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Abstract 

In a parallel distributed detection system each local detector makes a decision based 

on its own observations and transmits its local decision to a fusion center, where 

a global decision is made. Given fixed local decision rules, in order to design the 

optimal fusion rule, the fusion center needs to have perfect knowledge of the perfor­

mance of the local detectors as well as the prior probabilities of the hypotheses. Such 

knowledge is not available in most practical cases. In this thesis, we propose a blind 

technique for the general distributed detection problem with multiple hypotheses. 

We start by formulating the optimal M-ary fusion rule in the sense of minimizing 

the overall error probability when the local decision rules are fixed. The optimality 

can only be achieved if the prior probabilities of hypotheses and parameters describ­

ing the local detector performance are known. 

Next, we propose a blind technique to estimate the parameters aforementioned 

as in most cases they are unknown. The occurrence numbers of possible decision 

combinations at all local detectors are multinomially distributed with occurrence 

probabilities being nonlinear functions of the prior probabilities of hypotheses and 

the parameters describing the performance of local detectors. We derive nonlinear 

Least Squares (LS) and Maximum Likelihood (ML) estimates of unknown parame­

ters respectively. The ML estimator accounts for the known parametric form of the 

likelihood function of the local decision combinations, hence has a better estimation 
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accuracy. 

Finally, we present the closed-form expression of the overall detection performance 

for both binary and M-ary distributed detection and show that the overall detection 

performance using estimated values of unknown parameters approaches quickly to 

that using their true values. We also investigate various impacts to the overall de­

tection. The simulation results show that the blind algorithm proposed in this thesis 

provides an efficient way to solve distributed detection problems. 
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Chapter 1 

Introduction 

1.1 Overview of Distributed Detection 

Hypothesis testing in distributed signal processing, referred to as distributed detec­

tion, is different in essence from that in classical multichannel scenarios. In the 

latter, usually referred to as centralized detection, observations from all channels are 

communicated to a central processor, where statistical inference on the hypotheses 

is conducted. However, many practical difficulties restrict the applicability of cen­

tralized detection, such as communication bandwidth, data transmission speed and 

computational complexity. In addition, observations collected from different channels 

could be incomparable and a decision on the hypothesis in question based on a mix­

ture of observations may not be reliable [1]. In contrast to centralized detection, each 

local detector of a parallel distributed detection system preprocesses the observations 

it collects, makes a local decision and then transmits it to a fusion center where a 

global inference is made. Because the preprocessing occurs locally, the restrictions 

in centralized detection could be avoided. This kind of systems has been widely 

used in many real-world situations such as wireless communications, radar, control 

and biomedical engineering to enhance system survivability, to improve classification 

accuracy, and so on. In radar systems, a target identity is recognized according to 
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individual investigation of the incomparable target signatures by several radars. In 

biomedical engineering, results from different modalities are fused to draw a more 

accurate conclusion on the health condition of patients. These advantages are com­

promised by the reduced detection performance since some information contained in 

the original observations is lost due to the pre-procession at local detectors and the 

loss is not recoverable at the fusion center. 

1.2 Literature Review 

The literature of distributed detection is quite rich and continues to grow. The work 

of Tenney and Sandell [3] was deemed to be the pioneering publication in this area, 

where they derived the Bayesian formulation of the binary distributed detection. Un­

der the assumption of statistical independence of the observations at local detectors 

conditioned on the hypothesis, the optimal local decision rules are likelihood ratio 

tests, with thresholds determined by a set of coupled nonlinear equations. However, 

the fusion rule was not taken into account to design or implicitly assumed to be known. 

Chair and Varshney [4], on the other hand, derived the optimal binary fusion rule 

in the Bayesian sense given the conditionally independent local detectors and fixed 

local decision rules. The global decision can be obtained by comparing the weighted 

sum of individual local decisions with a threshold. The weights are functions of the 

prior probabilities of the two hypotheses and the parameters describing the perfor­

mance of local detectors. Hoballah and Varshney [11] attempted to optimize both 

local detectors and fusion center simultaneously and concluded that the person-by­

person optimal necessary solution can be yielded by solving N +2N nonlinear coupled 

equations, where N is the number of local detectors. The computational complexity 

is prohibitively high in general and can be reduced when the observations at local 

detectors are independent. If the independence assumption of the observations does 

not hold, in general the problem is intractable because the necessary conditions for 
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optimality described by a set of coupled equations are extremely hard to solve. Zhu 

et al. [13] not only provided necessary conditions for optimum local decision rules 

under a given fusion rule when the observations of local detectors are dependent and 

proposed a discretized Gauss-Seidel iterative algorithm, but also proved in certain 

cases a fixed fusion rule can be used to achieve overall optimal performance. The 

distributed detection system can also be designed according to the Neyman-Pearson 

criterion. To facilitate the design, most researchers focus on the local decision rules or 

fusion rule individually. Similar to [3], Srinivasan [14] assumed the fusion rule is fixed 

and tried to optimize the local detectors. Thomopoulos et al. [15], on the other hand, 

carried out the optimization process only for the fusion center. The review papers 

[1, 2] contains more details on fundamental theory and advanced topics of distributed 

detection. 

In this thesis, we focus on the design of optimal fusion rule in the Bayesian sense 

with fixed local decision rules, hence next we will only elaborate the literature related 

to this topic. It has been shown in [4] for binary distributed detection, the optimal­

ity can only be achieved if the prior probabilities and the probability of miss and 

false alarm of each local detector are known, which gives us the necessary weights 

for the optimal fusion. However, they are usually unknown in practice and need to 

be estimated at the fusion center using local decisions [6]. Naim and Kam proposed 

an adaptive algorithm to estimate the unknown parameters in [16], or the neces­

sary weights may be estimated directly using reinforcement learning as suggested by 

Ansari et al. in [5]. Both algorithms are biased because they are derived under the 

assumption that the global decision at the fusion center is correct. Their attempt 

of removing the bias either greatly increases the computational complexity or results 

to worse convergence behavior of the algorithm. To bypass the problems aforemen­

tioned, Mirjalily et al. found the unknown parameters can be yielded by analytically 

solving a set of nonlinear equations involving the probabilities of different decision 

3 




M.A.Sc: Bin Liu McMaster - Electrical and Computer Engineering 

combinations at all local detectors, which although are unknown in practical applica­

tions either, could be replaced by their corresponding empirical probabilities [6]. The 

resulting estimates of unknown parameters are asymptotically unbiased and substan­

tially more reliable. All of the three algorithms deal with binary hypothesis. 

The distributed detection process with multiple hypotheses, usually referred to as 

M-ary distributed detection, has recently attracted wide interest [7, 8, 9]. This is 

because a large number of practical problems such as sleep EEG discrimination and 

fault diagnosis of power systems consist of multiple hypotheses. The work in [4] has 

been extended to M-ary case [7}. Similar to binary distributed detection, it cannot be 

implemented when the prior probabilities and system parameters are unknown. One 

possible approach is to break the multiple hypotheses into binary decisions and utilize 

a hierarchical fusion process [8]. The fusion center creates a hierarchical partition of 

the M-ary local decision space using the probabilistic model of the observations. At 

each stage, two local decision sets are compared against each other. The final decision 

is made at the last stage of the decision tree. Anoth<7r algorithm proposes to stip­

ulate each local detector to making binary decisions only and, based on the binary 

decisions, an M-ary global decision is arrived at [9}. In [10}, a suboptimal solution to 

the M-ary problem is suggested by applying the blind adaptive algorithm suited to 

binary hypothesis in [6}. 

In this thesis, we consider the general M-ary distributed detection problem with 

fixed local decision rules. The major contribution is two fold. One is that since the 

analytical solution of unknown parameters is intractable due to much more unknown 

parameters involved than the binary case, we take advantage of the known parametric 

distribution of local decision combinations to estimate the unknown parameters. The 

other is that we present the analytical expression of overall error probability and 

explore the effect of our blind algorithm on it. 

4 
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1.3 Organization of the Thesis 

The rest of the thesis is organized as follows. 

In Chapter 2, we first present the terminologies and definitions necessary for the 

work, including the general parallel distributed detection structure and the optimality 

criterion. We then introduce the local de~ision rules and formulate the optimal fusion 

rule by assuming the local decision rules are fixed. Since in reality the parameters re­

quired for the optimality are unknown, they have to be estimated using local decisions. 

In Chapter 3, we discuss two parameter estimation algorithms, namely nonlinear 

Least Squares and Maximum Likelihood estimation to estimate the unknown param­

eters, then compare their performance with the biased Cramer-Rao bounds. 

In Chapter 4, we derive analytically the overall detection performance. As long 

as the prior probabilities and parameters describing the performance of local detec­

tors are known, the overall error probability can be computed accordingly. Since in 

real life we only have their estimates, the impact of estimation error to the overall 

detection performance is also addressed. 

In Chapter 5, a series of studies on the performance of distributed detection sys­

tem are conducted in a variety of scenarios. These investigations support the claims 

in the previous chapters and show the applicability of our proposed blind algorithm. 

In Chapter 6, conclusions and future research directions for distributed detection 

system are presented. 

5 




Chapter 2 

Background and Problem 

Statement 

In this chapter, we introduce the background required for distributed detection and 

elaborate the problems to tackle in this thesis. In the beginning, the general structure 

and terminologies commonly used in the distributed detection system are presented. 

As mentioned, our goal is to design the optimal fusion rule when the local decision 

rules are fixed. Hence in the subsequent sections, we introduce the well known local 

decision rules and focus on the optimization of the fusion rule in the Bayesian sense. 

Finally, the blind adaptive algorithm for the binary distributed detection and the 

difficulty in extending it to the M-ary scenario are discussed, respectively. 

2.1 Basic Terminologies 

The parallel distributed detection system with N local detectors is illustrated m 

Fig. 2.1 and the frequently used terminologies are as follows: 

• 	 Z{ observation vector at local detector Dj, Zj E Rdi, 1 ::; j ::; N, where Rdi is 

the observation space of local detector Dj, dj is its dimension; 

• 	 U{ decision at local detector Dj; 
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Figure 2.1: Parallel distributed detection system. 

• u0 : global decision at the fusion center; 

• gj(zj): decision rule of local detector Dj, which is a function of the observation; 

• g0(ur, · · · , uN ): fusion rule, which is a function of all local decisions. 

In general, the phenomenon changes from time to time, and at each time it could 

be one of the M possible hypotheses {H0 , H 1 , · · · , HM-I} with prior probabilities 

P(Hi), i = 0, · · · , M- 1, respectively. For each time, the local detectors Dj, j = 

1, · · · , N make a decision Uj individually according to their own observation Zj· Given 

the unknown hypothesis Hi, the decision u1 is assumed to be conditionally indepen­

dent of the decisions from other local detectors. The local detector D1 then sends u1 

to the fusion center, where a global decision u0 on the hypothesis is made based on a 

particular optimality criterion. 

2.2 Local Decision Rule 

Although the purpose of this thesis is to design optimal fusion rule when the local 

decision rules are fixed, for the completeness of the thesis we still discuss how the 

local decisions are made. In general, the observations of different hypotheses have 

different distribution. If the distribution function and prior probabilities are known, 

the local decisions can be made based on minimum error probability criterion, which 
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is equivalent to maximum a posteriori (MAP) criterion [17). If the costs of making 

wrong decisions are given, minimum error probability criterion can be generalized to 

Bayesian criterion. In the case that there are only two hypotheses, it is also common 

to fix the value of probability of false alarm and maximize the probability of detection. 

This is called Neyman-Pearson criterion. No matter what criterion the local detectors 

stick to, we assume in this thesis that local decision rules are determined. 

2.2.1 Example of Local Decision Rule 

To make the explanation more clear, let us consider a local detector consisting of 

m spatially distributed sensors. The measurement of sensors located at the known 

positions { ri, 1 :::; i :::; m} is generally modeled as 

(2.1) 


where b(ri, tj) is the true value of the measurement and e(ri, tj) is the corresponding 

measurement noise. The time samples are assumed to be taken at uniformly spaced 

time instants { tj = jT8 , 1 :::; j :::; n}, where T8 is the sampling interval and n is the 

total number of time samples. 

The linear source-measurement model is commonly used in sensor array commu­

nity due to its simplicity. We suppose there are p sources, then stack all measurements 

into a vector. Let 

and 

(2.2) 


(2.3) 


The measurement noise vector e can be obtained in a similar way. As a result, 

the source-to-measurement relationship illustrated in Eq. (2.1) can be written in a 

compact matrix form 

z = A(B)x + e (2.4) 
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where z is mn-dimensional measurement vector, A(B) is a mn xp transfer matrix rep­

resenting the relationship between the source and sensor measurement, 8 is a known 

parameter vector describing the source and medium property, and x represents the 

source intensity. 

The transfer matrix A(B) is given by 

(2.5) 


The linear model is often seen in many practical situations [20, 21]. Next we will look 

at an example found in the literature of dipole source localization. 

Example. It is usually believed that the mechanism of the EEG generation can 

be physically described as a set of current sources distributed over a certain region 

of the cortex. These distributed current sources can be further simplified as current 

dipoles in some situations where they are evoked in response to sensory stimuli such 

as auditory, visual, etc. The relationship between the primary potential on the scalp 

and the source, generally represented by the quasi-static approximation of Maxwell's 

equations, is reduced to 

1 r-1!. 
(2.6)b(r,f.,t) = 41fCJo II r -f. 113q(t) 

where CJo denotes the constant isotropic conductivity of the head, r = [rx, ry, rz]T is 

the electrode's location on the scalp, f. = [fx, fy, fzJT and q(t) = [qx(t), qy(t), qz(t)]T 

are the location and moment of the dipole source embedded in the human brain, 

respectively [19]. The source location is assumed to be fixed, whereas the source 

moment, a measure of the strength of the neural signal in the three spatial directions, 

may vary with time. The scalp EEG received from a group of electrodes around the 

surface of human head is used to detect the existence of dipole sources or estimate the 

parameters describing them. The EEG measurements are composed of the primary 

9 
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potential and measurement noise. Let us suppose m electrodes collect EEG mea­

surements at n time samples. The EEG measurements are originated from p dipole 

sources. At the jth time instant, 1 :::; j :::; n, the m-dimensional EEG measurement 

vector is 

where G = [Q(f1), Q(f2), · · · , Q(fp)] is an m x 3p gain matrix. Each submatrix 

Q(fk), k = 1, 2, · · · ,p denotes an m x 3 gain matrix, relating the kth dipole source to 

the EEG measurements. It only depends on the source's location .ek = [Rkx, Rky, RkzJT 

and all of the electrodes' location, and has the following structure according to 

Eq. (2.6) 

Tlx-fk;& 

3


dk1
 

T2x-f!i;r 


dk23 


Tmx-fk;r 


dkm

3 


Tly-;ky Tlz-~kz 

dkl dkl 


T2y-;ky T2z-~!iz
1 
dk2 dk2 (2.8)Q(.ek) = -4-

Jrao 

Tmy-f!kl!. Tmz-l!f>o 
3 3

dkm dkm 

where ri = hx, riy, riz]T denotes the ith electrode's location, known on the surface of 

the head sphere, dki denotes the distance between the kth dipole and ith electrode, 

i.e., dki =II ri- .ek II· q(tj) = [qf(tj), · · · , q~(tj)JT. e(tj) is an m-dimensional mea­

surement noise vector. 

We then take into account all of the n time instants and write the resulting source­

to-measurement relationship in a more compact form. Let 

(2.9) 


and 

(2.10) 


Therefore, 

z =(I 0 G)q + e (2.11) 
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where "®" represents the Kronecker product, I is an n x n identity matrix, e is the 

corresponding noise vector. In the case of fixed orientation moments, the moments 

can be decomposed into a unit-norm orientation vector and a scalar intensity. As a 

consequence, the signal part of the model can be further simplified as the product of 

a new gain matrix and source intensity vector [20]. 

After considering a specific example, let us move back to general linear source-to­

measurement model describing in Eq. (2.4). Obviously, the mn-dimensional vector 

a(fh), k = 1, · · · ,p gives the true sensor measurement about the kth source with unit 

intensity. For example, its (m(j -1) + i)th component is the ith sensor measurement 

about the kth unit intensity source at the jth time sample without any measurement 

noise. It is in general assumed that the measurement noise is spatially and tempo­

rally uncorrelated and Gaussian distributed with zero mean and unknown variance cr2 . 

The detection of source can be formulated as a hypothesis testing problem with 

two hypotheses: 

H 0 : The source is absent and only noise exists 

H 1 : The source is present 

This formulation in essence tests between Xk > 0 for some k and Xk = 0 for all 

k. Under the assumption of Gaussian distributed measurement noise, the detection 

problem is actually a test between two probability distributions, i.e., 

H0 : z '"'"'N(O, cr 2I) 

Hl : z rv N(Ax, cr2I), where Xk 2: 0 for k = 1, ... 'p 

We then apply the likelihood ratio test detector to the hypotheses. In order to do 

so, all parameters describing the probability distribution of the measurements have 

to be known. However, unknown deterministic parameters exist in the probability 

11 
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density function (pdf). To overcome this problem, the generalized likelihood ratio test 

(GLRT) is commonly used [17]. The unknown parameters under different hypotheses 

need to be estimated and their estimates are then substituted into LRT as if they 

were true values of unknown parameters. The estimates are usually obtained using 

maximum likelihood estimation. Let f.-to and p,1 represent unknown parameters for 

the pdf under H0 and H1 , respectively, thus the GLRT is written as 

maxtt1 p(zlt-t1) ~ 
Ag ( ) z -

_ 
<::_TI (2.12) 

maxtto p(zlt-to) Ho 

In other words, we find the estimate of f.-to and p,1 maximizing the likelihood functions 

under their corresponding hypotheses and then use them in the LRT. 

The GLRT in our case can be written as 


A ( ) _ maxxk>O,u2>oP(zlxk. o-2 
) ~ 
 (2.13) 

g z - maxu2>oP(zlo-2) ffo TJ 

where 

(2.14) 

and 
2 

1 ( II z 11 ) (2.15)p(ziHo) = (2no-2)T exp - 2o-2 

It is well known that if there is no constraints about source intensity x, the ML 

estimate of x under H 1 is 

(2.16) 


Given the constraint of non-negativity of the source intensity, the estimate should be 

modified as [29] 

A [A A ]T
X= X1, · · · ,Xp (2.17) 

where 

x, = { 
0, 

TATQ;k l z, 

if xk ::; 0 

if xk > 0 
(2.18) 
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Here ak is the kth column of matrix (AfA 1)-I, lis the number of positive elements 

of x, A 1 is the mn x l submatrix of A whose columns correspond to the positive 

estimates and Xk > 0. 

Once the estimate of x is obtained, we can estimate o-2 under H 1 by substituting it 

into Eq. (2.14) and maximizing the resulting function with respect to o-2 
. Its estimate 

under H0 is achieved by directly maximizing Eq. (2.15). Hence, 

; 2 = { ~n (z- Ax)Y(z- Ax), when H 1 is true 
(2.19) 

~n zTz, otherwise 

The GLRT can be rewritten by substituting all of the estimates into Eq. (2.13) 

(2.20) 


where 

(2.21) 

is the projection matrix of A 1 onto the space spanned by the columns of A 1. Let 

I- P A 1 = Pi • To simplify the generalized likelihood ratio (GLR), we then apply
1 

monotonic transformation A~/mn- 1. Hence the GLR can be redefined to be 

GLR=zTpAlZ (2.22)zTpl. z 
Az 

The decision rule is therefore 

(2.23) 


where T = TJ 2/mn - 1. The numerator and denominator can be viewed as the squared 

norm of Gaussian random vector P A1Z and Pi z, respectively. We known that under 
1

Ho, 

E(PAlZZTPi) - P A1E(zzT)Pi
1 

- o-2PAlPil 

- 0 (2.24) 
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and 

(2.25) 


This shows that the two random vectors are uncorrelated. Furthermore, since t hey are 

Gaussian distributed, they are independent of each other. Therefore , the numerator 

and denominator are x2 distributed with l and rnn -l degree of freedom, respectively 

[28]. This means that the resulting division (GLR) follows central F distribution with 

degree of freedom l and rnn- l. Similarly, under H 1, 

(2.26) 

hence, 

P A 1E(zzT)P"i
1 

P A 1(a
2I + AxxTAT)P"i

1 

P A 
1
AxxTATP"7t (2.27)

1 

Furthermore, 

P A 1zE(z)E(z)TP"7t 
1 

P A 
1
AxxTATP"l (2.28) 

1 

Again, this shows the two random vectors are uncorrelated and hence independent as 

a result of their Gaussian distribution. The numerator and denominator of the GLR 

are noncentral x2 distributed. Hence the GLR is noncentral F distributed with l and 

rnn - l degree of freedom and non-centrality factor 

(2.29) 


Let Fz,mn-z(A) denote the noncentral F distribution function having l and rnn ­

degree of freedom. The variable A is the non-centrality factor. Obviously, for central 

F distribution, A = 0. In essence, the GLR is random variable and can take on several 

14 
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values depending on l, i.e., 

1 if l = 0 
GLR= { ' (2.30) 

Fz,mn-t(>-.), if 1 ~ l ~ n 

By definition, the probability false alarm is 

pf - P(GLR > riHo) 

P[Fl,mn-t(O) > r) 

L
n 

P[Fl,mn-t(O) > riL = l]P(L = Z) (2.31) 
l=O 

and the probability of miss is 

pm P(GLR < riH1) 

P(Ft,mn-t(A) < r) 

P[Ft,mn-t(>-.) < riL = l]P(L = l) (2.32) 

where L is a random variable representing the number of positive components in i:. 

The derivation of the probability P(L = l) is given in [21]. 

Note that in the aforementioned example, the local detector consists of m sensors. 

In some special cases, the local detector is simply a sensor, thus the noncentral F 

distribution function has l and n - l degree of freedom. 

2.3 Optimal Fusion Rule 

In this section, we formulate both binary and M-ary fusion rule for fixed local decision 

rules. 

2.3.1 Binary Hypothesis 

Let us first consider a hypothesis testing problem with only two hypotheses H0 and H 1• 

The prior probabilities are denoted by P(H1 ) = g and P(H0 ) = P0 . As explained in 

15 
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Section 2.1, each local detector employs a decision rule gj(Zj) and concludes that 

_ { 1, if H 1 is claimed 
Uj- (2.33) 

0, if H0 is claimed 

Let u = (u1 , · · · ,uN), we want the error probability defined as 

Pe = HP(uo = OIH1 is true)+ PoP(uo = 1IHo is true) (2.34) 

to be as small as possible. According to binary detection theory in [17], the optimality 

criterion in the sense of minimum error probability can be written as 

P(uiH1) ~Po (2.35)
P(uiHo) Ho P1 

We rewrite Eq. (2.35) using Bayes' rule as 

(2.36) 

i.e., 

(2.37) 

Furthermore, 

P1P(uiH1) 
(2.38)

P(u) 

- p~~) IIP(uj = 1IHI) IIP(uj = OjH1) 
S+ 8­

- p~~) II(1- Pt) II Ijm (2.39) 
S+ S-

where S + is the set of all indices j such that Uj = 1 and S- is the set of all indices 

j such that Uj = 0. Similarly, 

P(H0 ju)-- P(u)Po IIPj'II(1- Pj)f (2.40) 
S+ S-

Substituting Eq. (2.38) and (2.40) into (2.37), we then have 

P(H1ju) P1 ""' 1- Pt ""' Pt 
log P(R iu) =log R +~log ! +~log _ 1 (2.41) 

0 0 S+ PJ S- 1 PJ 

16 
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Therefore we can express the optimal binary fusion rule as 

1, if Wo + L:.f=1 Wj > 0 
uo = (2.42)

{ 0, otherwise 

where 
p1 

Wo =log­ (2.43)
Fa 

and 

1-Pm 
log -=--;;T-, if Uj = 1 

W .- J
J- pm (2.44) 

{ log ~, otherwise 
1-Pi 

The prior probabilities and the probabilities of miss and false alarm are necessary 

before the optimal decision fusion is conducted. 

2.3.2 M-ary Hypothesis 

After deriving the optimal fusion rule for binary distributed detection, we then move 

to the system with multiple hypotheses. For the jth local detector, we define the 

probability of anomaly as 

(2.45) 


where Uj is the decision of the jth local detector, i, k E {0, · · · , M- 1} and_i # k. 

The anomaly probabilities measure performance of local detectors. Clearly, 

c:1i A P(uj = HiiHi is true) 
M-1 

1 - L c:ik (2.46) 
k=O 
kopi 

In a compact form, we define the performance matrix of the jth local detector as 

(2.47) 
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We further partition the indices of the local detectors into 

So A {jl UJ = Ho, Vj = 1, .. · , N} 

SM-1 	 !l {jl Uj = HM-1, \fj = 1, ... 'N} (2.48) 

The fusion rule can be derived by minimizing the probability of error at the fusion 

center 
M-1 M-1 

Pe = L L P(Hi)P(uo = HkiHi is true) 	 (2.49) 
i=O k=O 

k-,6i 

It has been shown in [17] that minimizing the error probability in Eq. (2.49) reduces 

to maximizing the posterior probability 

(2.50) 

where again u = (u1 , · · · , uN ). Fori= 0, · · · , M- 1, the global decision is therefore 

[7] 

u0 -	 argmaxP(Hdu)
H; 

argmaxP(Hi) II c{0 · · · II c{M-1 	 (2.51)
H; 

jESo jESM-1 

Again, as we mentioned, in order to achieve the optimal overall detection, the prior 

probabilities and the probabilities of anomaly defined in Eq. (2.45) have to be known. 

2.4 	 Blind Algorithm for Binary Distributed De­

teetion 

If there are only two hypotheses involved, a blind adaptive algorithm has been pro­

posed to estimate the unknown parameters [6). For the moment, we suppose the 
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distributed detection system is composed of three local detectors. Let ~jk denote the 

probability of u 1 = i, u2 = j and u3 = k, where i, j, k = 0 or 1 depending on the local 

decision, and P(H1) =H. According to Bayes rule and conditional independence of 

local decisions, we have 

Pijk 	 - P(u1 = iJHI)P(uz = JJH1)P(u3 = kJH1)P1 

- P(u1 = iJHo)P(u2 = jJHo)P(u3 = kJHo)(1- P1) (2.52) 

Note that 

1- Pr, = 1if i 
P(Uj = iJHI) = (2.53)

{ Pr, otherwise 

and 

Pf, if i = 1 
P(uj 	= iJH0 ) = (2.54){ 1 - Pf, otherwise 

where Pr and PJ represent the probability of miss and false alarm of the jth local 

detector, respectively. Substituting Eq. (2.53) and (2.54) into Eq. (2.52) yields a set 

of nonlinear equations 

Pooo = P}P2Pf"P1 + ( 1 - P() (1 - P{) (1 - P/) ( 1 - P1) 

Poo1 = P}P2(1- P3m)P1 + (1- P()(1- P{)P/ (1- H) 

Pow= P}(1- Pf)P;:"P1 + (1- P()Pf (1- P/)(1- P1) 

Pwo = (1- P})P2P3P1+ P((1- P{)(1- P/)(1- PI) 
(2.55) 

Pu1 = (1- P})(1- Pf)(1- Pf)Pl + P(P{ Pf (1- P1) 

Pou = P}(1- Pf)(1- P3)P1 + (1- P()P{Pf (1- P1) 

Puo = (1- P})(1- P2m)p3mP1 + P( Pf (1- P/)(1- H) 

P101 = (1- P})P2(1- P3)P1+ P( (1- Pf)Pf (1- P1) 

Here, we assume the probabilities Pijk are known. Since the summation of all proba­

bilities of the LHS of Eq. (2.55) is unity, only seven of them are independent. There 

are in total seven unknown parameters, therefore in principle they can be obtained by 
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solving the set of nonlinear equations. The complicated analytical solution is given 

in [6]. Define 
X= I* -11/2/3- (!1a2a3 + 12a1a3 + 13a1a2) 

(2.56) 
J(612 -11/2)(613 -1113)(623- 1'2/3) 

where 

/'1 2:P1jk 
j,k 

/2 - Lpilk 
i,k 

/3 - 2:Pij1 
i,j 

~'* - Pu1 (2.57) 

612 Puo + Pru 

613 Pw1 + Pn1 

623 Pon + Pru (2.58) 

and 

(612 -1112)(613 -11/3) 

623 -/2/'3 

(612 -1112)(623 -/2/'3) 

613 -11/3 

(613- 1'113)(623 -')'2/3) 
(2.59)

612 -11/2 

Therefore, the unknown parameters can be computed as 

P1 = 0.5- X (2.60)
2)X2 + 4 

and 

p! - "V·-a· ~ 
J IJ Jv~ 

p:n
J - 1-!j-ajR (2.61) 
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where j = 1, 2, 3. In practice, the probabilities defined in Eq. (2.55) are unavail­

able and replaced by empirical probabilities. As a result, the estimates of unknown 

parameters are obtained by solving Eq. (2.55) and asymptotically unbiased under 

some general conditions. This algorithm can be modified to accommodate to the 

distributed detection system with more than three local detectors. This extension 

is based on the fact the probability of false alarm and miss of one local detector is 

related to those of the other as follows: 

and 

(2.62) 


(2.63) 


where /i = P(ui = 1) and 8ij = P(ui = 1, Uj = 1), i,j = 1, · · · , Nandi =1- j. We first 

arbitrarily select any three local detectors and use the blind algorithm in this section 

to estimate P1 and their individual probability of false alarm and miss. Using the 

relationship described in Eq. (2.62) and (2.63), we then have the probabilities of false 

alarm and miss of other local detectors. Same to the case of three local detectors, the 

probabilities li and 8ij are not available in practice and are estimated using empirical 

probabilities. 

This approach works well for binary distributed detection. Unfortunately, it is not 

extendable when multiple hypotheses are involved because analytical solution does 

not exist any more. 
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Chapter 3 

Parameter Estimation 

In practice, we have no knowledge on prior probabilities of the hypotheses and the 

local detector performance. We have , in general, only a set of decision sequences made 

by N local detectors. The blind algorithm proposed for binary distributed detection 

in [6] cannot be extended to M-ary case. In this chapter, we formulate the problem 

of estimating the unknown parameters and present two algorithms to estimate them 

using local decisions in order to achieve optimal M-ary decision fusion. We conclude 

this chapter with the derivation of the biased Cramer-Rao bound, which is a measure 

of the estimation efficiency. The estimation processes are only dependent on the local 

decisions, as a result, the corresponding fusion rule is usually referred to as blind 

fusion rule. 

3.1 Problem Formulation 

Let Nd be the total number of decisions made by a particular local detector. The set of 

decision sequences denoted by { UJn}, j = 1, · · · , Nand n = 1, · · · , Nd is explained as 

follows: for a fixed n, the set represents the decisions on the same phenomenon made 

by N local detectors. It represents the decision sequence of different phenomena made 

by a particular local detector when j is fixed. For M hypotheses and N local detectors, 
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let U be the set consisting of all of the possible decision combinations. Clearly, 

dim(U) = lvfN. Let the random variable Xe indicate the number of times the .eth 

combination uc occurring with occurrence probability P(ue), where .e = 1, · · · , Land 

L = MN. We refer to Xc as occurrence number. Furthermore, recall the Bayes' rule 

and conditional independence, the probability of one of the MN possible combinations 

can be written as 

Pe - P(uc) 
M-1


L P(Hi)P(u1 = s1, · · · , uN = sNIHi) 

i=O 

M-1

L P(Hi)P(ul = s1!Hi) · · · P(uN = sNIHi) (3.1) 
i=O 

where s1 , · · · , SN E {H0 , · · · , HM_ 1}. Substituting the true values of prior and 

anomaly probabilities into Eq. (3.1) gives all occurrence probabilities. For a fixed 

total number of local decisions Nd, the occurrence numbers of all possible decision 

combinations, namely X = (X1 , X 2 , · · · , XL), are multinomially distributed with 

probability mass function 

(3.2) 

and var(Xc) = NdPe(1 - Pc), cov(XsXc) = -NdPsPe for s = 1, · · · , L and s =f. 
.e [26). We define the vector e consisting of ( M - 1)M N unknown probabilities 

of anomaly in Eq. (2.45) and the (MN + 1)(M- 1) - dimensional vector (} = 
[e, P(H0 ), · · · , P(HM-2)]. As illustrated in Eq. (3.1), the occurrence probability pc is 

the nonlinear function of unknown parameters represented by(}, i.e., Pe = fc(e). 

3.2 Least Squares Estimation 

For binary distributed detection, the unknown parameters can be obtained by an­

alytically solving a set of nonlinear equations described in Eq. (3.1). It has also 
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been shown in [6] that the estimates of unknown parameters converge to their true 

values asymptotically. As for its M-ary counterpart, the set of nonlinear equations 

is not solvable directly. We therefore apply LS algorithm to estimate the unknown 

parameters. The occurrence probability is estimated as time averaging, i.e., empirical 

probability 

Pe - P(u1=s1,u2=s2,··· ,uN=sN) 

number of (u1 = s1, · · · , UN= SN)
""" (3.3)

total number of local decisions Nd 

where s 1 , · · · , SN E { H0 , · · · , HM-1}. Let Ye be the estimate of the l'th occurrence 

probability and recall the true occurrence probability Pe = fe(8), hence 

Ye = fe( 8) + ee, l' = 1, · · · , L (3.4) 

where ee is the estimation error. We define the vector y = [y1, y2 , · · • , YL]T, f(8) = 

[ft(8), h(8), · · · , h(8)]r, and e = [e1, e2 , · · · , eL]T, the problem can therefore be 

formulated as 

y=f(8)+e (3.5) 

Note that in the above model, there are, in general, MN of such equations altogether of 

which only MN -1 are independent. These, combined with the constraining equation 

that the sum of all the occurrence probabilities is unity yield the set of equations for 

the parameters to be calculated. There are ( M N + 1) (M - 1) unknown parameters. 

We then utilize nonlinear least squares fitting to minimize II y- f(8) 11 2 [22]. 

3.3 Maximum Likelihood Estimation 

To account for the known distribution of local decision combinations, the ML estima­

tion is a very efficient alternative to apply. The principle of ML parameter estimation 

is to find the parameter values that make the observed data most likely. It is intu­

itively appealing and has remained one of the most powerful methods in estimation 
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theory, provided that the joint probability distribution of the available observed data 

set is formulated as the function of parameters of interest. The detailed discussion 

can be found in [17, 18). As discussed before, the occurrence numbers of all possible 

local decision combinations Xc are multinomially distributed with likelihood function 

P(Xl = Xl, ... 'XL =XLINd,(}) 

Nd! Xl X£ (3.6)xl! ... XL!Pl ... PL 

where Pe = fe(e), .e = 1, · · · , L. The essence of ML method is that we should estimate 

the parameter (} by its most plausible values, given the numbers of all possible local 

decision combinations. In other words, once the occurrence numbers are known, the 

ML estimator is the value of (} such that the joint likelihood function described in 

Eq. (3.6) is maximized, i.e., 

(3.7) 

3.4 	 The Biased Cramer-Rao Bounds of Unknown 

Parameters 

To examine how good the estimate is, we need to compare it with a benchmark 

quantifying the best estimate we may achieve under certain assumptions [17]. The 

Cramer-Rao bound (CRB) is a lower bound of the variance of any unbiased estimator. 

It is well known that in the case of the observations are related to the unknown 

parameters through a linear Gaussian model, the ML estimate achieves the CRB. 

However, in general, the estimates using a finite number of observations through 

linear and nonlinear models (such as the present case of the ML estimates of unknown 

parameters through a multinomial model) are biased [23). Their variance is no longer 

bounded by the CRB, but by the biased CRB for a given bias gradient [17]. In the 

case where the choice of such bias gradient is not obvious, a uniform CRB for a scalar 

function of a deterministic vector parameter has been proposed in [24) to quantify the 

25 




M.A.Sc: Bin Liu McMaster - Electrical and Computer Engineering 

smallest attainable variance using any estimator whose bias gradient norm is less than 

or equal to a constant. The results have been extended to the problem of estimating 

the uniform CRB for a parameter vector with bias gradient matrix norm bounded by 

a constant in [25]. In this section, we assume the bias gradient matrix is known and 

derive the biased CRB for unknown parameters. If(} is an estimate with bias vector 

b((}0 ) , then the biased CRB is given by [17] 

(3.8) 


where C 0 is the covariance matrix of the estimate, (}0 is the true value of unknown 

parameter vector and assumed to be known for the purpose of deriving the biased 

CRB, J(()0 ) is the Fisher information matrix and B((}0 ) = 8~~) lo=Oo is t he known 

bias gradient matrix. As discussed earlier, there are L occurrence probabilities. Since 

the summation of all occurrence probabilities is unity, any one of them can be uniquely 

determined by the other L- 1 ones. We let f((}) = [h(O), h(O), · · · , JL_ 1(0)JT and 

g(X, f((})) be the nonlinear distribution function defined in Eq. (3.2). Therefore 

J(()) = Ex [8logg~ , j(O))] [ 8logg~,j(O))]r 

Ex { [8~~Tg(X)gr(x) 8~~)} 


[ o~~) ] T Ex{g(X)gr(X)} 
0~~(}) (3.9) 


where 
(X)= 8logg(X,f((})) 

(3.10) 
g af(O) 

Let us define the (L -1) x Q matrix H(O) to be a~~O), where Q = (MN + 1)(M -1), 

therefore its qth column hq is 

h = af(e) q = 1, .. 0 ,Q (3.11)
q ae ' q 

Next we will determine the the expectation part of Eq. (3.9). Let 

S(O) =Ex {g(X)gr(X)} (3.12) 
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Its ijth element is 

SiJ c,. E {[ 8 logg(X, f(O))] [8 logg(X , f(O))]} 
8 f i ((} ) 8]j ((} ) 

2 
= -E {8 logg(X, f (O)) } (3.13) 

8 f i (o)8fj (o) 

If i = j , then 

(3 .14) 

Otherwise, 

{ 
XL }

Sij = E Jl(O) (3 .15) 

From [26], we know the mean of Xi , i = 1, · · · , Lis 

(3.16) 

and apply it to Eq. (3.14) and (3.15) , we have 

__!!_g__ 
h(8)' otherwise 

(3.17) 

Consequently, 

(3 .18) 

where the (L- 1) x (L- 1) matrix R(O) is 

1 1 
/1(8) + h(O) 

1 
h(O) 

R(O) = (3.19) 

1 
h(O) 

1 + _1_ 
h - 1(8) h(8) 

As a result, 

(3 .20) 

The Fisher information matrix can be obtained by substituting 00 into Eq. (3.20) and 

the bound of estimate is computed accordingly. 

27 




M.A.Sc: Bin Liu McMaster - Electrical and Computer Engineering 

3.5 Number of Unknown Parameters 

The number of unknown parameters to be estimated increases exponentially with 

the number of local detectors. When there are a large number of local detectors, 

the computational complexity of estimating all of the unknown parameters could be 

prohibitively high. However, depending on the model of the phenomenon, the number 

of unknown parameters may be reduced in some cases. To illustrate more clearly, let 

us consider a binary hypothesis testing problem in wireless sensor networks. The 

observation at the jth sensor (local detector) is 

Ho: (3.21) 

where Sj is the signal amplitude. The signal power at the sensor is generally a de­

creasing function of the signal power at the signal source location P0 and the distance 

between the sensor and source location dj , i.e. , 

(3.22) 


for example, in free space the power density of all electromagnetic waves such as 

radio, light and X-rays is inversely proportional to the square of the distance from 

the source [27]. We assume that the noises at different sensors are i.i.d and follow 

Gaussian distribution N(O , CJ 
2 

). All sensors perform LRT to make local decisions 

using the identical threshold T. Therefore, the false alarm probabilities of all sensors 

are the same and defined as 

1 x2 

Pf = 1T 

00 

v2i/- 2,;'[ dx (3.23) 

However, the probabilities of miss defined as 

1

T 1 (x-s ·)2
Pr = --e-~dx 
-()()~ 

1

T 1 _(x-~)2 


--e 2u dx (3.24)

-()()~ 
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are dependent on the sensor location. In this case, there are totally N + 2 unknown 

parameters rather than 2N + 1. If we know that all of the distances d7 are functions 

of a small number of unknown parameters, the total number of parameters to be 

estimated can be further reduced. 
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Chapter 4 

Overall Detection Performance 

In this chapter, we derive analytically the optimal detection performance in the sense 

of overall probability of error when the prior probabilities and the parameters de­

scribing the local detector performance are known and have a discussion about the 

case when they are unknown and estimated using our blind algorithm. 

4.1 Optimal Detection Performance 

We assume in this section that the prior probabilities and parameters quantifying the 

local detection performance are known. 

4.1.1 Binary Distributed Detection 

For binary distributed detection, the fusion center makes a binary global decision 

based on the following fusion rule [ 6] 

(4.1) 
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where w0 =log 'Rand 

1-Pm 
log~, ifuj=H1P. w·- JJ- pm (4.2) 

{ log 1_~/, otherwise 

where Pj and Pt are probability of false alarm and miss of the jth local detector, 

respectively, and j = 1, · · · , N. When H0 is true, the weight Wj is a random variable 

with the following distribution 

1-Pm 
log~, with prob Pj 

J 
pm (4.3) 

log 1-JPJ' with prob 1 - Pj 
J 

Similarly, when H 1 is true, 

1-Pm 
log~, with prob 1 - Pt 

Jw;IH, = { pm (4.4) 
log 1-JPJ' with prob pr 

J 

The sum of the weights w0 + 2":~ Wj can take on 2N different possible values depend­1 
ing on the decisions made by local detectors. If the local decisions are ( s1, · · · , sN), 

where s1 , · · · , SN E { H0 , H 1}, the probability of the sum taking on the corresponding 

value is P(u1 = s1IHi) · · · P(uN = sNIHi)· As a result, the overall probability of error 

is 

1 1 

Pe L L P(Hi)P(uo = HkiHi) 
i=O k=O 

k,Pi 

- P(Ho)P [Wo +t w; > OIHo] + P(H,)P [wo +t w; < OIHt] 

- P(Ho)P [Wo +t,w;IHo > 0] + P(H,)P [wo +t, w;IHt < 0] (4.5) 
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4.1.2 M-ary Distributed Detection 

In the 111-ary case, M - 1 likelihood ratios are necessary to derive the detection 

scheme. For£= 0, · · · , M- 1, let us define 

A ( ) = P(uJH£) (4.6)
"u P(uJHo) 

and 
M-1 

¢£(u) = L P(H1)P(ujH1) (4.7) 
j=O 
#£ 

The global decision is the hypothesis corresponding to the minimum value of ¢e(u) 

as shown in [17]. Dividing Eq. (4.7) by P(uJH0 ) yields 

M-1 
cpe(u) = L P(H1)Ae(u) (4.8) 

j=O 
j=f.e 

The global decision rule can be written as 

uo=He ifcpe(u)=min{cpo(u),··· ,cpM-l(u)} (4.9) 

The decision space is an M - 1 dimensional space spanned by the likelihood ratios 

A1(u),· .. ,AM-1(u). We then define the weight for each likelihood ratio similar to 

that in binary detection. Let 

e P(He)
Wo =log P(Ho)' v e= 1, ... 'M- 1 (4.10) 

and for£= 1, · · · , M- 1, let w] be the weight of the £th likelihood ratio defined in 

Eq. (4.6). If the jth local detector makes a decision in favor of Hk, then 

(4.11) 
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The weight wJ is a random variable and can take on M possible values with known 

probabilities depending only on the decision made at the jth local detector, i.e., 

P (w; = log ~k IHi is true) 
Eok 

P(uj = HkiHi is true) 

(4.12)cik 

Once the decision at the jth local detector is determined, the values of all weights 

corresponding to the same detector wJ, f. = 1, · · · , M- 1 are known. Substituting 

all weights w& and wJ into the global decision rule in Eq. (4.9) arrives at the global 

decision. Consequently, the global decision rule for M-ary distributed detection can 

be written in a compact form 

uo = (4.13) 


Therefore the probability of error is 

M-1 

Pe = 1- L P(Hi)P(uo = HiJHi) 
i=O 

- 1- P(Ho)P [~ w) < 0, · · ·, ~wf'-' < 0/Ho] 

- ~ P(H,)P [t, w) > 0, E;/H;l ( 4.14) 

where the event Ei is defined as 

N N 

Ei = L wj > L wj, V n = 1 · · · , M - 1 and n i= i ( 4.15) 
j=O j=O 

Eq. (4.5) and (4.14) clearly state that the overall error probability is the function 

of the prior probabilities and weights Wj or wJ, and the weights are the functions of 

system parameters. If all of them are known, the error probability can be computed. 
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4.2 Detection Performance Using Blind Algorithm 

In realistic scenarios, we have to estimate those unknown parameters using local deci­

sions. The LS and ML estimates are continuous random variables and asymptotically 

unbiased under suitable regularity conditions [22]. Meanwhile, the estimation accu­

racy may also be enhanced if a more efficient estimation algorithm is available. These 

require longer processing time and have higher computational complexity. However, 

the purpose of distributed detection is to improve overall detection performance. If 

the estimation accuracy arrives at a level above which the overall detection perfor­

mance cannot be improved significantly, it may be meaningless to make further effort 

on estimation accuracy. We then say the system is robust to the unknown parame­

ters. This is reasonable because in essence the global decision is made by determining 

which decision region the local decisions fall into. Since the decision regions are de­

pendent on the unknown parameters. The estimates of unknown parameters may not 

be precise, as long as they are be such that the decision regions remain unchanged, 

the overall error probability is the same. The overall probability of error is a contin­

uous random variable varying from experiment to experiment. This follows from the 

fact that the estimates of unknown parameters are random. In some special cases, 

if the distribution function of both prior and anomaly probabilities are known, the 

distribution of overall error probability may be obtained accordingly because the er­

ror probability is the nonlinear function of unknown parameters [28]. However, in 

general the distribution function of error probability cannot be evaluated analytically 

and Monte Carlo simulations have to be performed. It should be noted that if the 

hypotheses are not exhaustive, the parameters describing the performance of local 

detectors may not be continuous random variables any more, but rather have mix­

ture distributions, which will be taken into account in our future work. 

The local decisions follow the probability distribution whose parameters are un­

known. When we use their estimates to perform distributed detection, the resulting 
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overall detection performance is not identical to the one by substituting the estimates 

into Eq. ( 4.5). It is the system parameter mismatch that results in such discrepancy. 

In the following, we will analyze this effect by considering the case where we only 

have two equally likely hypotheses and two local detectors. The decision rule and 

definition of weights are the same as Eq. (4.1) and (4.2) except w0 = 0. When H0 is 

true, 

(1-Pi)(l-Pf)1og ·J ·J , with prob P[ Pf 
PI p2 

(1-.f>m)f>m
1 21 with prob P[ (1- P{)og .P/(1-.Pf), 

(4.16)
.f>m(l-.f>.m)1 1 2 with prob (1 - P[)Pfog (I-.P{l.Pj, 

pm.f>.m 
with prob (1- P/)(1- Pf)log (1-.Pf)(12-.Pfl' 

Similar result can be obtained for w1 + w2 IH1. The error probability is therefore 

( 4.17) 

If we substitute all of the estimates into Eq. (4.5), the true probabilities in Eq. (4.16) 

are replaced by the corresponding estimates, which leads to the discrepancy of overall 

error probabilities. Although we restrict ourselves to consider the special system 

configuration, the idea is applicable to any distributed detection system where the · 

unknown parameters are estimated using our blind algorithm. 
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Chapter 5 

Numerical Examples and 

Discussions 

In this chapter, we numerically investigate the applicability of our results in previous 

chapters and evaluate their individual performance. In all examples, we assume the 

distributed detection system as shown in Fig. 2.1 consisting of three local detectors 

and consider a detection scenario with M = 3 hypotheses unless otherwise stated. 

5.1 Parameter Estimation 

We use the first example to present the applicability of LS and ML algorithms for 

blindly estimating the unknown parameters. We assume the three hypotheses are 

equally likely. Decisions from three local detectors are generated based on the follow­

ing performance matrices defined in Eq. (2.47) 

0.87 0.07 0.06 

y 1 = 0.09 0.83 0.08 (5.1) 

0.15 0.11 0. 74 
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and 

0.86 0.05 0.09 

(5.2)Y2= 0.05 0.88 0.07 

0.12 0.08 0.8 

0.84 0.08 0.08 

(5.3)Y3= 0.12 0.78 0.1 

0.17 0.13 0.7 

There are totally 20 unknown parameters to be estimated. We then apply LS and ML 

algorithm to the local decisions. In Fig. 5.1 and 5.2, the estimation accuracy of the 

proposed algorithms are evaluated based on 10000 runs. The average estimate of one 

particular parameter evolving with the number of local decisions is shown in Fig. 5.1 

and the MSE of both estimators is depicted in Fig. 5.2. As expected, the ML estimator 

outperforms the LS estimator. The MSE of ML estimator is relatively small and does 

not decrease significantly with the increasing number of local decisions. The biased 

CRB, together with the sample variance of LS and ML estimate of one particular 

unknown parameter are shown in Fig. 5.3. Since the biased gradient matrix of ML 

estimates necessary for computing the bound is unavailable in reality, we estimate it 

using the method proposed in [24]. Let us recall in Section 3.4 we used g(X,f(9)) to 

represent the likelihood function of all local decision combinations. Suppose we run 

the simulation T times. The biased gradient matrix can be estimated by 

B(iiJ = _1_ ~ (iJ.- !__ ~B·) 8logg(X, !(9))- I 
T - 1 LJ ~ T LJ J 89 

i=l j=l 

= _1_ ~ (e· _!__ ~B·) [8f(9)]r 8logg(X, !(9)) _I ( 4) 
T - 1 f::t ~ T ~ J 89 8f (9) . 

where iJi, i = 1, · · · , T represents the estimate of the ith run. As can be clearly seen, 

the variances of LS and ML estimate are both bounded by the biased CRB and ML 

estimator outperforms LS estimator because its variance is closer to the biased CRB. 
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Figure 5.1: The evolution of LS and ML estimate with the local decision number. 
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Figure 5.2: Comparison of MSE. 
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Figure 5.3: Variance comparison. 

5.2 Overall Detection Performance 

In this section, we use the LS and ML estimates obtained in the previous section as 

the system parameters necessary for distributed detection. In Fig. 5.4, we demon­

strate how overall probability of error evolves with the increasing number of local 

decisions using two different estimation algorithms for 3-ary distributed detection 

system. The theoretical value is computed by substituting the true values of both 

prior and anomaly probabilities into Eq. (4.14). The other two overall error prob­

ability curves are obtained by averaging 10000 runs. In general, the overall error 

probability using ML estimates is smaller and approaches its true value faster than 

that using LS estimates. We can also see from the same figure that for a particular set 

of unknown parameters, there exists a threshold above which increasing number of 

local decisions will not yield significant improvements in the performance. In realistic 

scenarios, we cannot run the simulation many times to have the average estimates 
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Figure 5.4: Overall performance of 3-ary distributed detection system. 

of unknown parameters. To illustrate the overall detection performance using the 

estimates based on only one run, we show the histogram of overall error probability 

where the one-run estimates are obtained using different number of local decisions in 

Fig. 5.5. We have shown that Eq. (4.14) gives the theoretical value of overall error 

probability only if the true values of unknown parameters are known. When we just 

know their estimates, the overall detection performance can only be assessed through 

Monte Carlo simulation. However, direct substitution of the estimates into Eq. (4.14) 

gives a rough idea of the overall detection performance. The difference of overall 

error probabilities obtained by these two methods can be seen in Fig. 5.6. Its origin 

is clearly stated in Section 4.2. 
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Figure 5.6: Comparison of overall error probability using direct substitution and 

Monte Carlo simulation. 
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5.3 Impact on Overall Detection Performance 

In this section, we investigate the effect of several possible factors such as estimation 

error, number of local detectors and number of hypotheses to the overall detection 

performance. In Fig. 5. 7, we assume there are only two local detectors. We want to 

investigate the impact on the overall error probability when the parameters we use 

(the estimated values) mismatch the true system parameters due to either small local 

decision number or low efficiency of estimation algorithm. For simplicity, we only con­

sider the extreme case that all of the estimates deviate from their corresponding true 

values by the same percentage. From Fig. 5. 7, the overall error probability exhibits 

piece-wise constant behavior with respect to the estimation error, showing that there 

are thresholds at which the error probability jumps to a new level. The piece-wise 

constant behavior is due to the fact that although the estimated values of the weights 

defined in Eq. (4.10) and (4.11) may change resulting from different estimation error, 

it is likely that the decision regions obtained from them remain unchanged, hence the 

overall error probability is constant. Since in realistic scenarios, none of the thresh­

olds are known, the estimation error should be kept as small as possible. 

In Fig. 5.8, we evaluate the overall performance by adding a new local detector. 

For equally likely binary hypotheses, we arbitrarily choose two local detectors with 

Pf' = 0.14, P( = 0.1, P2 = 0.05 and Pf = 0.15. From Eq. (4.5), we can compute 

the overall error probability to be 0.1. The overall error probability generally reduces 

if we add one more local detector. However, when the new local detector performs 

very poorly, the corresponding weight defined in Eq. (4.2) is very small. As a result, 

the system tends to ignore the new local detector. As for Fig. 5.9, there are only 

two equally likely hypotheses and one local detector in the beginning with arbitrarily 

selected performance parameters Pf' = 0.2 and P( = 0.1. For simplicity, we assume 

the new local detectors added are identical and the probability of miss and false 

alarm are the same. As expected, we can see the more local detectors with good 
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Figure 5. 7: Impact of parameter mismatch on overall performance. 

performance, the better the overall detection performance. 

In Fig. 5.10, we compare the overall error probability in two cases: (a) the prior 

probabilities and probabilities of anomaly are known for different M, and (b) they 

are unknown and estimated using our blind algorithm with ML estimation. As for 

the case with 4 hypotheses, we assume that all of the local detectors are identical, i.e., 

they have the same probabilities of anomaly, to reduce the computational complexity. 

All simulations are conducted using 300 local decisions. The particular number of 

local decisions is picked because the overall detection performance after 300 local 

decisions does not improve significantly. It can be seen clearly that the performance 

of the scenario with estimated system parameters is very close to that with known 

prior probabilities and probabilities of anomaly. 
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Chapter 6 

Conclusion 

In this thesis, we have investigated M-ary distributed detection problems under given 

local decision rules without assuming prior probabilities and the performance of local 

detectors are known at the fusion center. The previous research has been restricted 

to the system with known system parameters or binary distributed detection system. 

Providing the solution for M-ary distributed detection system and analytically ana­

lyzing the system performance are the main contributions of this thesis. 

We started from the introduction of optimal fusion rule with fixed local decision 

rules. Then we used LS and ML algorithms to blindly estimate unknown parameters 

necessary for the optimal fusion. The biased CRBs of unknown parameters were also 

derived as a benchmark to compare the estimation performance. The ML estimator 

takes advantage of the parametric form of the distribution of local decisions and out­

performs the LS estimator. 

Further, we derived the analytical form of overall error probability and evaluated 

the detection performance for both binary and M-ary distributed detection. We also 

discussed the effect of the estimation inaccuracy, the number of local detectors and 

the number of hypotheses to the overall detection performance. The performance of 
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our proposed techniques were evaluated through numerical examples. 

There are some interesting extensions of the research work. One of them is that 

we may drop the assumption of conditional independence of decisions at all local 

detectors. The local decisions for a specific hypothesis may be correlated from local 

detector to local detector or the decisions of specific local detectors are correlated 

from hypothesis to hypothesis. This phenomenon is quite typical in real life, such 

as distributed detection for biomedical signals. Another possible extension is to de­

sign the optimal fusion rule when the system parameters are not deterministic since 

in some cases they may change with environments. Finally, joint design of the lo­

cal decision rules and fusion rule for correlated observations or time varying system 

parameters is a challenging but fruitful extension. 
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