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Abstract

This thesis discusses three diversity measures: Simpson’s Index, Shannon’s Index

and Berger–Parker Dominance as well as their corresponding True diversity (Nq).

Evenness measures the balance of a community which carries different information

from diversity indices. We give an example on the application of diversity indices

by comparing the surname diversity of China and USA. We also use OLS regression

to investigate whether diversified investment strategy leads to higher return rate for

mutual funds. Our analysis shows that funds that are diversified in investment have

higher return rate. Although highly diversified investment does not translate into

high return directly, the market where equity enters also plays an important role.

Our analysis reveals the potential of investment diversity and provides motivation

for diversifying investment strategy. The diversity indices also have the ability of

discriminating categories. With linear discriminant analysis (LDA) and classification

tree method, we use Simpson’s index and year to date return rate to successfully

differentiate mutual fund category. In the last part of the thesis, we introduce the

Bayesian approach to estimate diversity indices from an observed sample. We propose

four estimators of Simpson’s Index based on the sampling distribution of relative

abundance and investigate their estimating ability.

iv



Acknowledgements

I would first like to thank my supervisor Prof. Feng, Shui of the Department of

Mathematics & Statistics at McMaster University. Prof. Feng continually provided

me guidance and insightful conversations with his expertise during the development

of the ideas in this thesis.

I would also like to express my gratitude to my committee members: Prof. Fred M.

Hoppe and Prof. Roman Viveros-Aguilera for their precious time and knowledge.

Without their participation, the defence of my thesis could not be successfully con-

ducted.

I thank Dr. Kai Liu for providing me suggestions on the simulation study.

Finally, I am grateful to have unfailing support from my family and friends. Their

encouragement means a lot to me.

v



Contents

Abstract iv

Acknowledgements v

1 Introduction 1

2 Introduction to Diversity Indices 5

2.1 True Diversity (Nq) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Simpson’s Index (D) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Shannon’s Index (H) . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Berger–Parker Dominance (BP) . . . . . . . . . . . . . . . . . . . . . 15

2.5 Evenness (E) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Choice of Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 An Example of Application of Diversity Indices . . . . . . . . . . . . 18

2.7.1 Material and Method . . . . . . . . . . . . . . . . . . . . . . . 19

3 Investment Diversity of Mutual Fund 22

3.1 Material and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vi



4 Discrimination Using Diversity Indices 28

4.1 Material and Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.2 K-medoids Clustering . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.3 Linear Discriminant Analysis (LDA) . . . . . . . . . . . . . . 33

4.1.4 Classification Tree . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 Bayesian Approach to Shannon’s Index and Simpson’s Index 38

5.1 Bayesian Estimator of Shannon’s Index . . . . . . . . . . . . . . . . . 42

5.2 Proposed Bayesian Estimator of Simpson’s Index . . . . . . . . . . . 45

5.3 Simulation Study on Proposed Bayesian Estimator of Simpson’s Index 48

5.4 Estimating Chinese Surname Diversity . . . . . . . . . . . . . . . . . 49

5.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . 51

A Figures 53

B Tables 60

C R Output 70

vii



List of Figures

2.1 Rank Abundance Curves of Surnames of USA and China . . . . . . . 20

3.1 Year to Date Return . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 One Year Annual Return . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 K-means Elbow Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 K-medoids Average Silhouette Plot . . . . . . . . . . . . . . . . . . . 32

4.3 Classification Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.1 Year to Date Return (H) . . . . . . . . . . . . . . . . . . . . . . . . . 53

A.2 One Year Annual Return (H) . . . . . . . . . . . . . . . . . . . . . . 54

A.3 Year to Date Return (N1) . . . . . . . . . . . . . . . . . . . . . . . . 54

A.4 One Year Annual Return (N1) . . . . . . . . . . . . . . . . . . . . . . 55

A.5 Year to Date Return (N2) . . . . . . . . . . . . . . . . . . . . . . . . 55

A.6 One Year Annual Return (N2) . . . . . . . . . . . . . . . . . . . . . . 56

A.7 Year to Date Return (E) . . . . . . . . . . . . . . . . . . . . . . . . . 56

A.8 One Year Annual Return (E) . . . . . . . . . . . . . . . . . . . . . . 57

A.9 Residual Plot of YTD . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.10 Residual Plot of One Year Return . . . . . . . . . . . . . . . . . . . . 58

A.11 K-medoids Average Silhouette Plot . . . . . . . . . . . . . . . . . . . 58

A.12 LDA plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

viii



Chapter 1

Introduction

For a given community that contains different types, if we want to investigate its

diversity, the total number of individuals in the community does not provide ade-

quate information. A community with q large population but only a few types is not

considered as abundant as another community with same population size but more

types. On the other hand, the number of types (Richness S) provides better inter-

pretation, but still poorly reflects the diversity of the community. Two communities

with same richness could be different in diversity as one community have few types

that dominate whole population while the other community is equally distributed

among all types. Diversity indices possess such ability by quantifying how types are

distributed in community. The true diversity (Nq) transforms the indices into the

number of equally abundant types needed to match the abundance level of that com-

munity where all types may not be equally distributed. Diversity indices has been

used in various fields. In ecology, types may refer to species. In economics, we can

analyse industry diversity based on industry sector of that area. The indices can also

be applied in finance such as evaluating investment diversity based on investment
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portfolio.

In Chapter 2, we are going to introduce several diversity measures as well as

their properties. Most diversity indices are derived from Nq where q is the order

of diversity. S is a single diversity measure that corresponds to N0. Using S as

diversity measure ignores totally the frequency of each type and only reflects the

number of types in a community. Berger–Parker Dominance (BP ) is another single

measure that takes the value of most dominate frequency that corresponds to N∞.

Simpson’s index (D) and Shannon’s index (H) are two compound diversity measures

that have been commonly used in many literatures. Evenness (E) is defined as “the

degree to which the abundances are equal among the species present in a sample

or community” (Molinari 1989). There have been a lot of debates over which index

provides the best interpretation of a community. So far, none has been identified

as the most appropriate. The discussion of choosing diversity indices is included in

the last section of Chapter 2. Morris et al. (2014) discuss that different diversity

indices provide fairly good abilities for different purposes. Character of a community

that is driven mainly by rare species is well captured by H while D performs the

best in estimating total number of species. Therefore, it is suggested that at least

two measures should be used in analysis (Whittaker 1972; Stirling and Wilsey 2001;

Heino et al. 2008).

The last part of Chapter 2 provides a comparison of surname diversity between

China and USA in order to illustrate an application of diversity indices. We use D

and H to access the name diversity of two countries. Our analysis shows that USA is

more diversified in surnames than China. Both D and H provide consistent results.

We also report E in our analysis. The result shows that both China and USA have

2
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unbalanced name structure, dominant surnames can be found in the two countries.

USA has more unbalanced surname name structure as indicated by rank abundance

curves and lower value of E.

Diversity indices do not only reflect the structure of a community, outcomes that

are driven by diversity can be revealed by regression model. Goetz et al. (2014)

used panel data analysis (PDA) to find out the effect of geographic diversity on risk

of bank holding companies (BHCs). BHCs that are more diversified in geography

exposed to less idiosyncratic local risk, expansion into economically dissimilar areas

helps reducing risk more. In Chapter 3, we are interested in whether higher return

is associated with diversified investment strategy for mutual funds. Our results show

the trend that more diversified investment leads to higher return rate is significant.

The market where the equity enters also matters. D is preferred when estimating one

year annual return and H is preferred for estimating year to date return.

Morris et al. (2014) use diversity indices to differentiate site with principle compo-

nent analysis (PCA), D provides the greatest such ability. In Chapter 4, we are also

interested in whether such discrimination ability of diversity indices is preserved in

mutual fund data so we can use diversity indices and return rate to differentiate cate-

gory of mutual fund. Our analysis shows that unsupervised clustering methods fail the

task, k-means, k-mediods and hierarchical clustering produce high miss-classification

rate. On the other hand, with supervised clustering method, linear discriminant anal-

ysis (LDA) and classification tree successfully discriminate data. Diversity indices do

have profound ability of discrimination, however, with appropriate methods.

Chapter 5 discusses the Bayesian approach to estimate diversity indices. Suppose

we are going to estimate the diversity index from a given sample, using the maximum

3
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likelihood estimator of relative abundance might not be appropriate, especially when

the sample size is small. Therefore, we assume the relative abundance (p1, p2, . . . , pS)

follows a Dirichlet distribution. After the sample is observed, the posterior marginal

density of pi is Beta distribution. Gill and Joanes (1979) propose two estimators of

Shannon’s Index hα and ~α based on the posterior distribution of pi. Following the

same logic, we propose two estimators of Simpson’s index, dα and d̃α. The bias cor-

rected versions of these two estimators dBCα and d̃BCα are also reported. A simulation

study and a real case study are carried out in order to assess the estimating ability.

Our proposed estimators are competitive to Simpson’s estimator λ as they produce

similar estimate mean as λ but smaller variance.

4



Chapter 2

Introduction to Diversity Indices

2.1 True Diversity (Nq)

Diversity indices reflect how abundant a community is. The true diversity (Nq) known

as effective number of types quantifies the diversity of a system by presenting the

number of equally abundant types/species needed so that their average proportion

matches that of the system. We can compare diversity of different systems by looking

at their true diversity.

Suppose we observe the dataset with richness S (S different species). Let N be

the population in the community, Ni is the number of individuals for the ith type.

Therefore, we can calculate the proportion of type i as pi = Ni

N
. The equation of Nq

is as following:

Nq = 1
Mq−1

= 1
q−1
√∑S

i=1 pip
q−1
i

=
(

S∑
i=1

pqi

) 1
1−q

(2.1)

Mq−1 is the weighted generalized mean with exponent q − 1. Note that when

q = 1, (2.1) is not defined, however, we can obtain the equation of order 1 by taking

5
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the limit of Nq as q approaches 1 , see Hill (1973)[11]:

N1 = exp
(
−

S∑
i=1

pi ln (pi)
)

(2.2)

Theorem 2.1.1. limq→1
(∑S

i=1 p
q
i

) 1
1−q = exp

(
−∑S

i=1 pi ln pi
)

Proof. Two mathematical results are used in this proof:

1. For small value of x, exp(x) ≈ 1 + x

2. For small value of x, ln(1 + x) ≈ x

Now the proof could be continued with the above results. Let q = 1 + a, and take

logarithm on both side:

lim
a→0

1
a

ln
(

S∑
i=1

pip
a
i

)
=

S∑
i=1

pi ln pi

The left hand side:

lim
a→0

1
a

ln
(

S∑
i=1

pip
a
i

)

= lim
a→0

1
a

ln
(

S∑
i=1

pi exp (a ln pi)
)

Then by result 1:

= lim
a→0

1
a

ln
(

S∑
i=1

pi(1 + a ln pi)
)

= lim
a→0

1
a

ln
(

S∑
i=1

(pi + pia ln pi)
)

= lim
a→0

1
a

ln
(

S∑
i=1

pi + a
S∑
i=1

pi ln pi
)

6
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Note that ∑S
i=1 pi = 1, and by result 2:

= lim
a→0

1
a
a

S∑
i=1

pi ln pi =
S∑
i=1

pi ln pi

Therefore, we have shown that limq→1
(∑S

i=1 p
q
i

) 1
1−q = exp

(
−∑S

i=1 pi ln pi
)
.

The most commonly used diversity indices are derived from Nq as they can be

expressed as monotonic functions of ∑S
i=1 p

q
i .

Theorem 2.1.2. Suppose A is a continuous and monotonic diversity measure. The

value of Nq depends on q and the frequency of the species pi, it is independent of A.

Proof. Assume any index of the dataset A(∑S
i=1 p

q
i ) has some certain value a. x is

the value of true diversity. Therefore, ∑x
i=1( 1

x
)q = ∑S

i=1 p
q
i . Now we have:

A

(
x∑
i=1

( 1
x

)q
)

= a

A
(
x( 1
x

)q
)

= a

A
(

( 1
x

)(q−1)
)

= a

x(1−q) = A−1(a)

x =
[
A−1(a)

] 1
(1−q)

Substitute a with A
(∑S

i=1 p
q
i

)
yields:

x =
[
A−1

(
A(

S∑
i=1

pqi )
)] 1

1−q

=
(

S∑
i=1

pqi

) 1
(1−q)

7
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x is independent of the function A.

q from (2.1) and (2.2) is called the order of diversity. It shows how sensitive the

diversity measure is to abundant and rare types. A true diversity with order 0 ignores

the frequency of each species which represents the richness of the system. Values of q

that are less than 1 favour the rare species while values of q greater than 1 add more

weight on abundant species.

Theorem 2.1.3. The value of Nq gets doubled for any order q except for order 1 if

the system is divided equally into two groups and treated as separate “species”.

Proof. Let ∑S
i=1 p

q
i = a. After doubling the community, the frequency of each group

gets halved and the size of the group gets doubled. Therefore, the sum of doubled

community becomes:

S∑
i=1

2
(
pi
2

)q
= 2(1−q)

S∑
i=1

pqi = 2(1−q)a

. Noting that the original diversity: Nq =
(∑S

i=1 p
q
i

) 1
q−1 = a( 1

1−q ). The diversity for

the doubled community, by (2.1) is:

N?
q =

(
S∑
i=1

2
(
pi
2

)q)( 1
1−q )

=
(
21−qa

)( 1
1−q ) = 2

(
a( 1

1−q )
)

= 2×Nq

This doubling property is proposed by Hill in 1973 [11], it is independent of the

frequency of species.

8
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2.2 Simpson’s Index (D)

The Simpson’s index is proposed by Simpson in 1949. If two substances are randomly

selected from the community, the probability that they are of the same type is:

D =
S∑
i=1

p2
i (2.3)

D in equation (2.3), indeed, is the Simpson’s Index. It is also known as Herfindahl-

Hirschman index (HHI) in many economics literature. The reciprocal of Simpson

index 1
D

=
(∑S

i=1 p
q
i

)−1
is a true diversity of order 2 for the system. The complement

1−D captures the uncertainty that two substances are of different types. Therefore,

the smaller value of simpson’s index indicates a more diverse system while greater

value of Simpson’s index suggests a more concentrated system.

Equation (2.3) assumes the first substance taken is replaced to the dataset before

the second selection. For small data set, if sampling without replacement, the index

is calculated as

λ =
∑S
i=1 ni(ni − 1)
N(N − 1) (2.4)

2.3 Shannon’s Index (H)

Shannon Index is originally proposed to measure the uncertainty of occurrence of

letters in strings (Shannon 1948). Given a community with relative abundance

pis, a diversity measurement, or measure of entropy, should possess the following

properties[17]:

• H is a continuous function of pi.

9
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• If pi = 1
S

for all i, H is a monotonic increasing function of S.

• If a choice is decomposed into two successive choices, the original H is the

weighted sum of individual values of H.

Theorem 2.3.1. The only H satisfying the three above assumptions is of the form:

H = −K
S∑
i=1

pi ln pi (2.5)

where K is a positive constant.

Proof. Denote H
(

1
S
, 1
S
, . . . , 1

S

)
= A(S). According to the third property, a choice

from sm equally likely possibilities can be decomposed into m choices of s equally

likely possibilities and obtain

A(sm) = mA(s).

We can construct another series of events with

A(tS) = SA(t).

S could be arbitrarily large and we can always find an m such that

sm ≤ tS ≤ sm+1.

Taking logarithms and divided by S log s yields

m

S
≤ log t

log s ≤
m

S
+ 1
S

10
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equivalently ∣∣∣∣∣mS − log t
log s

∣∣∣∣∣ < ε. (2.6)

where ε is arbitrarily small. The monotonic increasing property of A(S) yields

A(sm) ≤ A(tS) ≤ A(sm+1)

or equivalently

mA(s) ≤ SA(t) ≤ (m+ 1)A(s).

Divided by SA(s), we obtain

m

S
≤ A(t)
A(S) ≤

m

S
+ 1
S

or ∣∣∣∣∣mS − A(t)
A(s)

∣∣∣∣∣ < ε. (2.7)

Equation (2.6) and (2.7) yields

− ε < log t
log s −

m

S
< ε (2.8)

and

− ε < m

S
− A(t)
A(s) < ε (2.9)

(2.8) and (2.9) yields

−2ε < log t
log s −

A(t)
A(s) < 2ε

∣∣∣∣∣A(t)
A(s) −

log t
log s

∣∣∣∣∣ < 2ε.

11
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Therefore, A(t) = K log t, where K is positive in order to satisfy the second prop-

erty. Suppose we have a choice from S probabilities with probability pi = Ni∑
Ni

.

A choice from ∑
Ni possibilities can be decomposed into a choice from S possibili-

ties p1, p2, . . . , pS. If the ith is chosen, then followed by a choice from Ni with equal

probabilities. According to the third property,

K log
∑

Ni = H(p1, p2, . . . , pS) +K
∑

pi logNi,

therefore,

H(p1, p2, . . . , pS) = K
[∑

pi log
∑

Ni −
∑

pi logNi

]
= −K

∑
pi log Ni∑

Ni

= −K
∑

pi log pi.

The choice of coefficient K is a matter of convenience and amounts to the choice

of a unit of measure (Shannon, 1948). The form

H = −
S∑
i=1

pi ln pi. (2.10)

is mostly recognized as Shannon entropy and it is widely used in ecological literature.

The logarithmic base corresponds to the unit of the information measured. Base 2

measures information with binary units. If the units is decimal digits, base 10 is

used. The natural logarithm is usually used when the analysis involves integration

and differentiation. expH produces a true diversity of order 1 (N1) of a system.

12
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If all pi = 0 except for one substance with probability 1, there is no uncertainty

remains in the system, therefore, H = 0. H is always positive otherwise. On the

other hand, if all substances has equal probability (pi = 1
S

for S types in the system),

the uncertainty of the outcome reaches the maximum Hmax = −∑S
i=1

1
S

ln 1
S

= lnS.

Any “averaging” operation on pi of the form

p?i =
∑
j

ai,jpj

where ∑i ai,j = ∑
j ai,j = 1 and ai,j > 0, will increase the value of H. H will remain

the same if the operation is only a permutation of the pj.

Given two sets of events x and y with m and n possible outcomes respectively.

Denote pi,j as the joint probability of substance i in x, j in y. The joint entropy of x

and y is

H(x, y) = −
∑
i,j

pi,j ln pi,j. (2.11)

while

H(x) = −
∑
i

pi· ln pi·

H(y) = −
∑
j

p·j ln p·j

where

pi· =
∑
j

pi,j

p·j =
∑
i

pi,j

It is evident that

H(x, y) ≤ H(x) +H(y). (2.12)

13
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The equality holds when x and y are independent. The inequality implies that the

entropy of joint event is less than or equal to the sum of individual entropy.

The conditional entropy of y (Hx(y)) is interpreted as the average uncertainty of

y when x is known.

Hx(y) = −
∑
i,j

pi,j ln pj|i. (2.13)

where pj|i = pi,j∑
j
pi,j

is the conditional probability of y when x is given. Substitute pj|i

with pi,j∑
j
pi,j

in (2.13) yields

Hx(y) = −
∑
i,j

pi,j ln pi,j +
∑
i,j

pi,j ln pi· = H(x, y)−H(x).

Therefore,

H(x, y) = Hx(y) +H(x). (2.14)

The equation implies that the joint entropy of events x and y is the sum of the entropy

of x and entropy of y when x is known.

(2.12) and (2.14) yields

H(x) +H(y) ≥ H(x, y) = Hx(y) +H(x)

H(y) ≥ Hx(y). (2.15)

which implies that event y is less uncertain if the information of x is obtained. The

value of uncertainty remains unchanged when x and y are independent. Introducing

x will never increase the uncertainty of y.

When the information analysed is continuous variable, the Shannon’s entropy is

14
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defined as

H = −
∫ ∞
−∞

p(x) ln p(x)dx (2.16)

Where p(x) is the density function.

As for an n multi-dimensional distribution, p(x1, . . . , xn), the entropy is given by

H = −
∫
· · ·

∫
p(x1, . . . , xn) ln p(x1, . . . , xn)dx1, . . . , dxn (2.17)

The continuous Shannon’s entropy preserves most properties from discrete case, how-

ever unlike discrete information system, the diversity measure of continuous variable

is a relative measure according to the coordinate system. Change of variable in gen-

eral results in a change of entropy. Suppose we change coordinate from x to y, the

new entropy

H(y) =
∫
· · ·

∫
p(x1, . . . , xn)J

(
x

y

)
ln p(x1, . . . , xn)J

(
x

y

)
dy1, . . . , dyn

= H(x)−
∫
· · ·

∫
p(x1, . . . , xn)J

(
x

y

)
dx1, . . . , dxn

where J
(
x
y

)
is the Jacobian of transformation.

2.4 Berger–Parker Dominance (BP)

Berger–Parker Dominance is a single measure of diversity which takes the value of

most dominate frequency (Berger and Parker 1970).

BP = pmax (2.18)

15
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BP corresponds to the true diversity of order infinity (N∞).

2.5 Evenness (E)

The evenness reflects the structure of a system, it indicates the balance of all species,

more precisely, “the degree to which the abundances are equal among the species

present in a sample or community” (Molinari 1989). The quantity proposed by Pielou

(1969)

J = H

Hmax
(2.19)

captures such ability. Where H is the Shannon’s index and the maximum of H

achieves, as mentioned previously, when all substances have equal probability Hmax =

lnS. Hill (1973) proposed a double continuum of measures of evenness

Ea,b = Na

Nb

(2.20)

Where a and b are all possible value of the order of true diversity Nq. Although

J = lnN1
lnN0

does not satisfy (2.20), the alternate J ′ = H−Hmax = ln N1
N0

= lnE1,0 meets

the requirement. E1,0 measures the ratio of abundant species to all species. However,

as N1 are too dependent on sample size, E2,1, the ratio of very abundant species to

abundant species provides more stable analysis.

Bulla (1994) points that the above measures of evenness are inadequate as they

overestimate evenness. Inferences are hard to made because of the non-linear be-

haviour of these indices. Although later works such as G2,1 proposed by Molinari

(1989) improves the linearity, they are lack of any clear ecological meaning and the

statistical property is hard to capture. Moreover, Molinari’s measure ignores the
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behaviour of rare species in community which may mislead discrimination between

communities whose difference is driven mainly by rare species[3]. Therefore, a new

measure of evenness is proposed.

E = O − 1/S
1− 1/S (2.21)

where O = ∑min(pi, 1/S) The newly defined measure presents good sensitivity to

rare species compared with other measures.

The value of evenness varies from 0 to 1, the low value indicates the system is

dominated by one or a few species while high value suggest the number of individuals

for each species are relatively equal.

2.6 Choice of Indices

There has been a lot of debates over whether compound indices (e.g. Shannon index,

Simpson index, etc.) provide better interpretation than single measure of diversity

(e.g. richness, Berger–Parker Dominance, etc.) and which is more appropriate in

different contexts. Since most of the indices are derived from Nq, there exists strong

correlations between different diversity measures (Morris et al. 2014). Although dif-

ferent indices are all representations of system’s diversity, the choice of true diversity’s

order q can alter the result significantly. The information of a system can never be

fully captured by only one metric, therefore, “no single measure will always be appro-

priate” (Purvis and Hector 2000). The choice of q, in a way, indicates the weight put

on abundant v.s. rare species. BP only focuses on the most abundant species and

Simpson’s measure D favours relative abundant species, therefore, the effect that is
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driven by abundant species is well captured by these indices. However, the behaviour

of rare species may be better detected by those indices who favours rare species such

as S. As for estimating the total number of species, the compound indices such as

D provides better estimation than single measures (e.g. S) as the latter are too de-

pendent on sample size. Other than those indices mentioned above, evenness E may

carry different information as it shows inconsistent correlation between other diversity

indices when analysing with different data

The choice of indices can depend on the area of study, the type of data as well

as the importantness of abundant and rare species. We cannot use only one index to

discover all characters of a community. Therefore, at least two indices are suggested

to report (Whittaker 1972; Stirling and Wilsey 2001; Heino et al. 2008).

2.7 An Example of Application of Diversity In-

dices

According to the latest United Nation estimates, China has a population of 1.4 bil-

lion which ranks the first in the list of countries by population. The United States

possesses a population of 0.328 billion according to the report by the United States

census Bureau. The latest report by the United States census Bureau in 2010 [5]

shows that about 6.3 million surnames were reported while only about 600 surnames

were found in the sixth national population census of the People’s Republic of China

in 2010. As a nation of immigrants, it is not surprising that the United States is very

diverse in surnames. On the contrary, China has much more conservative immigration

policy, foreign surnames are rarely seen in China. In ancient China, only ruling family
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and upper class were qualified to have surnames, people from lower class were usually

given surnames by the family they serve. Therefore, we can see several surnames

dominate the whole population in China. Hence, it is expected that USA has greater

surname diversity than China. In this section, we are going to use diversity measures

introduced in order to investigate the surname structure of these two countries.

2.7.1 Material and Method

The data of surnames in the United State was obtained from the United States cen-

sus Bureau (https://www2.census.gov/topics/genealogy/2010surnames/names.

zip) in 2010. It contains 162,253 surnames ranked by their population which accumu-

lates to 90.06% of the population across the nation. The data of surnames in China

was obtained from the sixth national population census in 2010. It contains 400 sur-

names which accumulates to 94.17% of the whole population (See data in Appendix

B, Table B.1 to Table B.5). The most common surname in USA is “Smith” which

accounts for 0.828% of the population. “Wang” ranks the first in China and takes up

6.96% of the whole population.

The surname in USA has greater richness than that of China. Figure 2.1 is

the rank abundance curve which plot the proportion of the surnames against their

rank. A steep gradient appears in both rank abundance curves indicates that high-

ranking surnames are much more abundant than low-ranking surnames in both USA

and China. The gradient of curve of USA is steeper which means this unbalanced

structure is more apparent across USA.

We calculate the complement Simpson’s Index(1 − D), Shannon’s Index as well

as their corresponding true diversity N2 and N1 in order to investigate the name
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diversity of two countries. We also include evenness to verify the conclusion drawn

from the rank abundance curve. Equation 2.21 is used to calculate evenness. The

following table provides calculation results.

Figure 2.1: Rank Abundance Curves of Surnames of USA and China

Country S 1−D N2 H N1 E

USA 162253 0.9993054 1439.74440 9.425931 12405.94544 0.2847087

China 400 0.9733317 37.49772 4.500596 90.07077 0.3655664

Table 2.1: Diversity Measures of Surnames across USA and China

From table 2.1 we can see that USA has a Simpson’s index of value 0.9993 while

China has Simpson’s index of value 0.9733, which suggests that USA has higher sur-

name diversity than China. The corresponding true diversity N2 where USA (1439.74)
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has much higher value than China (37.50) makes the conclusion more convincing. It

is also evident to conclude that China has less surname diversity than USA using the

Shannon’s Index and N1. By looking at evenness, both USA and China appear to

have low evenness value while USA has even lower value. This implies that dominant

surnames exist in both countries, and USA has more unbalanced surname structure.

It is worth noticing that when change the diversity measure from Simpson’s in-

dex to Shannon’s index, the corresponding true diversity increases from 1439.74 to

12405.95 for USA and 37.50 to 90.07 for China as more weight is put on relative

low proportion surnames. The increase appears more significant in USA than China,

again, is due to the more unbalanced structure of USA.
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Chapter 3

Investment Diversity of Mutual

Fund

Diversification is considered as an important factor of investing. Faulkenberry[7]

defines it as “a portfolio strategy combining a variety of assets to reduce the overall

risk of an investment portfolio.” Demsetz and Strahan (1997) point out that more

diversified bank holding companies (BHCs) have advantage in operating with lower

capital ratios and conducting risky activities. Moreover, geographic diversified BHCs

are exposed to less idiosyncratic local risk and expansion into economically dissimilar

areas helps reducing risk more (Goetz et al. 2014).

The investment portfolio of different mutual fund categories varies. For example,

precious metals equity in general have very concentrated investment sector while

Canadian equity have much more diversified sector allocation. We can consider the

total capital possessed by a mutual fund as “population”, sectors that this fund

invests are “species”, therefore, the “relative abundance” of each “species” are the

proportion of capital that enters in each sector. Then the investment diversity of
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thus fund could be calculated based on the above settings. We are interested in

whether higher investment return rate is associated with more diversified investing

strategy.

3.1 Material and Method

The data is obtained from FUNDATA (http://www.fundata.com/) which provides

the snapshots of mutual funds over Canada. We randomly sampled 60 funds from each

of the following categories: U.S. Equity, Precious Metals Equity, Natural Resources

Equity, Canadian Equity and Canadian Fixed Income. For each fund, we record

its category, sector allocation and return rate. We pick year to date (YTD) return

and one year annual return as two different response. The complement of Simpson’s

Index (1−D) and Shannon’ Index as well as their corresponding true diversities are

calculated according to each fund’s sector allocation. We also include evenness in the

analysis in order to see which index possesses better predicting ability. We plot return

rate against each indices to visually investigate if any trend exist between investment

diversity and return.
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Figure 3.1: Year to Date Return

Figure 3.2: One Year Annual Return

The plots of other indices demonstrate the similar trend as Simpson’s Index (see

Appendix A). From Figures 3.1 and 3.2, we can see that the investment diversity
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of different kind of funds varies from low to high. Precious metals equity overall

has very concentrated investment sector and the return rate is the lowest among five

categories. On the other hand, U.S equity has most diversified investment strategy

and possesses the highest return rate. Although the data is not perfectly aligned, we

can still see the trend that higher diversity leads to higher return rate. It is worth

noticing that Canadian fixed income and precious metals equity have similar diversity

index value however, the return rate of Canadian fixed income are in general, higher

than that of precious metals equity. Moreover, both Canadian equity and U.S. equity

have high diversity index value, the return rate of U.S. equity is higher on average.

Therefore, we detect the individual effect from different categories. Based on that,

we propose the model:

Yi = β0 + β1D + β2δi + ε (3.1)

where Yi represents the return rate, D is the diversity measure and δi is the categorical

variable that represents the category of the mutual fund. We fit the model with five

different diversity measures, the result is as following, ? indicates how significant each

variable is:

Model Coefficient t-value p-value AIC R2
δi (β, p-value)

Canadian Fixed Income Natural Resources Equity Precious Metals Equity U.S. Equity

1−D 0.079383 3.146 0.001824?? -1033.172 0.8384 0.022885, 0.208393 -0.035047, 0.000246? ? ? -0.155087, 5.31× 10−15 ? ?? 0.082486, < 2× 10−16 ? ??

H 0.050132 4.035 6.97× 10−5 ? ?? -1039.407 0.8417 0.040892, 0.0312? -0.022642, 0.0330? -0.138579, 3.23× 10−12 ? ?? 0.081849, < 2× 10−16 ? ??

N1 0.024464 4.697 4.07× 10−6 ? ?? -1044.941 0.8446 0.066955, 0.002279?? 0.003825, 0.786324 -0.112007, 6.36× 10−7 ? ?? 0.078816, < 2× 10−16 ? ??

N2 0.020141 3.628 0.000336? ? ? -1036.379 0.8401 0.041606, 0.047100? -0.006367, 0.665892 -0.137202, 4.23× 10−10 ? ?? 0.075680, < 2× 10−16 ? ??

E 0.060182 2.283 0.0232? -1028.507 0.8358 0.009126, 0.6191 -0.030161, 0.014? -0.168122, 4.34× 10−16 ? ?? 0.081789, < 2× 10−16 ? ??

Table 3.1: Year to Date Return
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Model Coefficient t-value p-value AIC R2
δi (β, p-value)

Canadian Fixed Income Natural Resources Equity Precious Metals Equity U.S. Equity

1−D 0.115041 3.026 0.0027?? -787.1372 0.7516 -0.017166, 0.5308 -0.036195, 0.0115? -0.177532, 1.30× 10−9 ? ?? 0.070917, 5.43× 10−9 ? ??

H 0.066353 3.526 0.000489? ? ? -790.3655 0.7542 0.000187, 0.994789 -0.021884, 0.172733 -0.162443, 4.24× 10−8 ? ?? 0.070373, 5.86× 10−9 ? ??

N1 0.029406 3.701 0.000256? ? ? -791.5995 0.7552 0.023059, 0.487606 0.006384, 0.766790 -0.139048, 4.47× 10−5 ? ?? 0.067095, 3.29× 10−8 ? ??

N2 0.024265 2.881 0.00425? ? ? -786.292 0.7509 -0.007218, 0.81981 -0.005744, 0.79735 -0.169137, 2.88× 10−7 ? ?? 0.063301, 5.61× 10−7 ? ??

E 0.10127 2.558 0.011? -784.54 0.7494 -0.02827, 0.305 -0.02406, 0.194 -0.18690, 6.94× 10−10 ? ?? 0.06919, 1.88× 10−8 ? ??

Table 3.2: One Year Annual Return

As shown in Tables 3.1 and 3.2, all diversity measures are significant. The co-

efficients of five diversity indices are positive which indicates that more diversified

investment strategy leads to higher return rate (for both YTD and one year annual

return). The effect of individual category cannot be ignored. The model sets Cana-

dian equity as default group, the effect of precious metals equity and U.S. equity are

consistently significant through all diversity measures. Our analysis suggests that

precious metals equity has lower return rate than Canadian equity and U.S. equity

on the other hand, produces higher return than Canadian equity. However, other

mutual fund categories do not perform such consistent behaviour.

The effect of Canadian fixed income on YTD is significant when using H, N1 and

N2. It shows that YTD increases when switch fund category from Canadian equity

to Canadian fixed income. Similarly, the effect of natural resources equity on YTD

is significant when D, H and E are applied as diversity measure. YTD decreases

when switch fund category from Canadian equity to natural resources equity. As for

one year annual return, the negative effect of natural resources equity appears to be

significant only when applying D as diversity measure. Otherwise, Canadian fixed

income and natural resources equity appear to have same behaviour as Canadian

equity.
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Five diversity measures appear to be significant, however, E is the least signif-

icant measure. AIC and multiple r-squared of different models are also very close.

We suggest to use Shannon’s Index as the predictor of YTD and Simpson’s Index

as the predictor of one year annual return because these two models present more

information on individual category effect. The residual plots (see Appendix A) also

shows that the models perform good fit.

The sector allocation of each fund contains a category “Other”. After removing

“Other” and normalizing the proportion of other sectors, we obtain the same analysis

results as previous.

3.2 Conclusion

We have successfully find relationship between investment diversity and return rate.

The small p-value and positive coefficient suggest that more diversified investment

strategy is preferred when expecting higher return. Shannon’s Index behaves the

best for YTD and Simpson’s Index is preferred for year to date return. However, the

coefficients of diversity measures in general are very small, an increase in diversity

only accounts for a very small increase in return. Moreover, Canadian equity and

U.S. equity over all have similar diversity pattern, our analysis shows that the return

rate of U.S equity is significantly higher than that of Canadian equity. Therefore,

the effect of individual category cannot be ignored. Highly diversified investment

does not translate into high return directly, the market where equity enters also

plays an important role when analysing return. Our analysis reveals the potential of

investment diversity and provides motivation for diversifying investment strategy.
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Chapter 4

Discrimination Using Diversity

Indices

Diversity indices reflect certain characters of a community. Their values vary among

different communities. Many ecology literatures have used diversity indices to dif-

ferentiate groups. Morris et al. (2014) point out that the Simpson’s Index and its

corresponding true diversity N2 perform the best ability in differentiating grassland

plots using principle component analysis (PCA).

As shown in Figure 3.1, mutual funds that are from same category appear to be

“clustered” together, they share the similar index values and return rates. Therefore,

diversity measures along with return rate may provide good ability in discriminating

mutual fund categories.
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4.1 Material and Method

We choose Simpon’s Index and YTD in our analysis. From Figure 3.1, we do not

find spherical-shaped data distribution. Canadian fixed income appears to have a

line-shaped distribution and natural resources equity is scattered. Therefore, we

suspect that k-means and k-medoids might not be sufficient in our analysis as they

are sensitive to outliers, especially, k-means.

4.1.1 K-means Clustering

K-means clustering is an un-supervised clustering algorithm that defines k centroids

among the data set then associates points that are close to the same centroid into one

group. The algorithm is sensitive to the initial centroids selected and the distribution

of the data set. Although the data distribution is not suitable for k-means cluster

analysis, we want to know how bad the miss-classification would happen.
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Figure 4.1: K-means Elbow Plot

The elbow plot suggests two clusters. As we already know there are five different

categories, k-means method fails to detect all clusters. Noting that the within-cluster

sum of squares has a fluctuation at 5 clusters. We set the number of clusters to 5,

the result is as following:

Cluster 1 Cluster 5 Cluster 4 Cluster 2 Cluster 3

Canadian Equity 34 14 0 12 0

Canadian Fixed Income 3 47 9 1 0

Natural Resources Equity 0 2 46 11 1

Precious Metals Equity 4 0 0 50 6

U.S. Equity 4 0 5 1 50

Table 4.1: Cluster Table K-means
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The miss-classification is 24.33% which is not really bad considering the unsuitable

data distribution. The algorithm provides passable classification for most mutual

fund, the miss-classification mainly comes from Canadian equity. 14 funds from

Canadian equity are miss-classified into Canadian fixed income and 12 funds are

miss-classified into precious metals equity.

4.1.2 K-medoids Clustering

Instead of taking the mean as centroid, k-medoids clustering picks points from the

given data set as reference points. K-medoids method is less sensitive to outliers

compared to k-means method, both two methods have similar algorithm. Figure 4.2

suggests 2 clusters for k-medoids method. Again, k-medoids fails to detect actual

number of categories of mutual fund. Setting the cluster number to 5 produces very

bad classification.
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Figure 4.2: K-medoids Average Silhouette Plot

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Canadian Equity 59 0 0 0 1

Canadian Fixed Income 0 0 0 5 55

Natural Resources Equity 1 1 2 55 1

Precious Metals Equity 0 32 28 0 0

U.S. Equity 60 0 0 0 0

Table 4.2: Cluster Table K-medoids

The miss-classification rate is 33%. The algorithm fails to differentiate Canadian

equity and U.S. equity also separates precious metals equity into two clusters. A

similar result is obtained when we use hierarchical clustering (see result in Appendix

A Figure A.11 and Appendix B Table B.6).
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So far, all unsupervised clustering methods are inadequate, we propose that su-

pervised clustering method is preferred.

4.1.3 Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a supervised clustering algorithm that separates

different groups of data through a linear transformation then associates points to the

group that maximizes the group density. Unlike PCA, we want to find dimensions

that maximize the separation of data from different categories. Therefore, we use

LDA to achieve such goal.

We randomly sample 150 mutual funds as training set, the prior probability of each

category is set as 0.2. Two discriminants are found when the analysis is performed

(see R output in Appendix C). After applying this model on the testing set, the

predicting table shows a very good classification.

Canadian Equity Canadian Fixed Income Natural Resources Equity Precious Metals Equity U.S. Equity

Canadian Equity 24 0 0 0 0

Canadian Fixed Income 0 30 1 0 0

Natural Resources Equity 3 1 19 1 3

Precious Metals Equity 0 0 0 35 0

U.S. Equity 6 0 0 0 27

Table 4.3: Classification Table LDA

LDA reduces miss-classification rate to 10% which has the best performance so far.

The miss-classification is mainly driven by U.S.equity and natural resources equity. 6

mutual funds from U.S.equity are miss-classified into Canadian equity as the data of

these two categories are distributed very closely. The scattered distribution of natural

resources equity is also the cause of miss-classification. After linear transformation, we
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can see the separation between different categories is more apparent in the “rotated”

data set as the data from same category is more centralized (see Appendix A Figure

A.12).

4.1.4 Classification Tree

Classification tree is another supervised classification strategy that allows us to inves-

tigate how each predicting variable contributes to classification. As each fund cate-

gory contains equal amount of observations, we suggest a stratified sampling method

to build decision tree. For each category, we randomly sample 40 mutual funds as

training set, we build the model based on this stratified training set. R output can

be found in Appendix C. The tree building stops at 4 (nsplit = 4), splitting the next

node only decreases overall lack of fit by a factor of 0.01. The relative error for 4

splits is 0.056 indicating a good enough split. Under such splitting rule, a decision

tree is built. Our result shows a fairly good classification on training set. Only 5% of

the data are miss-classified into natural resources equity which originally belong to

Canadian fixed income. There are 2% of the data in Canadian fixed income that are

actually Canadian equity and 2% are natural resources equity. Precious metal equity

are all classified correctly without any miss-classification. As for Canadian equity,

92% of the data are in the right spot while 2% of them are natural resources equity

and 5% are from U.S. equity. 95% of the data in U.S equity are correctly classified

while 5% originally come from Canadian equity. Therefore, Simpson’s Index and

YTD are considered as good classification predictors. We now apply the decision rule

defined by classification tree on our testing set, a predicting table is shown below.

34



M.A.Sc. Thesis - Qiwei Jiang McMaster - Mathematics and Statistics

Figure 4.3: Classification Tree

Canadian Equity Canadian Fixed Income Natural Resources Equity Precious Metals Equity U.S. Equity

Canadian Equity 18 0 0 0 2

Canadian Fixed Income 0 16 4 0 0

Natural Resources Equity 0 1 18 1 0

Precious Metals Equity 0 0 0 20 0

U.S. Equity 2 0 0 0 18

Table 4.4: Classification Tree Predicting Table

Table 4.4 shows a good predicting ability with only 10% miss-classification rate.

Classification tree performs as good result as LDA. Therefore, we conclude that Simp-

son’s Index and YTD have good ability in discriminating mutual fund categories when

using supervised clustering analysis.
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4.2 Conclusion

We used Simpson’s Index and YTD to differentiate category of mutual fund success-

fully. With unsupervised clustering analysis, the predicting ability is not satisfying.

K-means, k-mediods and hierarchical clustering produce miss-classification rate of

24%, 33% and 44% respectively. Because of linear trend distribution of Canadian

fixed income and scattered distributed natural resources equity, the distance of a

point to its associated centroid could be large enough for k-means and k-mediods al-

gorithms to exclude this point from its actual category. On the other hand, Canadian

equity and U.S.equity are too close so that hierarchical clustering would miss-classify

them as the same category. LDA transforms data along the dimensions that maximize

the septation between different category. As shown in LDA, the mean of Simpson’s

Index and YTD are significantly different among five categories. After linear transfor-

mation, the character driven by Simpson’s Index and YTD becomes more apparent,

therefore, the predicting ability is very strong. Classification tree provides as good

predicting ability as LDA. Our algorithm uses four splits to clearly discriminate all

five categories. U.S equity and Canadian Equity have higher diversity than other mu-

tual fund category, according to the classification rule, funds with Simpson’s index

greater than 0.69 are classified into these two categories. The algorithm differentiate

between U.S equity and Canadian equity by evaluating the fund’s YTD. Funds with

YTD that less than 0.048 are recognized as Canadian equity. Natural resources eq-

uity has the highest diversity among the rest three categories. Funds with Simpson’s

index value between 0.29 and 0.69 are classified into natural resources equity without

evaluating its YTD. Precious material equity shares similar diversity pattern with
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Canadian fixed income equity, funds with YTD lower than -0.12 are classified into

Canadian fixed income. With appropriate strategy, diversity indices do have profound

ability of discrimination.
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Chapter 5

Bayesian Approach to Shannon’s

Index and Simpson’s Index

Suppose we obtain a sample that contains n observations from a population that falls

into S categories (S is known). We denote ni as the observed number of individuals

in each category i from sample. In order to estimate the diversity indices of popu-

lation, the unknown frequency pi needs to be estimated. Rather than the maximum

likelihood estimator p̂i = ni

n
, we suggest a Bayesian approach to estimate pi. The

pi’s from previous chapters are considered fixed, in this chapter, pi’s are considered

as random variables.

Dirichlet distribution is a well known conjugate prior in Bayesian statistics. There-

fore, we assume the prior density of p1, p2, . . . , pS is

f(p1, p2, . . . , pS|α) = Γ(αS)
[Γ(α)]S

S∏
i=1

pα−1
i (5.1)

We take the special case of Dirichlet distribution where the parameter αi for each pi
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has the same positive value because we assume no prior knowledge favouring any pi

over another. The likelihood:

L(p1, p2, . . . , pS|n1, n2, . . . , nS) =
(

n

n1n2 . . . nS

)
S∏
i=1

pni
i (5.2)

Therefore, the posterior joint density of p1, p2, . . . , pS is

f(p1, p2, . . . , pS|α;n1, n2, . . . , nS)

=
Γ(αS)
[Γ(α)]S

∏S
i=1 p

α−1
i

(
n

n1n2...nS

)∏S
i=1 p

ni
i∫ 1

0
∫ 1

0 · · ·
∫ 1

0
Γ(αS)
[Γ(α)]S

∏S
i=1 p

α−1
i

(
n

n1n2...nS

)∏S
i=1 p

ni
i dp1dp2 . . . dpS

=
∏S
i=1 p

ni+α−1
i∫ 1

0
∫ 1

0 · · ·
∫ 1

0
∏S
i=1 p

ni+α−1
i dp1dp2 . . . dpS

Let α? = (α?1, α?2, . . . , α?S), where α?i = ni + α.

f(p1, p2, . . . , pS|α?;n1, n2, . . . , nS) =
∏S
i=1 p

α?
i−1
i

B(α?)
∫ 1

0 · · ·
∫ 1

0
1

B(α?)
∏S
i=1 p

α?
i
i dp1dp2 . . . dpS

B(α?) = Γ(∑S

i=1 α
?
i )∏S

i=1 Γ(α?
i )

is the beta function. The integral part in the denominator yields

1, therefore, the posterior joint density of p1, p2, . . . , pS:

f(p1, p2, . . . , pS|α?;n1, n2, . . . , nS) = 1
B (α?)

S∏
i=1

p
α?

i−1
i (5.3)

which is still Dirichlet distribution with updated parameters α?i ’s.
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We now can derive the marginal density of each pi from equation (5.3).

f(pi|α?;n1, n2, . . . , nS)

= 1
B(α?)

∫ 1−pi

0

∫ 1−pi−p1

0
· · ·

∫ 1−
∑S−2

j=1 pj

0

S−1∏
j=1

p
α?

j−1
j

1−
S−1∑
j=1

pj

α?
S−1

dpS−1dpS−2 . . . dp1

We can marginalize out pS−1 from the innermost integral:

∫ 1−
∑S−2

j=1 pj

0
p
α?

S−1−1
S−1

1−
S−1∑
j=1

pj

α?
S−1

dpS−1 (5.4)

Let z
(
1−∑S−2

j=1 pj
)

= pS−1, then

dpS−1 =
1−

S−2∑
j=1

pj

 dz (5.5)

and

1−
S−1∑
j=1

pj = 1−
S−2∑
j=1

pj − pS−1

= 1−
S−2∑
j=1

pj − z

1−
S−2∑
j=1

pj


= (1− z)− (1− z)

S−2∑
j=1

pj

= (1− z)
1−

S−2∑
j=1

pj

 (5.6)
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by (5.5) and (5.6), equation (5.4) becomes

1−
S−2∑
j=1

pj

α?
S−1−1 ∫ 1

0
zα

?
S−1−1

(1− z)
1−

S−2∑
j=1

pj

α?
S−11−

S−2∑
j=1

pj

 dz
=
1−

S−2∑
j=1

pj

α?
S−1+α?

S−1 ∫ 1

0
zα

?
S−1−1(1− z)α?

S−1dz

=
1−

S−2∑
j=1

pj

α?
S−1+α?

S−1

B
(
α?S−1, α

?
S

)
(5.7)

With the result from equation (5.7), the marginal density pi:

f(pi|α?;n1, n2, . . . , nS) =
B
(
α?S−1, α

?
S

)
B(α?)

∫ 1−pi

0

∫ 1−pi−p1

0
. . .

∫ 1−
∑S−3

j=1 pj

0

S−2∏
j=1

p
α?

j−1
j

1−
S−2∑
j=1

pj

α?
S−1+α?

S−1

dpS−2dpS−3 . . . dp1

(5.8)

We can marginalize out pS−2 by repeating the same process and get

f(pi|α?;n1, n2, . . . , nS) =
B
(
α?S−1, α

?
S

)
B
(
α?S−2, α

?
S−1 + α?S

)
B(α?)

∫ 1−pi

0

∫ 1−pi−p1

0
. . .

∫ 1−
∑S−4

j=1 pj

0

S−3∏
j=1

p
α?

j−1
j

1−
S−3∑
j=1

pj

α?
S+α?

S−1+α?
S−2−1

dpS−3dpS−4 . . . dp1

(5.9)

Note that B
(
α?S−1, α

?
S

)
B
(
α?S−2, α

?
S−1 + α?S

)
= B

(
α?S−2, α

?
S−1, α

?
S

)
. Therefore, by

repeating such iteration, we eventually have

f(pi|α?;n1, n2, . . . , nS) =
B
(
α?−i

)
B (α?) p

α?
i−1
i (1− pi)

(∑S

j 6=i
α?

j

)
−1 (5.10)
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Note that B(α?
−i)

B(α?) = 1
B

(
α?

i ,
∑S

j 6=i
α?

i

) . Hence, the marginal posterior density of pi is a

beta distribution, i.e. pi ∼ Beta(ni + α, n− ni + αS − α). The property of sampling

distribution is obtained.

E(pi) = ni + α

n+ αS
(5.11)

5.1 Bayesian Estimator of Shannon’s Index

The estimator of H: h0 = −∑S
i=1

ni

n
ln
(
ni

n

)
takes the MLE p̂i as the estimator of

frequencies. It has been derived by Basharin (1959) using Taylor expansion that

E (h0) = H − S − 1
2n +O

(
n−2

)
(5.12)

This suggests h0 is not an unbiased estimator of H. Adding S−1
2n could remove the

bias, however, it is not suitable for small sample size especially when rare species is

not observed in sample (Gill and Joanes, 1979). Therefore, Gill and Joanes (1979)

propose a Bayesian estimator of H where the relative abundance pis are estimated

by their posterior mean ni+α
n+αS :

hα = −
S∑
i=1

ni + α

n+ αS
ln
(
ni + α

n+ αS

)
(5.13)

Another approach proposed by Gill and Joanes (1979) is by calculating the posterior

mean of pi ln(pi)

E (pi ln pi) =
∫ 1

0
pi ln pif (pi) dpi
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then

~α =
S∑
i=1

ni + α

n+ αS
{ψ(n+ αS + 1)− ψ (ni + α + 1)} (5.14)

where ψ(x) is the digamma function.

Therefore, given a set of probability p1, p2, . . . , pS, each ni is a binomial distribu-

tion with probability pi. The conditional expectation of these two measures can be

obtained.

E(hα|p1, p2, . . . , pn)

=
S∑
i=1

E
[
ni + α

n+ αS
ln (n+ αS)− ni + α

n+ αS
ln (ni + α)

]

=
S∑
i=1

1
n+ αS

{[E(ni) + α] ln (n+ αS)− E [(ni + α) ln (ni + α)]}

=
S∑
i=1

1
n+ αS

{
(npi + α) ln (n+ αS)−

n∑
r=0

(r + α) ln (r + α)
(
n

r

)
pri (1− pi)n−r

}

=
S∑
i=1

npi + α

n+ αS
ln (n+ αS)− 1

n+ αS

n∑
r=0

(r + α) ln (r + α)
(
n

r

)
S∑
i=1

pri (1− pi)n−r

= ln (n+ αS)− 1
n+ αS

n∑
r=0

(r + α) ln (r + α)
(
n

r

)
S∑
i=1

pri (1− pi)n−r (5.15)

With the same derivation, we can get the conditional expectation of ~α:

E (~α|p1, p2, . . . , pn) = ψ(n+αS+1)− 1
n+ αS

n∑
r=0

(
n

r

)
(α+r)ψ(α+r+1)

S∑
i=1

pri (1− pi)n−r

(5.16)

With Bayesian approach, pi ∼ Beta(ni + α, n − ni + αS − α). Therefore, we derive
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the expectation of two measures:

E (hα)

= E [E(hα|p1, p2, . . . , pn)]

= ln (n+ αS)− 1
n+ αS

n∑
r=0

(r + α) ln (r + α)
(
n

r

)
S∑
i=1

E
[
pri (1− pi)n−r

]

= ln (n+ αS)− 1
n+ αS

n∑
r=0

(r + α) ln (r + α)
(
n

r

)
S∑
i=1

∫ 1

0
pri (1− pi)n−r×

1
B(r + α, n− r + αS − α)p

r+α−1
i (1− pi)n−r+αS−α−1dpi

= ln (n+ αS)− 1
n+ αS

n∑
r=0

(r + α) ln (r + α)
(
n

r

)
S∑
i=1

B(2r + α, 2(n− r) + αS − α)
B(r + α, n− r + αS − α)

= ln (n+ αS)− S

n+ αS

n∑
r=0

(r + α) ln (r + α)
(
n

r

)
B(2r + α, 2(n− r) + αS − α)
B(r + α, n− r + αS − α)

(5.17)

Similarly,

E (~α) = ψ(n+αS+1)− S

n+ αS

n∑
r=0

(r + α)ψ(α+r+1)
(
n

r

)
B(2r + α, 2(n− r) + αS − α)
B(r + α, n− r + αS − α)

(5.18)

Gill and Joanes (1979) evaluate the estimating ability of h0, hα and ~α. It appears

that for small sample size, hα and ~α provide better estimates than h0. As sample

size increases, the standard deviations of hα and ~α experience a increase at first

before decreasing. h0 has the greatest mean square error when the number of species

is large but the sample obtained has small size. They also mention that ~α is slower

to converge and in general, produces larger mean square error than hα.
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5.2 Proposed Bayesian Estimator of Simpson’s In-

dex

Based on the work established previously, we now propose the Bayesian estimator of

Simpson’s index:

dα =
S∑
i=1

(
ni + α

n+ αS

)2
(5.19)

Another approach is to calculate the posterior mean of p2
i .

E
(
p2
i

)
= V ar(pi) + (E(pi))2 = (ni + α)(ni + α + 1)

(n+ αS)(n+ αS + 1)

Therefore,

d̃α =
S∑
i=1

(ni + α)(ni + α + 1)
(n+ αS)(n+ αS + 1) (5.20)
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For a given set of probability p1, p2, . . . , pS, the conditional expectation of dα and d̃α

are derived as following:

E (dα|p1, p2, . . . , pn)

=
S∑
i=1

E

[(
ni + α

n+ αS

)2
]

=
S∑
i=1

1
(n+ αS)2E

(
n2
i + 2niα + α2

)

=
S∑
i=1

1
(n+ αS)2

[
np2

i (n− 1) + npi + 2αnpi + α2
]

=
S∑
i=1

1
(n+ αS)2

[
n(n− 1)p2

i + (2α + 1)npi + α2
]

= n(n− 1)
(n+ αS)2

S∑
i=1

p2
i + n(2α + 1) + α2S

(n+ αS)2

= n(n− 1)
(n+ αS)2D + n(2α + 1) + α2S

(n+ αS)2 (5.21)
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and

E
(
d̃α|p1, p2, . . . , pn

)
=

S∑
i=1

E

[
(ni + α)(ni + α + 1)

(n+ αS)(n+ αS + 1)

]

= 1
(n+ αS)(n+ αS + 1)

S∑
i=1

E
(
n2
i + 2niα + α2 + ni + α

)

= 1
(n+ αS)(n+ αS + 1)

S∑
i=1

{
npi [(n− 1)pi + 1] + 2αnpi + α2 + npi + α

}

= 1
(n+ αS)(n+ αS + 1)

[
S∑
i=1

n(n− 1)p2
i +

S∑
i=1

(2α + 2)npi +
S∑
i=1

α(α + 1)
]

= n(n− 1)
(n+ αS)(n+ αS + 1)

S∑
i=1

p2
i + (2n+ αS)(α + 1)

(n+ αS)(n+ αS + 1)

= n(n− 1)
(n+ αS)(n+ αS + 1)D + (2n+ αS)(α + 1)

(n+ αS)(n+ αS + 1) (5.22)

As shown in (5.21), dα is not an unbiased estimator of D. The bias could be removed

by subtracting n(2α+1)+α2S
(n+αS)2 then multiplying (n+αS)2

n(n−1) . Therefore, the bias-corrected

estimator is

dBCα =
[
dα −

n(2α + 1) + α2S

(n+ αS)2

]
(n+ αS)2

n(n− 1)

=
S∑
i=1

(ni + α)2

n(n− 1) −
n(2α + 1) + α2S

n(n− 1) (5.23)
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Similarly, (5.22) suggests d̃α is not an unbiased estimator of D, therefore, the bias-

corrected estimator is

d̃BCα =
[
d̃α −

(2n+ αS)(α + 1)
(n+ αS)(n+ αS + 1)

]
(n+ αS)(n+ αS + 1)

n(n− 1)

=
S∑
i=1

(ni + α)(ni + α + 1)
n(n− 1) − (2n+ αS)(α + 1)

n(n− 1) (5.24)

5.3 Simulation Study on Proposed Bayesian Esti-

mator of Simpson’s Index

We fix the number of species S = 100 and generate (X1, X2, . . . , XS) from a multino-

mial distribution with corresponding probability p1, p2, . . . , pS that follow a Dirichlet

distribution with parameter α = 0.5. The population size is set to 5000. The sample

size is set to 60, 100 and 200. For each sample, we calculate dα, dBCα , d̃α and d̃BCα .

We also include Simpson’s own estimator λ = ∑S
i=1

ni(ni−1)
n(n−1) and the MLE estimator

dMLE = ∑S
i=1 p̂

2
i . For each estimator, we report the mean and standard error (SE) of

estimates as well as the estimate error (bias and root of mean square error, RMSE).

The result can be found in Appendix B, Table B.7.

As shown in Table B.7, d̃α and λ overall produce good estimate result. The bias,

SE and RMSE produced by these two estimators are small through all three cases

while d̃α always has smaller variance and mean square error than that of λ. For

small sample size (n = 60), dα and d̃BCα show a very poor estimating ability as they

produce large bias and RMSE. As sample size increases, all estimators converge to

true value as we can see there is a drop in bias and RMSE when n increases. dα seems

constantly underestimate D, the bias is reduced after bias correction, however, still
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underestimates D. We can see that dBCα reduces not only the bias, but also RMSE.

The bias-correction method is meaningless for d̃α when sample size is small, the bias

is reduced only in the case where sample size is 200. It is worth noticing that the

variance increases after applying bias correction on dα and d̃α. dMLE overestimates

D and produces the largest bias and RMSE through all three cases.

For large sample size, all estimators present fairly good estimate results except

for dMLE. The inadequacy of dα and d̃BCα appears when the sample size is small. We

can see that d̃α and λ constantly present good performance on estimating D. Our

proposed estimator d̃α is competitive with the estimator λ proposed by Simpson and

slightly outperforms λ because d̃α produce smaller SE and RMSE.

5.4 Estimating Chinese Surname Diversity

We are going to estimate the Chinese surname diversity using estimators we proposed

previously. Again, we set the sample size to 60, 100 and 200, the same estimators in

simulation study are calculated. Simulation study specify the value of parameter α of

Dirichlet distribution. However, in this case study, we are unable to obtain the value

of α. The choice of α for estimating has been discussed by Gill and Joanes (1979).

They point that large value of α would not be suitable as the estimated probabilities

would be very close to 1
S

. Large α smoother the actual distribution. Therefore, they

propose that small values of α are more appropriate. Smaller value of α is applied

when we expect the relative abundances are widely different while greater value of α

is suggested when the relative abundances are fairly equal.

As shown in Figure 2.1, the relative abundance curve suggest a large difference

among Chinese surnames. A value of α between 0 to 1 would be suitable for our case.
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Therefore, we set α to 0.2, 0.5 and 1. The results are presented in Appendix B, Table

B.8 to Table B.10.

When α = 0.2, our proposed estimators overall produce good results. However, dα

and d̃α overestimate D. After bias correction, dBCα and d̃BCα largely reduce bias. The

variance and mean square error produced by dBCα is smaller than that of λ. Moreover,

as sample size increases, the bias produced by dBCα is smaller than that of λ.

When α = 0.5, d̃α shows a very competitive estimating ability with λ. They

produce similar estimate mean while d̃α has smaller variance and mean square error.

d̃BCα does not provide good estimate when sample size is small. dBCα on the other

hand, provides stable estimating results. It produce close estimates as λ, its variance

and mean square error are smaller than that of λ.

It is not suitable to set α = 1 for our case study. Although when sample size is

200, the bias-corrected estimators dBCα and d̃BCα provide very close estimates to the

true value, the proposed estimators overall produce large variance and mean square

error. Moreover, when sample is 60, the negative estimate mean of d̃BCα does not have

any statistical meaning.

It is worth noticing that dMLE overestimate D and produces large mean square

error. Our analysis is consistent with Simpson’s conclusion that it is not suitable to

use MLE estimator for D.
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5.5 Conclusion and Future Work

We derive the distribution of relative abundance pi from Bayesian approach. Under

Bayesian assumption, the relative abundance (p1, p2, . . . , pS) follows Dirichlet distri-

bution with parameter α. The marginal posterior density of pi follows Beta distribu-

tion. Therefore, Gill and Joane (1979) proposed two estimator of H, hα and ~α based

on the sampling distribution of pi. The behaviour of two estimators are well discussed

in Gill and Joanes’s work (1979)[8]. hα in general has better performance than ~α

as it converges faster and produces less mean square error. Overall, both estimators

possess better estimating ability than the MLE estimator h0. Based on their work, we

propose two Bayesian estimators dα and d̃α as well as their bias-corrected estimators

dBCα and d̃BCα . We compare our proposed estimators with Simpson’s estimator λ and

the MLE estimator dMLE. Our simulation study shows that all estimators converge

to true value of D while d̃α and λ present the best performance among all measures.

dα and d̃BCα are not suitable for estimating when the sample size is small. We suggest

not using dMLE as estimator because it overestimates D and produces large RMSE.

d̃α provides as good estimate results as λ with smaller standard error and RMSE. Our

proposed estimators also show a good performance on estimating Chinese surname

diversity. With appropriate choice of α, the proposed estimators are competitive with

λ.

The work established previously is based on the assumption that S is known.

However, in many circumstances, the number of species is unknown. Therefore, S

needs to be estimated before applying diversity estimators. The method of estimating

S is discussed in many literatures such as the work done by Chao et al. (2000).
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The future work could be established based on the Bayesian non-parametric ap-

proach. When S is unknown, Dirichlet process can be applied where the number of

parameters could be set to infinite.
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Figures

Figure A.1: Year to Date Return (H)
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Figure A.2: One Year Annual Return (H)

Figure A.3: Year to Date Return (N1)
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Figure A.4: One Year Annual Return (N1)

Figure A.5: Year to Date Return (N2)
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Figure A.6: One Year Annual Return (N2)

Figure A.7: Year to Date Return (E)
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Figure A.8: One Year Annual Return (E)

Figure A.9: Residual Plot of YTD
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Figure A.10: Residual Plot of One Year Return

Figure A.11: K-medoids Average Silhouette Plot
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Figure A.12: LDA plot
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Appendix B

Tables

Surname Count 10k

王 9520

李 9340

张 8960

刘 6770

陈 6130

杨 4270

黄 3260

吴 2680

赵 2670

周 2520

徐 1930

孙 1830

马 1720

朱 1700

胡 1550

林 1510

郭 1500

何 1400

Surname Count 10k

高 1330

罗 1260

郑 1240

梁 1130

谢 1010

宋 932

唐 917

许 881

邓 821

冯 818

韩 815

曹 791

曾 772

彭 766

萧 739

蔡 701

潘 687

田 685

Surname Count 10k

董 677

袁 667

于 642

余 633

叶 632

蒋 632

杜 619

苏 606

魏 603

程 601

吕 596

丁 576

沈 550

任 547

姚 538

卢 536

傅 536

钟 523

Table B.1: Chinese Surnames
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Surname Count 10k

姜 523

崔 509

谭 499

廖 487

范 485

汪 483

陆 480

金 467

石 455

戴 449

贾 439

韦 430

夏 426

邱 423

方 413

侯 401

邹 394

熊 384

孟 383

秦 379

白 374

江 369

阎 360

薛 347

尹 346

段 320

雷 319

黎 288

史 285

Surname Count 10k

龙 281

陶 274

贺 274

顾 272

毛 264

郝 264

龚 264

邵 262

万 254

钱 249

严 246

赖 240

覃 240

洪 240

武 239

莫 233

孔 231

汤 227

向 226

常 218

温 217

康 211

施 206

文 204

牛 202

樊 200

葛 195

邢 192

安 179

Surname Count 10k

齐 176

易 175

乔 173

伍 171

庞 167

颜 164

倪 163

庄 162

聂 159

章 157

鲁 151

岳 149

翟 149

殷 147

詹 147

申 147

欧 146

耿 140

关 137

兰 134

焦 133

俞 132

左 131

柳 129

甘 126

祝 120

包 115

宁 110

尚 109

Table B.2: Chinese Surnames
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Surname Count 10k

符 109

舒 109

阮 109

柯 106

纪 106

梅 105

童 105

凌 103

毕 103

单 101

季 101

裴 100

霍 100

涂 100

成 100

苗 100

谷 99

盛 98

曲 98

翁 97

冉 97

骆 96

蓝 96

路 95

游 94

辛 92

靳 92

欧阳 91

管 87

Surname Count 10k

柴 86

蒙 83

鲍 82

华 82

喻 81

祁 80

蒲 75

房 75

滕 74

屈 73

饶 73

解 71

牟 70

艾 69

尤 68

阳 67

时 67

穆 64

农 62

司 59

卓 58

古 58

吉 58

缪 57

简 57

车 57

项 57

连 57

芦 57

Surname Count 10k

麦 55

褚 54

娄 53

窦 53

戚 53

岑 52

景 52

党 52

宫 52

费 51

卜 51

冷 50

晏 50

席 48

卫 48

米 46

柏 46

宗 45

瞿 44

桂 44

全 44

佟 43

应 43

臧 43

闵 43

苟 43

邬 42

边 42

卞 42

Table B.3: Chinese Surnames
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Surname Count 10k

姬 42

师 41

和 41

仇 40

栾 40

隋 40

商 39

刁 39

沙 39

荣 38

巫 38

寇 38

桑 37

郎 37

甄 36

丛 36

仲 35

虞 35

敖 35

巩 34

明 34

佘 34

池 34

查 33

麻 33

苑 33

迟 32

邝 32

官 31

Surname Count 10k

封 31

谈 31

匡 30

鞠 30

惠 29.8

荆 28.9

乐 28.8

冀 28.5

郁 28.5

胥 28.5

南 27.7

班 27.3

储 27.2

原 27

栗 26.6

燕 26.4

楚 26.3

鄢 26.3

劳 25.9

谌 24.8

奚 23.1

皮 22.9

粟 22.8

冼 22.8

蔺 22.8

楼 22.8

盘 22.5

满 21.9

闻 21.7

Surname Count 10k

位 20.8

厉 20.6

伊 20.6

仝 20

区 19.9

郜 19.8

海 19.7

阚 19.6

花 19.5

权 19.1

强 19

帅 19

屠 18.9

豆 18.8

朴 18.7

盖 18.6

练 18.5

廉 18.4

禹 18.2

井 17.9

祖 17.7

漆 17.7

巴 17.7

丰 17.6

支 17.3

卿 17.2

国 17.1

狄 16.8

平 16.6

Table B.4: Chinese Surnames

64



M.A.Sc. Thesis - Qiwei Jiang McMaster - Mathematics and Statistics

Surname Count 10k

计 16.5

索 16.5

宣 16.4

晋 16.2

相 16.2

初 15.9

门 15.9

云 15.6

容 15.4

敬 15

来 14.8

扈 14.7

晁 14.6

芮 14.6

都 14.6

普 14.5

阙 14.5

浦 14.4

戈 14.4

伏 14.3

鹿 14

薄 14

邸 13.9

雍 13.9

辜 13.8

养 13.6

阿 13.6

乌 13.5

母 13.5

Surname Count 10k

裘 13.4

亓 13.4

修 13.3

邰 13

赫 12.8

杭 12.8

况 12.4

那 12.4

宿 12.3

鲜 12.2

印 12.1

逯 12.1

隆 12

茹 11.9

诸 11.8

战 11.7

慕 11.5

危 11.2

玉 11.2

银 11.1

亢 11

嵇 10.9

公 10.9

哈 10.7

湛 10.5

宾 10.2

戎 10.1

勾 10.1

茅 10.1

Surname Count 10k

利 10

於 9.9

呼 9.8

居 9.6

揭 9.6

干 9.5

但 9.5

尉 9.4

冶 9.3

斯 9.2

元 9.1

束 9

檀 9

衣 9

信 8.9

展 8.9

阴 8.9

昝 8.7

智 8.7

幸 8.6

奉 8.5

植 8.5

衡 8.4

富 8.4

尧 8

闭 8

由 8

Table B.5: Chinese Surnames
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Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Canadian Equity 59 1 0 0 0

Canadian Fixed Income 0 55 0 5 0

Natural Resources Equity 0 3 2 54 1

Precious Metals Equity 0 60 0 0 0

U.S. Equity 60 0 0 0 0

Table B.6: Cluster Table Hierarchical Clustering

Sample Size Index Mean Bias SE RMSE

60 dα 0.01798876 -0.0069662797 0.001643158 0.007157257

d̃α 0.02414152 -0.0008135167 0.001541163 0.001742016

dBCα 0.02052655 -0.0044284863 0.005616444 0.007150133

d̃BCα 0.01123390 -0.0137211417 0.005315708 0.014713879

λ 0.02517288 0.0002178414 0.005771158 0.005772384

dMLE 0.04142000 0.0164649600 0.005674972 0.017414592

100 dα 0.02040338 -0.0045516620 0.001708147 0.004861325

d̃α 0.02566393 0.0007088940 0.001651763 0.001796696

dBCα 0.02364404 -0.0013110000 0.003882153 0.004095700

d̃BCα 0.02083717 -0.0041178680 0.003779032 0.005587812

λ 0.02504747 0.0000924348 0.003935010 0.003934128

dMLE 0.03479700 0.0098419600 0.003895660 0.010584194

200 dα 0.02245918 -0.0024958560 0.001557916 0.002941764

d̃α 0.02595039 0.0009953544 0.001497514 0.001797509

dBCα 0.02459043 -0.0003646129 0.002446477 0.002472287

d̃BCα 0.02406786 -0.0008871757 0.002426169 0.002582148

λ 0.02485171 -0.0001033315 0.002456800 0.002457745

dMLE 0.02972745 0.0047724100 0.002444516 0.005361491

True Value of D: 0.02495504

Table B.7: Simpson’s Measure of Diversity, 5000 Simulation trials, S = 100
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Sample Size Index Mean Bias SE RMSE

60 dα 0.02828512 0.0016168336 0.004607358 0.004880642

d̃α 0.03836089 0.0116926038 0.004466372 0.012515810

dBCα 0.02627818 -0.0003901043 0.008329686 0.008334655

d̃BCα 0.02276231 -0.0039059800 0.008175731 0.009057175

λ 0.026981356 0.0003130708 0.008360646 0.008362327

dMLE 0.04319833 0.0165300482 0.008221301 0.018459813

100 dα 0.02832784 0.0016595510 0.004145733 0.004463634

d̃α 0.03572555 0.0090572690 0.004070053 0.009928891

dBCα 0.02665867 -0.0000096144 0.006030157 0.006027149

d̃BCα 0.02573081 -0.0009374730 0.005969410 0.006039626

λ 0.02684424 0.0001759573 0.006042373 0.006041914

dMLE 0.03657580 0.0099075149 0.005981949 0.011571810

200 dα 0.02791964 0.0012513570 0.003388078 0.003610193

d̃α 0.03225348 0.0055851920 0.003359644 0.006516924

dBCα 0.02681685 0.0001485662 0.004120176 0.004120794

d̃BCα 0.02673779 0.0000695059 0.004104168 0.004102704

λ 0.02683266 0.0001643782 0.004123389 0.004124604

dMLE 0.03169850 0.0050302150 0.004102772 0.006489913

True Value of D: 0.02666829

Table B.8: Simpson’s Measure of Chinese Surnames, α = 0.2
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Sample Size Index Mean Bias SE RMSE

60 dα 0.01859143 -0.0080768595 0.002389667 0.008422616

d̃α 0.02488458 -0.0017837028 0.002258513 0.002877043

dBCα 0.02258651 -0.0040817738 0.008168071 0.009127516

d̃BCα 0.01379682 -0.0128714631 0.007789957 0.015043182

λ 0.02698136 0.0003130708 0.008360646 0.008362327

dMLE 0.04319833 0.0165300482 0.008221301 0.018459813

100 dα 0.02130114 -0.0053671407 0.002625211 0.005974198

d̃α 0.02676871 0.0001004235 0.002542581 0.002543293

dBCα 0.02568442 -0.0009838659 0.005966388 0.006044020

d̃BCα 0.02336477 -0.0033035124 0.005817117 0.006687167

λ 0.02684424 0.0001759573 0.006042373 0.006041914

dMLE 0.03657580 0.0099075149 0.005981949 0.011571810

200 dα 0.02382411 -0.0028441770 0.002613026 0.003861401

d̃α 0.02758789 0.0009196073 0.002577515 0.002735437

dBCα 0.02673384 0.0000655528 0.004103370 0.004101841

d̃BCα 0.02653619 -0.0001320979 0.004063795 0.004063911

λ 0.02683266 0.0001643782 0.004123389 0.004124604

dMLE 0.03169850 0.0050302150 0.004102772 0.006489913

True Value of D: 0.02666829

Table B.9: Simpson’s Measure of Chinese Surnames, α = 0.5
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Sample Size Index Mean Bias SE RMSE

60 dα 0.012237617 -0.0144306679 0.001051597 0.014468895

d̃α 0.015956988 -0.0107112975 0.000947473 0.010753079

dBCα 0.009401977 -0.0172663077 0.007604768 0.018865313

d̃BCα -0.008177401 -0.0348456862 0.006894606 0.035520556

λ 0.026981356 0.0003130708 0.008360646 0.008362327

dMLE 0.04319833 0.0165300482 0.008221301 0.018459813

100 dα 0.01549573 -0.0111725601 0.001421616 0.011262552

d̃α 0.01925124 -0.0074170413 0.001344969 0.007537880

dBCα 0.02220495 -0.0044633356 0.005743901 0.007271917

d̃BCα 0.01756566 -0.0091026285 0.005461389 0.010613896

λ 0.02684424 0.0001759573 0.006042373 0.006041914

dMLE 0.03657580 0.0099075149 0.005981949 0.011571810

200 dα 0.01946897 -0.0071993184 0.001788455 0.007417921

d̃α 0.02255231 -0.0041159706 0.001748766 0.004471727

dBCα 0.02643736 -0.0002309233 0.004044245 0.004048813

d̃BCα 0.02604206 -0.0006262248 0.003967678 0.004014833

λ 0.02683266 0.0001643782 0.004123389 0.004124604

dMLE 0.03169850 0.0050302150 0.004102772 0.006489913

True Value of D: 0.02666829

Table B.10: Simpson’s Measure of Chinese Surnames, α = 1
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Appendix C

R Output

Output for LDA

Call:

lda(Category ˜ ., data = my_dat, prior = c(1, 1, 1, 1, 1)/5,

subset = train)

Prior probabilities of groups:

Canadian Equity Canadian Fixed Income Natural Resources Equity

0.2 0.2 0.2

Precious Metals Equity U.S. Equity

0.2 0.2

Group means:

Simpson YTD

Canadian Equity 0.76085996 0.021547222

Canadian Fixed Income 0.13511406 -0.008158621
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Natural Resources Equity 0.55126363 -0.046648485

Precious Metals Equity 0.08618181 -0.190464000

U.S. Equity 0.79768729 0.110485185

Coefficients of linear discriminants:

LD1 LD2

Simpson -6.952245 5.706486

YTD -9.839496 -19.325782

Proportion of trace:

LD1 LD2

0.8429 0.1571

Output for Classification Tree

Classification tree:

rpart(formula = testdat$Category ˜ ., data = testdat, subset = train,

method = "class")

Variables actually used in tree construction:

[1] Simpson YTD

Root node error: 160/200 = 0.8

n= 200
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CP nsplit rel error xerror xstd

1 0.25000 0 1.00000 1.13750 0.025295

2 0.23750 1 0.75000 0.90625 0.039467

3 0.21875 3 0.27500 0.63125 0.044192

4 0.01000 4 0.05625 0.11875 0.025917
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Wäschke, N., Wubet, T., Wurst, S. and Rillig, M. C. (2014). Choosing and using

diversity indices: insights for ecological applications from the German Biodiversity

Exploratories Ecology and Evolution, 4 (18), 3514–3524

[15] Pielou, E. C. (1969). An introduction to mathematical ecology. Wiley, 233.

[16] Purvis, A., Hector, A. (2000). Getting the measure of biodiversity. Nature. 405,

212-219.

74



M.A.Sc. Thesis - Qiwei Jiang McMaster - Mathematics and Statistics

[17] Shannon, C. E. (1948). A mathematical theory of communication. The Bell Sys-

tem Technical Journal, 27, 379–423 and 623–656.

[18] Simpson, E. H. (1949). Measurement of diversity. Nature. 163, 688.

[19] Stirling, G., B. Wilsey. (2001). Empirical relationships between species richness,

evenness, and proportional diversity. Am. Nat. 158, 286-299.

[20] Velmurugan, T., Santhanam, T. Performance Analysis Of K-Means And K-

Medoids Clustering Algorithms For A Randomly Generated Data Set International

Conference on Systemics, Cybernetics and Informatics. 578-583.

[21] Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon.

21, 213-251.

75


	Abstract
	Acknowledgements
	Introduction
	Introduction to Diversity Indices
	True Diversity (Nq)
	Simpson's Index (D)
	Shannon's Index (H)
	Berger–Parker Dominance (BP)
	Evenness (E)
	Choice of Indices
	An Example of Application of Diversity Indices
	Material and Method


	Investment Diversity of Mutual Fund
	Material and Method
	Conclusion

	Discrimination Using Diversity Indices
	Material and Method
	K-means Clustering
	K-medoids Clustering
	Linear Discriminant Analysis (LDA)
	Classification Tree

	Conclusion

	Bayesian Approach to Shannon's Index and Simpson's Index
	Bayesian Estimator of Shannon's Index
	Proposed Bayesian Estimator of Simpson's Index
	Simulation Study on Proposed Bayesian Estimator of Simpson's Index
	Estimating Chinese Surname Diversity
	Conclusion and Future Work

	Figures
	Tables
	R Output

