phragmites in corridors of provincial highways in 

a) south western Ontario in 2015  b) south central Ontario in 2013 and c) 
central Ontario  in 2016.  Phragmites were mapped digitally.  Outlines of 
polygons have been thickened to allow them to be visible at this scale.   
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Figure 3.9:  a-c) Total areal cover (ha) of invasive Phragmites calculated for each Hwy 

# in three named regions   d-f). Mean areal cover of invasive Phragmites per 
km of highway in three named regions.  Roads included in this graph had a 
minimum of 25 km of highways analyzed. 
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Figure 3.10:   2012 mean±SE daily traffic (number of vehicles enumerated) calculated 
for provincial highways in Ontario for three named regions.  The reference 
line in each panel corresponds to 15,000 vehicles/day 
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Chapter 4: Use of fixed-wing and multi-rotor unmanned aerial vehicles to map 

dynamic changes in a freshwater marsh 
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Abstract: 

 We used a multi-rotor (Phantom 2 Vision+, DJI) and a fixed-wing (eBee, 

senseFly) unmanned aerial vehicle (UAV) to acquire high spatial-resolution composite 

photos of an impounded freshwater marsh during late summer in 2014 and 2015.  

Dominant type and percent cover of three vegetation classes (submerged aquatic, floating 

or emergent vegetation) were identified and compared against field data collected in 176 

(2m x 2m) quadrats during summer 2014.  We also compared these data against the most 

recently available digital aerial true colour, high-resolution photographs provided by the 

government of Ontario (Southwestern Ontario Orthophotography Project (SWOOP), May 

2010), which are free to researchers but taken every five years in leaf-off spring 

conditions. The eBee system produced the most effective data for determining percent 

cover of floating and emergent vegetation (58% and 64% overall accuracy, respectively). 

Both the eBee and the Phantom were comparable in their ability to determine dominant 

habitat types (moderate Kappa agreement) and were superior to SWOOP in this respect 

(poor Kappa agreement). UAVs can provide a time-sensitive, flexible and affordable 

option to capture dynamic seasonal changes in wetlands that ecologists often require to 

study how species at risk use their habitat. 
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Introduction: 

In ecological research, especially in the field of conservation, aerial images are a 

prerequisite to creating effective management plans for ecosystems and species-at-risk. 

Without accurate knowledge of what habitat is present and how it is changing, it is 

difficult to form a management or recovery strategy for endangered species and places. 

The conventional method of image acquisition, using sensors mounted on planes or 

satellites, can collect image data for large areas at a time, but can cost tens or hundreds of 

thousands of dollars depending on the region of interest (Anderson & Gaston, 2013). 

Although these methods can acquire image data for large areas, it can be difficult to use 

these to obtain data for a specific time period of interest (e.g. year, season or day).  For 

instance, satellites can only obtain photos on days when the image sensor is in line with 

the study area, and then these photos take time to come to market. Air photos require 

detailed planning and can be limited by weather and flight regulations. Desired image 

data may never be obtained for a study site, and consequently researchers and 

management agencies often have to settle for whatever image data are available. For 

example, timing of aerial image data collection can limit ability of investigators to study 

movement patterns and habitat use of migratory animals (Markle and Chow-Fraser, 

2014), carry out change-detection analyses (Singh, 1989), or monitor the spread of 

invasive species (Wan et al., 2014).  

Recent advancements in technology have opened up a new source for aerial image 

data: unmanned aerial vehicles (UAVs), commonly referred to as drones. These systems 

fly without an onboard operator and are controlled remotely from the ground. The 
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proliferation of the ‘flying camera’ market for recreational users has permitted lower 

prices with consistent improvement in quality of all small-scale UAVs. One of the most 

important additions to UAVs has been global positioning systems (GPS), with live-feeds 

of video (first person view; FPV) and base stations that can determine the UAV’s 

location. Equipped with these, a UAV can know its own location in three-dimensional 

space and apply this to its image data to allow operators to view the landscape from the 

UAVs point of view during flight.  

Many potential uses of this new technology in the field of ecology are being 

explored, although not all have yet been attempted or brought to their full realization, 

especially for time-sensitive research (Rose et al., 2014). Martin et al. (2012) have 

brought this to light, using an artificial study identifying randomly placed and randomly 

covered tennis balls in the hopes that it can provide a crucial positive application to 

conservation. Researchers have attempted to quantify the accuracy (e.g. Chabot & Bird, 

2013; Gómez-Candón et al., 2013) and savings (e.g. Brekenridge et al., 2012) of a UAV-

based mapping approach. Breckenridge et al. (2012) found that using a helicopter-style 

UAV for determining vegetation cover was 45% faster compared to in-field 

identification. In addition to faster surveys, they found no difference in vegetation cover 

interpretation between these techniques (Breckenridge et al., 2012), which could be due 

to the higher degree of texture seen in UAV image data as compared to traditional image 

data sources like satellites (Laliberte & Rango, 2009). An approach with fixed-wing, 

plane-style UAVs has also been used, which yielded highly accurate images (Koh & 

Wich, 2012; Chabot & Bird, 2013). Gómez-Candón et al. (2013) used a quad-copter to 



 109 

produce image data suitable for monitoring agricultural crops, and Wan et al. (2014) 

monitored growth of invasive species in salt marshes of China. Moreover, they 

determined that flight paths 30 metres above ground only required a few ground-control 

points to maintain spatial accuracy of these images.  

The purpose of our study is to compare the ability of recently available multi-rotor 

and fixed-wing UAVs to produce image data that permits accurate mapping of wetland 

vegetation when compared to field-collected vegetation data. We will also compare UAV 

image data with the most recently available digital aerial photographs provided by a 

consortium of governments in Ontario (Southwestern Ontario Orthophotography Project 

(SWOOP), May 2010).  These orthophotos are true colour and have been acquired during 

spring (vegetation in leaf-off conditions) at 4-year intervals since 2002. They are 

commonly used in Ontario research projects because they are provided at no cost to 

researchers and cover almost all of southwestern Ontario. While many studies have 

assessed the merits of these technologies with respect to object-based image classification 

(Laliberte et al., 2011; Laliberte et al., 2012; Knoth et al., 2013), we present a comparison 

directly between image data and field data.  

Study Site 

 Our study took place in a 90-ha impounded wetland located within a larger 

wetland complex along the northern shore of Lake Erie, Ontario (Figure 4.1).  The owner 

of the dyked wetland regulates water levels within the impounded area to discourage 

establishment of invasive emergent species like the non-native Phragmites australis spp. 

australis and consequently only a few of these are found within the impoundment. This is 
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in striking contrast to the edge of the impoundment, which is covered with this invasive 

subtype.  Overall, the most common emergent vegetation (EM) in this area is cattail 

(Typha spp.) and swamp loosestrife (Decodon verticillatus), along with a variety of 

floating aquatic vegetation (FL) (e.g. Nymphaea odorata, Nymphoides peltata) and 

submerged aquatic vegetation (SAV) (e.g. Ultricularia spp., Potamogeton spp.). This 

diverse and dynamic vegetation community provides habitat for many at-risk turtles, 

snakes, and birds (Environment Canada, 2015).  

Materials and Methods: 

Piloted aircraft image acquisition 

Image data from piloted aircraft used in this study were obtained from the 

Southwestern Ontario Orthophotography Project, herein referred to as SWOOP (SWOOP, 

2010). Various levels of governments provide funds to acquire images (leaf-off 

conditions) every 4 years for a large portion of southwestern Ontario. We use these image 

data from piloted aircraft because they are commonly used in Ontario for research and 

planning purposes, and are similar to aerial image data from piloted aircraft utilized in 

many countries. We use the most recent image data available, which were captured in 

spring (April/May) 2010 using a Leica geosystems ADS80 SH82 sensor. These image 

data have 20 cm resolution with 50 cm horizontal accuracy (see Table 4.1).   

Multi-rotor image acquisition 

The multi-rotor UAV used in this study was a DJI Phantom 2 Vision+ (DJI, 

Nanshan district, Shenzen, China), herein referred to as Phantom, is a low-cost unit that is 

extremely popular amongst recreational UAV pilots. This was operated with a Samsung 
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Galaxy S3 (running Android 4.3 “Jelly Bean”) and the DJI Vision application. The total 

weight of the system is 1242 g with a DJI 5200mAh LiPo battery. We kept the remote 

control at factory settings and flew the UAV with both S1 and S2 levers in the upright 

position. The S1 lever in this position indicates it is in GPS hold configuration. That is, if 

the UAV is not given a command it will hold its position regardless of external factors 

such as wind effects. The S2 lever in the upright position turns off intelligent orientation 

control. This means that the directional input is always relative to the UAV. For example, 

pushing the lever forwards will make the drone move forward from its current position, 

whereas with intelligent orientation control on, pushing the lever forward will move the 

drone forward with respect to the controller’s position.  

  The UAV was operated with the lens in the 90-degree position (NADIR) for the 

duration of the imaging process, and all images were acquired with a DJI FC200 sensor 

(110-degree field of view, 1/2.3” sensor, 14 megapixel, true colour) from a height of 120 

m. This flight height was chosen to balance spatial resolution with the amount of flight 

time required to collect image data for the study area, with a goal of achieving spatial 

resolution < 10 cm and capturing all image data in a single day.  We opted to fly the UAV 

manually rather than use the built-in autopilot system because otherwise we would be 

limited to a flight distance of 5 km, travelling no further than 500 m from the operator. 

When autopilot is engaged, the flight speed is 10 m/s which would only allow for an 8-

minute flight plan and resulting in only 2 flights per battery. Since this severely limits the 

area of image data we can collect, we opted for manual operation, which allows us to fly 

a longer period and thereby capture the majority of the study site.  We set the camera on 
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the Phantom 2 Vision+ to take photos every 3 seconds (time lapse mode), and set the 

camera to auto white balance and auto exposure with no exposure compensation. Flight 

speeds were maintained between 10 and 15 km/h to allow for 60% overlap in post-

processing (i.e. image stitching).  

 We processed the images in Adobe Photoshop Lightroom 5.0 (Adobe Systems 

Incorporated, San Jose, California, USA) using the lens-correction algorithm provided by 

DJI for the Vision camera.  We cropped images to squares in order to remove the 

distortion inherent in the 140-degree fisheye Vision+ lens. No other modifications were 

made to the photos.  We then used Microsoft ICE (Image Composite Editor; Microsoft 

Corporation, Redmond, Washington, USA) to stitch together the suite of photos and used 

the planar motion 1 option to avoid skewing and distortion. This treatment assumes that 

all of the photos were taken at the same angle, but may have differences in orientation or 

height above the ground. The mosaic was visually assessed for accuracy stitching before 

it was used in a GIS.  

 We manually geo-referenced the stitched image in ArcMap 10.2 (ESRI, Redlands, 

California, USA) and imported the available SWOOP image data into ArcMap as a base 

layer.  At first, we attempted to use the GPS coordinates directly from the image metadata 

for geo-referencing, but the accuracy was too low for this purpose.  We had to use this 

method of processing because the GPS information in the geotagged image is not 

sufficiently accurate to be used in a software such as Pix4D or photoscan. While the GPS 

itself has an accuracy of 2.5 m (DJI, 2015), this is not stored in the image data. Even 

though the coordinates are recorded in degrees, minutes, seconds, no decimal places are 
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recorded in the geotagged image, and this results in a grid-like orientation with 20 m 

accuracy. For example, if you have two images with different coordinates (43°15’40.19”, 

79°55’4.11” and 43°15’40.45”, 79°55’4.49”), only the rounded coordinates are stored 

with the image (both geotagged images are now located at 43°15’40.00”, 79°55’4.00”); 

hence, both images would be placed in the same location even though it is not necessarily 

the correct location for either image. This is an inherent data reporting issue with 

Phantom 2 Vision+ models and below, but has been rectified in the Phantom 3 

Pro/Advanced models.  

In total, we recorded and stitched over 800 images in the Microsoft ICE software.  

All computations were performed on a Lenovo desktop computer (equipped with 

Windows 7 64-bit, Intel Core i7-4770 CPU, 12.0 GB RAM, Intel HD Graphics 4600, and 

a 1TB hard drive), and the entire process took approximately 6-8 hours to create a TIFF 

file (4.02 GB).  

Fixed-wing image acquisition 

 The fixed-wing UAV used in this study was a senseFly eBee (Parrot, Cheseaux-

Lausanne, Switzerland), herein referred to as eBee, with a 96 cm wingspan, 0.25 m2 wing 

area, and electric brushless motor. Including the sensor (Canon ELPH 110 HS, true 

colour) the total weight was 800 g (Styrofoam body). The eBee is powered by a 3-cell 

Lithium-Polymer battery with each flight lasting approximately 50 minutes and is hand 

launched and cruises at about 27 – 31 knots, with a landing speed of 2 – 17 knots for 

either straight in or circular landing options. The flight plans are pre-programmed in 

eMotion 2.9 (Parrot, Cheseaux-Lausanne, Switzerland) and the image collection is 
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controlled by autopilot. Onboard, the eBee is equipped with a GPS, barometric pressure 

sensor and wind speed sensor. The flight paths were pre-programmed to ensure that 

complete coverage of the study area is obtained. We conducted all post-processing in 

PostFlight Terra 3D (Parrot, Cheseaux-Lausanne, Switzerland) which downloads the 

image data and flight plan from the eBee to create a georeferenced orthomosaic. The 

eBee is aimed at commercial/industrial users and is the first ‘compliant UAV’ in Canada, 

meaning government authorities have approved its airworthiness. This also makes flight 

applications (called Special Flight Operating Certificates) easier and allows for a longer 

or broader scope of flight areas.  

Image data from the eBee were collected on 4 September 2015 during clear-sky 

conditions and a wind speed of 5 km/hr. A total of 3 flights were completed between 

1000 hrs to 1300 hrs, totalling 30 passes, and taking off and landing occurred in the same 

spot each flight (Figure 4.3). The fixed-wing UAV collected 1319 images and were all 

pre-processed in PostFlight Terra 3D 3.2 (Figure 4.2b). All computation was performed 

on a custom-built desktop (Intel Core i7-4790K CPU, 32GB RAM, EVGA GeForce GT 

730 (2GB GDDR5), Samsung 850 Pro 256GB SSD), and the entire process took 

approximately 24 hours to create a TIFF file (6.38 GB). 

Field validation data 

As part of a separate study on habitat use by several species at risk, we had 

conducted vegetation surveys of the impounded wetland between 14 July and 14 August 

2014.  Using a quadrat (2m x 2m), we estimated the percent cover of each of the three 

aquatic vegetation groups (i.e. emergent, submergent, and floating). Separately, each 
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vegetation group was assigned to one of the 6 categories: 0-10%, 11-20%, 21-40%, 41-

60%, 61-80%, 81-100%. If any vegetation was present within the quadrat, we determined 

the dominant vegetation as that with the highest cover. In total, we collected vegetation 

information in this way for 176 quadrats. To permit comparisons, we converted the data 

to three relative percent cover categories: none, < 50% cover, or > 50% cover. When 

percent cover was recorded as 41-60%, the result was counted as >50% if only that class 

existed, or another species of the same class (e.g. Typha and grasses are both emergent) 

was present in another category other than 0-10% so that total cover would be over 50%. 

To determine dominant vegetation and percent cover from the collected image 

data, points from the field were plotted in ArcMap 10.2 (ESRI, Redlands, California, 

USA). A quadrat (2m x 2m) was placed around the points to represent area surveyed in 

the field. These individual points were manually identified by remote sensing of each type 

of image data (i.e. SWOOP, Phantom, eBee). To calculate dominant vegetation type, the 

entire quadrat was considered and whichever vegetation (grasses, cattail, submergent, 

floating) occupied the greatest area was given this class. To calculate percent cover, the 

relative area which each vegetation type (emergent, submergent, floating) occupied was 

determined and then directly translated into one of the three classes (i.e. 0, >50%, 

<50%).  

Accuracy analyses 

We created 3 x 3 matrices to compare image data (SWOOP, Phantom, eBee) to 

the field classification separately for percent cover of emergent, submergent, and floating 

and dominant vegetation type. For each 3 x 3 matrix, we calculated producer and user 
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accuracy in addition to overall identification accuracy. Producer’s accuracy provides an 

estimate of precision, and is the proportion of plots correctly identified compared to all 

plots that contains the particular class, whereas user’s accuracy, or reliability, is the 

probability that a plot identified as one class actually belongs to that class.  These 

accuracy measurements were calculated for each class (percent cover: none, up to 50%, 

over 50%; dominant vegetation: grass, cattail, submerged, floating/open water). Finally, 

we provide the kappa estimate to provide a unitless measure of agreement between the 

image data and field data (Viera & Garrett 2005). It is reported on a scale of no 

agreement, poor, fair, moderate, good, to very good agreement. 

Results: 

Image data 

Using the multi-rotor DJI Phantom Vision 2+, we began flights at 0900 hrs on 8 

August 2014 and ended at 1200 hrs.  The UAV was operated from a small grassy patch 

located on the east side of the impoundment. We completed four flights, 19 passes in 

total, in favourable weather conditions with wind speeds below 15 km/h and limited cloud 

cover, with each flight lasting approximately 22 minutes in length. Although manual 

operation was required in order to achieve desired spatial resolution (< 10 cm) and 

temporal resolution (all image data collected on a single day), image data for a section of 

the wetland were missing (Figure 4.2a). We were unable to obtain comprehensive 

coverage of the entire dyked impoundment because after changing the batteries and re-

launching the UAV, it was difficult to ascertain where the previous flight path had 

stopped, and this led to missing data in the final mosaic. The UAV itself does not record 
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its flight path and therefore we were unable to download this to view previously flown 

areas. This is a trade-off between manual operation and automatic operation for this 

multi-rotor platform. While manual operation permits longer flying times and further 

flying distances to maximize area of capture, it can result in sections of missing data as 

was the case in our study.  

The total root mean square error (of the georectification process) for the 

completed image from the multi-rotor UAV was below 5.0 m, and visual observations 

confirmed a good fit of the UAV-acquired image to the SWOOP dataset. The image had a 

resolution of 8.0 cm/pixel as defined in ArcGIS (Table 4.1). The final image data from 

the fixed-wing UAV had a spatial resolution of 4 cm/pixel as defined in ArcGIS (Table 

4.1). In addition, a digital elevation model was created by PostFlight Terra 3D in areas 

where sufficient image overlap existed, although this data was not used in this study. 

Accuracy Analyses 

Both the Phantom and eBee were comparable when used to identify dominant 

vegetation, with an accuracy of 62 – 65% (Table 4.2). Both image data sources were in 

moderate agreement with field data, with the lowest identification accuracies for floating 

vegetation. The Phantom and eBee were both able to identify grass and cattail as the 

dominant habitat class with accuracies ranging from 60 – 80 % (Table 2). In comparison, 

the SWOOP image data were in poor agreement with the field data due to the difference 

in timing between the field survey and image data capture and had an overall 

identification accuracy of 35% (Figure 4.2c; Table 4.2). This source of image data failed 

to accurately identify any of the dominant vegetation classes.  
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Identification accuracies varied among image data collection method when used to 

determine the percent cover of emergent, submerged, and floating vegetation. When 

determining percent cover of emergent vegetation, the eBee produced a 64% accurate 

identification and was a fair match with the field data (Table 4.3). The majority of the 

confusion occurred when identifying an area with less than 50% cover. The Phantom had 

a similar problem with this class which resulted in a slightly lower overall accuracy of 

55%, but was still a fair match to the field data (Table 4.3). The SWOOP image data 

were only able to identify percent cover of emergent vegetation with an accuracy of 39%, 

and had the poorest agreement with ground truth data of the three methods evaluated 

(Table 4.3).  

All methods had high overall accuracy when used to identify submerged 

vegetation; however, we must interpret these cautiously because none of the field plots 

had over 50% submergent vegetation cover, and this meant that only two classes (no 

submergent vegetation and less than 50% submergent vegetation) had been identified. 

Between these two remaining classes, user accuracy was quite low for the below 50% 

cover class (Phantom = 0.52; SWOOP = 0; eBee = 0.44; Table 4.3). This indicates that 

image data were very good at interpreting locations with no submergent vegetation, but 

not as good at identifying the amount of cover.  For example, SWOOP was unable to 

identify the cover of submerged vegetation, had 0% reliability and 0% precision, and 

consequently no agreement with the field data (Table 4.3). In comparison, the Phantom 

and eBee methods had moderate to fair agreement, respectively, with the field data 

(Table 4.3).  
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The identification accuracy of floating vegetation cover ranged from 18% for 

SWOOP, 35% for the Phantom and 58% for the eBee (Table 4.3). The SWOOP image 

data were completely unable to identify floating vegetation, and yielded 0% producer and 

user accuracy for both cover classes (Table 4.3). Both the Phantom and SWOOP image 

data had poor agreement with field data, whereas the eBee was in fair agreement (Table 

4.3).  

Discussion: 

Use of a multi-rotor or fixed-wing UAV is of particular interest for mapping 

coastal wetlands because these ecosystems are dynamic, and experience seasonal and 

interannual fluctuations in water levels that greatly influence the vegetation community 

(Midwood and Chow-Fraser, 2012). As a result, during the growing season, coastal 

wetlands can often appear as large open bodies of water in the spring, and undergo 

seasonal succession to a completely vegetated habitat towards late summer (See Figure 

4.4). This characteristic is one of the main reasons why coastal wetlands can support high 

biodiversity, and provide unique, sometimes critical habitat for many species at risk. This 

dynamic nature of coastal marshes means that a single image acquired at the beginning of 

the season (such as SWOOP) is inappropriate for mapping habitat that is used by species 

later in the season.  This situation is challenging for most researchers who lack funds to 

acquire their own image data at the most appropriate time of the season, and who must 

use publically available orthophotoimagery. This may also explain the lightning speed at 

which UAVs have become adopted by wetland ecologists over the past year.  
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We found that the eBee system produced the most effective data for determining 

percent cover of floating and emergent vegetation compared to the SWOOP and Phantom 

image data. For submergent vegetation identification, all methods had high accuracy (75 

– 83%), although this is likely inflated because plots with no submergent vegetation are 

almost impossible to identify incorrectly. Logically, when determining percent cover of 

emergent and floating vegetation, image data in the summer season with high spatial 

accuracy is best. But, if the goal is to determine where submergent vegetation will or will 

not colonize, publically available spring images were able to identify this just as well as 

the UAV acquired image data. For both UAV platforms, percent cover of vegetation was 

identified with 55 – 83 % accuracy (eBee 58 – 75%; Phantom 55 – 83%) and dominant 

vegetation type with 62 – 65% accuracy. This large range underscores how image data 

can vary in a dynamic ecosystem. Even though the two UAV images were acquired at 

roughly the same time of year over two consecutive years, there were marked differences 

between them (Figure 4.2; Figure 4.4). 

Both multi-rotor and fixed-wing platforms can allow researchers to acquire aerial 

images of their study sites at a time in the year that is most relevant to their study 

objectives. When compared to aerial image data acquired by mounting cameras on an 

airplane, the Phantom and eBee were much more cost-effective. For example, for a 

wetland of the size in this study (approximately 90 ha), it would have taken two 

researchers six to eight days to complete all of the field work in order to generate a 

habitat map.  By comparison, acquiring images with the UAV only took 6 - 24 hours 

(Table 4.1). While up to $5,000 CAD would be required to map even a small area by 
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plane, the DJI Phantom 2 Vision+, with extra batteries, case, and a tablet or phone for 

viewing, would cost less than $3,000 CAD. If the desire mapping area is a few hundred 

hectares in size, the eBee would be more effective, but involve a higher cost of $30,000 

CAD. The benefit in both cases, however, is that these are one-time costs, and 

maintenance/operation costs are relatively low (Phantom spare propellers, the most 

frequently broken part, can be obtained for $5 CAD each).  

While the Phantom can be useful for mapping small areas (< 100 ha), restrictions 

in data reporting (coordinates, flight plans) capabilities limited its functionality. For 

instance, we attempted automatic geo-rectification to reduce the time required, but the 

GPS accuracy on the DJI Phantom 2 Vision+ was too low for this purpose.  Recently, 

Pix4D have released an Android application to improve mapping and geo-rectification 

called Pix4DMapper (Pix4D, Xuhui District, Shanghai, China), but it requires the use of 

their own software and can only map relatively small areas at one time (maximum 200 m 

by 120 m; 2.4 hectares) compared to manual flight (with 60% overlap, approximately 20 

hectares). In total, using autopilot would have garnered less than 20% of the area obtained 

during our 3 flights (65 ha; Table 4.1). This being said, the Phantom Vision 3 Series does 

provide the GPS coordinate accuracy required to overcome these challenges. 

Even though we found SWOOP to be inferior to the UAV-acquired image data, it 

is freely available for research and are ideal for other research applications (e.g. planning 

and agriculture). Limitations discussed in this study are more of a reflection of the image 

data being collected in the spring, long before floating and submerged vegetation are fully 
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established (Figure 4.4). Overall, our comparison highlights how technological advances 

can improve our ability to map dynamic systems like coastal wetlands. 

Conclusion: 

The flexibility of UAVs for research and monitoring will revolutionize the way 

we address and solve ecological problems, especially in dynamic coastal wetlands. The 

resulting high spatial and temporal resolution image data will permit investigators to ask 

questions previously limited by traditional imaging technologies. We confirmed that the 

UAV-acquired images could be used to estimate the percent cover of three broad classes 

of wetland vegetation (submerged aquatic vegetation, floating aquatic vegetation, and 

emergent vegetation) with fair to moderate agreement with field data. To achieve a more 

exact picture of vegetation communities, we recommend using a UAV platform to 

acquire image data precisely when desired. By comparison, image data from SWOOP 

was unable to determine dominant vegetation type and percent cover for emergent and 

floating aquatic vegetation, which comprise a large portion of the study site in the 

summer season.  

 As demonstrated, the timing of aerial image acquisition can limit the extent of our 

research. Seasonal image data can greatly improve our mapping of dynamic wetland 

ecosystems and allow managers to develop more effective recovery strategies for species 

at risk. Acquiring images multiple times during a single season would have been 

prohibitively expensive with traditional large plane or satellite platforms, but with low-

cost UAVs, this is no longer an obstacle.  Researchers no longer need to use 

commercially available image data that are out-of-date or taken at the wrong season, and 
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instead, learn to create their own.  We hope that this study will affirm the use of UAVs in 

ecological coastal wetland research while encouraging more research into this emerging 

and inexpensive remote sensing platform.   
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Table 4.1:  Comparison of 3 methods for image data collection. *Southern Ontario 
Orthophotography Project (spring 2010 edition). 

 

 
Parameter 

Multi-rotor: 
DJI Phantom 2 

Vision+ 
Fixed-wing: 
sensefly eBee 

Piloted Aircraft: 
(SWOOP*) 

Time of data 
acquisition 
 

User determined 
This study: Aug 2014 

User determined 
This study: Sept 2015 

Spring only every 4-5 
years 

This study: spring 2010 

Sensor 
 

DJI FC200 sensor Canon ELPH 110 HS Leica geosystems 
ADS80 SH82 sensor 

Spatial resolution 8 cm 4 cm 20 cm 

Cost to researcher $1,500 CAD $30,000 CAD No cost to university 
researchers under 

existing data-sharing 
agreement 

Coverage 65 ha 
16 ha/flight 

281 ha 
94 ha/flight 

4,500,000 ha 
(throughout 

Southwestern Ontario) 

Operator User 
Manual or automated 

User 
Automated 

--- 

Post-processing 
type and duration 

Manual (6-8 hours) Automated (24 hours) --- 

Lag time --- --- 1 to 1.5 years after image 
acquisition 
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Table 4.2: Accuracy values calculated for each method when image data are compared to 
field data for respective types of dominant vegetation.  

 

Method 
Accuracy 

Type  

 
Class Kappa 

Assessment 

Overall 
Accuracy 

Grass Cattail Submerged Floating 
Phantom Producer  0.693 0.565 0.910 0.465 moderate 62% 

User  0.658 0.667 0.910 0.435 
 

eBee Producer  0.813 0.630 0.910 0.302 moderate 65% 

User  0.656 0.690 1.000 0.433 
 

SWOOP Producer  0.750 0.475 0.002            0 poor 35% 

User  0.300 0.463 0.334      n/a   
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Table 4.3:  Accuracy values calculated for each method when image data are compared 
to field data. n/a indicates that no field plots exist for this class. 

 

		  
Class (Percent Cover) 

	
	

Kappa	
Assessment	

	
	

Overall	
Accuracy	

Vegetation 
Type Method 

Accuracy  
Type  None 

Up to 
50% 
cover 

Over 
50% 
cover 

Emergent Phantom Producer  0.733 0.226 0.8 Fair 55% 

User 0.379 0.459 0.623 
 

eBee Producer  0.666 0.387 0.869 Fair 64% 

User  0.625 0.690 0.624 
 

SWOOP Producer  0.666 0.480 0.259 Poor 39% 

User  0.172 0.444 0.611 
 

        

Submerged Phantom Producer  0.786 0.833 n/a Moderate 83% 

User  0.983 0.521 n/a 
 

eBee Producer  0.765 0.667 n/a Fair 75% 

User  0.941 0.444 n/a 
 

SWOOP Producer  0.979 0 n/a No 
agreement 

81% 

User  0.826 0 n/a 
 

        

Floating Phantom Producer  0.677 0.316 0.148 Poor 35% 

User  0.236 0.649 0.138 
 

eBee Producer  0.581 0.675 0.148 Fair 58% 

User  0.327 0.693 0.667 
 

SWOOP Producer  1.000 0 0 Poor 18% 

User  0.177 0 0   
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Figure 4.1: Location of study site:  impoundment along the northern shore of Lake Erie. 
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Figure 4.2: Comparison of (a) mosaic image acquired with multi-rotor UAV (b) mosaic image acquired with the fixed-wing 

UAV and (c) SWOOP image. The red line indicates the boundary of the impoundment and survey site. 
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Figure 4.3: Flight path taken by the senseFly eBee. Each red dot represents the location of a photo and green lines show the  

connecting flight path. 
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Figure 4.4: Comparison of (a) mosaic image acquired with multi-rotor UAV (b) mosaic image acquired with the fixed-wing 

UAV and (c) SWOOP image.  Details associated with the floating and submersed aquatic vegetation in (a) and (b) 
are absent in (c). 

 
 
 
 
 
 
 



 135 

Chapter 5: Assessing Efficacy of Invasive Phragmites Removal 

in Highway Corridors with Orthophotography & Satellite Image Data:  

The Ontario Case Study 

 

 

By 

James V. Marcaccio* and Patricia Chow-Fraser 

 

 

 

  



 136 

Abstract: 

 

 Roadside rights-of-way are a unique linear habitat that can be easily invaded by 

invasive Phragmites australis. While many North American jurisdictions have initiated 

control programs, few have established associated effectiveness monitoring programs. 

Here, we propose and apply three methods to determine effectiveness of a regional 

treatment program undertaken by the Ministry of Transportation of Ontario (MTO) in 

southwestern Ontario. We utilized 1) high-resolution spring orthophotography, 2) 

medium resolution multi-seasonal satellite image data and 3) high-resolution 

multispectral satellite image data to assess the effectiveness of MTO’s treatment program. 

Using digitization and image classification, we deduced effectiveness of treatment 

programs in over 3,900km of roadside habitat between 2010-2015 (orthophotography) 

and 2016-2018 (satellite data). Net decreases in areal cover of Phragmites were over 95% 

for all road types other than for major expressways, which saw decreases between 80-

95% between 2010 and 2015 but only 20-55% between 2016 and 2018. The areal cover 

of Phragmites also increased more rapidly within untreated expressway habitat compared 

with other road types over the same time period. Although orthophotography (20-cm 

resolution) acquired in spring yielded good results for identification of invasive 

Phragmites, it is only available once every five years on a provincial scale. By 

comparison, medium resolution satellite data (Sentinel-2) provided good results within 

large expressways (with larger and wider rights-of-way/habitat area) but was poor for all 

other road types (<2 lanes). These data miss small patches which are confirmed through 

high-resolution satellite data (Worldview 3; <1.5m). We advocate for use of medium-
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resolution satellite data for annual baseline information on expressways, and high-

resolution satellite data before and after treatment programs to directly assess 

effectiveness at smaller spatial scales.   
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Introduction: 

Phragmites australis (Cav.) Trin. ex Steudel (invasive common reed) is a 

perennial grass that grows in many habitat types throughout the world. There are 27 

genetically distinct groups (haplotypes) worldwide, of which 11 have been found in North 

America (Saltonstall 2002). One sub-species known as Phragmites australis americanus 

is native to North America and the rest are from Eurasia (Saltonstall 2003). Over the past 

two decades, Haplotype M (hereafter referred to as invasive Phragmites), which 

originated from Europe, invaded North American wetlands along the Atlantic and Great 

Lakes coastlines, replacing native vegetation and generally reducing biodiversity 

(Meyerson et al. 2000; Markle and Chow-Fraser 2018). In Canada, this haplotype was 

relatively confined to the St. Lawrence river until a population explosion in the 1970s, 

which coincided with highway construction in Montreal, Quebec (Lelong et al. 2007). 

Using genetic analyses, Catling & Corbyn (2006) confirmed that the Phragmites in road 

networks is the invasive rather than the native subtype.   

There are only a few documented studies of the distribution of invasive 

Phragmites in highway corridors within Canada, but these have confirmed the explosive 

nature of this weed in road networks. Individual patches of Phragmites in roadsides have 

been observed to expand by 1.0 – 5.6 metres per year (Brisson et al. 2010). Jodoin et al. 

(2008) reported that 67% of 1-kilometre segments of road in Quebec had been colonized 

by invasive Phragmites in 2003.  Recently, Marcaccio and Chow-Fraser (CH 2) found 

that within all road types in southwestern Ontario (covering nearly 17,000 km of roads), 

growth of Phragmites increased from 275 ha to 634 ha between 2006 and 2010, an 
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overall expansion of 230% or 58% per year. Within well-travelled highways over the 

same time period, there was an increased expansion rate of 969% (26.8 ha to 259.7 ha). 

The density of invasive Phragmites per kilometer of road was also over two orders of 

magnitude higher in highways than any other road type. With such substantial areal cover 

and growth, it is vital to control invasive Phragmites along Ontario highways to 

successfully manage and eradicate this species within the province.  

Much more is known about the traits that have led to the successful invasion of 

invasive Phragmites in wetlands and roadside habitats. First, it is a superior competitor 

against other emergent vegetation (Rickey and Anderson 2004; Uddin et al. 2014) 

because it is more tolerant of disturbances (e.g. road maintenance and changes in 

hydrologic regimes) and stress (e.g. increased salinity due to road de-icing salts) 

(Chambers et al. 1999; Saltonstall 2002). Secondly, high nutrient loading (especially in 

agricultural landscapes) can disproportionately benefit invasive Phragmites compared 

with other species because of its superior ability to sequester nitrogen and phosphorus 

(Rickey & Anderson 2004; Ge et al. 2017). It can also increase its range through secretion 

of allelopathic chemicals (volatile monocarboxylic acids) from its roots and rhizomes that 

prevent other vegetation from growing near it (Armstrong & Armstrong 2001). Finally, 

its ability to colonize sexually through thousands of wind-dispersed seeds (Gervais et al. 

1993; Kettenring & Whigham 2009; Meyerson et al 2000), and grow clonally along linear 

networks (Brisson, de Blois & Lavoie 2010) allows it to aggressively colonize exposed 

wet habitat and then quickly expand to form dense monocultures that can extend into 

deep water (Armstrong et al. 1999). Taken together, increased salts, nutrients, and 



 140 

disturbance put other wetland plants at a competitive disadvantage compared with 

invasive Phragmites in brackish marshes (Minchinton & Bertness, 2003) and road ditches 

(Chambers et al. 1999; Bart et al. 2006; Brisson et al. 2010).  

Environmental agencies throughout North America have used various strategies to 

eradicate/control invasive Phragmites (see Table 5.1). Besides mechanical treatment such 

as cutting, drowning, rolling, burning and covering them to prevent access to light, almost 

all agencies have used herbicides alone or with other mechanical control. The herbicide 

used most often is glyphosate, a broad spectrum herbicide sold commercially as Roundup, 

Weathermax, Rodeo or Aquamaster. Effectiveness of glyphosate in controlling invasive 

Phragmites populations in greenhouse experiments (Derr 2008) and experimental plots 

have been reported (e.g. Reimer 1976), but these are relatively small artificial settings that 

do not necessarily reflect the many kilometers of invasions occurring along the linear 

wetlands in highway corridors. Due to the high cost (both economically and socially) 

associated with diverting traffic in order to safely service roadways, the only option 

available is to use herbicides alone. Without knowing how invasive Phragmites responds 

to glyphosate applications administered as part of routine road maintenance programs, 

managers cannot justify the relatively high cost of implementing such treatment programs 

given competing demands on dwindling budgets.  

The primary objective of this study is to investigate approaches to quantify the 

effectiveness of treatment programs for invasive Phragmites occurring in highway 

corridors. Since these habitats are long and narrow, and occur for many kilometers, 

conventional remote sensing methods that have been used to map invasive Phragmites do 
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not apply.  For instance, large-scale mapping of common reed in the Great Lakes basin 

has been successful with satellite-based imaging sensors in true colour, near-infrared, 

radar, and combinations thereof (Pengra, Johnston, & Loveland 2007; Young et al. 2011; 

Bourgeau-Chavez et al. 2015;). These sensors typically have a ground-based resolution of 

20-30 m per pixel and can often return their orbit to a specific location within two weeks. 

Due to the nature of these sensors, any feature (e.g. Phragmites) that is to mapped must 

be approximately four times the size of the pixel to ensure that, regardless of orientation, 

the feature would fall completely within one pixel. This exceeds the dimension of the 

average highway ditch which precludes mapping any feature of interest within their 

boundary. By comparison, new medium resolution (10 m) and high resolution (>1.5m) 

satellite sensors and orthophotography (imagery taken from an airplane) can provide a 

much smaller minimum mapping unit. With these capabilities we can accurately assess 

the distribution and cover of invasive Phragmites throughout roadsides habitats. 

Invasive Phragmites has been present within Ontario for many decades and the 

Ministry of Transportation of Ontario (MTO) has acknowledged the destructiveness of 

invasive Phragmites, both with respect to integrity of road infrastructure and to the health 

of adjacent ecosystems. Given the reported success of glyphosate in controlling invasive 

Phragmites populations in wetland habitats (Reimer 1976), MTO, like other agencies in 

North America (see Table 5.1) has sprayed highway corridors with this broad-spectrum 

herbicide to control Phragmites and other weeds in the West Region since 2012 (Figure 

5.1). Since then, treatment has been ongoing on an annual basis but is limited by budget 

and timing with other construction projects taking precedence. 
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Here, we propose and apply three methods to determine effectiveness of a regional 

treatment program undertaken by the Ministry of Transportation of Ontario (MTO) in 

southwestern Ontario. We utilized 1) high-resolution spring orthophotography, 2) 

medium resolution multi-seasonal satellite image data and 3) high-resolution 

multispectral satellite image data to assess the effectiveness of MTO’s treatment program.  

This study is the first large-scale multi-year assessment of the effectiveness of repeated 

glyphosate applications to control invasive Phragmites in highway corridors, and should 

yield important insights on how best to implement future effectiveness monitoring 

programs for Ontario and other jurisdictions in the Great Lakes basin. 

 
Methods: 

Ontario’s southwestern region encompasses over 100,000 kilometres of roadways 

of varying size, construction type and management. In this paper, we examined the 

16,900 kilometres of highways managed by the provincial Ministry of Transportation of 

Ontario’s (MTO’s) West Region which includes two-lane highways, divided highways, 

and large divided expressways. All of these roads have some right-of-way associated with 

them that often includes a vegetated depression (ditch) which is primarily designed for 

hydrological reason (efficiently removing water from the roads’ surface). These rights-of-

way are of different sizes depending on the road (and portion within) and some 

expressways also have vegetated medians (as opposed to concrete/barriers). 

Highways in this large study area are of two basic types, the 400-series highways 

(401, 402, and 403) which are expressways with multiple lanes and speed limits of 100 

km/h, and the non-400 series highways that are primarily two-lane roads although some 
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have four-lanes segments or passing lanes and are 60-80 km/h. The lengths of each road 

also vary greatly with Highway 6 running north-south for 472 km while Highway 77 is 

very short at 22.6 km. The 400-series highways are associated with much higher traffic 

volumes than the non-400 series highways (Marcaccio & Chow-Fraser 2019; CH 2).   

Treatment data were obtained from the Ontario Ministry of Transportation (MTO) 

from a GIS database. These treatments were conducted by private contractors using 

glyphosate (concentration: 5%, spray rate: 8L/ha) on boom arms from vehicles. All 

treatments were completed with one application between August and October of the year 

indicated and included both sides of the roadway as well as the median if present. Since 

direct GPS data of sprayed areas were not available, we have assumed that all stands of 

Phragmites within the area delineated by the contractors were treated. In some instances, 

ditching may have also occurred, a process wherein a segment of the topsoil is removed 

to re-establish appropriate hydrological patterns to ensure proper flow of water within the 

right-of-way. In these instances, all plants including Phragmites would be completely 

removed from the landscape and replaced with barren soil. Additionally, occasional 

cutting treatments have been conducted throughout the study area but the focus of these 

were for road safety and drainage maintenance rather than removal. As the amount of 

mechanical treatment was low compared to herbicide treatment (<40 km), these were not 

considered as a separate treatment group within the dataset. 

An automated image classification was conducted for the 2010 Southwestern 

Ontario Orthophotography Project (SWOOP) image data (see Marcaccio & Chow-Fraser, 

2019; CH3 for details), and manual digitization was employed for the 2015 SWOOP 
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image data. All 2015 data were digitized by two technicians and only polygons that were 

within agreement between both technicians were included. In lieu of field data, a third 

technician compared the digitization against Google Earth and Google Streetview data 

from the same time periods to ensure accuracy. These data only include Phragmites as a 

land cover class as delineating other classes was too time consuming. Although these 

datasets had the same resolution, we could not directly compare individual polygons as 

each method of identifying invasive Phragmites (image classification in 2010 versus 

manual digitization in 2015) produced similar areas but different polygon sizes.  

For the 2016 and 2018 comparison, Sentinel-2 (10 metre resolution) image data 

were processed in ENVI (v. 5; Harris Geospatial, Colorado, USA) with the multi-

temporal support vector machine (SVM) tool. For each year, three images were acquired 

in spring, summer, and fall and these were combined to enhance our ability to distinguish 

Phragmites from other land-cover classes. Worldview-3 (1.25 metre resolution) data were 

also acquired from the summer (August) of 2016 and GeoEye (1.25 metre resolution) 

from summer 2018 and were manually digitized to determine the accuracy of the 

Sentinel-2 classification (Figure 5.2). Due to the difference in pixel size between 

products, we assessed the level of agreement between datasets based on the proportion of 

patches in the high-resolution datasets that were successfully identified in the medium-

resolution datasets, rather than the absolute areas. Additional comparisons between these 

datasets were conducted to determine the geometric differences in patches from medium-

resolution data versus the patches from high-resolution data. Within each dataset, a 

change detection was conducted by splitting each road into 1-km segments and 
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determining changes within these segments to standardize units of measure and to 

account for errors and misaligned pixels between years (which would result in false 

changes in boundaries for each invasive Phragmites patch). Areal cover in the earlier year 

that decreased (was no longer visible) in the later year was interpreted as having been 

successfully treated, while a stable (remained) or increasing areal cover was deemed to 

have been unsuccessful. We only report increases and decreases by road within the area 

that was treated and not the entire length of the road due to the differences in geographic 

distribution and length of some roads.  

Details on the results of the 2010 image classification with spring 

orthophotography have been documented elsewhere (Marcaccio & Chow-Fraser 2019; 

CH3). The 2015 image data had been manually digitized due to use of a different sensor 

and pre-processing method that resulted in compressed data that were no longer suitable 

for automated image classification. For our comparison between 2010 and 2015, 16,900 

km of roads and their habitat were mapped (Figure 5.3). This represented all roads that 

MTO currently manage, along with additional portions of roads where data on completion 

of treatment had been provided by MTO for use in this project.  Although the 2010 and 

2015 image data were from spring, we were able to clearly identify invasive Phragmites 

stands because they do not senesce and collapse like other vegetation, but remain tall and 

visible throughout the winter and spring. Since the 2015 data represent growth through 

2014 (and not 2015), we only considered treatments conducted in 2012, 2013, and 2014.  
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Results: 

In total, between 2010 and 2015, MTO treated 2,331 km of unique road segments 

(Figure 3), and removed 213 ha of invasive Phragmites (Figure 5.4). Despite this, the 

total area of invasive Phragmites still increased by 18 ha, presumably because of growth 

and expansion of Phragmites that had not been effectively treated. While treatments were 

effective for all roads, lower efficacy was observed for Hwy 401, 402, and Hwy 40 (a 

bypass road between the western portion of Hwy 401 and 402; Figure 5.5). While the 

403 had a high removal rate, the total length of roadway within this study area was quite 

short (only 48 km) compared to Hwy 401 and 402 (255 km and 94 km, respectively).  

Compared with the 400-series highways, removal rates for all other highways were 

significantly higher (t-test, P<0.001; Figure 5.6). Timing of treatment also appeared to 

affect efficacy; road segments that had been treated more recently were associated with 

higher removal rates. In this study, repeat treatments did not have a significant effect on 

the outcome of removal because of confounding effects of road type (i.e. only 400-series 

highways were treated twice).  A major driver of the expansion of invasive Phragmites 

was the total areal cover that had been present in 2010 (Figure 5.7a). Similarly, 

resistance to treatment was also a function of historic areal cover (Figure 5.7b).  

Between 2016 and 2018, only the 400-series highways and a short length of 

smaller roads were treated and as such we conducted our analyses on only the 400-series 

highways (Figure 5.8). Using Sentinel-2, we found many areas of net decrease where 

treatments had taken place, but these did little to diminish the total expansion of invasive 

Phragmites across the entirety of the roadways (Table 5.2).  Repeated treatment over two 
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years on Highway 401 led to the best results for removal within these areas, but they did 

not approach those levels seen in our earlier analysis (Figure 8a).  According to previous 

analyses (2010-2015), smaller patches of Phragmites responded best to treatment. Given 

we used the Sentinel 2 image for the 2016-2018 analysis, the 10-metre pixel resolution 

could not be used to accurately identify patches larger than 100m
2
 (Figure 5.9), which is 

much larger than the 1 m
2
 patches identified in orthophotos (20 cm pixel, with minimum 

object size in eCognition equal to 4 pixels) and manual digitization of 1.5 m image data 

(Table 5.3). 

By comparison, our high-resolution satellite data (WorldView-3 & GeoEye) could 

be used to identify much smaller patches similar to that obtained through 

orthophotography (Table 5.3). Of the 163ha in 2016 and 138 ha in 2018 of study area 

mapped, 90 ha of these overlapped spatially and all of the invasive Phragmites in this 

area had been treated. In addition to the inherent difference between manual digitization 

and automated image classification with respect to polygon size, these products were also 

different in terms of areal cover. Sentinel-2 overestimated by 142% in 2016 and 213% in 

2018 (Table 5.3). Treatment effectiveness in this study area as determined by Sentinel-2 

showed only a 27% decrease. With high-resolution data, however, treatment effectiveness 

showed a 51% decrease, which is closer but still lower than that obtained in the 2010-

2015 analyses (>80%). This confirms our earlier finding that smaller stands of 

Phragmites are more easily eradicated with glyphosate treatment. If patches < 100m
2
 

(smallest size of Sentinel-2 patch) are removed from the high-resolution data, the change 
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in invasive Phragmites areal cover is small.  These findings indicate that the Sentinel-2 

data had overestimated areal cover of Phragmites because of its coarser pixel size.   

 

Discussion: 

Roads have been hypothesized to be a major long-distance transporter of invasive 

Phragmites (Lelong et al. 2007), and Marcaccio and Chow-Fraser (2019; CH3) have 

shown how rapidly it can expand within southwestern Ontario from 2006 to 2010 when 

they are left untreated. From road ways, they can also expand quickly to other adjacent 

disturbed habitats (Ailstock, Norman, & Bushman 2001). Therefore, the unchecked 

growth of invasive Phragmites is a problem not only for the integrity of road 

infrastructure, but also for biodiversity conservation in natural ecosystems. 

Due to management constraints and logistics, all treatment programs took take 

place in late summer, when efficacy was typically lower for glyphosate applications 

(Mozdzer et al. 2008).  Because there had been no baseline mapping of invasive 

Phragmites prior to 2015, MTO carried out their treatment program without knowing the 

full extent and distribution of infected corridors. Even with these constraints, we have 

found good rates of removal across the study area. Due to the extent of the invasion in 

2012 and lack of previous management, any removal efforts were likely to produce 

positive results in the short-term. The uniform recommendation by all agencies to repeat 

treatment (see Table 5.1), which are well supported by the literature (Riemer 1976, 

Turner & Warren 2003, Derr 2008, Lombard, Tomassi & Ebersole 2012) means that 
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appropriate and consistent mapping must also be carried out to ensure that management 

actions are appropriately allocated and continue to be effective. 

Overall, the results of our 2010-2015 analyses were acceptable in terms of 

invasive Phragmites removal; however, despite the effectiveness, we found an increase in 

distribution of Phragmites in 2015 that was primarily from new growth and regrowth 

from treated stands that varied from <1 to 27%. Both new growth and regrowth were 

more prolific on the 400-series highways. We also found that patch size of Phragmites 

had a significant influence on both efficacy of glyphosate treatment and the colonization 

rate, and that the 400-series highways tended to have larger patch size than other road 

types. We had no evidence of complete eradication, and this may be due to the large size 

of patches in particular road types, and the low frequency of invasive Phragmites 

treatment between years. 

We have also found that smaller stands on the fringes of the invasion front (north 

in this study) are more easily removed than dense stands on invaded highways (Figure 

5.4). Removing these fringing stands can help limit the spread of Phragmites into novel 

habitat as this plant can reproduce effectively over large distances by seed (Fér & 

Hroudová 2009; Kirk et al. 2011). Since these small stands are difficult to identify with 

traditional satellite-based remote sensing products, more effort should be focused on 

finding an effective strategy for early detection. Future studies can and should consider 

developing a landscape-level model for Phragmites expansion and management in 

roadsides similar to what Duncan et al. (2017) and Long, Kettenring & Toth (2017) 
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created for wetland systems; the unique spatial attributes of roadsides may require 

different parameters and considerations for a successful modelling approach to be created. 

We found a reduction in effectiveness on large freeways with larger rights-of-way 

and greater habitat availability. These roads often have much larger patches of 

Phragmites; we cannot determine through remote sensing methods whether these come 

from one clonal stand or convergence of multiple unique genetic individuals. Larger 

Phragmites patches are extremely difficult to fully eradicate and thus may limit the 

apparent effectiveness of any control program along well colonized roadsides when 

viewed on shorter (< decadal) time scales (Quirion et al. 2017). While a decrease in total 

areal extent is possible, it is likely that roads such as the 400-series highways will need to 

be managed for decades longer before they are fully eradicated. In addition, these roads 

were only treated once in 2012 compared to others which had been treated closer to 2015 

and/or treated multiple times.  

The 400-series highways are associated with higher traffic speeds (100 km/h vs 

<=80km/h) and much higher traffic volumes than other road types (Marcaccio and Chow-

Fraser 2019; CH 2). These roads also have large on/off-ramp complexes that are difficult 

to manage due to their depth and width (limiting the area possibly treated by roadside 

vehicles) and the creation of artificial wind vortexes which affects the distribution of 

airborne particles of glyphosate (MTO, personal communication). The combination of 

these factors has been hypothesized to lead to increased frequency and distance of seed-

borne dispersal through artificial winds and direct attachment to vehicles (Ailstock et al. 
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2001). This would make repeat treatments an absolute necessity as even small patches of 

invasive Phragmites left behind could easily repopulate long stretches of these roads.   

A notable anomaly in our dataset was Hwy 40, which had similarly low efficacy 

to those reported for Highways 401 and 402, but is a two-lane highway (Figure 5.5). The 

invasion pattern on this road was similar to those of other non-400 series highways and 

was also constructed in a similar fashion to other highways (two lanes with no divided 

median). We speculate that high volume of traffic on this road and source populations of 

invasive Phragmites may explain this anomaly. Hwy 40 was constructed as a west-end 

link between two very busy highways (Hwy 401 and 402) before they crossed two 

international border crossings near Sarnia and Windsor, Ontario. It is also located east of 

and in close proximity to the St. Clair river, Lake St. Clair, and the Walpole Island 

wetlands, which is currently densely populated with invasive Phragmites (Wilcox 2012). 

With the predominant winds being westerly in this area and a flat, agricultural landscape, 

it is possible that the wetlands act as a source of invasive Phragmites seeds that 

continuously invade Hwy 40 and the western ends of Hwy 401 and 402. Genetic analyses 

could help test this hypothesis and elucidate the underlying causality. 

As mentioned earlier, the 2010-2015 comparison did not bear out the merit of 

repeated treatments on these highways. We were, however, able to support this using the 

2016-2018 comparison (Table 5.2).  Our data also showed that regrowth of invasive 

Phragmites can outpace the efficacy of treatment programs, especially if viewed on a 

road-by-road (not kilometre-by-kilometre) basis. Care must be taken to consider smaller 
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units of roadway to accurately assess impacts especially when roads are relatively long 

and only a small subset of the road is actually treated.  

The degree of expansion in 2015 appears to be directly related to the amount that 

had been present in 2010, and this is consistent with observations that Phragmites 

expands clonally (Figure 5.7a, Jodoin et al. 2008, Bellavance & Brisson 2010). While we 

cannot directly compare individual patches due to the differences in how the data were 

processed, our data are consistent with clonal expansion of invasive Phragmites that had 

existed historically. We do not believe that seed-based dispersal had occurred over these 

small distances, since high winds generated by traffic across these landscapes are 

expected to be associated with longer seed dispersal distances.  Similarly, our finding that 

degree of resistance to treatment (amount of Phragmites that remained unchanged 

following treatment) was directly related to the amount that had been present in 2010 

(Figure 5.7b) again points to difficulties in eradicating more heavily infested landscapes.  

We emphasize the importance of using the same type of image data to permit 

valid comparisons. This was the most challenging aspect of monitoring across different 

time periods in this study. The only way to use SWOOP image data (scheduled to be 

acquired in 2020) for future comparisons would involve labour-intensive and tedious 

manual digitizations, and we do not recommend this approach. Instead, we recommend 

using multi-season image classification of Sentinel 2 or 3 satellite data on large highways 

(such as the 400-series highways) for periodic updates.  Unfortunately, the relatively 

narrow and linear nature of roads mean that even 10-metre resolution is simply too coarse 



 153 

in most circumstances. Along a typical highway in southwestern Ontario the rights-of-

way can be 5 metres, which results in an abundance of mixed pixels.  

Although effectiveness monitoring was acknowledged as a necessary component 

of treatment programs by all agencies that we surveyed (see Table 5.1), none of the 

agencies documented how to accomplish this using either remote sensing or field surveys. 

Of the three approaches used in this study, those involving satellite image data are 

directly transferable to other jurisdictions. Nevertheless, we only recommend using the 

high-resolution satellite data (e.g. Worldview 2, 3 or Geo-Eye) to map individual 

Phragmites stands for a select number of smaller highways. As these high-resolution data 

are not freely available, their use will be limited to agencies with available budgets and 

expertise. By conducting image classifications before and after treatment, areas in need of 

repeat treatment can be identified and efficacy can be determined. As we and others have 

noted, repeat spot treatments are extremely effective in reducing Phragmites cover 

throughout the landscape and only manual field work or high-resolution data will suffice 

for this purpose. 

Our results are reported solely as areal cover and give no indication of biomass or 

density of invasive Phragmites present within each patch. The density of patches is 

known to have a significant influence on treatment efficacy because patches with higher 

stem counts are less responsive to treatment (Quirion et al. 2017). This may account for 

some variability in treatment effects in this study. Preliminary data suggest that 

Phragmites stands on the 400-series corridors are not only larger, but also much denser 

(DeBoer and Chow-Fraser, unpub. data).  Although biomass/density determinations may 
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require multi-spectral image data, the results would prove especially useful for managers 

to estimate amount of glyphosate that is required to effectively treat the amount of 

Phragmites.  
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Table 5.1: Targeted survey of current control programs for invasive Phragmites in roadways and wetlands throughout 
N. America 

 
Authors/Agencies 

 
Type of habitat 

 
Herbicide 

Used/Options 

Mechanical 
Treatment Used or 

Recommended 

 
All Treatments 

Used 

Recommendation 
for spraying in 
consecutive years 

 
Disposal Methods 

Post 
Treatment 
Monitoring 

Results of 
Effectiveness 
After Year 1 

Results of 
Effectiveness 
After Year > 2 

BMPs from Canada 
 

Kincardine (2013) 

 

Wetlands and 
shoreline 

 
Glyphosate 

4-5% 
(Weathermax) 

 
Burning ATV spraying, 

backpack spraying, 
hand-wicking, 

prescribed  burns 

 
Yes 

 
Rolling/Burning 

 
Yes 

Speaks of U.S. 
combining 

Glyphosate and 
Imazypyr for 80- 

100% kill 

 
N/A 

Ontario Ministry of 
Natural Resources 
and Forestry (2011) 

 
Generic habitats 

 
Glyphosate Cutting, tarping, 

solarization, 
drowning, rolling, 

Spraying, cutting, 
tarping, 

solarization, 
drowning, rolling 

 
Yes Bagged in thick plastic, then dried 

out in the sun.Once dry can be 
burned or disposed of 

 
Yes 

 
N/A 

 
N/A 

 
Ontario Phragmites 
Working Group. 

(2015) 

 
Roadways 

 
Glyphosate 4-5% 

 
Rolling, cutting, 

 
Spraying,wicking, 
wet blade, rolling, 
cutting, burning, 

 
Yes 

Burying, covering (3m deep), 
covering with heavy plastic, 
burning, or dispose in an open 

agricultural field where emerging 
plants can be treated 

 
Yes 

 
70-95% 

For most cells, 
complete control 
can be expected 

after two 
treatments 
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Table 5.1: cont’d. 
 

BMPs from USA 
 

Brigham City, Utah 
(2007) 

 
Wetlands 

 
Glyphosate 2% 

 
N/A 

 
Spraying and 

Burning 

 
Yes 

 
Burning 

 
Yes 

 
N/A 

 
N/A 

 
King County 

(2010) 

 
Roadways and 

generic habitats 

Glyphosate 
(Rodeo and 

Aquamaster) and 
Imazapyr 
(Habitat) 

Spading young 
plants, repeated 
cutting before 

tasseling 

Spading, cutting, 
wick wiping, 

herbicide spraying, 
burning 

 
Yes 

Place roots, rhyzomes, and seed 
heads in sturdy plastic bags and 
dispose. Stems left on site for 

compost or burning 

 
Yes 

 
N/A 

 
N/A 

 

Michigan State and 
Partners n.d. 

 

Roadways and 
generic habitats 

Glyphosate (six 
pints per acre), 
Imazapyr (six 

pints per acre), or 
even mix 

 

Hand tools, weed 
whips, small mower 

 
Spraying, burning, 

flooding, mechnical 
treatments, 

 

Annual 
maintenance 

 
N/A 

 
Yes 

 
N/A Annual spot 

treatments of 
pioneer colonies 

100% 

New York State DOT 
Adirondack Park 

(2014) 

 
Roadways 

 
No specific 

mention in the 
BMP 

Spading young 
plants, pulling, 

digging 

Spraying, cutting, 
pulling, digging 

 
Yes 

Drying/liquefying, Brush Piles, 
Burying, Herbicide 

 
Yes 

 
N/A* 

 
N/A* 

Janice Gilbert for 
Lake Huron Centre 

for Coastal 
Conservation (2016) 

 
Roadways and 

generic habitats 

 

Glyphosate 

Covering, 
smothering, rolling, 
drowning, cutting, 

spading 

Spraying, hand 
wicking, burning 
mechanical control 

 

Yes 

 

N/A 

 

Yes 

 

N/A 

 

N/A 

N/A = not available    *In a webinar (October 2017), reported that probability of eradicating (i.e. no growth after 3 y) decreased drastically with treatment area; 83% for 0.36 sq. m vs 26% for 45 sq. 
m vs 1% for >3000 sq. m. Also noted that 60% returned after one year of treatment; minimum 20% returned after 2 consecutive years of treatment and <5% after 3 consecutive years. 
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Table 5.2:  Changes in areal cover (ha) of invasive Phragmites for 400-series 
highways based on automated image classification of Sentinel-2 satellite 
image data. Highways were classified as either “Treated” or “Untreated”, 
depending on whether they received glyphosate or not, respectively during 
2016.   

 
Hwy 
series Type 

Total area 
analyzed Area in 2016 

Area in  
2018 

% change 
from 2016 

401 Untreated portion 1200 137.5 172.6 +25.5 
Treated portion 875 63.0 28.9 -54.1 
Entire highway 2075 210.5 201.5 -4.3 

402 Untreated portion 606 57.2 74.0 +29.3 
Treated portion 616 41.0 33.3 -18.8 
Entire highway 1222 98.2 107.3 +9.3 

403 Untreated portion 195 6.4 7.0 +9.4 
Treated portion 450 11.3 8.2 -27.4 
Entire highway 645 17.8 15.2 -14.6 
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Table 5.3:  Comparison of spatial attributes of invasive Phragmites patches identified 
with Sentinel-2 (S2), Worldview-3 (WV3), and GeoEye (GE) data. 

 

 

Medium resolution  
(S2) 

High resolution 
(WV3 and GE) 

Total Study Area in 
2016 (ha) 163.3 163.3 
Total Study Area in 
2018 (ha) 138.0 138.0 
Intersected Study Area  
(ha) 90.4 90.4 
Phragmites 2016  
(Total ha) 16.2 10.8 
Phragmites 2018 
 (Total ha) 9.1 3.5 
Phragmites 2016 
(Intersected/Treated ha) 9.5 6.7 
Phragmites 2018 
(Intersected/Treated ha) 6.93 3.3 
All Change 2016 - 2018 
(Intersected, ha) 2.57 3.4 
Mean polygon size 
(2016) (Intersected, ha) 0.052 0.050 
Standard Deviation 
(2016)(Intersected, ha) 0.084 0.104 
Mean Polygon size 
(2018)(Intersected, ha) 0.029 0.042 
Standard deviation 
(2018)(Intersected, ha) 0.035 0.067 
Minimum Polygon size 
(Intersected, ha) 0.0100 (WV3) 0.000927 (GE) 0.001897 
Area from (<minimum 
polygon size of S2) 
(Intersected, ha)  0 (WV3)  0.2738 (GE) 0.1143 
Area from (>min size 
S2)(Intersected, ha) (2016)9.5 (2018) 6.93 (WV3) 6.3767 (GE) 3.1451 
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Figure 5.1:  Roads in West Region that had been treated with glyphosate between 2012 

to 2017.   
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Figure 5.2:  Automated image classification identifying invasive Phragmites (light 

grey) compared to manual digitization of invasive Phragmites (black). 
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Figure 5.3:  Comparison of 2010 and 2015 distribution of invasive Phragmites (black) 

in highway corridors. 
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Figure 5.4:   Results of a change detection of invasive Phragmites occurring in highway 

corridors of southwestern Ontario between 2010 and 2015, based on 
SWOOP image data only. 
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Figure 5.5:   Top: Invasive Phragmites areal cover that had increased/grown (black) 

and decreased/removed(grey) between 2010 and 2015, by road. Middle: 
Invasive Phragmites present in 2010 by road. Bottom: Invasive 
Phragmites removed by road. The black line corresponds to an 80% 
removal rate. 
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a) 

 
b) 

 
Figure 5.6:  Percentage Phragmites removed for a) 400-series and non-400 series 

highways and b) roads grouped according to when they had been treated. 
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Figure 5.7:  a) Total area that had changed as a function of original area in 2010 and b) 

Total area that remained unchanged as a function of original area in 2010. 
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Figure 5.8:  a) Results of a change detection of invasive Phragmites occurring in large 

highway   corridors between 2016 and 2018, based on Sentinel-2 image 
classification.  Shown in insets, b) enlargement of the above; c) showing the 
results of a change detection of invasive Phragmites between 2016 and 2018 
based on manually digitized high resolution satellite data (2016: WV3; 2018: 
GE) 
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Figure 5.9:  Dependency of Sentinel-2 accuracy on minimum patch size along highway 

corridors for two classification protocols. 
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Abstract: 

We directly compared the performance of four remote-sensing methods for mapping 

invasive Phragmites in coastal wetlands of Long Point Bay, Lake Erie, Canada. We refer 

to the first method as Landsat, which uses Landsat images and NDVI (Normalized 

Difference Vegetation Index) responses from images acquired in multiple years to 

determine areal cover of Phragmites and other dominant vegetation classes. The second 

method, which we will call PALSAR (Phase array type L-band Synthetic Aperture Radar) 

uses radar to aid detection of water level and biomass of Phragmites and other wetland 

classes. We refer to the third method as SWOOP (Southwestern Ontario Orthophotography 

Project), which uses spring-time orthophotos and object-based image classification to map 

Phragmites and other features in a defined region of interest. Our last method is called 

UAV (unmanned aerial vehicle) which involves manually delineating Phragmites in image 

data acquired by a UAV. The UAV method was most accurate at identifying Phragmites 

but could only be used to map a small area. The PALSAR approach provided a more 

accurate view of invasive Phragmites than did Landsat, and exceeded the SWOOP in terms 

of accuracy but not in terms of spatial resolution. The best choice of method to use will 

depend on the scope of the mapping project and available funding. Landsat and PALSAR 

may be most appropriate for mapping Phragmites at the regional scale, while SWOOP and 

AUV may be most appropriate for finer-scale updates. To fully interpret the invasion 

pattern of Phragmites at the scale of the Great Lakes basin, a combination of these methods 

may be required. 
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Introduction: 

Within the Laurentian Great Lakes (N. America), almost 70% of wetlands that 

existed in southern Ontario prior to European settlement have been lost or degraded 

(Snell 1987). Most existing coastal wetlands (occurring within 2 km of the shoreline) 

have macrophyte assemblages and water quality that reflect degraded conditions (Croft & 

Chow-Fraser 2007; Cvetkovic & Chow-Fraser 2011). Whereas historically, changes in 

water level (Mortsch 1998) and human development (Niemi et al. 2007) were responsible 

for this decline, more recently, invasive non-native species have been more problematic. 

Known as the common reed, Phragmites australis is a high-marsh, emergent plant that 

exists as two sub-species in North America (Saltonstall 2003). The subspecies 

americanus is the native haplotype, whereas the subspecies australis is non-native, 

having arrived from Eurasia during the mid-19th century via shipping ports along the St. 

Lawrence River (Lelong et al. 2007). Within the Great Lakes basin, it remained relatively 

isolated in distribution until the late 20th century when invasive Phragmites established in 

large monocultures around the Upper St. Lawrence River. After rapidly colonizing 

wetlands along the St. Lawrence River, it has become firmly established in wetlands of 

Lakes Erie, Ontario and Huron over the past two decades. Such monocultures of invasive 

Phragmites have greatly reduced the quality of critical habitat for many native marsh-

obligate birds, amphibians, reptiles, and fish (Lazaran et al. 2013; Bolton & Brooks 2010; 

Kolos & Banaszuk 2013).  

Accurate maps of wetlands can be difficult to produce, but the constant need for 

these have spurred on explorations for better and cheaper methods (Wright & Gallant 
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2007; Gallant 2015).  Relatively good results have been achieved through a variety of 

traditional remote-sensing methods (e.g. Midwood & Chow-Fraser 2010; Bourgeau-

Chavez et al. 2013; Kloiber et al. 2015), and more recently through the use of unmanned 

aerial vehicles (UAVs; Chabot & Bird 2013; Marcaccio et al. 2016). Given so many 

available options, it is difficult for the unfamiliar ecologist to choose the most appropriate 

method for a particular mapping project. The purpose of our study is to conduct a direct 

comparison of the performance of four remote sensing methods that have been used to 

map invasive Phragmites in a region of the Laurentian Great Lakes (Long Point Bay, 

Lake Erie, Canada). By summarizing the strengths and weaknesses, and assessing the 

relative accuracy of each method, we will offer our recommendation for the most 

appropriate option given specific project goals and objectives.  

 

Methods: 

Study area 
 
The study area is a 90-ha impounded wetland located in Long Point, Ontario, Canada 

(Figure 1), in which water levels are managed to prevent the colonization of invasive 

species such as Phragmites australis sp. australis. Therefore, outside the impoundment 

are large monocultures of invasive Phragmites whereas inside this the habitat is 

dominated by Typha spp. Meadow marsh vegetation (e.g. Decodon verticilatus) is also 

present in abundance throughout the basin. The perimeter of the study area is 

predominantly deciduous trees, with agriculture behind this thin barrier to the north, 

sandy beaches to the south, and water to the east 
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Remote sensing methodologies 

We will refer to the four methods in this study as the Landsat, PALSAR, SWOOP 

and UAV methods (Table 6.1). The Landsat method was developed by the provincial 

ministry and identified the location of Phragmites using Landsat images acquired in 

multiple years. The PALSAR method was developed by Bourgeau-Chavez et al. (2015) 

who used fusion of sensors from both Landsat and the PALSAR (Phase-array type L-

band Synthetic Aperture Radar) satellites to map the entire Great Lakes basin within 10 

kilometres of the shoreline. The SWOOP method used image data from the Southwestern 

Ontario Orthophotography Project and object-based image classification of the study site 

(see Figure 6.1). The last method used the ‘eBee’ UAV to capture image data for a 

subsection of the study area which was then manually classified.  

Landsat 

Given that Landsat image data are now freely available to government agencies, 

the Ontario Ministry of Natural Resources and Forest (OMNRF) developed the Landsat 

method as a cost-effective way to monitor invasive Phragmites populations in the 

province of Ontario (Young et al. 2011). In addition to mapping the presence of 

Phragmites, they further classified stands as “stable”, “expanding” or “diminishing” 

(based on images acquired over two or more years).  All other wetland vegetation was 

classified as ‘other vegetation’, with the same three classes (stable, expanding or 

diminishing). The Landsat images had a spatial resolution of 30 m, and the data were 

processed with NDVI (Normalized Difference Vegetation Index), which required green, 

red, and near-infrared bands from the satellite. Each year of data was processed and then 
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combined; if the response of the NDVI increased throughout years, then the patch was 

said to be increasing. To reduce the processing time, the Southern Ontario Land Resource 

Information Systems (SOLRIS) data were used to filter out areas from further 

consideration that were extremely unlikely to support invasive Phragmites (e.g. urban 

areas, pavement). No field-truthing data were used to assist in classification; thus, all 

polygons from the supervised classification were remotely sensed. The hierarchical 

portion of the classification built one class at a time and calculated the degree of 

confusion for that class. This allowed for removal of extraneous portions prior to 

classification in order to further reduce processing times. To allow accuracy assessment, 

the classification was compared against prior mapping efforts. 

PALSAR 

In the PALSAR project, all land use and land cover within 10 km of the Great 

Lakes shoreline were classified (Bourgeau-Chavez et al. 2015). Although multiple land 

use and vegetation types were classified, invasive Phragmites was the main plant 

species identified throughout the study area. Areas dominated by Typha sp. and 

Schoenoplectus sp. were also noted, as were more diverse wetland systems (compiled 

under ‘wetlands’). Other wetland classes included fens (with or without trees and 

shrubs), forested or shrubby wetlands, and aquatic vegetation. Non-wetland (e.g. forest) 

and types of urban land cover were also identified. The PALSAR satellite captured data 

at 20-m resolution in two information channels: a horizontal send and receive (L-HH; 

for estimating water below vegetation) and a horizontal send and vertical receive (L-

HV; for estimating biomass). Where dual-polarization was unavailable, a single L-HH 
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band was used with 10-m resolution. Images from each season (spring, summer, fall) 

acquired between 2008 and 2011 were used to differentiate and classify vegetation that 

appeared earlier or later in the season. Cloud-free Landsat images that coincided closely 

with the date of PALSAR acquisition were primarily used to delineate landscape 

features (e.g. roads, agriculture, grass). Field-truthed data were used to guide the 

classification and to conduct accuracy assessment. The field plots were at least 0.2 ha 

(size of mapping unit) with only one habitat feature present. These were superimposed 

on the image to derive supervised data that were fed into a proprietary Random Forest 

classifier written in R. As part of the classifier and to simplify processing, an 

unsupervised classification grouped similar pixels together. Areas of spectral confusion 

were classified with the supervised maximum likelihood scheme. The accuracy was 

reported in confusion matrices for each Great Lake and for the basin as a whole 

(Bourgeau-Chavez 2015).  

SWOOP 

The SWOOP (Southwestern Ontario Orthophotography Project) was funded by 

multiple agencies (municipal, provincial and federal) who wanted to obtain seamless 

aerial photos of the southwestern portion of the province at regular intervals (2006, 2010 

and 2015 so far). Because the project was developed primarily for planning purposes, the 

image data were acquired during spring when leaf-off conditions allowed for unobscured 

view of buildings and roads. SWOOP images are freely available to participating 

stakeholders and research institutes. Marcaccio & Chow-Fraser (unpub. data) developed a 

method to use the SWOOP image data to map invasive Phragmites along all major 
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highways of Ontario in southern and central Ontario. Since SWOOP data are captured 

from a plane rather than from a satellite, the surface of the earth is much closer to the 

sensor, and the true colour image had a spatial resolution of 20 cm with red, green, and 

blue bands. Therefore, although the area of interest is very large (half of the province), 

some of features being mapped can be very small (small Phragmites patch). Marcaccio & 

Chow-Fraser classified the features using an object-oriented approach (eCognition; 

Trimble Navigation, California, U.S.A.) that allowed for better interpretation of high-

resolution data since similar pixels are grouped into ‘image objects’. These image objects 

can be processed quickly and more accurately because they contain more information 

(shape, texture, geometry) than pixel values do on their own. No field data were needed to 

supervise this classification because of the high resolution. A confusion matrix was 

generated from 200 random points which were also remotely sensed from the image data.  

UAV 

The UAV used for this study was a senseFly eBee (Parrot, Cheseaux-Lausanne, 

Switzerland) equipped with a Canon ELPH 110 HS digital camera.  This method was the 

most time-consuming of all four methods considered on a per-unit area basis. For only a 

subset of the study area, Marcaccio et al. (2016) spent 6 hours to acquire image data (30 

passes with the UAV) in the field, and then spent an additional 24 hours to post-process 

the images to create a georeferenced map. The spatial resolution of the resultant image 

data was 8 cm per pixel. All of the Phragmites stands was delineated manually by field 

researchers who had surveyed habitat features in the study area for over 2 months. The 
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extremely high resolution of the image data and the manual delineation of habitat classes 

did not necessitate ground truthing in this method.  

Independent accuracy analysis 

To independently verify the accuracy of all products, we created 90 control points 

using high-resolution data from Google Earth (Alphabet Inc., Mountain View, California, 

U.S.A.) that had been acquired as close as possible to the dates of the other image data 

used in this study (i.e. 2013).  We placed 31 control points in invasive Phragmites stands, 

15 in Typha sp., and 15 in other homogeneous areas such as meadow marsh, forests, and 

open water. To minimize effects of growth or dieback of these land cover types, each 

point was placed centrally within a large patch (>0.2 hectares where possible) of a single 

vegetation type. For each remote sensing method, a confusion matrix was generated and a 

kappa score was calculated. Since the Landsat and UAV methods were not continuous 

(that is, not every feature is given a value within the classification scheme) these had a 

smaller number of control points associated with them.  

 

Results: 

Comparison of results can be achieved visually (area of Phragmites mapped), via 

individual accuracy assessment, or as part of the independent accuracy analysis. Although 

it could be difficult to differentiate between native and invasive Phragmites through 

image data, only the invasive type was found in sufficiently high density to be captured 

by remote sensing methods. This is because native Phragmites is often found interspersed 

with other vegetation and does not contribute to a homogeneous monoculture patch.  
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Mapped invasive Phragmites 

Classifications produced by the different remote sensing methods were relatively 

unique (Figure 2). The Landsat method classified 622 ha of land covered as Phragmites. 

This can further be broken down chronologically: 428 ha originated from the 1993 image 

data, with 72 and 122 additional ha from the 1999 and 2010 images. respectively. By 

comparison, 199 ha were classified as Phragmites by the PALSAR method and only 149 

ha by the SWOOP method. Logistical constraints only allowed us to classify a small 

portion of the study area using the UAV.  For a direct comparison of the 4 methods, we 

obtained estimates for the portion of the study site classified by the UAV method; for this 

same land parcel, the Landsat, PALSAR, SWOOP and UAV methods estimated 452, 135, 

41 and 74 ha of invasive Phragmites, respectively (see Figure 6.2).  

Individual accuracy assessments 

Since there was no confusion matrix associated with the LANDSAT method, it 

was impossible to directly compare its results with those of the other remote sensing 

methods. Therefore, results had to be compared against those of a previous mapping in a 

different study area, and we found a 57% match with data from 7 years earlier (Young et 

al. 2011). The majority of the mismatched classification was attributed to invasion by 

Phragmites compared to the earlier study, but it is not possible to verify this assumption. 

While the UAV method did not have an associated confusion matrix, each habitat feature 

was created manually (similar to ‘truthed’ data from the same image data) and therefore, 

we have assumed these to be very accurate. The PALSAR approach had an overall 

accuracy of 92% for Lake Erie, with 94% producer accuracy and 82% user accuracy for 
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Phragmites (full Great Lakes confusion matrix can be found in Table 4 of Bourgeau-

Chavez et al. 2015). In comparison, the SWOOP approach had an overall accuracy of 

61% and a producer accuracy of 71% and a user accuracy of 85% for Phragmites (Table 

2). The PALSAR approach was best in terms of overall and individual accuracy for 

Phragmites. The SWOOP data offered more detail due to its ten-fold increase in 

resolution over PALSAR.  

 

Independent Accuracy Analysis 

We were able to directly compare results of the Phragmites classification 

produced by the four methods using the Google Earth image (Table 3). The UAV method 

had the highest overall accuracy/kappa score and was best at identifying invasive 

Phragmites. The SWOOP method had the next highest producer accuracy, indicating that 

errors of commission were low. The PALSAR and Landsat methods had the same user 

accuracy (i.e. similarly low errors of omission). The lowest accuracy was associated with 

the Landsat method, while overall accuracy and kappa scores were moderate for both the 

PALSAR and SWOOP methods.  

 

Discussion: 

The four remote-sensing methods produced very different results for the same 

study area. If we accept that the UAV approach produced the most accurate classification 

of invasive Phragmites, the Landsat approach produced the highest overestimates. Both 

the PALSAR and SWOOP methods produced moderate accuracy, but the SWOOP 
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method classified a greater proportion of the marsh vegetation as being Phragmites in the 

western portion of the study area compared to the PALSAR method. The confusion 

matrix for the SWOOP method indicated that a high percentage of the confusion was due 

to meadow marsh being incorrectly identified as Phragmites, and a large portion of this 

land cover occurred in the southeastern portion of the map. The PALSAR method 

classified major portions in the western portion of the marsh as ‘aquatic bed’ habitat, but 

in reality, high-resolution image data showed this area to consist of small wetland patches 

surrounded by water, and this could have led to spectral confusion given the larger pixels 

of the PALSAR satellite (i.e. both water and small wetland patches combined in a pixel). 

The Google Earth image provided an objective means to compare the 

classification products of the four remote-sensing methods. Overall, the Landsat method 

had the poorest accuracy, and greatly overestimated the amount of Phragmites present; on 

the other hand, it had very low errors of omission. Since data from this method only 

included ‘other vegetation’, the confusion matrix was also downscaled (no categories of 

Typha, etc). No field data were used as ground truth inputs prior to (or after) 

classification. The major advantage of this method is that Landsat data are all freely 

available to researchers, and it is the only continuously available historical option for 

many areas in the world. Processing times for this method are relatively rapid because of 

the low resolution and masking from previous land-use layers; however, it is not well 

suited for mapping Phragmites if the goal is to obtain an accurate distribution of 

Phragmites.  
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Among the automatically classified systems, the PALSAR method yielded the 

highest overall accuracy and kappa score; it was only second to the SWOOP method with 

respect to its user accuracy. This method requires a proprietary R script and radar image 

data which may not be freely available in the future (a new PALSAR satellite was 

recently launched to replace the original damaged unit). In addition, processing times 

were long although the scope of the project was very large. On a basin-wide and even 

regional basis, this approach appears to be the most suitable method for delineating large 

stands of Phragmites. Spring-time orthophotos were very high resolution but could not be 

used to map most of the wetland classes because of the timing in the year of image 

acquisition. Fortunately, invasive Phragmites overwinter with their reeds intact and are 

usually the only vegetation that can be identified during spring time. Nevertheless, the 

overall accuracy of this approach was diminished by confusion between deciduous trees 

and water as well as Phragmites and meadow marsh. This indicates that some Phragmites 

stands have been misclassified as meadow marsh, although errors of commission are low. 

SWOOP data are freely available to most researchers in Ontario and the object-based 

image analysis provided a good alternative to Landsat and PALSAR methods. As well, 

the province of Ontario is committed to repeating the acquisition of the image data every 

five years, and this provides an efficient way to to obtain regular updates. If the objective 

is to have an accurate map of Phragmites, the SWOOP method is the most suitable for 

local scales where finer detail (sub-metre resolution) is required.  

Unmanned aerial vehicles are now being used by ecologists to acquire appropriate 

imagery for small-scale projects that cannot be delivered via satellites or piloted aircraft 
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(Chabot & bird 2013; Marcaccio et al. 2016). UAVs are much more cost-effective to 

operate than a plane, and can be deployed multiple times during a single season. Their 

high resolution means that images can be accurately classified without the need for field-

truth data. This method is limited, however, by the large amount of time required to 

acquire and process the images; consequently, only a portion of the entire study area 

could be mapped with this method. There is also modest initial investment of the UAV 

and fees to train the pilots. Although it was shown to be most accurate for mapping 

Phragmites, the spatial and processing limitations mean that this method should be 

restricted to projects with smaller spatial scales where other appropriate image data 

cannot be obtained.  

Conclusion: 

Methods and solutions in remote sensing have made substantial progress in recent 

years, fueled by innovations in satellite technology, image sensors and unmanned aerial 

vehicles. We showed that each of the four methods had both strengths and weaknesses for 

classifying invasive wetland plants in North America. In many regions of the world, 

Landsat is the best option for continuous and historical monitoring of land cover. 

Regional maps of aquatic vegetation were accurately produced with PALSAR images 

while SWOOP image data were best for projects that had a large regional scope but that 

also required small mapping units to be classified accurately. Unmanned aerial vehicles 

require the greatest processing times but also produce very accurate results. This method 

should only be used at smaller spatial scales (in this study, <1,000 hectares) unless 

extremely high resolution or specific, consistent monitoring is required. Novel satellite 
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sensors are accurate for regional classification, and upon verification of Phragmites near 

one’s region of interest, orthophotography and image object-based analyses can be used 

to minimize errors of omission. 
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Table 6.1: Comparison of remote sensing approaches used in this study. 
 

Aspect compared 
 

Landsat 
 

PALSAR 
 

SWOOP 
 

UAV 
Image data Landsat (optical); 

land cover data 
(vector shapefile) 

PALSAR (radar) & 
Landsat (optical) 

Orthophotography 
via Leica 
geosystems ADS80 
SH82 (optical) 

Unmanned aerial 
vehicle  (UAV) 
equipped with 
Canon ELPH 110 
HS (optical) 

Extent of 
classification 

Lake St. Clair, 
Detroit River, & 
Lake Erie (Canada) 

10 kilometre of Great 
Lakes shoreline 
(Canada & U.S.A.) 

Long Point (study 
area) 

Big Creek 
National Wildlife 
Area (subset of 
study area) 

Resolution (per 
pixel) 

30 metres 20 metres 20 centimetres 8 centimetres 

Timing of imagery 
acquisition 

Summer; 1993, 
1999, & 2010 

Spring, summer, fall; 
2008-2011 

Spring; 2010 Summer; 2015 

Classification 
method 

NDVI –based 
hierarchical image 
object-oriented 
decision tree 

Random forests isodata 
unsupervised/supervise
d maximum likelihood 

Image object-
oriented 
classification 

Manual 
delineation 

Developed by Ontario Ministry of 
Natural Resources 
and Forestry  

Bourgeau-Chavez et 
al., Michigan 
Technological 
University, U.S.A.  

Marcaccio & 
Chow-Fraser, 
McMaster 
University, Canada  

Markle & Chow-
Fraser, McMaster 
University, 
Canada (2016) 

Classified results Invasive 
Phragmites (stable; 
expanding; 
diminishing), other 
vegetation (5 types 
of land cover) 

Invasive Phragmites, 
multiple wetland types, 
urban land cover, 
agriculture (24 types of 
land cover) 

Invasive 
Phragmites, Typha, 
Meadow Marsh (6 
land cover types) 

Invasive 
Phragmites 
(stable; rolled; not 
monoculture), 
Typha, aquatic 
habitats (20 types 
of land cover) 

Verification No field truthing; 
compared against 
prior mapping 
efforts 

1751 field truthing sites 
(30 in study area); 
confusion matrix for 
each basin (Great 
Lake) 

No field truthing; 
confusion matrix 
for study area (200 
random points) 

Used field data to 
guide delineation 
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Table 6.2: SWOOP method confusion matrix 
 

 Barren 
Land 

 
Deciduous 

Meadow 
Marsh 

 
Typha 

 
Phragmites 

 
Water 

Producer 
Accuracy 

Barren Land 7 0 0 3 0 0 70% 
Deciduous 1 6 7 2 0 8 26% 

Meadow Marsh 0 7 38 29 3 0 49% 
Typha 1 1 7 48 0 1 84% 

Phragmites 0 2 4 1 17 0 71% 
Water 0 1 1 0 0 5 71% 

User Accuracy 78% 35% 67% 58 85% 36% 61% 
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Table 6.3:  Results of the confusion matrix associated with external validation of 
remote sensing products; producer and user accuracy are for Phragmites 
classification only 

 

 Landsat PALSAR SWOOP UAV 
Producer 
Accuracy 

56 86 90 100 

User Accuracy 77 77 58 100 
Overall 
Accuracy 

57 77 62 87 

Kappa score 0.125 0.638 0.436 0.780 
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Figure 6.1: Research area located on the north shore of Lake Erie, Canada. 
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Figure 6.2: Remote sensing classification outputs. Invasive Phragmites appears in pink  
        on each map 
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Chapter 7: General Conclusion 

Summary: 

In order to effectively manage populations of invasive Phragmites, we must 

understand its geographic distribution. In Chapter 2, we created the first comprehensive 

basin-wide map of wetlands in the Great Lakes including invasive Phragmites. Using a 

combination of sensors and timepoints, we produced an accurate and consistent mapping 

effort that includes both natural and anthropogenically modified land cover. It is 

important that both optical and SAR be combined to obtain the best possible accuracy 

across the suite of land use classes that were derived. These data serve as an important 

baseline for mapping future changes in the distribution of all wetlands and especially 

invasive Phragmites. This method is flexible and can also be used to map non-coastal 

temperate zones such as southern Ontario and Michigan.  

In order to map invasive Phragmites along smaller roadside habitats in Chapter 3, 

we used provincial orthophotography databases with a higher resolution than 

commercially available satellites can provide. With these data, we were able to create the 

largest comprehensive map of invasive Phragmites along a road network with multiple 

years of data. We synthesized our findings into a conceptual model of the distribution of 

invasive Phragmites throughout road networks. Invasive Phragmites was found to 

consistently take over pre-existing grasses found within the road network, which may 

indicate a need for more resistant grass species to be seeded in roadside embankments. 

We found that traffic volume was a significant predictor of invasive Phragmites but this 

was not a strong relationship. While representing a large portion of total areal cover in the 
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dataset expressways and highways were not the most invaded road type by habitat 

available, and this may point to them being a ‘sink’ of invasive Phragmites in the 

landscape. While other habitat variables may preclude the establishment of large 

populations throughout central and northern Ontario, it is possible that invasive 

Phragmites could become an even more dominant and widespread problem throughout all 

of Ontario in a relatively short period of time.  

Using traditional remote sensing data as described above can prohibit mapping of 

very small or newly establishing patches of invasive Phragmites, which are important to 

eradicate to manage their continued spread. In Chapter 4, we describe a methodology for 

acquiring images from unmanned aerial vehicles (UAVs) to obtain sub-decimetre image 

data. Using both multi-rotor and fixed-wing vehicles in wetland ecosystems, we show that 

very high accuracy can be obtained with only optical image data. These results were the 

first to compare different types of UAVs against publicly available image data within 

wetland systems. Using UAVs, researchers, managers, and agencies can obtain timely 

data for their chosen site of interest. These tools can be considered a low-cost investment 

when weighed against the acquisition of annual/seasonal high-resolution commercial 

image data. We believe that the flexibility of UAVs can revolutionize data capture and 

what ecological questions can be asked especially in dynamic ecosystems such as 

wetlands.  

Using our novel remote sensing methodologies, we conducted a review of an 

invasive Phragmites removal program along highways of southern Ontario in Chapter 5. 

While many control programs have been induced in the Great Lakes basin, we found that 
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most do not follow up with any form of effectiveness monitoring. Even though this was 

conducted across an extensive scale, total areal cover of invasive Phragmites increased 

throughout the study period analyzed. We noted that removal efforts on large stands and 

those on large highways were the most ineffective likely due to complexities in 

successfully applying herbicides. Resistance to eradication along a given road was 

directly related to the historic invasive Phragmites areal cover.  Our comparison with 

high resolution satellite data showed that repeat treatments were more effective than 

treatments at single time points. These data have and will continue to assist future efforts 

in invasive Phragmites removal in novel roadside habitats.  

Put together, these new methods and insights can have a clear benefit to any 

involved in invasive Phragmites control efforts in North America. In order to determine 

the best methods to use for a given study we review each and provide suitable use cases 

in Chapter 6. We identified that the historic and spatial capacities of the Landsat imaging 

system can provide the only continuous historic coverage throughout the world. New 

satellite sensors can improve these results but are not available historically and may have 

high costs associated with them. Orthophotography has been steadily used for decades 

and can provide excellent spatial coverage with much higher resolution than satellite data 

but must be scheduled and acquired by the interested party. Finally, unmanned aerial 

vehicles can provide incredible detail and repetition at a site-specific scale, but their short 

flight times and regulatory hurdles preclude their use for larger projects.   
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Recommendations: 

With new knowledge obtained during this thesis, I make the following recommendations 

for management of invasive Phragmites. 

1. Herbicide suitable for use over aquatic environments must be regulated and 

introduced in Canada. Without this tool, removal of invasive Phragmites will be 

hampered. 

2. A consistent and accurate mapping methodology must be developed and 

continually used to assess the progression of invasive Phragmites in the Great 

Lakes basin. Without appropriate reference data and continual updates, we will 

not have any indication as to its current extent or the effectiveness of our 

eradication strategies. Governments particularly in the Great Lakes basin need to 

make this a priority in order to appropriately manage this aggressive invader. 

3. Future work on invasive Phragmites must include regular monitoring post-

treatment in order to help guide any future works. Without these data, treatments 

may become ineffective and invasive Phragmites cover could continue to expand 

instead of diminish.  

4. Large scale removal efforts must involve participation and coordination of all 

adjacent land owners. Even very small patches of invasive Phragmites can lead to 

its continued presence along the landscape. Without the action of all parties, 

invasive Phragmites will continue to be a problem in our wetland and roadside 

ecosystems.  
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5. We recommend that unmanned aerial vehicles be used at the site level to obtain 

the best possible data of invasive Phragmites distribution. Since even small 

patches can continue to disperse and propagate, it is important to know where 

these are and eliminate them during removal.  

6. Removal efforts must be targeted and have a clear plan of action. While one can 

choose to focus on the large spatial distribution of invasive Phragmites within 

highways of Ontario, these often have large patches and are very difficult to 

eradicate. If funds are limited, it may be best to focus on smaller roads that have 

smaller patches which will be more easily eliminated. While it leaves large 

patches as an ‘eyesore’, This approach may limit the spread of invasive 

Phragmites to novel habitats.  

7. An alternative seed mix for roadside habitats should be investigate. At present, 

there appears to be little competition against invasive Phragmites in roadside 

habitats but this could change with different native plant species. 

8. Unmanned aerial vehicles are excellent for mapping small site-specific areas, but 

they are not a solution or alternative to traditional remote sensing data. These data 

will allow us to ask novel answers and acquire interesting data, but they do not 

replace satellites and orthophotography. 

Future Work 

During the completion of this thesis, we found many additional projects and questions 

that could further our understanding of invasive Phragmites geography and ecology. 
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1. While we now have comprehensive methods for determining the areal cover of 

invasive Phragmites, we cannot currently determine its density. It is very likely 

that removal efforts for and propagation of this invader is impacted by density as 

well as areal cover.  

2. Further validation of our conceptual model from Chapter 5 is necessary. In 

particular, future efforts can focus on: 

a. If wetlands are a sink or source of invasive Phragmites propagules. Future 

studies should observe the distribution of stands and expansion over time 

far from and adjacent to wetlands, such as Long Point and Point Pelee.  

b. If road construction assists in the spread of invasive Phragmites. With a 

comprehensive construction database between 2006 and 2010, we could 

determine if sites near construction (where vehicles and people are 

disturbing the environment and potentially distributing seeds) are more 

quickly invaded than sites far from it.  

c. If soil type has a significant influence on invasive Phragmites distribution. 

Southwestern Ontario is all underlain by one soil type, but central Ontario 

contains unique soil types. With new image data from central Ontario, we 

could determine if expansion is slower in areas with similar traffic volume 

but unique soil types.  

d. If the construction or morphometry of roadside habitats influences 

invasive Phragmites distribution. Not all roadside habitat is constructed 

with the same dimensions and some methods and geometries may be more 
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or less conducive to invasion. This would require comprehensive and 

geographic data on the qualities of roadsides in Ontario.  

e. Determining the significance of these variables and how they combine to 

permit the expansion of invasive Phragmites. With data from the above 

questions and advanced statistical modelling, it may be possible to 

determine the likelihood of invasive Phragmites distribution in the future 

which would be beneficial when planning removal efforts.  

3. A direct comparison of expansion and removal efficacy in wetland and roadsides 

should be undertaken. These are two unique habitat types and invasive Phragmites 

may not respond to both in the same manner.  

4. The expansion pathway of invasive Phragmites into Ontario is still elusive. With 

our remote sensing methods and new novel approaches, we could determine 

where and when invasive Phragmites first began its rapid expansion and how it 

has spread over time. These results would be important to help stop future 

expansion throughout the Great Lakes basin.  

a. Using genetic tools, we can observe the number of unique individuals 

within wetlands and whether these are highly correlated to adjacent 

roadside habitats.  

b. Similar to the above, historic herbarium samples can also be analyzed if 

appropriate geographic data were collected along with each sample. 

c. In current areas dominated by invasive Phragmites, we can use historic air 

photos to determine the beginning of invasions.  
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5.  Continued monitoring of treated invasive Phragmites patches should be 

undertaken to determine the regeneration of natural habitat. Specifically, research 

should determine not just the regeneration of native flora but also the 

reintroduction of native fauna that were displaced due to invasive Phragmites 

monocultures.  

6. Future efforts could determine the unique spectral signature of invasive 

Phragmites from native Phragmites and other wetland species. While these values 

could differ depending on the sensor array and distance from subject, these data 

would allow for more accurate and definitive mapping products. 

7. With data from above, a system can be developed to automatically distribute 

herbicide over invasive Phragmites from unmanned aerial vehicles. Even without 

automated image classification or automated flights, this tool could lead to a 

revolution in how we manage this species at the site scale.  
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Chapter 8/Appendix A: Comparison of remote sensing approaches to map 

Phragmites in coastal areas of southern Ontario 
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Background: 

 Invasive species can cause a multitude of ecological, social, and economic 

problems, and none have been as problematic as invasive Phragmites australis (common 

reed).  Different remote sensing approaches have been used to map the Phragmites 

distribution within the Great Lakes basin.  In Canada, the Ontario Ministry of Natural 

Resources and Forestry (OMNRF) uses Landsat images with NDVI bands from three 

different growing seasons and years to classify and delineate Phragmites.  After training 

polygons are created, a hierarchical image object-based decision tree is used to 

differentiate among vegetation classes.  By contrast, in the U.S., Michigan Technological 

University (MTU; Bourgeau-Chavez et al. 2015) uses PALSAR (Phase Array type L-

band Synthetic Aperture Radar) imagery together with Landsat NDVI, with three images 

taken in different seasons throughout one year (spring, summer & fall).  This approach 

uses a combination of unsupervised and supervised pixel-based classification to 

differentiate among all class types.  The purpose of this document is 1) to directly 

compare the results of both approaches 2) consider the merits and limitations of using 

radar and 3) to discuss the benefit of using field data for supervised classification.  

Objective: 

This document explores the similarities and differences of two remote-sensing 

approaches, one involving PALSAR + Landsat NDVI (Bourgeau-Chavez et al. 2015), and 

another involving only Landsat NDVI (Young, Young & Hogg 2011).  Independent 

accuracy assessments for each product as well as a comparison of spatial disparities 

between the results will be presented.  Possible reasons for inaccuracies and mismatches 
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are also discussed.  For remainder of this document, we will use the  terms "PALSAR+" 

and "NDVI" to distinguish between the two approaches. 

 

Methods: 

Study Area 

In the PALSAR+ project, all land use and land cover within 10 km of the Great 

Lakes shoreline were classified (Table 8.1; Table S8.1).  Although multiple land use and 

vegetation types were classified, Phragmites was the main plant species identified 

throughout the study area.  Areas dominated by Typha sp. and Schoenoplectus sp. were 

also noted, as were more diverse wetland systems (compiled under ‘wetlands’).  Other 

wetland classes included fens (with or without trees and shrubs), forested or shrubby 

wetlands, and aquatic vegetation.  

The NDVI project was designed to map coastal wetlands on the Canadian shoreline 

of Lake Erie and southern Lake Huron. The Southern Ontario Land Resource Information 

System (SOLRIS) was first used to identify potential wetland areas and to exclude areas 

where Phragmites was unlikely to occur (e.g. built-up areas).  All land use types within 

each potential area were classified, although the emphasis was on delineating Phragmites 

stands. 

Imagery 

 The PALSAR+ approach used both PALSAR and Landsat imagery . PALSAR 

was acquired at 20-m resolution that supported two information channels: a horizontal 

send and receive (L-HH; for estimating water below vegetation) and a horizontal send 
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and vertical receive (L-HV; for estimating biomass). In cases where the dual channel data 

were unavailable, a single polarization dataset consisting of only L-HH was used, which 

had a 10-m resolution. Each frame was 70 km x 70 km regardless of the number of 

channels used, and all three time periods were stacked together to create a single file per 

area.  Cloud-free Landsat 7 images acquired close to the dates of the PALSAR 

acquisitions were used to classify landscape features (e.g. roads, buildings, fields).  If 

available, other high-resolution aerial photographs were also used for this purpose.  

 When possible, both PALSAR and LANDSAT imagery were acquired in 2010, 

with one image each for spring, summer, and fall for each frame area (three seasonal 

images per year). If imagery for 2010 were unavailable, imagery from 2007 to 2011 were 

obtained; this may have resulted in some disparities in adjacent areas but possible 

inaccuracies associated with this is unknown.  Multiple seasons were used to better 

differentiate among classes, as some plant species may grow more quickly during spring 

while others would become prevalent later in the season.  

 The NDVI approach used three years of NDVI band information from Landsat 

from 1993 to 2010. This facilitated analysis of stand growth over multiple years since 

Phragmites has been noted to expand rapidly and this information yielded spectral 

signatures that can distinguish them from Typha. 

Field Data 

 The minimum mapping unit for PALSAR imagery has been determined to be 0.2 

ha (2 x 2.5 pixels in this case), as noise in the imagery can reduce the usefulness of the 

results (Bourgeau-Chavez et al.,  2009).  Because of this, all sites sampled are at a 
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minimum 0.2 ha in size.  All sites were randomly selected from a database of all known 

emergent wetland locations.  Sources included the National Wetland Inventory, the 

McMaster Coastal Wetland Inventory, and the Great Lakes Coastal Wetland Consortium.  

Field data were collected from 2010 to 2013 (May to October in each year) in both U.S. 

and Canada.  Initially 100 sites were drawn for the Canadian portion, but there was only 

sufficient time during 2013 for McMaster researchers to visit 69 that were road 

accessible.   Data collection followed a standardized protocol.  Within each site, a 

homogeneous area (at least 0.2 ha in size) was used as the basis of the training polygon.  

Handheld Garmin ETrex GPS units were used to record location (accuracy approximately 

5 m), and where appropriate photographs were taken for plant identification.  The wetland 

type was assigned, the species diversity and dominant species were noted, the depth of 

standing water as well as the vegetative life stage was recorded, and the height and 

density of Phragmites and Typha spp. were measured.  Photographs were also taken in 

four cardinal directions at the plot centroid to provide additional information to ground 

truth each data point (see Table S8.2 for list of all variables). 

 The NDVI method did not use field information to classify their images.  

Although members of the Ontario Federation of Anglers and Hunters (OFAH) collected 

field data for this project, they collected point data rather than polygon areas, and these 

were not suitable for classification. 

Classification 

 The comprehensive description of the classification and mapping procedures are 

documented in Bourgeau-Chavez et al. (2015).  We will only provide a simplified version 
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of the procedure here.  Field data and air photo interpretation were first used to identify 

the wetland vegetation types.  A group of trained individuals performed the photo 

interpretation to generate two unique sets of data that were then combined. To ensure an 

accurate classification, we aimed to include 50 polygons for each class.  Each PALSAR 

frame (70km x 70 km) has its own set of field data and remote sensing data, for a total of 

over 100 frames in Canada (Lake Erie had approximately 15 frames).  

 All of the shorelines for Lakes Ontario, Erie, Huron and Superior were at 30 cm 

resolution, except for Georgian Bay, which were based on ESRI's World Imagery and 

Google Earth. The supervised data were input to "Random Forests" with the three date 

Landsat-PALSAR image stack which included all Landsat bands (21) and PALSAR 

bands (6) as well as an NDVI layer for each Landsat date (3), for a total of 30 input 

remote sensing bands.  Random Forests is a proprietary R script developed by researchers 

at MTU to streamline the process of classification and accuracy assessment.  An isodata 

unsupervised classification is used to group pixels with similar spectral properties 

together, and this is iterated until each class is classified.  For areas of spectral confusion, 

a supervised maximum likelihood classification is used in conjunction with field data as 

the supervised cells.  Areas identified as having Phragmites are then filtered so that areas 

below 0.2 ha in size are removed. Manual filtration is also used to eliminate any other 

erroneous areas.  We preferred errors of commission rather than omission for Phragmites 

in order to generate a comprehensive distribution of all stands in Canada. 

 The NDVI approach used training polygons derived by remote sensing within 

areas identified by SOLRIS.  A hierarchical image object-oriented decision tree 
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classification was used, which builds one class at a time and identifies the confusion 

associated with it. This also allows extraneous portions to be identified and excluded prior 

to classification.  All areas below the minimum mapping unit (0.81 ha) were then 

eliminated before the final product was created.  

Results: 

 The PALSAR+ approach provided a much larger geographical coverage than did 

the NDVI approach, and achieved this at a higher resolution.  The PALSAR+ approach 

used images from one calendar year for the most part, compared with the near 20-year 

span for images in the NDVI approach.  While the OFAH had visited more locations than 

did the McMaster field crew, their data were not suitable for use in classification because 

they collected point data instead of an area occupied by a pixel. Although both 

approaches are technically sound, the NDVI protocol was a simpler method, with fewer 

steps. The accuracy table for the NDVI approach, which compares its results against prior 

mapping can be seen in Table 8.2; the error matrix for the PALSAR+ approach is in the 

Appendix.  

Accuracy Assessment 

 On a basin-wide scale, the PALSAR+ approach had relatively low errors of 

omission (11%) for Phragmites while commission errors were higher (36%). User 

accuracy was 64% with a producer accuracy of 89%.  In Lake Erie specifically, 

accuracies for Phragmites were very high, with very low errors (82% user accuracy, 18% 

commission error, 94% producer accuracy, 6% omission error).  In contrast, accuracies 
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were low for both Lakes Huron and Michigan and errors were high for Phragmites.  

There were no Phragmites identified in Lake Superior within its 10 km shoreline buffer.  

 The NDVI approach had a qualitative assessment against previous mapping 

efforts obtained by Arzandeh & Wang (2003), but the validity of the comparison is 

limited by the 10-y time lag between image acquisitions.  There was a good visual fit 

between both products when taking into consideration the expansion of Phragmites 

throughout the region over the elapsed time.  A numeric analysis showed that there was a 

good match between products, and that discrepancies could be due to a difference in the 

approaches’ intentions (i.e. importance of Type 2 error or commission error) and the time 

lag (see Table 8.2).  The approach used by Arzandeh & Wang (2003) as well as the 

PALSAR+ approach over-predicted the presence of Phragmites compared with the more 

conservative NDVI approach. No error matrix was available for the NDVI approach, as 

field training data were not used.  

Field Verification 

 During the summer of 2014, McMaster researchers carried out additional field 

work and we will use these data to assess the accuracy of Phragmites mapping by both 

approaches.  Three areas with various densities of Phragmites  as well as other wetland 

classes were targeted for data collection: two in Lake Ontario (the western end of Lake 

Ontario near Hamilton and Presqu’ile Provincial Park and surrounding wetlands)  and one 

in Lake Erie (Big Creek National Wildlife area and north of it within Long Point Marsh 

Complex).  A limited number of sampling locations were visited in Georgian Bay, but 
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there were insufficient information for any conclusive analysis.  More work in the area is 

planned for the summer of 2015. 

 Altogether, 18 sites were visited in Long Point Bay, a region that had been 

mapped by both mapping approaches. Using the PALSAR+ approach, over 70% of 

Phragmites sites were correctly identified and 90% of non-Phragmites sites were 

correctly identified (Table 8.3).  With the NDVI approach, 43% of Phragmites field sites 

were correctly identified and 64% of non-Phragmites sites were correctly identified 

(Table 8.4).  Two Phragmites presence sites indicated by the field validation were not 

within any classification area in the NDVI approach, and this may have been because the 

subject land were located too far from the shoreline. The PALSAR+ approach classified 

the entirety of each frame, and thus no pixels remained unclassified.  

We also used training data obtained in 2013 to assess the accuracy of the NDVI 

approach; unfortunately, training sites cannot be used to assess the accuracy of the 

PALSAR+ approach, as these had been used in the classification process.  Within the 

region of interest, there were 30 sites, 19 of which contained Phragmites.  53% of these 

were correctly classified by the NDVI approach while 16% were not classified (Table 

8.5).  Points containing other vegetation were classified with 18% accuracy, with the rest 

being classified as Phragmites. 

NDVI and PALSAR+ comparison 

 We used a minimum convex hull around the polygons associated with the NDVI 

approach to delineate a study area that could be used to directly compare the NDVI and 

PALSAR+ approaches since the PALSAR+ approach covered a greater total area (Figure 
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8.1).  By overlaying mapped areas produced by both approaches, we can calculate the 

degree of agreement between approaches.  There was moderate agreement between 

approaches; however, the NDVI approach classified a larger amount of the area but 

achieved a higher amount of mismatched areas compared with the PALSAR+ approach 

(Table 8.6).  The disparities between approaches varied among regions.  For instance, in 

the Walpole Island area, the PALSAR+ approach produced a map with greater coverage 

of Phragmites than did the NDVI approach, and therefore resulted in a worse match 

between the two approaches (Figure 8.2; Table 8.6).   By comparison, if we focus on the 

Long Point Bay region, we observe an opposite trend (Figure 8.3).  Here, the PALSAR+ 

approach classified less than 50% of the area achieved by the NDVI approach (Table 

8.6).  In the eastern end of the basin in southern Grand River, where the landscape was 

not dominated by wetlands, the differences become even more striking, and the % match 

declined drastically (Figure 8.4, Table 8.6).  

Discussion: 

 When considering the accuracies reported by both approaches in their respective 

documentations, there is no evidence that the PALSAR+ approach produced a more 

accurate classification for Phragmites than the NDVI approach; however,  when we used 

field data collected in 2014 to directly compare the accuracy of the two mapping 

approaches within the study area, differences do emerge (Figure 8.1).  Although the 2014 

data with the PALSAR+ protocol, they were not used in the training and classification, 

and are therefore suitable to be used for accuracy assessment. Based on the 2014 field 

data, there was a higher accuracy (5/7; Table 8.3) for Phragmites using the PALSAR+ 
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method compared to the NDVI approach (3/7; Table 8.4).  The reason for these 

differences may be due to the additional field-verified training polygons used during 

classification in the PALSAR+ approach, whereas the NDVI approach did not include 

any training data.  It is important that the field data be collected for polygons or centroids 

rather than just points as these do not reveal the spatial distribution of the recorded 

subject. As the points are likely to be captured at a time when current imagery is not 

available, remote sensing cannot be used to determine where the subject extends to. With 

polygons or centroids that match the minimum mapping unit, researchers can know that 

the entire area is composed of the subject and that the area will be included in a pixel of 

the imagery used.  

 For the above comparison, there is a certain amount of error due to the time 

elapsed between the date of field work and the date of acquisitions (i.e. 4 growing 

seasons), but this limitation is applied equally to both approaches.  Because the 2008 

SOLRIS layer was used to isolate potential areas for Phragmites classification, the NDVI 

approach may have inadvertently excluded areas in the landscape where Phragmites had 

expanded between the image acquisition and the field collection, and this might have 

hindered its ability to detect Phragmites in the study area; consequently, two Phragmites 

sites in the field validation were left unclassified.  Although only 7 Phragmites sites were 

used in this comparison, the PALSAR+ approach was able to accurately identify all 

Phragmites stands and did not have any false classifications.  When field data obtained 

for the PALSAR+ classification study were used to assess the accuracy of the NDVI 

approach, we found that accuracy improved but there were similar problems with general 
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confusion between Phragmites and other vegetation (Table 8.5).   Even with a limited 

data set for the Lake Erie basin, the results showed that the PALSAR+ approach was 

more accurate than the NDVI approach.  

 The large amount of mismatch between both approaches underscores an 

underlying difference in how each approach performs the classification. Whereas the 

PALSAR+ approach tended to identify many small patches of Phragmites, the NDVI 

approach tended to classify large contiguous areas of Phragmites.  This could be due to 

the ability of radar to detect biomass and water depth. Phragmites is known to grow in 

shallower waters and in high density, which can help distinguish it from Typha and other 

wetland vegetation. A radar image like PALSAR will be able to better define areas where 

Phragmites exists based off of these parameters. The NDVI measures are relatively 

unique for each species, but in areas where multiple species grow spectral confusion 

could lead to the area being identified as more closely resembling Phragmites instead of a 

mixed wetland.    

 There was not great a disparity between maps for the Walpole Island (Figure 8.2), 

and the numerical comparison is similar to that of the entire study area.  The difference 

between approaches was especially evident in the southern Grand River, where the NDVI 

approach classified large wetland areas within the river as Phragmites while the 

PALSAR+ approach identified many smaller areas around the periphery.  Based on 

analysis with SWOOP 2010 imagery, there does not appear to be large patches of 

Phragmites as shown in the NDVI imagery. In the Long Point Bay region, the NDVI 

approach correctly classified Phragmites stands but in most cases over-extended the 
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boundaries of the stands. The reason for this error is unclear, but may be linked to 

possible confusion between Typha and Phragmites as there was an abundance of Typha in 

Big Creek National Wildlife Area and the adjacent wetlands (located in the western 

portion of Figure 8.3). Using imagery provided by Google Earth, it can be seen that the 

impounded wetland within the Big Creek National Wildlife Area has little Phragmites 

present (Figure 8.5). The wetlands in the surrounding area do have stands of Phragmites, 

but none are very expansive and are often small and sparse. This error could have been 

remedied by using field training points in the area to assist with remote sensing.  

It is difficult to say how much the NDVI classification could improve with proper 

field training data, but this is most likely the source of error in certain regions (e.g. Long 

Point).  The NDVI approach is also limited in its reach because only coastal areas were 

considered.  Even if the coverage extended to within 10-km of the shoreline, the NDVI 

approach would still only classify a small portion of the image due to the SOLRIS 

boundary, whereas the PALSAR+ approach would classify the entire image.  

 

Conclusion: 

 We showed that the PALSAR+ approach can identify Phragmites patches more 

accurately than can NDVI approach for the area they share in common.  There are more 

factors to consider than just the accuracy for both approaches, including the cost, amount 

of time required to perform field collection and the classification process, and the size of 

the areas being mapped. The sources of imagery pose a problem for both approaches: 

PALSAR is expensive to acquire, and the NDVI approach uses imagery spanning over 
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almost 20 years (with a minimum 6-y gap).  The PALSAR+ approach could be cost-

prohibitive for some agencies.  As well, the original PALSAR satellite is no longer 

operational, although a new satellite is now currently in orbit.  The time lag required for 

the NDVI approach means that any mapping products will be dated when it becomes 

available for use by managers, as the classification work will also add to the delay. 

Although smaller time spans could be used, they have yet to be tested for Phragmites 

mapping. The extent of the NDVI approach is also limited to what is identified by 

SOLRIS which does not include central/northern Ontario.  Other products could be used 

as a substitute to SOLRIS above southern Ontario but these have not been tested.  The 

final decision as to which method to use may be a result of the agency’s financial 

situation and whether the NDVI approach could be repeated with relatively high 

frequency across the entire coast of the Great Lakes.  
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Table 8.1:  Comparison of the PALSAR+ approach and the NDVI approach to 
mapping Phragmites 

 

  

  
PALSAR+ 

 
NDVI 

Extent 10 km of Great Lakes shoreline Coastal wetlands on Lake Erie, 
Detroit River & Lake St. Clair, as 
identified in SOLRIS 
 

Imagery Source PALSAR & Landsat; active radar 
and passive optical 
 

Landsat; passive optical 

Resolution 
 

20 m 30 m 

Timing of 
imagery 
acquisition 

2008 - 2011; spring, summer, fall Summer of 1993, 1999, 2010 

 
Field Data 

 
1751 sites in total (30 within NDVI 
area visited by McMaster 
University) 

 
OFAH GPS locations (not used for 
accuracy assessment) 

 
Classification 
Methods 

 
Random Forests isodata 
unsupervised/ supervised maximum 
likelihood 

 
NDVI-based hierarchical image 
object-oriented decision tree 
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Table 8.2:  Comparison of Phragmites mapping between Arzandeh & Wang (2003) 
and the NDVI approach (all units in ha) in the Walpole Island region.  % 
Match is calculated by observing the overlap divided by the total area 
mapped. (Taken from Young & Hog (2011). 

 
  

Total 
 

Mismatch 
 

Overlap 
 

% Match 
Arzandeh & Wang 1600 577 1022 64 
 
NDVI approach 

 
1794 

 
771 

 
1022 

 
57 
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Table 8.3: Accuracy comparison of the PALSAR+ mapping of Phragmites   
   with field data collected in the Long Point Bay region in 2014. 

 

  
PALSAR+ Classification 

 
 

Phragmites 
 

Other 
 

Field  
observations 

 
Phragmites 

 

 
5 

 
2 

 
Other 

 
1 
 

 
10 
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Table 8.4: Accuracy comparison of the NDVI mapping of Phragmites with  
    field data collected in the Long Point Bay region in 2014. 

 

  
NDVI Classification 

 
 

Phragmites 
 

Other 
vegetation 

 

 
Not classified 

Field  
observations 

 
Phragmites 

 

 
3 

 
2 

 
2 

 
Other 

 
4 
 

 
1 

 
6 
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Table 8.5: Accuracy comparison of the NDVI Phragmites mapping with    
field training sites used in the original PALSAR+ classification   
(2013). 

 

  
NDVI Classification 

 
 
 

Phragmites 

 
Other 

vegetation 
 

 
Not classified 

Field  
observations 

 
Phragmites 

 

 
10 

 
6 

 
3 

 
Other 

 
9 
 

 
2 

 
0 
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Table 8.6:  Comparison of areas (ha) classified as Phragmites in the total study area. 

 

 
Region 

 
Approach 

 

 
Total 

 
Mismatch 

 
Overlap 

 
% Match 

 
Entire 

 
NDVI 

 

 
8003 

 
5127 

 
2876 

 
36 

PALSAR+ 
 

6799 3902 2876 42 

Walpole Island 

 
NDVI 

 
2922 

 
989 

 
1933 

 
66 

 
PALSAR+ 

 

 
3722 

 
1778 

 
1933 

 
52 

 
Long Point Bay 

 
NDVI 

 
1676 

 
1335 

 
340 

 
20 

 
PALSAR+ 

 

 
764 

 
419 

 
340 

 
44 

 
Southern Grand River 

 
NDVI 

 
631 

 
566 

 
65 

 
10 

 
PALSAR+ 

 

 
226 

 
159 

 
65 

 
29 
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Figure 8.1:   Outline of the study area (in black) for accuracy assessment of both. 
  



 227 

 

Figure 8.2:  Map showing areas of overlap in areas with Visual comparison of overlap 
and mismatched areas with Phragmites that were mapped and classified with 
both approaches for the Walpole Island region. 

  



 228 

 

Figure 8.3:  Visual comparison of overlap and mismatched Phragmites area classified 
between both approaches in the Long Point region. 
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Figure 8.4: Visual comparison of overlap and mismatched Phragmites area classified 
between both approaches near the southern Grand River. 
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Figure 8.5: Big Creek National Wildlife Area, 2013 (Google Earth). Note the presence of  
small, sparse Phragmites stands throughout. The inset shows the NDVI and 
PALSAR+ comparison overlaid (image not to scale). 
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Abstract: 

 We mapped the distribution of invasive Phragmites australis (Eurpoean common 

reed) in MTO-operated roadways of southern Ontario using airphotos from a provincial 

databse, the Southwestern Ontario Orthophotography Project (SWOOP), which covers all 

highways from Windsor east to Norfolk/Niagara and north to Tobermory. We mapped all 

available SWOOP images acquired in 2006, 2010, and 2015. In addition, we delineated 

invasive Phragmites along MTO-operated roadways within the footprint of Southcentral 

Ontario Orthophotography Project (SCOOP acquired in 2013) and the Central Ontario 

Orthophotography Project (COOP acquired in 2016); the mapping excludes the Greater 

Toronto Area but includes Prince Edward county, roads through the city of Barrie, and 

north to Parry Sound. Based on available orthophotos for SWOOP only, total areal cover 

of invasive Phragmites expanded an order of magnitude between 2006 and 2010 (26.8 to 

259.7 ha, respectively); between 2010 and 2015, there was only an increase of 7.2% 

(278.7 ha), presumably because of ongoing herbicide treatments that began on selected 

roads beginning in 2012. Expansion rates differed between road types, with 400-series 

highways having significantly greater expansion rates than non-400 highways (24.5 vs 6 

times, respectively). Areas covered by SCOOP images had an areal cover of 152 ha in 

2013, while that for COOP images had an areal cover of 7.8 ha in 2016. This inventory is 

freely available for anyone to update using provincial orthophotos or medium to high-

resolution satellite imagery such as Sentinel 2. 
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Executive Summary: 

We have successfully mapped the distribution of invasive Phragmites australis 

(European common reed) in roadways of southern Ontario using airphotos from a 

provincial database, the Southwestern Ontario Orthophotography Project (SWOOP), 

which covers all highways managed by West Region of MTO (Windsor east to 

Norfolk/Niagara and north to Tobermory). This is the first time a project of this scale has 

been conducted to map the presence of Phragmites in roadway corridors, and the first 

time the airphoto dataset has been used for remote sensing. No other dataset provided the 

scale and resolution (20cm/pixel) necessary for identifying historic distributions of 

Phragmites. This study includes all available SWOOP images acquired in 2006, 2010 and 

2015. In addition, we delineated Phragmites along MTO-operated roadways within the 

footprints of the Southcentral Ontario Orthphotography Project (SCOOP acquired in 

2013) and the Central Ontario Orthophotography Project (COOP acquired in 2016). This 

study area excludes the Greater Toronto Area but includes Prince Edward county, roads 

through the city of Barrie, and north to Parry Sound.  

Using eCognition software (Trimble), we conducted an automated image 

classification with the 2006 and 2010 datasets to map Phragmites (and 7 other land-cover 

classes) within an 80-m buffer of the centre-line of all MTO roads. We used this approach 

to map Phragmites in county roads within the West Region to increase our dataset for 

more robust analyses. For automated image classification, we ensured that a minimum 

total accuracy of 80% was achieved for Phragmites, with minimum total scene accuracy 

of 75%.  Accuracy was assessed by comparing classified features to those that were 
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manually digitized from airphotos. We were unable to use the automated classification 

approach to map Phragmites in photos acquired after 2010; therefore, Phragmites stands 

in the 2015 SWOOP, 2013 SCOOP and 2016 COOP images were manually digitized. For 

manual digitization, two technicians were trained to digitize the same road segments until 

they achieved minimum 80% accuracy. No other land cover classes were classified, and 

accuracy assessments were made by confirming the presence of delineated stands by 

comparing against Google Streetview, since no field data were available for this purpose. 

To preserve consistency in manual delineations, all images were digitized by these two 

technicians. 

Based on amount of Phragmites mapped in the SWOOP airphotos, Phragmites 

expanded greatly between 2006 (26.8 ha) and 2010 (259.7 ha); the rate of increase was 

reduced between 2010 and 2015 (331.47 ha), presumably because of extensive herbicide 

treatments on selected roads that commenced in 2012 (see Chow-Fraser & Marcaccio 

2018). Most of the change between years occurred when Phragmites expanded into areas 

occupied by “grasses”, that are essentially low-lying vegetation in road corridors (species 

could not be further distinguished beyond this category). We saw a statistically significant 

but weak influence of surrounding land cover (e.g. agriculture, urban, forest) on the 

expansion rate of Phragmites between 2006 and 2010; the only significant predictors 

were agriculture, grass, and traffic volume (all positive but explained very little of the 

overall variation). This may mean that Phragmites invasion is still in its early stages, and 

that the only limiting factor is available habitat. There were differences in expansion rate 

between road types, with 400-series highways having significantly greater expansion 
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rates than did non-400 series highways, especially those with low traffic volume. 

Between 2006 and 2010, the 400-series highways expanded 24.5 times (from 5.4 ha to 

132.7 ha) compared to only 6 times for all other highway categories combined (from 21.4 

ha to 127.1 ha).  This may be related to the presence of medians in the 400-highways that 

provided more habitat for Phragmites to colonize than on two-lane highways. 

Presence of Phragmites in the 2013 SCOOP dataset (152 ha) was lower than that 

for the 2010 SWOOP dataset; however, this is expected to increase since the demand for 

recreational property is increasing rapidly northward from Barrie to Parry Sound. Not 

surprisingly, the total mapped area covered by the 2016 COOP images was relatively low 

(7.8 ha); however, given that treatment is more successful when stands are small and 

sparsely distributed, we strongly recommend that MTO implement a treatment program 

as soon as possible to prevent Phragmites from expanding further westward and 

northward within Ontario. The Phragmites inventory that we have created should be 

updated at regular intervals, either with airphotos from future acquisitions of SWOOP and 

SCOOP, or with medium to high-resolution satellite image data such as Sentinel 2.  
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Introduction: 

Invasive Phragmites 

Phragmites australis (Cav.) Trin. ex Steudel (the common reed) is a perennial 

grass that grows in many habitat types throughout the world. There are 27 genetically 

distinct groups (haplotypes) worldwide, of which 11 have been found in North America 

(Saltonstall 2002). Over the past two decades, Haplotype M, which originated from 

Europe, invaded coastal and inland wetlands throughout southern Ontario, replacing 

native vegetation and generally reducing biodiversity (Chambers et al. 1999; Markle and 

Chow-Fraser 2018). This invasive haplotype aggressively colonizes exposed mud flats 

sexually (through seeds), and then expand asexually (through rhizomes) to form dense 

monocultures. Its rapid spread has been attributed to it being a superior competitor against 

other emergent vegetation (Rickey and Anderson 2004; Uddin et al. 2014) and to being 

more tolerant of disturbances (e.g. road maintenance and changes in hydrologic regimes) 

and stress (e.g. increased salinity due to road de-icing salts) (Marks et al.,1994; Chambers 

et al. 1999; Saltonstall 2002). 

Past studies have shown that transportation corridors provide excellent invasion 

pathways for species such as invasive Phragmites. Linear ditches along roadsides or in 

the median can be readily colonized by invasive Phragmites (Leong et al. 2007; Brisson 

et al. 2010), because they are able to tolerate high salinity from road salts and require 

little moisture in comparison to other aquatic vegetation (Medeiros et al. 2013). Ministry 

of Transportation of Ontario (MTO) has acknowledged the destructiveness of invasive 

Phragmites, both with respect to the road infrastructure, as well as to adjacent 
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ecosystems, and has been developing a control strategy. Since 2012, MTO has sprayed 

highway corridors with glyphosate, a broad-spectrum herbicide used to control the growth 

of Phragmites and other weeds (Figure 9.1). 

The primary goal of this project is to create a database (McMaster Invasive 

Phragmites Database; MIPD) to map and update the areal cover of invasive Phragmites 

on MTO-managed roads in Ontario. Using the Southwestern Ontario Orthophotography 

Project (SWOOP) database, we used object-based image classification software to 

delineate the extent of Phragmites in MTO’s western region in 2006 and 2010. We 

conducted a change detection analysis to determine roads associated with the highest rate 

of expansion, and to elucidate significant landscape-level factors that may influence 

Phragmites colonization. Additional image data from the Southcentral and Central 

databases (SCOOP 2013 and COOP 2016 respectively) allowed us to increase our 

mapping effort of invasive Phragmites, although there are no other land cover maps, nor 

do these data exist for multiple years. We should also mention that our maps do not 

distinguish between native and invasive haplotypes of Phragmites; that said, it is very 

unlikely that native Phragmites would occur in densities as high as what we have been 

mapping in the present study.  

Orthophoto Databases 

We used the SWOOP database (Southwestern Ontario Orthophotography Project), 

which was organized and funded cooperatively by multiple government agencies 

(municipal, provincial and federal) who wanted to obtain seamless aerial photos of the 

southwestern portion of the province at regular intervals (approximately every 5 years; 
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2006, 2010, 2015, 2020, etc). This dataset covers an area from Windsor east to 

Brantford/Niagara (2006/2010 & 2015) and north to Tobermory (Figure 9.1).  

We also used the SCOOP database (Southcentral Ontario Orthophotography 

Project; 2013) which covers an area from Prince Edward county, west to Barrie 

(excluding the GTA) and north to Parry Sound, as well as the COOP database (Central 

Ontario Orthophotography Project; 2016), which follows the shoreline of northern 

Georgian Bay and the North Channel and includes Manitoulin Island (Figure 9.1). The 

Ontario Ministry of Natural Resources and Forestry (OMNRF) has set forth a plan to 

acquire spring orthophoto image data at regular intervals across the province; eastern and 

northern regions have also been imaged and are planned to be acquired every five years. 

Because these projects were developed primarily for planning purposes, the image data 

were acquired during spring when leaf-off conditions allowed for unobscured view of 

buildings and roads (April-May, weather dependent). SWOOP, SCOOP and COOP 

images are freely available to participating stakeholders and to research agencies and 

universities; the cost would have been prohibitive otherwise. Since SWOOP data are 

captured from a plane rather than from a satellite, the surface of the earth is much closer 

to the sensor, and the true colour image had a spatial resolution of 20 cm with red, green, 

and blue bands. Such high-resolution imagery would allow for a minimum mapping unit 

of <1m and is therefore suitable for mapping Phragmites stands within roadway and/or 

highway ditches.  

Previously, Phragmites has been mapped on a large scale with satellite-based 

imaging sensors in true colour, near-infrared, radar, and combinations thereof (Bourgeau-
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Chavez et al. 2015; Pengra, Johnston, & Loveland 2007; Young, Young, & Hogg 2011). 

These sensors typically have a ground-based resolution of 10-30 m per pixel and can 

often return their orbit to a specific location within two weeks. Due to the nature of these 

sensors, any feature (e.g. Phragmites) that is to mapped must be approximately four times 

the size of the pixel to ensure that, regardless of orientation, the feature would fall 

completely within one pixel.  Hence, the satellite-based sensors require a minimum 

mapping unit of 40x40 to 120x120 m, and this exceeds the dimension of the average 

highway ditch, which for these sensors is too narrow to be appropriately mapped. By 

comparison, aerial photos, or orthophotography (imagery taken from an airplane) can 

provide a much smaller minimum mapping unit (<1m). The trade-off for this high 

resolution however, is the requirement for costly flights to be flown, and involvement of 

many thousands of images to cover an area the size of the province of Ontario. In the 

SWOOP dataset, approximately 50,000 images must be acquired per year, and the 

SCOOP & COOP datasets are of comparable size.  

One of the major challenges of this project was managing the tens of thousands of 

images acquired over the study period. To save time and money in the classification of 

these images, we created subsets of images together that had been acquired at 

approximately the same time of day and during the same time of year within similar 

geographic locations (e.g. Cambridge, Hamilton). Such aerial images should have similar 

spectral characteristics and will produce acceptable results when the same classification 

scheme is developed and applied.  
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Methods: 

Use of eCognition to Map Phragmites 

High resolution data such as that found in SWOOP can be difficult to process. 

Large data files can severely slow processing time for image viewing and even moreso 

for image classification. High resolution data can also have many mixed pixels, where 

two abutting objects are found in the same pixel and the signal is a mix of both. In a 

typical pixel-based method, the unique colour values associated with each pixel is used 

solely to guide classification. This can often lead to inaccuracies because of variation in 

the dataset; in addition, it can result in single pixels being misclassified within a group of 

similar pixels. To process the large amount of high-resolution data, we used eCognition, 

an object-based classification software (Trimble Navigation Limited, Colorado, USA). 

Object-based approaches avoid the above problem by first splitting the image into 

segments that are spectrally similar and/or have a consistent parameter (e.g. shape, length, 

volume) associated with them. This reduces the number of single pixels that can be 

misclassified and allows other intrinsic values from remote sensing to be used (e.g. size, 

shape, perimeter).   

To make our task manageable, we first clipped out a small strip of land (buffer) 

beside each road to be analyzed (Figure 9.2) and performed the classification only on 

these buffer strips. We also included all other roads with posted speed limits above 

60km/h in the SWOOP dataset (data obtained from OMNRF shapefile; Figure 9.3). This 

excluded local roads that were usually maintained by property owners and/or have little to 

no ditch in their right-of-way. The buffer varied according to road speed and road type 
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(e.g. larger buffer was used for 400 series highways compared to two-lane highways). We 

extracted the image data within the buffer using FME (Safe Software, Surrey, BC, 

Canada), and inserted them into eCognition for image processing.  

We created a base classification for identifying invasive Phragmites as well as 

other land cover-land-use types (see Table 9.1).  Some classes such as “shadows” have 

no ecological meaning but are necessary for us to correctly classify the other land cover 

types without confusion. These classes were subsequently used in our change-detection 

analyses to determine the land-cover type that invasive Phragmites were more likely to 

colonize.  

We created a base classification using 5% randomly selected images within a 

particular image subset. We conducted multiple accuracy assessments for these images 

until our base classification met or exceeded our accuracy threshold of 70% for total 

accuracy and minimum 80% for Phragmites. We then applied this base classification to 

remaining images in the subset. The literature has shown that classifications created in 

one image can be transferred to another with a small decrease in total accuracy 

(Rokitnicki-Wojcik et al. 2011). While other studies have completed accuracy 

assessments for every image used, this was not logistically feasible given the large 

number of images we had in our dataset. To improve total accuracy of the classification 

when the dates of image acquisition are not similar, we started with our previous base 

classification and then modified it to incrementally improve the accuracy until an 

acceptable level could be attained. No field data were needed to supervise this 

classification because of the high resolution of the images.  
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We had difficulty using eCognition to classify habitat classes in the 2015 

SWOOP, 2013 SCOOP and 2016 COOP image data. We attribute this to changes in the 

sensor and/or post-processing that had been employed to produce the 2010 and 2006 

SWOOP image data. We found insufficient spectral data to conduct an accurate image 

classification. The images had a large peak in blue band values that resulted in very low 

contrast among objects (Figure 9.4). 

Manual Digitization of Phragmites 

Two trained technicians were responsible for digitizing all of the Phragmites 

within MTO-operated roadways in the SWOOP 2015, SCOOP 2013 and COOP 2016 

datasets. Both technicians had been trained to identify Phragmites as part of the 

eCognition classification procedure. To minimize differences in digitization between the 

two technicians, every road segment was digitized by both individuals and the overlap 

between the two was output to the final product. A typical accuracy report could not be 

generated for this protocol because all of the data had been manually digitized, and this 

was the normal method used to assess the accuracy of the automated classification. We 

compared the overlap to mismatch from each technician and found the ‘accuracy’ to be 

acceptably high (80%). Most of the error were due to small differences in boundary 

delineation, and how carefully technicians followed the outlines of stands with their 

cursor. In general, manual digitization tended to produce fewer but larger polygons 

whereas eCognition was able to pick out many of the smaller stands that could easily be 

missed by the human eye. Knowing this bias, we refrained from conducting a large-scale 

change detection between methods. The only way to validly compare these dates would 
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have been to manually digitize all road segments in the 2006 and 2010 SWOOP images 

as well as other land cover classes. This was clearly not feasible given the amount of time 

we had to complete the project. Even with these differences, we could inspect the 

classified images to assess large-scale changes in the distribution of invasive Phragmites 

between time periods. 

Modelling expansion of Phragmites 

With the data obtained from the automated image classification, we conducted 

stepwise regressions and multiple ANOVAs to determine what landscape factors 

contributed to the expansion of invasive Phragmites between 2006 and 2010. We omitted 

2015 data from this analysis because herbicide treatments had been applied to various 

roadway corridors between 2012 and 2015 and would have altered the outcomes of our 

modelling (see Chow-Fraser & Marcaccio 2018). SCOOP and COOP data were also 

omitted because they were only available for a single time period in 2013 and 2016, 

respectively. We included land-cover data at both the micro- (habitat classes derived for 

the automated image classification) and the macro-scale (derived from the Southern 

Ontario Land Resource Information System 2.0 (SOLRIS; 2009-2011, Ontario Ministry 

of Natural Resources and Forestry). We also added traffic volume as an additional 

explanatory variable to determine its effect on Phragmites distribution.  

A description of the landcover classes comprising the micro-habitat scale can be 

found in Section 2.1 (Methods: Use of eCognition to map invasive Phragmites); both 

2006 and 2010 data were used as inputs. SOLRIS is a database compiled by the Ontario 

Ministry of Natural Resources and Forestry (OMNRF) that covers southwestern and 
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southeastern Ontario. The minimum mappable unit (the smallest discernable unit of land 

cover in the dataset) is 0.5 ha. Land cover classes are based on the Ecological Land 

Classification System (ELC; Lee et al. 1998). Independent databases created by the 

OMNRF were used as training data and applied to an image classification using Landsat 8 

image data from 2009-2011. Multiple image years were required to ensure proper 

seasonality and lack of image artifacts (such as cloud cover). A list of complete land 

cover classes can be found at the source website (www.ontario.ca/data). For our 

modelling, we grouped multiple layers together to reduce the degrees of freedom, only 

used ecologically relevant classes, and excluded land cover classes that had very low 

areal cover in our dataset. Our final class layers consisted of agriculture, wetland, mixed 

forest, coniferous forest, deciduous forest, built-up area, aggregate extraction and open 

water. Traffic volume data were obtained from MTO and corresponded to the 2010 

dataset. 

All statistical modelling was conducted in JMP (SAS Institute, North Carolina, 

USA; v.13). The data were extracted as database files from ArcGIS (v. 10.4; ESRI, 

California, USA) and analyzed in JMP. Relevant spatial statistics (i.e. area, location) were 

applied in ArcGIS before data export. To appropriately analyze the data and reduce error 

associated with automated classification, the data were split into 1-km segment for each 

road, and the data were aggregated at this level. In this way, each road had multiple (>30) 

data ‘points’ with areal cover of each land cover class. SOLRIS data were extracted from 

a 2.5-km radius buffer around each 1-km segment; this was deemed an ecologically 
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relevant distance while maintaining a good overview of the surrounding mosaic of 

landscape.  

Results and Discussion 

Areal Cover of Invasive Phragmites in Highway Corridors 

The GIS database assembled in this study includes data that span a decade 

between 2006 and 2015 for the southwestern region, and to our knowledge, is the only 

inventory of invasive Phragmites in highway corridors within Ontario. It also includes the 

distribution current to 2013 for MTO-operated roads in south central Ontario, and to 2016 

for central Ontario. In most cases, we successfully classified Phragmites with eCognition 

to achieve an accuracy of 80% for the 2006 and 2010 images; however, for reasons that 

we have explained earlier, we were unable to obtain comparable accuracy for the other 

sets of image data. 

In 2006, total areal cover of Phragmites was 26.8 ha (Figure 9.5). The greatest 

amount of Phragmites cover was found on Hwy 6 (5 ha) and Hwy 401 (3.4 ha). While 

there is a pattern of longer roads harbouring more Phragmites, Hwy 6 contained more 

Phragmites per kilometre than all other roads in 2006 (0.02 ha/km). While Hwy 403 had 

the second highest Phragmites density per km, Hwy 401 and 402 had closer to average 

densities during this early period (0.012 ha/km, average 0.011 ha/km). By comparison, 

Hwy 26, 9, and 40 had much lower densities per kilometre than did other highways 

(0.003, 0.003, 0.004 ha/km, respectively).  

In 2010, total areal cover of Phragmites was 259.7 ha (Figure 9.6), a substantial 

increase compared to that in 2006. The average density also increased ten-fold to 0.11 
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ha/km, although the range of values also increased from 0.02 to 0.40 ha/km. During 2010, 

Hwy 6 had a median density (0.07 ha/km) while Hwy 403 had the highest density (0.40 

ha/km). Hwy 402 and 401 also had high densities (0.22 & 0.29 ha/km), similar to that on 

Hwy 85 (0.32 ha/km).  

By far, the greatest change in areal cover between 2006 and 2010 was associated 

with Hwy 401 (76.87 ha) which was double that of the next highest increase, Hwy 21 

(31.81 ha) (Figure 9.7). The largest percent change came from Hwy 40 (2768%) and 

Hwy 85 (2430%). The largest change in density was seen in Hwy 403 (3.84 ha/km) which 

was much larger than that in Hwy 85 (3.05 ha/km), Hwy 401 (2.78 ha/km), and Hwy 402 

(2.07 ha/km) (Figure 9.8).  

The total areal cover of Phragmites in 2015 was 331.47 ha (Figure 9). The 

greatest amount of Phragmites was found on Hwy 401 (107.22 ha) at a density of 0.04 

ha/km. The changes in areal cover and density between 2010 and 2015 had also been 

impacted by strategic herbicide applications that started in 2012; see Chow-Fraser & 

Marcaccio 2018 for a more detailed review of these data. 

Of all road types, the 400-series highways appeared to be most vulnerable to 

colonization because of their medians (Figure 9.10), which had been become densely 

colonized by 2010. Hwy 40 connects Hwy 401 and Sarnia at the western terminus of Hwy 

402 (Figure 9.11). This is a heavily trafficked non-400-series highway that runs close to a 

heavily invaded marsh in the Walpole Island wetland complex. Hwy 85 is a short 

collector highway found in the city of Kitchener-Waterloo, and its highway corridors had 

very high densities throughout both time periods (Figure 9.12). This highway runs 
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through a highly populated neighbourhood and serves as a northern corridor into 

Kitchener-Waterloo. We inspected these highway stretches and found many commission 

errors that may be attributed to the unique land cover in this region (Figure 9.13). For 

instance, in this stretch of highly urbanized highway, we saw unique habitat classes such 

as sound barriers and shadows cast by these barriers that had been misclassified as 

Phragmites. The highway was relatively short and had many unique land cover classes 

that contributed to errors of commission. 

Within the SCOOP 2013 database, we mapped 151.95 ha of Phragmites (Figure 

9.14). The greatest areal cover was associated with Hwy 400, Hwy 11 and Hwy 7 (Figure 

9.15). The greatest densities were found on Hwy 612 and 632, which are significantly 

higher than that on any other road in this dataset, but still lower than that found in the 

SWOOP dataset.  

The total Phragmites cover within the COOP dataset was very low (7.78 ha; 

(Figure 9.16) and this most likely reflects a very early stage of invasion. Hwy 11 had the 

greatest areal cover in this dataset (Figure 9.17).  The very high density reported for Hwy 

539A is an artefact, an inflated number due to only 2 kilometres having been analysed for 

this dataset. Figure 18 shows a better visualization of density, where Hwy 522B, 94, and 

639 have the highest densities. 

Based on the most recent datasets, we have mapped 491 ha of Phragmites across 

Ontario, of which the northern datasets (SCOOP and COOP) only account for a third (160 

ha combined). This lower distribution is due in part to lower traffic volume, and perhaps 

to more harsh landscapes of the Canadian Shield. Nevertheless, if this area is not 
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managed soon, Phragmites may overtake a large portion of available habitat and make it 

much more difficult to eradicate.  Assuming that the rate of expansion (2.14/y) from 2006 

to 2010 in southwestern Ontario could be applied throughout the province, the estimated 

491 ha of Phragmites in the province could grow to 4,283 ha by 2018 and 6,660 ha by 

2020 if we do not implement a comprehensive control program.  

Modelling Expansion of Invasive Phragmites 

Using a stepwise regression, we determined the variables that contributed most to 

explaining the variation in Phragmites abundance in 2010. At the micro-habitat scale, 

grasses, deciduous stands and Phragmites abundance in 2006 had the strongest positive 

effects while at the macro-habitat scale, agricultural and forested lands, as well as 

wetlands were the strongest determinants. We excluded Phragmites abundance in 2006 

since this did not explain any additional variation in the data (p > 0.05) after other 

variables had been accounted for. Because of the large number of observations, all land-

cover variables were statistically significant, although the total explained variance was 

low because of the large geographic area included in this analysis (Table 9.2). The 

strongest effect came from abundance of grasses in 2006. Traffic volume was also a 

significant predictor of Phragmites abundance, but only explained as much as did land 

cover. 

We had to convert roads into 1-km segments in order to standardize the 

observations since some roads were very long (e.g. Hwy 6), while others were very short 

(e.g. Hwy 85).  We did not experiment with other road lengths, and it is possible that at 

even smaller spatial scales, some of the variables might have emerged as being more 
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important. Previous studies have noted that land cover and geography may influence the 

presence of Phragmites on roadsides (Lelong et al. 2007, Maheu-Giroux et al. 2005, 

Brisson et al. 2010). These studies, however, were relatively small in geographic scope, 

and did not consider the areal cover of Phragmites. Another difference is that these other 

studies had been conducted in Quebec where invasive Phragmites had been established 

for quite some time, whereas it is relatively new to roadway corridors in Ontario.  

One interpretation of the outcome of our modelling is that the landscape in 

Ontario is in an earlier stage of the invasion process compared with the Quebec situation, 

where roadways have already become saturated. Unfortunately, historical high-resolution 

image data are not often available to test this hypothesis. Future studies could determine 

if genotypes of invasive Phragmites in highway corridors differ between Quebec and 

Ontario; we would expect Phragmites occurring in close proximity to have the same 

genotype (spread clonally) while those that are located far apart are more likely to have 

different genotypes (spread by seed). Based on this information, investigators may be able 

to develop new control methods that take advantage of gene editing.  

 

Conclusion: 

Invasive Phragmites is present on all MTO-operated roads in southern Ontario, 

and it continues to expand throughout these road networks. Divided highways with 

medians offer more habitat than other road types, which typically leads to greater areal 

cover of Phragmites but not necessarily the densest per kilometre. The greatest amount of 

Phragmites currently occurs in the southern portion of the province, where there are both 
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major highways and large wetland complexes. We are aware that small populations of the 

less aggressive native haplotype exist within southern Ontario, and do not exhibit 

invasive behaviours and therefore do not need to be treated or removed. The current 

remote-sensing techniques, however, cannot differentiate between native and invasive 

haplotypes. We speculate that invasive Phragmites is still at an early stage of invasion 

and will likely continue to expand into any and all available habitat unless they are treated 

with suitable herbicides (see Chow-Fraser & Marcaccio 2018). This is necessary to 

prevent the roughly ten-fold expansion that occurred between 2006 and 2010 in 

southwestern Ontario.  
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Recommendations: 

Due to the change in post-processing of the Ontario Orthophotography Project 

databases, we do not recommend using these image data to update the McMaster Invasive 

Phragmites Database in 2020. Our data serves as an important historical assessment of 

roadways in Ontario that could not have been achieved with other data sources. In the 

future, newer technologies and sensors should be explored for image classification along 

roadway corridors (see Rupasinghe & Chow-Fraser 2018). Results of our modeling 

confirms that Phragmites is at an early stage of invasion with respect to roadsides. Any 

areas that have suitable habitat (high moisture, no existing woody plants) are likely to be 

colonized in short order, and existing stands will continue to expand until they meet a 

physical barrier.  
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Table 9.1: Classes included in the image classification process.  
 

Classes Explanation 

Phragmites Class of interest 

Grasses Small ground-covering plants that occupy majority of land cover 

Shrubs Small plants that are woody/more robust than grass 

Deciduous Trees Bare leafless tree, generally indicating it is deciduous 

Coniferous Trees Conifers; still green in early spring orthophoto 

Paved Any built-up surface, such as road, building, sidewalk, etc. 

Water Streams near roads 

Shadow Land cover obscured by shadow, resulting in dark/black area 
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Table 9.2: Phragmites invasion habitat modelling. Asteriks (*) indicate  significance. 

Model Method Intercept Grasses Conifers Agriculture Forests 
Grasses Bivariate 410.30* 0.03*    
Conifers Bivariate 1439.14*  -0.04   
Agriculture Bivariate 1651.30*   -1.33e-5*  
Forests Bivariate 1069.84*    -4.02e-5 
All GLM -559.62 0.06* 0.09 5e-6 -2e-5* 
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Figure 9.1:  Area covered by various Ontario orthophotography project databases. The 
area covered by SWOOP for 2015 and 2010 is the same; that for 2006 did not 
include portions around Hamilton and Niagara.  
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Figure 9.2: Roads analyzed in the MTO Western Region 
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Figure 9.3: Roads over 60 km/h in Ontario. 
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Figure 9.4:  Photo of parcel of land taken in 2010 (top) and 2015 (bottom). Note the 
reduced contrast in the 2015 image and the peaking of values (bottom-right 
histogram) that led to our inability to perform automated image classification.  
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Figure 9.5:  2006 Phragmites distribution. The outlines of polygons have been 
thickened to allow them to be visible at this scale. 
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Figure 9.6:  2010 Phragmites distribution. The outlines of polygons have been 
thickened to allow them to be visible at this scale. 
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Figure 9.7:  Change in Phragmites distribution between 2006 and 2010. The total 
kilometres analyzed may not represent the actual number of roadway 
kilometres as only segments with Phragmites were assessed.  
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Figure 9.8:  Change in Phragmites density between 2006 and 2010. The total 
kilometres analyzed may not represent the actual number of roadway 
kilometres as only segments with Phragmites were assessed. 
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Figure 9.9:  Phragmites distribution in 2015. The outlines of polygons have been 
thickened to allow them to be visible at this scale. 
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Figure 9.10:  Phragmites along Hwy 401, which had the largest areal cover of
 Phragmites in our dataset.  

  



 268 

 

Figure 9.11:  Phragmites on Hwy 40, one of the most densely populated roads in this 
dataset. 
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Figure 9.12:  Hwy 85 passes through Kitchener-Waterloo and has very unique land 
cover compared to roadsides of other highways.  
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Figure 9.13:  Sample of orthophoto over Hwy 85 showing Phragmites classified in red. 
Although some error is expected and some Phragmites had been 
accurately classified, the unique configuration of the built-up area led to 
numerous errors of commission.  
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Figure 9.14: Phragmites distribution within the SCOOP dataset (2013). 
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Figure 9.15:  Areal cover of Phragmites within the SCOOP 2013 dataset. 
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Figure 9.16: Phragmites distribution within the COOP dataset (2016). 
  



 274 

 

Figure 9.17: Areal cover and density of Phragmites within the COOP dataset. 

  

Phragmites Areal Cover (ha) & Phragmites Density (ha/km) vs. HWY09

HWY09

6 11 17 17
B 63 94 64 65 66 67 69 10
1

10
8

11
2

12
4

14
4

52
2

52
2B 52

4
53

3
53

4
53

5
53

8
53

9
53

9A 54
0

54
2

55
1

55
3

55
7

56
0

56
4

56
6

56
9

57
1

57
3

57
4

57
5

57
7

57
9

62
4

63
0

63
7

63
9

65
2

65
5

65
6

80
5

70
37

70
42

71
82

Ph
ra

gm
ite

s A
re

al 
Co

ve
r (

ha
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ph
ra

gm
ite

s D
en

sit
y (

ha
/k

m
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Phragmites Areal Cover (ha)
Phragmites Density (ha/km)



 275 

 

Figure 9.18:  Areal cover and density of Phragmites within the COOP 2016 dataset, 
with Highway 539A removed.  

  

Phragmites Areal Cover (ha) & Phragmites Density (ha/km) vs. HWY09

HWY09

6 11 17 17
B 63 94 64 65 66 67 69 10
1

10
8

11
2

12
4

14
4

52
2

52
2B 52

4
53

3
53

4
53

5
53

8
53

9
54

0
54

2
55

1
55

3
55

7
56

0
56

4
56

6
56

9
57

1
57

3
57

4
57

5
57

7
57

9
62

4
63

0
63

7
63

9
65

2
65

5
65

6
80

5
70

37
70

42
71

82

Ph
ra

gm
ite

s A
re

al 
Co

ve
r (

ha
)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ph
ra

gm
ite

s D
en

sit
y (

ha
/k

m
)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Phragmites Areal Cover (ha)
Phragmites Density (ha/km)



 276 

Chapter 10/Appendix C: Assessing Efficacy of Treatment Programs to Control 
Invasive Phragmites in Highways Corridors of Southwestern Ontario 
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Abstract: 

The invasive haplotype M of Phragmites australis originated in Europe and was 

introduced to the Atlantic coast in the 1800s. It eventually made its way to Southwestern 

Ontario in the late 1940s. Since 2010, invasive Phragmites has greatly expanded into 

coastal and inland  wetlands throughout all Great Lakes states and provinces, and has 

become firmly established in road corridors. Dense stands of Phragmites can be 

dangerous near roads as they create a fire hazard, block sight lines, and can compromise 

the structural integrity of roadways and infrastructure. The Ministry of Transportation of 

Ontario (MTO) developed a control strategy that involves the use of glyphosate, a broad 

spectrum herbicide, to protect the infrastructure of MTO from this nuisance grass, and 

also to prevent further spread from highway corridors to adjacent natural heritage areas, 

watercourses and agricultural fields. Using the McMaster Invasive Phragmites Database 

(MIPD), we conducted a change-detection analysis between 2010 and 2015 GIS data to 

assess the effectiveness of the weed control program in roadway corridors that has been 

on-going since 2012. Except for the major expressway (i.e. 400-series highways), most of 

the treated roads decreased in areal cover by >95%; removal rates associated with the 

400-series highways ranges from 80-85%. It is important to note that the amount of new 

growth on Hwy 401 and 402 equaled or exceeded what had been removed, resulting in a 

net increase in Phragmites in 2016, despite the treatment program. 
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Executive Summary: 

In this report, we present data from the McMaster Invasive Phragmites Database 

(MIPD; see Marcaccio and Chow-Fraser 2018) to show the overall response of 

Phragmites to glyphosate treatment in the southwestern region of the province. We 

conducted a change-detection analysis between 2010 and 2015 GIS data to assess the 

effectiveness of the weed control program in roadway corridors that has been on-going 

since 2012. Except for the major expressway (i.e. 400-series highways), most of the 

treated roads decreased in areal cover by >95%; removal rates associated with the 400-

series highways ranged from 80-85%. Some of the reasons for the difference in response 

are related to the timing of the treatment relative to the assessment; for example, highway 

segments in the southern region that had been treated three years earlier in 2012 were 

associated with lower efficacy than segments in the northern region, which had been 

treated in 2013 and 2014. To analyze the data at a smaller scale, we divided roads into 1-

km segments and conducted a change-detection analysis to determine the effectiveness of 

treatment for each highway. There was considerable variation in how the road segments 

responded to treatment, but in general, if roads received minimal or no treatment or if 

treatment had been applied at least 2-3 years earlier (i.e in 2012 or 2013), we found a net 

increase in Phragmites; conversely, if roads had been treated in 2013 and 2014, they 

tended to have a net decrease in Phragmites. Based on these lines of evidence, we suggest 

that effectiveness of treatment will vary inversely with length of time since herbicide 

application; therefore, we support the recommended practice of applying follow-up 
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treatments every 2 to 3 years to maintain a reduced presence of Phragmites until they are 

eradicated.  

On the 400-series highways, Phragmites had a faster colonization rate compared 

with other road types, and this resulted in higher net gains of Phragmites over the study 

period, despite the high effectiveness of glyphosate. We also found that patch size of 

Phragmites had a significant influence on both efficacy of glyphosate treatment and the 

colonization rate, and that highways tended to have larger patch size than other road 

types. Phragmites along multi-lane divided freeways may be more difficult to control 

than on two-lane roads, and may require more frequent treatment. We therefore 

recommend development of different control strategies for each road type, and we warn 

against developing a single protocol to apply to all roads, sizes and geographic settings. In 

an appendix, we have also provided the Best Management Practices from jurisdictions 

throughout the Great Lakes basin, who are responsible for controlling and eradicating 

invasive Phragmites in roadway corridors. The McMaster Invasive Phragmites GIS 

Database, created specifically for MTO (i.e. Phragmites mapped in, 2006,  2010 and 2015 

for the southwestern region of the province) has been provided to MTO. 

  



 280 

Introduction: 

Phragmites australis (Cav.) Trin. ex Steudel (the common reed) is a perennial 

grass that grows in many habitat types throughout the world. There are 27 genetically 

distinct groups (haplotypes) worldwide, of which 11 have been found in North America 

(Saltonstall 2002). Over the past two decades, Haplotype M, which originated from 

Europe, invaded coastal and inland wetlands throughout southern Ontario, replacing 

native vegetation and generally reducing biodiversity (Meyerson et al. 2000; Markle and 

Chow-Fraser 2018). This invasive haplotype aggressively colonizes exposed mud flats 

sexually (through seeds), and then expand asexually (through rhizomes) to form dense 

monocultures. Its rapid spread has been attributed to it being a superior competitor 

against other emergent vegetation (Rickey and Anderson 2004; Uddin et al. 2014) and to 

being more tolerant of disturbances (e.g. road maintenance and changes in hydrologic 

regimes) and stress such as increased salinity due to road de-icing salts (McNabb & 

Batterson,1991; Marks et al.,1994; Chambers et al. 1999; Saltonstall 2002). 

Past studies have shown that transportation corridors provide excellent invasion 

pathways for species such as invasive Phragmites. Linear ditches along roadsides or in 

the median can be readily colonized by invasive Phragmites (Lelong et al. 2007; Brisson 

et al. 2010), because they are able to tolerate high salinity from road salts and requires 

little moisture in comparison to other aquatic vegetation (Medeiros et al. 2013). Ministry 

of Transportation of Ontario (MTO) has acknowledged the destructiveness of 

Phragmites, both with respect to the road infrastructure, as well as to adjacent 

ecosystems, and has been developing a control strategy. Since 2012, MTO has sprayed 
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highway corridors with glyphosate, a broad-spectrum herbicide used to control the 

growth of Phragmites and other weeds (Figure 10.1).  

The primary goal of this project is to use the McMaster Invasive Phragmites 

Database (MIPD; see Marcaccio and Chow-Fraser 2018) to test hypotheses regarding the 

overall effectiveness of MTO’s current treatment program. First, we wanted to document 

the degree of effectiveness of treatment (i.e. proportion of Phragmites removed between 

2010 and 2015) on a road-by-road basis throughout West Region. Secondly, we wanted to 

know if degree of effectiveness varies with 1) the year that herbicide had been applied to 

highway segments, 2) type of road being treated (400-series highways vs all other 

highways), and 3) the amount (abundance and areal cover) of Phragmites present initially 

in 2010.   

 

Methods:  

McMaster Invasive Phragmites Database (MIPD) 

The McMaster Invasive Phragmites Database (MIPD) is a GIS database that 

contains maps of the distribution of invasive Phragmites within the province of Ontario. 

It contains Phragmites maps of southwestern Ontario corresponding to spring of 2006, 

2010 and 2015. These were created by automated classification with eCognition (2006 

and 2010) or manual digitizations (2015) (Marcaccio and Chow-Fraser 2018). To 

determine potential discrepancies in results stemming from the two mapping protocols, 

we carried out a direct comparison for a subset of 2010 images. For the same stretch of 

road, we used the eCognition method to obtain 527 polygons of Phragmites totalling 
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0.6947 ha; when we manually digitized the same segment, we only obtained 249 

polygons, but these totalled a much larger area of 3.0857 ha. In general, it appears that 

eCognition tends to produce many more smaller polygons (30% more for our subset), 

whereas manual digitization tended to produce fewer but larger polygons. The overall 

effect of this systematic bias is that 2010 maps tended to overestimate Phragmites 

distribution while 2015 maps tended to underestimate areal cover. With respect to 

assessing effectiveness of treatment, these errors would lead us towards a more 

conservative estimate of effectiveness, that is, we would be more likely to declare no or 

lower effectiveness. Given our overall goal, we deemed this to be an acceptable bias.  

Assessing Effectiveness of Treatment 

We completed a change-detection analysis in ArcGIS 10.3 to track the pattern of 

change in Phragmites between 2010 and 2015.  By overlaying 2015 classified polygons 

on 2010 polygons, we produced a new layer with polygons identified as one of three 

effectiveness categories:  1) Phragmites  that remained as Phragmites in 2015  (no 

change),  2) Phragmites that had turned into a non-Phragmites class in 2015 (decreased) 

and 3) non-Phragmites class that had turned into a Phragmites class in 2015 (increased).  

For example, if a hectare of grass in 2010 became converted to half grass and half 

Phragmites by 2015, then we would have 0.5 ha of a polygon identified as Category 3, 

indicating Phragmites had expanded by 0.5 ha. A new attribute was created for each 

polygon that identified the associated transformation from one habitat class into another.  

To interpret results of the change detection, we have operationally defined roads 

that had been sprayed with glyphosate between 2012 and 2014 as being “treated” roads.  
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This information had been conveyed to us by MTO and we did not have the actual areas 

sprayed by the contractors (see note in Recommendations). Therefore, any Phragmites 

patch that had been present in 2010 on a treated road, and that was no longer present in 

2015 was interpreted as having been successfully killed by the herbicide 

(green=decreased; Figure 10.2).  By comparison, presence of Phragmites on treated 

roads in both 2010 and 2015 images would indicate that the treatment had been 

ineffective (blue=unchanged; Figure 10.2). Finally, presence of any new Phragmites 

patch in 2015 would indicate that Phragmites had expanded (red=increased; Figure 

10.2). In some instances, Phragmites may be regenerated within treated dead stands, and 

in that case, we would classify the entire stand as having been ineffectively treated (i.e. 

unchanged) since we were unable to distinguish between living and dead portions within 

mixed stands (see Figure 10.3).  

To enable statistical analyses, we divided all roads into 1-km segments so that we 

had replicate segments by treatment type and highway name. The .dbf file associated with 

this GIS layer was then imported into JMP 13 (SAS, Cary NC) for further graphical and 

statistical analyses. 

 

Results and Discussion: 

Overall Trends 

We used results of the change detection to determine the effectiveness of 

treatment for each road/highway. As explained in the methods, we have assessed 

effectiveness by measuring the proportion of Phragmites that had disappeared on a 
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treated road between 2010 and 2015. Each highway was converted into 1-km segments 

prior to change-detection; growth in 2010 that was no longer visible in 2015 was 

interpreted as having been successfully treated (i.e. removed) while those in 2010 that 

remained in 2015 was deemed to have been unsuccessfully treated.  It is important to note 

that some highways are very long (e.g. Hwy 6, which runs north-south for 472 km 

through southwestern Ontario from the Bruce Peninsula to Port Dover, going through 

many towns and cities) while others are very short (e.g. Hwy 77 running north from 

Leamington for only 22.6 km). The 400-series highways such as 401, 402 and 403 have 

multiple lanes and are associated with much larger traffic volumes.  

A visual comparison of the 2010 and 2015 distributions of Phragmites throughout 

southern Ontario confirms the efficacy of the treatment program from 2012 to 2014 

(Figure 10.4).  Phragmites had been almost eradicated in the Bruce Peninsula in the 

northern portion of the study area and had been greatly reduced in the central portion of 

southern Ontario. Overall, relatively high proportions of the original Phragmites present 

in our highways had been removed by 2015, indicating that the treatment program had 

been highly effective (Figure 10.5). The net proportion of Phragmites removed on Hwy 

40, 401 and 402 were below 85% while most of the other roads were above 95%.  

The lower efficacy associated with Hwy 401 and 402 may be because these roads 

had been treated only once in 2012, compared with other roads that had been treated in 

2013, 2014 or in two consecutive years (Figure 10.6a). There is growing consensus that 

Phragmites will not be eradicated with a single treatment; in many studies, complete 

eradication was not achieved without repeated treatments for 2 or 3 years (Reimer 1976, 
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Turner & Warren 2003, Derr 2008, Lombard et al. 2012, Warren et al. 2013). Irrespective 

of the timing of treatment, effectiveness tended to be lower on freeways (i.e. 400-series 

highways) than on smaller highways, collectors and arterial roads within highway 

networks. We therefore re-analyzed the data to determine the influence of road type on 

the colonization rate of Phragmites and found that % Phragmites removed from 400-

series highways was significantly lower than those on other roads (t-test; P<0.0001) 

(Figure 10.6b).  This may be due to the larger right-of-way of Hwy 401 and 402, with 

larger areas to colonize (Figure 10.7; middle panel).  It may also be due to higher traffic 

volume on these freeways, redistributing seeds through traffic-generated wind patterns or 

attachment and transport by vehicle. 

It is noteworthy that the efficacy of the treatment 

program did not necessarily reflect the amount of 

Phragmites present in 2010.  For instance, Hwy 40 had 

less growth compared with Hwy 21 in 2010, but Hwy 40 

had a higher rate of removal. There had been greater 

areal cover of Phragmites on Hwy 401 in 2010, and yet, 

removal rate was higher than that for Hwy 402 (see 

Figure 10.7). The change detection also revealed that all 

areas that had been sprayed had been effectively treated, 

and that the reason for the overall lower efficacy for Hwy 401 and 402 was the amount of 

“new” growth that had occurred—new stands of Phragmites that had colonized beside 

and around the treated stands (top panel; Figure 10.7).  We verified that very little of the 

Repeat applications 
Based on these results, 
we conclude that 
effectiveness of 
treatment will vary 
inversely with length of 
time since herbicide 
application; therefore, 
we support the 
recommend-ed practice 
of applying follow-up 
treatments every 2 to 3 
years to maintain a 
reduced presence of 
Phragmites until they are 
completely eradicated.   
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growth observed in 2015 had been re-growth in the treated stands, but were in fact new 

growth. 

 

The degree of expansion in 2015 appears to 

be directly related to the amount that had been 

present in 2010, and this is consistent with 

observations that Phragmites expands clonally 

(Figure 10.8a). Once invasive Phragmites 

colonizes new habitat, it tends to send out rhizomes 

(Minchinton & Bertness 2003), and the linearity of 

the highway corridors facilitates easy expansion 

(rate varied from <1 to 27% in this study). 

Similarly, we also found degree of resistance to 

treatment (amount of Phragmites that remained 

unchanged following treatment) was directly related to the amount that had been present 

in 2010 (Figure 10.8b).  The implication of this is that Phragmites can be more 

successfully eradicated when they are smaller and fewer in number and is a good reason 

for implementing an early detection program and treating the sparsely populated areas 

before they become dense.   

Regional Analysis 

The GIS database assembled was used for more in-depth regional analysis. By 

overlaying the 2010 and 2015 distribution of Phragmites, and accounting for the timing 

Road-specific protocols and 
need for early detection 
Based on the evidence thus far, 
we recommend developing 
different control strategies for 
each type of highway/road and 
we warn against developing a 
single protocol to be applied to 
all roads types, sizes and 
geographic settings.  
 
Given that Phragmites stands 
are more effectively eradicated 
when they are small, 
implementation of early 
detection program may be the 
best way to prevent its 
expansion throughout the 
province.  
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of treatment, we produced regional maps of different regions in southern Ontario for 

visual comparison and assessment.   

In all three maps that follow (Figures 10.9a & b and Figure 10.10), red 

represents areal cover of Phragmites in 2015, which is essentially the growth at the end of 

2014 since the orthophotos had been acquired in spring of 2015.  White represents areal 

cover of Phragmites in 2010.  Roads treated in 2012 are coloured grey, those treated in 

2013 are coloured green and those in 2014 are coloured pink. In the first map (Figure 

10.9a), Hwy 402 (west of the city of London) appears to be solid red, while Hwy 6 and 8, 

running north and west of the city of Kitchener had intermittent patches of Phragmites in 

2015. All roads that had been treated in 2013 appear to have intermittent patches. The 

second map (Figure 10.9b) shows how the 2013 treated road had intermittent patches of 

Phragmites in 2015, while Hwy 401 appeared to have dense Phragmites stands 

throughout. Finally, the third map (Figure 10.10) shows that portions of Hwy 24 and 403 

that had been treated in 2014 had very few patches of Phragmites in 2015, while the 

eastern segment of 403 (not yet been treated as of 2015) had much more Phragmites in 

2015. 

 

Conclusion: 

This is the first time that high-resolution remotely sensed image data have been 

used to scientifically assess the effectiveness of the most commonly used methods to 

control invasive Phragmites in highway corridors throughout southern Ontario.  We 

found that regrowth of treated stands varied from <1 to 27% and that increase in 
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distribution of Phragmites in 2015 was primarily from new growth. Regrowth and new 

growth was more prolific on 400-series highways. Our data suggest that freeways may be 

more difficult to treat than other road types, but we urge that further studies be carried out 

in which timing of treatment and traffic volume are standardized to allow for direct 

comparisons. There was considerable variation in how the road segments responded to 

treatment, but in general, if roads received minimal or no treatment or if treatment had 

been applied at least 2-3 years earlier (i.e in 2012 or 2013), we found a net increase in 

Phragmites; conversely, if roads had been treated in 2013 and 2014, they tended to have a 

net decrease in Phragmites. We also found that the 400-series highways had lower 

proportions of Phragmites removed overall because there were higher colonization rates, 

resulting in higher net gains of Phragmites compared to other road types.  This is likely 

the reason why Phragmites is more difficult to control along multi-lane divided freeways. 

We also found that patch size of Phragmites had a significant influence on both efficacy 

of glyphosate treatment and the colonization rate, and that the freeways tended to have 

larger patch size than other road types. 

 

Recommendations: 

For a geographic area as large as that of southwestern Ontario, the only cost-

effective approach to map the distribution of Phragmites over time and space is to use 

some sort of automated classification system such as eCognition.  SWOOP images were 

the only ones with the required resolution and geographic coverage for this type of large-

scale mapping. It is unfortunate, however, that the orthophotos acquired in 2015 could not 
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be used in automated classification with eCognition, and we therefore hope that future 

acquisitions will rectify this limitation. 

The recent pilot study by Rupasinghe & Chow-Fraser (2018) indicated that 

Sentinel 2 image data may be suitable for regular benchmarking purposes, and that 

Worldview 3 satellite image data may be used for early detection of sparsely distributed 

Phragmites stands. Using these medium- and high-resolution satellites could circumvent 

the reliance on Ontario orthophotography datasets, and has the added convenience of 

faster acquisition times (average revisit times 5 days to <1 day for Sentinel 2 and 

Worldview 3, respectively). Sentinel 2 can be used to assist in management and 

determining the initial areal cover of Phragmites on roadsides. Very high resolution 

Worldview 3 data can be used post-treatment to monitor small stands and regrowth in the 

following years.  

Many management agencies within the Great Lakes watershed have produced 

Best Management Practices (BMP), some specifically targeting roads and others for 

general wet habitat (Appendix). While effectiveness is rarely documented quantitatively, 

post-treatment monitoring is conducted to determine the quantity of glyphosate that 

should occur for complete eradication of Phragmites. It is noted in most BMPs that repeat 

spraying is required to control the population. 

We have shown that effectiveness of treatment will vary inversely with length of 

time since herbicide application; therefore, we support the recommended practice of 

applying follow-up treatments every 2 to 3 years to maintain a reduced presence of 

Phragmites until they are eradicated. Our evidence thus far leads us to recommend 
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development of different control strategies for each road type, and we warn against 

developing a single protocol to apply to all roads, sizes and geographic settings. 

 

Knowing the time sensitive nature of treatment efficacy, we recommend that MTO 

immediately start Phragmites treatment in the northern and eastern portions of the 

province where current Phragmites density is still very low. Given the most recent 

estimates in Marcaccio & Chow-Fraser 2018, areal cover of Phragmites in the 

southwestern and central portion of the province could expand to over 6,000 hectares of 

Phragmites by 2020 if left untreated. Such high densities would prolong eradication 

efforts and increase the cost of management dramatically. If control programs are started 

immediately while presence of Phragmites is still limited, treatment would be more 

successful and less costly overall to MTO.  
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Figure 10.1. Roads in West Region that had been treated with glyphosate between 2012 
to 2016.  In this study, we included several roads that had been treated but 
which are not managed by MTO (dotted lines). 
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Figure 10.2: Results of a change detection of invasive Phragmites occurring in highway 
corridors of southwestern Ontario between 2010 and 2015, based on SWOOP 
image data only. 
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a)                                                               b) 

c)		

 

Figure 10.3:  Images showing Phragmites in highway corridor that had:  a) a dark 
mottled appearance characteristic of living stands, b) a light mottled 
appearance characteristic of dead stands (presumed to have died from 
glyphosate treatment).  Panel c) shows a mixture of dead and living 
specimens side by side, which may have resulted from imperfect treatment or 
regrowth from rhizomes of treated individuals. 
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Figure 10.4:  Phragmites distributions in MTO-managed roads in southwestern 
Ontario during 2006, 2010 and 2015.  Distribution in 2010 was mapped by 
automated classification whereas that for 2015 was manually digitized. 
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Figure 10.5:  Percentage of Phragmites that had been removed shown separately by 
highways. Removal is inferred from decrease in Phragmites in 2015 
relative to 2010 (see Figure 2). The black line corresponds to 80% 
removed. 
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Figure 10.6:  % Phragmites removed for  a) roads grouped according to when they had 
been treated  and b) 400-series and non-400 series highways. 
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Figure 10.7:   Results of a change detection showing amount of Phragmites that had 
decreased, remained unchanged or increased between 2010 and 2015.  Top 
panel:  Mean±SE calculated for 1 km-segments for each highway; Middle 
panel: Total area present in 2010 and  Bottom panel:  % Phragmites 
removed as of 2015. 
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Figure 10.8:  a) Total area that had changed as a function of original area in 2010 and b) 
Total area that remained unchanged as a function of original area in 2010. 
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a)  

b)  

Figure 9:  a) Map of Phragmites in 2015 (red) and in 2010 (white) superimposed on roads 
in southwestern Ontario.  b) Comparing areal cover of Phragmites in highways 
located between London and Sarnia.  Growth of Phragmites in 2010 had been 
greater at the western end of Hwy 402 (near Sarnia) whereas growth in 2015 
had been greater in the eastern end (near London). 
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Figure 10.10:  Growth of Phragmites in 2015 (red) on a segment of Hwy 403 that had 
not been treated (shown on the right), compared with few patches of 
Phragmites in segments of Hwy 24 and Hwy 403 that had been treated in 
2014 (shown towards the left). Also shown are Phragmites in 2010 (white) 
that are no longer evident on these segments. 

 

 

 

 

 

 

 

 

 


