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Abstract 

Two randomized controlled trials were conducted to find out whether a new treatment 

for asthma has a significant effect on the patients. These were multi-center trials with 

a parallel design, the control arm receiving a Placebo. The data were collected over a 

period of about 20 days before administering the intervention and for almost 80 days 

after the intervention. Thus, each patient has many observations recorded, making 

the data longitudinal. The data are summarized using first descriptive statistics and 

graphical displays. Then, a continuation ratio model with a lagged covariate to account 

for the longitudinal aspect is used to model the data. Finally, Generalized Estimating 

Equations methods are used. These methods have acquired popularity in recent years 

to account for longitudinal correlation structures. To apply the continuation ratio, 

the data have to be appropriately restructured. Then, the logistic regression is used 

to model the symptoms. The results of this procedure show that the treatment is 

statistically significant. However, the goodness of fit tests show that the model is in­

adequate. This issue is explored in the last subsection of Chapter 3. Using Generalized 

Estimating Equations to analyze the number of times rescue medication was used, we 

concluded that there is no statistically significant difference between the Active and 

Control groups. However, we noticed that the use of rescue medication decreased with 

time from the start of treatment. 
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Chapter 1 

Introduction 

1.1 Asthma Condition 

Asthma is a chronic lung condition that it is characterized by difficulty in breathing. 

People with asthma have extra sensitive or hyper-responsive airways. The airways 

react by narrowing or obstructing when they become irritated. This makes it difficult 

for the air to move in and out. The narrowing or obstruction is caused by airways 

inflammation, meaning that the airways in the lungs become red, swollen and narrow 

and by bronchoconstriction, meaning that the muscles that encircle the airways tighten 

or go into spasm. This narrowing or obstruction can cause one or a combination of 

the following symptoms: wheezing, coughing, shortness of breath, chest tightness. 

Each symptom is usually rated from 0-3: no symptoms, mild, moderate and severe. 

Symptoms during the day can be different than night symptoms. Also, use of rescue 

medication is a sign of poor control. 

Although anyone may have an asthma attack, it most commonly occurs in children 

by the age of 5, adults in their 30s, adults older than 65 and people living in urban 

communities. Other factors include family history of asthma and personal medical 
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history of allergies. To diagnose asthma and distinguish it from other lung disorders, 

physicians rely on a combination of medical history, physical examination and labora­

tory tests, which :rpay include: spirometry, peak flow monitoring, chest x-rays, blood 

and allergy tests. 

As of yet, there is no cure for asthma. However, it can often be controlled with 

prescription medications that may help prevent or relieve symptoms, and by learning 

ways to manage episodes. Various devices and formulations have been developed to 

deliver drugs efficiently, minimize side-effects and simplify use. With the range of 

devices now available it is possible for nearly all patients to take drugs by inhalation. 

In some circumstances oral treatment is needed and it can be given by slow acting or 

sustained release preparations. Some drugs are available only by oral route (Rees and 

Kanabar, 2000). 

1.2 Asthma Trial 

The trial was presented as a Case Study at the Statistical Society of Canada 2004 

Annual Meeting that took place in Montreal. The Case Study was conducted and pro­

vided to SSC by GlaxoSmithKline Inc. (GSK). GSK is a world leading research-based 

pharmaceutical company with a powerful combination of skills and resources that pro­

vides a platform for delivering strong growth in today's rapidly changing healthcare 

environment. The data from two 12-week large multi-center asthma trials were com­

bined into a single data set. The trials were conducted in 15 countries on 4 continents. 

A description of the variables in the data set is given in Table 1.1. 

Variable 2, ANA, is the same with ITT, except it excludes all subjects from one 

centre which collected data in a non-satisfactory way. Variables 4 to 9 measure the 

patients symptoms at day and at night and they will all be considered as outcome 
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Variable 

1 ITT 

2 ANA 

3 TRTMNT 

4 AMWHEEZ 

5 AM COUGH 

6 AMBREATH 

7 PMWHEEZ 

8 PMCOUGH 

9 PMBREATH 

10 AMUSE 

11 PMUSE 

12 DASMTDT 

13 DAY 

14 FREQBASE 

15 WDW 

16 WDWREAS 

17 AGE 

18 CENTRE 

Table 1.1: Variables in the data set 

Description 

Is subject in Intent-to-treat population ? 

Is subject in the analysis population ? 

Treatment, either Active or Placebo 

Day-time wheez symptom score 

Day-time cough symptom score 

Day-time shortness of breath symptom score 

Night-time wheez symptom score 

Night-time cough symptom score 

Night-time breath symptom score 

Day-time rescue medication use 

Night-time rescue medication use 

Date of diary card observation 

Day number relative to when subject first received treatment (Day 0), 

for instance, Days -7 to -1 refer to last week of baseline 

Description of subjects severity of asthma prior to the trial, 

either Chronic persistent or Episodic (less severe) 

Did subject withdraw during the study? 

Reason for withdrawal (if applicable) 

Age in years 

Investigational site 

variables. The values that can take are from 0 to 3 where 0 = no symptoms, 1 = mild 

symptoms (not troublesome), 2 =moderate symptoms, 3 =severe (troublesome symp­

toms). Variables 10 and 11, give the number of occasions on which rescue medication , 

Ventolin, was used to relieve asthma symptoms. 
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1.3 Study objectives 

The objective of the trial is to see whether there is a difference between the Placebo 

and the Active treatment in lowering the symptoms and also the frequency of rescue 

medication use. The study has also been designed such that the difference in time of 

the symptoms can be observed. 

This project is designed to assess whether differing methods of summary and anal­

ysis are more or less sensitive to detecting treatment differences, and whether the 

methods are appropriate for the data. 
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Chapter 2 

Descriptive Summaries of Patient 

Profiles and Asthma Symptoms 

2.1 Patient profiles 

The purpose of patient randomization to either Placebo or Active treatment is to 

ensure that the two groups are comparable. Through randomization the characteristics 

of patients at baseline should be expected to be similar in the two groups. When the 

number of patients is high this is very often achieved. However, when there are not so 

many patients enrolled in the study, a blocked randomization is helpful in achieving 

the groups similarity. So first we will take a look at the baseline characteristics in the 

Placebo and Active arms (Altman, 1991). 

The original data set has 31261 observations from 305 patients from different coun­

tries. An observation in this study is the result of monitoring and recording the 

asthma symptoms and the frequency of rescue medication use for one day (day-time 

and night-time). A frequency of the ANA variable revealed that 6 subjects coming 

from the Czech Republic should not be included in the analysis population as the data 
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were collected in a non-satisfactory way. These 6 subjects were deleted from the data 

set, thus only 299 patients being included in the analysis. From these 299 patients, 

149 are in the Placebo group and the remaining 150 are in the Active treatment group. 

Table 2.1 summarizes the number of patients from each country. The countries are 

alphabetically ordered. 

Table 2.1: Patients in participating countries 

Country Number of Patients Country Number of Patients 

Belgium 17 Ireland 20 

Canada 23 Israel 13 

Czech Republic 15 New Zealand 22 

Denmark 19 Poland 23 

Germany 14 South Africa 29 

Holland 38 Spain 20 

Hungary 24 United Kingdom 19 

Iceland 3 

Table 2.1 is interesting but not informative with respect to the baseline charac­

teristics of the patients. The variables of most interest from this point of view are 

GENDER, FREQBASE, WDW, STUDY and WDWREAS. It is important the two 

arms have comparable number of patients with respect to the above variables, espe­

cially if they are believed to influence the outcome. Table 2 shows the distribution of 

patients in the Placebo and Active groups with respect to these variables. 

Table 2.2 shows that the baseline characteristics are nearly the same in the two 

groups. Notice that the number of males participating in the study is about twice the 

number of females. It is also useful to look at the reasons patients withdraw from the 

study in the two groups. We would like to see no pattern. The results are in Table 

2.3. 
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Table 2.2: Baseline characteristics 

Variable Active Placebo 

Chronic 87 84 
FREQBASE 

Episodic 63 65 

Male 98 98 
GENDER 

Female 52 51 

Yes 13 16 
WDW 

No 137 133 

A 76 81 
STUDY 

B 74 68 

Table 2.3: Withdraw reasons 

Variable Reasons Active Placebo 

A 5 8 

F 2 3 

WDWREAS L 3 1 

N 1 2 

0 2 2 

Total 13 16 

Looking at the numbers the same conclusion can be reached, that the two groups 

have similar characteristics. This assures their comparability. 
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2.2 Symptoms and Treatment Effects 

Next we take a look at the symptoms. Running the frequency procedure in SAS we 

obtain the following table showing the number of symptom-free days for each variable. 

Table 2.4: Frequencies of symptoms 

AM PM 
Score 

Wheez Cough Breath Wheez Cough Breath 

0 24,095 15,781 24,966 25,864 18,554 27,061 

1 4,781 9,908 4,420 3,655 7,833 2,840 

2 1,693 4,212 1,154 1,304 3,724 887 

3 255 902 205 230 909 180 

The high numbers in the table 2.4 should not be of surprise since, on average, 

each patient has about 100 observations. The number of missing observations was not 

shown in the table. We can see that the number of symptom-free days is much higher 

than the number of days with symptoms. We can also notice that frequencies decrease 

with the severity of symptoms. Patients seem to feel worse during the day than during 

the night. However, this may have been caused by the fact that the patients may 

have not recorded the symptoms they had at night as accurate as they recorded the 

ones they had during daytime. Looking at the numbers we can also say that the most 

frequent symptom is cough which seems to bother patients both during the day and 

night. Now, let's look at the percentage of symptom-free days in the two groups before 

and after receiving the treatment. We should keep in mind though that neither of the 

above summaries takes into account the correlated aspect of the data. The symptom­

free days are defined as the days that have the total sum of the six symptoms equal 

to zero. 

We can see that before day 0 the percentage of symptom free days is similar in the 
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Table 2.5: Percentage of symptom-free days 

% Active Placebo 

Before 20.40 20.35 

After 50.98 40.74 

two groups. After day 0, the percentage is increasing in both groups but the increase is 

bigger in the Active group. The percentage of missing observations in this variable is 

1.82% and 2.38% respectively. The variable analyzed, called "al", had missing values 

on the rows where at least one of the symptoms had a missing value. Looking solely 

at these values we would conclude that the treatment seems to have an effect. 

Another way to summarize the data is by graphing the percentage of a symptom 

score in each day against days for each group. To do that, 6 data sets had to be created, 

one for each symptom, using a SAS macro. In all figures that follow, the active group 

is represented by a solid line whereas the placebo by a dashed one. Figure 2.1 plots 

AMWHEEZ. 

We can notice that before day 0 the two lines intersect showing no difference be­

tween the two groups. In the first plot (upper left corner) the line representing the 

active group is well above the dashed line after day 0. Since it represents the percent­

age of AMWHEEZ symptom-free days we can conclude that the treatment is effective 

in relieving this symptom and that it acts better than the Placebo. The second plot 

tells us that the percentage of mild-symptom days is smaller in the Active group than 

in the Placebo. In the last two plots (for scores 2 and 3, bottom row) there is no 

obvious improvement for either of the groups. 
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Figure 2.1: AMWHEEZ symptom by DAY and TRTMNT 

We will now look at the same type of plot, for the AMCOUGH symptom (Figure 

2.2). 

The same conclusions can be drawn for this variable. One difference however is 

that for AMCOUGH=3 there seems to be a difference in favor of the active group. In 

all six figures, the two plots at the bottom (responses 2 and 3) do not show a clear 

difference between the two groups. As we noticed before, the frequency of symptoms 
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scored as high as 2 or 3 is not too large. Therefore, even if the treatment would 

make a difference, this may not be visible on such a plot. We also have to take into 

consideration that the plots show aggregate percentage scores and do not take into 

account individual change. What is to notice however is that as time goes by the 

trends seem to decrease. In the next two plots we will take a look at the same type 

of symptoms but during the night, that is, PMWHEEZ and PMCOUGH. The graphs 

0 co 

0 .... 

0 

"' E., 
e 0 

Ll)., 
a.. 

0 .... 

0 

"' 
0 

"' 

Ll) 

"' 
0 

"' 
E ~ ., 
e., 
a.. ~ 

Ll) 

0 

AmCough 0 for Active vs Placebo 

.. 
/It t 1 \ 1 J1 I 

,, ,,,, n, v~t 11,\,, 

I" \1\f 

., :\ I 

' 
:\/\fs't''',l 

h • 

:j I 

,I''• 

-20 0 20 40 60 80 

Day 

AmCough 2 for Active vs Placebo 

-20 0 20 40 60 80 

Day 

E 

., ~ 
a.. 

E., 
e., 
a.. 

0 

"' 
0 
Ll) 

0 .... 

0 

"' 
0 

"' 
~ 

~ 

~ 

Ll) 

0 

AmCough 1 for Active vs Placebo 

-20 0 20 40 60 80 

Day 

AmCough 3 for Active vs Placebo 

-20 0 20 40 60 80 

Day 

Figure 2.2: AMCOUGH symptom by DAY and TRTMNT 
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for AM and PM breath are in the Appendix 1. 

The Figure 2.3 below shows almost the same trend for the variable PMWHEEZ 

as for the variable AMWHEEZ. Again we can see that the most obvious difference is 

for "no symptom" and "mild symptom" whereas for the other two there is no clear 

difference between the groups. 
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Figure 2.3: PMWHEEZ symptom by DAY and TRTMNT 
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The Figure 2.4 which plots PMCOUGH is similar to Figure 2.2, for AMCOUGH. 

We can also see here that for AMCOUGH=2 there is a difference in the two groups. 

If we compare the graphs for this symptom to the graphs for AMWHEEZ we can 

see by looking at the Y axis that this symptom is more present. Therefore, the facts 
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Figure 2.4: PMCOUGH symptom by DAY and TRTMNT 

that the frequencies of mild and moderate symptoms decrease in time and that there 

is a difference between the active and the placebo groups, make us believe that the 
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treatment is beneficial. It is possible that the treatment is only relieving this symptom. 

This in fact may be the extent to which the treatment is superior to the Placebo. 

As stated earlier, the patients were not followed for the same number of days. In 

the graphs plotting the 6 symptom variables, the percentages were used instead of fre­

quencies for this very reason. The other two outcome variables, AMUSE and PMUSE 

recorded the number of occasions the patients used Ventolin, a rescue medication. 

Therefore their values are not categories as before, but counts and hence percentages 

cannot be obtained. 
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Figure 2.5: AMUSE by DAY and TRTMNT 

Figure 2.5 plots the number of occasions Ventolin was used in each day against the 

variable DAY. To do that, the missing values had to be replaced by zeros because in 
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SAS arithmetic operations with missing values result in missing values. The percentage 

of missing values in AMUSE is 1.5% and in PMUSE is 1%. 

Notice in Figure 2.5 that the frequencies patients used Ventolin prior to day 0 are 

not comparable in the two groups. It rather seems that the patients randomized to 

Placebo felt better prior to day 0 than the patients randomized to FP. However, as 

shown on the graph, the number of occasions Ventolin was used in the Active group 

drops after day 0 and it is less than the one in the Placebo group. 

Figure 2.6 graph plots the frequency of night-time rescue medication use against 

DAY. 
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Figure 2.6: PMUSE by DAY and TRTMNT 

Similar conclusions as for AMUSE can be drawn. Of notice is that the frequency 
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of Ventolin use is much lower during the night than during the day for both groups. 

In conclusion the descriptive statistics and the associated graphs showed that the 

two groups are well balanced at the start of the trial and that the Active group seems 

to improve after intervention. 
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Chapter 3 

Continuation Ratio Model 

3.1 Modelling Approach 

Ordinal responses are very commonly found in clinical trials. Most often, they are 

the result of evaluating the state of a patient. In our case, the six symptoms are 

measured on a scale from 0 to 3 where 0 is no symptom and 3 is the most severe 

symptom. The three commonly used models for ordinal responses are the log mul­

tiplicative, proportional odds and continuation ratio models. All three are generally 

applied to frequency data in contingency tables, and hence are not directly applicable 

to longitudinal data. However, continuation ratio model can be fitted by standard 

logistic regression techniques after restructuring the data. 

The continuation ratio model makes a series of comparisons of all lower categories 

on a scale to the next succeeding one. Thus, the first category is compared to the 

second, the first two to the third, then the first three to the fourth and so on. Therefore 

this model describes the probability of moving one step further on the scale given the 

present situation (Lindsey, Jones and Ebbutt, 1997). 

Suppose we have k ordered categories. The continuation ratio model is based upon 
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the conditional probabilities of being in category j among all subjects who are in 

category j or lower for a given patient (covariate) profile. That is, 

. . P(Y=jiX=x)
8j(x) = P(Y = JIY:::; J, X= x) = P(Y:::; jiX = x) 

(3.1)
7rj(x) 

j = 1, ... ,k. 

The 8j 's are called continuation ratios. In this project, the backward formulation 

of the continuation ratio model is used . There is also a forward formulation of this 

model as: 

¢j(x) = P(Y = jiY 2: j, X= x). (3.2) 

The use of forward continuation ratios makes sense if the response Y represents 

a discrete survival time. As high risk patients have short survival times, forward 

continuation ratios represent a comparison of high risk patients with low risk patients. 

Since in our case, Y represents a symptom status given by ordered categories with 

higher values belonging to more severe disease states, the opposite is true. The two 

models for the backward and forward continuation ratios are not equivalent and yield 

different results (Bender and Benner, 2002). 

The continuation ratio models are obtained using a generalized linear model: 

j = 1, ... ,k. (3.3) 

where f(·) is an appropriate link function. 

However, the basic assumption in most applications is the "equal slopes" assump­

tion, that is a homogenous coefficient for X is considered. The model in this case 

becomes: 

j = 1, ... ,k. (3.4) 

If the logit link is used, the generalized linear model (3.4) becomes: 
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(3.5) 

which is called continuation ratio model or proportional logit hazard model. If the 

more general model (3.3) is used or a mixture of (3.3) and (3.4) in which the equal 

slopes assumption is relaxed for some of the covariates, the resulting model is called 

"extended continuation ratio" (Bender and Benner, 2002). 

3.2 Computational implementation 

Even though most of the software packages provide binary logistic regression at least 

for the logit link, regression models for ordinal data are not so often implemented. 

However, it is possible to use any software for binary logistic regression to estimate 

the parameters of continuation ratio models. If the original data set is appropriately 

restructured by repeatedly including the corresponding data subset, the cut points and 

the dichotomous response at that cut-point, binary logistic regression can be applied 

to the restructured data. 

Let now Y be the response variable with k + 1 ordered categories, 0, 1, ... , k and 

the corresponding frequencies n 0 , n 1, ... , nk. We will define two new variables called 

BR (binary response) and CP (cut-point). The first subset of data will be used to 

compare category k with all lower categories, that is, 8k(x) = P(Y = k\Y ::::; k). The 

BR will take the value 1 when Y = k and 0 otherwise and at this step CP will equal 

k. It can be seen that this first subset contains all the original observations. In the 

second subset, we will compare category k- 1 with all lower categories. Now, BR will 

be 1 when Y = k -1 and 0 when Y::::; k- 2, the category Y = k being left out. Now, 

CP will equal k- 1. This subset will have n 0 + n1 + ... + nk-l observations. The last 

subset will only compare category 1 with category 0 and will have n0 +n1 observations. 
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Let's denote by N the total number of observations in the restructured data. Then, 

N will be: 

N = k(no +n1) + (k -1)n2 + (k- 2)n3 + ... +nk 

Applying binary logistic regression to the restructured data set with BR as the 

response variable and k -1 dummy variables representing the cut-point variable yields 

the regression coefficients of the continuation ratio model. The use of binary logistic 

regression to the restructured data has the advantage that it is possible to work with the 

more general models (3.3) without the usual but restrictive equal slopes assumption. 

By including interactions between the dummy variables describing the strata and the 

considered explanatory factor X, a model with different regression coefficients for each 

cut-point can be obtained. 

Up until now the model has not taken into account the dependence among suc­

cessive responses of an individual in repeated measurement situations. With the re­

structured data this dependencies can be accounted for by conditioning on the lagged 

value of the binary response, but interpretation is usually easier if the lagged ordinal 

response is used directly as an explanatory variable instead of recoding it. 

3.3 Model Fitting to Asthma Data 

The data set has 6 ordinal response variables: AMWHEEZ, AM COUGH, AMBREATH, 

PMWHEEZ, PMCOUGH and PMBREATH. For each of these variables we apply the 

method described above in order to restructure the data. The implementation is shown 

only for variable AMWHEEZ. A macro in SAS (see Appendix 2) was used to restruc­

ture the original data set for each variable. As described, the new data set has two 

new variables, BRand CP. CP takes here three values, 1,2 and 3. From this variable 

I created another two dummy variables called CP2 and CP3. 
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As an example, let's consider the model: 

Fori, j, k, l E {0, 1} we have: 


i = 0 and j = 0 =? CP=1 


i = 0 and j = 1 =? CP=3 


i = 1 and j = 0 =? CP=2 


So i and j refer to the cut-points, whereas k refers to treatment (active=1 and 


placebo=O) and j to frequency of occurence (chronic=1, episodic=O). For instance, 


6oo .. = P(Y = 11 Y ~ 1,X = x) 


601 .. = P(Y = 3 I y ~ 3, X = X) 


Ow.. = P(Y = 2 IY ~ 2, X= x) 


To facilitate interpretation of coefficients, we write the model in matrix form as: 


1 0 0 0 0 a 

1 0 0 0 1 a +,84 

1 0 0 1 0 a +,83 

1 0 0 1 1 a +,83 +,84 
a 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

1 

0 

0 

0 

1 

1 

0 

0 

1 

0 

1 

0 

,81 

,82 

,83 

,84 

a 

a 

a 

a 

a +,81 

+,82 

+,82 

+,82 

+,82 

+,83 

+,83 

+,84 

+,84 

1 1 0 0 1 a +,81 +,84 

1 1 0 1 0 a +,81 +,83 

1 1 0 1 1 a +,81 +,83 +,84 
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Interpretation of 8ijkl can be made as follows. From the matrix display we can see 

that, 

ea 
logit(8oooo) =a ? 8oooo = --.

1 +ea 

Therefore, the probability of going up on the scale, from 0 to 1 for a patient who is 

receiving a placebo and that has episodic symptoms will be ea / (1 + ea). In order to 

estimate the same probability but for moving from 0 or 1 to 2 we need CP=2 so we 

calculate Owoo: 
ea+lh 

logit(8woo) =a+ /31 ? 8woo = •
1 + ea+13 1 

The above probabilities are interesting to look at but the main purpose is to compare 

the Active and Placebo groups. Therefore we first compute the probability of moving 

from 0 to 1 for a patient who is receiving the Active treatment and has episodic 

symptoms. This probability is given by 80010 : 

Now we are able to compare the Placebo and Treatment groups by comparing Ooooo 

to 80010 . However, instead of comparing the probabilities it is more usual to compare 

the odds by computing the odds ratio. In this case, the odds of 80000 is equal to ea 

whereas the odds of 150010 is ea+f33. Therefore, the odds ratio of Active vs Placebo will 

be: 
ea+f33 

odds ratio of Active vs Placebo = -- = ef33 (3.7)
ea 

For this reason the parameters are also called "log odds ratios". This odds ratio will 

not change if the patient instead of having episodic symptoms has chronic ones. Nor 

will it change if we consider odds of moving from 0,1 to 2 because of the "equal slopes 

assumption". This assumption will be relaxed later by incorporating interaction terms 

for the cut-points and treatment. 
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The results of fitting the logistic procedure on the restructured data set are reported 

in Tables 3.1-3.4. First let's take a look at the Goodness of Fit statistics reported in 

Table 3.1: 

Table 3.1: Goodness of Fit statistics 

Criterion DF Value Value/DF Pr > ChiSq 

Deviance 7 123.6355 17.6622 <.0001 


Pearson 7 129.9370 18.5624 < .0001 


Since the p-values are less than 0.05 there is evidence that the logistic model is 

not a good fit for the data. The fact that the Value/DF is greater than 1 suggests 

overdispersion. To account for the problem of overdispersion, a scale parameter was 

included in the analysis. When this was done, the test was no longer valid so the Homer 

and Lemeshow test was used but it still suggested lack of fit. When lack of fit occurs, 

the standard errors of the parameters are underestimated so they should not be trusted. 

The lack of fit may be due to violation of one or more of the assumptions (Bender and 

Benner, 2002). For instance we know for sure that the assumption of independence is 

not valid. In the next subsection we will take a look at some simulation results trying 

to explore in some detail this issue. 

Table 3.2 shows the maximum likelihood estimates of the parameters. Notice that 

all of them are statistically significant. 

We can now compute the estimated odds ratios for Active vs Placebo and also for 

Episodic vs Chronic: 

0 5033odds ratio of Active vs Placebo e~3 = e- · = 0.604532 

0 8533odds ratio of Chronic vs Episodic = e~4 = e · = 2.34738 

Since the odds ratio of Active vs Placebo is less than one it means that the odds 

and hence the probability of getting worse is higher in the Placebo group than in the 
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Table 3.2: ML estimates for AMWHEEZ model (3.6) 

Parameter DF Estimate St. Error Wald ChiSq Pr > ChiSq 

I tercept (a) 1 -2.1122 0.0347 3701.0130 < .0001 

CP2 (fJ1) 1 -1.2535 0.0370 1146.3282 < .0001 

CP3 (fJ2) 1 -3.2073 0.0815 1547.0118 <.0001 

TRTMNT ((33) 1 -0.5033 0.0330 232.4881 <.0001 

FREQBASE ((34) 1 0.8533 0.0364 550.3063 <.0001 

Active. As expected, the patients who experience Chronic symptoms are more likely 

to get worse than those who experience episodic symptoms. 

Table 3.3 summarizes the goodness of fit results for the other variables: 

Table 3.3: Goodness of Fit statistics 

Variable Criterion DF Value Value/DF Pr > ChiSq 

Deviance 7 38.8940 5.5563 <.0001 
AMBREATH 

Pearson 7 37.6835 5.3834 < .0001 

Deviance 7 39.7612 5.6802 <.0001 
AMCOUGH 

Pearson 7 40.9420 5.8489 <.0001 

Deviance 7 92.4901 13.2129 <.0001 
PMWHEEZ 

Pearson 7 91.3819 13.0546 <.0001 

Deviance 7 54.7258 7.8180 <.0001 
PMBREATH 

Pearson 7 50.4316 7.2045 <.0001 

Deviance 7 59.3044 8.4721 <.0001 
PMCOUGH 

Pearson 7 62.2214 8.8888 <.0001 

The results suggest that the model does not provide a good fit for any of the 

response variables. However, except for AMWHEEZ and PMWHEEZ, the Values/DF 
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are less than 10. 


Table 3.4 shows the parameters for TRTMNT and FREQBASE and the computed 


odds ratios for each symptom. The parameters for CP2 and CP3 and for the two 


variables mentioned above were found to be significant for all symptoms. 


Table 3.4: Parameters and odds ratios for model (3.6) 

Variable Parameter Estimate Odds Ratio 

TRTMNT -0.2700 0.763 
AMBREATH 

FREQBASE 0.5834 1.792 

TRTMNT -0.3214 0.725 
AMCOUGH 

FREQBASE 0.5558 1.743 

TRTMNT -0.3459 0.708 
PMWHEEZ 

FREQBASE 0.7561 2.130 

TRTMNT -0.2203 0.802 
PMBREATH 

FREQBASE 0.6511 1.918 

TRTMNT -0.4101 0.664 
PMCOUGH 

FREQBASE 0.4785 1.614 

Looking at the odds ratios for TRTMNT we can observe that they are all less than 

one. This suggests that the treatment has a positive effect compared to the Placebo. 

As noticed for AMWHEEZ, the odds ratios of the other variables for FREQBASE 

are greater than one indicating that patients with Chronic symptoms have a higher 

probability of moving up on the symptom scale. 

Up until now we have examined a simple model that assumes independent observa­

tions and equal slopes. Next we will introduce another model that includes interaction 

between the cut-points CP2, CP3 and TRTMNT. If the coefficients of the interactions 

are significant, we will have different odds ratios for each cut-point. 
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The model can be written as: 


logit(oijkl) =a+ /31 CP2 + f32CP3 + f33TRT + /3~CP2*TRT + f3;CP3*TRT + f34FREQ 


The model in matrix form is: 

1 0 0 0 0 0 0 

1 0 0 0 0 0 1 

1 0 0 1 0 0 0 

1 0 0 1 0 0 1 

1 0 1 0 0 0 0 

1 0 1 0 0 0 1 

1 0 1 1 0 1 0 

1 0 1 1 0 1 1 

1 1 0 0 0 0 0 

1 1 0 0 0 0 1 

1 1 0 1 1 0 0 

1 1 0 1 1 0 1 

a 

/31 

!32 
(33 

/32 

f3i 

!34 

(3.8) 


a 

a +!34 
a +/33 
a +/33 +!34 
a +!32 
a +!32 +!34 
a +!32 +!33 +/32 

a +!32 +!33 +/32 +!34 

a +/31 

a +/31 +!34 

a +/31 +/33 +f3i 

a +/31 +!33 +/3i +!34 

The odds ratios of moving up on the scale for the variable TRTMNT depend on 

the cut-points. The odds ratios are given by: 

OR(O---* 1) = e/33 

OR(O, 1 ---* 2) = ef33 +/3i 

OR(O, 1, 2 ---* 3) = e/33 +/32 
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Table 3.5: Goodness of fit statistics for models (3.6) and (3.8) 

Model Criterion DF Value Value/DF Pr> ChiSq 

Deviance 7 123.6455 17.6622 <.0001 
Main effects 

Pearson 7 129.9370 18.5624 <.0001 

Deviance 6 90.1709 15.0285 <.0001 
Interaction 

Pearson 6 94.6914 15.7819 <.0001 

However, if for instance the interaction between CP3 and TRTMNT is not significant 

then OR(0,1,2 __. 3) will only be equal to ef33 • 

To obtain the estimates, the macro used for model (3.6) was modified to include in 

the logistic procedure the interactions. Backward logistic regression was used. First, 

we will look at the Pearson goodness of fit test. In the table 3.5 we can compare these 

statistics obtained for AMWHEEZ in the two models. 

We can see that when the interaction terms are included the value of the Pearson 

statistic is smaller suggesting a better fit. However, the value is still large and hence 

the test rejects the null hypothesis that the model is adequate. 

In assessing the model the AIC (Akaike Information Criterion) score is also useful. 

Its purpose is to penalize a model that has too many parameters. AIC statistic is 

widely used to select the best model among alternative parametric models. The model 

with the smallest AIC is considered to be the best. 

AIC = -2LogL + 2(k + s) 

where k is the total number of response levels minus one, and s is the number of 

explanatory effects. The AIC score for the main affects, model (3.6) is 27824.837 

which is a little bigger than the one for model (3.8) that includes interaction terms, 

which is 27793.372. 

We conclude that model (3.8) is a little better than 3.6. Next we will look at the 
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parameter estimates and the odds ratios. 

Table 3.6 shows the parameter estimates {33 , f3r, {3~, {34 for all the symptoms. 

Table 3.6: Parameter estimates for model 3.8 

Symptom Parameter Estimate Pr>ChiSq 

FREQBASE (/34) 0.8560 <.0001 

AMWHEEZ TRTMNT (/33) -0.6192 <.0001 

CP2*TRTMNT (f3r) 0.4285 <.0001 

FREQBASE (/34) 

AMBREATH TRTMNT (/33) 

CP3*TRTMNT (f3n 

0.5832 

-0.2529 

-0.4257 

<.0001 

<.0001 

0.0207 

FREQBASE (/34) 

AMCOUGH TRTMNT (/33) 

CP2*TRTMNT (f3i) 

0.5564 

-0.3696 

0.1458 

<.0001 

<.0001 

0.0207 

FREQBASE (/34) 

PMWHEEZ TRTMNT (/33) 

CP3*TRTMNT (f3n 

0.7557 

-0.3205 

-0.5133 

<.0001 

<.0001 

0.0033 

FREQBASE (/34) 

TRTMNT (/33) 
PMBREATH 

CP2*TRTMNT (f3r) 

CP3*TRTMNT (/3~) 

0.6504 

-0.3205 

-0.2211 

-0.9463 

<.0001 

<.0001 

0.0255 

<.0001 

FREQBASE (/34) 

PMCOUGH TRTMNT (/33) 

CP2*TRTMNT (f3i) 

0.4788 

-0.4552 

0.1392 

<.0001 

<.0001 

0.0091 

It can be seen that all /34 coefficients are strictly positive. This implies that the cor­

responding odds ratios will be greater than 1 which means that patients with Chronic 

symptoms are more likely to have higher scores than patients with Episodic symptoms. 
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This is consistent with our beliefs and agrees with the previous model. We can also see 

that all fJ3 coefficients are negative. This means that the treatment performs better 

than the placebo in lowering the symptoms. 

All the estimated odds ratios are presented in Table 3. 7. As anticipated, the num­

bers in the FREQBASE odds ratio column are all greater than one whereas the odds 

ratios coresponding to TRTMNT are less than one. Notice that for AMWHEEZ, 

AMCOUGH and PMCOUGH, OR(O ----> 1)=0R(0,1,2 ----> 3). This is so because for 

these symptoms the interaction between CP3 and TRTMNT was not significant and 

therefore excluded from the final model. 

Table 3.7: Odds ratios for model 3.8 

TRTMNT 
Symptom FREQBASE 

OR(O----> 1) OR(0,1 ----> 2) OR(0,1,2 ----> 3) 

AMWHEEZ 2.3537 0.5383 0.8263 0.5383 

AMBREATH 1.7917 0.7765 0.7765 0.5073 

AMCOUGH 1.7443 0.6910 0.7994 0.6910 

PMWHEEZ 2.1291 0.7257 0.7257 0.4343 

PMBREATH 1.9163 0.8809 0.7061 0.3419 

PMCOUGH 1.6141 0.6343 0.7290 0.6343 

So far the two models that we looked at assumed that the observations are in­

dependent. However, around 100 observations were recorded in consecutive days for 

each patient. The observations are therefore likely to be correlated within patients 

but independent between patients. To take into the account this dependence one can 

condition on the lagged value of the binary response. The interpretation however is 

usually easier if the lagged ordinal response is used directly as an explanatory variable 

(Muenz and Rubinstein, 1985 and Lindsey, 1997). By lagging the variable of interest 

the last observation of patient i becomes the first observation of patient i + 1 and 
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hence it should be deleted. There are two approaches to this. As stated before, for 

this model we are only interested in the observations recorded after day -1. If we only 

keep the observations recorded after day -1 and then lag the variable, we would have 

to delete for each patient the first observation after this day. A better approach is to 

first lag the variable and then delete the observations recorded prior to day 1. In this 

way we will still have an observation for day 1 which will come from day -1 (there is 

no day 0). The second approach is used. 

The model is: 

logit(b"ijk!m) =a+ ,81CP2i + .82CP3i + ,83TRTMNTk + ,84FREQBASE1+ ,85LAGGm 

(3.9) 

As we did for the other models, we will first look at the goodness of fit statistics for 

variable AMWHEEZ in Table 3.8. 

Table 3.8: Goodness of fit for model 3.6 with a lagged covariate 

Criterion DF Value Value/DF Pr> ChiSq 

Deviance 42 799.6658 19.0397 <.0001 

Pearson 42 4664.0656 111.0492 <.0001 

Looking at the Value/DF we can see that there is a big difference between these 

values for the two criteria. This indicates that the test statistics should not be trusted. 

The AIC score for this model is 16520.208 which is smaller than in the previous models. 

By introducing the lagged variable, called LAG, as a covariate, the number of response 

profiles augmented from 12 to 48. This may be the cause for the difference above. 

To obtain the parameter estimates the same macro with a small modification was 

used. In order to create the new variable the function "lagg" was applied to the 

symptom variable. It was afterwards included in the model in proc logistic. This 

variable was treated as continuous. The interpretation of the coefficient is that the 
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odds ratio will increase by a factor of ef35 for an increase in LAGG of 1 unit. The 

parameter estimates along with the odds ratio estimates are presented in Table 3.9. 

Table 3.9: Parameters and odds ratios for model (3.6) with a lagged covariate 

Variable Parameter Estimate Odds Ratio 

TRTMNT -0.2933 0.746 

AMWHEEZ FREQBASE 0.4181 1.519 

LAGG 3.1016 22.232 

TRTMNT -0.1546 0.857 

AMBREATH FREQBASE 0.3318 1.393 

LAGG 3.0685 21.509 

TRTMNT -0.1766 0.838 

AMCOUGH FREQBASE 0.2602 1.297 

LAGG 2.6325 13.909 

TRTMNT -0.1613 0.851 

PMWHEEZ FREQBASE 0.4073 1.503 

LAGG 3.1916 24.327 

TRTMNT -0.1108 0.895 

PMBREATH FREQBASE 0.4227 1.526 

LAGG 2.8854 17.911 

TRTMNT -0.2334 0.792 

PM COUGH FREQBASE 0.2437 1.276 

LAGG 2.4103 11.138 

Again the odds ratios of Active vs Placebo are less than one suggesting that the 

patients receiving the treatment are doing better than those receiving the placebo. 

The odds ratios corresponding to the variable LAGG are very large. They tell us that 

going from i to i + 1 increases the odds of moving one step on the scale. 
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3.4 Simulations for Assessing Goodness of Fit 

3.4.1 General Testing Considerations 

In broad terms, goodness of fit tests may fail to validate the logistic regression as a 

viable model for a data set for the following reasons: 

1. 	 the trials (observations) are not independent; 

2. 	 the link function does not accurately capture the relationship between covariates 

and the response's probability of "success"; 

3. 	 the sample size is too large that minor model departures are detected as being 

statistically significant even though they are not scientifically relevant; and 

4. 	 data sparcity invalidates the approximate (in many cases asymptotic) null dis­

tribution of the test statistic. 

It was noted before that the longitudinal nature of the asthma experiment would 

likely assure the presence of ( 1). When the groups defined by quantitative covariates 

are large, informal plots of link-transformed observed response proportions against 

covariate values may shed some light on the possible deficiencies noted in (2). It is 

apparent in the following subsections that (3) is likely to be the reason since a large 

number of trials is invloved in the asthma study. The restructuring of the data makes 

the number of observations to be even larger. 

A detailed exploration of the goodness of fit statistics is presented in this section. 

Particular features of the data being analyzed in conjunction with simulations are used 

to get insights into the goodness of fit of the logistic model in the present problem. 

32 




3.4.2 Goodness of fit 

The results of the Goodness of fit test in all three models presented in the previous 

sections suggest that the logistic model is not adequate. In this section we examine 

in detail the goodness of fit statistics applied. Once we had the model we needed 

to asses how well it fits the data, or how close the model-predicted values are to 

the corresponding observed values. Test statistics that assess fit in this manner are 

known as goodness of fit statistics. Following standard practice, the test statistics 

used here are based on comparing in some appropriate manner observed and expected 

counts under the model. Departures of the predicted proportions from the observed 

proportions should be essentially random. The test statistics have approximate chi­

square distributions when the number of observations in each group is sufficiently large. 

For ease, assume that we have only two covariates with indexes h and i both with two 

levels and that the response variable is dichotomous, with index j. Then, the Pearson 

chi-square, Qp, and the likelihood ratio chi-square or deviance, QL, are given by: 

2 2 2 ( )2
QP = "" "" "" nhij - mhij

L.J L.J L.J ffih'.
h=l i=l j=l ~J 

2 2 2 

LLL nhij
QL = 2nhijlog(--) 

ffih''h=l i=l j=l ~J 

where the mhij 's are the model predicted counts. 

If the model fits, both Qp and QL are approximately distributed as chi-square with 

degrees of freedom equal to the number of profiles minus the number of parameters. 

The sample size guidelines for these statistics to be approximately chi-square are: 

• each of the groups has at least 10 subjects (nhi+ ~ 10) 

• 80% of the predicted counts (mhij)are at least 5 

• all other expected counts are greater than 2, with essentially no 0 counts 
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Sufficient replication within sub-populations is required to make the Pearson and 

deviance goodness-of-fit tests valid. When one or more continuous predictors are in 

the model, the data are often too sparse to use these statistics. Hosmer and Lemeshow 

(1989) proposed a statistic that they show, through simulation, is distributed as chi­

square when there is no replication in any of the sub-populations. The "lackfit" option 

in the model statement in SAS performs the Hosmer and Lemeshow goodness-of-fit 

test. The subjects are divided into approximately ten groups of roughly the same size 

based on the percentiles of the estimated probabilities. The discrepancies between the 

observed and expected number of observations in these groups are summarized by the 

Pearson chi-square statistic, which is then compared to a chi-square distribution with 

t degrees of freedom, where t is the number of groups minus n. Performing this test 

for AMWHEEZ using model (3.6) yields the results of Table 3.10: 

The chi-square test statistic is 129.9370 with 10 degrees of freedom. Since the 

p-value is less than 0.0001 we reject the adequacy of the logistic model. 

3.4.3 Simulations 

Simulations will be used to explore various aspects of goodness of fit. First, let's 

examine the data. The symptoms are rated on a scale from 0 to 3, thus these variables 

are multinomially distributed. By restructuring the data, the variable BR takes only 

two values, 0 and 1 where 1 can be considered as a "success" and 0 as a failure. Table 

2.4 showed the frequencies of the symptom scores and we noticed that there were 

a lot of zeros. Table 3.11 shows the frequencies and percents of 0, 1, 2 and 3 for 

AMWHEEZ by treatment, after day -1. There were 181 missing observations in the 

Treatment group and 207 in the Placebo. By looking at the percents we may say that 

patients receiving the treatment are doing better. 

Notice the high percentage of observations of 0 and 1 in both groups. After the 
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Table 3.10: Partion for the Hosmer and Lemeshow test 

BR=1 BR=O 
Group Total 

Observed Expected Observed Expected 

1 4647 27 13.71 4620 4633.29 

2 5048 15 24.59 5033 5023.41 

3 7010 38 48.36 6972 6961.64 

4 6545 81 74.35 6464 6470.65 

5 4620 157 94.49 4463 4525.51 

6 5033 112 168.02 4921 4864.98 

7 6972 341 325.74 6631 6646.26 

8 4463 346 304.14 4117 4158.86 

9 6464 463 484.75 6001 5979.25 

10 4921 479 531.06 4442 4389.94 

11 6631 849 971.57 5782 5659.43 

12 6001 1460 1327.23 4541 4673.77 

Table 3.11: AMWHEEZ after day -1 

Active Placebo 
Score symptom 

Frequency Percentage Frequency Percentage 

0 9718 84.68 8776 77.08 

1 1195 10.41 1939 17.03 

2 498 4.34 575 5.05 

3 65 0.57 96 0.84 

data are restructured for AMWHEEZ, 6% of the observations are 1's and 97% are O's, 

the probability of "success" being very low. This may be a reason for which the tests 

for goodness of fit show that the logistic model is inadequate. 
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Since all the symptoms have a similar distribution of scores, another "symptom" 

variable called "Y" was generated that has the score probabilities in the two groups 

given in Table 3.12. 

Table 3.12: Simulation probabilities TRTMNT significant 

Probabilities 
Symptom scores 

Active Placebo 

0 0.25 0.15 

1 0.50 0.45 

2 0.20 0.30 

3 0.05 0.10 

The probabilities were chosen so that there would be a difference between Placebo 

and Active groups. Thus, the generation of the random numbers took into account the 

two interventions but not the severity (episodic or chronic) of the symptoms. That is 

why we would expect the variable TRTMNT to be significant and FREQBASE not to 

be significant. 

A macro in SAS was created to generate the variable Y, restructure the data and 

apply the logistic procedure, n times (See Appendix 2). The macro calculated the 

goodness of fit statistics and the parameters for each of the n data sets, creating at 

each step two new data sets containg the results of interest. In the end, after the 2n 

data sets had been created, they were merged into two data set. So in the end, two 

data sets were created, one containing the n goodness of fit tests and the other the n 

parameter estimates results. Some of the default variables created were renamed. A 

total of n = 100 data sets were generated. We now want to see if the tests show us 

whether the logistic model is a good fit for the data. Since we have 100 test results on 

100 different variables we need to summarize the data obtained. 

Table 3.13 shows the mean, standard deviation, minimum and maximum for the 
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Value/DF and for the p-value. Remember that for a good fit we need the Value/DF 

to be very close to 1 and the p-value to be larger that 0.05. 

Table 3.13: Simulation goodness of fit- TRTMMNT significant 

Criterion Variable Mean Std Dev Min Max 

Value/DF 6.0208 1.8285 2.5342 11.1351 
Deviance 

Pr > Chi-Square 0.00038 0.0017 3.611E-14 0.0132 

Value/DF 6.0119 1.8268 2.5208 11.0907 
Pearson 

Pr > Chi-Square 0.00040 0.0018 4.176E-14 0.01367 

Looking at the values in the table we can conclude that the logistic model is not 

adequate for the data. The mean Value/DF for both Deviance and Pearson is about 6, 

and the minimum 2.5. The largest p-values are 0.01 which correspond to the smallest 

Value/DF. 

We will now look at the parameter estimates. First, we want to see if all are 

significant for each step of the simulation, that is, for each data set previously created. 

Table 3.14 summarizes the results for TRTMNT and FREQBASE. The intercept, CP2 

and CP3 were all found to be significant. 

Table 3.14: Simulation parameter estimates- TRTMMNT significant 

Variable Parameter/P-value Mean Std Dev Min Max 

Estimate -0.5706 0.0205 -0.6192 -0.4890 
TRTMNT 

Pr > Chi-Square 3.85E-119 3.85E-118 8.33E-182 3.85E-117 

Estimate 0.0051 0.0222 -0.0341 0.0579 
FREQBASE 

Pr > Chi-Square 0.4712 0.2898 0.0065 0.9990 

We can see that the variable TRTMNT was significant in all 100 replications since 

both the minimum and maximum p-value are less than 0.05. The estimates are all less 
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than zero indicating that the treatment has a better effect than the placebo. 

As expected, FREQBASE was not significant in the majority of cases. In 93 out 

of 100 cases the p-value was larger than 0.05, the mean p-value being 0.47. 

So even if a better distribution of the score symptoms is assured, the goodness of 

fit test suggests that the logistic model is not adequate. The only improvement is 

that the value/DF is closer to 1 than before. However, the logistic method employed 

still shows the TRTMNT to be significant and recognizes the FREQBASE not to be 

significant. 

Let's now simulate a symptom variable whose scores are no different for the placebo 

and active groups. So instead of generating the scores with different probabilities, the 

scores for Placebo are generated the same way as the scores for Active. The goodness 

of fit results are in Table 3.15. Most of the values are concentrated between 0.4 and 

1.2. It seems that now, there is underdispersion. 

Table 3.15: Simulation goodness of fit- none significant 

Criterion Variable Mean Std Dev Min Max 

Value/DF 1.0473 0.5937 0.0951 2.8259 
Deviance 

Pr > Chi-Square 0.4871 0.3042 0.0060 0.9985 

Value/DF 1.0467 0.5933 0.0951 2.8199 
Pearson 

Pr > Chi-Square 0.4874 0.3043 0.0061 0.9985 

Table 3.16 below shows the parameter estimates: 

We can see that neither TRTMNT nor FREQBASE are significant. 

Let's now try to make both TRTMNT and FREQBASE significant. To do this, 

the macro was modified so that it generates 0, 1, 2, 3 with different probabilities in 

each of the four groups that are created with the two variables. The probabilities used 
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Table 3.16: Simulation parameter estimates - none significant 

Variable Parameter/P-value Mean Std Dev Min Max 

Estimate 0.0008 0.0231 -0.0667 0.0537 
TRTMNT 

Pr > Chi-Square 0.5058 0.3097 0.0019 0.9973 

Estimate 0.0011 0.0209 -0.0497 0.0448 
FREQBASE 

Pr > Chi-Square 0.5061 0.2877 0.0229 0.9962 

are in Table 3.17 and the goodness of fot results in Table 3.18. 

Table 3.17: Probabilities of 0,1,2,3- both significant 

Score Active Placebo 

0 0.30 0.20 

1 0.50 0.30 
Episodic 

2 0.15 0.35 

3 0.05 0.15 

0 0.25 0.15 

1 0.40 0.25 
Chronic 

2 0.25 0.45 

3 0.10 0.15 

In this setting the results of the goodness of fit tests are in Table 3.18. 


The value over degrees of freedom in this case is very high indicating lack of fit. 


The parameter estimates from the simulated data appear in Table 3.19. Both 


variables are now significant as all p-values are very small. However the logistic model 

seems to be inadequate. 

To further investigate the reasons of lack of fit we will now reduce the sample 

size. We must remember that the logistic regression is originally run on around 68,000 
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Table 3.18: Simulation goodness of fit - both significant 

Criterion Variable Mean Std Dev Min Max 

Value/DF 115.2341 7.2682 97.7686 135.0950 
Deviance 

Pr > Chi-Square <0.0001 <0.0001 <0.0001 <0.0001 

Value/DF 115.0906 7.2150 97.5704 134.8313 
Pearson 

Pr > Chi-Square <0.0001 <0.0001 <0.0001 <0.0001 

Table 3.19: Simulation parameter estimates -both significant 

Variable Parameter/P-value Mean Std Dev Min Max 

Estimate -0.6867 0.0217 -0.7409 -0.6337 
TRTMNT 

Pr > Chi-Square < 0.0001 < 0.0001 < 0.0001 < 0.0001 

Estimate 0.3168 0.0224 0.2665 0.3859 
FREQBASE 

Pr > Chi-Square < 0.0001 < 0.0001 < 0.0001 < 0.0001 

observations. This large number of observations is due to the longitudinal aspect and 

to the restructuring of the original data set. To reduce the sample size we will now 

only use the symptom scores recorded on days that are multiple of 5. That is, we 

select the records that have the variable DAY equal to 5k, where k = 1, 2, 3, .... The 

same data restructuring algorithm is applied to new data set. The restructured data 

set has around 13,000 observations. For reasons of comparison 3 other data sets are 

created by selecting the records that have variable DAY equal to 5k + 1, 5k + 2 and 

5k+3. The results after running the logistic procedure for AMWHEEZ for all data sets 

are in Table 3.20 that shows the Values/DF for the Pearson statistic, the parameter 

estimates of TRTMNT and FREQBASE and their odds ratios. All covariates were 

significant. 

The model does not adequately fit the data as the Value/DF are much greater than 

1 and the p-values are smaller than 0.05. However, we can notice that with a reduced 
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Table 3.20: Reduced sample size results 

DAY Pearson ValuejDF Covariate Parameter estimates Odds ratios 

TRTMNT -0.5351 0.5856 
5k 4.7833 

FREQBASE 0.8373 2.3101 

TRTMNT -0.4797 0.6189 
5k + 1 5.1101 

FREQBASE 0.9250 2.5218 

TRTMNT -0.4721 0.6236 
5k+2 3.6049 

FREQBASE 0.8650 2.3750 

TRTMNT -0.4255 0.6534 
5k +3 4.0278 

FREQBASE 0.8363 2.3078 

TRTMNT -0.5106 0.6001 
10k 3.6420 

FREQBASE 0.8966 2.4512 

TRTMNT -0.5033 0.6050 
ALL 18.5624 

FREQBASE 0.8533 2.3470 

but still large sample size the goodness of fit improves. 

Next, a data set with 300 observations was generated. The data set has 3 variables: 

TRTMNT, FREQBASE, and SYMPTOM. We can look at this data set as a copy of 

the orginal one only that here each patient has only one observation. The values for 

SYMPTOM were generated with the probabilities found in Table 3.17. Running the 

same macro as before, we obtain that 65% of the times the goodness of fit test shows 

that the model is adequate. The mean Value/DF in the 100 results generated is 2.56. 

As for the parameter estimates, TRTMNT is significant 97% of the times whereas 

FREQBASE only 39%. 

Making the sample size smaller may improve the results of the goodness of fit test 

but it is not to be recommended. A smaller sample size is unable to detect small 

differences in the two groups. 
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The simulations showed us that even though there may be evidence that it is not 

adequate, the logistic model seems to perform well showing a significant variable when 

indeed there is one. 

The fact that Value is much larger than DF, making the ratio bigger than 1 can 

be the result of: 

• missing covariates and/or interaction terms 

• presence of non-linear effects 

• wrong link function 

• existence of large outliers 

Adding more covariates such as gender and country, and also interaction terms 

seemed to increase the goodness of fit, Value/DF decreasing from 17 to 12. However 

it is still large. The model assumes logistic regression and there seems to be no hint 

or reason to use a link function other than logit. We can also exclude the existence of 

large outliers. 

Overdispersion can be explained by: 

• variation among the success probabilities 

• correlation between the binary responses 

Since we know for a fact that the data are correlated, this perhaps explains the 

presence of overdispersion. The logistic model is: 

Yi "-' Bin ( ni, Pi), independent 

Pi = exr/3I (1 + exl!3) 

E(Yi) = niPi 


V ar(Yi) = niPi(1 -Pi) 
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Now, in the case of correlation we have: 

n; 

Yi = L Rij, where RiJ equals 1 for success and 0 for failure 
j=l 

P(RiJ = 1) =Pi 
ni ni 

==? Var(Yi) = l:Var(RiJ) + LLCov(RiJ,Rik) 
j=l j=l k#j 

n; 

= LPi(1- Pi)+ A, A# 0 
j=l 

So we can see that Yi does not have a binomial distribution which is a critical assump­

tion is the logistic regression model. 
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Chapter 4 

Generalized Estimating Equations 

Correlated data come from many sources such as longitudinal studies on health care 

outcomes, crossover studies concerned with drug comparisons or clinical trials inves­

tigating new treatments with baseline and follow-up visits. An important considera­

tion in each of these situations is how to account for the correlated measurements in 

the analysis. Within subject factors are likely to have correlated measurements, while 

between-subject factors like age, gender, are likely to have independent measurements. 

Unless the correlation is taken into account, parameter estimates and standard errors 

will not be correct. 

The generalized estimating equations (GEE) approach, first introduced by Liang 

and Zeger (1986), is an extension of generalized linear models that provides a semi­

parametric approach to longitudinal data analysis. The GEE methodology models 

a known function of the marginal expectation of the dependent variable as a linear 

function of one or more explanatory variables. With quasi-likelihood methods, sta­

tistical models are created by making assumptions about the link function and the 

relationship between the first two moments, but without fully specifying the complete 

distribution of the response. GEEs describe the random component of the model for 
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each marginal response with a common link and variance function. 

The GEE methodology provides consistent estimators of the regression coefficients 

and their variances under weak assumptions about the actual correlation among a 

subject's observations. This approach avoids the need for multivariate distributions 

by assuming only a functional form for the marginal distribution at each time point 

or condition. The covariance structure across time or conditions is managed as a 

nuisance parameter. The method relies on the independence across subjects to estimate 

consistently the variance of the proposed estimators even when the assumed working 

correlation structure is incorrect. Since GEEs are an extension of generalized linear 

models (GLM), GLM will be first shortly introduced (Stokes, Davis and Koch, 2000). 

4.1 Generalized Linear Models 

Generalized linear models are a broad class of regression models suitable for analyzing 

diverse types of univariate responses (continuous, binary, counts). It has a three part 

specification: 

1. a distributional assumption 

2. a systematic component 

3. a link function 

Distributional assumption 

Generalized linear models extend many of the basic concepts and ideas of standard 

linear regression analysis to settings where the response variable is discrete and can 

no longer be assumed to have a normal distribution. They assume that the response 
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variable has a probability distribution belonging to the exponential family of distribu­

tions, that includes the normal, binomial, poisson, gamma and others. The probability 

distribution function of this family can be expressed as follows: 

ye- b(e) }
f(y; e, ¢) = exp a(¢) + c(y, ¢) . (4.1){ 

With this notation, e is called location parameter, a(¢) is a scale parameter whereas 

c(y, ¢) is a normalizing term. It is important to notice that: 

E(y) = b'(e) = 11 , 


V(y) = b"(O)a(¢). 


We can see that the variance is a function of the expected value of the distribution 

and a function of the possibly unknown scale parameter a(¢). 

Systematic component 

The systematic component of the generalized linear model specifies that the effects 

of the covariates, Xi, on the mean distribution of Yi can be expressed via the following 

linear predictor: 

The term "linear", as used here, means that 'r/i, must be linear in the regression pa­

rameters. 

Link function 

The final way in which a generalized linear models extend the standard linear re­

gression model is by taking a suitable transformation of the mean response and relating 
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the transformed mean response to the covariates. This is achieved by introducing a 

link function, denoted here by g(·): 

p 

g(fti) =rJi = L,Bkxki =f3'xi. 
k=l 

where fti = E(Y\xi) The link function will be a known function such as "log". This 

implies that it is the transformed mean response that changes linearly with changes 

in the values of the covariates. Thus, while in the standard linear regression model 

the mean response is related directly to a linear combination of the covariates, in 

generalized linear models, it is some appropriate transformation of the mean response, 

that is related to a linear combination of the covariates. The choice of the link function 

should be made such that the model produces predictions of the mean response that 

are within the allowable range. 

There are two main types of link functions, canonical link functions and non­

canonical link functions. The former are unique and can be derived for any selected 

distribution. The latter are somewhat arbitrary and bear no direct relation to the 

selected distribution. Example of a canonical link is logit which is associated to the 

Bernoulli distribution. The GLM with a logit link function is also called logistic 

regression. To notice is that the standard linear regression is obtained if the link 

function is the identity (Fitzmaurice, Laird and Ware, 2004). 

4.2 GEE Methodology 

Let's consider the density function of the exponential family (4.1). The joint density 

for a set on n independent outcomes subscripted from y1 , y2 , ... , Yn is the product of 

the densities for the individual outcomes: 
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Then, the likelihood is simply a restatement of the joint density where we consider the 

outcomes as given, and model the parameters as unknown. 

n { Yi(} - b(0) }
L(O, <PIY1, ... ,Yn) = i=l exp a(¢>) + c(yi, ¢>) ·II

Now, the log-likelihood of the exponential family is 

~ { Yi(}- b(O) }
£(0,¢>1Yb···,Yn) = {-;;: a(¢>) +c(yi,¢>) · 

The goal is to obtain a maximum likelihood estimator for 0. Since the focus is only on 

(}, we derive an estimating equation where we treat the dispersion parameter a(¢>) as 

ancillary. 

Our estimating equation is then, W(8) = 8£j{)(} where we derive 

8£ = :tYi- b'(O) 
{)(} i=l a(¢>) . 

Using the GLM result that in canonical form b' (0) = fL, we may write: 

Since the goal is to introduce covariates that model the outcome, we included a sub­

script on 1-l allowing the mean to reflect a dependence on a linear combination of the 

covariates and their associated coefficients. We can now use the chain rule to obtain a 

more useful form of the estimating equation W(O) = 0 for (} = /3pxl· 

(4.2)~~ = 

l
[(~~) (~:) (~~) (%~) tpxl) 

~ (Yi- b'(Oi)) ( 1 ) (81-l) (4.3)
= [{-;;: a(¢>) V(!-li) OTJ i (xJi) (pxl) 

= [:t Yi - /-li (Of-l) x ··] (4.4) 
i=l a(¢>)V(!-li) OTJ i J• (pxl). 
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So the general estimating equation for the exponential family is given by: 

The result is an estimating equation derived from the exponential family of distribu­

tions where the expected value of the outcome variable is parameterized in terms of a 

linear predictor. 

The assumption behind the derivation of the above estimating equations is that 

the observations are independent. This assumption however, may not always hold as 

in the case of our data set. Let's assume that we have i = 1, ... , n patients (clusters) 

where each patient has t = 1, ... , ni correlated observations. With this notation, the 

equations become: 

~~ Yit -J-Lit (811) } l (4.6)w(f)) = [{ 8£ 
= L...t L...t a(¢)V( it) 8 . Xjit = [O]pxl·8(3· 

J ~=1 t=l 1-L TJ ~t ·-1J- , ... ,p pxl 

where pis the dimension of the matrix of covariates X. Apart from a second subscript, 

the pooled estimating equation is no different from equation 4.6. The implied likelihood 

of the estimating equation does not address any second order dependence of the data. 

We begin introducing the dependence by rewriting the equation in matrix form: 

where D() denotes a diagonal matrix. V(J-Li) is a diagonal matrix which can be de­

composed into: 

(4.8) 

This makes it clear that the estimating equation is treating each observation within a 

panel as independent. The GEE proposed by Liang and Zeger (1986) is a modification 

49 




of the estimating equation for GLMs that simply replaces the identity matrix with a 

more general correlation matrix, since the variance matrix for correlated data does not 

have a diagonal form. 

(4.9) 

We write R('y) to emphasize that the correlation matrix is to be estimated through the 

parameter vector '"'(. This matrix is called working correlation matrix and may have 

different forms (Hardin and Hilbe, 2003). 

It is reasonable to assume a time dependence for the association of the repeated 

observations within the panels that have a natural order. The correlation structure is 

assumed to be corr(yit, Yw) = 'Yit-t'l_ For normally distributed Yit, this is analogous to 

a continuous time autoregressive (AR) process (Hardin and Hilbe, 2003). 

In this case, 'Y is a vector and we estimate the correlation using the Pearson residuals 

A Yit - P,it 

rit = y'V(P,it). 

from the current fit of the model. 

(4.10) 

4.3 Models Assuming Poisson Distribution 

So far, the response variables analyzed were the three symptoms, wheeze, breath and 

cough during day and night. Now we will concentrate on the analysis of response 

variables AMUSE and PMUSE which count the number of times rescue medication 

is used during the day and night respectively. Since the variables represent discreet 

counts that can be considered to be distributed as Poisson, the suitable model is a 

log-linear model. This is obtained from the generalized linear model by considering 
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the link function to be "log": 

log(fl) =a+ x,B. 

We can rewrite the model as: 

Frequently, discreet counts represent information collected over time (days, years) and 

interest lies in modelling rates. If the exposure time is denoted by N, we write the 

rate as YIN and the expected value as IllN. Modelling the rate, the log-linear model 

becomes: 

log(~)= a+ x,B 

log(!L) =a+ x,B + log(N) 

The term log(N) is called an offset and must be accounted for in the estimation process. 

Because there are so many observations per patient, the data are restructured by 

creating 5 time intervals that are almost equal. Thus, the first interval is represented 

by the observations prior to day 1, the second contains the observations between day 

1 and day 20, the third between day 21 and day 40, the fourth between day 41 and 

day 60 whereas the last one contains observations after day 60. The counts in all these 

intervals were added and thus the new data set contains only 1444 observations. Since 

the number of patients is 299 this means that not all of them had observations in the 

last or first interval. The new variables created are: 

• 	 OCCASION- with values from 0 to 4, denotes the five intervals 

• 	DAYS- counts the number of observations that corresponds to each interval for 

each patient 

• 	TAMUSE - counts the number of times rescue medication is used in each 

interval during the day 
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• 	TPMUSE - counts the number of times rescue medication is used in each in­

terval during the night 

4.3.1 Independent observations 

We will first treat the observations as being independent. The response variables are 

TAMUSE and TPMUSE whereas the covariates considered here are TRTMNT, FRE­

QBASE and OCCASION. The procedure in SAS to model these variables is GENMOD 

with the Poisson distance and log link. Table 4.1 shows the estimates for TAMUSE. 

Table 4.1: TAMUSE parameter estimates- independence 

Parameter 	 DF Estimate Pr>ChiSq 

Intercept 1 -0.8902 <.0001 

TRTMNT ACTIVE 1 -0.0573 <.0001 

TRTMNT PLACEBO 0 

FREQBASE CHRONIC 1 0.2862 <.0001 

FREQBASE EPISODIC 0 

OCCASION 0 1 0.7410 <.0001 

OCCASION 1 1 0.4347 <.0001 

OCCASION 2 1 0.3177 <.0001 

OCCASION 3 1 0.0602 0.0209 

OCCASION 4 0 

We can see that all three variables are significant at all levels. By exponentiating 

the parameters we obtain the incidence ratio of Active vs Placebo, Chronic vs Episodic, 

Occasion 0 vs Occasion 4, Occasion 1 vs Occasion 4, etc. For instance, the incidence 

ratio of Active vs Placebo is 0.9443 which shows us that patients in the Active group 

make use of rescue medication a little less than patients in the Placebo group. 
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The incidence ratios are in table 4.2. We can notice that patients that experience 

Table 4.2: Incidence ratios TAMUSE- independence 

Ratio Ratio estimate 

Active vs Placebo 0.9443 

Chronic vs Episodic 1.3313 

Occasion 0 vs Occasion 4 2.0900 

Occasion 1 vs Occasion 4 1.5444 

Occasion 2 vs Occasion 4 1.3739 

Occasion 3 vs Occasion 4 1.0620 

Chronic symptoms use rescue medication more often than those experiencing episodic 

symptoms. We can also see that as time goes by the number of times Ventolin was used, 

decreases. Thus, before receiving the intervention the number of rescue medication use 

was two times greater than in the last 20 to 25 days. The ratio becomes close to one 

as the time intervals are closer to each other. Table 4.3 shows the parameter estimates 

when the response variable is TPMUSE. 

The results are almost similar except that OCCASION=3 is not significant. Again 

the estimate for TRTMNT is negative, suggesting a ratio of incidences smaller than 

one. Table 4.4 summarizes the ratios for all variables in the model. Covariates that 

were not significant have a star next to their ratio. 

We can see a bigger difference in Active vs Placebo than the one observed for 

AMUSE. The same pattern as before can be observed for the other variables. 

The goodness of fit statistics for both response variables suggested that there is 

overdispersion. To deal with this problem we will later assume instead of Poisson the 

Negative Binomial distribution for the outcomes. 
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Table 4.3: TPMUSE parameter estimates - independence 

Parameter DF Estimate Pr>ChiSq 

Intercept 1 -1.5887 <.0001 

TRTMNT ACTIVE 1 -0.1818 <.0001 

TRTMNT PLACEBO 0 

FREQBASE CHRONIC 1 0.1829 <.0001 

FREQBASE EPISODIC 0 

OCCASION 0 1 0.4900 <.0001 

OCCASION 1 1 0.3138 <.0001 

OCCASION 2 1 0.3378 <.0001 

OCCASION 3 1 0.0531 0.1781 

OCCASION 4 0 

Table 4.4: Incidence ratios TPMUSE - independence 

Ratio Ratio estimate 

Active vs Placebo 0.8337 

Chronic vs Episodic 1.2006 

Occasion 0 vs Occasion 4 1.6323 

Occasion 1 vs Occasion 4 1.3686 

Occasion 2 vs Occasion 4 1.4018 

Occasion 3 vs Occasion 4 1.0545* 

4.3.2 Introducing correlations using GEE 

Next we will introduce the dependence between the observations using the general­

ized estimating equations. The choice for the working correlation matrices is the an 

autoregressive matrix. The model remains the same, that is, considering the out­

54 




comes distributed as Poisson and keeping TRTMNT, FREQASE and OCCASION as 

covariates. 

Table 4.5 contains the parameter estimates for TAMUSE. 

Table 4.5: TAMUSE parameter estimates - dependence 

Parameter DF Estimate Pr>ChiSq 

Intercept 1 -0.9316 <.0001 

TRTMNT ACTIVE 1 0.0374 0.7033 

TRTMNT PLACEBO 0 

FREQBASE CHRONIC 1 0.3478 0.0003 

FREQBASE EPISODIC 0 

OCCASION 0 1 0.6980 <.0001 

OCCASION 1 1 0.3957 <.0001 

OCCASION 2 1 0.2861 <.0001 

OCCASION 3 1 0.0446 0.4695 

OCCASION 4 0 

We can see that the TRTMNT is no longer significant. The other coefficients 

however, indicate that patients experiencing chronic symptoms use rescue medication 

more often and that the use of rescue medication decreases in time. 

The estimated correlation matrix used to compute the parameters is: 



We can see that observations that are closer in time are more correlated with each 

other. 

The parameter estimates for TPMUSE are in Table 4.6. 

Table 4.6: TPMUSE parameter estimates - dependence 

Parameter DF Estimate Pr>ChiSq 

Intercept 1 -1.6548 <.0001 

TRTMNT ACTIVE 1 0.0360 0.8003 

TRTMNT PLACEBO 0 

FREQBASE CHRONIC 1 0.1399 0.0003 

FREQBASE EPISODIC 0 

OCCASION 0 1 0.1113 0.0002 

OCCASION 1 1 0.1015 0.0123 

OCCASION 2 1 0.0965 0.0040 

OCCASION 3 1 0.0781 0.7292 

OCCASION 4 0 

The situation is almost similar to the one for TAMUSE. To notice is that during 

the night the use of rescue medication does not decrease as much in time as during 

the day. The estimated correlation matrix used to compute the estimates is: 

R(a) = 

occO occl occ2 occ3 occ4 

occO 1.0000 0.6732 0.4533 0.3052 0.2054 

occl 0.6732 1.0000 0.6732 0.4533 0.3052 

occ2 0.4533 0.6732 1.0000 0.6732 0.4533 

occ3 0.3052 0.4533 0.6732 1.0000 0.6732 

occ4 0.2054 0.3052 0.4533 0.6732 1.0000 
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Next, in Table 4.7 we can see the incidence ratios for the two variables analyzed. 

Covariates that were not significant have a star next to their ratio. 

Table 4.7: Incidence ratios- dependence 

Ratio 	estimates 
Ratio 

TAMUSE TPMUSE 

Active vs Placebo 1.0381 * 1.0366* 

Chronic vs Episodic 1.4159 1.1501 

Occasion 0 vs Occasion 4 2.0097 1.1177 

Occasion 1 vs Occasion 4 1.4854 1.1068 

Occasion 2 vs Occasion 4 1.3312 1.1013 

Occasion 3 vs Occasion 4 1.0456* 1.0812* 

4.4 	 Model Assuming the Negative Binomial Distri­

bution 

The goodness of fit tests for the models that assumed independence, had the Pearson 

and Deviance scores over the degrees of freedom around 17. Thus, it seems that 

there was overdispersion. Overdispersion occurs when the observed variance is larger 

than the nominal variance for a particular distribution. This is not surprising for the 

assumed distribution because the respective variance is fixed by a single parameter, 

the mean. With the Poisson distribution, the rate A is assumed fixed. If however, the 

rate A which generates the counts is not the same for all patients, then assuming a 

Gamma distribution with parameters a and (3 for the distribution of the rate A, the 

counts will be distributed negative binomial with the same parameters a, (3. Moreover, 

the variance as a function of the mean in the case of the negative binomial is V (J-L) = 

57 




1-l +kf-l2 , where k is another parameter that is estimated through maximum likelihood. 

4.4.1 Independent observations 

Table 4.8 compares the results of the goodness of fit tests when using the Poisson and 

the Negative Binomial distributions for TAMUSE. 

Table 4.8: Goodness of fit for TAMUSE 

Distribution Criterion DF Value Value/DF 

Deviance 1437 26688.4854 18.5724 

Poisson Pearson 1437 28809.4547 20.0483 

Log Likelihood 38751.0179 

Deviance 1437 1654.7594 1.1515 

Negative Binomial Pearson 1437 951.4073 0.6621 

Log Likelihood 49320.6432 

We can see that in the case of negative binomial, the Deviance over DF is very close 

to one which tells us that we have goodness of fit. The Pearson over DF is however less 

than one which implies that we have underdispersion. However the choice of negative 

binomial distribution seems to be much better than the choice of Poisson. 

Table 4.9 shows the goodness of fit for variable TPMUSE. Using the negative 

binomial distribution, the results of the goodness of fit tests are even better than for 

TAMUSE. 

We can see the estimates for these response variables in Table 4.10. 

The interpretation is the same as in the case of a Poisson distribution. For 

TAMUSE we can see that TRTMNT is not significant but FREQBASE and OC­

CASION are. The last one suggests that in time, patients need less and less rescue 
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Table 4.9: Goodness of fit for TPMUSE 

Distribution Criterion DF Value Value/DF 

Deviance 1437 16520.6832 11.4966 

Poisson Pearson 1437 23165.3890 16.1207 

Log Likelihood 6984.0663 

Deviance 1437 1457.2827 1.0141 

Negative Binomial Pearson 1437 1266.5072 0.8814 

Log Likelihood 13063.9759 

Table 4.10: TAMUSE and TPAMUSE parameter estimates- negative binomial 

TAMUSE TPMUSE 
Parameter DF 

Estimate Pr>ChiSq Estimate Pr>ChiSq 

Intercept 1 -0.8375 <.0001 -1.5022 <.0001 

TRTMNT ACTIVE 1 -0.1013 0.2069 -0.2121 0.0325 

TRTMNT PLACEBO 0 

FREQBASE CHRONIC 1 0.2469 0.0023 0.1051 0.2920 

FREQBASE EPISODIC 0 

OCCASION 0 1 0.7342 <.0001 0.4803 0.0021 

OCCASION 1 1 0.4370 0.0006 0.2853 0.0663 

OCCASION 2 1 0.3333 0.0093 0.3282 0.0363 

OCCASION 3 1 0.0932 0.4698 0.1187 0.4550 

OCCASION 4 0 

medication. On the other hand, for TPMUSE, TRTMNT is significant indicating less 

use of rescue medication by patients receiving the active drug, whereas FREQBASE 

isn't significant. 
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4.4.2 Introducing correlations using GEE 

So far the analysis assumed that the observations are independent. Using the negative 

binomial instead of Poisson, and taking into account the dependence between the 

observations by using GEEs, we obtain for the two variables the following estimates 

summarized in Table 4.11: 

Table 4.11: TAMUSE and TPMUSE parameter estimates - negative binomial GEE 

TAMUSE TPMUSE 
Parameter DF 

Estimate Pr>ChiSq Estimate Pr>ChiSq 

Intercept 1 -0.8084 <.0001 -1.4675 <.0001 

TRTMNT ACTIVE 1 -0.0538 0.6072 -0.1368 0.3698 

TRTMNT PLACEBO 0 

FREQBASE CHRONIC 1 0.2738 0.0091 0.1420 0.3535 

FREQBASE EPISODIC 0 

OCCASION 0 1 0.6613 <.0001 0.3722 0.0009 

OCCASION 1 1 0.3698 <.0001 0.1891 0.0683 

OCCASION 2 1 0.2719 0.0002 0.2241 0.0205 

OCCASION 3 1 0.0436 0.4803 0.0287 0.6988 

OCCASION 4 0 

We can see that the estimates for TRTMNT are both negative but not statistically 

significant. On the other hand, both estimates for FREQBASE are positive but only 

the one for TAMUSE is significant. The OCCASION is significant and shows that the 

use of rescue medication decreases in time. Table 4.13 shows the incidence ratios. 

Using the negative binomial and taking into account the dependence of the ob­

servations, we can see that in time the number of times rescue medication is used is 

decreasing. The variable TRTMNT was not significant. 
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Table 4.12: Incidence ratios- independence 

Ratio estimates 
Ratio 

TAMUSE TPMUSE 

Active vs Placebo 0.9036* 0.8088* 

Chronic vs Episodic 1.2800 1.1108* 

Occasion 0 vs Occasion 4 2.0832 1.6165 

Occasion 1 vs Occasion 4 1.5480 1.3301 

Occasion 2 vs Occasion 4 1.3312 1.1013 

Occasion 3 vs Occasion 4 1.0976* 1.1260* 

Table 4.13: Incidence ratios- dependence 

Ratio estimates 
Ratio 

TAMUSE TPMUSE 

Active vs Placebo 0.9476* 0.8721* 

Chronic vs Episodic 1.3149 1.1525* 

Occasion 0 vs Occasion 4 1.9373 1.4509 

Occasion 1 vs Occasion 4 1.4474 1.2081 

Occasion 2 vs Occasion 4 1.3124 1.2511 

Occasion 3 vs Occasion 4 1.0445* 1.0291 * 
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Chapter 5 

Conclusions 

The descriptives summaries of asthma symptoms show a general improvement in the 

patients' state of health. The difference between Active and Placebo is not however 

obvious at all levels of the symptom response variables. Over time, the graphs show 

that the use of rescue medication is decreasing and we can detect a difference between 

the two interventions in favor of the Active group. 

A continuation ratio model is used to analyze the symptom response variables 

assuming first that the observations are independent all six symptoms, TRTMNT and 

FREQBASE were found to be significant, showing a difference between the Active and 

Placebo groups in favor of the patients that were receiving the Active intervention. The 

independent assumption is relaxed by incorporating in the model a lagged covariate. 

The results are similar. The goodness of fit tests suggests however that this model is 

not adequate to the data. The simulated data didn't seem to be adequate either, but 

the model was able to correctly detect a difference between Active and Placebo. 

Finally, the generalized estimating equations methodology was used to analyze the 

remaining two response variables that count the number of times rescue medication 

is used. The data was restructured in such a way that a patient had only 5 obser­
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vations. Assuming independence and a Poisson distribution for the outcomes, the 

analysis showed TRTMNT, FREQBASE and OCCASION to be statistically signifi­

cant. The negative sign of the coefficient for TRTMNT shows a difference between 

Active and Placebo in favor of Active. That is, patients in the Active arm use less 

rescue medication than patients in the Placebo arm. The incidence ratios for OCCA­

SION tell us that in time, the use of rescue medication decreases. The goodness of fit 

tests show however that the model is not adequate for the data. Assuming dependence 

of the observations by using GEE, the results are similar except that the coefficient of 

TRTMNT even though is negative is not statistically significant. 

Because using a Poisson distribution resulted in overdispersion, the next natural 

choice was the negative binomial distribution. The goodness of fit tests in this case sug­

gest that this distribution is appropriate for the data. Again, the covariate TRTMNT 

is not significant in neither cases, independent or dependent observations. OCCASION 

however, is significant and suggests as before that in time the use of rescue medication 

decreases. 

63 




Bibliography 

[1] Agresti, A. (1990). Categorical Data Analysis, Wiley. 

[2] Altman, Douglas G. (1991). Practical Statistics for Medical Research, Chapman 

& Hall. 

[3] Azzalini, A. (1994). Logistic Regression for Autocorrelated Data with Application 

to Repeated Measures, Biometrika 81, 767-775. 

[4] Bender, R. and' Benner, (2002). Calculating Ordinal Regression Models in SAS 

and S-Plus. Biometrica Journal, 42, 677-699. 

[5] Carey, V. , Zeger, S.L. and Diggle, P. (1993). Modelling multivariate binary data 

with alternating logistic regressions, Biometrika, 80, 517-526. 

[6] Conaway, M.R. (1989). Analysis of Repeated Categorical Measurements with Con­

ditional Likelihood, Journal of the American Statistical Association, 84, 53-62. 

[7] Diggle, P.J. , Heagerty, P.J., Liang, K. and Zeger, S.L. (2002) . Analysis of Longi­

tudinal Data, Second Edition, Oxford University Press. 

[8] Dirley, M. Berridge, M. (2000). A continuation ratio random effects model for 

repeated ordinal responses, Statistics In Medicine 19, 3377-3388. 

[9] Fitzmaurice, G.M., Laird N.M. and Ware, J.H. (2004) . Applied Longitudinal Anal­

ysis, John Wiley & Sons. 

64 




[10] 	 Hardin, J.W. and Hilbe, J.M. (2003). Generalized Estimating Equations, Chap­

man & Hall/CRC. 

[11] 	 Korn, E.L. and Whittemore, A.S. (1979). Methods for analyzing panel studies of 

acute health effects of air pollution, Biometrics, 35, 795-802. 

[12] 	 Liang, K. and Zeger, S.L. (1986). Longitudinal Data Analysis Using Generalized 

Linear Models, Biometrika 73, 13-22. 

[13] 	 Lindsey, J.K., Jones, B. and Ebbutt, A.F. (1997). Simple models for repeated 

ordinal responses with application to a seasonal rhinitis clinical trial, Statistics In 

Medicine, 16, 2873-2882. 

[14] 	 Lipsitz, S.R., Laird, N.M. and Harrington, D.P. (1991). Generalized estimating 

equations for correlated binary data: Using the odds ratios as a measure of asso­

ciation. Biometrika 78, 153-160. 

[15] 	 Muenz, L.R. and Rubinstein, L.V. (1985). Markov models for covariate depen­

dence of binary sequences, Biometrics 41, 91-101. 

[16] 	 Rees, J. and Kanabar, D. (2000). ABC of Asthma, BMJ Books. 

[17] 	 Stokes, M.E., Davis, C.S., Koch, G.G. (2000). Categorical Data Analysis Using 

the SAS System, Second Edition, Cary, NC: SAS Institute, 2000. 

65 




Appendix 1 

AmBreath 0 lor Active vs Placebo AmBreath 1 lor Active vs Placebo 

-20 20 40 60 80 -20 20 40 60 80 

Day Day 

AmBreath 2 lor Active vs Placebo Am Breath 31or Active vs Placebo 

-20 20 40 60 80 -20 20 40 60 80 

Day Day 

Figure 5.1: AMBREATH by DAY and TRTMNT 
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Figure 5.2: PMBREATH by DAY and TRTMNT 
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Appendix 2 

To obtain the number of subjects in each study arm, Placebo and Active: 

data asthma; 
set asthma; 
if ana='Y'; 

run; 

proc freq data=asthma; 


tables subject*trtmnt/ out=treatment nocol nopercent nocum norow; 
run; 
proc freq data=treatment; 

tables trtmnt I nocol nopercent nocum norow; 
run; 

To obtain the descriptive tables: 

data one; 
set asthma; 
by subject; 
if first.subject=l; 

run; 
proc freq data=one; 

tables trtmnt*freqbase trtmnt*gender trtmnt*wdw 
trtmnt*study trtmnt*wdwreas\ nocol norow nocum nopercent; 

run; 

proc freq data=asthma; 
tables subject*country/ out=country nocol nopercent nocum norow; 

run; 
proc freq data=country; 
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tables country I nocol nopercent nocum norow; 
run; 

Code to obtain the percentage of symptom free days: 

data free; 
set asthma; 
symp=amwheez+amcough+ambreath+pmwheez+pmcough+pmbreath; 
if day<O then d='before'; 
else d=' after' ; 

run; 
data free; 

set free; 
if symp=O then al='free'; 
else if symp='.' then al='NA'; 
else al='symptom'; 

run; 

proc sort data=free; 


by trtmnt; 
run; 
proc freq data=free; 

by trtmnt; 
tables al*d; 

run; 

Macro to obtain the data sets: 

%macro datasets(varb,dset); 
data new1; 

set asthma; 
if trtmnt='ACTIVE'; 

run; 

proc freq data=new1; 


table day * &varb /nocol nocum nopercent outpct out=new1; 
run; 
data new1; 

set new1; 

if &varb ne ' ' .
. ' 
trtmnt= 'ACTIVE' ; 
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keep day &varb count pct_row trtmnt; 
run; 
data new2; 

set asthma; 
if trtmnt='PLACEBO'; 

run; 
proc freq data=new2; 

table day * &varb /nocol nocum nopercent outpct out=new2; 
run; 
data new2; 

set new2; 

if &varb ne ' . ' ; 

trtmnt='PLACEBO'; 

keep day &varb count pct_row trtmnt; 


run; 
data &dset; 
set new1 new2; 

run; 
proc export data = &dset 

outfile= 11 C:\Documents and Settings\Cristina\My 
Documents\Dragos\SAS-lucrare\&dset 11 

DBMS=CSV replace; 
run; 
/,mend datasets; 
%datasets(amwheez,amwh) 
%datasets(amcough,amcogh) 
%datasets(ambreath,ambr) 
%datasets(pmwheez,pmwh) 
%datasets(pmcough,pmcogh) 
%datasets(ambreath,pmbr) 

Macro to obtain the estimates of the model: 

\/,macro symptoms(varb, dset); 
data asthmad; 

set asthma; 
if day>O; 

run; 
data ast1; 

set asthmad; 
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if &varb<=1; cp=1; 
if &varb=1 then br=1; else br=O; 

data ast2; 
set asthmad; 
if &varb<=2; cp=2; 
if &varb=2 then br=1; else br=O; 

data ast3; 
set asthmad; 
if &varb<=3;cp=3; 
if &varb=3 then br=1; else br=O; 

data &dset; 
set ast1 ast2 ast3; 
if cp=3 then cp3=1; else cp3=0; 
if cp=2 then cp2=1; else cp2=0; 

run; 
proc logistic data=&dset descending; 

class trtmnt freqbase/param=ref; 
model br=cp2 cp3 trtmnt freqbase/scale=none aggregate; 

run; 

%mend; 

\%symptoms(amwheez, damwh) \%symptoms(ambreath, dambr) 

\%symptoms(amcough, damch) \%symptoms(pmwheez,dpmwh) 

\%symptoms(pmbreath, dpmbr) \%symptoms(pmcough, dpmch) 


Simulation macro: 

%macro simulation(varb, dset, n); 
data asthmad; 

set asthma; 
if day>O; 

run; 
data act; 

set asthmad; 
if trtmnt='ACTIVE'; 

data plc; 
set asthmad; 
if trtmnt='PLACEBO'; 

run; 
%do j=1 %to &n; 
data act; 
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set act; 
%do i=1 %to %length(trtmnt); 

x=uniform(-1); 
%end; 

if x<0.25 then y=O; 
else if x<0.75 then y=1; 

else if x<0.95 then y=2; 
else y=3; 

run; 
data plc; 

set plc; 
%do i=1 %to %length(trtmnt); 

x=uniform(-1); 
%end; 

if x<0.15 then y=O; 
else if x<0.60 then y=1; 

else if x<0.90 then y=2; 
else y=3; 

run; 
data asthmay; 

set act plc; 
run; 
data ast1; 

set asthmay; 

if &varb<=1 ;cp=1; 

if &varb=1 then br=1; else br=O; 


data ast2; 
set asthmay; 
if &varb<=2; cp=2; 
if &varb=2 then br=1; else br=O; 

data ast3; 
set asthmay; 
if &varb<=3; cp=3; 
if &varb=3 then br=1; else br=O; 

data &dset; 
set ast1 ast2 ast3; 
if cp=3 then cp3=1; else cp3=0; 
if cp=2 then cp2=1; else cp2=0; 

run; 
proc logistic data=&dset descending; 

class trtmnt freqbase/param=ref; 
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model br=cp2 cp3 trtmnt freqbase/scale=none aggregate; 
ods output GoodnessOfFit=d&j ParameterEstimates=p&j; 

run; 
%end; 
data fin; 
set 


%do k=1 %to &n; 

d&k 


%end; 


run; 
data param; 
set 

%do k=1 %to &n; 
p&k 

%end; 

run; 

%mend; 

%simulation(y,amwh,100) 


Creating TAMUSE and TPMUSE by restructuring the data and the GEE code 

data asth; 

set asthma; 

if day<O then ocasion=O; 

else if day<20 then ocasion=1; 

else if day<40 then ocasion=2; 

else if day<60 then ocasion=3; 

else ocasion=4; 

run; 

data asth; 

set asth; 

if amuse='.' then amuse=O; 

if pmuse='.' then pmuse=O; 

run; 

data asth; 

set asth; 

by subject ocasion; 

retain days tamuse tpmuse; 
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if first.ocasion then do; 

tamuse=O;tpmuse=O;days=O; 

end; 

tamuse=tamuse+amuse; 

tpmuse=tpmuse+pmuse; 

days=days+1; 

if last.ocasion then output; 

run ; 

data asth; 

set asth; 

ldays=log(days); 

run; 


proc genmod data=asth; 

class subject trtmnt freqbase ocasion; 

model tamuse=trtmnt freqbase ocasion /dist=poisson link=log type3 offset=ldays; 

repeated subject=subject /type=ar corrw; 

run ; 
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