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ABSTRACT 


Brainstem Auditory Evoked Potentials (BAEP) contain 

valuable information about the condition of the neural 

fibers associated with the auditory pathways. Extraction 

of this information is a difficult task due to 

contamination by on-going scalp EEG. 

This thesis reviews the current processing techniques and 

introduces adaptive noise cancellation (ANC) using systolic 

arrays as an alternative to existing technology. Q-R 

decomposition theory is reviewed and an explanation of the 

mechanics of systolic adaptive noise cancellation (SANC) is 

presented. A modified Given's rotation algorithm is 

derived resulting in a saving of up to 2/3 in memory 

requirements. 

Real data were collected in the laboratory. Real and 

simulated data were processed to determine the 

characteristics and effectiveness of adaptive noise 

cancellation strategies. Successful ANC of BAEP was 
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perrormed on simulated data using a number or signal-to

noise ratios (5/N), data sequence lengths, rererence 

signals and rilter parameter values. We conclude that 

systolic arrays are a very powerrul and appropriate 

technique ror the extraction or BAEPs. 

Correlation studies indicated that the pre-stimulus EEG 

signal is inadequately correlated to the primary signal ror 

successrul ANC or BAEP in real data. A multi-channel 

collection scheme is outlined ror ruture collection or 

Evoked Potential data. 

A summary or experimental results is presented to address 

the problem or data collection and signal processing 

optimization. 
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CHAPTER 1 INTRODUCTION 


The bioelectric nature or tissue was first described by 

Galvani fn 1794 and since that time man has Investigated 

many parts or the human body through the use or electrical 

signals. Electrical potentials are involved in both motor 

control and sensory perception. Neurons, which propagate 

the bioelectric signals, are present throughout the body 

but are most concentrated in the central nervous system 

(CNS). The neuronal activity which can be measured vfa 

potential recordings from the scalp is the 

Electroencephalograph or EEG. Studies or human EEG have 

been intensively conducted since Berger's report in 1929. 

The EEG is used clinically to evaluate neurological 

conditions, study sleep patterns, etc. However, due to the 

non-specific, spontaneous and stochastic nature of the EEG, 

progress towards understanding specific correlations 

between the scalp potential and physiological activity has 

been difficult. 

Stimulation of a specific sensory pathway activates an 

identifiable neuronal population. Using this technique it 
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is possible to drive a predetermined neurological centre. 

The resulting electrophysfolgfcal signals are called Evoked 

Potentials or EPs. For example the visual evoked potential 

or VEP elicited by a flash of light can be recorded by 

electrodes placed strategically on the scalp. 

Recording and interpretation of EP data is hampered by the 

poor signal to noise ratio which exists due to the 

concurrent, spontaneous EEG Signal to noise ratios in 

single stimulus brainstem auditory evoked potentials 

(BAEPs) have been reported to be approximately -20dB 

(Madhavan, 1985). Our own studies concur with estimates 

from -15dB to -23dB (bandwidth of 100Hz to 3kHz). 

Averaging, first described by Dawson in 1954, is currently 

used to extract the EP. Under the assumption that the EP 

is deterministic, that the EEG and EP are uncorrelated and 

that the EEG is stationary, the signal to noise ratfo 

(power) will improve by a factor of H (M being the number 

of repetitions of stimulus) and thus the amplitude ratio 

will improve by JM. Obviously there are a number of 

problems with this technology not to mention the doubtful 

validity of some of the implicit assumptions. Average EP 

records do not allow identification of transient phenomena, 

habituation or real-time monitoring of the nervous system. 
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Many techniques attempting to improve EP processing have 

been proposed and investigated. These are more rully 

discussed in the next chapter. Recent advances in real

time signal processing technology have provided us with 

powerrul new tools which may be adapted to our EP 

extraction problem. Adaptive noise cancellation schemes 

using a number or algorithms and data collection montages 

have been proposed (Madhavan 1984). We propose to use the 

very recently developed Systolic array architecture in an 

adaptive noise cancellation scheme to investigate the EP 

processing problem. Systolic arrays are discussed in 

detail in Chapter 3 but ror now they can best be described 

as ultra stable, modular, multiply interconnected 

structures that can be designed to perrorm channel 

equalization, adaptive beamrorming, adaptive noise 

cancellation and other signal processing tasks. 

We fdentiry two main areas or investigation in order to 

develop general strategies ror EP processing. In Chapter 4 

we rocus on the collection and analysis or real signals. 

For purposes or this research we concentrate on the BAEP. 

In this area we developed the necessary experience an 

understanding required ror successrul signal acquisition. 

Spectral and temporal analyses or the signals allowed us to 
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develop models and define parameter ranges for subsequent 

simulations with the systolic noise canceller. Due to the 

very recent nature of systolic engineering it was necessary 

for us to develop an understanding of the performance of 

our noise canceller under the conditions of our problem as 

indicated by our real data experiments. In, Chapter 5 we 

describe extensive experiments designed to lead us towards 

optimized parameters and collection schemes for eventual 

clinical application of systolic noise cancellation 

processing of evoked potentials. 



CHAPTER 2 

PHYSIOLOGY and EVOKED POTENTIAL PROCESSING 

2.1 Physiology 

The Electroencephalogram or EEG is the scalp recording or 

the electrical activity or the brain. It is well 

documented that the EEG reFlects accurately the underlying 

Electrocorticogram potential (Nashi, 1985). The 

Electrocorticogram potential is the sum or spontaneous 

activity contributed by the entire brain. Thfs activity fs 

transmitted to the scalp by the Flow or ionic currents and 

may be picked up by both needle and surFace electrodes. 

Instrumentation, electrode placement , size, and montage 

signiFicantly aFFect the characteristics or the recorded 

signal. In Chapter 4 the impact or the choice or electrode 

montage with respect to our investigation fs discussed more 

Fully. 

Physiological Factors such as alertness and health 

inFluence the EEG. It is this correlation between recorded 

EEG and health Factors, especially mental and neurological 

5 
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conditions which has prompted the search for the hidden 

message in the EEG. While the EEG has provided us with a 

useful diagnostic tool in areas such as epilepsy, brain 

damage, and stroke (Childers, 1977}, progress in the 

development of new diagnostic procedures through analysis 

of both time and frequency domains has been ,hampered by the 

EEG's complex, stochastic and non-specific nature. 

Emphasis has shifted from the non-specific EEG to the 

responses evoked by stimulation of the human sensory 

system. The Evoked Potential or EP, in contrast to the 

EEG, is specific, deterministic and somewhat less complex. 

While it is important to identify these differences it 

should be noted that the EEG and EP are essentially the 

same neurological phenomena, the EEG being spontaneous and 

the EP being specific to the stimulated pathway. EP 

analysis may be likened in many ways to a crude 

perturbation technique where the effect of a single fnput 

on a system is desired to be known while the system 

continues to operate. 

Under specific stimulation the recorded activity of the 

brain at the scalp consists, ideally, of two independent, 

additive components; the spontaneous EEG and the EP 

response. Of course ft fs conceivable (and even likely} 
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that stimulation of a specific pathway may affect the 

spontaneous EEG and thus change the correlation functions 

of the EEG and EP response. Under these circumstances a 

purely additive model will not be completely adequate. 

An EP can belong to one of four classes depending upon its 

proximity to the stimulus: 

(1) Primary EP or1g1n in the 
stimulation. 

area of direct 

(2) Secondary - EP origin in an area 
stimulation pathway. 

close to 

(3) Non-specific - EP area not directly related to 
stimulation pathway. 

(4) Contingent 
Potentials 

- slow change or expectancy wave. 

Greater distances, either temporally or spatially, between 

the response origin and the recording site allow more 

cerebral processing of the EP thus decreasing the 

specificity of the recording. In order to minimize the 

effect of high level processing we chose for our' 
investigations, the Brainstem Auditory Evoked Potential. 

The early waves of the BAEP have a very short temporal 

latency with respect to the stimulus thus providing us with 

an EP of very specific anatomical origin and relatively 

well understood physiological significance. The BAEP also 

exhibits the following characteristics: 
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arrected mfnfmally by environmental ractors 

exhibits little habituation 

recognizable and consistent shape 

well used clinically and well documented 

The BAEP is thererore well suited to our investigation. 

One such recorded EP is illustrated in rigure 2.1. 

The EEG is the temporal and spatial summation or the entire 

neuronal population or the brain whereas the EP represents 

only a small, speciric population. Consequently the sfgnal 

to noise ratio (the EP is the signal and the EEG is the 

noise) is almost always less than 0 dB. In the case or the 

BAEP we have estimated that the S/N ratio can be as poor as 

-25dB. For visual examination the EPs some rorm or signal 

processing must be done to improve the 5/N. In section 2.2 

we discuss the spectrum or current techniques used in EP 

processing. 

The BAEP is commonly used as one component or a 

neurological examination. Other EPs used include the 

Visual Evoked Potential (VEP), the Brainstem Somatosensory 

EP (BSSEP) and the Somatosensory Cortical EP (SSCEP). Each 
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EP has a different waveform, 5/N, spectral density, 

recording montage and information content. For example the 

BAEP is a 5-7 peak response with a mean frequency of about 

1kHz, appearing within 10 ms after the stimulus. It fs 

used primarily to evaluate the integrity of the auditory 

pathways. 

The short response latency of the BAEP rules out any 

possible contribution from the cerebral cortex. It is 

therefore thought that the BAEP fs a volume conducted 

signal and is uncorrelated with the spontaneous EEG. Due 

to the small amplitude of the BAEP (<0.5 uV) as many as 

2000 individual responses must be averaged to assemble a 

signal which can be visually inspected as in figure 2.1. 

The latency of the first five peaks fs measured and 

compared to the normal distribution of latencies. The 

presence of peaks VI & VII is less reliable so little use 

is made of them clinically. Amplitude measurements are 

sometimes made but large variation fn normals reduces the 

usefulness of such recordings. Absence or abnormally long 

latencies of one or more waves may indicate neurological 

dysfunction. 

The accepted anatomical origins and normal latencies of 

peaks 1-V are documented in Table 2.1. We also present the 
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suspected origins oF peaks (VI & VII). Work continues to 

better understand the precise anatomical relationships 

involved. Bhuwan and colleagues have reported evidence in 

a recent study suggesting that peak II may originate From 

the extramedullary portion oF the VIIIth nerve rather than 

From the medulla (Bhuwan et a1.,1982). 

Table 2. 1 Latency and Origin oF the BAEP Peaks 

WAVE LATENCY (ms) ORIGIN ~IdentiFied 
(10/s) 

1 • 6-1 • 7 Eighth Nerve 97 

I I 2.8 Cochlea Nucleus (Medulla) 96 

I I I 3.8-3.9 InFerior Pons 
(Superior Olivary Complex) 100 

IV 4.8-5.1 Upper Pons 88 

v 5.5-5.7 Midbrain 100 

VI 7. 1 Thalamus ? 

VI I 9. 1 Thalamo cortical ? 

From Kiloh et a1.,1983 

The brainstem consists oF Four regions; the medulla 

oblongata, the pons, the mfdbrafn and the diencephalon. It 

is responsible For respiratory, cardiovascular, and 

gastrointestinal Function as well as many oF the sterotyped 

movements oF the human body. The auditory pathway begins 
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t~2.2 Anatomy of the brainstem 


Medulla 
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neurologically at the organ or Corti located fn the inner 

ear. Nerve impulses are transmitted along the acoustic 

nerve to the processing centres or the medulla, pons, 

midbrain, and thalamus as illustrated in rfgure 2.2. The 

reader is rererred to Webster (1978) ror a review or human 

physiology and anatomy as they relate to EEG and evoked 

potentials. 

Due to its remarkable consistency over time the BAEP has 

been used in the diagnosis or acoustic neuromas, sub 

clinical demylination, brainstem gliomas, vascular lesions, 

and brain death (Kiloh et al., 1981). The monitoring of 

comatose patients or patients under CNS depressive drug 

treatment is also possible due to the BAEP fnvarfance 

during such conditions. Other non-arrectfng drugs include 

pentobarbital, ketanine, and halothane (Kiloh et al.). For 

a detailed description or the clinical uses and potential 

uses or the BAEP the reader is rererred to Chiappa 1983 

(Chapter 3). 

Exploitation or the EP has been limited by the poor S/N 

ratio exhibited by virtually all EPs. The use or 

averaging, while being robust, necessitates repeated 

stimulation thus obscuring transient phenomena, producing 

habituation errects, eliminating the possibility or real
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time analysis and generally making the EP recording and 

analysis inconvenient, tedious and unwieldy. 

Potential real-time uses such as intraoperative monitoring, 

have been difficult to accomplish due to the delay (2-3 

minutes in the case of a brain stem) , required for 

averaging. In order to alleviate this problem many research 

programs have been directed at improving signal processing 

techniques in the area of clinical neurology. It is these 

studies to which we now draw our attention. 

2.2 Evoked Potential Kode1 

The purpose of evoked potential processing is to obtain an 

estimate of the buried signal. Dawson used photographic 

superposition as a first attempt to extract a response 

(Dawson, 1947). Since that time many new techniques have 

been investigated. Digital averaging is now the standard 

approach used to extract EPs fn the clinical setting. 

This involves the arithmetic summation of a large number of 

digitized, single EP responses. 

Not only does digital signal processing provide a 

convenient and flexible environment for signal acquisition 
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but ft also allows us to bring many powerrul analytical 

tools to bear on the extractfon and enhancement problem. 

These tools include; correlation analysis, spectral 

estimation, signal averaging, pattern recognition, zero 

phase Filtering, time-series modelling, and adaptive 

Filtering algorithms. AlI or these techniques have been, 

and are being used, in an attempt to reduce the number or 

repetitions required ror the extraction or the EP. 

The EEG and EP combination can be represented as: 

C(i) 	+ u.(l) j=1,2, •• N ( 2. 1 ) 
J J 

u EEG 

~ EP 

subscript j stimulus repetition number 

digftally sampled point fn record 

The response consfsts or two additive parts which may be 

characterfzed by: 

EEG: 	 stationary, random process 

EP : 	 uncorrelated to the EEG with a probability 

distribution deFining shape, latency rrom 

stimulus, and amplitude 



16 

The strictly additive or uncorrelated nature oF the EP is a 

universally applied assumption based on the physiological 

premise that the stimulated neural centre represents an 

insigniFicant Fraction oF the total CNS population. The 

stationarity oF the EEG is less well accepted but has been 

shown to be valid for short epochs (<12s) (Cohen & Sances, 

1977). These statements will be explored more as the 

various processing techniques are introduced. 

2.3 Current EP Processing Techniques 

Since Dawson's time a large array of EP processing and 

extraction techniques have been presented including Woody's 

correlation method, Weiner Filtering, latency corrected 

averaging, PSR, Maximum likelihood formulations and 

adaptive noise cancellation (ANC) schemes. Simple 

averaging, however, still remains the clinically accepted 

method. 

In addition to our model assumptions we require some more 

restrictive assumptions about the nature of the EEG-EP 

complex when averaging is used: 

EEG (noise) must be uncorrelated from trial to trial. 
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EP must be deterministic with respect to shape, 

latency and amplitude. 

When these assumptions are perFectly valid the signal to 

noise ratio (power) will improve by a Factor or N where N 

is the number or stimulus repetitions. The amplitude ratio 

can then be shown to improve by a Factor or JN (Aunon et 

a 1 • , 1981 ) . 

We can express the process or averaging via: 

E[+(i)] = E[~(i)] + E[u(i)] (2.2) 

= ~ ( i ) (2.3) 

because E[u(i)] = 0 (2.4) 

E[Ui)J = ~ ( i ) (2.5) 

0 For k*l 
and E[uk(i)u 1(i)] = (2.6)

2 
a For k=l 

In practice it is likely that the EP assumptions are not 

strictly met. While the EEG seems to be uncorrelated From 

trial to trial, under certain circumstances the EEG has 

been shown to exhibit non-stationary characteristics {Cohen 

& Sances, 1977). However averaging fs still the main 

clinical tool due to its robustness and its conceptual and 

computational simplicity. 
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Thus ensemble averaging is a sub-optimal solution due to 

its unrealistic assumptions and produces the following 

undesirable effects: 

Inaccurate representation of a single 

stimulus (SSt) EP 

Long acquisition time (non-real time) 

Habituation of physiological response 

Loss of transient information 

In order to address these problems a number of processing 

techniques have been proposed. 

Weiner Filtering was first introduced to the EEG processing 

field by Walter in 1969. Walter began with the steady-

state Weiner filter which will optimally estimate the SSt 

EP, ~{i), in the least mean square error sense. 

S ___________________ ! (w) _ 
H(w) = (2.7) 

S~(w) + Su(w) 

where: 	 S~(w) is the power spectrum (Fourier transform of 

the autocorrelation function) of the SSt EP. 

Su{w) is the power spectrum of the noise (EEG). 
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Since these power spectra are unavailable Walter used the 

average spectrum of the responses (S~) and the ensemble 

averaged spectrum (S() to estimate the transfer function: 

__1__ s( 
N-1 

H(~) = ----------------------- (2.8) 

Single responses are used with the filter transfer function 

to produce the signal estimate. An alternate form of 

equation 2.8 has been developed by Doyle (1977) for use 

with ensemble averages as fnputs. In addition to the 

assumptions required for averaging, Weiner filtering 

requires a response of long duration to ensure stationarity 

of the signal and noise. This requirement was circumvented 

by deWeerd's 'Time-Varying Filter' design (deWeerd & Kap, 

1981). Essentially this consists of estimating the time-

varying signal to noise ratio in pre-determined frequency 

bands. The Weiner filter estimate is then appropriately 

attenuated. 

Results indicate that the performance of tfme-varyfng 

filters is superior to that of time-invariant filters (Yu & 

McGillem, 1983). Despite the availability of software to 

perform time-varying filtering, the increased complexity 
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and inconclusive evidence or improved perFormance has 

largely kept this technology out or the clinical setting. 

Cross-Correlation techniques designed to accommodate jitter 

in the EP were introduced by Woody in 1967. A template is 

used to develop crosscorrelation curves with the individual 

responses. The alignment or signals is assumed to be at 

the maximum or the crosscorrelatfon curve. 

Fundamental to this procedure is the assumption that the 

stimulus to EP latency is variable. Thus, by re-aligning 

the individual responses a more accurate average EP may be 

developed. For an accurate correlation there must be a 

relatively large number or points in each trial. Also the 

EEG must not contain any components whose shape is similar 

to those in the EP. 

Implicit in this method is the need ror a template. The 

choice or thfs template has a sfgnfrfcant errect upon the 

success or the extraction. Previously a number or 

responses (-100 or more) were averaged to develop a 

template. Poor sfgnal-to-nofse ratfos and nofse components 

sfmflar to the EP produce sfgnfricant error fn the EP 

estimate. 
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Improvements to the cross-correlation technique have been 

proposed by Aunon & McGillem in 1975. Latency Corrected 

Averaging uses a minimum mean squared error (MMSE) 

criterion and breaks the EP into components. Thus the 

assumption of EP shape invariance is replaced by an EP 

component shape invariance assumptionw Significant 

improvements in results were reported (McGillem et al., 

1985). The problem of defining unique EP shapes still 

remains. 

One of the more recent techniques is the PSR or predictor, 

subtracter, restorer filter reported by Kaveh (1978). The 

PSR operates in a similar fashion to noise cancellation 

structures. It is based on the ability to model the EEG as 

an autoregressive time-series and uses the correlation 

between pre and post stimulus EEG. 

The AR model is first developed from the pre-stimulus EEG. 

These parameters are then used as a prediction filter 

operating on the post stimulus EEG CEEG & EP). Assuming 

the pre and post EEG are the same the result is a distorted 

EP which is then passed through the inverse AR filter to 

restore the EP. Studies indicate that the PSR performs 

better than Weiner filtering but has problems associated 

with the assumption of stationarity. 
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The Maximum likelihood Estimation ("LE) method also uses 

ARMA modelling or the EEG. Using this technique Nashi has 

shown that it is possible to remove the assumptions or 

constant EP latency, shape and amplitude (Nashi et al., 

1987). The method begins with the average or an ensemble 

or evoked EEG records. A representative shape and 

amplitude are then obtained ror the EP which is then 

Filtered using the characteristic Function or the 

probability density or the post-stimulus latency. State

space equations are obtained rrom ARMA models or the EP and 

the best estimate or the EP is obtained by maximization or 

the Likelihood Function. 

While this technique has been shown to reduce the number or 

stimulus repetitions required to produce a recognizable EP, 

its useFulness is limited by the necessity to begin the 

process by ensemble averaging. 

AI 1 or these methods, under certain conditions, improve the 

5/N or the ensemble or reduce the number or stimuli 

required ror an acceptable EP estimate. However none fs 

successFul enough to extract a single EP (especially in the 

case or BAEP). 
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Adaptive nofse cance11atfon (ANC) enhancement schemes have 

been proposed by Madhavan et al. (1984) ror use in EP 

extraction. These schemes involve the use of a reference 

input to cancel the EEG from the EEG + EP leaving us with 

T, the single stimulus estimate. Figure 2.3 illustrates 

the adaptive noise cancellation scheme. 

The ANC scheme can be represented mathematically by the 

primary input: 

• = ~ + 	u (2.9) 

where: 	 ~ is the true EP 

u is the additive EEG noise 

+ is the single evoked response 

and: ur is the correlated noise or reference signal 

By using ANC schemes we can obtain an estimate of ~he true 

EP, T from: 

-T = ~ + (u-u) (2.10) 

where: 

u is the ANC estimate of u using ur as a reference. 



-----
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fig. 2.3 Adaptive Noise Cancellation 5c'heme 
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The use of the LMS algorithm in a parallel channel 

configuration to extract VEP has been reported but the 

authors claim to have had little success (Winski & Allison, 

1984). This may have been partly a result of the LMS 

algorithm's poor convergence properties. Madhavan et al. 

(1984) have employed Kaveh's (1978) idea on correlation 

using the pre-stimulus EEG as the reference input to the 

ANC scheme. Their investigation of the BAEP using the 

least-squares lattice (LSL) algorithm shows a great deal of 

promise for the ANC technique as applied to the EP 

extraction problem. 

The success of adaptive schemes in noise cancellation 

warrants further investigation and verification. We 

propose the use of Systolic Arrays in the adaptive noise 

cancellation of evoked potentials. These new systolic 

processing techniques promise to be the most powerful 

signal processing architectures yet developed. Systolic 

arrays are ultra stable, modular structures ideally suited 

to VLSI implementation. Plug-in high speed boards are 

rapidly becoming available. 

In the case of adaptive filtering, systolic arrays are used 

to implement RLS-QR decomposition via Given's rotations. 

Due to the very recent nature of systolic technology the 
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perFormance or systolic noise cancellation (SNC) schemes is 

not wel 1 documented. The goal or this research was to 

design noise cancellation experiments that will allow us to 

understand the characteristics or SNC within the boundaries 

or EP extraction. We hope to develop the body or knowledge 

necessary ror Further investigation into optimized 

extraction or single stimulus estimated evoked potentials. 

The speciFic areas or interest are: 

- the errects or non-stationarity 

- the errects or S/N 

data sample size 

- choice or reFerence signal 

-comparison or systolic and lattice perFormance 

- the errect or array order 

The potential beneFits From such a single stimulus 

extraction technology are enormous. By eliminating 

problems such as habituation and allowing the recording or 

transient errects, we can apply the EP to a large number or 

monitoring and diagnostic problems using a pseudo real-time 

processing scheme. Intraoperative monitoring or optic 

chiasm surgery, and recording or signals such as the 

olFactory evoked potential would then be made possible. 



CHAPTER 3 


SYSTOLIC ARRAYS 

3.1 Introduction 

We now review the signal processing theory associated with 

systolic arrays and adaptive noise cancellation. The 

following discussion is based on Haykin's book, "Adaptive 

Fi Iter Theory" (1986) and other cited papers. The reader 

is invited to refer to these sources for a more detailed 

presentation of the material. 

3.2 Adaptive Processing Historical Development 

Adaptive noise cancellation is one of the applications of 

the filter theory which developed from Karl Friedrich 

Gauss. Least square estimation was used by Gauss fn 1795 

to estimate the six parameters associated with the motion 

of the heavenly bodies. The first studies of minimum mean

squared estimation in stochastic processes were made by 

Kolmgorov, Krein and Weiner during the late 1930's. Weiner 

formulated the continuous time linear prediction problem 

27 
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and, in conjunction with Hopf, derived the integral 

equation for optimal parameter estimation. In 1947 

Levinson formulated the discrete time counter part of the 

Weiner-Hopf equation resulting in the matrix normal 

equation: 

( 3. 1 ) 

Where is the optimum tap-weight vector, R is the 

correlation matrix of the tap inputs and p is the cross-

correlation vector between the tap inputs and the desired 

response. A recursive solution to the normal equation was 

developed by Levinson and rediscovered by Durbin in 1960 

for use in modelling time-series data. 

The beginnings of adaptive filtering can be traced to the 

1950's when Widrow and Hopf developed the least mean 

squared (LMS) algorithm, a stochastic gradient algorithm. 

The LMS algorithm iterates each tap-weight in the 

transversal filter fn the direction of the gradient of the 

squared amplitude of an error signal. 

A second class of adaptive filter usfng state-space 

formulations (based on Kalman filter theory) was developed 

by Godard in 1974. The Kalman algorithm had superior 
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convergence properties when compared to the LMS algorithm. 

The third class or Filter, closely related to the Kalman 

Filter, is based upon the method or least squares. The 

Recursive Least Squares (RLS) algorithm, which is superior 

to the LMS algorithm, is also computationall'y more complex. 

This complexity led to the development or raster, more 

erricient techniques which will be described later. 

In 1978 Kung and Leirson introduced the concept or systolic 

arrays but it was not until 1981 that Gentleman and Kung 

developed an erricient algorithm ror solving the least

squares problem. This algorithm involves a recursive 

implementation' of QR decomposition. The QR decomposition is 

achieved by applying a series or Givens rotations directly 

to the data matrix, resulting in an upper triangular 

orthogonalized matrix. Implementation of this algorithm 

was done using systolic arrays. 

Systolic arrays provide the modular structure necessary ror 

erricient computation. In 1983 McWhirter introduced a 

modiFication to the algorithm by eliminating explicit 

computation or the tap-weight vector. As we will see later 

in the chapter, successFul adaptive noise cancellation does 

not require explicit knowledge or the tap-weight-vector. 
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It fs this Final algorithm, with some minor modiFications, 

whfch was Implemented fn our study. 

3.3 least Squares 

Two or the rflters just described {LMS and Kalman) are 

based on a statistical approach. The recursive least 

squares method fs, fn contrast, deterministic. Since Gauss 

was the First to develop least squares estimation theory it 

fs probably best to look to him For an explanation. In 

Sorenson's 1970 paper the basic ingredients or least 

squares as described by Gauss are explained. We Focus on 

three or these as the essential ingredients. 

1) 	 More observations must be taken than the 

absolute minimum required by the system due to 

the inherent measurement errors. 

2) 	Parameter estimates must satisFy the observed 

data in such a way that the diFFerence between 

the observed values and the values predicted 

From the estimated parameters are as small as 

possible. 
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3) 	Gauss also rererred to the suitable combination 

or the observations that wfll produce the most 

accurate estimates. Thfs alludes to the 

structure or the least-squares solution (e.g. 

linear or non-linear rflters) and to the choice 

or perFormance criterion. 

In order to progress towards the implementation or systolic 

arrays in adaptive noise cancellation or EEG we begin with 

the introduction or the autoregessfve model: 

M 
y(k) = I a.y{k-i) + n{k) {3.2) 

i = 1 1 

M 
0 = I a.y{k-i) - n{k) ao = (3.3) 

i =0 1 
af = -a. 

1 

where: 	 M is the order or the rflter and 
n(k) is a Gaussian whfte noise sequence. 

We see that the resulting sequence fs a weighted sum or 

past outputs plus a noise term (n(k)). We wfsh to estimate. 
the parameters ai (autoregressive coerrfcients}. By 

reeding a white nofse sequence fnto a filter and minfmfzfng 

the residual between this noise sequence and the 

autoregressive process, the coefrfcfents may be determined. 

We 	 begin by consfderfng a stochastic process characterized 
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by {d(i) & u(i). i=l.2 •.•• N). Where d(i) fs observed at 

tfme i as the response to inputs u(f). Thus we have two 

sets or data. We now use the transversal filter in rfgure 

3.1 to illustrate the derivation or the deterministic 

normal equation. 

To state the linear least squares problem we begin by 

relating the inputs u(f}. the desired response d(i), the 

parameters or the model wk and the residual or estimation 

error e(i) by: 

M * 
e(i) = d(i) -I wk u(i-k+l) (3.4) 

k=l 

In the method of least squares we choose the tap-wefghts of 

the transversal filter so as to minimize an index of 

performance that consists or the sum of error squares: 

= (3.5) 

Where M fs the number of tap-wefghts fn the filter, f 1 and 

define the index limits between which the errorf 2 

minimization occurs. The values assigned to the lfmfts 

depend upon the type of data windowing employed. By 

expressing the mfnimfzation function fn terms or the data 

matrix ('A'), the desired output vector ('b') and the tap
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weight vector ('w'), then dfrrerentfating with respect to 

the tap-weight vector it is relatively straight rorward to 

arrive at the so-called deterministic normal equation 

( Hayk i n , 1986 ) : 

(3.6) 

Solution or this equation (as fn the Yule-Walker spectral 

estimation algorithm) can be done by LU decomposition or, 

prererably, Singular Value Decomposition (to rind the 

psuedo-inverse). However, in terms or adaptive processing 

eqn. 3.6 is unsuitable because or its non-recursive , 

numerically unstable and computationally costly nature. We 

now look at various recursive algorithms ror solving the 

least-squares problem. 

3.4 Recursfve Solutfons to the Least Squares Problem 

The choice or algorithm ror the solution to the least 

squares problem depends upon the documented characteristics 

such as stability, speed, and complexity. One may also 

wish to consider compatfbflfty wfth existing system models. 

lr the phenomena being investigated can be modelled by a 

modular lattice structure one may wish to implement a 
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lattice type filter in the hope of gaining new insfght fnto 

the nature of the phenomena. Very often a compromise 

between desirable characteristics (e.g. speed vs 

complexity) may have to be struck. 

3.4.1 Recursfve Least Squares CRLS) 

The earliest and conceptually simplest least squares 

algorithm is the recursive least squares (RLS) which is 

developed from a transversal fflter structure. Central to 

the functioning of the RLS algorithm fs an algebraic result 

known as the matrix inversion lemma. 

Given: (3.7) 

A,B are positive definite MxM matrices 

D is a positive definite NxN matrix 

C fs an MxN matrix 

We have: (3.8) 

From these equations ft is easy to see that the RLS 

algorithm is computationally costly. In order to increase 
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speed, related algorithms using properties or serialized 

data such as the Fast RLS and Fast transversal Filter 

(FTF), have been developed. The reader fs directed to 

Haykin (1986) Chapter 8 For details. 

3.4.2 least Squares lattfce 

Until now al 1 the algorithms discussed f.e. LMS, Kalman, 

RLS, Fast RLS, FTF, have been based on a transversal Filter 

structure. We now look at the so called least squares 

lattice algorithm, which is a multistage lattice predictor. 

It will be useFul to discuss this algorithm fn greater 

detail since it is used in experiments to compare the 

performance of the lattice wfth the systolic 

implementation. 

The exact LSL algorithm (so called because it provides a 

exact solution to the least squares problem at each stage) 

involves both time and updates and produces a set or so 

called reFlection coefFicients. The lattice structure is 

illustrated fn figure 3.2. The tap-weights are related to 

reFlection coerrfcfents. We are thereFore no longer 

presented with the instantaneous values or the transversal 

Filter coeFFicients. The reFlection coeFFicients are 
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orthogonal to each other, a result or the decoupled nature 

or each lattice stage. A modfrication or the LSL 

algorithm, the normalized LSL, ensures that the value or 

the reFlection coeFFicients lies between -1 and +1. In 

Appendix I a computer program fs presented ror perrormfng 

adaptive noise cancellation using the Normalized Least 

Squares Lattice algorithm. 

3.4.3 QR Oecomposftfon 

QR decomposition is a technique ror Finding the optimum 

weight vector fn the least-squares estimation problem. 'Q' 

is a unitary matrfx which operates directly on the data 

matrix 'A', transForming it fnto an upper triangular matrfx 

'R'. In this Form back substitution can be perFormed to 

determine the optimum tap-weight vector 'w'. The 

estimation error can then be computed From 'w'. A more 

detailed look at QR decomposition is presented in section 

3.6.3. 

The QR algorithm is implemented fn the rfnal section or 

this chapter using systolic arrays. In contrast to all 

other adaptive algorithms, systolic arrays process the data 

iteratively fn an open-loop conFiguration. In fts orfgfnal 
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rorm the algorithm consists or two stages. The first 

stage, a triangular section, involves an orthogonal 

triangularization process achieved by a special form of QR 

decomposition using Givens rotation. Other 

orthogonalization methods such as the Gram-Schmit used in 

the lattice configuration have been used 'fn a systolic 

architecture. Triangularization is performed directly upon 

the data matrix (avoiding any calculations fnvolvfng auto 

and cross-correlation matrices) in a recursive fashion. 

The second stage fs a lfnear section used to perrorm 

backward substitution in order to extract the tap-weight 

vector. Figure 3.3 illustrates the 2 stage systolic 

adaptive rilter. 

For purposes or ANC it is not necessary to calculate the 

tap-weight vector explicitly (see next section). A second 

implementation of systolic arrays (Systolic II) achieved by 

McWhirter (1983) avoids this explicit calculation (see 

section 3.6). This second implementation is simpler to 

program, computationally more efficient and guarantees 

numerical stability. 
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3.5 Adaptive Noise Cance11atfon (ANC) 

Prior to the development and implementation or our systolic 

adaptive noise canceller (SANC) it is necessary to brierly 

consider the requirements or a noise cancellation system. 

ANC rerers to the estimation or a signal corrupted by 

additive noise. To perrorm ANC we require a primary input 

which is composed or both noise and signal and a rererence 

input which is correlated, in some way, to the noise in the 

primary signal (Widrow et al., 1975). The rererence input 

is adaptively riltered and subtracted rrom the primary 

input to obtain a signal estimate. 

In contrast to conventional rilters which require apriori 

knowledge or the system in order to operate, an adaptive 

rilter changes its parameters in response to some minimum 

error criterion. We are thus able to deal with a 

completely unknown system. 

The schematics or the ANC process has been illustrated in 

rigure 2.3. A sfgnal 's' is transmitted in some channel 

which adds an uncorrelated noise np. We derine the entire 

primary signal as : 

(3.9) 
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A second channel (rererence) carries a noise signal nR 

which is also uncorrelated to 's' but is correlated t~ 

np. The p~rpose or the ANC is to determine a set or 

coerricients which will transForm nR into an approximation 

or i . e. The additive nature or the noise and the 

correlation relationships outlined above are all that is 

required 'for ANC. At the output or the Filter we rind: 

(3.10) 

where: <np-np> is small and thererore 

e E! s (3.11) 

Notice that it is not necessary to know, explicitly, the 

value or the tap-weights determined by the system. We 

thererore use McWhirter's modi r i ed systo 1 i c ,array (Systo 1 i c 

Implementation II) since only the error sequence output by 

the systolic array fs required. 

3.6 QR Decomposition via Gfvens Rotation 

Usfng Systolic Array II 

We now proceed to describe the theory and implementation or 

the SANC. 
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3.6.1 Systolic Arrays In Signal Processfng 

Systolic arrays have round a wide variety or uses in modern 

real-time signal processing problems. Tasks which can be 

reduced to common sets or basic operations are well suited 

to the modular repetitive structure or the systolic array. 

The algebraic operations perFormed by systolic arrays 

include: 

- Deconvolution, OFT & FFT 

-Matrix and vector multiplications 

- Adaptive beamrorming 

- Singular Value Decomposition (SVO) 

- Adaptive Spectral Estimation (via SVO) 

-Generalized SVD 

- Eigenvalue decomposition 

- Matrix Triangularfzation 

From Speiser & Whftehouse,1983 

Obviously there fs a great deal or interest in the 

applications and properties or systolic arrays. Kung 

presents a comprehensive lfst or such properties in his 

1981 paper. For application techniques and VLSI 

considerations the reader is Invited to read H.T. Kung's 

"Why Systolic Architectures?" (1982). 
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3.6.2. Givens Rotation and Triangularfzatfon 

By matrix triangularization we mean the computation of H 

and R in the equation: 

(3. 12)=[~] 
If we restrict H to be an unitary matrix Q, triangular

ization becomes the key step in solving the least squares 

problem. We begin with a partially triangularized matrix 

as shown below. 

X X X X X X X X 
X X X -----) X X X 

X X X X 
X X X X X 

Triangularization can be achieved by replacing the fourth 

row by some linear combination of 1st, 2nd and 3rd rows. 

The result is an upper triangular matrix shown on the right 

side. Obviously this is a repetitive process and is well 

suited to systolic implementation. The triangularization 

of the data matrix in the least-squares problem resulting 

in the desired QR configuration is achieved via Givens 

rotation. Givens' original work was published in 1958. In 

the context of QR decomposition and SANC we have a data 

matrix (nxM)of the following form: 
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M 

'1\x X X X 

0 \ X X X 
0 0 \ X X 
0 0 0 \ X 

A = 0 0 0 0 \ 
O's 

X X X X X 

n M 

l n-M-1 
X} 1 

M is the number oF tap-weights and n is the data sample 

index. We wish to annihilate the mth element in row n (last 

row) by rotation with row m oF matrix A, m=1,2 ... M. The 

Givens matrix G, 

cos+ 

1 • 

0, 

is deFined as an nxn unitary matrix with 

i, k=m 

i=m,k=n 

i=n,k=m (3.13) 

f, k=n 

f,k=1,2, .• ,n-l,excluding m 

otherwise 

By way oF example we choose M=3, n=5, m=2 where G 

premultfplies the data matrix A: 

G2 

0 0 
cos+ 0 

0 1 
0 0 

-sin+e-Je 0 

* 


X A 

X X X 
0 
0 

0 
0 Yom ~ 0 

0 01 0.. 
0 0 Ynm X 

has just been rotated, ynm is the target For 

annihilation and ymm is the rotation victim. 
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To eliminate they we solve the rollowing simultaneous nm 

equations: 

, 
(3.14) 

, 
-sin+e-J

·e 
y + cos+y~ = = 0 (3.15)Y nmnm """ 

Application or the sequence or Givens rotations GM .. G2 • G1 

will result fn a completely triangularized data matrix. It 

is the implementation or these equations which allows us to 

derine the internal and boundary cell runction. Discussion 

or implementation procedures is reserved until we present 

the recursive QR decomposition algorithm. 

3.6.3 	 Recursive QR Oecomposftfon vfa Gfvens Rotation 

wfthout Explfclt Tap-Weight Vector 

The rollowing derivation. adapted rrom McWhirter (1983) and 

Haykin (1986), outlines the procedure ror the solution or 

the least squares problem in a recursive manner using 

Givens rotation to perrorm QR decomposition. From 

McWhirter's work ft is possible to do this without explicit 

computation or the tap-wefght vector. Since only the 

residual error is required to perrorm ANC thererore, 
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McWhirter's Systolic II implementation may be used for the 

greatest computational efficiency and stability. Much of 

this derivation is based upon Haykin's (Chapter 10) and 

McWhirter's work. Readers wishing to investigate more 

theory are directed to Haykfn's (1986) comprehensive book. 

Definitions: 
n . 2 

( ( n) = I ~ n- 1 Ie. I (3.16)
1

f =1 

Where n is the number of data points, ~(n) is the 

exponentially weighted index of performance and ~ is the 

exponential weighting factor. 

(3.17) 

H e. is the error, d. the desired output, w (n) the weight
1 1 

vector and u. the input vector defined as follows: 
1 

WH(n) = (w1' w 1 , ••• , (3.18)n- wn-M+ 1] 

UH ( i) = ( u i ' u. 1, ••• , (3.19)
1- u i-M+ 1] 

The error vector £ (n): .. 
H£ (n) = [ el' e2' .. ' en] (3.20) 

or £(n) = b(n) - A(n)w(n) (3.21) 

Where the desired response b(n) fs: 

(3.22) 




• • • • • 
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and the data matrix, A, f s : 


AH(n) = [u(1),u(2), .• ,u(M), .. ,u(n)] (3.23) 


u ( 1 ) 0 0 0 0= 
u(2) u ( 1 ) 0 0 0 

u(M) • • • u ( 1 ) 

u(n) u ( n-1) • • u(n-M+1) 

From 3.16 and 3.20 we can rewrite the performance index as: 

(3.24) 

n-1 n-2where: A(n) = d i ag D , ~ , .. , ~ ] (3.25) 

or in terms of the euclidean norm: 

1/2 2 

((n) = IIA(n}e(n) II (3.26) 

For minimization purposes this fs equivalent to: 

((n) = IIA(n)e(n) I I (3.27) 

Part 1: Generate Least Squares expression For (min" 

Let Q(n)A(n)A(n) = (3.28) 

so that R fs MxN, A fs NxM, A fs also NxN, w fs Mxl 

b is Nxl where M is the array order (tap-weights) and N 

is the number of data points. 
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We derfne Q to be unitary f.e. 

Q 
-1 

(3.29) 

Further: 

Q(n) = . [P< n >] (3.30) 
S(n) 

Where P(n) is MxN and S(n) is (N-M)xN 

Since the norm or a vector is unarrected when premultiplfed 

by a unitary matrix we have: 

({n) = I fQ(n)A(n) £(n) II (3.31) 

by substituting eqn. 3.22: 

((n) = IIQ(n)A(n) [b(n) - A(n)w(n)] I I (3.32) 

= I IQ(n)A(n)b(n) - Q(n)A(n)A(n)w(n) II (3.33) 

Substituting eqns. 29 and 30 we get: 

({n) = II re~FJ2J A(n)b(n) - f~S0_5J A(n)A(n)w(n) II (3.34)
sen> [o J 

= II f~J!:l)]- R(n)w(n)
V(n) 

II 

where: 

(u cn >J
V(n) 

= Q(n)A(n)b(n) (3.36) 

and: 
U(n) = P(n)A(n)b(n) (3.37) 

V(n) = S(n)A(n)b(n) (3.38) 

U fs Mxl and V fs (N-M)xl. 
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From eqn. 3.35 we obtain the least squares solution via: 

R(n)w(n) = 0 (3.39) 

Therefore ~min(n) = I IV(n)ff (3.40) 

when eqn. 3.39 fs satisfied. 

Part II. 	 We now wish to develop a more precise expression 
for ~, the error vector. 

From eqn. 3.22 

A(n)~(n) = A(n)b{n) - A(n)A(n)w(n) (3.41) 

and from eqn. 3.28: 

A(n)A(n) = (3.42) 

thus 
A(n)~(n) = (3.43) 

subs. eqn. 3.30 

A(n)b{n) - PT(n)R(n)w{n) (3.44)= 

subs. eqn. 3.38 (the least squares requirement) 

A(n)b(n) - PT(n)U(n) (3.45)= 
now from eqn 3.36 : 

A(n)b(n) = QT ( n) fy£'ltl (3.46) 
[V<n )j 

= PT(n)U(n) + ST(n)V(n) (3.47) 

Lastly, from eqns. 3.45 and 3.47 we have 

A(n)e(n) = ST(n)V(n) (3.48) 
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Part III. 	 We can now generate a recursive form for the 
triangularization of R. 

We have, from eqn. 3.28: 

Q(n)A(n)A(n) (3.49) 

Let: 

Q(n-l)A(n-1)A(n-1) (3.50) 

and 
Q<n-1) = q<!J-JL! ol (3.51)

L 0 I 1] 

thus Q(n-1) is the augmented NxN unitary matrix. 

Q(n-1 )A(n)A(n) (3.52) 

from eqn. 3.50 (3.53) 

Therefore Q(n) = Q(n) Q ( n-1 ) (3.54) 

and Q(n) • t~R(Q.-JJ = (3.55)_.J).,. __ 
a (n) f~"~ 

Q(n-1)A(n)A(n) = 	 (3.56)p~~1 

thus Q(n) performs the Given's rotation and triangularizes R. 
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In terms of Q(n) (from eqn. 3. 36) : 

= Q(n)A(n)b(n) (3.57)
[YLnJJV(n) 

subs. eqn. 3.54 
= Q(n)Q(n-1)A(n)b(n) (3.58) 

subs. eqn. 3.51 

= ~ (3.59)(n) ~( n-_!>l TI f-A( n-_1_ )E_( !:!:_-y
0 1 1 d(n)

I 

= Q(n) [a_Ql!:!:_-l)A(!J_-j )b(n-_1_)] (3.60) 
d(n) 

from eqn. 3.56 

~Lnl] [~U~Q-~~V(n) = Q{n) ~ V ( n-1 ) (3.61)
-cun>

Part IV: From the results in parts II and III we can now 

isolate the nth element (en) in the error vector (&(n)). 

From eqn. 3.30 
Q(n) = ~i_nj] (3.62) 

S(n) 

From eqn. 3.54 
Q(n) = Q(n) Q( n-1) (3.63) 

r•(n) I 0 l<(n)]and 
Q(n) = 9:r-:_ :: I <n> :-o: (3.64) 

a ( n >1 0 IY ( n ) 

where I is the (N-M-l)x(N-M-1) fdentfty matrix, K is the 

Mxl column vector of sfne factors, ~ fs the MxM diagonal 
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matrix of cosine factors, aT lxM row vector of negative 

sine factors. Section V of thfs exercfse explains the 

components of Q(n) in greater detail. 

Combining eqns. 3.62, 3.63, and 3.64 we get : 

and r-(!.<D)_: ~ (n\-~J.n~ Q_-!1 .!..0~
Q(n) = S(Q.:-lJI_Q (3.65)[~------ • 

a (n)tO 1 y(n 0 I 1 

_< '"l2 P <~!.)- _I_ -~ '2.>]= S (n-1) I u (3.66)-T- - - - - - - -a (n)P(n-1) I y(n) ~ 
Lastly, the portion of Q(n) in which we are interested 

T(from eqn. 3.48 A(n)e(n) = S (n)V(n)) 

f s: 

= (3.67) 

Now from eqn. 3.61 V(n): 

ru (n ll
LVfn1J = Q(n) • ff~J;=J ~ (3.68)f d(n) j 

subs. eqn 3.64 

(3.69) 

V(n) 
(3.70) 
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= f'i Vj_n_- !Jl 	 (3.71) 
[ a(n) J 

where a(n) = ~s 
T (n)U(n-1) + y(n)d(n) (3.72) 

Finally ... , combining eqns. 3.48, 3.67, and 3.72 we get an 

expression for the nth element of the error vector: 

(3.73) 

= 

And now the 	nth element can be extracted: 

en = a(n)y(n) (3.75) 

Part V: An 	 explanation of Q(n). 

From eqn. 3.64 

_(.!2_)~ _o__ I !<n~ 
Q(n) = 	 o_ 1 I (n )t 0 (3.76)

.:.l"'T :'"\I- cr--+- r:~ a \ n ,1 1 y \ n 


which is the product of a serfes of Given's rotations 
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Ir the appropriate Given's matrices are constructed ror 

M=4 rrom eqn. 3. 13 , the final product of matrices 

would be: 

0 0 0 0 0cl 51 
0 c2 0 0 0 0 52 
0 0 c3 0 0 0 53 

Q(n) = 0 0 0 cit 0 0 sit 
0 0 0 0 1 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

-sl -s2 -s3 -sit 0 1TCi 

(3.77) 

't(n) - diag[c 1 , ••••• ,cM] (3.78) 

T 
IIC ( n) - [sl, ..... ,sM] (3.79) 

CJT(n) - [-sl, ..... ,-sM] (3.80) 

y(n) - 1TC. (3.81)
1 

The vector a(n) is given by eqn. 3.72 and can be compared 

to eqn 3.15: 

a(n) = ~sT(n)U(n-1) + y(n)d(n) (3.82) 
, 

+ COSfYmm (3.83)Y mm = 

By looking at rigure 3.5 it can be seen that a(n) fs 

generated as the array rotates ymm with the incoming data 

ynm (U(n-1)). 
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3.6.4 Implementation oF Systolic Array II as a 

Noise Canceller (SANC) 

We now solve the simultaneous equations resulting From the 

Givens rotation in order to implement them in our 

triangular systolic array. They are (for complex data): 

-ja (3.84)-sin~e Ynm + cos~ymm = Y nm 

cos~v + sin~eJ·a 
y = Y mm (3.85)

· mm nm 

let: c - cos~ 

s - sin~ 


p - sin~eJ·a 


and: R - Ymm 


R' - y' 

mm 

u. - Ynm1n 


uout - y'nm 


therefore 

-p * R + cU.1n = (3.87) 

cR + = R' (3.86) 
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We require the systolic array to perform three types of 

tasks: 

1 ) Boundary Ce 1 1 

2) Internal Cell 

3) F ina 1 Ce 1 1 

Boundary Ce 1 I 

cR + pUin 

-p * R + cU.1n 

2 2 
c + IPI 

Solution of the Givens equations 

where u =0 for generation of
out 

the rotation parameters. 

Propagation of rotation parameters 

through the input data. 

Application of the 'product of 

cosines' parameter to generate the 

least squares residual. 

= R' (3.88) 

= u = 0 (3.89)out 

= (3.90) 
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We must solve for the rotation parameters (c,p) and update 

the eel l contents (R'). 

A) Uin = 0, R * 0 ---> R'= R, c=l, p=(O,O) 

8) u.1 n * 0' R = 0 ---> R'= Uin' c=O, p=(l,O) 

C) u. = 0' R = 0 ---> use either A or B1n 

0) u . 1n * 0, R * 0 

2 2 
p = u. I fc R) + (Uin) (3.91)

1n 

* c = p R I u. (3.9la)
1 n 

2 2 
= R I lcR) + ( u. 

1n 
) (3.9lb) 

2 
= +/ 1 - :P: (3.9lc) 

R'= cR + pU. (3.92)1n 

Calculation of 'p' before 'c' allows us to develop a memory 

saving algorithm for implementation of the Givens rotation. 

If we inspect 3.9lb and 3.92 it is obvious that both 'R' 

and 'c' are always positive. The sign (real data) or phase 
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(complex data) information is contained in the sine 

rotation parameter 'p'. 

At first glance it would seem necessary to maintain three 

matrices one for each of 'c', 'p' and 'R'. However we can 

reduce memory requirements by l/3 by storing the upper 

triangular matrix containing 'p' in the the lower half of 

the 'c' matrix and by using the following transform to 

extract 'p': 

p(x,y) = c(M+3-x, M+2-y) (3.93) 

We now have to maintain two matrices one MxM the other 

(M+2)x(M+l). Use of this transform results in no 

significant increase in computation time. 

For further reductions in memory requirements we look at 

eqn. 3.9lc and notice that it is unnecessary to maintain a 

matrix of 'c' values because they can be calculated, when 

necessary, from 'p' alone. Notice that this would be 

impossible if eqns. 3.9la or 3.9lb were used because the 

value of U. is not stored. Also if c were the basic 
1n 

rotation parameter (i.e. 'p' calculated from 'c', 'R' and 

Uin) it would be impossible to formulate an equivalent of 

eqn 3.9lc since the sign or phase information would be 
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unavailable. We now replace the upper half of the 'c','p' 

matrix by the upper triangular matrix of 'R' and the result 

is a total reduction in memory requirement of 2/3. The 

remaining matrix has dimensions (M+2)x(M+l). The cost fn 

terms of computation is that we must now calculate 'c' 

explicitly during an internal cell computation resulting in 

an increase in processing time of about 30~. 

The choice of equation for the computation of 'c' in the 

boundary cell will determine which input parameter ('R' or 

U. ) wi II have to be checked for zero value to ensure1n 

numerical stability of the algorithm. We use eqn. 3.91b 

because it involves no additional square root calculation 

after use of eqn. 3.90. Figure 3.4 illustrates the flow 

charting for boundary cell computations. 

Internal Cell 

2 
c = j 1- IPI (3.94) 

R'= cR +pU.1n (3.95) 

* Uout = -p R + cUin (3.96) 

Equation 3.93 is only necessary when using the minimum 

memory algorithm. The increase in processing time of 301. 
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Uin, R 


R =A Vz R 
X"' VJ~Iz+IUin/2 

p"' Uil'l/x 

c"' Rfx 

R'=cR-tpUin -------• 

YES C =1. 
p= (o,o) 
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is due to the large arrays being processed and thus the 

high internal to boundary cell ratio. Using the minimum 

memory algorithm we now have three rather than two 

computations to perform. 

Ffnal Cell 

u = y 
lj2 

U.n (3.97)out 1

Figure 3.5 illustrates the flow of data in the systolic 

array (real data example). The first row of the systolic 

array (i.e. the top row of cells) turns each arriving row 

of U into a row with a zero in its first entry. Results 

are output to the second row where the next element from 

the left is eliminated (in the boundary cell). While 

triangularizing the data matrix, the contents of the cell 

'R' are updated and the rotation parameters sent to the 

right (for use in the internal cells). Because of the 

temporal skew imposed upon the incoming data the rotation 

parameters determined at the boundary cell reach the 

internal cell at the correct time. This arrangement 

ensures that as each row of data flows through the array it 

interacts with the previously stored triangular matrix R(n-

I) and undergoes the sequence of Givens rotations described 

in the previous section. 



U, C!>) 

0u. (2) 

B Uin 

Bound:~~~r~ cell : See +1._9 3 .4 ~cc,P) 
6' 

Uin 

F\- A'1 
:z. RIntem:~~~l cell .. ce,P)(~,P) ~ ~ I .. 

Uou<- = CUin - PR 

Uot.lt R' = PU10 + CR 

lJ in 

i!' \. ~ ""'fin"""I c-ell : •l s Error = ~ = z · !J :~.n 
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The parameter y(n) is updated at each boundary eel 1 as the 

cosine parameters are computed and passed to temporary 

storage. The extra delay is a direct result of the temporal 

skew imposed upon the incoming data. For programming ease 

the matrix is worked from top to bottom and left to right. 

We begin by calculating R 1 ~ from Uin' and (thes 13 c 13 

Givens parameters from the time before). Working down the 

columns each Uout from the upper cell becomes the Uin to 

the cell below and is rotated with contents of the cell (R) 

and c and s from the eel 1 to left. After each calculation 

c and s are moved to the right by incrementing the 

appropriate index. 

y is propagated via two vectors ~ and a. At each boundary 

eel 1 we perform: 

~(n) = a<n-1) (3.98) 

and a(n) = ~(n)•c(n) (3.99) 

The final cell calculation is in place of a boundary cell 

calculation at the bottom right of the array. Since this 

requires y, ~(M+l) must be updated from a(M) prior to 

computation of the residual. 

A program listing of the SANC (minimum memory algorithm) 

is presented in Appendix II. 



CHAPTER 4 


REAL DATA ACQUISITION 

4.1 	 Introduction 

The ultimate goal of our study in evoked potential 

processing is to develop a clinically useful system. Real 

signal collection and analysis is fundamental to the 

attainment of this goal. Use of real signals has two 

advantages: 

i) 	 We are able to evaluate the appropriateness of 

proposed signal processing techniques. We are 

also better able to characterize the signal of 

interest (e.g. band-width ) and estimate the 

range of values for parameters (e.g. S/N ratio) 

in sfmulation studies. 

ii) 	 Evaluation of the success of the scheme should 

be done using real data. Use of real data should 

follow simulation studies when we are able to 

distinguish signal processing, data acquisition 

or physiologically-based system problems. 
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A rinal system ror EP processing might look like the 

diagram in rigure 4.1 . The stimulation unit consists of 

visual, auditory or electrical hardware with programmable 

intensity, stimulation rates, etc. Collection begins at 

the electrodes and the signal is fed to the pre-amplifier. 

Further amplification and analog Filtering may be included 

prior to digitization or the signal. A/0 conversion allows 

the implementation or much more advanced processing such as 

adaptive noise cancellation and zero-phase digital 

filtering. The choice of processing and acquisition 

parameters will depend upon the final use of the data (i.e. 

visual interpretation by a physician or machine 

classiFication). Pattern recognition schemes have already 

been tested and developed for BAEP and VEP (Madhavan et 

al., 1984). As attempts are made to standardize tests and 

test results, the necessity ror access to a central data 

base will become more important. 

4.2 Data Acgufsftfon 

4.2.1 Protocol For BAEP Sfgnal Acgufsftfon 

The importance of collecting good, clean data cannot be 

over emphasized. Much unnecessary processing and can be 

avoided by taking appropriate care to acquire data which 
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has as 1 ittle noise as possible. In physiological studies 

the effect of environmental influences on the subject must 

always be considered. Experience has determined that best 

results can be obtained when the following guidelines are 

applied: 

1) 	 The subject should be resting horizontally with 

adequate neck and head support. A stretcher 

provides a mobile and comfortable surface. 

2) 	 Lights should be dimmed and where possible, 

turned off. Environmental noise (e.g. computer) 

should be minimized. If possible sleep should 

be induced. A significant reduction in noise of 

a muscular origin will be observed ff the 

patient does fall asleep. 

3) 	 Plenty of time should be reserved for the test 

to ensure that the subject remains as relaxed 

as possible throughout the sessfon. 
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4) The subject should be exposed to the stfmulus 

by performing a dummy run of about 100 

stimulations. 

5) Once the acquisition has begun interruptions 

should be entirely avoided. 

The front end of our acquisition system was a Nicolet 

Compact-4 (C-4) which is used in clinics for EP extraction 

via averaging. Headphones were provided for stimulation of 

the subject's auditory pathway. Stimulation rates of 3.0 

per second were used with a rarefaction pulse of 200 usee 

duration. Rarefaction was used to improve the resolution of 

waves IV and V (Chiappa, 1983). Clinical tests use a rate 

of 9.8 per second but we were limited by the disk-writing 

speed of the PDP-11 used to store the individual EEG 

records. A total of 2000 records were stored requiring 

about 2005 to 2020 stimulations (a small percentage were 

rejected due to large noise spikes). Stimulation level was 

60-70 dB above hearing threshold. Table 4.1 details the 

protocol used in our acquisition and briefly describes the 

effect of each parameter. Further details of parameters 

and their influence may be found in Chiappa (1983). 
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Table 4.1 

Parameter : Value Description 
-----------:-----------

1 
I 

Click I 60 -70 dB As intensity increases 
Intensity : above absolute latency decreases. 

: threshold 

Stimulus 3.0 per sec As the rate increases the 
Rate percentage or subjects with 

identiriable waves decreases. 

Band-Pass 150Hz-3kHz Phase distortion wi 11 result 
Filtering rrom tight analog riltering. 

Repetitions 2000 	 Hore repetitions improve 
signal to noise ratio but 
worsen the habituation. 

BAEP are recorded rrom the vertex (Cz) which in the centre 

or the scalp as described by the International 10-20 system 

(Chiappa, 1983) in rigure 4.2. The stimulus is monaural 

and the rererence electrode was placed on the mastoid 

contralateral to the stimulus side (A 1 or A2 ). The 

remaining mastoid (ipsilateral) was used as ground. Arter 

the scalp was cleaned with an abrasive paste, gold disk 

surrace electrodes were rastened using collodion. The 

scalp electrode interrace was rormed by squeezing an 

electrolytic paste between the electrode and scalp. 

Absolute (with respect to the stimulus) and relative 
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latency of the peaks in the BAEP were used to characterize 

the evoked potential signal. Amplitude information was not 

considered in this study due to its inherent variability. 

4.2.2 Computer Acquisition 

Output from the C-4 was sent to an amplifier for maximum 

resolution in the A/D process. An LPS-llA Laboratory 

Interface system was used to perform 12-bit A/D conversion. 

Dummy runs were used to calibrate the amplifier. 

A Fortran program written for a PDP-11/34 was used to 

control an assembly language data acquisition program. 

Both programs are listed in Appendix III. The data 

acquisition program was designed to collect EEG 

continuously at 10kHz and store the samples in a ring 

buffer. When a stimulus is elicited from the Compact-4 it 

causes an interrupt. An additional 128 samples are 

collected and the last 512 pofnts are unwrapped from the 

ring buffer fs at point 385. Then the EEG sample was 

written to disk as a single record. In order to validate 

the collection, the 2000 records were averaged via the PDP 

and the BAEP was compared to the print out from the C-4. 

Figure 4.3 illustrates the result of signal collection and 
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averaging using the PDP. The collected wave is composed oF 

two segments, the reFerence and the primary. These labels 

are based on the roles oF each segment fn the ANC scheme 

described in the previous chapter. Each segment is 25.6 ms 

in duration and consists oF 256 points. For the most part 

we will be dealing with the primary section because ft 

contains the evoked potential. The stimulus is given 12.8 

ms from the beginning oF the primary signal. The First 384 

points of the signal is reFerred to as the pre-stimulus 

signal (reference plus pre-stimulus primary signal) and the 

second halF oF the primary signal the post-stimulus signal. 

The BAEP which is approximately 10 ms fn duration, can be 

seen in the last 12.8 ms oF the signal. The stimulus 

artiFact can be identified as the spike at point 129 in the 

prfmary or point 385 in the entire record. Wave latencies 

are measured in milliseconds from the stimulus point. 

A total oF 22 sessions were conducted using 4 diFFerent 

subjects all in their 20's. All latencies were wfthfn 

normal limits. Primary averaged BAEP signals From two 

subjects are illustrated in figure 4.4 • The wave forms 

exhibit similar characteristics with slight dfrrerences fn 

peak resolution and latency. The dirrerences between 

sessions ror a single patient were remarkably small as 

indicated in table 4.2 • 
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Table 4.2 

Session # 
Wave # 

( 1 atency ms) I I I I I 

1. 72 1. 72 1.82 

I I 2.88 2.84 2.88 

I I I 3.84 3.84 3.86 

IV 	 5. 12 5.04 5.08 

v 5.76 5.78 5.76 

4.3 Real Data Analysfs 

4.3.1 EEG and BAEP Spectra 

We began our analysis by computing the spectrum of the 

averaged EP record. Figure 4.5 illustrates two such 

spectra from the averaged EPs of figure 4.4 . For each 

512 sample EEG segment the 128 point spectra was estimated 

using Welch periodograms. The windows had 256 points {128 

data samples and 128 D's) and used 4th order optfm~m 

Blackman-Harris windows {50% overlap). Appendix IV 

contains a listing of the spectral estimation program. 

Even though the EPs are from two different subjects they 

exhibit similar characteristics. Three prfncfpal components 

are noticeable. The lowest frequency {approx. 250Hz.) peak 
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represents the power in the plateau upon which the five 

peaks of the averaged EP sit. Generally speaking, the 

plateau gives wave III its traditionally high amplitude and 

wave V its lower amplitude. Beyond the plateau the elusive 

waves VI and VII are sometimes identifiable. 

At about 450 Hz. a second peak is present in both spectra. 

This phenomenon is reported by Boston (1981) and is 

attributed to the lower frequency content of Wave V. 

However if we examine figure 4.4 we can see that the pre

stimulus averaged EEG exhibits a dominant wave. This wave 

has a frequency of about 450 Hz. We therefore conclude 

that the 2nd spike in the averaged EEG record is at least 

partially due to a periodic component in the EEG. If this 

were synchronized to the BAEP it would represent a limiting 

factor in the averaging of BAEP data since time-locked 

noise components will not decrease in amplitude as the 

number of repetitions is increased. 

The component at about 1kHz is the fundamental BAEP power. 

A notch filter (600-1100 Hz) removed the BAEP wave from the 

times-series record of figure 4.4 Above 1100 Hz we 

expect to find power from the stimulus artifact, from hfgh 

frequency noise such as instrumentation noise and from 

residual EEG power. There is still a small amount of power 
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noticeable above 3kHz and below 150 Hz which fs due to 

limitations or analog rilterfng and use or a 2nd order 

Butterworth configuration in the C-4 hardware. 

While the two records or rigure 4.4 are very similar, 

resolution of the EP spectral component (and the related 

peaks in the time-series record) is obviously superior fn 

the record labelled BS4C. We can attribute this to: 

1) 	 Physiological ractors mentioned earlier. The 

subject for BS4C rell asleep at the beginning or 

the test and remained asleep. The subject for 

BS6C rell asleep only brierly and became anxious 

towards the end or the test producing a larger 

number or muscle-twitch spikes and more high 

frequency EEG. 

2) 	 The subject for BS4C produce consistently good 

results. Thfs fs due to the natural varfatfon 

or BAEP recordings fn the population. 

4.3.2 Zero-Phase Digital Filtering 

Wfth our knowledge of the BAEP spectrum we can now proceed 

to investigate the errect or zero-phase band pass rilterfng 
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on the EP waveForm. Band-pass Filtering aFFords us a 

relatively simple and rast technique ror improving the SNR 

and consequently the readability or the BAEP. By using 

zero-phase Filters we can avoid phase distortion or the 

signal which would directly arrect the latency or the BAEP. 

We wish to resolve the individual peaks ror easy latency 

computation (possibly using an automated system) without 

excessively distorting the overall shape or the BAEP. Loss 

or BAEP shape may remove inFormation in the signal (such as 

amplitude) used by physicians in diagnosis. Figure 4.6 

illustrates the same eight BAEPs Filtered with eight 

diFFerent 97th order zero-phase Filters. 

The rfrst plot shows the unrfltered BAEP with the large 

biphasic stimulus artiFact at time zero. The sharp edges 

are caused by the low sample rate (which exceeds the 

Nyquist criterion but not surriciently ror a good temporal 

resolution). Peaks I-IV are quite clearly resolved but 

wave Vis less clearly visible. There is evidently a small 

but noticeable amount or high Frequency contamination (as 

we saw in the spectral estimate). By digital Filtering 

From 150 to 3kHz in Ffgure 4.6b we have reduced the 

negative going component or the stimulus artiFact and 

increased the resolution or all waves especially wave I. 
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Figures 4.6 c,d,e were low-pass riltered at 2, 1.5 and 1.1 

kHz respectively There is a progressive reduction in high 

Frequency contamination and the rounding or the peaks 

progresses as the rilterfng becomes more severe. However, 

due to the high quality or the original signal, there is 

little improvement in readability except ror the removal or 

the small pre-wave I artiract. By eliminating more or the 

low-Frequency components (rigure's 4.6 r,g) the 

characteristic plateau shape was removed rrom the BAEP. 

While this will not arrect our latency measurements 

signfrfcantly ft wfll certainly cause distress to 

investigators looking at amplitude or shape inFormation. 

In the rfnal diagram a ritter specially suited to the BS4C 

trace has been designed. A low pass ritter removes all 

high Frequency contamination and a notch rilter removes the 

previously mention 450 Hz component. The resulting wave is 

easily read and retains the traditional plateau shape. 

This technique or spectral analysis rollowed by specialized 

ritter design may be or use in some cases but is 

undesirable fn the single stimulus case sfnce we cannot 

have apriori knowledge about the Frequency characteristics 

or the individual BAEP. 

Berore the sfmulatfons were begun a BAEP-lfke signal was 
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required for use in our additive noise scenario for ANC. 

To avoid possible complications arising from broad-spectrum 

signals and for ease of readability we have obtained the 

signal in figure 4.7. The signal trace is low-pass 

filtered (1100Hz) BS4C sfgnal. Notice that the sfgnal 

is now very simple, resembling a sinusofd of about 1kHz. 

When compared to the original signal it can be seen that 

the peaks are no longer perfectly aligned. This is not due 

to phase distortion but rather to our removal of 

frequencies in the BAEP. 

4.3.3 Stgnal to Notse Ratto 

The purpose of our spectral investigation and band-pass 

filtering experiments has been to develop techniques for 

improving SNR of the extracted EP either prior to or after 

adaptive noise cancellation. BAEP have amplitudes of less 

than 1 uV in comparison to the EEG which may be as large as 

10's of uVs. By limiting the spectrum to 150-3000' Hz we 

eliminate much of the low frequency power of the EEG (alpha 

rhythms etc). 

An estimate of the SNR of a single BAEP was made by 

applying the assumptions of stationarfty and ffxed latency 
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From figures such as 4.5 the amplitude ratio of the 

averaged EP can be estimated to be 2:1. This fs an SNR of 

6dB. If we now work back assuming that the amplitude ratio 

improves as the square root of the number of repetitions we 

see that the SNR of a single EP would be -27dB (amplitude 

ratio of 1:22). Thfs result fs fn agreement with the 

result of other researchers who estimate the averaged EP 

SNR to be 2.5:1 (8dB) (Fridman et al., 1982). 

The assumptions outlined in chapter 2 result fn the best 

possible improvement of SNR. If the assumptions are not 

strictly true (i.e. jitter of the EP or non-stationary of 

the EEG) we would expect a larger SNR for the single EP. 

Work by Coopela (1978) has challenged the long accepted 

assumption that the BAEP is tfme-locked to the stimulus. 

The study concludes that the BAEP exhfbfts a much larger 

variation in absolute latency than previously thought. 

From the perspective of averaging this is a very serious 

problem. Not only will the averaging process operate sub

optimally but also the resulting averaged EP will •be very 

different from the individual EP. We are therefore faced 

with the very real possibility that the individual EPs may 

contain a great deal more information than the currently 

employed averaged signal. For ANC a variable time-delay 

between the stimulus and BAEP poses no problem whatsoever. 
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With the effect of Jitter , the non-stationarity of the EEG 

and our experiments indicating the presence of a time 

locked EEG component at about 450Hz, we can expect the SNR 

of a single BAEP to be better than -25dB. To cover a 

appropriate range the sfmulatfons will use single stfmulus 

BAEP SNRs of 0 to -25dB. 

4.3.4 ARMA Modellfng of EEG 

EEG has been successfully modelled as an autoregressive 

process by a number of authors (Kaveh et al., 1978 & Rauner 

et a 1 • , 1983). The autoregressive process may be 

represented by: 

1 
( 4. 1 ) 

where: 	 Ut fs the gaussian white noise input 

r is the model order 


More discussion of the AR process is presented Chapter 5. 

The order required to model EEG fs reported to be between 8 

and 10 (Madhavan, 1985). Modelling of EEG recorded fn the 

laboratory using a Box and Jenkins package modified to run 

on the PDP-11 was successful using 8th order. The Akaike 
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information criterion along with inspection of the residual 

were used to determine adequacy of the model. Table 4.3 

shows a representative 1 f st of the autoregressive 

coefficients produced in the laboratory. 

Table 4.3 
Coefficient Value 

-0.8921 
0.1762 

-0.2142 
0.0823 

-0.0771 
-0.0136 
-0.1565 

0.2643 

In figure 4.8 the collected EEG and its associated modelled 

AR8 time-series are shown. The signals are similar fn 

appearance and have sfmflar spectra. In all cases tested 

the EEG records indicated a non-stationary nature by 

failing the run-time test. However since the EEGs were 

modelled success-fully we may assume that the non-

stationarity fs not severe. Cohen's 1977 paper reviews the 

idea or stationarity and presents a technique 'for 

determining the stationarity or EEG signals (Cohen & 

Sances. 1977). Further work on the modelling or non-

stationary signals can be round in Greiner's work (1983). 

The autoregressive nature or EEG will allow the ANC to 
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estimate the signal parameters. We should thereFore be 

able to predict or estimate array orders ror simulations 

and real data experiments. 

4.4 	Summary of Real Data Analysis 

For the purposes or simulation the Following have been 

determined : 

1) 	 The averaged EP may be tightly band-passed 

Filtered (600-1100 Hz) and still retain its 

essential components. 

2) EEG may be modelled as an autoregressive 

process or order 8. 

3) The EEG exhibits a slightly non-stationary 

character. 

4) 	 The worst case SNR should be -25d8. Due to 

fnvalfd assumptions we expect the SNR to be 

greater than this (perhaps up to -15d8). 

We now begin studies or systolic adaptive noise 

cancellation process applied to BAEP based on the theory or 

chapter 3 and the signal characteristics or the BAEP and 

EEG discussed fn this chapter. 



CHAPTER 5 

ADAPTIVE NOISE CANCELLATION 

USING SYSTOLIC ARRAYS 

5.1 Introduction 

In order to successFully apply adaptive noise cancellation 

techniques to our physiological data appropriate primary 

and reFerence signals (as discussed in Chapter 4) must be 

chosen. As a First approximation we look to the results or 

Kaveh (1978) and Madhavan (1985) which indicate that a 

satisFactory degree or correlation may exist between EEG 

prior to stimulation and EEG during the evoked response. 

One or the primary objectives fn this study is to evaluate 

the appropriateness or this choices or reFerence and 

primary signals. Other possible choice or reFerence exfst 

such as as multi-channel recording, which would provide a 

temporally parallel noise sfgnal. 

BeFore experimenting wfth real data ft was necessary to 

examine the characteristics or the systolic adaptive nofse 

canceller (SANC). Using parameter values (e.g. SNR) and 

inFormation From Chapter 4 relevant to the BAEP extraction 
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problem experiments can be performed to determine the 

optimum filter parameters (memory factor(~), order etc.). 

We began wfth general simulations and worked towards a 

close approximation of the real data scenario. Once 

sufficient knowledge was acquired the real BAEP data taken 

in the laboratory was processed and the results 

interpreted. 

The major advantage of the ANC procedure when applied to 

BAEP processing is that many of the assumptions necessary 

for justification of other less powerful signal processing 

techniques can be dropped • Variable latency of the BAEP 

with respect to the stimulus is no longer a problem. Non

stationarity of the EEG as reported in Chapter 4 can be 

taken into account by the memory factor ~- The only 

conditions required are: 

1) 	 The BAEP and EEG must be additive in nature. 

2) 	 The BAEP and EEG are uncorrelated. (The BAEP 

may be the sum of individual components. It 

may be stationary or non-stationary, linear 

or non-linear and will not affect validity of 

the processing at all. 
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3) It must be possible to rind a rererence sfgnal 

which is correlated to the EEG and uncorrelated 

to the BAEP or the primary signal. 

In rigure 5.1, cortex potential fs modelled as a sum or the 

BAEP and a whfte noise which has passed through a spatial 

autoregressive type rilter. The BAEP, due to its very 

short latency, fs thought to be volume conducted sfgnal 

(Madhavan, 1985). With this model ft can be expected that 

the additive requirement wfll be met. There are 

assumptions made about the structure or the BAEP. Current 

research suggests that the BAEP may be the superposition or 

several components each one contributing one or the peaks 

(Hunt, 1985). 

The primary concern wfth our model lies with the choice or 

a rererence signal. Adequate correlation must exist 

between the rererence and primary EEG. The use or pre

stimulus EEG as a rererence is based on the results or 
Kaveh (1978) and Madhavan (1985) who have reported some 

success. 

Correlation between EEG and certain BAEP components has 

been reported in studies (Rogers, 1980). This is not 

surprising since the neural source or the BAEP may be 
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represented in normal spontaneous EEG during the normal 

runctioning or the cerebrum. It is almost certain, 

thererore, that auditory stimulation arrects the EEG 

inducing correlation between the EEG and BAEP. However, 

since the neuronal population responding to the stimulus is 

such a smal 1 percentage or the total cerebral population 

we assume that the correlation is minimal. Roger (1980) 

has reported three ractors arrecting correlation: 

1) Frequency or the EEG. 

2) Contralateral or Ipsilateral measurement montage. 

3) Latency or the BAEP 

Roger reports correlation between BAEP components or 100

150 ms latency and alpha-type EEG. In our studies the 

components are much earlier ( < 10ms) and the rrequency or 

the EEG used is greater than 150 Hz (alpha rhythms are 

between 4-8Hz). Correlation studies fnvolvfng EEG and 

BAEP in the bandwidth and latency would be or great value 

to ruture studies. Further ANC studies using visual and 

somatosensory < EPs which have longer latencies and much 

lower Frequencies ) will be much more "Sensitive to 

correlation errects. 
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5.2 Simulation Techniques 

The report of our experiments begins wfth the detailing of 

the procedure used fn the simulations. As a ffrst 

approximation to the real case we use a band-pass filtered 

averaged BAEP signal (ffg. 5.2) added to white Gaussian 

noise. The reference generated is an autoregressive signal 

of order 2. The coefficients for this sfgnal are taken 

from Madhavan (1985) and the resulting equation is: 

u ( i) = 0. 4 u ( i -1) - 0. 043 u ( i -2) + w ( i ) ( 5. 1 ) 

where 'w' is a gaussian whfte noise sequence. 

Therefore: .1 = 0. 4 

.2 = -0.043 

which has poles at 0.2 ± 0.055i 

with a magnftude of: 0.207 on the unft cfrcle 

The choice of a very sfmple scenario eliminates some of the 

complexities associated wfth real EEGs. We dfverge now to 

discuss the implications of the filter structure of the 

systolic array and its relation to the sfmulatfon desfgn. 
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The systolic array (and most other filter structures) have 

finite impulse responses (FIR). In other words there is no 

feedback capability. The other class of filters, the 

infinite impulse response (IIR), do have feedback and 

therefore tend to be less stable than their FIR 

counterparts. 

The generation of an AR process is an IIR process (a quick 

look at equation 5.1 will confirm this), in other words 

feedback is required. The output of the filter fs returned 

to the input side for further processing. Hence the 

infinite impulse name is derived from the result that a 

single impulse is filtered and a fractional part is 

returned to the input only to be returned fractionally yet 

again. 

In our SANC scheme the primary signal is white and the 

reference (AR2) must be synthesized into its original white 

source signal. Sfnce generation of an AR process is IIR in 

nature it follows that synthesis of an AR process (s FIR. 

This can be seen by rearranging equation 5.1 and noting 

that we are inputting the u(f)s and looking for w(i). 

u ( i ) - 0. 4 u ( i -1 ) + 0. 043 u ( i -2) = w ( i ) (5.2) 
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By using such primary and rererence signals the systolic 

array develops the least squares approximation to the +s or 

equation 5.2 as its tap weights. There are a rfnite number 

or weights and thererore a rinite rilter order is expected 

to be optimal (in a theoretical sense). Thererore our 

choice or simulation suits our rilter structure. It should 

be noted that the opposite may be said or a moving average 

signal in that generation is FIR and synthesis is IIR. 

In almost all cases we are presented wfth the problem or 

synthesizing a signal (generation is a trivial problem). 

This may explain why AR sequences are so much ravoured over 

MA signal in modern signal processing literature. 

Berore returning to our description or the simulation 

procedure it should be noted that in the real case both 

inputs to the SANC are autoregressive in nature (pre and 

post-stimulus EEG are the rererence and primary 

respectively). In this case the FIR ritter will be 

attempting to perrorm an JIR runction. To gain an 

understanding or the processing involved we imagine the 

transrer runction or an IIR process as the reciprocal or a 

polynomial. Ir this polynomial is represented as a 

numerator rather than a denominator the result is a 
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transfer function with an infinite number of coefficients. 

Therefore, under such conditions we would expect the filter 

to use a very large number of tap weights. 

The sequence of figures which follow illustrates the 

protocol used to examine the SANC process. First a 

Gaussian white noise sequence fs generated (fig 5.3). Then 

the sequence is passed through the AR filter (fig 5.4). The 

resulting AR sequence is identified by its order and pole 

magnitude (i.e. AR2207). The band-passed BAEP is added at 

some SNR to the white noise to create the primary signal 

(fig 5.5). Now the 128 point BAEP fs buried in the 256 

point white noise sequence starting at point 129. In this 

case OdB is used for simplicity. The systolic array then 

processes the signal and produces an approximation to the 

averaged BAEP (fig 5.6). 

For a quantitative measure of performance we use zero-mean, 

unit variance signals and compare the input BAEP and the 

output error signal (fig 5.7). The mathematical 

formulation used to calculate the performance is given in 

equation 5.3. Equation 5.3 is basically a measure of the 

percentage fit of two signals. We therefore refer to the 

performance as percentage fit ( r ). Thus the best fit is 
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1001. when the error signal from the ANC is equal to the 

input BAEP. 

N
r ( s.- sf) 

2 

1f =1 
r <1. fit) = [1- --------------- J x 100 (5.3) 

N 2 

r < s i > 
i =1 

where: 

s is the systolic array error signal 


s is the input BAEP 


s. is the ith point in the sequence
1 

N Is the number of points in the BAEP 
(usual Jy 128). 

The choice of an absolute index rather than an index which 

measures the improvement of SNR was required so that the 

effects of SNR in the primary signal could be studied. 

The 1. fit of figure 5.7 is 98.23 with unity lambda and a 

filter order of 3. Illustrated / in figure 5.8 is the 

extraction of the same signal with the SNR at -25d8. Note 

that this is the SNR determined in Chapter 4 to be the 

worst case scenario. The extraction is obviously less 

successful but is nonetheless impressive with r = 95.741.. 

In order to approach the real scenario more closely the 
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coefficients of the AR8 (model led EEG) process are used 

to generate a second reference signal (fig 5.9). The 

extraction is shown in figure 5.10a (SNR=-25dB). r for this 

experiment was 84.27~ . From this experiment it can be 

seen that the poorer the SNR and the larger the order of 

the reference signal the worse the extraction. However 

results are encouraging and it wil I be shown that by 

correct application of filter order, appropriate~ and use 

of band pass filtering the r may be increased to 97.831. 

(fig. lOb). 

5.3 Experimental Results and Discussion 

5.3.1 Introduction 

In the following series of experiments the performance of 

the systolic array is investigated as the following 

parameters are changed: 

1) Pole magnitude. 


2) Precision of calculation. 


3) Number of points fn the data sequence. 


4) Order of the reference signal. 


5) Signal to noise ratio. 
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The eFFect or Forcing the systolic array to process a 

reciprocal polynomial is also examined. In other words the 

roles or the white noise and autoregressive sequences are 

switched Forcing the systolic array to operate in a 

generation mode. Finally the real data collected in 

Chapter 4 is processed and correlation analysis is used to 

interpret the results. 

5.3.2 Synthesis Scenario (Whfte Primary) 

Pole position within the unit circle has a proFound aFFect 

upon the nature or the auto-regressive process. As the pole 

moves towards the edge or the unit circle the response or 

the system to an impulse becomes longer. In the limiting 

case where the magnitude is unity the autoregressive 

process becomes a rotating exponential and the impulse 

response is inFinite fn duration. Outside the unit circle 

the signal is non-stationary and in the case or real data, 

poles may move around becoming First stationary and then 

non-stationary. This phenomena is alpha-stationarity. 

Figure 5.11 illustrates an AR2 process with a pole at 

0.985 (AR2985). Notice that, in comparison to AR2207, the 



FIG. 5.11 
AR2 Signal with Pole Mag. of 0.985 
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signal is much less like its white noise input and 

resembles much more closely a sinusoid. In figure 5.12 the 

extraction performance of the systolic array as a function 

of filter order is compared for a variety of signals CARS 

model presented in Chapter 4 plus signals results from 

different pole positions). The extraction (SNR -25d8, ~ = 

1.0) is most successful when the pole is near the centre of 

the unit circle. Almost no cancellation takes place for 

AR2985. Fortunately the noise cancellation of the model 

EEG is quite successful despite one of its poles being 

quite close to the unit circle ( 0.895). This is probably 

due to the distribution of the three remaining pairs of 

symmetrically placed poles. 

The memory factor lambda(~) and the filter order (0) are 

two fundamental parameters that are of interest when 

running the systolic array. Results relating to the 

optimum order (measured by eqn. 5.3) from figure 5.12 and 

other experiments are summarized fn table 5.1. 

Table 5.1 

white white (ARO} 

white AR1 2 

white AR2 3 

white ARS 9 
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The results or table 5.1 can be summarized as: 

nopt = AR order + 1 (5.3) 

This is valid ror the synthesis scenario only and can be 

justiried in terms or the prediction error rilter. 

Prediction rilters produce the least squares estimate ror 

the next value in a sequence. They use one extra tap to 

subtract this prediction rrom the next fnput thus producing 

a prediction error. In the systolic array the extra tap

weight required comes rrom the rfnal column which carrfes 

the primary signal and produces the error signal. Sfnce 

synthesis or the AR signal through the triangular sectfon 

requires the same number or tap-wefghts as coerrfcfents fn 

the AR process the total order or the rilter fs thererore 

the AR order plus one. Experiments (fn addition to those 

shown in rigures 5.12 and 5.13) fndfcate that the optfmum 

order, oopt• fs Independent o~ both the SNR and the lambda 

chosen within the ranges tested (0 to -100d8 and 1.1 to 

0.75 respectively). 

Lambda, the weighting runctfon described by McWhirter 

(1983), may be used to compensate ror non-stationaritfes 

resulting rrom rfnfte data sequence representation or real 
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sfgnals. The autoregressive signals generated for these 

simulations are examples of such finite sequences. By 

finite representation of fnfinfte signals non

stationaritfes are introduced. The differences in 

extraction rate of the four AR2 sequences tested may be 

explained in terms of sampling. Sfnce the AR2985 has poles 

near the unit circle its impulse response is very long 

compared to AR2207. By using the same number of points to 

represent each signal there will be a relatively poorer 

representation of the AR2985 signal (due to the longer 

length of its impulse responses). This can be compensated 

for by using A<l. In fig. 5.13 (AR2985 signal from fig 

5.12) the effect of lambda on extraction fs profound. The 

use of A = 0.94 increases the extraction, r, to 87.3~. The 

order and lambda optimization problems are clearly 

decoupled. Table 5.2 lists Aopt for each AR2 signal. 

Table 5.2 
Signal : A t 

-----------'-----~~---------
AR2207 1. 000 

AR2743 0.993 

AR2943 0.983 

AR2985 0.945 

The interpretation of the role of lambda may be thought of 

in terms of a memory factor. By wefghtfng the past values 
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of the input less and less the systolic array damps out the 

long impulse responses and increases the importance of the 

new information resulting from more recent impulses. 

The choice of lambda is also affected by the SNR of the 

primary signal. The poorer the SNR the more ~opt will 

deviate from unity. This effect is quite small when using 

the systolic array as can be seen in figure 5.14 (filtered 

at n t>· Using the ARB signal with an SNR of -15d8 andop 

-25d8 the optimal lambdas, ~opt' are 1.000 and 0.990 

respectively. The plot of -25d8 is markedly asymmetric with 

respect to lambda. Extractibn suffers less for an 

underestimated lambda than an overestimated one. The 

effect of SNR is smaller when optimal lambda and order are 

used. In this case the difference between rs for a change 

in SNR of 10d8 is only 4~ when the optimal lambdas and 

orders are used. Due to our ARB model being reasonably 

stationary the functioning of lambda is not critical since 

use of ~=1 in the -25d8 case would only result in a 

decrease in extraction of 5~. 

A larger range of SNRs is explored fn figure 5.15 (ARB at 

nopt>· As the SNR decreases the extraction falls and the 

optimum lambda deviates further from unity. Even though 

the extraction at -100 dB reaches maximum of only 5B.2~ 
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the amplitude ratio at this SNR is 1:100.000. 

The explanation or the interaction between SNR and lambda 

(as SNR drops A t drops) may be a result or undesirableop 

errects associated with the use or A < 1. The lower Aopt 

the shorter the memory or the array and the quicker the 

adaptation and the more likely the array may begin to 

cancel the desired signal (BAEP). The array fs more likely 

to cancel the BAEP at larger SNR because at this noise 

level the BAEP constitutes a large portion or the primary 

signal. Thus the optimum A will be a compromise between the 

cancellation or the noise (aided by a lower lambda) and the 

cancellation or the burled sfgnal (also aided by a lower 

lambda). However the cancellation or the buried signal will 

be aggravated by a larger SNR thus at hfgher SNR the Aopt 

wil 1 tend to be closer to unity. Obviously the correlation 

between the rererence and the components ror the primary 

wil 1 play a large role in the rfnal determination or A t• op 

Comparisons or the perrormance or the systolic array and 

the exact least-squares lattice (LSL) are made in Figures 

5.16 and 5.17 <nopt or 3). In rfgure 5.16 the AR2207 

signal is used at -15dB and -25dB. The systolic array 

perFormance fs superfor under all condftfons tested. Thfs 

remark applies, without exception, to all experiments where 
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comparisons were made. Also the sensitivity or the LSL 

algorithm to SNR in terms or extraction and ~opt is greater 

than ror the systolic array. The optimum lambda ror the 

systolic array is 1.0 ror both SNRs while ft is 0.97 ror 

the LSL at -25dB. The apparent convergence or the systolic 

array curve for -25dB and the lattice curve for -15d8 

represents a statistical coincidence and was not present in 

other experiments. 

The use of lambda greater than one was pursued due to a 

report by Madhavan (1985) that better results may be 

achieved with this unconventional use of lambda. This was 

not confirmed by the work presented here and all optimal 

lambdas were round to be less than unity. The discrepancy 

may be due to the relative extraction fndex, or some other 

processing procedure used by Madhavan. 

Figure 5.17 illustrates the striking eFfectiveness or 

lambda when used to compensate for rfnfte sampling induced 

non-stationarity. Table 5.3 lfsts the results or ffg. 5.17. 

Table 5.3 
I Max. ExtractionI 

I 

I 

I Sys LSL SysI

-------:-------------------
1 

I 


-15dB I 0.95 0.96 85.63 90.88 
I 

I 


-25dB I 0.93 0.95 80.46 88.54 
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The price paid for the superior performance of the systolic 

array is the increase in computing power required at larger 

filter orders. This is because the triangular structure of 

2
the array results in an N relationship between the number 

of calculations and the filter order N. Processing time 

for the lattice and systolic array are approximately equal 

up to about 30th order. Beyond this, the memory mapping of 

the PDP-11 becomes cumbersome and the systolic array takes 

significantly longer. Results will vary according to the 

specific machine. Test results comparing the run time of 

the systolic array (standard memory algorithm, see chap. 3) 

and the exact lattice algorithm processing a 256 point 

sequence on the McMaster Senior Sciences Vax are listed in 

table 5.4. 

Table 5.4 

Order Systolic (sec) Lattice (sec) 

30 5 5 

50 11 9 

75 17 13 

100 30 17 

150 85 21 

200 240 35 

300 627 49 
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5.3.3 Ancillary Experiments 

Word length errects were investigated with double precision 

arithmetic. Table 5.5 shows that the systolic array is 

numerically very stable. Under single precision on the 

PDP-11 rive decimal places are carried while double 

precision allows 17 decimal digits. The increase in 

accuracy using double precision is insigniricant. 

Table 5.5 

Order : Single : Double : !Error!_______ l __________ l __________ l ____________ _ 

I I 
I I 
I I 

20 78.97052 78.97028 0.00024 

35 60.65286 60.65312 0.00026 

50 42.86654 42.86683 0.00029 

Pre-riltering or the rererence signal results in complete 

lack or cancellation or the corresponding rrequencies in 

the primary signal. Thererore to achieve maximum noise 

cancellation band~pass rfltering should be reserved untfl 

arter the adaptive processing has been completed. 

Frequency content or the BAEP used as a test signal in the 

primary sequence had no signirfcant errect on the 

extraction. Consequently rurther experiments were done 

using the rull band-width averaged BAEP rrom rigure 2.1. 
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The use of a 256 point signal was based upon our data 

collection setup. Experiments examining the effect of 

increasing the number of data samples are presented in 

figure 5.18 (AR8 with nopt of 9). By using 512 points it 

was possible to increase the maximum extraction percentage 

and decrease the loss of extraction when n > nopt• This 

indicates that there is a limitation to the maximum 

extraction possible imposed by the number oF data points in 

the sequence. The objective of changing the associated 

filter parameters (A,n) is, therefore, to achieve this 

extraction maximum. 

Results of tests to find the optimum lambda for sequences 

of 512 points reinforce our theory about the function of 

lambda for simulated data. With longer data sequences the 

true signal is better represented. Thus from our 

hypothesis we would expect to find a A t nearer to unityop 

for the 512 compared to the 256 point sequence. The results 

of table 5.6 (filtered at n t) agree with this prediction.op 

Table 5.6 

Reference sfgnal 256 pnts
A0 R 

t 
512 pnts 

AR2207 1.00 1.00 

AR2985 0.95 0.98 

AR8 (modelled EEG) 0.99 1.00 
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5.3.4 Generation Scenarfo (Coloured Prfmary) 

We now investigate the perrormance or the SANC in an IIR 

mode. Using a coloured primary noise and a white reference 

noise the systolic array is rorced to generate an auto

regress i ve process from the white noise source. The AR 

expression is now represented in terms of its inverse. A 

large number of tap weights may be required to adequately 

represent an AR process or a relatively small number or 

coefficients. 

Figure 5.19 (A= 1) illustrates the SANC performance with 

the modelled EEG as the primary noise compared to the 

previous results using the modelled EEG as the rererence 

input. Notice the slower rise in the extraction rate as a 

function of order compared to the synthesis plots. Also 

there is no sharp transition to an optimum order, rather 

there is a gradual non-monotonic increase in extraction 

rollowed by a decrease sfmflar to the synthesis case. The 

optimum order is now a function or the SNR and the poorest 

SNR requires the largest order ror maxfmum extraction. The 

higher extraction at zeroth order fs due to the more 

restricted rrequency content of the primary noise (AR8). 
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These findings are quite easily understood from the stand 

point of the representation of a polynomial by its Inverse. 

The functional relationship between SNR and ropt is due to 

the necessity for a more accurate representation of the AR 

process in order to successfully extract the BAEP at lower 

SNRs. The slow upward curve of the lines fs due to the 

relatively large number of tap weights required and the 

theoretical need for an infinite number of coefficients for 

complete representation. 

In figure 5.20 (256 points, SNR = -25dB, A = 1) the results 

of using different orders of AR signals as the primary 

noise are compared. When attempting to use the SANC in a 

generation format it is important to have a large number of 

data samples to represent the sequence. Optimum orders of 

50-70 were used and thus the number of data points in the 

sequence has a much more profound effect upon the 

extraction curve than when a 9th order filter is required. 

Figure 5.21 (ARB with A= 1 and SNR = -25dB) illustrates 

the differences between the use of 256 and 516 point 

sequences used In the generation mode. The extraction 

curve is a function of the SNR, the auto-regressive order 

and the number of points in the data sample. The curve 

will rise until the limitation based on the number of data 

points fn the sample fs reached (as described In the 
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synthesis procedure). The maximum of the extraction curve 

is at the intersection between the rising curve due to the 

large number of tap weights and the falling curve due to 

the data sample limitation. The faster the curve rises the 

better the extraction. 

From the results in this section. the use of SANC in a 

generation format has a number of disadvantages: 

1) The maximum extraction is less successful than 

in the synthesis format. 

2) The optimum order is larger thus requiring more 

processing time. 

3) The optimum order is less distinct. 

4) The optimum order is a function of the SNR and 

AR order. 

5) The extraction curve is non-monotonic. 

For reliable results orders oF 50-70 must be used. 

Experiments using coloured noise sequences as inputs to 

both the primary and reFerence channels result in curves 

which display the same characteristics as listed above. In 

this mode the SANC is representing the ratio of polynomials 

which also requires an infinite number of coefficients for 
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complete theoretical representation. It is therefore not 

surprising to find the similarities between this format and 

the generation format. 

The results of this section provide a great deal of 

incentive to develop new adaptive filter structures (either 

IIR or a combination of FIR) in order to improve both 

processing time and characteristics. 

5.3.5 Adaptive Nofse Cancellatfon oF Physfologfcal Data 

The data collection as described in Chapter 4 was designed 

to exploit correlations between EEG prior to and after 

stimulation (figure 4.3). From earlier discussions it is 

obvious that the average BAEP from a set of 2000 records 

may not be a good template for use in evaluation of the 

extraction procedure applied to a single stimulus BAEP. In 

order to provide a good template, and to eliminate possible 

correlations between BAEP and EEG we recorded several 

series of EEG without stimulation. The 512 point records 

were then splft into reference and primary signals. As in 

the simulations, the averaged BAEP was added to the prfmary 

noise (at OdB). Thus we are testing, specifically, the 

correlation of the pre-stfmulus EEG and post-stfmulus EEG. 
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(A~ter success~ul tests the SNR could ~irst be reduced to 

-25dB and then real BAEPs fn EEG could be tested) 

Results are shown in ~igure 5.22. I~ the correlation 

between the pre-st fmu 1us EEG a'nd post-st i mu 1us EEG were 

adequate we would expect curves similar to those fn ~igure 

5.20. However the inability o~ the SANC to produce results 

comparable to those in the simulation indicate that the 

correlation is not suFFicient. Tests were done using a 

number o~ records ~rom two df~~erent subjects. All results 

fndfcated a lack oF appropriate correlation. 

The reason ~or the di~~erence in results can be seen by 

comparing the ~ormat o~ the collected data and the 

simulated data. The simulated data can be viewed as 

multiple channel data. The white noise is passed through 

an autoregressive ~ilter producing a reFerence which is 

collected fn a parallel channel Format. In contrast the 

real data was collected in a sfngle channel Format where 

the re~erence signal was the pre-stimulus EEG. 

To fnvestfgate this di~rerence an AR8 sequence or 512 

points was generated using the modelled EEG coerrfcfents. 

The simulated sequence was then treated fn the same manner 

as the real EEG just described. Results in Figure 5.23 
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support the finding that single channel collection format 

produces an inadequate reference signal for adaptive noise 

cancellation of BAEP. 

In figure 5.24 the cross correlation of the parallel 

channel and single channel reference and primary signal. 

Figure 5.24a and 5.24b are the cross correlations between 

the white nofse and the generated AR2207 and modelled EEG 

CARS) sequences respectively (para! lei). Notice the 

predominance of the spike at lag zero. In figures 5.24c 

and 5.24d the correlation is illustrated between the 

reference and primary of the single channel modelled EEG 

and the real EEG respectively (sequential). The striking 

similarity between figs. 5.24c and 5.24d is the result of 

the high quality autoregressive model of the EEG signal. 

Figures 5.24a and 5.24b contrast wfth 5.24c and 5.24d 

supporting our interpretation of figures 5.21 and 5.22 in 

terms of lack of appropriate correlation. 
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FIG. 5. 24c. 
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FIG. 5.24d 
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5.4 Summary oF Experfmenta1 Resu1ts 

We now present a lfst of observations and conclusions 

determined from the results in this chapter. 

1. 	 Optimization of order and lambda are decoupled 
procedures in the synthesis scenario. 

2. 	Order optimization depends upon the nature of filtering 
format. For FIR it is the order of the AR sequence plus 
one. For IIR using ARB inputs the optimum order is 
between 50-70. 

3. 	 The number of data points sampled significantly effects 
the extraction of the desired signal. We recommend the 
use of 512-point sequences when dealing with EEG 
signals. 

4. 	The value of the optimum lambda depends upon the 
accuracy of the representation of the real signal by 
the digitally sampled sequence. Poor representation 
results from fewer points and pole magnitudes 
approaching unity. Lambda may be used to vastly improve 
extraction of signals from inadequately sampled noise 
sequences. 

5. 	 Lambdas greater than unity were not shown to be useful. 

6. 	Systolic arrays outperformed lattice structures under 
all conditions tested. 

7. 	Systolic arrays are numerically very stable. 

8. 	Extraction of simulated signals at -25d8 was easily 
achieved with excellent results. 

9. 	 Frequency content of the buried sfgnal was found to be 
irrelevant to the success of the extraction process. 

10.Reference and primary signals from sfngle channel 
recordings were shown to be inappropriately correlated 
for adaptive noise cancellation purposes. 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE WORK 

Thfs investigation began with the objective or applying 

systolic arrays to adaptively cancel EEG noise in order to 

extract single stimulus BAEP. 

EEG and BAEP data were collected usfng a sfngle channel 

montage. The data suggested that EEG could be modelled 

using an autoregressive sequence or 8th order. Signal to 

noise ratios or -25dB were extrapolated rrom data using 

assumptions or constant latency and uncorrelated sample to 

sample EEG. The valfdity or these assumptions was 

discussed and tests using SNRs rrom -25dB to -15dB were 

used to simulate real conditions. 

Experiments in Chapter 5 were designed to examine the 

reasibility or applying systolic arrays to the problem or 

extractfng the BAEP rrom a sfngle EEG record. We began by 

implementing the synthesis problem (white primary noise and 

coloured rererence sfgnal). Extractions or signals with 
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SNR as low as -25 to -50dB were successFul. Optimization 

or lambda and the rflter order proved to be decoupled 

problems. ropt was round to be the AR order plus one and 

~ was a Function or the pole magnitude and number oropt 

data points in the sample. We recommend that 512 pofnt 

sequences be used ror the representation or EEG signals in 

order to minfmfze the errects or sampling induced non-

stationarity. 

Tests comparing the perFormance or the systolic array and 

the exact least square lattice showed the systolic array to 

be the superior processing architecture. Processing tfme 

ror the two implementations was sfmflar up to 30th order at 

which point the systolic array began to require 

substantially longer computing tfmes. 

Implementation or the generation problem resulted in the 

use or much larger rflter orders (50-70). The overall 

perFormance or the ANC was much poorer than ror the 

synthesis rormat. In order to process EEG data more 

errfcfently the rollowfng possfbflftfes are suggested: 

1) 	 Development or an IIR systolic rflter. The reader fs 

rererred to Landau (1984) ror rurther fnrormation. 



143 

2) 	 Use of a high order systolic array with a long (512) 

point data sequence for input. This should be imple

mented on a high speed machine wfth a target processing 

time of less than 5 seconds. 

Results using real data were disappointing due to a lack of 

adequate correlation between temporally separated EEG 

reference and primary signal. Analysis of the simulation 

format and correlation data indicate that multi-channel 

data would be better suited to ANC processing. The model 

in figure 6.1 shows how a multi-channel collection montage 

would be comparable to the simulated data format in Chapter 

5. 

We postulate the existence of a white noise generator in 

the cerebrum. At the surface there are two correlated EEG 

signals produced by special filtering of the source signal. 

We are then faced with the problem of contamination of the 

reference EEG by BAEP due to the volume conducted nature of 

the BAEP. Correlation studies are necessary to determine 

the best location for the electrodes to maximize EEG 

correlation and minimize cross-talk. Cross-talk resistant 

adaptive noise cancellation (CRANC) techniques are 
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available (Ferrara & Widrow, 1981 and Harrison et al., 

1986) and investigation using CRANC are continuing here at 

McMaster. 

We recommend that studies in this area be pursued as 

vigorously as possible. In this thesis we have identirfed 

the systolic array as a powerFul and Flexible signal 

processing technique. We also believe that through the use 

or a multi-channel data collection scheme the extraction or 

a BAEP rrom a single EEG record will soon be a reality. 

Much work remains to be done fn terms or optimization or 

processing parameters and electrode montages. 

There is a huge potential ror the application or this 

technique to the extraction or other evoked potentials such 

as the visual evoked potential (VEP) and the brafnstem 

somatosensory evoked potential (BSSEP). 

The rewards or success in this area w f 11 be the 

availability or new inFormation ror successFul diagnosis or 

neurological disorders and in the discovery or presently 

unknown neurological phenomena. 
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c 	 F I L E N A M E L S L A N C . F 0 R 
c 
c 
c AUTHORS ROBERT C. SCOTT & MADHAVAN <PRIMARY> 
c 
c 
c DATE 1ST OCTOBER 1985 
c 
c 
c *** LSLANC.FOR *** 
c 
c ************************************************ 
c * ADAPTIVE NOISE CANCELLATION USING NORMALIZED * 
c * L A T T I C E * 
c ************************************************ 
c 
c INPUT :- SIMULATION 
c 
c PRIMARY : BS#C## .SPN - <SIGNAL+NOISE> DATA FILE 
c REFERENCE:REFAR# .NSE - <NOISE> DATA FILE 
c 
c OUTPUT:
c ESTIMATED SIGNAL : BS#### .Ltt# 
c 
c 
c 
c INPUT : - RAW ADATAPTATION 
c 
c PRIMARY: B#REF#.EVK SIGNAL PLUS NOISE 
c REFERENCE B#REF#.EEG NOISE FILE 
c 
c 
c OUTPUT ESTIMATED SIGNAL 
c 
c BttREF#.LNC 
c 
c 
c 

DIMENSION XN<257>.XSN<257>.ECOVN<2>.ECOVSN<2> 

DIMENSION RFCOFN<257.2>.FPEN<257.2>.BPEN<257.2> 

DIMENSION RGCOF<257.2>.SNOR<257.2>.SOUT<257> 

DIMENSION RFINI<257>.RGINI<257> 

DIMENSION IFILE<7>.JFILE<7>.KFILE<7> 

DIMENSION IPARAM<7> 


c 
c 
c ****************************************************** 
C 	 FUNCTION STATEMENTS 

UPD1<A.B.C>=A*SORT<1-B*B>*SORT<1-C*C>+B*C 
UPD2<D.E.F>=<D-E*F>ISORT<1-E*E>ISORT<1-F*F> 

c 
AUTOD='N' 
AUTOL='N' 
WRITE<7.300) 

300 FORMAT(/' INPUT RAW OR SIMULATION <R/S)') 
301 FORMAT<A1> 

READ<S.301>C3 
6001 IF<C3.EO.'S'>GOTO 302 
c 

DATA IF I LEI ' DK ' . ' 1 : ' . ' B # ' . ' It # ' . ' tt # ' • ' . E ' . ' VK ' I 
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• I • I I • I I • IDATA JF I LEI I DK I 1 : I B # # It .. It , . , . E , . ' EG ' I 
DATA KF I LEI ' OK ' . I 1 : I , BIt , . I .. It I ' .. It , . ' . L I , NC , I 

c 
WRITE<7.303> 

303 FORMAT<' ENTER DATA BASE tt <Bit> FOR INPUT FILE'> 
READ<5.304>IFILE<3> 

304 FORMAT<A2> 
WRITE<7.305) 

305 	 FORMAT<' ENTER REC# FOR FILE <#It) MOST SIG. PAIR FIRST'> 
READ<5.304>IFILE<4> 
WRITE<7.305> 
READ<5.304>IFILE<S> 
JFILE<3>=IFILE<3> 
KFILE<3>=IFILE<3> 
JFILE<4>=IFILE<4> 
KFILE<4>=IFILE<4> 
JFILE<S>=IFILE<S> 
KFILE<S>=IFILE<S> 
WRITE<7.311><IFILE<J>.J=1.7> 

311 	 FORMAT<' '.7A2> 
GOTO 306 

302 CONTINUE 
IFILE<1>='DK' 
JFILE<1>=IFILE<1> 
KFILE<l>=IFILE<l> 
IFILE<2>='1:' 
JFILE<2>=IFILE<2> 
KFILE<2>=IFILE<2> 
IFILE<3>='BS' 
JFILE<3>='RE' 
IFILE<6>=' .S' 
IFILE<7>='PN' 
JFILE<4>='FA' 
JF I LE ( 6 ) =, . N I 


JFILE<7>='SE' 

KFILE<6>=' .L' 


c 
c 

IF<AUTOL.EO. 'Y'>GOTO 7003 

WRITE<7.322> 


322 	 FORMAT<' ENTER ORDER# <<128> <--TO END AUTO>'> 
READ<5.304>KFILE<S> 
IF<KFILE<S>.EO.'--'>GOTO 6999 
IF<AUTOD.EO.'Y'>GOTO 2001 
WRITE<7.320> 

320 FORMAT<' ENTER DATA BASE NUMBER OF OUTPUT FILE CB#)') 
READ<5.304>KFILE<3> 

c 
c 

WRITE<7.307> 
307 	 FORMAT<' ENTER BASE FILE NUMBER FOR INPUT FILE C#C>'> 

READ<5.304>IFILE<4> 
WRITE<7.308) 

308 	 FORMAT<' ENTER ABS<SIN> (ft#)') 
READ<5.304>IFILE<S> 
WRITE<7.309> 

309 	 FORMAT<' ENTER AR ORDER OF NOISE <R#> ') 
READ<5.304>JFILE<S> 
KFILE<7>=IFILE<S> 

7003 	 WRITE<7.321> 

http:IF<AUTOL.EO


1+.9. 

321 FORMAT<' ENTER LAMBDA~ <97=.97.00=1.00.03=1.03 ETC. <--STOP>'> 
READC5.304>KFILEC4) 
IF<KFILE<4>.EO.'--'>GOTO 6999 

c 
306 CONTINUE 
c 
2001 DO 7101 1=1.2 

ECOVN<I>=O.O 
ECOVSN<I>=O.O 
DO 7101 J=1.257 
RFCOFN<J.I>=O.O 
FPEN<J.I>=O.O 
BPEN<J.I>=O.O 
RGCOF<J.I>=O.O 
SNORCJ.I>=O.O 
SOUT<J>=O.O 
RFINI<J>=O.O 
RGINI<J>=O.O 
XN<J>=O.O 

7101 XSN<J>=O.O 
c 

IF<AUTOL.EO.'Y'>GOTO 7002 
WRITE<7.50> 
READ<5.60>NORD 
IFCAUTOD.EO.'Y'>GOTO 28 

c 
ILOOP=1 

20 FORMATCA2> 
DO 21 I=l. 7 
IPARAMCI>=KFILE<I> 

21 CONTINUE 
24 FORMATCA2> 

WRITE<7.16> 
16 FORMAT<' HOW MANY POINTS? <<=256> '/' ***') 

READ<5.18) NT 
18 FORMAT<I3> 

7002 WRITE<7.30) 
30 FORMAT<' MEMORY FACTOR. LAMBDA'/' *·***') 

READ<5.40> WLMD 
40 FORMAT<F5.3> 

IF<AUTOL.EO.'Y'>GOTO 28 
50 FORMAT<' ENTER~ TAP WEIGHTS <<=128)'/' ***') 
60 FORMAT<I2> 

WRITE<7.1025> 
1025 FORMAT<' AUTO ORDERCY/N)?') 

READ<5.301>AUTOD 
IF<AUTOD.EO.'Y'>GOTO 28 
WRITE<7.1027> 

1027 FORMAT<' AUTO LAMBDA <YIN> ?') 
READ<5.301>AUTOL 

28 LNT2=NT*2 
LNT=NT*2+2 
NO=NORD+1 
NOT2=N0*2 
NTP1=NT+1 

c 
CALL ASSIGN<1.IFILE.14.'0LD'> 
DEFINE FILE 1<1.LNT2.U.IREC> 
CALL ASSIGN<2.JFILE.14,'0LD'> 
DEFINE FILE 2<1.LNT2.U.JREC> 
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CALL ASSIGN<3.KFILE,14. 'NEW') 

DEFINE FILE 3<1.LNT2,U,KREC> 


c 
READ < 1 ' 1 > <XSN < I > . I= 1 . NT> 
READ <2' 1) <XN<I>.I=1.NT> 
CLOSE <UNIT=l> 
CLOSE <UNIT=2> 

c 
C ************* MEAN CALC OF INPUTS XSN.XN ***************** 
c 

AVGXN=O.O 

AVGXSN=O.O 

DO 70 I=l.NT 

AVGXN=AVGXN+XN<I> 

AVGXSN=AVGXSN+XSN<I> 


70 	 CONTINUE 

AVGXN=AVGXN/FLOAT<NT> 

AVGXSN=AVGXSN/FLOAT<NT> 

DO 80 I=l.NT 

XN<I>=XN<I>-AVGXN 

XSN<I>=XSN<I>-AVGXSN 


80 CONTINUE 
c 
C ************* VARIANCE CALC OF INPUT SIGS ******************** 
c 

COVNP=O.O 

COVSNP=O.O 

DO 90 I=1.NT 

COVNP=COVNP+<XN<I>*XN<I>> 

COVSNP=COVSNP+<XSN<I>*XSN<I>> 


90 	 CONTINUE 

COVNP=COVNP/FLOAT<NT-1> 

COVSNP=COVSNP/FLOAT<NT-1> 


c 
WRITE<7.91> <IFILE<I>.I=1.5> 

91 FORMAT<25X. '*FOR FILE' .5A2.' *') 
WRITE<7.92> AVGXSN,COVSNP 

92 FORMAT<3X.'SIG.+NOISE- MEAN= '.E15.4,' VARIANCE= ',E15.4> 
WRITE<7.94> AVGXN.COVNP 

94 FORMAT<3X.' NOISE MEAN= ',E15.4.' VARIANCE= '.E15.4) 
c 

ECOVN<1>=COVNP+XN<1>*XN<1> 
ECOVSN<1>=COVSNP+XSN<1>*XSN<1> 

c 
FPEN<1.1>=XN<1>1SORT<ECOVN<1>> 
BPEN<1.1>=FPEN<1.1> 
DO 100 J=1,2 
DO 100 I0=1.NO 
RFCOFN<IO.J>=O.O 
RGCOF<IO.J>=O.O 

100 CONTINUE 
c 
c 
c ************************************************************ 
c LATTICE CALCULATIONS 
c 
c 

108 WRITE<7.110> 
110 FORMAT< /1 OX. ' ***LATTICE COMPUTATIONS IN PROGRESS***'//) 

c 

http:WRITE<7.94
http:WRITE<7.92
http:WRITE<7.91
http:XN<I>.I=1.NT


5000 DO 1000 IT=2.NT 
IND=IT-2 

c 
5002 	 ECOVN<2>=WLMD*ECOVN<1>+XN<IT>*XN<IT> 


FPEN<1.2>=XN<IT>ISORT<ECOVN<2>> 

BPEN<1.2>=FPEN<1.2) 

ECOVSN<2>=WLMD*ECOVSN<1>+XSN<IT>*XSN<IT> 

SNOR<1.2>=XSN<IT>ISORT<ECOVSN<2>> 

IF<IT .LE. NO> MAXO=IT-1 

IF<IT .GT. NO> MAXO=N0-1 


c 
WRITE< 7. 550 > IT 

550 FORMAT<'+'.27X.I3> 
c 

DO 500 IO=l.MAXO 
RFCOFN<I0+1.2>=UPD1<RFCOFN<IO+l,l>,FPEN<I0,2>.BPEN<IO.l>> 
FPEN<I0+1.2>=UPD2<FPEN<I0.2>.RFCOFN<I0+1,2>.BPEN<IO.l>> 
BPEN < I 0+ 1 , 2 > = UPD2 <BPEN < I 0, 1 > , RFCOFN < I 0+ 1 '. 2 > , FPEN < I 0. 2 > > 
RGCOF<I0+1,2>=UPD1<RGCOF<IO+l,l>.BPEN<I0,2>.SNOR<I0,2>> 
SNOR<I0+1.2>=UPD2<SNOR<I0,2>.RGCOF<I0+1,2>.BPEN<I0.2>> 

500 	 CONTINUE 
c 

MAXOP1=MAX0+1 
SOUT<IT>=SNOR<MAXOP1,2> 

c 
ECOVN<1>=ECOVN<2> 
ECOVSN<l>=ECOVSN<2> 
DO 600 I0=1.MAXOP1 
RFCOFN<I0.1>=RFCOFN<I0,2) 
FPEN<I0.1>=FPEN<I0,2> 
BPEN<I0,1>=BPEN<I0,2> 
RGCOF<IO.l>=RGCOF<I0.2> 

600 CONTINUE 
1000 CONTINUE 

c 
c 

SOUT<1>=SOUT<2> 
WRITE<3' 1) <SOUT<IT>.IT=1.NT> 
CLOSE <UNIT=3> 

c 
IF<AUTOD.EO.'Y'>GOTO 6001 
IF<AUTOL.EO.'Y'>GOTO 6001 

6999 	 CONTINUE 
END 

http:SOUT<IT>.IT=1.NT
http:FORMAT<'+'.27X.I3
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c F I L E N A M E S Y S A N C . F 0 R 
c 
c 
c AUTHORS ROBERT C. SCOTT 
c 
c 
c NOTE: Compile with 7 units 
c 
c DATE 27TH AUGUST 1985 
c 
c 
c SYSR3A.FOR*** *** 
c 
c ************************************************ 
c * ADAPTIVE NOISE CANCELLATION USING * 
c * * c * S Y S T 0 L I C A R R A Y * c * I M P L E M E N T A T I 0 N I I * c * * c * FOR EVOKED POTENTIALS * c ************************************************ 
c 
c 
c INPUT :- SIMULATION 
c 
c PRIMARY : BStiC## .SPN - <SIGNAL+NOISE) DATA FILE 
c REFERENCE:REFAR# .NSE - <NOISE) DATA FILE 
c 
c OUTPUT:
c ESTIMATED SIGNAL : Btltltlltlt .SliM 
c 
c E.G. B3 97 30 .S 00 
c I I I 
c 0.997 = LAMBDA.ORDER.S/N 
c 
c 
c INPUT : - RAW ADATAPTATION 
c 
c PRIMARY: BtiREFti.EVK SIGNAL PLUS NOISE 
c REFERENCE BtiREFti.EEG NOISE FILE 
c 
c 
c OUTPUT ESTIMATED SIGNAL 
c 
c Btl REF# . SNC 
c 
c 
c IIFILE: SPN/EVK 
c JFILE: NSE/EEG 
c KFILE: lt#H/SNC 
c LFILE: SIG/FIL 
c 
c INPUTS: tl POINTS. #WEIGHTS. LAMBDA. FILE NAMES 
c STIMULUS POINT. RAW/SIMULATION 
c 
c ******************************************************** 
c FORMAT STATEMENTS 
c 
c 

1000 FORMAT</' INPUT RAW OR SIMULATION <RIS> ? ') 
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1001 FORMAT<Al) 

1002 FORMAT<' ENTER DATA BASE H <BH> ') 

1003 FORMAT<A2) 

1004 FORMAT<' ENTER RECORD# (##)MOST SIG PAIR FIRST'> 

1006 FORMAT<' ENTER ABS <SIN> CH#)') 

1007 FORMAT<' ENTER AR ORDER OF REFERENCE SIGNAL <R#)') 

1008 FORMAT<' ANOTHER FILE <YIN> 1') 

1009 FORMAT<!' INPUT# OF POINTS IN RECORD'/' ****'> 

1010 FORMAT<I4> 

1011 FORMAT<A5> 

1012 FORMAT<' RENTER LAMBDA FULL RANK!'/' *·***') 

1013 FORMAT<' ENTER STIMULUS POINT'/' ****') 

1014 FORMAT<F5.3> 

1015 FORMATC20X.' POINT# PROCESSED .... '//) 

1016 FORMAT< //4X. A14. 4X. ' % Fit <sq > . . ' , F7. 2, 4X, 


1 ' M- Index. . ' • F7 . 3 , ' dB ' > 
1017 FORMAT(///) 
1018 FORMAT<' WRITE UNITIZED AND ZERO-MEANED REF. & PRIM.'. 

1' TO DISK <YIN> ? ') 
1019 FORMAT<'+' .31X.I3> 
1020 FORMAT(/' ENTER LAMBDA-POST FULL RANK! (0.901< LAM< 1.000) 

1 <RETURN for const profile)'/'*·***') 
1021 FORMAT(/' ENTER LAMBDA-PRE FULL RANK' (0.901< LAM< 1.000> 

1 <-----TO END AUTO>'/' *·***') 
1022 FORMAT<I'ENTER ORDER FULL RANK<<= 70) <-- END AUTO>'/' **') 
1023 FORMAT< I 2 > 
1025 FORMAT<' AUTO ORDER <YIN) ?') 
1026 FORMATC/3X,'LAMBDA-PRE' .3X.F5.3.6X, 'LAMBDA-POST' .3X,F5.3, 

1 8X.'# TAP WEIGHTS .. '.I2/) 
1027 FORMAT< I 3 > 
1028 FORMAT<' AUTO LAMBDA <YIN> ?') 
1029 FORMAT<' RENTER ORDER FULL RANK!'/'**'> 
1032 FORMAT</' HARDCOPY %FIT <YIN> ?') 
c 
c 
c ********************************************************* 
c DIMENSION AND DATA STATEMENTS 
c 
c 

REAL ERROR<512> 
REAL UIN.UOUT.ERR 
REAL BETA<0:7l>.ZETA<71>.UT<71> 
REAL IDATA<512>.JDATA<512>.LDATA<S12> 
REAL LAM,LAMPR.LAMPT.HLAM,HLAMPR.HLAMPT 
INTEGER TP,TP2,TP2J,TP3,TP3J,TP3I,STIM,MLAM 
CHARACTER*! AUTOD,AUTOL,ANS1 
CHARACTER*5 CHLAM,DHLAM 
CHARACTER*14 IIFILE,JFILE,KFILE,LFILE 

c 
c 
c 
c ********************************************************* 
C INITIALIZE ARRAYS 
c 

REAL R<72.71> 
c 
c 
c 
c ********************************************************** 
C SET FILE INPUT NAMES 



I'S-'.5'. 


c 
c 

c 

6001 
c 

c 
2000 

c 

c 

c 
7004 
2007 

BETA<0>=1.0 

AUTOD='N' 

AUTOL='N' 

DATA IIFILE/'RK1:B#####.EVK'/ 

DATA JFILE/'RKl:B#####.EEG'/ 

DATA KFILE/'RK1:B#####.SNC'/ 

DATA LFILE/'RK1:BS#C .FIL'/ 


WRITE<7.1000> 

READ<5.1001)C1 

IF<C1.EO.'S'>GOTO 2000 


WRITE<7.1002> 

READ<5.1003>IIFILE<5:6) 

WRITEC7.1004) 

READ<5.1003>IIFILE<7:8) 

WRITE<7.1004> 

READC5,1003>IIFILE<9:10> 

JFILE<5:6>=IIFILE<5:6) 

KFILE<5:6>=IIFILE<5:6> 

JFILEC7:8>=IIFILE<7:8) 

KFILEC7:8>=IIFILEC7:8) 

LFILE<7:7>=IIFILE<6:6> 

LFILE<8:8)='C' 

JFILE<9:10>=IIFILEC9:10) 

KFILE<9:10>=IIFILE<9:10> 

GOTO 2001 


CONTINUE 

IIFILEC5:6>='BS' 

JFILEC5:6>='RE' 

JFILEC7:8)='FA' 

LFILE<5:6>=IIFILE<5:6) 

I IF I LE <11 : 1 2 ) = ' . S ' 

IIFILE<13:14>='PN' 

JF I LE < 11 : 1 2 > = ' . N ' 
JFILE<13:14>='SE' 
KF I LE <11 : 1 2 >=' . S ' 
LF I LE <11 : 1 2 > = ' . S ' 
LFILE<13:14>='IG' 

IF<AUTOL.EO. 'Y'>GOTO 7003 
IF<AUTOD.EO.'Y'>GOTO 7004 

WRITE<7.1002> 
READ<5.1003>KFILE<5:6> 
WRITE<7.1006) 
READ<5.1003>IIFILE<9:10> 
WRITE<7.1007> 
READ<5.1003>JFILE<9:10> 
IIFILE<8:8)='C' 
IIFILE<7:7>=KFILE<6:6) 
KFILE<13:14>=IIFILEC9:10> 
LFILE<9:10>='FP' 
LFILE<7:8>=IIFILE<7:8> 

WRITE<7.1022> 
READC5.1003>KFILE<9:10) 

http:IF<AUTOL.EO


c 
7003 
2006 

c 

c 

c 
2001 

2002 

2005 
c 
c 
c 
c 
c 

c 
c 
c 

IF<ICHAR<KFILE<10:10>>.E0.32) THEN 
WRITE<7.1029> 
GOTO 2007 
END IF 
IF<KFILE<9:10>.EO. '--')GOTO 6999 
TP=<<ICHAR<KFILE<9:9>>-48>*10>+<ICHAR<KFILE<10:10>>-48) 
TP2=TP+2 
TP3=TP+3 
IF<AUTOD.EO.'Y'>GOTO 2001 

WRITE<7.1021) 
READ<5.1011>CHLAM 
IF<ICHAR<CHLAM<S:>>.E0.32) 

WRITE<7.1012) 
GOTO 2006 

END IF 
IF<CHLAM.EO. '-----') GOTO 
KFILE<7:8>=CHLAM<4:5) 

WRITE<7.1020) 

READ<5.101l>DHLAM 

IF<ICHAR<DHLAM<5:)).EQ.32) 


LAM=O.O 

CALL CONVRT <CHLAM.LAM> 

LAMPR=LAM 

HLAMPR=SQRT<LAM> 

CALL CONVRT <DHLAM.LAM> 

LAMPT=LAM 

HLAMPT=SORT<LAM> 


THEN 

6999 

DHLAM=CHLAM 

CONTINUE 
DO 2002 N=1.512 
ERROR<N>=O.O 
DO 2005 1=1.72 
DO 2005 J=1.71 
R<I,J>=O.O 

************************************************************** 
INPUTS 

IF<<AUTOL.EO.'Y'>.OR.<AUTOD.EO.'Y'))GOTO 6002 
WRITE<7.1009) 
READ<5.1027>NP 
NP2=2.0*NP 
WRITE<7.1013> 
READ<5.1027>STIM 
WRITE<7.1032> 
READ<5.1001>ANS1 
WRITE<7.1018> 
READ<5.1001>C2 
WRITE<7.1025> 
READ<5.1001>AUTOD 
IF<AUTOD.EQ.'Y'>GOTO 6002 
WRITE<5.1028> 
R~AD<5,100l>AUTOL 

******************************************************** 

http:IF<ICHAR<DHLAM<5:)).EQ.32
http:IF<CHLAM.EO
http:IF<ICHAR<CHLAM<S:>>.E0.32
http:IF<KFILE<9:10>.EO
http:IF<ICHAR<KFILE<10:10>>.E0.32


IST. 

c 
c 
c 
6002 

c 

c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
C 
c 
c 

c 
C 
c 

3006 
3005 

3007 

READ FILES 

OPEN< UNIT=1, FILE=IIFILE, ACCESS='DIRECT'. 
1 RECL=NP, ASSOCIATEVARIABLE=N1REC> 
OPEN< UNIT=2, FILE=JFILE, ACCESS='DIRECT'. 
1 RECL=NP. ASSOCIATEVARIABLE=N2REC> 
OPEN< UNIT=3. FILE=KFILE, ACCESS='DIRECT'. 
1 RECL=NP, ASSOCIATEVARIABLE=N3REC> 
OPEN< UNIT=4, FILE=LFILE, ACCESS='DIRECT', 
1 RECL=NP, ASSOCIATEVARIABLE=N4REC> 

READ<1'1><IDATA<J>,J=1,NP> 
READ<2'1)<JDATA<J>.J=1,NP> 
READ<4'1><LDATA<J>,J=1,NP> 

( 

STATUS='OLD', 

STATUS= ' OLD ' . 

STATUS='NEW', 

STATUS='OLD', 

********************************************************* 
ZERO MEAN AND UNIT VARIANCE ALL INPUT FILES 

CALL NORM<IDATA.512,NP,STIM,O,O> 
CALL NORM<JDATA,512,NP,STIM,O,O> 
CALL NORM<LDATA,512,NP,STIM,1,0) 

********************************************************** 
ADAPTIVE NOISE CANCELLOR SYSTOLIC II 

WRITE<7.1026>LAMPR.LAMPT,TP 
WRITE<7,1015) 
DO 3000 N=l.NP+TP 
WRITE<7.1019>N 
IF<N.LT.STIM> HLAM=HLAMPR 
IF<N.GE.STIM> HLAM=HLAMPT 
RN=FLOAT<N> 
ZETA< 1> =1. 0 
IF<TP.EO.O> THEN 

ERROR<N>=IDATA<N>-JDATA<N> 
GOTO 3000 

END IF 

**** INPUT LINE UP **** 

DO 3005 J=1,TP 
RJ=FLOAT<J> 
RM=RN-<RJ-1.0>*2.0 
IF<RM.LT.1.0) GOTO 3006 
IF<RM.GT.FLOAT<NP>> GOTO 
UT<J>=JDATA<IFIX<RM>> 
GOTO 3005 
UT<J>=O.O 
CONTINUE 
RD=FLOAT<N-TP> 
IF<RD.GT.0.5> GOTO 3007 
UT<TP+1)=0.0 
GOTO 3008 
UT<TP+l>=IDATA<IFIX<RD>> 

3006 




3008 
c 
c 
c 
c 
c 

c 

C 

c 


4005 
c 

c 

C 

c 


c 

c 

c 


c 
c 
c 

c 

c 
.4000 
c 
c 
3000 
c 
c 
c 

CONTINUE 

******~************** 

PROCESS THROUGH ARRAY 

DO 4000 J=TP+1,1,-1 
UIN=UT<J> 
IF<J.NE.1> THEN 

***** INTERNAL CELL ******* 

DO 4005 I=1,J-1 
J2=TP2-J+1 
TP3I=TP3-I 
P=R<TP3I,J2) 
C=SORT<1.0-<P*P>> 
R<I.J)=HLAM*R<I.J) 
UOUT=C*UIN-P*R<I.J) 
R<I,J>=P*UIN+C*R<I,J) 
R<TP3 I, TP2-J) =P 
UIN=UOUT 

END IF 

**** BOUNDARY CELL ****** 

R<J.J>=HLAM*R<J,J) 
TP3J=TP3-J 
TP2J=TP2-J 
IF<J.LE.TP> THEN 
IF<UIN.NE.O.O> THEN 
R<TP3J,TP2J>=UINI<SORT<R<J.J)**2+UIN*UIN>> 
C=SORT<1.0-<R<TP3J,TP2J))**2> 

ELSE 
C=1.0 
R<TP3J.TP2J>=O.O 

END IF 
R<J.J>=C*R<J,J>+R<TP3J,TP2J)*UIN 
BETA<J>=C*ZETA<J> 
ZETA<J>=BETA<J-1) 

**** FINAL CELL **** 

.. 

ELSE 
ZETA<J>=BETA<J-1) 
IF<N.GT.TP> ERROR<N-TP>=UIN*ZETA<J> 

END IF 

CONTINUE 

CONTINUE 

**** END ADAPTIVE PROCESS *** 



c 
c 

CALL NORM<ERROR.512.NP,STIM,O,O> 

c 

c 


IF<C2.NE. 'Y' >GOTO 220 

WRITE<l'l><IDATA<J> ,J=l.NP> 

WRITE<2'1><JDATA<J>,J=1,NP> 


220 WRITE<3'1><ERROR<J>.J=1,NP> 

c 

c ************************************************************** 

C CALCULATE SQUARED DIFFERENCE BETWEEN PROCESSED SIGNAL AND PURE 

c 

c 


CALL NORM<LDATA,512,NP,STIM,1,1> 

CALL NORM<JDATA,512,NP,STIM,l,l> 

CALL NORM<ERROR,512,NP,STIM,l,l) 

SUM=O.O 

DIFF=O.O 

RNUM=O.O 

RDEN=O.O 


c 
DO 4100 I=STIM,NP 
SUM=SUM+<LDATA<I>*LDATA<I>> 
DIFF=DIFF+ABS<ERROR<I>-LDATA<I>>**2.0 
RDEN=RDEN+ABS<JDATA<I>-LDATA<I>>**2.0 

4100 	 CONTINUE 
c 

PRCNT=<<SUM-DIFF>ISUM>*lOO.O 
RMINDX=-10.*LOG10<DIFF/RDEN> 

c 
WRITE<7.1016>KFILE.PRCNT,RMINDX 

c 
IF<ANS1.EO.'Y') WRITE<6,1016>KFILE,PRCNT,RMINDX 

c 
REWIND 6 

c 
CLOSE<UNIT=l> 
CLOSE<UNIT=2> 
CLOSE<UNIT=3) 
CLOSE<UNIT=4) 

c 
IF<<AUTOD.EO.'Y'>.OR.<AUTOL.EO.'Y'>>GOTO 6001 

6999 CONTINUE 
END 

c 
c 

SUBROUTINE CONVRT<CHAR,LAM> 
CHARACTER*5 CHAR 
REAL LAM 
LAM=O.O 
DO 2009 1=1,5 
MLAM=ICHAR<CHAR<I:l))-48 
IF<I.EO.l> RLAM=FLOAT<MLAM> 
IF<I.GE.3) RLAM=FLOAT<MLAM)/(10**<1-2)) 

2009 	 IF<I.NE.2> LAM=LAM+RLAM 
RETURN 
END 

http:IF<C2.NE
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1~1. 

C FOR COLLECTION OF BSAEP DATA 
C WRITTEN BY H. DEBRIUN AND R. 
C SINGLE CHANNEL.RING BUFFER. 
c 
c 
c 

DIMENSION IDATA<512> 
WRITE<7,1000> 

FROM C-4 FOR VERIFICATION 
SCOTT 

ART REJECT.SCHMIDT CHECK 

1000 	 FORMAT<' ENTER OUTPUT FILE NAME'/' ***:******·***'/) 
CALL ASSIGN<1,'PATDAT-DAT' ,-1,'NEW') 
WRITE<7, 1001> 

1001 FORMAT<' ENTER NO. OF STIMULI AND THRESHOLD'/' ***** *****') 
READ<5,1002>ISTIM,ITHRES 

1002 FORMAT<I5,1X,I5> 
WRITE<7,1003> 

1003 FORMAT<' ENTER SAMPLE RATE'/' *****'> 
READ<5,1002>ISAMP 
NDIV=lOOOOO./ISAMP 
IREC0=1 
DEFINE FILE 1 <ISTIM,512,U,NREC> 
IERROR=1 
WRITE<1'IRECO> <IDATA<J>,J=1,512> 
CALL EVOK1A<IDATA<1>,NDIV,ITHRES,IARTP,IERROR> 
GO TO <10,20,30>IERROR 

10 	 WRITE<1'IRECO><IDATA<J>,J=1,512> 
IRECO=IREC0+1 
DO 50 I=2,ISTIM 

CALL ENTER1 
GO TO <48,20,30>IERROR 

48 WRITE<1'IRECO> <IDATA<J>,J=1,512> 
IRECO=IREC0+1 

50 	 CONTINUE 
CLOSE <UNIT=1> 
WRITE<5,1004>IARTP 

1004 FORMAT<' STIMULIS ARTIFACT= ',I5/) 
GO TO 100 

c 
c 
c 
c 

20 WRITE<7.1005> 

1005 FORMAT<' AID OVERUN ERROR'> 


GO TO 100 
c 
c 
c 
c 

30 WRITE<7,1006> 

1006 FORMAT<' INSUFFICIENT PRE-STIMULIS SAMPLES'> 

c 

c 
c 
100 CONTINUE 

END 



110"" . 

. TITLE EVOK1A 

.MCALL 

.GLOBL EVOK1A.ENTER1 
ADCSR=170400 
ADBUF=170402 
CLCSR=170404 
CLCBUF=170406 

EVOK1A: 	 CLR ADCSR 
CLR CLCSR 
TST <R5)+ 
MOV <R5)+,R4 
MOV ttBUF,RO 
MOV RO,LIMITl 
MOV RO,LIMIT2 
ADD #1024. ,LIMIT2 
MOV @(R5)+,NDIV 
MOV @(R5)+,ITHRES 
MOV <R5)+,IARTP 
NEG NDIV 
MOV tt204,@1t306 
MOV ttSCHMTl,@lt304 
CLRB @tt177560 

KEYB: 	 TSTB @tt177560 
BPL KEYB 
CLRB @tt177560 
CMP @tt177562.#107 
BNE KEYB 

ENTER!: 	 CLR FLAG2 
MOV tt384.,R1 
MOV ttBUF,RO 
CLR CLCSR 
MOV NDIV,CLCBUF 
MOV #40,ADCSR 
MOV tt40405,CLCSR 

SRVADO: 	 TSTB ADCSR 
BPL SRVADO 
MOV ADBUF, < RO) + 
MOV tt401,ADCSR 

WAIT1: 	 TSTB ADCSR 
BPL WAIT1 
MOV #40,ADCSR 
CMP ADBUF,ITHRES 
BGE CONTl 
MOV #177777,-<RO> 
TST <RO)+ 

CONTl: 	 CMP RO,LIMIT2 
BNE CONT2 
MOV LIMITl,RO 

CONT2: 	 DEC R1 
BEO SRVADl 
BR SRVADO 

SRVADl: 	 TSTB ADCSR 
BPL SRVADl 
MOV ADBUF, <RO) + 
MOV #401,ADCSR 

WAIT3: 	 TSTB ADCSR 
BPL WAIT3 
MOV #40,ADCSR 

;GET DATA ADDRESS 
;RING BUFFER 

;SET UP 	 H/W INTERUPT FOR SCHMIDT 

;CLEAR KEYBD 

;WAIT FOR KEYSTROKE 


;MAIN PROGRAM 

;CHANNEL 1 
;SCHMIDT ENABLE AND CLOCK START 

;ENOUGH 	 SAMPLES? 



Ho5. 

CMP ADBUF, ITHRES 
BGE CONT3 
MOV #17·7777,-<RO> 
TST <RO>+ 

CONT3: CMP RO,LIMIT2 
BNE CONT4 
MOV LIMIT1,RO 

CONT4: TST FLAG2 
BEQ SRVAD1 
DEC R1 
BEQ COMPLT 
BR SRVAD1 

SCHMT1: TST R1 
BNE ERROR2 
INC FLAG2 
MOV #128 .. R1 
RTI 

ERROR2: MOV # 3. , @ <R5 >+ 
CLR CLCSR 
TST <SP>+ 
TST <SP>+ 
CLR ADCSR 
RTS PC 

COMPLT: CLR CLCSR 
CLR ADCSR 
MOV #512. ,R1 
MOV R4,R2 
ADD #1024. ,R2 

TR1: TST -<RO> 
CMP RO, LIM'IT1 
BGE TRO 
ADD #1024. ,RO 

TRO: MOV <RO) ,-<R2> 
DEC R1 
BEQ DON1 
BR TR1 

DON1: MOV #512. ,R1 
MOV R4,R2 

TSTPRE: CMP <R2>+,#177777 
BEQ ARTPRE 
DEC R1 
BGT TSTPRE 
RTS PC 

ARTPRE: INC @lARTP 
PUNCH: TSTB @1:1177564 

BPL PUNCH 
MOVB #7, @#177566 
JMP ENTER1 

NDIV:O 
ITHRES:O 
LIMIT1:0 
LIMIT2:0 
FLAG2:0 
IARTP:O 
BUF:O 

.=.+1024 . 

. END 

;SUCCESFUL 

;NEXT STIMULIS 

;SCHMIDT 


;384 NOT COLLECTED BEFORE SCHMIDT 

;ERROR ROUTINES 

.: UNRING ETC ..... 
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PROGRAM SPECTM 
c 
C S P E C T M . F 0 R 
c 
C Modified by: Robert C. Scott 21-Jan-86 
c 
c 
C NOTE: Compile with 10 units 
c 
c 
C...... SPECTUM PROGRAM TO ESTIMATE AND PLOT THE POWER 
C...... SPECTRUM OF INPUT DATA FILES,BASED ON AVEREGED 
C...... PERIODOGRAMS,OF OVERLAPPING WINDOWS,OF THE INPUT 
C...... DATA.THE WINDOWS CAN BE WEIGHTED BY A HANNING 
C...... OR RECTANGULAR DATA WINDOW.THE PROGRAM ALSO ESTIMATES 
C...... THE FOLLOWING POWER SPECTRUM PARAMETERS: 
C...... MEDIAN FREQUENCY 
C...... STATISTICAL BANDWIDTH 
C...... PERCENT POWER IN THREE SELECTABLE FREQ. BANDS 
C...... HIGH-LOW RATIO;RATIO OF POWER IN HIGH BAND TO LOW BAND 
C...... TOTAL POWER IN SIGNAL 
c ..... . 
C...... THE FOLLOWING AMPLITUDE STATISTICS ARE ALSO CALCULATED: 
C...... MEAN RECTFIED EMG VALUE <MRE> 
C...... ROOT MEAN SQUARE VALUE <RMS> 
c ..... . 
C...... THE LENGTH OF THE WINDOWS CHOSEN AND THE FFT'S 
C...... CALCULATED IS SELECTABLE.THIS ALLOWS VARIABLE 
C...... FREQUENCY RESOLUTIONS AND STATISTICAL VARIANCES OF 
C...... RESULTING SPECTRUM ESTIMATES.SUCCESSIVE RECORDS ARE 
C...... READ FROM THE SPECIFIED DATA FILE AND AN AVERAGE SPECTRUM 
C...... IS COMPUTED. 
c ..... . 
c ..... . 

DIMENSION RDATC512>,IDAT<513>,SPECC513>,SPECTC513> 
DIMENSION IXC513>,IXAC513> 
DIMENSION XC513> 

c 
COMPLEX X .XMN 

c 
DIMENSION JWINC3,2>,AXISC4,4) 
DIMENSION IELC3,2>,IBFREQC3,2> 
DIMENSION ABPTOTC3>,IFILEC8>,IHLBC4>,IIHLB<4> 

c 
CHARACTER*! ANS,ANS1,ANS3,ANS4,DEC,IZERO,TYP 
CHARACTER*14 MFILE 

c 
HAMM<X>=0.54-0.46*COS<TRIG*X> 
BLHR<X>=AO-CA1*COS<TRIG*X>>+<A2*COS<TRIG*X>>-CA3*COSCTRIG*X>> 

c 
OPENCUNIT=9,FILE='PC:FOR009.DAT',STATUS='NEW'> 

c 
DATA AO,Al,A2,A3/0.35875,0.48829,0.14128,0.01168/ 
DATA JWINC1,l>,JWIN<1,2)/'RE','CT'/ 
DATA JWIN<2,1>,JWINC2,2>/'HA' ,'MG'/ 
DATA JWINC3,l>,JWINC3,2)/'BL' ,'HR'/ 

c 
TWOPI=8.0*ATAN<l.O> 
IFILEC8>=0 
MAXM =1024 



LHM =MAXM/2+1 

IFLAG=O 

IFLAG2=0 

IFLAG3=0 

REDO=O.O 


4046 WRITE<7,101) 

NSECTT=O 


101 FORMAT<' WHAT IS DATA FILE NAME?'/' ***=******·***') 

READ<5,201><IFILE<J>,J=1,7> 


201 FORMAT<7A2> 

IF<REDO.E0.1.0>GOTO 4047 


343 WRITE<7,331) 

331 FORMAT<' ENTER DATA TYPE <R OR I>'> 


READ<5.332>TYP 

332 FORMAT<Al> 

3306 WRITE<7,99) 


99 FORMAT<' NO. OF SAMPLES PER RECORD? AND NO. OF RECORDS?' 
1/' ***** *****') 


READC5.100) N.NTOT 

N2=2*N 


100 FORMATCI5.1X,I5> 

WRITE<7.102> 


102 FORMAT<' WHAT IS THE SAMPLE FREQ AND BAND. WIDTH?'/ 

+ 	 1X,'*****·**',lX.'*****·**') 


READ<5,202>SAMP,BAND 

202 FORMAT<F8.2,1X,F8.2) 


WRITE<7.777> 

777 FORMAT< ' DO YOU HAVE A ZERO MEAN SIGNAL?'$) 


READ<5.332) IZERO 

c 

c 
c ************************************************************** 
c READ IN ANALYSIS PARAMETERS M,IWIN,L 
c 

WRITE<7,9999> 
9999 FORMAT<' FFT LENGTH=' 

l.SX,' MUST BE A POWER OF 2'1' ****') 
4 READC5,9997> M 

IF CM.GT.MAXM) WRITE <7,9998) 
9998 FORMAT<' M TOO LARGE-- REENTER VALUE') 

IF<M.GT.MAXM> GO TO 4 
9997 FORMAT <I4> 

WRITEC7,9996) 
9996 FORMAT<' WINDOW TYPE !=RECTANGULAR, 2=HAMMING, 3=BLACKMAN 

1-HARRIS '/' *') 
READC5,9995> IWIN 

•9995 	 FORMAT< I 1 > 
5 WRITE<7,9994) 
9994 FORMAT<' WINDOW LENGTH= I 

1/,' <MUST BE LESS THAN 1000 AND FFT LENGTH, ' 
1/,' EVEN AND BE AN INTEGRAL DIVISOR OF REC LENGTH)'/'****'> 
READ<5,9997) L 
IF <L.GT.M) GO TO 5 
LTST=CNIL>*L 
IF<LTST.NE.N> GO TO 5 
IF<L.GT.1000) GO TO 5 

4047 WRITEC6,4000><IFILE<J>,J=3,7> 

4000 FORMAT<5X,'FILE: ,5A2,/)
I 

WRITE<6,4100> 

4100 FORMATC2X, 'REC' ,4X, 'MRE' ,4X, 'RMS' ,4X, 'FC' ,4X, 




1 ' sB, , 4X, 'H 1L' , 6X, ' L, , 6X, , M, , 6X, 'H, , ax, 'PWR' 1 > 

SCAL=<17./19.05>*1023. 

DELTAF=SAMPIC1.0*M> 

INUM=<BAND/DELTAF>+1 


c 
c ********************************************************* 
c NSECT = THE TOTAL NUMBER OF ANALYSIS SECTIONS 
c NP = THE TOTAL NUMBER OF SAMPLES ACTUALLY USED 
c OVERLAP OF 2 TO 1 IS USED ON ADJACENT ANALYSIS SECTIONS 
c NP = N IF<N-L/2)1(L/2) = AN INTEGER 
c 
c 
352 MHLF1 =IFIX<<FLOAT<M>/2.0)+1) 

LRS=IFIX<FLOAT<L>/4.0) 
LRS1=2*LRS 
NSECT=IFIX<<FLOAT<N>-FLOAT<LRS1))/FLOAT<LRS1)) 
IF<TYP.EO.'R'>LRS2=IFIX<2.0*FLOAT<LRS1>> 
IF<REDO.EO.l.>GOTO 4048 
RTOT=2.0*FLOAT<NTOT>*FLOAT<N>IFLOAT<L> 
IF<RTOT.LT.32001.) GOTO 351 
L=IFIX<2.0*FLOAT<L>> 
GOTO 352 

351 NTOT=IFIX<RTOT> 

304 WRITE<7,112) 

112 FORMAT<' HOW MANY RECORDS TO BE INCLUDED IN 


1THE SPECTRUM CALCULATION?'/' **') 
READ<5,111>NREC 

1 1 1 FORMAT<I2> 
3307 WRITE<7.106) 
106 FORMAT<' WHAT IS THE STARTING REC. NO.?'/' **') 

READ<5.206>IREC 
206 FORMAT<I3> 
4048 WRITE <7,9899) 
9899 FORMAT<' COMPUTING SPECTRUM COEFFICENTS PLEASE WAIT!') 

NSECTT=O 
c 
c 
c ******************************************************** 
c GENERATE WINDOW WEIGHT FOR NORMALIZING SPECTRUM 
c 

FLl=FLOAT<L-1) 
TRIG=TWOPI/FL1 
U=O.O 
DO 50 I=1,L 

FI=FLOAT<I-1> 
IF<IWIN.E0.1.>WD=1. 
IF<IWIN.E0.2.>WD=HAMM<FI> 
IF<IWIN.E0.3.>WD=BLHR<FI> 

50 U=U+WD*WD 
c 

AVGRMS=O. 
AVGMRE=O. 
IREC2=IREC+NREC-1 
IREC1=CNSECT+1>*<IREC-1)+1 
KL=<NREC+1)/NSECT 
NT=NREC+KL 
IF<NREC.E0.1>NT=1 
DO 70 I=l,MHLFl 

SPECT<I>=O. 
70 CONTINUE 



lb8. 

DO 	 200 KJ=1,NT 

KK=NSECT+1 

IF<KJ.NE.NT> GO TO 71 

KK=MOD<NREC+1,NSECT> 

KK=KK+2 


71 IF<NT.E0.1>KK=NSECT+1 
IF<TYP.EO. 'R'>GOTO 341 
IF<TYP.EQ. 'I'>GOTO 342 
GOTO 343 

c 
c 
c ************************************************************ 
C REAL DATA CONVERSION 
c 
341 CALL ASSIGN <2.IFILE,14,'RDO'> 

DEFINE FILE 2<1,N2,U,M1REC> 

READ<2'IREC1><RDAT<J>,J=l,N> 

CLOSE<UNIT=2> 

RMAX=O.O 

DO 346 J=1,N 


346 	 RMAX=AMAX1<ABS<RDAT<J>>.RMAX> 
FSCAL=30000./RMAX 
DO 347 J=1,N 

347 	 IDAT<J>=IFIX<RDAT<J>*FSCAL> 
CALL ASSIGN <3,'DKO:TEMP.DAT' ,l4,'NEW'> 
DEFINE FILE 3<1,N.U,M2REC> 
WRITE<3'1><IDAT<J>,J=l,N> 
CLOSE<UNIT=3> 

c 
342 	 IF<TYP.EO. 'R'>CALL ASSIGN<l,'DKO:TEMP.DAT' ,14, 'OLD') 

IF<TYP.EO.'I'>CALL ASSIGN<l.IFILE,l4,'RD0') 
DEFINE FILE l<NTOT,LRSl,U,JREC> 

DO 	 205 I=l,KK 

KK1=<I-1>*LRS1+1 

KK2=I*LRS1 

READ<1'1REC1><IDAT<J>,J=KKl,KK2> 

IREC1=IREC1+1 


205 	 CONTINUE 
345 	 IREC1=IREC1-1 

IF<KK.EO.NSECT+l> GO TO 7 
N=KK*LRSl 
RLP=FLOAT<L>/2.0 
RSECT=<FLOAT<N>-RLP>IRLP 
NSECT=IFIX<RSECT> 

7 	 CONTINUE 
CLOSE<UNIT=l> 

c 
c 
c ************************************************************** 
C READ IN DESIRED DATA. 
c 

CALL INMAX<IDAT,2000,N,JMAX> 
RMULT=30000./FLOAT<JMAX> 

DO 10 J=l,N 

IDAT<J>=IFIX<FLOAT<IDAT<J>>*RMULT> 

IXA<J>=IDAT<J> 

10 	 CONTINUE 
XSUM=O. 
XCOR=409.6*RMULT 

c 

http:IF<TYP.EO
http:IF<TYP.EQ
http:IF<TYP.EO
http:IF<KJ.NE.NT


'"G!. 


c 
c ************************************************************* 

C CALCULATE DATA MEAN. 

c 


DO 20 J=1.N 
XSUM=XSUM+IXA<J) 

20 CONTINUE 
XMEAN=XSUM/N 

c 
c 
c ************************************************************* 
c ONLY FOR CALCULATION OF MRE AND RMS 
c 

IF ( I ZERO . EO . N I GO TO 3 1 I ) 

DO 30 J=1,N 
IXA<J>=IXA<J>-XMEAN 

30 CONTINUE 
c 
c 
c ************************************************************* 
c MAKE SIGNAL ZERO MEAN IF DESIRED 
c SET XMN FOR LATER PROCESSING 
c 

XMN=CMPLX<XMEAN,XMEAN> 
GO TO 32 

c 
c * SET XMN FOR LATER PROCESSING. * 
c 
31 XMN=CMPLXCO.O,O.O) 
c 
c 
c *********************************************************** 
c CALCULATE MRE AND RMS. 
c 

32 	 RMRE= 0. 

RMS=O. 

DO 40 J=1.N 

RMRE=RMRE+IABS<IXA<J>> 

TEMP=IXA<J> 

RMS=RMS+TEMP**2 


40 	 CONTINUE 
RMRE=RMRE/FLOAT<N>/XCOR 
RMS=SORT<RMS/FLOAT<N>>JXCOR 
AVGRMS=AVGRMS+RMS 
AVGMRE=AVGMRE+RMRE 

c 
c 
c ************************************************************** 
c LOOP TO ACCUMULATE SPECTRA 2 AT A TIME 
c 

SS=1. 
c 
c 
c ********************************************************* 
c READ L/2 SAMPLES TO INITIALIZE BUFFER 
c 

L1 =IFIX<FLOATCL)/2.0) 
NRD=L1 
L2=L1 
CALL GETX<IXA.L2,IDAT,NRD,SS> 



\=Tb. 

SS=SS+FLOAT<NRD> 

IMN=L1+1 

KMX=IFIX<<FLOAT<NSECT>+1.0)/2.0) 

NSECTP=IFIX<FLOAT<KMX>*2.0) 

NRD=L 

DO 191 I=1,MHLF1 


SPEC<I>=O. 
191 CONTINUE 

DO 190 K=1,KMX 
c 
c 
c ********************************************************** 
C MOVE DOWN UPPER HALF OF IXA BUFFER 
c 

DO 80 I=l,L1 
J=L1+I 
X<I>=CMPLXCFLOAT<IXA(J)),O.> 

80 CONTINUE 
IF<K.NE.KMX .OR.NSECTP.EO.NSECT> GO TO 95 
DO 90 I=IMN.NRD 

IXA<I>= 0.0 
90 CONTINUE 

NRD=IFIX<FLOATCL)/2.0) 
95 L2 = 0 

CALL GETX<IXA.L2,IDAT,NRD,SS> 
DO 110 I=1,L1 

J= I +L1 
X<J>=CMPLX<FLOAT<IXA<I>> ,FLOAT<IXA<J>>>-XMN 
X<I>=CMPLX<REAL<X<I>>.FLOAT<IXA<I>>>-XMN 

110 CONTINUE 
IF<K.NE.KMX.OR.NSECTP.EO.NSECT> GO TO 130 

c 
c 
c ************************************************ 

C AN ODD NUMBER OF SECTIONS -- ZERO OUT THE SECOND PART 

C ON LAST TIME THROUGH IF HAVE AN ODD NUMBER OF SECTIONS. 

c 


DO 120 I= 1, L 
X<I>= CMPLX<REAL<X<I>>,O.> 


120 CONTINUE 

130 CONTINUE 


SS=SS+FLOAT<NRD> 

FL1 = FLOAT<L-1> 

DO 140 I=1,L 

FI = FLOAT< I -1) 


IF<IWIN.E0.1.>TWIND=1. 
IF<IWIN.E0.2.>TWIND=HAMM<FI> 
IF<IWIN.E0.3.>TWIND=BLHR<FI> 

140 X<I>=X<I>*TWIND 
c 

IF <L.EO.M> GO TO 170 
LP1=L+1 
DO 160 I=LP1,M 

X<I>=<O.,O.) 

160 CONTINUE 

170 CONTINUE 


DO 171 I= 1, M 

X<I>=X<I>IXCOR 


171 CONTINUE 


http:OR.NSECTP.EO
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CALL FFT<X.M,O> 
DO 180 I=2,MHLF1 

J -=M+2- I 
SPEC<I>=SPEC<I>+REAL<X<I>*CONJG<X<I>>+X<J>*CONJG<X<J>>> 

180 CONTINUE 

SPEC<l>=SPEC<1>+REAL<X<1>*CONJG<X<1>>>*2 


190 CONTINUE 

DO 195 I=l,MHLF1 


SPECT<I>=SPECT<I>+SPEC<I> 

195 CONTINUE 


NSECTT=NSECTT+NSECT 

200 CONTINUE 


c 

c 

c ************************************************************* 

c NORMALIZE SPECTRAL ESTIMATE 

c 


FNORM = 2. * U *FLOAT<NSECTT> 

DO 210 I=l,MHLFl 


SPECT<I> = SPECT<I>IFNORM 

210 	 CONTINUE 


AVGRMS=AVGRMS/FLOAT<NT> 

AVGMRE=AVGMRE/FLOAT<NT> 

NP=NREC*N 


c 
c 
c ******************************************************* 

c Save Spectrum Coefficients ? 

c 


MHLF2=2*MHLF1 

WRITE<7,3752> 


3752 	 FORMAT(/' SAVE SPECTRUM? [Y/NJ '$) 

READ<5.3753>ANS 
IF<ANS.EQ. 'Y') THEN 

WRITE<7,3754) 

READ<5,3755>MFILE 

CALL ASSIGN (3,MFILE,14, 'NEW') 

DEFINE FILE 3<1,MHLF2,U,N4REC> 

WRITE<3'1><SPECT<I>,I=l,MHLF1> 

WRITE<7,3756>MFILE<5:>.MHLF1 

CLOSE<UNIT=3> 


c 
END IF 

c 
3753 FORMAT< A1) 
3754 FORMAT<' ENTER FILENAME FOR SPECTRUM COEFFS' I .' ***: ******. ***' >. 
3755 FORMAT<A14) 
3756 FORMAT</' FILE .. ',A10,' WITH' ,I5,' POINTS IS NOW SAVED'/) 
c 
c 
c *********************************************************** 
c SELECT THE FREQUENCY RANGES FOR THE POWER STATISTICS 
c 

IF<REDO.EQ.l.O>GOTO 4049 
IF<IFLAG3.EQ.l) GO TO 3305 

550 WRITE<7.103> 
103 FORMAT<' WHAT ARE FREQ. BANDS <3> <HZ.)?'/1X,'*****-*****') 

DO 300 1=1,3 
300 READ<5.203><IBFREQ<I,J>,J=1.2> 
203 FORMAT<I5,1X,I5) 

http:IF<ANS.EQ


IT-2. . 

WRITE<7.104) 
104 FORMAT<' WHAT ARE FREO. BANDS FOR H/L RATIO <HZ.)?'/ 

+ 1X, 'LOW-BAND' ,2X, 'HIGH BAND' /1X, '***** ***** ***** *****') 
READ<5.204)(IIHLB<J),J=1,4) 

204 FORMAT<I5,2X,I5,2X,I5,2X,I5) 
4049 DO 306 I=1,3 

DO 305 J=1,2 
305 IEL<I.J)=<<IBFREO<I,J)*1.)/DELTAF)+1 
306 CONTINUE 

IMULT=1 

FL=D 

FH=BAND 

NN1=1 

IF<IFLAG.EQ.O)GO TO 326 

IFLAG=O 


325 CONTINUE 
WRITE<7,7500) 

7500 FORMAT<' WHAT IS THE AMP. MULT?'/' ***** .') 
READ<5,7501)IMULT 

7501 FORMAT<I5) 
WRITE<7,5999) 

5999 	 FORMAT<' SELECT FREO. BAND TO BE PLOTTED. 
1TYPE RETURN FOR FULL BAND.'/' *****·** *****·**') 
READ<5,5998)FL.FH 

5998 FORMAT<F8.2,2X,F8.2) 
IF<FL.EQ.O) GO TO 500 
NN1=IFIX<FL/DELTAF+1.0) 
GO TO 501 

500 	 NN1=1 
501 	 IF<FH.EQ.O) GO TO 502 


NN2=FH/DELTAF+1 

INUM=<NN2-NN1)+1 

IF<IFLAG2.EQ.0) BAND=FH-FL 

GO TO 503 


502 	 FL=O 
FH=BAND 


503 CONTINUE 

326 CONTINUE 


IF<IFLAG2.E0.1) GO TO 551 
IFLAG2=0 

c 
c 
c ************************************************************** 
c CALCULATE TOTAL POWER AND STATISTICAL BANDWIDTH 
c 
3305 CONTINUE 

PTOT=O 

PTOT2=0 

NN3=NN1 

IF<NN1.E0.1) NN3=2 

DO 311 J=NN3.INUM 

PTOT=PTOT+SPECT<J)*(1/(1.0*FLOAT<M))) 

PTOT2=PTOT2+SPECT<J)**2*<11<1.0*FLOAT<M))) 


311 	 CONTINUE 
IF<NN1.NE.1) GO TO 700 
PTOT=PTOT*2+SPECT<1)*(1/(1.0*FLOAT<M))) 
PTOT2=PTOT2*4+<SPECT<1)**2*<11<1.D*FLOAT<M)))) 
GO TO 701 

700 	 PTOT=PTOT*2 
PTOT2=PTOT2*4 

http:READ<5,5998)FL.FH


701 SB=PTOT**21PTOT2*SAMP 
c 
c 
c ******************************************************* 
C CALCULATE PERCENT POWER IN SELECTED FREO.BANDS. 
c 

DO 312 J=1,3 
ABPTOTCJ) =0. 
BPTOT=O. 
IF<IEL<J.1>.LE.1.AND.IEL<J.2).LE.1.) 
IST=IELCJ,1) 
IET=IELCJ,2) 
IBTOT=IET-IST+1 
DO 313 JJ=IST,IET 

313 BPTOT=BPTOT+SPECT<JJ)*C1/<1.0*M>> 
BPTOT=BPTOT*2 

GO TO 312 


IF<IST.EQ.1)BPTOT=BPTOT-SPECTC1)*(1/(1.0*M)) 
ABPTOT<J>=BPTOT/PTOT*100. 

312 CONTINUE 
c 
c 
c ************************************************************** 
C 	 CALCULATE MEDIAN FREO. 
c 

SUM=O.O 
DO 315 I=NN3.INUM 

315 SUM=SUM+2*SPECT<I>*<11<1.0*M>>*<I-1>*<11<1.0*M)) 
FMED=SUM/PTOT*SAMP 

c 
c 
c ***************************************************** 
C CALCULATE HIGH/LOW RATIO 
c 

DO 316 J=1.4 
316 IHLB<J>=<IIHLB<J>*1.)/DELTAF+1 

RATIO =0. 
HBPTOT=O. 
IF<IHLB<1>.LE.1.AND.IHLB<2>.LE.1.) GO TO 42 
BBPTOT=O. 
IL1=IHLBC1)-1 
IL2=IHLBC2>-IHLBC1)+1 
IH1=IHLBC3)-1 

IH2=IHLBC4>-IHLBC3)+1 

DO 3 1 7 I = 1 , I L 2 


317 	 BBPTOT=BBPTOT+SPECT<IL1+I)*(1/(1.0*M>> 
BBPTOT=BBPTOT*2 
IF<IL1.EO.O>BBPTOT=BBPTOT-SPECTC1)*C1/Cl.O*M)) 
DO 3 1 8 I = 1 , I H 2 

318 	 HBPTOT=HBPTOT+SPECT<IHl+I)*C1/(1.0*M>> 
HBPTOT=HBPTOT*2 
IF<IH1.EO.O>HBPTOT=HBPTOT-SPECT<1>*Cl/C1.0*M)) 
RATIO=HBPTOT/BBPTOT 
WRITE<6.4101)1REC,AVGMRE,AVGRMS,FMED,SB,RATIO, 
1<ABPTOT<J> ,J=1,3) ,PTOT 

4101 	 FORMATC1X,I3,1X,F7.3,1X,F7.3,1X,F6.1,1X, 
1F6.1,1X,F5.3,3C1X,F6.1) ,4X,E9.3,/) 
REWIND 6 

551 CONTINUE 

DO 350 I=2,MHLF1 


SPECT<I>=SPECT<I>*2 




J=T4. 

350 	 CONTINUE 

SCALD=C6.0/19.05)*1023 

CALL REMAXCSPECT,513,MHLF1,XMAX> 

SCAL2=SCALD/XMAX 


c 
c 
c ************************************************************* 
C PLOT POWER SPECTRUM 
c 

IX< 1) =0 
XTEMP=O. 
IFCINUM*DELTAF.GT.2000) GO TO 308 
DO 3 0 7 I = 2 , I NUM 
XTEMP=XTEMP+DELTAF 

c 
C MOLT. BY 15 TO AVOID INT.TRUNC. 
c 

IX<I>=XTEMP*15. 
307 CONTINUE 

GO TO 309 
308 DO 310 I=2,INUM 

XTEMP=XTEMP+DELTAF 
I X C I ) = XTEMP 

310 CONTINUE 
309 SMULT=SCAL/IXCINUM> 

IHASH=IXCINUM)/50 
c 

AXISC1,1)=0. 
AXISC1,2)=17. 
AXISC1,3)=0.0 

AXISC1,4)=0. 

X0=1. 

Y0=1.7 
IERAS=1 
CALL AXPLOT<AXIS,4,4,1,SMULT.XO,YO,IHASH,IERAS> 
IERAS=O 
CALL SCALE<IX,1024,1,INUM,XO,SMULT> 
DO 314 J= 1 , I NUM 
K=NN1+J-1 
IDAT<J>=IFIX<SPECT<K>*SCAL2*IMULT> 

314 	 CONTINUE 

CALL SCALE<IDAT,2000,1,INUM,YO,l.) 

CALL PLOTEK<IX<1>,IDATC1),1NUM,1,0,0) 


42 	 CALL PLOTEKC0,780,1,1,0,0) 

CALL HOME 

WRITEC9,9989) <JWIN<IWIN,J),J=1,2) 


9989 FORMAT<' WINDOW TYPE= ',2A2) 
WRITE<9,9988) M,NP,L,SAMP 

9988 FORMAT<' M =' ,I5,5X,'NP =' ,I5,5X,' L =' ,!5, 
+ 	 5X,' SAMPLING FREQUENCY =' ,F8.2) 

WRITE<9,400><IFILE<J>,J=3,7>,IREC,IREC2,IMULT 
400 FORMAT<5X,'FILE: ',5A2,5X, 'RECORDS USED' ,I3, '-' 

1 , I 3 , 5X, ' MULT = ' , I 5) 
WRITEC9,403><<IBFREQCI,J),J=1,2>,I=1,3) 

403 FORMATC/,5X,'FREQ. BANDS:' ,6X,3<I5,' - ',I5,5X)) 
WRITEC9,404><ABPTOT<J),J=1,3) 

404 FORMATC5X, '%POWER IN BAND:' ,6X,3CF6.2,12X>> 
WRITE<9,405>BAND,PTOT 

405 	 FORMATC/,5X, 'TOTAL POWER IN' ,F8.2,' HZ. BAND= ',E9.3> 
WRITEC9,406>FMED,SB 



1~5. 

406 FORMAT<5X, 'MEDIAN FREQ. ',F7.1,' HZ.', 
15X, 'STATISTICAL BANDWIDTH' ,F7.1,' HZ') 
WRITE<9,407>RATIO,<IIHLB<J>,J=1,4) 

407 FORMAT<5X,'THE H/L RATIO IS' ,F7.3,'FOR BANDS' ,2<I5, '-' ,I5,2X>> 
WRITE<9,408>AVGMRE 

408 FORMAT<5X, 'THE MRE IS=' ,F7.3,' MV') 
WRITE<9,409>AVGRMS 

409 FORMAT<5X,'THE RMS EEG IS=' ,F7.3,' MV') 
WRITE<9,410>FL,FH 

410 FORMAT(/////////////////,F8.2,58X,F8.2) 
REWIND 9 

c 
c 
c ****************************************************** 
c RESET SPECTRAL COEFFICENTS 
c 

DO 560 J=2,MHLF1 
SPECT<J>=SPECT<J)/2 

560 CONTINUE 
WRITE<7,7502> 

7502 FORMAT<' DO YOU WANT TO CHANGE POWER STAT RANGES? [Y/NJ ') 
READ<5,3753>ANS 
WRITE<7,7503) 

• 75 0 3 FORMAT<' DO YOU WANT TO CHANGE AMP. MOLT. OR 
1 PLOTTED FREQ. BAND7 [Y/NJ ') 
READ<5,3753>ANS3 
IF<ANS.EQ. 'N') IFLAG2=1 
IF<ANS.EO. 'Y') IFLAG2=0 
IF<ANS3.EO. 'Y') IFLAG=1 
IF<ANS.EQ. 'Y') GO TO 550 
IF<ANS3.EQ. 'Y')GO TO 325 
WRITE<7.107) 

107 FORMAT<' ANOTHER DISPLAY [Y/NJ') 
READ<5,3753)DEC 
IF<DEC.NE. 'Y') GO TO 3304 
IFLAG=O 
IFLAG2=0 
IFLAG3=0 
WRITE<7.3000) 

3000 FORMAT<' DO YOU WANT ANY CHANGES? [Y/NJ') 
READ<5.3753>ANS4 
IF<ANS4.EO. 'N')IFLAG3=1 
IF<ANS4.EQ. 'Y') CLOSE<UNIT=l) 
IF<IFLAG3.EQ.l)GOTO 3307 
GO TO 3306 

3304 IF<TYP.EO. 'R')CLOSE<UNIT=l,DISP='DELETE') 
WRITE<7,4031) 

4031 FORMAT<' ANOTHER FILE? CY/NJ') 
READ<5,4032>C2 

4032 FORMAT<A1) 
IF<C2.EO.'N')GOTO 4045 
RED0=1.0 
GOTO 4046 

4045 STOP 
END 

c 
c 
C SUBROUTINE TO LOAD WORKING VECTOR WITH DESIRED POINTS. 

SUBROUTINE GETX<IX,L2,IDAT,NRD,SS> 
c 
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DIMENSION IX<1),IDAT<1) 
DO 10 I=1,NRD 

IX<I+L2) = IDAT<I+SS-1) 
CONTINUE 

RETURN 
END 

.
. 
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