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Abstract 

Hazardous materials (hazmat), such as crude oil and gasoline, are harmful to 

humans and the environment because of their toxic ingredients, but their 

transportation is integral to sustain our industrial lifestyle.  In North America, a 

significant portion of hazmat shipments is moved via the railroad network. Rail 

hazmat incidents are rare though the consequences could be catastrophic. The low 

probability–high consequence nature of such events mandate that a risk-averse plan 

be implemented for routing hazmat shipments.  

We propose a value-at-risk (VaR) and conditional value-at-risk (CVaR) 

methodology to route rail hazmat shipments, using the best train configuration, over 

a given railroad network with limited number of train services, such that the 

transport risk is minimized. Freight train derailment records of the Federal Railroad 

Administration (FRA) were analyzed to model the behavior of railroad accidents, 

and to estimate their conditional probabilities. The proposed methodologies were 

used to study several problem instances generated using the realistic network of a 

railroad operator in Midwest United States, and to demonstrate that they are 

superior to the existing risk measures in the literature in regard to providing risk-

averse routing of hazmat shipments and being versatile enough to yield various 

routes based on the risk preferences of decision makers. 

Next, we propose a CVaR model, as a risk-averse routing plan for multiple rail 

hazmat shipments and multiple origin-destinations pairs, such that the total transport 

risk in the railroad network as measured by CVaR is minimized. However, it may 

happen that certain links and yards of the railroad network tend to be overloaded with 

hazmat traffic and risk. To overcome this issue, we also promote equity in the spatial 

distribution of risk. Therefore, the main problem is to find minimum risk routes, while 

limiting and equitably spreading the risk in any zone where the railroad network is 

embedded. The problem is mathematically formulated, and a heuristic algorithm is 

proposed for its solution, which takes into consideration the risk load limits on arcs 

and transferring yards and spreads the risk equitably throughout the network. 

Moreover, a lower bound based on a Lagrangian relaxation of the mathematical 

formulation is also provided. Finally, several computational experiments are 

developed using the above realistic railroad network. 

 



iv 
 

Acknowledgements 

I would like to extend my profound gratitude to my supervisor, Dr. Manish Verma, 

for his unceasing kindness, support, encouragement, and guidance throughout the 

course of my PhD program. His insight and expertise in the field as well as 

constructive comments and recommendations played an important role in the progress 

of the thesis.    

I would also like to acknowledge the support of my supervisory committee 

members, Dr. Prakash Abad and Dr. Kai Huang, as well as the other two professors 

in the Operations Management area, Dr. Mahmut Parlar and Dr. Elkafi Hassini, whose 

doctoral courses helped me improve he quality of this thesis.   

Lastly, my grateful thanks go to every single member of my loving family in 

Iran. This work would never have been completed without the whole-hearted support 

provided by them during my whole life. There is no word that can describe how 

grateful I am to them. Special thanks are due to my beloved wife, Elham, who has 

always been a source of inspiration for me. 



v 
 

Table of Contents 

Chapter 1. Introduction .................................................................................................... 1 

Chapter 2. Literature Review .......................................................................................... 6 

Chapter 3. A Value-at-Risk (VaR) Approach to Routing Rail Hazmat Shipments .. 12 

3.1 Introduction ..................................................................................................... 12 

3.2 Railroad Transportation System ................................................................... 13 

3.3 Value-at-risk (VaR) Measure ......................................................................... 16 

3.4 Parameter Estimation ..................................................................................... 27 

3.5 Train Configuration Setting ........................................................................... 30 

3.6 Case Study ....................................................................................................... 32 

3.7 Computational Experiments .......................................................................... 33 

3.7.1. An Illustrative Example .......................................................................... 33 

3.7.2. Solution to Problem Instances................................................................ 40 

3.7.3. Analysis and Insights .............................................................................. 43 

3.8 Conclusion ....................................................................................................... 54 

3.9 Appendix .......................................................................................................... 56 

Chapter 4. A Conditional Value-at-Risk (CVaR) Methodology to Optimal Train 

Configuration and Routing of Rail Hazmat Shipments .............................................. 58 

4.1 Introduction ..................................................................................................... 58 

4.2 Conditional value-at-risk (CVaR) Methodology .......................................... 61 

4.2.1. Definition.................................................................................................. 61 

4.2.2. Proposed approach ................................................................................. 65 

4.2.3. Relations ................................................................................................... 68 

4.2.4. Examples .................................................................................................. 69 

4.2.5. Properties ................................................................................................. 72 

4.2.6. Optimization Program ............................................................................ 78 

4.2.7. Parameter Estimation ............................................................................. 81 

4.2.8. Train Configuration Setting ................................................................... 81 

4.3 Computational Experiments .......................................................................... 82 

4.3.1 Problem setting ........................................................................................ 82 

4.3.2 Solution .................................................................................................... 83 



vi 
 

4.3.3 Analyses and insights .............................................................................. 93 

4.4 Conclusion ..................................................................................................... 104 

Chapter 5. Routing Plan for Multiple Rail Hazmat Shipments with Optimal 

Conditional Value-at-Risk (CVaR) and Risk Equity ................................................. 106 

5.1 Introduction ................................................................................................... 106 

5.2 Problem Description ..................................................................................... 110 

5.2.1. Railroad Transportation System ......................................................... 110 

5.2.2. CVaR for Rail Hazmat Shipment ........................................................ 114 

5.2.3. Risk Equity for Rail Hazmat Shipment .............................................. 116 

5.3 Optimization Program .................................................................................. 118 

5.3.1. Lagrangian Relaxation Method ........................................................... 119 

5.3.2. Subgradient Search Algorithm ............................................................ 123 

5.3.3. A Heuristic Algorithm for 𝒌-minimal CVaR Paths Determination . 125 

5.4 Computational Analysis ............................................................................... 129 

5.4.1. Role of Train Service Design ................................................................ 131 

5.4.2. Risk Equity Analysis ............................................................................. 133 

5.4.3. Optimality Evaluation of Solution Values .......................................... 147 

5.5 Conclusion ..................................................................................................... 149 

Chapter 6. Conclusion and Future Research ............................................................. 152 

References ...................................................................................................................... 158 

 

 



vii 
 

List of Figures 

Figure 3.1 ……………………………………………………………………………… 20 

Figure 3.2 ……………………………………………………………………………… 27 

Figure 3.3 ……………………………………………………………………………… 33 

Figure 3.4 …………………………………..………………………………………….. 39 

Figure 3.5 ………………………………………………...……………………………. 46 

Figure 3.6 …………………………………………………………………...…………. 48 

Figure 3.7 …………………………………………………………………..………….. 49 

Figure 4.1 …………………...……………………………...………………………….. 60 

Figure 4.2 ……………………...…………………………………...………………….. 62 

Figure 4.3 …………………………………………………..….………………………. 65 

Figure 4.4 ……………………………………………………………………………… 70 

Figure 4.5 ……………………………………...………………………………………. 71 

Figure 4.6 ………………………………………………...……………………………. 72 

Figure 4.7 ……………………………………………………………………………… 83 

Figure 4.8 …………………………………………...…………………………………. 91 

Figure 4.9 ……………………………………………..……………………………….. 92 

Figure 4.10 …………………………………………….………………………………. 96 

Figure 4.11 …………………………………..………………………………………… 99 

Figure 4.12 ……………………………………..…………………………………….. 104 

Figure 5.1 ………………………………………………………..…………………… 130 

Figure 5.2 …………………………………………………………………………….. 132 

Figure 5.3 …………………………………………………………………………….. 135 

Figure 5.4 …………………………………………………..………………………… 138 

Figure 5.5 ………………………………………………….…………………………. 139 

Figure 5.6 ……………………..……………………………………………………… 142 

Figure 5.7 ………………………………………………….…………………………. 145 

Figure 5.8 …………………………………………………………………………….. 146 

Figure 5.9 …………………………………………………………………………….. 146 

Figure 5.10 ……………………………………………………..…………………….. 148 

 



viii 
 

List of Tables 

Table 3.1 ………………………………..……………………………………………… 28 

Table 3.2 …………………………………………………………………..…………… 28 

Table 3.3 ……………………………………………………………………………….. 34 

Table 3.4 …………………………………………………………………….…………. 35 

Table 3.5 ……………………………………………………………………………….. 35 

Table 3.6 ……………………………………………………………………..………… 37 

Table 3.7 ……………………………………………………………………………….. 38 

Table 3.8 ………………………………………………………….……………………. 38 

Table 3.9 ……………………………………………………………………………….. 40 

Table 3.10 ……………………………………………………...………………………. 42 

Table 3.11 ……………………………………………………..……………………….. 43 

Table 3.12 ……………………………………………………………………………… 45 

Table 3.13 ………………………………………………………………...……………. 49 

Table 3.14 …………………………………………………………...…………………. 51 

Table 3.15 ……………………………………………………………..……………….. 52 

Table 4.1 ……………………………………………………………………..………… 85 

Table 4.2 ……………………………………………………………………..………… 88 

Table 4.3 ……………………………………………………………………..………… 88 

Table 4.4 ……………………………………………………………………..………… 89 

Table 4.5 ……………………………………………………………………..………… 90 

Table 4.6 ……………………………………………………………………..………… 90 

Table 5.1 …………………..…………………………………………………..……… 149 



ix 
 

Declaration of Academic Achievement 

This thesis has already resulted in two publications listed below. Currently, we are 

working on the outcomes of Chapter 5 to be submitted to another top-tier journal. 

 

• SD Hosseini, M Verma. Conditional Value-at-Risk (CVaR) Methodology to 
Optimal Train Configuration and Routing of Rail Hazmat Shipments. 
Transportation Research Part B: Methodological 2018; 110: 79-103.  

 

• SD Hosseini, M Verma. A Value-at-Risk (VaR) Approach to Routing Rail 
Hazmat Shipments. Transportation Research Part D: Transport and 
Environment 2017; 54: 191-211.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

1 

 

Chapter 1. Introduction 

Hazardous materials (hazmat), as defined by the U.S. Department of Transportation 

Pipeline and Hazardous Materials Agency (2007), are substances or materials 

capable of posing an unreasonable risk to health, safety, or property when 

transported in commerce. Hazmat, such as crude oil and gasoline, are harmful to 

humans and the environment because of their toxic ingredients, but their 

transportation is integral to sustain our industrial lifestyle.  In North America, a 

significant portion of the hazmat shipments is moved via the railroad network.  

Based on the latest commodity flow survey for 2012, railroad carried around 111 

million tons of hazmat in the United States (U.S. Department of Transportation, 

2015), whereas the number for Canada was 26 million tons (Searag et al., 2015).  It 

may appear that railroads are not the predominant mode for surface transportation 

of hazmat, but they are almost always preferred to move shipments over long 

distances. In fact, in the United States, railroads account for around 29% of hazmat 

movement in ton-miles compared to 32.2% for trucks, which in turn translated into 

a 27.9% increase from 2002 (Bagheri et al., 2014). The quantity of hazmat traffic 

on railroad networks has been increasing steadily since 2009, in large part due to 

the need to move crude oil shipments from the Bakken shale formation region in 

the United States and Canada to the refineries along the southern and eastern coast 

of the continent, and the increased utilization of intermodal transportation to move 

chemicals (AAR, 2014; CAPP, 2014).   
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Railroad is one of the safest modes for transporting hazmat, but the possibility 

of spectacular events resulting from multicar incidents, however small, does exist 

(Verma and Verter, 2013).  Most recently, as an example of the possible catastrophe 

associated with rail hazmat shipments, the Lac-Mégantic (Quebec) freight train 

derailment tragedy, in July 2013, resulted in 47 deaths and mass evacuation of 2,000 

persons, equivalent to one-third of the town's population. 63 tank cars derailed, 

many ruptured and escaping crude oil ignited, leading to a succession of powerful 

explosions which destroyed much of the downtown core. The perforated tank cars 

disgorged an estimated 6 million liters of oil, much of which caught fire and burned, 

or seeped into the soil, but about 100,000 liters spilled into the waters. In fact, 

around 125 train accidents involving release from multiple tank cars have been 

reported over the past decade in the United States, which translates into an average 

of seven accidents every year (FRA, 2014). Verma (2011) collected information on 

freight derailment from 1995 to July 2009 (FRA, 2010) and analyzed around 25,000 

derailment instances to conclude that the five main causes of train accidents are as 

follows: Human factors (39%), track, roadbed, and structures (30%), mechanical 

and electrical failures (10%), signal and communication (2%), and finally 

miscellaneous causes (19%). It is important to note that, over the past four decades, 

the railroad industry has spent considerable effort in reducing the frequency of tank 

car accidents as well as the likelihood of releases in the event of an accident.  The 

more recent academic and industry initiatives have focused on analyzing past 

accident data in an effort to increase railroad safety by improving rail-tracks or 
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railcar tank designs; and, on the development of risk assessment methodologies that 

incorporate the specific nature of railroad shipments. 

Though the last decade has witnessed the development of risk assessment 

methodologies that incorporate specific nature of railroad shipments, most of the 

risk assessment methodologies for hazmat shipments were developed in the 

highway domain, and given the low probability –high consequence nature of rail 

hazmat incidents, their efficacy is rather limited.  For example, the most popular 

measure of hazmat risk viz., expected consequence is risk neutral, and hence would 

be unable to prevent high consequence events.  In addition, all the existing risk 

assessment measures developed within the railroad domain yield a single route 

between a given origin-destination pair, which is not suitable from the perspective 

of a regulator interested in not overloading any segment or part of the network.  

Thus, there is a need for a risk assessment methodology that cannot only ensure 

risk-averse routing of rail hazmat shipments, but also incorporate the risk tolerance 

of the decision maker to generate multiple routes between a given origin-destination 

pair.   

We make the first attempt to fill that gap by developing a Value-at-Risk (VaR) 

and Conditional Value-at-Risk (CVaR) risk assessment methodology to facilitate 

simultaneously risk-averse and flexible routing of rail hazmat shipments. VaR and 

CVaR as measures of risk have their origin in the portfolio management area of 

finance, but have found applications outside finance and economics such as 
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agriculture (Prruzo et al., 2003), and for highway hazmat shipments (Kang et al., 

2014a; Kwon 2011). Unlike the other existing approaches for rail hazmat routing, 

VaR and CVaR are able to generate alternative route choices given different 

confidence levels, instead of a single optimal route output. In other words, 

depending on the decision makers’ attitude to risk, multiple planning decisions can 

be made according to each individual risk preferences.  In addition, while most 

existing hazmat routing methods study the entire risk distribution, these new 

models, especially CVaR, focus more on the long tail to avoid extreme events 

(catastrophic rail hazmat accidents), which is more reasonable for rail hazmat 

transportation. 

The rest of the proposal is organized as follows.  Chapter 2 reviews the 

relevant literature, while Chapter 3 comprises an outline of the railroad 

transportation system and a detailed discussion of the proposed VaR methodology.  

It also describes the case study and the parameter estimation technique used in both 

chapters 3 and 4. Then it presents the solution and analyses gained from solving 

several problem instances. Finally the chapter throws light on the performance of 

the proposed methodology vis-à-vis the three most popular measures of hazmat risk 

in railroad transportation. Chapter 4 contains a detailed discussion about the 

proposed CVaR methodology.  Several problem instances are then solved and 

analyzed to gain insights and the results are compared with those of Chapter 3.  

Finally, in Chapter 5, we extend the work of Chapter 4 and adapt the developed 

CVaR methodology to be applied to the more realistic case where there are multiple 
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origin-destination and multiple hazmat shipments in the railroad network. 

Additionally, we address the risk equity constraints in the proposed optimization 

model in order to avoid risk congestion in specific rail arcs and transferring yards 

of the network.   
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Chapter 2. Literature Review  

Although railroads move a significant quantity of hazmat both in the United States 

and in Canada, which has translated into increased research over the past decade, 

an overwhelming majority of academic initiatives in the preceding periods focused 

on road shipments (Erkut et al. 2007). The tremendous strides made in the highway 

domain, unfortunately, could not be extended to railroads because of differences 

between the two modes. For example, a train usually carries both regular and 

hazmat cargo together, whereas these two are almost never mixed in a truck 

shipment. Secondly, a rail tank car has roughly three times the capacity of a truck-

tanker, and the number of hazmat railcars varies significantly among different 

trains. The resulting variability in the total amount of hazmat needs to be taken into 

account in assessing the rail transport risk, wherein railroads typically have much 

less routing flexibility compared to trucks. Finally, hazmat incidents involving 

freight trains could entail content-release from multiple railcars (Verma and Verter, 

2013). For example, in the United States, between 1995 and 2009, around 120 train 

accidents resulted in release from multiple tank cars, which translates into an 

average of eight accidents every year (FRA, 2010). In December 1999, Canadian 

National Ultratrain released 2.7 million liters of petroleum products due to the 

derailment of 35 tank cars just outside Montreal. Thirty cars were seriously 

punctured and had to be demolished at the accident site (Railway Investigation, 

2002). Thus, a train accident can have more severe consequences than those 
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involving trucks, mainly due to the higher volumes of hazmat being shipped and 

the interaction between railcars. 

Though the last few years have witnessed the development of risk assessment 

methodologies that incorporate the specific nature of railroad shipments, they were 

preceded mostly by works focusing on accident rate analysis. Glickman and 

Rosenfield (1984) used past train derailment data to derive three forms of risk: the 

probability distribution of the number of fatalities in a single accident; the 

probability distribution of the total number of fatalities from all the accidents in a 

year; and, the frequency of accidents that result in any given number of fatalities. 

On the other hand, Barkan et al. (2003) conducted a statistical analysis of the 

railroad accident data to conclude that the speed of derailment and the number of 

derailed cars are highly correlated with hazmat release, and then proposed 

estimating direct and conditional probabilities in conducting risk analysis 

(Anderson and Barkan, 2004). While these engagements made use of empirical data 

for insights and conclusions, the recent efforts geared towards developing 

assessment methodologies (Verma and Verter, 2013). 

There are two groups of decision makers in hazmat transportation viz., hazmat 

carriers and regulatory agencies.  The former group considers each hazmat 

shipment independently, and thus their objective is to seek the least risky path 

through the network in question between a given origin and destination.  Erkut et 

al. (2007) and Bianco et al. (2013) review the pertinent papers for highway hazmat 
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shipments.  The second group on the other hand consider shipments between 

multiple origins and destinations, and thus strive to regulate hazmat risk for the 

entire network.  To that end, several policies can be employed by the authorities 

such as restricting hazmat carriers from using certain road segments (Bianco et al., 

2009; Dadkar et al., 2010, Erkut and Alp, 2007; Erkut and Gzara, 2008; Kara and 

Verter, 2004) and/or diverting hazmat carriers to less risky areas by assigning tolls 

to road segments (Bianco et al., 2016; Esfandeh et al., 2016; Marcotte et al., 2009; 

Wang et al., 2012).   

In an effort to appropriately position the proposed works in the context of the 

existing literature, we organize the pertinent published works under two themes: 

first, risk assessment efforts specific to rail hazmat shipments; and second, peer 

reviewed engagements dealing with catastrophe avoidance (i.e., high consequence).   

Risk assessment for rail hazmat shipments:  Risk is most commonly defined 

as the product of the probability and the consequence of an undesirable event, and 

is referred to as traditional risk (TR).  Bubbico et al. (2004a, b) made use of the 

traditional risk approach to study rail hazmat shipments in Italy, but ignored the 

characteristics of railroad accidents, i.e., sequence of events resulting in release 

from a railcar, and the possibility of multiple sources of release.  Subsequently, 

Verma (2011) outlined an approach that incorporated hazmat release from multiple 

sources and where conditional derailment probabilities for different positions along 

the train length were approximated based on the ten deciles.  However, the most 
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recent efforts have strived to incorporate position-specific derailment probabilities 

in the determination of hazmat risk (Bagheri et al., 2014; Cheng et al., 2016).  It is 

important that there are two challenges with using the traditional risk approach: 

first, dearth of reliable data often limits its usage; and second, it cannot be used to 

prepare risk-averse routes.   

Researchers attempted to overcome the first challenge by focusing either on 

the probability or on the consequence of hazmat incidents.  The first group proposed 

incident probability (IP) as the measure of risk, in the highway context, which is 

appropriate for hazmat with relatively small danger zones (Saccomanno and Chan, 

1985; Abkowitz et al. 1992).  Consequently the assessment methodology adapted 

for railroads incorporated the pertinent operational characteristics, and endeavored 

to determine the best position to place hazmat railcars such that in-transit risk is 

minimized (Bagheri et al. 2011). To that end, the proposed framework recommends 

assigning hazmat railcars to those positions along the train that have the lowest 

probability of derailing along the different route segments, which could be done by 

making use of service engines at the rail marshaling yards. Clearly this measure 

ignores consequence and is not suitable for capture the low probability –high 

consequence feature of rail shipments.  The second group focused on the total 

number of people exposed to the possibility of an undesirable consequence, and 

proposed population exposure (PE) as the measure of risk. For example, according 

to the Emergency Response Guidebook (ERG, 2012), 800 m around a fire that 

involves a chlorine tank, railcar or tank-truck must be isolated and evacuated. 
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Therefore, the people within the predefined threshold distance from the railroad are 

exposed to the risk of evacuation. This fixed bandwidth approach was originally 

suggested by Batta and Chiu (1988), and ReVelle et al. (1991) for highway 

shipments, and was subsequently adapted for rail hazmat shipments in Verma and 

Verter (2007).  It is important that, in contrast with the traditional “average” risk 

measure, population exposure constitutes a “worst-case” approach to transport risk. 

Though it yields conservative routes, it fails to provide multiple routes to cater to 

the varying levels of risk-tolerance of the decision makers.   

Catastrophic avoidance: The second challenge associated with traditional 

risk approach is the failure to capture the public posture against hazmat shipments, 

i.e., it is risk-neutral.  Abkowitz et al. (1992) made the first attempt to overcome the 

challenge by proposing a perceived risk (PR) model for highway hazmat shipments, 

where risk-averseness was incorporated via a consequence perception factor.  

However, the value of the perception factor is difficult to both understand and 

quantify.  Subsequently, Erkut and Ingolfsson (2000) analyzed three catastrophic 

avoidance models for highway hazmat shipments–i.e., maximum risk (MM); mean-

variance (MV); and, disutility (DU).  The objective of the MM model is to minimize 

the maximum consequence of the path in order to avoid significant damages and 

casualties, while the MV approach is primarily used to perform trade-off between 

risk and return of an investment portfolio.  Finally, by placing more importance on 

each incremental life lost, the DU approach makes use of utility theory to conduct 

risk-averse routing of highway hazmat shipments.  It is important to note that these 
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models depend on the historical data about one or more input parameters, and often 

result in a unique optimal highway route irrespective of the risk preference of the 

decision maker. Most recently, Kang et al. (2014a, b) made the first attempt to 

incorporate risk preference of the decision maker, and proposed a value-at-risk 

model for highway hazmat shipments.   

To sum, to the best of our knowledge, there is an absence of risk-averse 

assessment methodology for rail hazmat shipments though a number of efforts are 

noticeable in the highway domain.  In light of the demonstrated advantage of the 

value-at-risk model over other catastrophic avoidance techniques (Kang et al. 

2014a), we make the first attempt to develop a VaR-based risk assessment 

framework for rail hazmat shipments.  It is important that the proposed framework 

is distinct from that in Kang et al. (2014a) in the following ways: first, 

characteristics of railroad accidents –i.e., sequence of events resulting in release 

from railcar, derailment and conditional probabilities of release; and the possibility 

of multiple sources of release, need to be incorporated; second, unlike highway 

shipments, one has to work with only the pre-defined train services to move 

shipments, which may involve transfer operations at rail yards; third, optimal train 

configuration to move shipments are determined. Thus, the proposed methodology 

is more complex as it captures the dynamics of railroad transportation as outlined 

in Chapter 3, in contrast to the routing of a one hazmat truck between a given origin-

destination pair.   
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Chapter 3. A Value-at-Risk (VaR) Approach to Routing 

Rail Hazmat Shipments 

3.1 Introduction 

Given the low probability –high consequence nature of rail hazmat shipments, the 

efficacy of the existing risk assessment measures developed within the railroad 

domain is rather limited, because they either are risk neutral, and hence would be 

unable to prevent high consequence events, or yield a single route between a given 

origin-destination pair, which is not suitable from the perspective of a regulator 

interested in not overloading any segment or part of the network.  Thus, there is a 

need for a risk assessment methodology that cannot only ensure risk-averse routing 

of rail hazmat shipments, but also incorporate the risk tolerance of the decision 

maker to generate multiple routes between a given origin-destination pair.   

We make a first attempt to develop a Value-at-Risk (VaR) assessment 

methodology to facilitate risk-averse routing of rail hazmat shipments. This chapter 

has a three-fold contribution: first, this is the first work that incorporates the 

characteristics of railroad accidents, and then outlines a VaR-based assessment 

methodology to measure risk from rail hazmat shipments; second, this is the only 

effort that proposes a  optimization program to route hazmat shipments over a given 

railroad network using the optimal train configuration; and third, this is the only 

work that demonstrates that the proposed methodology not only facilitates risk-
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averse routing of rail hazmat shipments, but can also yield distinct routes based on 

the risk preference (or tolerance) of the decision makers.    

The rest of the chapter is organized as follows. To facilitate exposition, 

Section 3.2 briefly outlines a railroad transportation system and introduces the 

relevant notations, which are then used to develop the Value-at-Risk (VaR) 

methodology in detail in the subsequent section, Section 3.3.  Section 3.4 outlines 

the parameter estimation technique.  The method to find and use the best train 

configuration setting is explained in Section 3.5, followed by the description of the 

case study in Section 3.6. Section 3.7 presents the solution and analyses gained from 

solving several problem instances, and then throws light on the performance of the 

proposed methodology vis-à-vis the three most popular measures of hazmat risk.  

Finally, conclusion and directions of future research are outlined in Section 3.8. 

Also a detailed explanation for calculating the TR model is provided in Section 3.9 

as the appendix. 

3.2 Railroad Transportation System 

A rail transportation system can be represented via a network, whose nodes 

represent yards (or stations) and arcs represent tracks (or service legs) on which 

trains carry freight (or passengers). A sequence of service legs and intermediate 

yards constitute a route available to a railcar for its journey (Verma et al., 2011), 

which is completed using the finite number of train services available in the 

network.  The objective is to transport a specific number of railcars including some 
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with hazmat (N) between a given origin-destination yards.  Clearly, hazmat railcars 

pose an inherent risk of releasing the dangerous contents following an accident on 

the tracks or in the yards. Let 𝐺 = (𝒴,𝒜, 𝑆) show the rail network, where 𝒴 is the 

set of yards, 𝒜 is the set of service legs, and 𝑆 is the set of available train services.  

We assume that each service leg and each yard has two attributes: probability that 

a hazmat railcar meets with an accident; and, the resulting consequence.  We define 

the following notations:   

𝒴: Set of yards, indexed by 𝑖, 𝑗, 𝑘 

𝒜: Set of service legs, indexed by (𝑖, 𝑗) 

𝑆: Set of train services, indexed by 𝑠 (and/or 𝑠́) 

𝒴𝑠: Set of yards for train service 𝑠, indexed by 𝑖𝑠, 𝑗𝑠, 𝑘𝑠 

𝒜𝑠: Set of service legs for train service 𝑠, indexed by (𝑖𝑠, 𝑗𝑠) 

𝑁: Number of hazmat railcars to be shipped 

𝑝𝑘: Probability of hazmat incident in yard 𝑘  

𝑝𝑖𝑗: Probability of hazmat incident on arc (𝑖, 𝑗) 

𝑐𝑘: Consequence from 𝑁 hazmat railcars accident in yard 𝑘 

𝑐𝑖𝑗: Consequence from 𝑁 hazmat railcars accident on arc (𝑖, 𝑗) 

It is pertinent that although it is possible to compute position-specific 

derailment probability, such numbers do not have much use since freight train-

lengths vary.  Hence, we compute derailment probabilities based on the ten deciles 

of the train (i.e., the length of the train is divided into 10 equal parts).  Conceivably, 
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a decile-based approach should result in better analysis, but only if train-lengths are 

similar (or constant).  We make use of the information presented in Bagheri (2009) 

that freight-trains with up to 40 railcars be called short; between 41 and 120, 

medium; and, the rest long.  Thus, for similar train lengths, we define the positive 

integer 𝑦𝑟 as the number of hazmat railcars in decile r of the train.  Thus, ∑ 𝑦𝑟
10
𝑟=1 =

𝑁, where 𝑦𝑟 ≤
train length

10
.  Hence, 𝑝𝑖𝑗 and 𝑝𝑘 would be determined as follows: 

 𝑝𝑖𝑗 = 𝑃(𝐴𝑖𝑗) ×∑𝑦𝑟 × (𝑃(𝐷
𝑟|𝐴𝑖𝑗) × 𝑃(𝐻|𝐷

𝑟 , 𝐴𝑖𝑗) × 𝑃(𝑅|𝐻,𝐷
𝑟 , 𝐴𝑖𝑗))

10

𝑟=1

 (3.1) 

 𝑝𝑘 = 𝑃(𝐴𝑘) ×∑𝑦𝑟 × (𝑃(𝐷
𝑟|𝐴𝑘) × 𝑃(𝐻|𝐷

𝑟, 𝐴𝑘) × 𝑃(𝑅|𝐻, 𝐷
𝑟, 𝐴𝑘))

10

𝑟=1

 (3.2) 

where 𝑃(𝐴𝑖𝑗) (or 𝑃(𝐴𝑘)) is the probability that a train meets with an accident on 

service leg (𝑖, 𝑗)  (or at yard 𝑘 ); 𝑃(𝐷𝑟|𝐴𝑖𝑗) (or 𝑃(𝐷𝑟|𝐴𝑘)) is the probability of 

derailment of a railcar in the 𝑟th decile of the train given the accident on service leg 

(𝑖, 𝑗) (or at yard 𝑘); 𝑃(𝐻|𝐷𝑟 , 𝐴𝑖𝑗) (or 𝑃(𝐻|𝐷𝑟 , 𝐴𝑘)) is the probability that a hazmat 

railcar derailed in the 𝑟th decile of the train given the accident on service leg (𝑖, 𝑗) 

(or at yard 𝑘); 𝑃(𝑅|𝐻, 𝐷𝑟 , 𝐴𝑖𝑗) (or 𝑃(𝑅|𝐻, 𝐷𝑟 , 𝐴𝑘)) is probability of release from a 

hazmat railcar derailed in the 𝑟th decile of the train given the accident on service leg 

(𝑖, 𝑗) (or at yard 𝑘).   

Finally, the consequence, i.e., 𝑐𝑖𝑗 and 𝑐𝑘, would be estimated as the 

population exposure due to the release from 𝑁 hazmat railcars given the accident 
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on service leg (𝑖, 𝑗) and at yard 𝑘, respectively.  It should be evident that the both 

the probability of a hazmat railcar meeting with an accident in a yard and the 

resulting consequence are pertinent only if a yard operation is being performed on 

the hazmat railcars.  We elaborate on the parameter estimation technique in Section 

3.4.   

3.3 Value-at-risk (VaR) Measure 

As alluded we propose a VaR based assessment methodology to measure hazmat 

risk from rail shipments, and a optimization model to route them over the given 

network.  VaR is a sophisticated risk measurement tool widely used in portfolio 

management (Sarykalin et al., 2008), and has found applications outside finance 

and economics including routing highway hazmat shipments (Kang et al., 2014a, 

b).  However, there are two important differences between standard VaR models in 

finance, and the hazmat application.  First, the standard VaR models in finance 

express both the investment and the loss in the same units, say dollars.  This is in 

contrast to the hazmat routing application, where the input (or investment) is the 

route and consequence (i.e., number of people exposed) is the loss.  Second, losses 

in portfolio management domain are additive, whereas in hazmat transportation the 

risk of each road segment in a path is non-additive (Toumazis et al., 2013).  We 

next outline the VaR-based risk assessment methodology for rail hazmat shipments.   

For expositional reasons, we first compute VaR for a pre-specified route 

between a pair of railyards representing an origin and a destination for rail 
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shipments, and then present the optimization program that could be used to 

determine the best route through the given railroad network.   

VaR for a pre-specified route l:  Let 𝑅𝑙 denote the discrete random variable for 

the risk along route 𝑙.  The probability of 𝑅𝑙 not exceeding a threshold 𝛽 is then 

given by:  

𝐹𝑅𝑙(𝛽) = Pr(𝑅
𝑙 ≤ 𝛽). 

where, 𝐹𝑅𝑙(𝛽) is the cumulative distribution function (CDF) for hazmat risk along 

route 𝑙, which completely determines the behavior of the random variable 𝑅𝑙 and is 

fundamental in defining VaR (Rockafellar and Uryasev 2000).  For a specific 

confidence level 𝛼  in (0,1),  the 𝛼 -VaR value for the risk associated with the 

random variable for route 𝑙 will be denoted by VaR𝛼
𝑙 , and given by: 

 VaR𝛼
𝑙 = min{𝛽 | 𝐹𝑅𝑙(𝛽) ≥ 𝛼} (3.3) 

or 

 VaR𝛼
𝑙 = min{𝛽 | Pr(𝑅𝑙 ≤ 𝛽) ≥ 𝛼} (3.4) 

That is, VaR is the minimal threshold level 𝛽 such that the hazmat risk 𝑅𝑙 does not 

exceed  𝛽 with the least probability of  𝛼 .  In fact, VaR shows the population 

exposure that a route is expected to cause with a given probability (α). For example, 

a route that is expected to cause no more than 1,000 casualties 95% of the time, has 

a VaR of 1,000 with confidence level 0.95. On the downside, 5% of the time the 

route is expected to cause at least 1,000 casualties. Therefore, in order to 
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calculate  VaR𝛼
𝑙 , we first need to specify the values that 𝑅𝑙  can take and then 

calculate the cumulative distribution function 𝐹𝑅𝑙(𝛽).   

Consider a specific route l that uses T (of the S) train services for transporting 

N hazmat railcars between a pre-determined pair origin-destination yards in the 

railroad network, 𝐺 = (𝒴,𝒜, 𝑆), as defined in Section 3.2.  This route consists of 

a set of yards 𝒴𝑙 = ⋃ 𝒴𝑠
𝑙

𝑠∈𝑇  and a set of service legs 𝒜𝑙 = ⋃ 𝒜𝑠
𝑙

𝑠∈𝑇  (i.e., 𝑛𝑙 =

|𝒴𝑙 ∪𝒜𝑙| items), which have been engaged to move the railcars from the origin 

yard to the destination yard.  Let 𝐶(𝑡)
𝑙  denote the 𝑡 th smallest value in the 

set  {𝑐𝑘 ∪ 𝑐𝑖𝑗  ∶  𝑘 ∈ 𝒴
𝑙   &  (𝑖, 𝑗) ∈ 𝒜𝑙} , and 𝑃(𝑡)

𝑙  be the corresponding accident 

probability. As indicated earlier, both the accident probabilities and resulting 

consequences of only the yards involved in performing a transfer operation are 

pertinent, and thus considered.  More specifically, if at yard 𝑘; the hazmat shipment 

unloads from an inbound train and is then loaded to an outbound train, 𝑝𝑘 and 𝑐𝑘 

of this yard will be added to the above set.  If a yard 𝑘′  performs just a 

transshipment role (i.e., no actual handling of railcars, but merely a transit point), 

𝑝𝑘′ and 𝑐𝑘′ will not be considered.  In light of the above, hazmat risk associated 

with the discrete random variable 𝑅𝑙  can take the following values in ascending 

order (Kang et al., 2014a): 
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𝑅𝑙 =

{
 
 
 
 
 

 
 
 
 
 
𝐶(0)
𝑙 = 0,         with probability  𝑃(0)

𝑙 = 1 −∑𝑃(𝑖)
𝑙

𝑛𝑙

𝑖=1 
𝐶(1)
𝑙 ,                  with probability  𝑃(1)

𝑙                             
 .                                         .                                               .                                         .                                               .                                         .                                               

 

𝐶(𝑡)
𝑙 ,                 with probability  𝑃(𝑡)

𝑙                              
.                                         .                                               
.                                         .                                               
.                                         .                                                
𝐶(𝑛𝑙)
𝑙 ,                with probability  𝑃(𝑛𝑙)

𝑙                            

 

and, given 𝑅𝑙 as above, 𝐹𝑅𝑙(𝛽) is as follows: 

 

𝐹𝑅𝑙(𝛽) = Pr(𝑅𝑙 ≤ 𝛽)

=

{
 
 
 
 
 

 
 
 
 
 
𝑃(0)
𝑙 ,                                                  if  0 ≤ 𝛽 < 𝐶(1)

𝑙          
 

𝑃(0)
𝑙 + 𝑃(1)

𝑙 ,                                      if  𝐶(1)
𝑙 ≤ 𝛽 < 𝐶(2)

𝑙      
 

.                                         .                                               .                                         .                                               

.                                         .                                                
𝑃(0)
𝑙 + 𝑃(1)

𝑙 +⋯+ 𝑃(𝑡−1)
𝑙 ,             if   𝐶(𝑡−1)

𝑙 ≤ 𝛽 < 𝐶(𝑡)
𝑙

 
.                                         .                                               .                                         .                                               
.                                         .                                                

1,                                                       if    𝐶(𝑛𝑙)
𝑙 ≤ 𝛽               

 

(3.5) 

For expositional reasons, and also to facilitate flow, we graph the cumulative 

distribution function in Figure 3.1.  Note that 𝛼  is placed between ∑ 𝑃(𝑖)
𝑙𝑡−1

𝑖=0  

and ∑ 𝑃(𝑖)
𝑙𝑡

𝑖=0 .  It is evident that for that specific 𝛼, the minimum 𝛽 that can satisfy 

the condition 𝐹𝑅𝑙(𝛽) ≥ 𝛼  is  𝐶(𝑡)
𝑙 .  In fact, if 𝛼  is chosen anywhere in the 

interval  (∑ 𝑃(𝑖)
𝑙𝑡−1

𝑖=0  , ∑ 𝑃(𝑖)
𝑙𝑡

𝑖=0 ] , then  𝐶(𝑡)
𝑙  will still satisfy the above condition.  
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Therefore, for any 𝛼  in the above interval, we have  VaR𝛼
𝑙 = 𝐶(𝑡)

𝑙 =

min{𝛽 | 𝐹𝑅𝑙(𝛽) ≥ 𝛼}.  Equation (3.5) and Figure 3.1 enable us to develop Equation 

(3.6), which could be used to obtain VaR𝛼
𝑙  for all other possible values of 𝛼.   

1

0

 

Figure 3.1. Cumulative distribution function 𝑭𝑹𝒍(𝜷), and 𝐕𝐚𝐑𝒍
𝜶 
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VaR𝛼
𝑙

=

{
 
 
 
 
 

 
 
 
 
 
𝐶(0)
𝑙 = 0,     if  0 < 𝛼 ≤ 𝑃(0)

𝑙                                                                                               
 

𝐶(1)
𝑙 ,             if  𝑃(0)

𝑙 < 𝛼 ≤ 𝑃(0)
𝑙 + 𝑃(1)

𝑙                                                                              
 
..
. 

𝐶(𝑡)
𝑙 ,             if   𝑃(0)

𝑙 + 𝑃(1)
𝑙 +⋯+ 𝑃(𝑡−1)

𝑙 < 𝛼 ≤ 𝑃(0)
𝑙 + 𝑃(1)

𝑙 +⋯+ 𝑃(𝑡−1)
𝑙 + 𝑃(𝑡)

𝑙

 
..
. 

 𝐶(𝑛𝑙)
𝑙 ,           if   𝑃(0)

𝑙 + 𝑃(1)
𝑙 +⋯+ 𝑃(𝑛𝑙−1)

𝑙 < 𝛼 < 1                                                     

 

(3.6) 

Therefore from (3.6) we obtain 

 

VaR𝛼
𝑙

=

{
 
 

 
 
0,             if and only if         0 < 𝛼 ≤ 𝑃(0)

𝑙                                                     
 

𝐶(𝑡)
𝑙 ,         if and only if       ∑𝑃(𝑖)

𝑙

𝑡−1

𝑖=0

< 𝛼 ≤∑𝑃(𝑖)
𝑙

𝑡

𝑖=0

,      𝑡 ∈ {1,2, … , 𝑛𝑙}
 

(3.7) 

We observe that there is always a VaR for the route 𝑙 with the confidence level 𝛼 ∈

(0,1).  However, since the distribution function 𝐹𝑅𝑙(𝛽) has a vertical discontinuity 

gap (or jump) at VaR, that VaR remains the same for an interval of 𝛼.  The (open) 

lower and (closed) upper endpoints of that interval, respectively, are: 

 𝛼− = 𝐹𝑅𝑙(VaR
−
𝛼
𝑙 ) = Pr(𝑅𝑙 < VaR𝛼

𝑙 ) (3.8) 

and 

 𝛼+ = 𝐹𝑅𝑙(VaR𝛼
𝑙 ) = Pr(𝑅𝑙 ≤ VaR𝛼

𝑙 ). (3.9) 
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Because the difference 𝛼+ − 𝛼− = Pr(𝑅𝑙 = VaR𝛼
𝑙 ) is always positive (𝐹𝑅𝑙(𝛽) has 

a jump at VaR𝛼
𝑙 ), a probability “atom” is said to be present at VaR𝛼

𝑙  (Rockafellar 

and Uryasev 2002).  We continue our calculation for VaR𝛼
𝑙  by considering  

∑𝑃(𝑖)
𝑙

𝑡

𝑖=0

= 𝑃(0)
𝑙 + 𝑃(1)

𝑙 +⋯+𝑃(𝑡−1)
𝑙 + 𝑃(𝑡)

𝑙 = 1 − [𝑃(𝑡+1)
𝑙 +⋯+ 𝑃(𝑛𝑙)

𝑙 ],      𝑡 ∈ {0,1,2,… , 𝑛𝑙} 

And so according to the definition of 𝑃(𝑡)
𝑙 , we obtain 

∑𝑃(𝑖)
𝑙

𝑡

𝑖=0

= 1 − [ ∑ 𝑝𝑘

 

𝑘 ∈ 𝒴𝑙,   𝑐𝑘>𝐶(𝑡)
𝑙

   + ∑ 𝑝𝑖𝑗

 

(𝑖,𝑗) ∈  𝒜𝑙,   𝑐𝑖𝑗>𝐶(𝑡)
𝑙

] ,      𝑡 ∈ {0,1,2, … , 𝑛𝑙}  

Hence from (3.7) we obtain 

VaR𝛼
𝑙 = 

 

{
 
 
 
 
 

 
 
 
 
 
0,             if and only if      [ ∑ 𝑝𝑘

 

𝑘 ∈ 𝒴𝑙,   𝑐𝑘>0

   + ∑ 𝑝𝑖𝑗

 

(𝑖,𝑗) ∈  𝒜𝑙,   𝑐𝑖𝑗>0

] ≤ 1 − 𝛼 < 1                                   

 
 

𝐶(𝑡)
𝑙 , if and only if                                                                                                                                        

[ ∑ 𝑝𝑘

 

𝑘 ∈ 𝒴𝑙,   𝑐𝑘>𝐶(𝑡)
𝑙

   + ∑ 𝑝𝑖𝑗

 

(𝑖,𝑗) ∈  𝒜𝑙,   𝑐𝑖𝑗>𝐶(𝑡)
𝑙

] ≤ 1 − 𝛼 < [ ∑ 𝑝𝑘

 

𝑘 ∈ 𝒴𝑙,   𝑐𝑘≥𝐶(𝑡)
𝑙

   + ∑ 𝑝𝑖𝑗

 

(𝑖,𝑗) ∈  𝒜𝑙,   𝑐𝑖𝑗≥𝐶(𝑡)
𝑙

] ,

𝑡 ∈ {1,2, … , 𝑛𝑙}.                                                                                                                                                    

 (3.10) 

Let 

 𝕡(𝑡)
𝑙 = ∑ 𝑝𝑘

 

𝑘 ∈ 𝒴𝑙,   𝑐𝑘>𝐶(𝑡)
𝑙

   + ∑ 𝑝𝑖𝑗

 

(𝑖,𝑗) ∈  𝒜𝑙,   𝑐𝑖𝑗>𝐶(𝑡)
𝑙

,     𝑡 ∈ {0,1,2, … , 𝑛𝑙} (3.11) 
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 (𝕡(𝑡)
𝑙 : the summation of the accident probabilities of the yards and tracks in route 𝑙, 

whose accident consequences are greater than 𝐶(𝑡)
𝑙 ). So, we have 

∑ 𝑝𝑘

 

𝑘 ∈ 𝒴𝑙,   𝑐𝑘≥𝐶(𝑡)
𝑙

   + ∑ 𝑝𝑖𝑗

 

(𝑖,𝑗) ∈  𝒜𝑙,   𝑐𝑖𝑗≥𝐶(𝑡)
𝑙

= ∑ 𝑝𝑘

 

𝑘 ∈ 𝒴𝑙,   𝑐𝑘>𝐶(𝑡)
𝑙

   + ∑ 𝑝𝑖𝑗

 

(𝑖,𝑗) ∈  𝒜𝑙,   𝑐𝑖𝑗>𝐶(𝑡)
𝑙

   +   𝑃(𝑡)
𝑙   = 𝕡(𝑡)

𝑙 + 𝑃(𝑡)
𝑙  

Therefore (3.10) can be written as: 

VaR𝛼
𝑙 = 𝐶(𝑡)

𝑙      if and only if       𝕡(𝑡)
𝑙 ≤ 1 − 𝛼 < 𝕡(𝑡)

𝑙 + 𝑃(𝑡)
𝑙 ,    𝑡 ∈ {0,1,2, … , 𝑛𝑙} 

Consequently, finding VaR𝛼
𝑙  is equivalent to solving the following problem 

 

min
𝑡
𝐶(𝑡)
𝑙  

                                   subject to:  

𝕡(𝑡)
𝑙 ≤ 1 − 𝛼 < 𝕡(𝑡)

𝑙 + 𝑃(𝑡)
𝑙  

𝑡 ∈ {0,1,2, … , 𝑛𝑙}. 

 

VaR for finding the best route in the given railroad network:  So far, we had 

assumed that the route was pre-specified for a given shipment.  However, if the 

route between a pair of origin-destination yards is not given, then the objective is 

to find the route with minimum VaR.  To that end, consider that a set of routes for 

a given shipment is denoted by  𝐿 , and indexed by l.  Hence,  VaR𝛼
∗ =

min {VaR𝛼
𝑙 ∶ 𝑙 ∈ 𝐿} , subject to a set of constraints (depicted compactly as: 



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

24 

 

(𝑋 ∈ 𝜓)).  More specifically, we need to define two binary decision variables and 

conservation of flow constraints, which collectively would capture routing of rail 

shipments.  The two decision variables keep track of the service legs and yards 

utilized in moving shipments are: 

𝑥𝑖𝑠𝑗𝑠 = {
1, if service leg (𝑖𝑠, 𝑗𝑠) from train service 𝑠 is used in the route 

 
0,        otherwise                                                                                                 

 

𝑥𝑘𝑠𝑠́

= {
1, if yard 𝑘 is used in the route as a transferring yard between train services 𝑠 and 𝑠́

 
0,        otherwise                                                                                                                                          

 

and, the conservation of flow constraints are:  

 

∑𝑥𝑖𝑠𝑗𝑠

 

𝑗𝑠

= 1   for origin yard 𝑖 and train service 𝑠 

∑𝑥𝑗𝑠𝑖𝑠

 

𝑗𝑠

−∑𝑥𝑖𝑠𝑗𝑠

 

𝑗𝑠

= 0   for any non − transferring yard 𝑖 and train service 𝑠 

∑𝑥𝑗𝑠𝑘𝑠

 

𝑗𝑠

−∑𝑥𝑘𝑠́𝑗𝑠́

 

𝑗𝑠́

= 0   for any transferring yard 𝑘 and train service 𝑠 and 𝑠́ 

∑𝑥𝑗𝑠𝑖𝑠

 

𝑗𝑠

= 1   for destination yard 𝑖 and train service 𝑠 

 

We next sort the accident consequences of all (M) yards and service legs in 

the network:   
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𝐶(𝑟) = {𝐶(0) = 0, 𝐶(1), 𝐶(2), … , 𝐶(𝑀)   ∶   0 < 𝐶(1) < 𝐶(2) < ⋯ < 𝐶(𝑀)},         𝑟

∈ {0,1,2,… ,𝑀} 

(3.12) 

and, label the corresponding accident probabilities as:  𝑃(𝑟),   𝑟 ∈ {0,1,2, … ,𝑀}  ∶

  ∑ 𝑃(𝑟)
𝑀
𝑟=0 = 1.  Hence, according to the definition in (3.11), we can define 𝕡(𝑟) 

as:  

 

𝕡(𝑟) =∑( ∑ 𝑝𝑘𝑠𝑠́

 

𝑘𝑠𝑠́ ∈ 𝒴𝑠&𝒴𝑠́,   𝑐𝑘𝑠𝑠́>𝐶(𝑟)

   + ∑ 𝑝𝑖𝑠𝑗𝑠

 

(𝑖𝑠,𝑗𝑠) ∈ 𝒜𝑠,   𝑐𝑖𝑠𝑗𝑠>𝐶(𝑟)

)

𝑠, 𝑠́

,             𝑟

∈ {0,1,2,… ,𝑀} 

 

and, 

 
𝕡(𝑟) 𝑋 = ∑( ∑ 𝑝𝑘𝑠𝑠́  𝑥𝑘𝑠𝑠́

 

𝑘𝑠𝑠́ ∈ 𝒴𝑠&𝒴𝑠́,   𝑐𝑘𝑠𝑠́
>𝐶(𝑟)

   + ∑ 𝑝𝑖𝑠𝑗𝑠𝑥𝑖𝑠𝑗𝑠

 

(𝑖𝑠,𝑗𝑠) ∈ 𝒜𝑠,   𝑐𝑖𝑠𝑗𝑠>𝐶(𝑟)

)

𝑠, 𝑠́

,       𝑟

∈ {0,1,2, … ,𝑀} 

(3.13) 

Hence, the optimization program required to generate the minimal VaR route 

(i.e., VaR𝛼
∗ ) between a given pair of origin-destination yards to route rail shipments 

is: 

 

min
𝑟
𝐶(𝑟) 

𝑓𝑟 = min
𝑋
𝕡(𝑟) 𝑋 

                                     subject to: 

𝑓𝑟 ≤ 1 − 𝛼 < 𝑓𝑟 +  𝑃(𝑟) 

(3.14) 
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𝑋 ∈  𝜓 

𝑟 ∈ {0,1,2, … ,𝑀} 

Note that problem (3.14) has two levels, and that solving the lower level 

problem, i.e., 𝑓𝑟 = min
𝑋
𝕡(𝑟) 𝑋 necessitates using (3.13) to make the following 

modification:  

 

𝑝̅𝑘𝑠𝑠́ = {
𝑝𝑘𝑠𝑠́   ,     if    𝑐𝑘𝑠𝑠́ > 𝐶(𝑟)             ∀ 𝑘𝑠𝑠́ , ∀𝑠, ∀𝑠́   

 
0,            otherwise                                           

 

𝑝̅𝑖𝑠𝑗𝑠 = {
𝑝𝑖𝑠𝑗𝑠   ,     if    𝑐𝑖𝑠𝑗𝑠 > 𝐶(𝑟)             ∀ (𝑖𝑠, 𝑗𝑠), ∀𝑠   

 
0,           otherwise                                    

 

(3.15) 

This way 𝕡(𝑟) 𝑋 transforms to 

 

𝕡(𝑟) 𝑋 =∑( ∑ 𝑝̅𝑘𝑠𝑠́  𝑥𝑘𝑠𝑠́

 

𝑘𝑠𝑠́ ∈ 𝒴𝑠&𝒴𝑠́

   + ∑ 𝑝̅𝑖𝑠𝑗𝑠𝑥𝑖𝑠𝑗𝑠

 

(𝑖𝑠,𝑗𝑠) ∈ 𝒜𝑠

)

𝑠, 𝑠́

,             𝑟

∈ {0,1,2, … ,𝑀} 

(3.16) 

and 𝑓𝑟 = min
𝑋∈ψ

𝕡(𝑟) 𝑋 can be solved using an efficient shortest path algorithm, such 

as Dijkstra’s.  We conclude this section with a summary of the proposed VaR 

Algorithm in Figure 3.2.   

Step 1. Generate 𝐶(𝑟) and their corresponding 𝑃(𝑟) ∶  𝑟 ∈ {0,1,2, … ,𝑀} using 

(3.12). 

Step 2. Set 𝑟 ← 0 
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Step 3. Consider (3.15) and (3.16) and solve 𝑓𝑟 = min
𝑋
𝕡(𝑟) 𝑋 using an efficient 

shortest path algorithm like Dijkstra’s Algorithm. 

Step 4. If condition 𝑓𝑟 ≤ 1 − 𝛼 < 𝑓𝑟 +  𝑃(𝑟) holds, stop; VaR𝛼
∗ = 𝐶(𝑟) and the 

route found in Step 3 is the optimal VaR route for confidence level 𝛼. 

Step 5. If condition 𝑓𝑟 ≤ 1 − 𝛼 < 𝑓𝑟 +  𝑃(𝑟) does not hold, set 𝑟 ← 𝑟 + 1 and go 

to Step 3. 

Figure 3.2. Summary of VaR Algorithm 

3.4 Parameter Estimation 

In preparation for using the proposed methodology, we briefly outline the parameter 

estimation technique in this section, and note that the values are borrowed from 

published works.   

Train accident rate:  Although the United States Federal Railroad Administration 

(FRA) provides comprehensive data of railroad accidents, it is not inconceivable 

that accident rates for every rail-segment and rail-yard may not be available given 

that hazmat episodes are rare.  Given the above limitations, it would not be 

unreasonable to use network-wide accident rates.  Hence, we have assumed an 

average train accident rate of 1.48 × 10−6 per mile for service legs, and 

17.13 × 10−6 for transferring yards, as presented in Verma (2011).  It means 

𝑃(𝐴𝑖𝑗) = service leg (𝑖, 𝑗)′s distance (mile) × 1.48 × 10−6 and 𝑃(𝐴𝑘) =

17.13 × 10−6 in equations (3.1) and (3.2), respectively.  
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Conditional probabilities:  Given our intent of making use of the FRA data set, and 

be able to assess risk at a higher resolution as discussed in Section 3.2, we work 

with decile-specific conditional probabilities of derailment of a railcar, presence of 

hazmat railcar, and of release.  This approach was proposed in Verma (2011) for 

three train lengths (i.e., short, medium, and long), and we use the resulting estimates 

as input in (3.1) and (3.2). For expositional reasons, we reproduce the estimates 

from Verma (2011) in Table 3.1 and Table 3.2.   

Decile 
𝑷(𝑫𝒓|𝑨𝒊𝒋) 𝑷(𝑯| 𝑫𝒓, 𝑨𝒊𝒋) 𝑷(𝑹|𝑯,𝑫𝒓, 𝑨𝒊𝒋) 

short medium long short medium long short medium long 

1st 0.1666 0.1884 0.2012 0.0668 0.0417 0.0216 0.0093 0.0156 0.0060 

2nd 0.0957 0.1001 0.1088 0.0609 0.0838 0.0413 0.0047 0.0141 0.0163 

3rd  0.0952 0.0897 0.0983 0.0398 0.0746 0.0685 0.0038 0.0108 0.0037 

4th  0.0908 0.0947 0.1029 0.0760 0.0803 0.0614 0.0112 0.0127 0.0259 

5th  0.0938 0.0895 0.0831 0.0905 0.0792 0.0525 0.0016 0.0120 0.0150 

6th  0.0877 0.0834 0.0818 0.0611 0.0761 0.0588 0.0075 0.0121 0.0201 

7th  0.0783 0.0816 0.0831 0.0853 0.0718 0.0318 0.0009 0.0061 0.0040 

8th  0.0839 0.0870 0.0765 0.0726 0.0776 0.0432 0.0073 0.0087 0.0021 

9th  0.0841 0.0826 0.0831 0.0720 0.0579 0.0410 0.0076 0.0070 0.0055 

10th  0.1239 0.1032 0.0811 0.0625 0.0883 0.0531 0.0045 0.0054 0.0024 

Table 3.1. Conditional probabilities for service legs 

Decile 
𝑷(𝑫𝒓|𝑨𝒌) 𝑷(𝑯| 𝑫𝒓, 𝑨𝒌) 𝑷(𝑹|𝑯,𝑫𝒓, 𝑨𝒌) 

short medium long short medium long short medium long 

1st 0.1336 0.1937 0.2081 0.0663 0.0693 0.0347 0.0036 0.0052 0.0072 

2nd 0.1187 0.1117 0.0905 0.0756 0.0738 0.0922 0.0050 0.0063 0.0023 

3rd  0.0914 0.0915 0.1086 0.0780 0.0787 0.1146 0.0046 0.0027 0.0083 

4th  0.1000 0.0982 0.1086 0.0917 0.0770 0.0243 0.0041 0.0012 0.0021 

5th  0.1072 0.0896 0.0950 0.0734 0.0757 0.0224 0.0030 0.0171 0.0020 

6th  0.0687 0.0838 0.0724 0.0831 0.0631 0.0547 0.0043 0.0039 0.0020 

7th  0.0759 0.0672 0.1041 0.0744 0.0638 0.0662 0.0038 0.0011 0.0071 

8th  0.0784 0.0804 0.0814 0.0772 0.0791 0.0374 0.0025 0.0028 0.0019 

9th  0.0702 0.0709 0.0543 0.0963 0.0758 0.1207 0.0041 0.0087 0.0179 

10th  0.1559 0.1130 0.0769 0.0989 0.1109 0.0611 0.0038 0.0090 0.0023 

Table 3.2. Conditional probabilities for yards 

Consequence:  We make use of an aggregate measure, i.e., population exposure, 

to estimate consequence.  As alluded in the literature review chapter, this approach 

was proposed by Batta and Chiu (1988) and ReVelle et al. (1991) in the highway 
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domain, and was subsequently extended to incorporate the possibility and volume 

of hazmat released from multiple sources, i.e., for rail hazmat shipments in Verma 

and Verter (2007).  This dependence relationship can be represented by:  

 𝑃𝐸(𝑖,𝑗) = 𝑓 (𝑉(𝑖,𝑗), 𝜌(𝑉(𝑖,𝑗)))  

where 𝑉(𝑖,𝑗) is the volume of hazmat released due to the accident on rail-link (𝑖, 𝑗) 

and 𝜌(𝑉(𝑖,𝑗)) is the population density of centers exposed due to 𝑉(𝑖,𝑗).  If 𝑣(𝑖,𝑗)
𝑛  is 

the quantity of hazmat released from railcar 𝑛 due to the accident on link (𝑖, 𝑗), the 

total volume of hazmat released from all the sources (𝑁 hazmat railcars) due to the 

accident on link (𝑖, 𝑗), can be determined by: 

 𝑉(𝑖,𝑗) =∑𝑣(𝑖,𝑗)
𝑛

𝑁

𝑛=1

  

In an effort to simulate most conservative scenario, Verma and Verter (2007) 

assume loss of entire lading, and focus on airborne shipments whose behavior is 

emulated via a Gaussian dispersion plume model.  Finally, they can make suitable 

adaptations to the (GPM) to capture hazmat release from multiple sources, which 

was subsequently augmented in Verma (2011) to incorporate the characteristics of 

railroad accidents.  For expositional reasons, and for brevity, we are not repeating 

the complete methodological details, and invite the reader to consult Verma and 

Verter (2007) and Verma (2011).   
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3.5 Train Configuration Setting 

Before applying the proposed methodology to realistic size problem instances, we 

delineate the steps involved in determining train configuration.  Recall that 

equations (3.1) and (3.2) estimate hazmat incident probabilities in the service legs 

and at the yards, which in turn depend on the number of hazmat railcars in each 

train-decile (i.e., train configuration).  It should be evident that different train 

configurations can result in different values of risk, including VaR.  Hence, we 

endeavor to determine the train configuration that would result in minimum total 

risk, and the corresponding route.  Recall that the positive integer 𝑦𝑟 shows the 

number of hazmat railcars in decile 𝑟 (𝑟 = {1,2, … ,10}) of the train; ∑ 𝑦𝑟
10
𝑟=1 = 𝑁, 

where 𝑦𝑟 ≤
train length

10
.  Let us define constants 𝑇𝐶𝑃𝑟 and 𝑌𝐶𝑃𝑟 as the 

multiplication of conditional probabilities in decile 𝑟 of the train for service legs 

and yards, respectively, i.e. 𝑇𝐶𝑃𝑟 = 𝑃(𝐷𝑟|𝐴𝑖𝑗) × 𝑃(𝐻|𝐷
𝑟 , 𝐴𝑖𝑗) × 𝑃(𝑅|𝐻, 𝐷

𝑟 , 𝐴𝑖𝑗) 

and 𝑌𝐶𝑃𝑟 = 𝑃(𝐷𝑟|𝐴𝑘) × 𝑃(𝐻|𝐷
𝑟 , 𝐴𝑘) × 𝑃(𝑅|𝐻, 𝐷

𝑟 , 𝐴𝑘). Thus, equation (3.1) 

and (3.2) could be expressed as: 

 𝑝𝑖𝑗 = 𝑃(𝐴𝑖𝑗) ×∑𝑦𝑟 × 𝑇𝐶𝑃
𝑟

10

𝑟=1

, (3.1’) 

 𝑝𝑘 = 𝑃(𝐴𝑘) ×∑𝑦𝑟 × 𝑌𝐶𝑃
𝑟

10

𝑟=1

.  (3.2’) 

Given the above explanation, we can define the following minimization 

model to find the best train configuration: 
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 min
𝒲,𝑦𝑟

𝒲(∑𝑦𝑟 × 𝑇𝐶𝑃
𝑟

10

𝑟=1

) + (1 −𝒲)(∑𝑦𝑟 × 𝑌𝐶𝑃
𝑟

10

𝑟=1

)  (3.17-1) 

  subject to:                                                                 

  min
𝑙∈𝐿 

VaR𝛼
𝑙  (3.17-2) 

  ∑𝑦𝑟

10

𝑟=1

= 𝑁 (3.17-3) 

  0 ≤ 𝑦𝑟 ≤
train length

10
 (3.17-4) 

  𝑦𝑟: integer,     𝑟 = {1,2, … ,10} (3.17-5) 

  0 ≤ 𝒲 ≤ 1 (3.17-6) 

To solve the above model, we assign different values to 𝒲 (weight) in the 

objective function (3.17-1) subject to the constraints (3.17-3) to (3.17-6), which 

results in various train configurations, but we finally select the one that minimizes 

the VaR (constraint 3.17-2) and consequently find its corresponding optimal route.  

𝒲 = 0 (or 1) means that we are going to use a train configuration that minimizes 

accident probabilities in the network’s transferring yards (or service legs), i.e., 

determining 𝑦𝑟 for  𝑝𝑘 (𝑜𝑟 𝑝𝑖𝑗) minimization.  Such a configuration is gained by 

placing as many hazmat railcars as possible in the deciles with the least 

multiplication of the conditional probabilities for transferring yards (or service 

legs), i.e. 𝑌𝐶𝑃𝑟 (or 𝑇𝐶𝑃𝑟), using Table 3.2 (or Table 3.1). 
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3.6 Case Study 

 In this section, we describe the case study that would be solved and analyzed in 

Section 3.7. Figure 3.3 depicts the railroad infrastructure, introduced in Verma et 

al. (2011), which will be used to perform computational experiments.  The indicated 

network has 25 yards, where each can be an origin and destination for the others, 

i.e., 600 origin-destination pairs.  A total of 31 different train services –identified 

by origin and destination yards, intermediate stops, and service legs, connect the 

yards.  Finally, ArcGIS (ESRI, 2007) was used to estimate population exposure, 

which serves a measure for consequence.  The objective is to determine the best 

way to move a given number of hazmat railcars, on the available train services, 

between various origin-destination pairs such that hazmat transport risk as 

measured by VaR is minimized.  It is important that given the nature of railroad 

accidents, and the preceding discussions, one needs to determine both the route and 

the placement of hazmat railcars in a train.   
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Figure 3.3. Railroad network in the Midwest United States [Source: Verma et 

al., (2011)] 

 

3.7 Computational Experiments 

In this section, we use the risk assessment methodology developed in Section 3.3 

to study a number of problem instances generated using the real infrastructure of a 

Class I railroad operator in the United States (i.e., the case study outlined in Section 

3.6), which are further analyzed to develop managerial insights.   

3.7.1. An Illustrative Example 

In an effort to facilitate the discussions and analyses to follow, we make use of a 

small illustrative example to demonstrate how each step of the methodology is 

operationalized.  We focus on a shipment going from Middlesborough to Chicago, 
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i.e., yards 15 and 2, respectively, in Figure 3.3.  Furthermore, we assume that only 

5 train services are available, and their routes are indicated in Table 3.3.  For 

example, train service number 5 originates in yard 2, stops at yards 4, 9 and 25 

before terminating at yard 12.   

Train service number Route provided by the train service  

{5} 2 – 4 – 9 – 25 – 12  

{12} 9 – 10 – 14 – 13 – 15  

{16} 9 – 8 – 4 – 3 – 2  

{24} 12 – 11 – 10 – 4 – 2  

{27} 15 – 11 – 9 – 8 – 7  

Table 3.3. Train services for the illustrative example 

Assume that a total of 70 hazmat railcars have to be shipped from yard 15 to 

yard 2 using a medium length train with 120 railcars, while the confidence level α 

is 0.999999.  We next outline the details of the six steps involved in preparing the 

routing and train configuration plan.   

1. Ascertaining train configuration 

The very first decision involves the placement of the 70 hazmat railcars in the train, 

i.e., determining the positive integer 𝑦𝑟 as the number of hazmat railcars in decile 

𝑟 of the train.  This way, ∑ 𝑦𝑟
10
𝑟=1 = 70, where 𝑦𝑟 ≤ 12   ∀𝑟.  Although this would 

be ascertained by solving (3.17), for illustration purposes, we assume that minimum 

VaR is achieved when 𝒲 = 0, which implies placing as many hazmat railcars as 

possible in the deciles with the least 𝑌𝐶𝑃𝑟 (using Table 3.2 for medium trains), 

yielding the configuration given in Table 3.4:  
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Decile No. 𝑟 1 2 3 4 5 6 7 8 9 10 

𝑦𝑟 0 0 12 12 0 12 12 12 10 0 

Table 3.4. Train configuration for the illustrative example 

2. Calculating consequence 

Accident consequences of the service legs and transferring yards in the network 

(i.e., 𝑐𝑖𝑗 and 𝑐𝑘, respectively) are determined as the population exposure (𝑃𝐸) due 

to the release from 70 hazmat railcars, given the accident on service leg (𝑖, 𝑗) and 

at yard 𝑘, respectively.  These values are depicted in column 4 of Table 3.6.   

3. Calculating probabilities of train accident 

To calculate accident probabilities on the service legs and transferring yards in the 

network (i.e. 𝑝𝑖𝑗 and 𝑝𝑘, respectively) using equations (3.1) and (3.2), we first need 

to calculate ∑ 𝑦𝑟 × (𝑃(𝐷
𝑟|𝐴𝑖𝑗) × 𝑃(𝐻|𝐷

𝑟 , 𝐴𝑖𝑗) × 𝑃(𝑅|𝐻, 𝐷
𝑟 , 𝐴𝑖𝑗))

10
𝑟=1  

and ∑ 𝑦𝑟 × (𝑃(𝐷
𝑟|𝐴𝑘) × 𝑃(𝐻|𝐷

𝑟 , 𝐴𝑘) × 𝑃(𝑅|𝐻, 𝐷
𝑟 , 𝐴𝑘))

10
𝑟=1 .  This is done using 

the train configuration in Table 3.4 and the conditional probabilities provided in 

Table 3.1 and Table 3.2 as follows (see Table 3.5): 

Decile 𝑟 1 2 3 4 5 6 7 8 9 10 

𝑦𝑟 0 0 12 12 0 12 12 12 10 0 

𝑦𝑟 × (𝑃(𝐷
𝑟|𝐴𝑖𝑗) × 𝑃(𝐻|𝐷

𝑟 , 𝐴𝑖𝑗)

× 𝑃(𝑅|𝐻, 𝐷𝑟, 𝐴𝑖𝑗)) 
0 0 0.000867 0.001158 0 0.000921 0.000429 0.000705 0.000335 0 

𝑦𝑟 × (𝑃(𝐷
𝑟|𝐴𝑘) × 𝑃(𝐻|𝐷

𝑟 , 𝐴𝑘)

× 𝑃(𝑅|𝐻,𝐷𝑟 , 𝐴𝑘)) 
0 0 0.000233 0.000109 0 0.000247 0.000057 0.000214 0.000468 0 

Table 3.5. Conditional probabilities for calculating 𝒑𝒊𝒋 and 𝒑𝒌 for the 

illustrative example 

 

∑ 𝑦𝑟 × (𝑃(𝐷
𝑟|𝐴𝑖𝑗) × 𝑃(𝐻|𝐷

𝑟 , 𝐴𝑖𝑗) × 𝑃(𝑅|𝐻, 𝐷
𝑟 , 𝐴𝑖𝑗))

10
𝑟=1 = 0.004415 , and 
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∑ 𝑦𝑟 × (𝑃(𝐷
𝑟|𝐴𝑘) × 𝑃(𝐻|𝐷

𝑟 , 𝐴𝑘) × 𝑃(𝑅|𝐻, 𝐷
𝑟 , 𝐴𝑘))

10
𝑟=1 = 0.001328 .  

Now, we can calculate 𝑝𝑖𝑗 and 𝑝𝑘 using equations (3.1) and (3.2), 

respectively.  For instance, 𝑃(𝐴𝑖𝑗) = service leg (𝑖, 𝑗)′s distance (mile) × 1.48 ×

10−6, and appropriate accident probabilities are depicted in the last column of Table 

3.6.  On the other hand, 𝑃(𝐴𝑘) = 17.13 × 10
−6, which implies that the accident 

probability at all potential transfer yards (𝑝𝑘) is equal to2.274 × 10−8  (i.e., 

17.13 × 10−6 × 0.001328).   

4. Sorting consequence and accident probabilities for the given network 

In this step, we sort all accident consequences of the service legs and potential 

transferring yards in the network in ascending order.  We call them 𝐶(𝑟) and their 

corresponding accident probabilities 𝑃(𝑟), where 0 ≤ 𝑟 ≤ 26 and 𝐶(0) < 𝐶(1) <

𝐶(2) < ⋯ < 𝐶(26).  Recall that 𝐶(0) = 0 with 𝑃(0) = 1 − ∑ 𝑃(𝑟)
26
𝑟=1 .  All the relevant 

values are shown in Table 3.7.   

5. Calculating optimal VaR value and the Route 

We make use of the VaR Algorithm as outlined in Figure 3.2 to calculate the 

optimum value (i.e., VaR*).  Note that there are 26 elements in the sorted list in 

Table 3.7, and hence the algorithm could have a maximum of 27 iterations.  

However, the algorithm find VaR* in the 19th iteration.  For brevity, we report the 

results of iterations 1, 3, 10 and 19.   
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Train Service (𝒊, 𝒋) or k 𝒄𝒊𝒋 𝒐𝒓 𝒄𝒌 
Length 

(miles) 

𝒑𝒊𝒋 or 𝒑𝒌 

S
er

v
ic

e 
le

g
s 

{5} 

2 – 4 12,015 126 8.2 × 10−7 

4 – 9 5,658 91 5.9 × 10−7 

9 – 25 3,937 103 6.7 × 10−7 

25 – 12 4,528 81 5.3 × 10−7 

{12} 

9 – 10 3,115 158 1.0 × 10−6 

10 – 14 7,835 128 8.3 × 10−7 

14 – 13 5,027 74 4.8 × 10−7 

13 – 15 2,944 267 1.7 × 10−6 

{16} 

9 – 8 5,676 68 4.4 × 10−7 

8 – 4 1,173 50 3.3 × 10−7 

4 – 3 10,539 118 7.7 × 10−7 

3 – 2 12,752 146 9.5 × 10−7 

{24} 

12 – 11 2,885 80 5.2 × 10−7 

11 – 10 3,258 119 7.7 × 10−7 

10 – 4 1,735 156 1.0 × 10−6 

4 – 2 12,015 126 8.2 × 10−7 

{27} 

15 – 11 15,834 185 1.2 × 10−6 

11 – 9 5,138 115 7.5 × 10−7 

9 – 8 5,676 68 4.4 × 10−7 

8 – 7 1,832 110 7.2 × 10−7 

P
o
te

n
ti

a
l 

  
  
tr

a
n

sf
er

 

y
a
rd

s 

{5}, {16}, {24} 
[2] 217,630  

2.274
× 10−8 

[4] 21,840 

{16}, {27} [8] 22,190 

{5}, {12}, {16}, 

{27} [9] 26,740 

{12}, {24} [10] 31,010 

{24},{27} [11] 20,160 

{5}, {24} [12] 59,290 

{12}, {27} [15] 54,460 

Table 3.6. Consequence and accident probability of 70 hazmat railcars 
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𝒓 (𝒊, 𝒋) or k Train Service 𝑪(𝒓) 𝑷(𝒓) 

0 --- --- 0 0.999986 

1 8 – 4 {16} 1,173 3.3 × 10−7 

2 10 – 4 {24} 1,735 1.0 × 10−6 

3 8 – 7 {27} 1,832 7.2 × 10−7 

4 12 – 11 {24} 2,885 5.2 × 10−7 

5 13 – 15 {12} 2,944 1.7 × 10−6 

6 9 – 10 {12} 3,115 1.0 × 10−6 

7 11 – 10 {24} 3,258 7.8 × 10−7 

8 9 – 25 {5} 3,937 6.7 × 10−7 

9 25 – 12 {5} 4,528 5.3 × 10−7 

10 14 – 13 {12} 5,027 4.8 × 10−7 

11 11 – 9 {27} 5,138 7.5 × 10−7 

12 4 – 9 {5} 5,658 5.9 × 10−7 

13 9 – 8 {16}, {27} 5,676 4.4 × 10−7 

14 10 – 14 {12} 7,835 8.4 × 10−7 

15 4 – 3 {16} 10,539 7.7 × 10−7 

16 2 – 4  & 4 – 2 {5} & {24} 12,015 8.2 × 10−7 

17 3 – 2 {16} 12,752 9.5 × 10−7 

18 15 – 11 {27} 15,834 1.2 × 10−6 

19 [11] {24}, {27} 20,160 

2.3 × 10−8 

20 [4] {5}, {16}, {24} 21,840 

21 [8] {16, {27 22,190 

22 [9] {5}, {12}, {16}, {27} 26,740 

23 [10] {12}, {24} 31,010 

24 [15] {12}, {27} 54,460 

25 [12] {5}, {24} 59,290 

26 [2] {5}, {16}, {24} 217,630 

Table 3.7. Sorted consequence and accident probability 

  

Iter. 𝒓 𝑪(𝒓) 𝑷(𝒓) 
VaR Route 

𝒇𝒓 

𝒇𝒓 ≤ 𝟏 − 𝜶
< 𝒇𝒓 +  𝑷(𝒓) 

1 0 0 0.999986 
15 - 11 - [ 9 ] - 8 - [ 4 ] - 2 

3.6 × 10−6 

Does not 

hold. 

{27}  {16}  {24} 

3 2 1,735 1.0 × 10−6 
15 - [ 11 ] - 10 - 4 - 2     

2.8 × 10−6 
{27}  {24}     

10 9 4,528 5.3 × 10−7 
15 - [ 11 ] - 10 - 4 - 2     

2.1 × 10−6 
{27}  {24}     

19 18 15,834 1.2 × 10−6 
15 - 11 - 9 - [ 8 ] - 4 - 3 - 2 

2.3 × 10−8 Holds! 
{27}  {16} 

Table 3.8. Iteration and VaR* 
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Figure 3.4. Optimal VaR route for the illustrative example 

The result of iteration 19 shows that the VaR route generated in this iteration 

holds the condition 𝑓𝑟 ≤ 1 − 𝛼 < 𝑓𝑟 +  𝑃(𝑟) and so VaR𝛼
∗ = 𝐶(𝑟) = 15,834.  The 

optimal VaR route shows that the hazmat shipment should be placed on train service 

number 27, and travel non-stop crossing service-legs 15-11, 11-9, and 9-8 before 

being transferred to train service number 16 at yard 8.  Subsequently, the second 

train service brings the shipment to the destination node via yards 4 and 3.  The 

optimal route is shown in Figure 3.4 in bold line, while the other two routes are 

given in dot and double lines. Note that the train services 27, 16, and 24 are shown 

in red, blue, and green color, respectively. 

Finally, we conclude the discussion by providing some additional details 

needed to calculate VaR for the optimal route (i.e., last row in Table 3.8).  The 
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optimal route is composed of the service legs and transfer yards as indicated in the 

second column of Table 3.9.   

𝒕 (𝒊, 𝒋) or k Train Service 𝑪(𝒕)
𝒍  𝑷(𝒕)

𝒍  ∑𝑷(𝒊)
𝒍

𝒕

𝒊=𝟎

 

0 --- --- 0 0.99999552 0.99999552 

1 8 – 4 {16} 1,173 3.3 × 10−7 0.99999585 

2 11 – 9 {27} 5,138 7.5 × 10−7 0.99999660 

3 9 – 8 {27} 5,676 4.4 × 10−7 0.99999704 

4 4 – 3 {16} 10,539 7.7 × 10−7 0.99999781 

5 3 – 2 {16} 12,752 9.5 × 10−7 0.99999877 

6 15 – 11 {27} 15,834 1.2 × 10−6 0.99999998 

7 [8] {16}, {27} 22,190 2.3 × 10−8 1.00000000 

Table 3.9. Components of the optimal VaR route for the illustrative example 

According to Equation (3.7),  VaR𝛼
𝑙 = 15,834 , since  

∑𝑃(𝑖)
𝑙

5

𝑖=0

< 𝛼 ≤∑𝑃(𝑖)
𝑙

6

𝑖=0

 

or 

0.99999877 < 0.999999 ≤ 0.99999998 . 

3.7.2. Solution to Problem Instances 

In an effort to conduct focused analyses, we will consider shipments from Chicago 

to Highview, i.e., nodes 2 and 11, respectively.  For expositional reasons and for 

brevity, we consider seven distinct hazmat volumes, i.e., 𝑁 =

{5, 20, 40, 60, 80, 100, 120} and for four different confidence levels: 𝛼 =

{𝛼1 = 0.9, 𝛼2 = 0.99999, 𝛼3 = 0.999997, 𝛼4 = 0.999999}, and note that other 

values could be similarly evaluated.  In an effort to find the best train configuration 



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

41 

 

for the above problem instances using (3.17), we apply eleven different weights to 

the model: 𝒲 = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0}.  Finally, we consider 

only medium trains of 120 railcars in length, and thus the output would give 

information about hazmat railcars in each decile.  For expositional reasons, and for 

brevity, we only show the results of the best train configurations for different 

number of hazmat railcars and for various weights, in Table 3.10.  For example, for 

problem instances involving moving five hazmat railcars from Chicago to 

Highview, only two train configurations indicated by C# emerge: 1st depicts the 

scenario when the entire weight is placed on hazmat risk on the service-leg, and all 

the five hazmat railcars are placed in the 9th decile; and, 2nd configuration results 

for other weight setting, and places all the hazmat railcars in the 7th decile.  Other 

settings, and configurations could be interpreted similarly.  Thus, a total of 24 

distinct configurations were observed for medium length trains, which resulted in 

24*4=96 problem instances.   

It is important that similar configurations were generated for long and short 

trains, but for brevity are not reported here.  For long trains, 26 distinct 

configurations were observed when assuming a length of 200 railcars, and 

26*4=104 problem instances were solved.  On the other hand, for short trains 8 

distinct configurations were determined with 40 railcars train length, and 8*4=32 

problem instances were solved.  Hence, a total of 232 problem instances were 

solved to gain managerial insights.  The VaR algorithm was coded in Matlab R 

2015b, and (3.17) was solved in GAMS 24.1.3 using Cplex 12.5.1.0 as the solver. 
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We ran them on a 2.90 GHz Intel Core i7 computer system. The computation times 

are less than 3 seconds. 

𝑵 C# 𝓦 
Train Configuration 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10 

5 
1st  1 0 0 0 0 0 0 0 0 5 0 

2nd  0.9 - 0 0 0 0 0 0 0 5 0 0 0 

20 

1st  1 0 0 0 0 0 0 8 0 12 0 

2nd  0.9 - 0.6 0 0 0 0 0 0 12 0 8 0 

3rd  0.5 - 0.2 0 0 0 0 0 0 12 8 0 0 

4th  0.1 - 0 0 0 0 8 0 0 12 0 0 0 

40 

1st  1 0 0 0 0 0 0 12 4 12 12 

2nd  0.9 0 0 0 0 0 0 12 12 12 4 

3rd  0.8 - 0.5 0 0 4 0 0 0 12 12 12 0 

4th  0.4 0 0 12 0 0 0 12 12 4 0 

5th  0.3 0 0 12 4 0 0 12 12 0 0 

6th  0.2 - 0 0 0 4 12 0 0 12 12 0 0 

60 

1st  1 - 0.8 0 0 12 0 0 0 12 12 12 12 

2nd  0.7 - 0.4 0 0 12 0 0 12 12 12 12 0 

3rd  0.3 - 0 0 0 12 12 0 12 12 12 0 0 

80 

1st  1 0 0 12 0 8 12 12 12 12 12 

2nd  0.9 - 0.7 0 0 12 8 0 12 12 12 12 12 

3rd  0.6 - 0.5 0 0 12 12 0 12 12 12 12 8 

4th  0.4 - 0 0 8 12 12 0 12 12 12 12 0 

100 

1st  1 - 0.7 0 4 12 12 12 12 12 12 12 12 

2nd  0.6 0 12 12 12 4 12 12 12 12 12 

3rd  0.5 - 0.4 4 12 12 12 0 12 12 12 12 12 

4th  0.3 - 0 12 12 12 12 0 12 12 12 12 4 

120 Only All 12 12 12 12 12 12 12 12 12 12 

Table 3.10. Best medium train configurations for different 𝑵 and 𝓦 

It should be evident from equations (3.1) and (3.2) that different train 

configurations would yield different accident probabilities on the service legs and 

the transfer yards, and consequently may result in different optimal VaR values and 

the resulting route associate with each confidence level α.  For instance, for 80 
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hazmat railcar setting depicted in Table 3.10, there are four possible train 

configurations resulting from attaching eleven different weights on the objective in 

(3.17). The resulting optimal VaR and the associated route at 𝛼 = 0.999999 are 

indicated in Table 3.11. Note that either of the first two configurations leads to the 

optimal VaR value of 5996, and result in the same route.   

C# VaR*   VaR-Route* 

1st  

5,996 

                                  

  2 - 6 - 8 - [ 9 ] - [ 25 ] - 11   

2nd  
 {4}  {5}  {18}   

                                  

3rd  6,221 
 2 - 4 - 9 - [ 25 ] - 11       

  {5}   {18}           

4th  8,914 
  2 - 6 - 7 - 22 - [ 23 ] - 25 - 11   

  {3}   {18}   

Table 3.11. Optimal VaR and associated route for N=80 and α=0.999999 

3.7.3. Analysis and Insights 

In this subsection, the 232 problem instances are further analyzed to gain 

managerial insights, and the discussion is organized by insights.   

3.7.3.1. Determinants of optimal VaR 

The proposed VaR algorithm is applied to each configuration indicated in Table 

3.10, and for the four confidence levels being considered.  Table 3.12 depicts the 

configuration resulting in minimal VaR, and the resulting route for each confidence 

level.  For brevity, unlike in Table 3.11, we are only reporting the configuration 

resulting in minimum VaR*.  Note that at both α1 and α2, VaR algorithm finds the 

same route for the seven specified hazmat volumes, and the optimal VaR is zero.  
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This implies that with the least probability equivalent to the given confidence level, 

the hazmat risk associated with the route does not exceed zero.  However at α3 three 

routes are returned: a single route for the first four hazmat volumes; another distinct 

route when 80 hazmat railcars have to be shipped; and, yet another distinct route 

for higher hazmat volumes.  Finally, for the highest confidence level, one notices 

four different optimal VaR routes for the seven specified hazmat volumes.   

Two other things are evident from Table 3.12 and Figure 3.5: first, at a given 

confidence level, the optimal VaR values increase with the increase in the number 

of hazmat railcars; and second, for a given number of hazmat railcars, the optimal 

VaR values increase with an increase in confidence level.  For instance, for 80 

hazmat railcar instance under both train configurations, the optimal VaR increases 

from 1877 to 5996 when α increases from 0.999997 to 0.999999. 
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Confidence Level  
Number of hazmat railcars (N) 

5 20 40 60 80 100 120 

𝜶𝟏 = 𝟎. 𝟗 

 

𝜶𝟐 = 𝟎. 𝟗𝟗𝟗𝟗𝟗 

C# All Unique 

VaR* 0 

VaR-Route* (a) 

𝜶𝟑 = 𝟎. 𝟗𝟗𝟗𝟗𝟗𝟕 

C# All 1st 2nd  1st 2nd 3rd  Unique 

VaR* 0 1,877 4,845 6,078 

VaR-Route* (a) (b) (c) 

𝜶𝟒 = 𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗 

C# All 1st 2nd  1st  1st 2nd  All Unique 

VaR* 0 1,980 4,038 5,996 10,115 11,426 

VaR-Route* (a) (d) (e) (f) 

(a) = 
2 - 4 - 9 - [ 25 ] - 11 

{5}  {18} 
 

(b) = 
2 - 6 - [ 20 ] - 22 - [ 24 ] - 25 - 11 

{1}   {10}   {22} 
 

(c) = 
2 - 6 - 8 - [ 9 ] - 25 - [ 12 ] - 11 

{4}   {5}   {24} 
 

(d) = 
2 - 6 - [ 20 ] - 7 - [ 23 ] - 25 - 11 

{1}   {9}   {18} 
 

(e) =   
2 - 6 - 8 - [ 9 ] - [ 25 ] - 11 

{4}   {5}   {18} 
 

(f) =  
2 - 6 - 7 - 22 - [ 21 ] - 23 - 24 - 25 - 11 

{2}   {22} 
 

Table 3.12. Optimal configuration, VaR and associated route at various 

confidence levels 

 

3.7.3.2. Longer but less risky routes 

Figure 3.6 depicts the best optimal routes for the top two hazmat volumes (i.e., 

N=100 and N=120) at the four confidence levels.  More specifically, Figure 3.6-1 

depicts the combination of train services 5 and 18 to move shipments at both α1 and 

α2 (route (a)); Figure 3.6-2 shows that train services 4, 5 and 24 are needed at α3 
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(route (c)), and that the optimal VaR value becomes non-zero; and, Figure 3.6-3 

indicates usage of two train services, i.e., 2 and 22, to move shipments at α4 (route 

(f)).  It should be evident that the maximum VaR is registered at the highest 

confidence level and hazmat volume, and that the VaR algorithm seeks to find safer 

but longer routes which generally include service legs and transfer yards at the 

periphery of the given network. 

 
Figure 3.5. Optimal VaR values for different number of hazmat railcars 
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(3.6-1) 

 
(3.6-2) 
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(3.6-3) 

Figure 3.6. Optimal routes for 100 and 120 hazmat railcars 

3.7.3.3. Impact of train length 

We also investigated the impact of train length on optimal VaR value.  To that end, 

the VaR algorithm was applied to short and long trains with 40 and 200 railcar 

lengths, respectively.  It was noticed that the optimal VaR for all hazmat volumes 

for both these train lengths was zero for the first three confidence levels.  Recall 

that the aforementioned is exactly alike medium length trains, except at α3 for 80, 

100, and 120 hazmat railcars (Table 3.13).  Figure 3.7 depicts the best VaR values, 

for the three train lengths, at α4.  It should be evident from Figure 3.7 that long train 

length would yield lower VaR values, in part because of the potential to exploit the 

decile-based configuration more appropriately.  
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Train 

Length 

Confidence 

Level 

Number of hazmat railcars (N) 

5 20 40 60 80 100 120 

sh
o

rt
 𝛼1 0 0 0 - - - - 

𝛼2 0 0 0 - - - - 

𝛼3 0 0 0 - - - - 

𝛼4 0 0 1,980 - - - - 

m
ed

iu
m

 𝛼1 0 0 0 0 0 0 0 

𝛼2 0 0 0 0 0 0 0 

𝛼3 0 0 0 0 1,877 4,845 6,078 

𝛼4 0 0 1,980 4,038 5,996 10,115 11,426 

lo
n

g
 

𝛼1 0 0 0 0 0 0 0 

𝛼2 0 0 0 0 0 0 0 

𝛼3 0 0 0 0 0 0 0 

𝛼4 0 0 0 0 0 3,482 5,628 

Table 3.13. Optimal VaR values for three train lengths at various confidence 

levels 

 

 
Figure 3.7. Optimal VaR values for different N for three train lengths at α4 

3.7.3.4. VaR=0. What does it mean?  

It is worth emphasizing here why VaR value is zero for many of the instances and 

they have the same optimal route. Consider route 𝑙 and recall that 𝑃(0)
𝑙 = 1 −
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∑ 𝑃(𝑖)
𝑙𝑛𝑙

𝑖=1 , where  𝑃(𝑖)
𝑙  shows the accident probability of service legs and yards (𝑝𝑖𝑗 

and 𝑝𝑘, respectively) in route 𝑙. As it is seen in the illustrative example, these 

accident probabilities are very small, which in turn make 𝑃(0)
𝑙  big. On the other 

hand, we know that as long as the confidence level is less than or equal to 𝑃(0)
𝑙  (0 <

𝛼 ≤ 𝑃(0)
𝑙 ), the VaR value of route 𝑙 will be equal to zero: VaR𝛼

𝑙 = 0. Therefore if a 

VaR value greater than zero is desired for a route, big confidence levels should be 

considered. That is why for many of the problem instances, the optimal VaR value 

is equal to zero and the optimal VaR route is the same, because the confidence level 

is not big enough in comparison with the total accident probability of the route. 

Note that for all of the problem instances (short, medium, and long trains) with 

optimal VaR value equal to zero, the optimal VaR route is as follows (route (a)): 

2 - 4 - 9 - [ 25 ] - 11 

{5}   {18} 

This means that with the least confidence of the given confidence levels, we can 

claim that the above route does not expose any threat to the population in those 

problem instances. 

3.7.3.5. VaR superiority over the existing measures 

Finally, in an effort to demonstrate both the distinctness and superiority of VaR 

over the three most popular risk assessment techniques – i.e., traditional risk (TR), 

incident probability (IP), and population exposure (PE), we solved the case study 

using each of the three risk assessment techniques.  Table 3.14 depicts the 
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appropriate expressions for the three measures after appropriate adaptations for rail 

shipments on the network indicated for the case study in Section 3.6.  For precise 

comparison, we again consider the problem of sending N hazmat railcars from 

Chicago (i.e., node 2) to Highview (i.e., node 11) using a medium train (with 120 

railcars), and the resulting solutions are depicted in Table 3.15.   

Model Risk Measure Objective 

TR Expected consequence min
𝑙∈𝐿

( ∑ 𝑝𝑘𝑐𝑘
𝑘 ∈ 𝒴𝑙

+ ∑ 𝑝𝑖𝑗𝑐𝑖𝑗
(𝑖,𝑗) ∈  𝒜𝑙

)

∗

 

IP Incident probability min
𝑙∈𝐿

( ∑ 𝑝𝑘
𝑘 ∈ 𝒴𝑙

+ ∑ 𝑝𝑖𝑗
(𝑖,𝑗) ∈  𝒜𝑙

) 

PE Population exposure min
𝑙∈𝐿

( ∑ 𝑐𝑘
𝑘 ∈ 𝒴𝑙

+ ∑ 𝑐𝑖𝑗
(𝑖,𝑗) ∈  𝒜𝑙

) 

Table 3.14. The existing risk assessment models in the literature for rail 

hazmat shipments 

 
* A detailed explanation for calculating the objective of TR model is provided in the 

Appendix (Section 3.9) 
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Risk Model  
Number of hazmat railcars (N) 

5 20 40 60 80 100 120 

TR 

C# 2nd  2nd  3rd 2nd 2nd 1st Unique 

TR* 0.00015 0.00139 0.00549 0.01292 0.02322 0.03867 0.05967 

TR-Route* (g) (c) 

IP 

C# 1st  Unique 

IP* 1.14E-07 4.64E-07 1.13E-06 2.02E-06 3.09E-06 4.41E-06 6.03E-06 

IP-Route* (a) 

PE 

C# All Unique 

PE* 9,338 25,608 44,736 62,306 78,000 93,029 108,949 

PE-Route* (h) 

(a) = 
2 - 4 - 9 - [ 25 ] - 11 

{5}  {18} 
 

(c) = 
2 - 6 - 8 - [ 9 ] - 25 - [ 12 ] - 11 

{4}   {5}   {24} 
 

(g) = 
2 - 6 - [ 8 ] - [ 4 ] - 9 - 25 - [ 12 ] - 11 

{4}   {11}   {5}   {24} 
 

(h) =   
2 - 6 - 8 - [ 9 ] - 10 - 14 - [ 13 ] - 11 

{4}  {12}  {29} 
 

Table 3.15. Optimal configuration, objective and associated route for the 

three risk measures 

 

A total of four routes were generated for the three risk measures across the 

different hazmat volumes (Table 3.15).  In contrast, the VaR approach took into 

consideration the risk preference (or tolerance) of the decision maker, and yielded 

six routes (Table 3.12).  It is pertinent that of the two routes generated by the TR 

approach, the first one holds only for 5 hazmat railcars (and thus could be an 

anomaly).  More importantly, the second route being used for the remaining seven 

hazmat volumes is exactly the same as the one with the VaR model when N=100 

and 120 hazmat railcars at a confidence level of 𝛼3 = 0.999997, i.e., route (c).   
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In addition, the route generated by the IP approach is the route generated by 

VaR at all four confidence levels, and whose optimal value is equal to zero.  Note 

that this route is indicated by index (a) in both Table 3.12 and Table 3.15, and the 

interpretation of VaR=0 was provided in Section 3.7.3.4.  More specifically, for the 

appropriate hazmat volume and train configuration, none of the four confidence 

levels is large enough compared to the total accident probability of the route –i.e., 

the route that minimizes total incident probability when using the IP approach.   

Finally, the objective of the PE approach is to minimize the total consequence 

of the hazmat route, which neither depends on the accident probabilities on the 

service legs or in the yards, and nor on the train configuration.  Therefore, for all 

hazmat volumes, all train configurations result in the same optimal route.  On the 

other hand, for all hazmat volumes using the IP approach, only the 1st train 

configuration results in the optimal route.  This is because of the objective to 

minimize total accident probability of a route, which in turn is mostly composed of 

service legs –and thus the model selects train configuration likely to minimize 

accident probabilities on the service legs, i.e., determining 𝑦𝑟 for  𝑝𝑖𝑗 minimization, 

which happens when 𝒲 is close to 1.  Note that unlike these models, VaR approach 

utilizes various train configurations for different hazmat volumes to find the 

optimal routes. 
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3.8 Conclusion 

Railroad is one of the safest modes for transporting hazmat, however, the possibility 

of spectacular events resulting from multicar incidents, however small, does exist.  

Though the last two decades has witnessed the development of numerous risk 

assessment methodologies, most of them were developed in the highway domain 

and thus have limited effectiveness in capturing the low probability –high 

consequence nature of rail hazmat incidents, i.e., prepare risk-averse routes.  We 

make a first attempt to develop a Value-at-Risk (VaR) assessment methodology to 

facilitate risk-averse routing of hazmat shipments.  It is important that developing 

such routing plans in a railroad setting is more complex than in highway 

transportation because of three reasons: first, the characteristics of railroad 

operations need to be taken into consideration; second, one could only work with 

the given set of pre-defined train services, which would entail transfer operations 

at yards and thus the corresponding risk; and third, decision about optimal train 

configuration should also be taken into consideration.   

The proposed risk assessment methodology was used to study 232 problem 

instances generated using the realistic infrastructure of a railroad operator in 

Midwest United States, which were further analyzed to arrive at the following 

insights.  First, unlike the three most popular risk assessment methodologies, VaR 

incorporates the risk-preference of the decision maker to generate (multiple) routes 

between a given origin-destination pair. More specifically, as confidence level goes 

from the theoretical minimum value of zero to the theoretical maximum value of 
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one, the decision maker moves away from being risk-neutral and towards becoming 

risk-averse. Having such flexibility could be important from the perspective of the 

regulators, who is interested in a balanced distribution of hazmat risk in the 

network.  Second, for a given origin-destination pair, optimal VaR value has a 

positive relationship with both the hazmat volume, and the confidence level (or 

risk-preference) of the decision maker.  Third, at high confidence levels (i.e., risk-

averse), safer but longer routes that make use of the service legs and yards at the 

periphery of the network are utilized.  Fourth, for a given route, longer trains would 

result in lower VaR values because of the potential to exploit the decile-based 

configurations more appropriately.   

Though the proposed approach was a useful first attempt at understanding the 

nuances of risk-averse routing of rail hazmat shipments, it has some shortcomings. 

Some instances with optimal VaR value of zero were noticed, which implies that 

complete risk measure for the corresponding route could not be generated.  In some 

other with positive VaR values, it was still not possible to capture information about 

the extra population at risk due to the accident. 

To sum, though by focusing on the adverse tail of the distribution, VaR seems 

a more suitable measure of hazmat risk than the three most popular measures (i.e., 

traditional risk, incident probability, and population exposure), the aforementioned 

shortcomings does create an incentive to search for alternative measures that could 

quantify the affected populace beyond the threshold, i.e., VaR.  One such alternate 
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measure is conditional value-at-risk (CVaR) (Toumazis et al., 2013; Toumazis and 

Kwon, 2013; Faghih-Roohi et al., 2015; Toumazis and Kwon, 2016), which is the 

immediate area of interest for this dissertation. 

 

3.9 Appendix   

As explained in Chapter 2, various models that use different risk measures have 

been developed so far to quantify the risk generated by a route. The traditional risk 

(TR) model, however, is the most popular one in railroad hazmat transportation. It 

calculates the expected value of the consequence along the route (Sherali et al., 

1997; Erkut and Verter, 1998). Suppose a route 𝑙  which uses 𝑇(out of 𝑆) train 

services and consists of an ordered set (from the route’s origin to its destination) of 

service legs 𝒜𝑙 = ⋃ 𝒜𝑠
𝑙

𝑠∈𝑇  and yards 𝒴𝑙 = ⋃ 𝒴𝑠
𝑙

𝑠∈𝑇 , such that 𝒜𝑙 = {(𝑖𝑟, 𝑗𝑟): 1 ≤

𝑟 ≤ 𝑛𝑙}  and  𝒴𝑙 = {𝑘𝑟: 1 ≤ 𝑟 ≤ 𝑛𝑙} , where 𝑛𝑙 = |𝒴
𝑙 ∪𝒜𝑙|  (the cardinality 

of 𝒴𝑙 ∪𝒜𝑙), (𝑖𝑟 , 𝑗𝑟) is the 𝑟th item in the route showing a service leg, and 𝑘𝑟 is the 

𝑟th item in the route showing a yard. Recall that 𝑅𝑙 denotes the discrete random 

variable for the risk along route 𝑙. Using TR, we have 

 

E [𝑅𝑙] = ∑ ∏ (1− 𝑝𝑖ℎ𝑗ℎ)(1 − 𝑝𝑘ℎ) 𝑝𝑖𝑟𝑗𝑟   𝑐𝑖𝑟𝑗𝑟

 (𝑖ℎ,𝑗ℎ)∈𝒜𝑙,   𝑘ℎ∈𝒴𝑙,   ℎ<𝑟(𝑖𝑟,𝑗𝑟)∈𝒜𝑙 

+ ∑ ∏ (1− 𝑝𝑖ℎ𝑗ℎ)(1 − 𝑝𝑘ℎ) 𝑝𝑘𝑟   𝑐𝑘𝑟

 (𝑖ℎ,𝑗ℎ)∈𝒜𝑙,   𝑘ℎ∈𝒴𝑙,   ℎ<𝑟𝑘𝑟∈𝒴𝑙 

 

(A3.1) 

which states that immediately after an accident occurs on a service leg ((𝑖𝑟, 𝑗𝑟)) or 

at a yard (𝑘𝑟), the hazmat shipment will be terminated.  
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Harwood et al. (1993), using North American data, estimate hazmat accident 

probabilities to be on the order of 10−6 per trip per kilometer, which are extremely 

small. This means that the probability (1 − 𝑝𝑖ℎ𝑗ℎ)(1 − 𝑝𝑘ℎ)  that no accident 

occurs on service leg (𝑖ℎ, 𝑗ℎ) nor at yard (𝑘ℎ) is close to 1. Therefore following (Jin 

and Batta, 1997), (A3.1) can be approximated by  

 E [𝑅𝑙] ≈ ∑ 𝑝𝑖𝑟𝑗𝑟  𝑐𝑖𝑟𝑗𝑟

(𝑖𝑟,𝑗𝑟)∈𝒜𝑙 

+ ∑ 𝑝𝑘𝑟  𝑐𝑘𝑟

𝑘𝑟∈𝒴𝑙 

 (A3.2) 

The TR model (A3.2) can be optimized much easier than (A3.1), since it is a 

shortest-path problem in which the traversing costs of service leg (𝑖, 𝑗) and yard 𝑘 

are 𝑝𝑖𝑗𝑐𝑖𝑗 and 𝑝𝑘𝑐𝑘, respectively.  
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Chapter 4. A Conditional Value-at-Risk (CVaR) 

Methodology to Optimal Train Configuration and Routing 

of Rail Hazmat Shipments 

4.1 Introduction 

Motivated by the risk-neutral behavior of traditional risk (TR) model and 

consequent failure to capture the public posture against hazmat transportation, 

recently, there have been efforts to generate different routes based on the risk 

preferences of the decision maker.  To that end, Kang et al. (2014a, b) proposed a 

value-at-risk (VaR) model for highway shipments.  Subsequently, Hosseini and 

Verma (2017) proposed a VaR-based assessment framework for routing rail hazmat 

shipments, as explained in the previous chapter. Within hazmat transportation 

setting, VaR has a simple interpretation, viz., how many people are exposed to 

hazmat risk given a certain confidence level?  Though the straightforward 

interpretation has its appeal, VaR in general has not found widespread acceptance 

as a measure of risk since it is not a coherent risk measure (Artzner et al., 1999; 

Dowd and Blake, 2006), and might lead to inaccurate perception of risk (Einhorn, 

2008; Nocera, 2009) because it cuts off and ignores what happens in the tail of the 

distribution –and thus overlook catastrophic events (see Figure 4.1).  The indicated 

shortcomings of VaR motivated the development of a more sophisticated measure, 

i.e. conditional value-at-risk (CVaR) which is capable of quantifying population 

exposure that may be encountered in the unfavorable tail of the distribution to avoid 

extreme events.  Toumazis et al. (2013) were the first to adapt the CVaR notion to 
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simultaneously generate flexible and risk averse route for highway hazmat 

shipments, and the notion was further developed in Toumazis and Kwon (2013), 

Faghih-Roohi et al. (2015), and Toumazis and Kwon (2016).   

It is important that, given the possibility of hazmat release from multiple 

railcars, consequences are much more catastrophic within a railroad setting than for 

highway shipments.  Hence, the proposed work makes a first attempt to develop a 

CVaR-based risk assessment methodology for rail hazmat shipments that 

incorporates the characteristics of railroad accidents, and then utilizes it to prepare 

rail hazmat routing plans for different confidence levels wherein risk-averse 

phenomenon is sustained.  Note that, given the physical infrastructure of railroad 

transportation system, the proposed methodology should work given the limited 

number of pre-defined train services, which in turn might require transfer 

operations at intermediate yards and determining optimal train configuration.  Thus, 

the proposed methodology is more complex than routing a single hazmat truck 

between a given origin-destination pair in an unconstrained highway network.  In 

addition, we have also attempted to provide a succinct and clear definition of CVaR 

for hazmat shipments, which we felt was done un-satisfactorily by the published 

peer-reviewed works.  Finally, we use the proposed CVaR methodology to study 

and analyze several problem instances generated using the realistic infrastructure 

of a railroad operator, and to gain insights.  Through numerical experiments we 

demonstrate that the proposed methodology is superior to other measures for risk-
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averse routing of hazmat shipments and versatile enough to yield routes based on 

risk preferences of the decision makers.   

 

Figure 4.1. VaR and CVaR deviations [Source: Sarykalin et al. (2008)] 

The rest of the chapter is organized as follows. Section 4.2 provides a detailed 

discussion about the proposed conditional value-at-risk methodology.  Section 4.3 

contains the discussion about the railroad network and the parameters used to 

generate problem instances, which are then solved and analyzed to gain insights.  

Finally, conclusions and directions of future research are presented in Section 4.4.   
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In order to facilitate the discussion of the proposed CVaR methodology in 

Section 4.2, we first refer the reader to the two building blocks presented in Chapter 

3; appropriate sets and notations pertinent to railroad transportation system 

introduced in Section 3.2, followed by an exposition of the concept of value-at-risk 

in Section 3.3.  

4.2 Conditional value-at-risk (CVaR) Methodology 

CVaR and its minimization formula were first developed in Rockafellar and 

Uryasev (2000) to optimize a portfolio so as to reduce the risk of high losses, and 

focused on continuous distributions with smooth density functions.  However, in a 

subsequent work (Rockafellar and Uryasev, 2002), they developed a general 

definition of CVaR for random variables with possibly a discontinuous distribution 

function.  In this section, we will provide complete details of how this measure was 

adapted to assess risk from rail hazmat shipments.   

4.2.1. Definition 

For a random variable 𝑋  that represents loss and has a continuous distribution 

function 𝐹𝑋(𝑥), the CVaR at a given confidence level 𝛼 is defined as the expected 

loss given that the loss is greater than or equal to the VaR, i.e. CVaR𝛼(𝑋) =

𝐸[𝑋 | 𝑋 ≥ VaR𝛼(𝑋)] (see Figure 4.2).  However, in the general case when there 

are discontinuities in the distribution function, CVaR is replaced by two terms: 

CVaR− and CVaR+, called lower and upper CVaR, respectively.  Hence, for our 

problem, we have:  
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 CVaR−𝛼
𝑙 = 𝐸(𝑅𝑙 | 𝑅𝑙 ≥ VaR𝛼

𝑙 ) (4.1) 

 CVaR+𝛼
𝑙
= 𝐸(𝑅𝑙 | 𝑅𝑙 > VaR𝛼

𝑙 ) (4.2) 

 

1

0

 

Figure 4.2. For continuous 𝑭𝑿(𝒙): 𝐂𝐕𝐚𝐑𝜶(𝑿) = 𝑬[𝑿 | 𝑿 ≥ 𝐕𝐚𝐑𝜶(𝑿)] 

It is important that contrary to popular opinion, in the general case, CVaR is not 

always equal to the average of the consequences greater than (or equal to) VaR.  

For problems, similar to what we are studying, where the distribution function has 

possible discontinuities (see Figure 3.1), CVaR has a more elusive definition.  More 

specifically, CVaR of the risk associated with the route 𝑙 given confidence level 

𝛼 ∈ (0,1) is defined as: 

 CVaR𝛼
𝑙 = mean of the 𝛼-tail distribution of 𝑅𝑙, (4.3) 
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where by the 𝛼-tail distribution of 𝑅𝑙 we mean the one with distribution function 

𝐹
𝑅𝑙
𝛼 (𝛽) defined by 

 𝐹
𝑅𝑙
𝛼 (𝛽) = {

0,                         for  𝛽 < VaR𝛼
𝑙  

 
𝐹𝑅𝑙(𝛽) − 𝛼

1 − 𝛼
,      for  𝛽 ≥ VaR𝛼

𝑙  .

 (4.4) 

Note that 𝐹
𝑅𝑙
𝛼 (𝛽) is truly another distribution function, but like 𝐹𝑅𝑙(𝛽); it is non-

decreasing and right-continuous, with 𝐹
𝑅𝑙
𝛼 (𝛽) → 1 as 𝛽 → ∞. This way CVaR𝛼

𝑙  can 

be obtained as follows:  

 CVaR𝛼
𝑙 = ∫ 𝛽 𝑑𝐹

𝑅𝑙
𝛼 (𝛽)

∞

0

.    (4.5) 

The elusiveness of the above definition is because of the probability atom that 

exists at VaR𝛼
𝑙  in the original distribution function of risk 𝑅𝑙 (𝐹𝑅𝑙(𝛽)), as explained 

in Figure 3.1.  Recall that 𝛼− and 𝛼+ (defined in (3.8) and (3.9), respectively) mark 

the bottom and top of the vertical gap in  𝐹𝑅𝑙(𝛽), which makes an interval of 

confidence level 𝛼 having the same VaR𝛼
𝑙 .  The issue that arises here is that what 

should really be meant by the 𝛼-tail distribution given in the definition of CVaR in 

(4.3), since that term presumably refer to the ‘‘upper 1 − 𝛼  part’’ of the full 

distribution, but neither of the intervals  [VaR𝛼
𝑙 , ∞)  and  (VaR𝛼

𝑙 , ∞)  has 

probability 1 − 𝛼:  

[VaR𝛼
𝑙 , ∞):          Pr(𝑅𝑙 ≥ VaR𝛼

𝑙 ) = 1 − Pr(𝑅𝑙 < VaR𝛼
𝑙 ) = 1 − 𝛼− , 
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(VaR𝛼
𝑙 , ∞):          Pr(𝑅𝑙 > VaR𝛼

𝑙 ) = 1 − Pr(𝑅𝑙 ≤ VaR𝛼
𝑙 ) = 1 − 𝛼+ . 

In fact, the interval [VaR𝛼
𝑙 , ∞) has probability 1 − 𝛼− which is greater than 1 − 𝛼 

and the interval  (VaR𝛼
𝑙 , ∞)  has probability 1 − 𝛼+  which is less than  1 − 𝛼 , 

when 𝛼− < 𝛼 < 𝛼+ < 1.  To resolve this issue, one can “split” the atom, which has 

a total probability of 𝛼+ − 𝛼−, into two pieces with probabilities 𝛼 − 𝛼− and 𝛼+ −

𝛼 .  Then by considering only the upper piece which is adjoining the 

interval  (VaR𝛼
𝑙 , ∞) , one will obtain the probability 1 − 𝛼  through  (𝛼+ − 𝛼) +

(1 − 𝛼+). This conceptually means one is rescaling that portion of the graph of the 

original distribution 𝐹𝑅𝑙(𝛽) which is between the horizontal lines at levels 𝛼 and 1, 

and spans it instead between 0 and 1, so that 𝐹
𝑅𝑙
𝛼 (𝛽) in (4.4) is gained.  The 𝛼-tail 

distribution in (4.3) can be then stated using this new distribution. Figure 4.3 shows 

the result of such a conversion for Figure 3.1. 
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1

0

 

Figure 4.3. 𝑭
𝑹𝒍
𝜶 (𝜷) is obtained by rescaling 𝑭𝑹𝒍(𝜷) in the interval [𝜶, 𝟏] 

 

4.2.2. Proposed approach 

The splitting technique outlined in the previous section implies that CVaR can be 

presented as a weighted average of VaR and the risk greater than that (see (4.5)) as 

follows: 

 CVaR𝛼
𝑙 = 𝜆𝛼

𝑙  VaR𝛼
𝑙 + (1 − 𝜆𝛼

𝑙 ) CVaR+𝛼
𝑙

 (4.6) 

where 𝜆𝛼
𝑙  signifies the probability that is allotted to the risk amount VaR𝛼

𝑙  by the 𝛼-

tail distribution defined in (4.3) and (4.4), i.e.,  
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 𝜆𝛼
𝑙 =

𝐹𝑅𝑙(VaR𝛼
𝑙 ) − 𝛼

1 − 𝛼
 (4.7) 

where 𝐹𝑅𝑙(VaR𝛼
𝑙 ) ≥ 𝛼 always by definition in (3.3).  Note that 𝐹𝑅𝑙(VaR𝛼

𝑙 ) = 1 and 

so 𝜆𝛼
𝑙 = 1 means VaR𝛼

𝑙  has gained the highest possible risk (there is no chance of 

a risk greater than  VaR𝛼
𝑙 ), therefore  CVaR𝛼

𝑙 = VaR𝛼
𝑙  , although  CVaR+𝛼

𝑙
 is ill 

defined.  Whereas as long as 𝐹𝑅𝑙(VaR𝛼
𝑙 ) < 1, meaning there is a chance of a risk 

greater that  VaR𝛼
𝑙 , then  CVaR𝛼

𝑙 > VaR𝛼
𝑙 .  Therefore generally  CVaR𝛼

𝑙 ≥ VaR𝛼
𝑙 , 

which is intuitively evident from the definition of CVaR. 

However, our problem consists of scenarios, where the distribution function 

𝐹𝑅𝑙(𝛽) is a step function with jumps at discrete points (Figure 3.1).  Hence, CVaR 

can be computed in an explicit manner as explained next. Consider the route 𝑙 and 

recall that the distribution of risk 𝑅𝑙 is concentrated in finitely many points; 𝐶(𝑖)
𝑙 , 𝑖 ∈

{0, 1, 2, … , 𝑛𝑙}, where 𝐶(0)
𝑙 = 0 < 𝐶(1)

𝑙 < 𝐶(2)
𝑙 < ⋯ < 𝐶(𝑛𝑙)

𝑙  and that the probability 

of 𝐶(𝑖)
𝑙  is 𝑃(𝑖)

𝑙 .  Let 𝐾 be equal to 0 if 0 < 𝛼 ≤ 𝑃(0)
𝑙 , otherwise let it be the unique 

index such that 

∑𝑃(𝑖)
𝑙

𝐾−1

𝑖=0

< 𝛼 ≤∑𝑃(𝑖)
𝑙

𝐾

𝑖=0

 . 

Using (3.7), the 𝛼-VaR of the risk is then given by: 

VaR𝛼
𝑙 = 𝐶(𝐾)

𝑙  . 

According to (4.7) 
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𝜆𝛼
𝑙 =

Pr(𝑅𝑙 ≤ 𝐶(𝐾)
𝑙 ) − 𝛼

1 − 𝛼
=

1

1 − 𝛼
(∑𝑃(𝑖)

𝑙

𝐾

𝑖=0

− 𝛼) , 

and, according to (4.2) 

CVaR+𝛼
𝑙
= 𝐸(𝑅𝑙 | 𝑅𝑙 > VaR𝛼

𝑙 ) =∑𝛽 𝑓(𝛽 | 𝑅𝑙 > VaR𝛼
𝑙 )

𝛽

 , 

where 

𝑓(𝛽 | 𝑅𝑙 > VaR𝛼
𝑙 ) = Pr(𝑅𝑙 = 𝛽 | 𝑅𝑙 > VaR𝛼

𝑙 ) =
Pr(𝑅𝑙 = 𝛽, 𝑅𝑙 > VaR𝛼

𝑙 )

Pr(𝑅𝑙 > VaR𝛼
𝑙 )

 , 

so 

CVaR+𝛼
𝑙
=∑𝛽 

Pr(𝑅𝑙 = 𝛽, 𝑅𝑙 > VaR𝛼
𝑙 )

Pr(𝑅𝑙 > VaR𝛼
𝑙 )

𝛽

= ∑ 𝐶(𝑖)
𝑙  

𝑃(𝑖)
𝑙

∑  𝑃(𝑖)
𝑙𝑛𝑙

𝑖=𝐾+1

𝑛𝑙

𝑖=𝐾+1

=
∑  𝐶(𝑖)

𝑙  𝑃(𝑖)
𝑙𝑛𝑙

𝑖=𝐾+1

∑  𝑃(𝑖)
𝑙𝑛𝑙

𝑖=𝐾+1

 , 

therefore,  

(1 − 𝜆𝛼
𝑙 ) CVaR+𝛼

𝑙
=

1

1 − 𝛼
( ∑ 𝐶(𝑖)

𝑙  𝑃(𝑖)
𝑙

𝑛𝑙

𝑖=𝐾+1

) . 

Consequently, according to (4.6), the 𝛼-CVaR is given by  

 CVaR𝛼
𝑙 =

1

1 − 𝛼
[(∑𝑃(𝑖)

𝑙

𝐾

𝑖=0

− 𝛼)VaR𝛼
𝑙 + ∑ 𝑃(𝑖)

𝑙  𝐶(𝑖)
𝑙

𝑛𝑙

𝑖=𝐾+1

] . (4.8) 

Similarly, we can compute CVaR−𝛼
𝑙

 using (4.1) 
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CVaR−𝛼
𝑙 = 𝐸(𝑅𝑙 | 𝑅𝑙 ≥ VaR𝛼

𝑙 ) =∑𝛽 
Pr(𝑅𝑙 = 𝛽, 𝑅𝑙 ≥ VaR𝛼

𝑙 )

Pr(𝑅𝑙 ≥ VaR𝛼
𝑙 )

𝛽

=
∑  𝐶(𝑖)

𝑙  𝑃(𝑖)
𝑙𝑛𝑙

𝑖=𝐾

∑  𝑃(𝑖)
𝑙𝑛𝑙

𝑖=𝐾

 . 

4.2.3. Relations 

As explained in the definition of CVaR, for distributions with possible 

discontinuities, CVaR can differ from either of CVaR+ and CVaR− quantities. The 

terms ‘‘mean shortfall’’ (Mausser and Rosen, 1999) and ‘‘expected shortfall’’ 

(Acerbi et al., 2001) have been used in the literature to call CVaR+, while the term 

‘‘tail VaR’’ has been suggested for CVaR− (Artzner et al., 1999). Compared to the 

definition of CVaR𝛼
𝑙  in (4.3) and (4.4), the CVaR−𝛼

𝑙
 value in (4.1) is the mean of the 

risk distribution associated with  

𝐹
𝑅𝑙
−𝛼(𝛽) = {

0,                           for  𝛽 < VaR𝛼
𝑙

 
𝐹𝑅𝑙(𝛽) − 𝛼

−

1 − 𝛼−
,      for  𝛽 ≥ VaR𝛼

𝑙

 

similarly the CVaR+𝛼
𝑙

 value in (4.2) is the mean of the risk distribution associated 

with  

𝐹
𝑅𝑙
+𝛼(𝛽) = {

0,                           for  𝛽 < VaR𝛼
𝑙

 
𝐹𝑅𝑙(𝛽) − 𝛼

+

1 − 𝛼+
,      for  𝛽 ≥ VaR𝛼

𝑙

 

This way, the following CVaR relations may happen: 
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• If there was no probability atom at  VaR𝛼
𝑙  (𝛼− = 𝛼 = 𝛼+ ∈ (0,1)) , we 

would simply have CVaR−𝛼
𝑙 = CVaR𝛼

𝑙 = CVaR+𝛼
𝑙

 . 

But with a probability atom at VaR𝛼
𝑙 : 

• If 𝛼 = 𝛼+, we get 𝛼− < 𝛼+ < 1, ⇒ CVaR−𝛼
𝑙 < CVaR𝛼

𝑙 = CVaR+𝛼
𝑙

 , 

• If 𝛼+ = 1, ⇒ CVaR−𝛼
𝑙 = CVaR𝛼

𝑙 , with CVaR+𝛼
𝑙

 then being ill defined , 

• If 𝛼− < 𝛼 < 𝛼+ < 1, ⇒ CVaR−𝛼
𝑙 < CVaR𝛼

𝑙 < CVaR+𝛼
𝑙
 . 

In general, CVaR− ≤ CVaR ≤ CVaR+ . If there is no jump (probability atoms 

induced by discreteness) at the VaR threshold in the distribution function, the 

equalities hold, but when a jump occurs, both inequalities can be strict. 

4.2.4. Examples 

CVaR definitions and relations for our scenario-based model are illustrated further 

with the following examples inspired by Sarykalin et al. (2008). Suppose that route 

𝑙 is composed of totally 5 service legs and transferring yards (𝑛𝑙 = 5) with ordered 

accident consequences 𝐶(1)
𝑙 , … , 𝐶(5)

𝑙  and equal corresponding accident probabilities 

of  𝑃(1)
𝑙 = ⋯ = 𝑃(5)

𝑙 = 0.01, hence  𝑃(0)
𝑙 = 0.95. For the first case, let  𝛼 = 0.98, 

hence 𝛼− = 0.97 and 𝛼+ = 𝛼 (see Figure 4.4). In this case, 𝛼 does not split any 

probability atom. Then 𝜆𝛼
𝑙 = 0, VaR𝛼

𝑙 < CVaR−𝛼
𝑙 < CVaR𝛼

𝑙 = CVaR+𝛼
𝑙
, where  
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0

0.95

0.96

0.97

0.98

0.99

1

 

Figure 4.4. CVaR Example 1: computation of CVaR when 𝜶 does not split 

the atom 

 

VaR𝛼
𝑙 = 𝐶(3)

𝑙 , 

CVaR𝛼
𝑙 = CVaR+𝛼

𝑙
=
1

2
𝐶(4)
𝑙 +

1

2
𝐶(5)
𝑙 , 

CVaR−𝛼
𝑙 =

1

3
𝐶(3)
𝑙 +

1

3
𝐶(4)
𝑙 +

1

3
𝐶(5)
𝑙  . 

Now, let  𝛼 = 0.975 , hence 𝛼− = 0.97  and 𝛼+ = 0.98  (see Figure 4.5). In this 

case, 𝛼 does split the VaR𝛼
𝑙  atom, 𝜆𝛼

𝑙 > 0, VaR𝛼
𝑙 < CVaR−𝛼

𝑙 < CVaR𝛼
𝑙 < CVaR+𝛼

𝑙
, 

and the following equations hold (VaR𝛼
𝑙 , CVaR+𝛼

𝑙
, and CVaR−𝛼

𝑙
 have not changed): 
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0

0.95

0.96

0.97

0.98

0.99

1

 

Figure 4.5. CVaR Example 2: computation of CVaR when 𝜶 splits the atom 

VaR𝛼
𝑙 = 𝐶(3)

𝑙 , 

𝜆𝛼
𝑙 = 0.2, 

CVaR+𝛼
𝑙
=
1

2
𝐶(4)
𝑙 +

1

2
𝐶(5)
𝑙 , 

CVaR𝛼
𝑙 = 0.2VaR𝛼

𝑙 + 0.8CVaR+𝛼
𝑙
= 0.2𝐶(3)

𝑙 + 0.4𝐶(4)
𝑙 + 0.4𝐶(5)

𝑙 , 

CVaR−𝛼
𝑙 =

1

3
𝐶(3)
𝑙 +

1

3
𝐶(4)
𝑙 +

1

3
𝐶(5)
𝑙  . 
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In the last case, we consider 𝛼 = 0.995, hence 𝛼− = 0.99 and 𝛼+ = 1, which splits 

the last atom (see Figure 4.6). Now 𝜆𝛼
𝑙 = 1, VaR𝛼

𝑙 = CVaR−𝛼
𝑙 = CVaR𝛼

𝑙 = 𝐶(5)
𝑙 , 

and CVaR+𝛼
𝑙

 is not defined.  

0

0.95

0.96

0.97

0.98

0.99

1

 

Figure 4.6. CVaR Example 3: computation of CVaR when 𝜶 splits the last 

atom 

 

4.2.5. Properties 

We now provide some important properties of CVaR for our scenario-based 

problem. 

1) Consider route 𝑙 and suppose that 0 < 𝛼 ≤ 𝑃(0)
𝑙 , i.e. 𝐾 = 0, and so VaR𝛼

𝑙 = 0. 

According to (4.8), CVaR𝛼
𝑙  then will be 

∑ 𝑃(𝑖)
𝑙  𝐶(𝑖)

𝑙𝑛𝑙
𝑖=1

1−𝛼
 which is (almost) equal to 
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E [𝑅𝑙]

1−𝛼
 (see (A3.2) in the Appendix of Chapter 3). Similarly, let us define 𝑃(0)

𝑚𝑖𝑛 =

min
𝑙∈𝐿

𝑃(0)
𝑙 , then for any  0 < 𝛼̅ ≤ 𝑃(0)

𝑚𝑖𝑛  and 𝑙 ∈ 𝐿  we will have: VaR𝛼̅
𝑙 = 0 

and  CVaR𝛼̅
𝑙 =

∑ 𝑃(𝑖)
𝑙  𝐶(𝑖)

𝑙𝑛𝑙
𝑖=1

1−𝛼̅
=

E [𝑅𝑙]

1−𝛼̅
.  This means that by having 𝛼̅  as the 

confidence level, the VaR model is not effective for any route and minimizing 

the CVaR measure is equivalent to minimizing the TR risk measure for all 

routes.  Therefore the route generated by the CVaR model is the same as the 

route that the TR model generates. 

2) Consider route 𝑙 and suppose that 0 < 𝛼1 < 𝛼2 ≤ 𝑃(0)
𝑙 , so VaR𝛼1

𝑙 = VaR𝛼2
𝑙 =

0. Therefore, according to (4.8), CVaR𝛼2
𝑙 =

1−𝛼1

1−𝛼2
 CVaR𝛼1

𝑙 , i.e.  CVaR𝛼2
𝑙  is a 

multiple of (and greater than) CVaR𝛼1
𝑙 . 

3) Suppose that ∑ 𝑃(𝑖)
𝑙𝑛𝑙−1

𝑖=0 < 𝛼 < 1, i.e. 𝐾 = 𝑛𝑙, and so VaR𝛼
𝑙 = 𝐶(𝑛𝑙)

𝑙 , which is 

the highest possible risk. According to (4.8), CVaR𝛼
𝑙  then will be equal to 𝐶(𝑛𝑙)

𝑙  

as well. Similarly, let us define 𝑃(𝑛)
𝑚𝑎𝑥 = max

𝑙∈𝐿
∑ 𝑃(𝑖)

𝑙𝑛𝑙−1
𝑖=0 , then for any  𝑃(𝑛)

𝑚𝑎𝑥 <

𝛼̿ < 1  and 𝑙 ∈ 𝐿  we will have:  VaR𝛼̿
𝑙 = CVaR𝛼̿

𝑙 = 𝐶(𝑛𝑙)
𝑙 . This means that by 

choosing 𝛼̿ as the confidence level, both VaR and CVaR models result in the 

maximum risk that is possible for the routes available for the hazmat shipment 

and there is no chance of a risk greater than that. 

For the next two properties, suppose that the attributes of route  𝑙 , 𝐶(𝑖)
𝑙  

and 𝑃(𝑖)
𝑙 , 𝑖 ∈ {0, 1, 2, … , 𝑛𝑙}, are in the following form: 
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𝐶(0)
𝑙  𝐶(1)

𝑙  𝐶(2)
𝑙  … 𝐶(𝑚)

𝑙  … 𝐶(𝐾)
𝑙  … 𝐶(𝑛𝑙)

𝑙  

𝑃(0)
𝑙  𝑃(1)

𝑙  𝑃(2)
𝑙  … 𝑃(𝑚)

𝑙  … 𝑃(𝐾)
𝑙  … 𝑃(𝑛𝑙)

𝑙  

where 

 

𝐶(0)
𝑙 = 0 < 𝐶(1)

𝑙 < 𝐶(2)
𝑙 < ⋯ < 𝐶(𝑚)

𝑙 < ⋯ < 𝐶(𝐾)
𝑙 < ⋯ < 𝐶(𝑛𝑙)

𝑙 , 

𝑚 ∈ {1, 2, … , 𝐾 − 1}, 𝐾 ∈ {2, … , 𝑛𝑙}, 

(4.9) 

𝑃(0)
𝑙 = 1 −∑𝑃(𝑖)

𝑙

𝑛𝑙

𝑖=1

 , 

∑𝑃(𝑖)
𝑙

𝐾−1

𝑖=0

< 𝛼 ≤∑𝑃(𝑖)
𝑙

𝐾

𝑖=0

 , 

therefore 

VaR𝛼
𝑙 = 𝐶(𝐾)

𝑙 , and 

CVaR𝛼
𝑙 =

1

1 − 𝛼
[(∑𝑃(𝑖)

𝑙

𝐾

𝑖=0

− 𝛼)VaR𝛼
𝑙 + ∑ 𝑃(𝑖)

𝑙  𝐶(𝑖)
𝑙

𝑛𝑙

𝑖=𝐾+1

] . 

4) Suppose that route 𝑙 is the same as route 𝑙 except that it does not include the 

𝑚th component (service leg or transferring yard), 𝐶(𝑚)
𝑙  and 𝑃(𝑚)

𝑙 , of route 𝑙. Let 

define set 𝐽 = 𝐼 − {𝑚}, where 𝐼 = {𝑖|𝑖 = 0, 1, 2, … ,𝑚,… , 𝐾, … , 𝑛𝑙}. Therefore 

we have: 

𝑛𝑙 = 𝑛𝑙 − 1 

𝑃(0)
𝑙 = 1 −∑𝑃(𝑗)

𝑙

𝑛𝑙́

𝑗=1

= 1 − (∑𝑃(𝑖)
𝑙

𝑛𝑙

𝑖=1

− 𝑃(𝑚)
𝑙 ) = 𝑃(0)

𝑙 + 𝑃(𝑚)
𝑙  
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therefore 

 

∑𝑃(𝑖)
𝑙

𝐾

𝑖=0

= 𝑃(0)
𝑙 + 𝑃(𝑚)

𝑙 + ∑ 𝑃(𝑖)
𝑙

𝐾

𝑖=1,   𝑖≠𝑚

= 𝑃(0)
𝑙 + ∑ 𝑃(𝑖)

𝑙

𝐾

𝑖=1,   𝑖≠𝑚

= 𝑃(0)
𝑙 +∑𝑃(𝑗)

𝑙

𝐾́

𝑗=1

=∑𝑃(𝑗)
𝑙

𝐾́

𝑗=0

, 

(4.10) 

where 𝐾́ = 𝐾 − 1. Similarly we can show that 

 ∑𝑃(𝑖)
𝑙

𝐾−1

𝑖=0

= ∑𝑃(𝑗)
𝑙

𝐾́−1

𝑗=0

 . (4.11) 

In addition, because  𝐶(𝑗)
𝑙 = 𝐶(𝑖)

𝑙  and 𝑃(𝑗)
𝑙 = 𝑃(𝑖)

𝑙 ,   ∀𝑗 = 𝑖 − 1, 𝑖 ≥ 𝐾, 𝑗 ≥ 𝐾́ , 

we will have 

 ∑ 𝑃(𝑖)
𝑙  𝐶(𝑖)

𝑙

𝑛𝑙

𝑖=𝐾+1

= ∑ 𝑃(𝑗)
𝑙  𝐶(𝑗)

𝑙

𝑛𝑙́

𝑗=𝐾́+1

 . (4.12) 

This way, according to ∑ 𝑃(𝑖)
𝑙𝐾−1

𝑖=0 < 𝛼 ≤ ∑ 𝑃(𝑖)
𝑙𝐾

𝑖=0  and (4.10) and (4.11), we 

will have: 

∑𝑃(𝑗)
𝑙

𝐾́−1

𝑗=0

< 𝛼 ≤∑𝑃(𝑗)
𝑙

𝐾́

𝑗=0

 

therefore 

VaR𝛼
𝑙 = 𝐶(𝐾́)

𝑙 = 𝐶(𝐾)
𝑙 = VaR𝛼

𝑙  . 

Also taking into consideration (4.12), we will have 
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CVaR𝛼
𝑙 =

1

1 − 𝛼
[(∑𝑃(𝑗)

𝑙

𝐾́

𝑗=0

− 𝛼)VaR𝛼
𝑙 + ∑ 𝑃(𝑗)

𝑙  𝐶(𝑗)
𝑙

𝑛𝑙́

𝑗=𝐾́+1

]

=
1

1 − 𝛼
[(∑𝑃(𝑖)

𝑙

𝐾

𝑖=0

− 𝛼)VaR𝛼
𝑙 + ∑ 𝑃(𝑖)

𝑙  𝐶(𝑖)
𝑙

𝑛𝑙

𝑖=𝐾+1

] = CVaR𝛼
𝑙  . 

We can also utilize the reverse of the above equations to prove that if we add 

component  𝑚 , with the attributes 𝐶(𝑚)
𝑙  and  𝑃(𝑚)

𝑙 , to the route  𝑙  (given the 

condition (4.9)), then the new route 𝑙 will have the same VaR and CVaR.  

These equations simply mean that if we eliminate (or add) a component 

(service leg or transferring yard) from (or to) a route, given that component’s 

consequence is less than VaR value of the route, the new route will hold the 

same VaR and CVaR values.  

5) A similar result can be derived for a route that has only one component 

different from route 𝑙. Suppose that route 𝑙" is the result of replacing the 𝑚th 

component of route 𝑙 with a component (𝑞) that has the same probability but 

different accident consequence 𝐶(𝑞)
𝑙" , given that 𝑞 has the same properties of 𝑚 

in (4.9). Note that 𝑚 and 𝑞 do not need to be equal. Therefore we have: 

𝑛𝑙" = 𝑛𝑙 

𝑃(0)
𝑙" = 1 −∑𝑃(𝑖)

𝑙"

𝑛
𝑙"

𝑖=1

= 1 −∑𝑃(𝑖)
𝑙

𝑛𝑙

𝑖=1

= 𝑃(0)
𝑙  

therefore 
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 ∑𝑃(𝑖)
𝑙

𝐾

𝑖=0

=∑𝑃(𝑖)
𝑙"

𝐾

𝑖=0

 , (4.13) 

 ∑𝑃(𝑖)
𝑙

𝐾−1

𝑖=0

= ∑𝑃(𝑖)
𝑙"

𝐾−1

𝑖=0

 , (4.14) 

and also 

 ∑ 𝑃(𝑖)
𝑙  𝐶(𝑖)

𝑙

𝑛𝑙

𝑖=𝐾+1

= ∑ 𝑃(𝑖)
𝑙"  𝐶(𝑖)

𝑙"

𝑛
𝑙"

𝑖=𝐾́+1

 (4.15) 

because  𝐶(𝑖)
𝑙" = 𝐶(𝑖)

𝑙  and 𝑃(𝑖)
𝑙" = 𝑃(𝑖)

𝑙 ,   ∀  𝑖 ≥ 𝐾 . Therefore ∑ 𝑃(𝑖)
𝑙𝐾−1

𝑖=0 < 𝛼 ≤

∑ 𝑃(𝑖)
𝑙𝐾

𝑖=0  with (4.13) and (4.14) lead to  ∑ 𝑃(𝑖)
𝑙"𝐾−1

𝑖=0 < 𝛼 ≤ ∑ 𝑃(𝑖)
𝑙"𝐾

𝑖=0 , which 

means VaR𝛼
𝑙" = 𝐶(𝐾)

𝑙" = 𝐶(𝐾)
𝑙 = VaR𝛼

𝑙 . With considering (4.15) as well, we will 

have CVaR𝛼
𝑙" = CVaR𝛼

𝑙 .  

This means that if we replace a component (service leg or transferring yard) 

of a route with a new component, given that the both components’ consequences 

are less than VaR value of the route and they both have the same accident 

probability, the new route will hold the same VaR and CVaR values.  

Note that when we remove/add a service leg or transferring yard from/to a 

route or we replace that with a new one, the subsequent route should still make 

sense and be feasible. The results and examples of the above properties will be 

provided in Section 4.3.3. 
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4.2.6. Optimization Program 

In this sub-section, we provide a method to reach an algorithm that can find the 

optimal CVaR value and its corresponding route for the rail hazmat shipment in the 

network.  Consider the route 𝑙 and its attributes 𝐶(𝑖)
𝑙  and 𝑃(𝑖)

𝑙 ,  𝑖 ∈ {0, 1, 2, … , 𝑛𝑙}, 

where 𝐶(0)
𝑙 = 0 < 𝐶(1)

𝑙 < 𝐶(2)
𝑙 < ⋯ < 𝐶(𝑛𝑙)

𝑙 . Recall that we defined 𝐾 be equal to 0 

if  0 < 𝛼 ≤ 𝑃(0)
𝑙 , otherwise it is the unique index such that  ∑ 𝑃(𝑖)

𝑙𝐾−1
𝑖=0 < 𝛼 ≤

∑ 𝑃(𝑖)
𝑙𝐾

𝑖=0 . The 𝛼-VaR of the risk is then VaR𝛼
𝑙 = 𝐶(𝐾)

𝑙 . We now rewrite equation 

(4.8) as follows: 

CVaR𝛼
𝑙 =

1

1 − 𝛼
[(∑𝑃(𝑖)

𝑙

𝐾

𝑖=0

− 𝛼)𝐶(𝐾)
𝑙 + ∑ 𝑃(𝑖)

𝑙  𝐶(𝑖)
𝑙

𝑛𝑙

𝑖=𝐾+1

] 

=
1

1 − 𝛼
[((1 − ∑ 𝑃(𝑖)

𝑙

𝑛𝑙

𝑖=𝐾+1

) − 𝛼)𝐶(𝐾)
𝑙 + ∑ 𝑃(𝑖)

𝑙  𝐶(𝑖)
𝑙

𝑛𝑙

𝑖=𝐾+1

] 

=
1

1 − 𝛼
[(1 − 𝛼)𝐶(𝐾)

𝑙 − ( ∑ 𝑃(𝑖)
𝑙

𝑛𝑙

𝑖=𝐾+1

)𝐶(𝐾)
𝑙 + ∑ 𝑃(𝑖)

𝑙  𝐶(𝑖)
𝑙

𝑛𝑙

𝑖=𝐾+1

] 

Therefore the 𝛼-CVaR of the risk associated with the route 𝑙 can be written as 

 CVaR𝛼
𝑙 = 𝐶(𝐾)

𝑙 +
1

1 − 𝛼
[ ∑ 𝑃(𝑖)

𝑙  (𝐶(𝑖)
𝑙 − 𝐶(𝐾)

𝑙 )

𝑛𝑙

𝑖=𝐾+1

] . (4.16) 
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Considering different alternative routes in the network for the shipment 

(set 𝐿), our objective is to determine the route 𝑙 ∈ 𝐿 which has the minimum CVaR. 

That is, 

CVaR𝛼
∗ = min

𝑙∈𝐿
CVaR𝛼

𝑙  . 

To find this minimum and according to the expression in the brackets of (4.16), we 

define 𝕡́(𝑟) as follows: 

𝕡́(𝑟) =∑( ∑ 𝑝𝑘𝑠𝑠́(𝑐𝑘𝑠𝑠́ − 𝐶(𝑟))

 

𝑘𝑠𝑠́ ∈ 𝒴𝑠&𝒴𝑠́,   𝑐𝑘𝑠𝑠́
>𝐶(𝑟)

   

𝑠, 𝑠́

+ ∑ 𝑝𝑖𝑠𝑗𝑠(𝑐𝑖𝑠𝑗𝑠 − 𝐶(𝑟))

 

(𝑖𝑠,𝑗𝑠) ∈ 𝒜𝑠,   𝑐𝑖𝑠𝑗𝑠>𝐶(𝑟)

) 

where 𝐶(𝑟); 𝑟 ∈ {0, 1, 2, … ,𝑀} (𝐶(0) = 0)  is the 𝑟 th smallest value in the set 

{𝑐𝑘 ∪ 𝑐𝑖𝑗  ∶  𝑘 ∈ 𝒴  &  (𝑖, 𝑗) ∈ 𝒜}. Then we have  

𝕡́(𝑟)𝑋 =∑( ∑ 𝑝𝑘𝑠𝑠́(𝑐𝑘𝑠𝑠́ − 𝐶(𝑟))𝑥𝑘𝑠𝑠́

 

𝑘𝑠𝑠́ ∈ 𝒴𝑠&𝒴𝑠́,   𝑐𝑘𝑠𝑠́
>𝐶(𝑟)

   

𝑠, 𝑠́

+ ∑ 𝑝𝑖𝑠𝑗𝑠(𝑐𝑖𝑠𝑗𝑠 − 𝐶(𝑟))𝑥𝑖𝑠𝑗𝑠

 

(𝑖𝑠,𝑗𝑠) ∈ 𝒜𝑠,   𝑐𝑖𝑠𝑗𝑠>𝐶(𝑟)

) 

where 𝑋 ∈ 𝜓 , which is defined in Section 3.3 for routing of rail shipments (it 

contains two binary decision variables and conservation of flow constraints). This 

way, the CVaR𝛼
∗  minimization problem will be 
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CVaR𝛼
∗ = min

𝑟
CVaR𝛼

𝑟   

                                         subject to 

CVaR𝛼
𝑟 = 𝐶(𝑟) +

1

1 − 𝛼
 𝑓𝑟 

𝑓𝑟 = min
𝑋
𝕡́(𝑟)𝑋 

𝑋 ∈  𝜓 

𝑟 = 0, 1, 2, … ,𝑀 

(4.17) 

𝑓𝑟  minimization could be done using an efficient shortest path algorithm like 

Dijkstra’s Algorithm if we make the following modifications: 

 

𝑝̅̅𝑘𝑠𝑠́ = {
𝑝𝑘𝑠𝑠́(𝑐𝑘𝑠𝑠́ − 𝐶(𝑟))  ,     if    𝑐𝑘𝑠𝑠́ > 𝐶(𝑟)             ∀ 𝑘𝑠𝑠́ , ∀𝑠, ∀𝑠́   

 
0,                             otherwise                                           

 

𝑝̅̅𝑖𝑠𝑗𝑠 = {
𝑝𝑖𝑠𝑗𝑠(𝑐𝑖𝑠𝑗𝑠 − 𝐶(𝑟))  ,     if    𝑐𝑖𝑠𝑗𝑠 > 𝐶(𝑟)             ∀ (𝑖𝑠, 𝑗𝑠), ∀𝑠   

 
0,                              otherwise                                    

 

(4.18) 

therefore 

 𝑓𝑟 = min
𝑋∈ψ

∑( ∑ 𝑝̅̅𝑘𝑠𝑠́𝑥𝑘𝑠𝑠́
𝑘𝑠𝑠́ ∈ 𝒴𝑠&𝒴𝑠́

+ ∑ 𝑝̅̅𝑖𝑠𝑗𝑠𝑥𝑖𝑠𝑗𝑠
(𝑖𝑠,𝑗𝑠) ∈ 𝒜𝑠

)

𝑠, 𝑠́

 (4.19) 

Consequently we reach the following algorithm, named CVaR Algorithm, for 

solving the problem (4.17): 
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1) Generate 𝐶(𝑟) and their corresponding 𝑃(𝑟) ∶  𝑟 = 0, 1, 2, … ,𝑀. 

2) For 𝑟 = 0 to 𝑀 do: 

2.1) Consider (4.18) and (4.19) and solve 𝑓𝑟 = min
𝑋∈ψ

𝕡́(𝑟)𝑋 using an 

efficient shortest path algorithm like Dijkstra’s Algorithm. 

2.2) Calculate CVaR𝛼
𝑟 = 𝐶(𝑟) +

1

1−𝛼
 𝑓𝑟. 

3) Let 𝑟∗ = arg min
𝑟=0,1,…,𝑀

CVaR𝛼
𝑟 , consequently  CVaR𝛼

∗ =  CVaR𝛼
𝑟∗. 

 

4.2.7. Parameter Estimation 

The technique to estimate the parameters used in the proposed CVaR 

methodology is exactly the same as the one explained in Section 3.4 for the VaR 

approach.  

4.2.8. Train Configuration Setting 

To find the best train configuration for applying the proposed methodology, we 

follow the strategy given in Section 3.5 and similarly define the following 

minimization model: 

 min
𝒲,𝑦𝑟

𝒲(∑𝑦𝑟 × 𝑇𝐶𝑃
𝑟

10

𝑟=1

) + (1 −𝒲)(∑𝑦𝑟 × 𝑌𝐶𝑃
𝑟

10

𝑟=1

) (4.20-1) 

                                      subject to:  
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  min
𝑙∈𝐿 

VaR𝛼
𝑙     or    min

𝑙∈𝐿 
CVaR𝛼

𝑙  (4.20-2) 

  ∑𝑦𝑟

10

𝑟=1

= 𝑁 (4.20-3) 

  0 ≤ 𝑦𝑟 ≤
train length

10
 (4.20-4) 

  

𝑦𝑟: integer,     𝑟 = {1,2, … ,10} 

0 ≤ 𝒲 ≤ 1 

(4.20-5) 

4.3 Computational Experiments 

In this section, we use the proposed CVaR risk assessment methodology to study a 

number of problem instances generated using the realistic infrastructure of a Class 

1 railroad operator in the United States, and then develop some relevant managerial 

insights.    

4.3.1 Problem setting 

To perform computational experiments, we make use of the case study described 

in Section 3.6, which is a railroad infrastructure originally introduced in Verma et 

al. (2011), and used in Azad et al. (2016). The resulting network has 25 yards 

(Figure 4.7), where each is an origin and destination for the others, i.e., 600 origin-

destination pairs.  A total of 31 different train services –identified by origin and 

destination yards, intermediate stops, and service legs, connect the yards.  Finally, 

ArcGIS (ESRI, 2007) was used to estimate population exposure which serves a 

measure for consequence.  The objective is to determine the best way to move a 
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given number of hazmat railcars, on the available train services, between various 

origin-destination pairs such that hazmat transport risk as measured by CVaR is 

minimized.  It is important that given the nature of railroad accidents, and in light 

of the preceding discussions, both the route and the placement of the hazmat railcars 

in a train needs to be determined.   

  

Figure 4.7. Railroad network in the Midwest United States [Source: Verma et 

al., (2011)]  

 

4.3.2 Solution 

In an effort to conduct focused analyses, we consider shipments from Chicago to 

Highview, i.e., nodes 2 and 11, respectively.  We consider seven distinct hazmat 

volumes, i.e., 𝑁 = {5, 20, 40, 60, 80, 100, 120}, and solve the problem for four 
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different confidence levels: 𝛼 = {𝛼1 = 0.9, 𝛼2 = 0.99999, 𝛼3 = 0.999997, 𝛼4 =

0.999999}.  In addition, with the objective of finding the best train configuration 

for the above problem instances using (4.20), we apply eleven different weights to 

the model: 𝒲 = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0}.  Finally, we consider 

only medium trains of 120 railcars in length, and thus the output would give 

information about hazmat railcars in each decile.  For expositional reasons, and for 

brevity, we only show the results of the best train configurations (indicated by C#) 

for different number of hazmat railcars and for various weights, in Table 4.1.  Thus, 

a total of 24 distinct configurations were observed for medium length trains, which 

resulted in 24*4=96 problem instances.   

It is important that similar configurations were generated for long and short 

trains, but for brevity are not reported here.  For long trains, 26 distinct 

configurations were observed when assuming a length of 200 railcars, and 

26*4=104 problem instances were solved.  On the other hand, for short trains 8 

distinct configurations were determined with 40 railcars train length, and 8*4=32 

problem instances were solved.  Hence, a total of 232 problem instances were 

solved to gain managerial insights.  The VaR and CVaR algorithms were coded in 

Matlab R 2015b, and (4.20) was solved in GAMS 24.1.3 using Cplex 12.5.1.0 as 

the solver. We ran them on a 2.90 GHz Intel Core i7 computer system. The 

computation times are less than 5 seconds. 
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𝑵 C# 𝓦 
Train Configuration 

𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6 𝑦7 𝑦8 𝑦9 𝑦10 

5 
1st  1 0 0 0 0 0 0 0 0 5 0 

2nd  0.9 - 0 0 0 0 0 0 0 5 0 0 0 

20 

1st  1 0 0 0 0 0 0 8 0 12 0 

2nd  0.9 - 0.6 0 0 0 0 0 0 12 0 8 0 

3rd  0.5 - 0.2 0 0 0 0 0 0 12 8 0 0 

4th  0.1 - 0 0 0 0 8 0 0 12 0 0 0 

40 

1st  1 0 0 0 0 0 0 12 4 12 12 

2nd  0.9 0 0 0 0 0 0 12 12 12 4 

3rd  0.8 - 0.5 0 0 4 0 0 0 12 12 12 0 

4th  0.4 0 0 12 0 0 0 12 12 4 0 

5th  0.3 0 0 12 4 0 0 12 12 0 0 

6th  0.2 - 0 0 0 4 12 0 0 12 12 0 0 

60 

1st  1 - 0.8 0 0 12 0 0 0 12 12 12 12 

2nd  0.7 - 0.4 0 0 12 0 0 12 12 12 12 0 

3rd  0.3 - 0 0 0 12 12 0 12 12 12 0 0 

80 

1st  1 0 0 12 0 8 12 12 12 12 12 

2nd  0.9 - 0.7 0 0 12 8 0 12 12 12 12 12 

3rd  0.6 - 0.5 0 0 12 12 0 12 12 12 12 8 

4th  0.4 - 0 0 8 12 12 0 12 12 12 12 0 

100 

1st  1 - 0.7 0 4 12 12 12 12 12 12 12 12 

2nd  0.6 0 12 12 12 4 12 12 12 12 12 

3rd  0.5 - 0.4 4 12 12 12 0 12 12 12 12 12 

4th  0.3 - 0 12 12 12 12 0 12 12 12 12 4 

120 Only All 12 12 12 12 12 12 12 12 12 12 

Table 4.1. Best medium train configurations for different 𝑵 and 𝓦 

As indicated earlier, different train configurations would yield different 

accident probabilities on the service legs and the transfer yards, and consequently 

may result in different optimal VaR and CVaR values and the resulting routes 

associated with each confidence level α.  For instance, for 80 hazmat railcar setting 

depicted in Table 4.1, there are four possible train configurations resulting from 

attaching eleven different weights to the objective in (4.20-1).  The resulting 
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optimal VaR and CVaR and the associated routes at 𝛼 = 0.999999 are indicated 

in Table 4.2.  The optimal VaR route generated using the third train configuration 

(3rd C#) shows that the hazmat shipment should be placed on train service number 

5, and travel non-stop crossing service-legs 2-4, 4-9, and 9-25 before being 

transferred to train service number 18 at yard 25.  Subsequently, the second train 

service brings the shipment to the destination node via service leg 25-11. Note that 

either of the first two configurations leads to the best optimal VaR value of 5,996 

and results in the same route, while the best optimal CVaR value (10,913) is 

achieved using the 4th train configuration, whose route is different from the best 

VaR route.  Similarly, we can apply the VaR and CVaR algorithms to each 

configuration indicated in Table 4.1, and for the four confidence levels being 

considered.  For each hazmat volume, Table 4.3 to Table 4.5 depict the 

configuration resulting in minimal VaR and CVaR, and the resulting routes for each 

confidence level.  Note that, unlike in Table 4.2, we are only reporting the 

configurations resulting in minimum (or best) VaR* and CVaR*.  For expositional 

reasons, and also to demonstrate the distinctness of the proposed methodology, we 

also report the best train configurations using the traditional risk (TR) model in 

Table 4.6, and note that confidence level has no impact on the resulting routes. 

For a given confidence level, the optimal values of both VaR and CVaR 

increase with the increase in hazmat volume (Figure 4.8).  Also, for a given hazmat 

volume, the optimal values of both VaR and CVaR increase with the increase in 
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confidence level (Figure 4.9). Although in most cases the optimal VaR value is 

equal to zero.
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Table 14.2. Optimal VaR, CVaR and associated routes for N=80 and α=0.999999 

 

Table 4.3. Optimal configuration, VaR, CVaR and associated routes for α1=0.9 and α2=0.99999 
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Table 4.4. Optimal configuration, VaR, CVaR and associated routes for α3=0.999997 

 



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

90 
 

Table 4.5. Optimal configuration, VaR, CVaR and associated routes for α4=0.999999 

 

 

Table 4.6. Optimal configuration, 𝐸[𝑅] and associated routes 
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Figure 4.8. Optimal VaR and CVaR values for different hazmat volumes 
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Figure 4.9. Optimal VaR and CVaR values for different confidence levels 
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4.3.3 Analyses and insights 

In an effort to concretely demonstrate the effectiveness of the proposed CVaR 

measure, we will organize the analyses under five themes: CVaR relation with and 

its superiority over TR measure; CVaR superiority over VaR measure; risk averse 

routing of shipments by CVaR; CVaR value stability; and, impact of train length.   

4.3.3.1. CVaR relation with and its superiority over TR measure 

TR model can find only two distinct routes for all seven specified hazmat volumes 

(one for 𝑁 = 5, and one for the rest; see Table 4.6), which are exactly as the optimal 

routes found by CVaR for confidence levels of 0.9 and 0.99999 (see Table 4.3) 

while VaR optimal values are zero. This result is consistent with the first property 

of CVaR as outlined in Section 4.2.5.  To analyze the second property as well, 

consider the following route as 𝑙, which is the best optimal CVaR route for 𝑁 =

{20, 40, 60, 80, 100, 120} and 𝛼 = {𝛼1 = 0.9, 𝛼2 = 0.99999}.  As alluded, this is 

also the only best optimal route that the TR model can find for all of these hazmat 

volumes.  Also, the VaR of this route for the both 𝛼s and all these hazmat volumes 

is equal to zero. 

2 - 6 - 8 - [ 9 ] - 25 - [ 12 ] - 11 

{4}   {5}   {24} 

Therefore, we have 

CVaR𝛼1
𝑙 =

1 − 𝛼2
1 − 𝛼1

 CVaR𝛼2
𝑙 =

E [𝑅𝑙]

1 − 𝛼1
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CVaR𝛼2
𝑙 =

1 − 𝛼1
1 − 𝛼2

 CVaR𝛼1
𝑙 =

E [𝑅𝑙]

1 − 𝛼2
 

For instance, consider N=80, C#2 in Table 4.3, and Table 4.6, then 

CVaR0.9
𝑙 =

1 − 0.99999

1 − 0.9
 CVaR0.99999

𝑙 =
E [𝑅𝑙]

1 − 0.9
    →     0.2322 =

1

1000
2,322

=
0.02322

0.1
 

CVaR0.99999
𝑙 =

1 − 0.9

1 − 0.99999
 CVaR0.9

𝑙 =
E [𝑅𝑙]

1 − 0.99999
    →     2,322

= 10,000 × 0.2322 =
0.02322

0.00001
 

If we still consider N=80, C#2 but for 𝛼3 = 0.999997, the CVaR of the above route 

will be equal to 7,324 but the above equations do not hold for CVaR𝛼3
𝑙  anymore: 

CVaR𝛼3
𝑙 ≠

1 − 𝛼1
1 − 𝛼3

 CVaR𝛼1
𝑙 , ≠

1 − 𝛼2
1 − 𝛼3

 CVaR𝛼2
𝑙 , ≠

E [𝑅𝑙]

1 − 𝛼3
      

The reason is that the VaR of the above route for N=80, C#2 and 𝛼3 is not 

zero: VaR𝛼3
𝑙 = 3,094. This reasoning similarly works for N=80, C#2 and 𝛼4 =

0.999999, where VaR𝛼4
𝑙 = 5,996 and CVaR𝛼4

𝑙 = 12,636.   

4.3.3.2. CVaR superiority over VaR measure 

For confidence levels of 0.9 and 0.99999 (i.e., Table 4.3), VaR finds only one route 

for all seven specified hazmat volumes, while the optimal value is zero.  On the 

other hand, all the CVaR values are greater than zero, and that two distinct routes 
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are generated. As evident from the solutions, in most cases the optimal VaR value 

is equal to zero, which essentially implies that with the least probability equivalent 

to the given confidence level, the hazmat risk associated with the route does not 

exceed zero.  Such mathematical interpretation may not be acceptable to a decision 

maker, and in turn is likely to undermine the efficacy of VaR as a measure of risk.  

On the other hand, even when VaR generates route with values greater than zero, it 

fails to capture information about the additional populace exposed to the 

consequence of the accident even if the probability is extremely low.  Note that the 

latter is critical in avoiding catastrophic events associated with hazmat routing.  All 

of the above limitations are resolved when using CVaR.   

4.3.3.3. Risk averse routing of shipments by CVaR 

In an effort to highlight the risk averse routing aspect of CVaR, we focus the 

discussion on the results from Table 4.5 (i.e., 𝛼4 = 0.999999).  The four optimal 

CVaR routes associated with the seven hazmat volumes are depicted in Figure 4.10, 

which shows that the proposed algorithm seeks to find safer routes which in general 

involves transferring yards and service legs on the periphery of the network.  Note 

that such a tendency is not reflected in the TR model, where only the first two CVaR 

optimal routes for 𝛼4 are generated (Figure 4.10a and 4.10b).    
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Figure 4.10. Different optimal CVaR routes for 𝜶𝟒 = 𝟎. 𝟗𝟗𝟗𝟗𝟗𝟗

(a) (b) 

(c) (d) 
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To further underline the ability of CVaR measure to generate risk averse 

routing of hazmat shipments, we explicitly discuss two problem instances from 

Table 4.5 (i.e., 𝛼4 = 0.999999).   

For the first instance, consider Figure 4.10d where the CVaR measure 

generates optimal route for N=120 using the service legs and transfer yards at the 

periphery of the network.  Why does the proposed route go from the origin yard 

(i.e., #2) to yard # 6, and then undergoes transfer operations at yard #8?  Though 

not evident, but two other routes could have been proposed using the service legs 

and transfer yards at the periphery, and they are:   

2 - 1 - 3 - 5 - 14 - [ 13 ] - 11 

{6}  {29} 

 

2 - [ 4 ] - [ 3 ] - 5 - 14 - [ 13 ] - 11 

{5}  {11}  {6}  {29} 

 

Let these two routes be 𝑙1 and 𝑙2, respectively.  Figure 4.11 depicts these two 

routes along with the shaded part of the original (optimal) route.  We use equation 

(4.8) to calculate the CVaR value of the above routes (for 𝑁 = 120 and 𝛼 = 𝛼4): 

CVaR𝛼4
𝑙1 = 28,600 and CVaR𝛼4

𝑙2 = 19,433, which are both greater than the CVaR 

value of the optimal route: 18,020 as reported in Table 4.5.  Therefore, we answer 

the above question claiming that what the proposed CVaR measure has done is to 

generate a less risky (optimal) route compared to the other alternatives even if it 

apparently requires sending hazmat shipments to the service legs and transferring 

yards not on the periphery of the network.  In fact, the reason that the algorithm has 
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not reported routes 𝑙1 and 𝑙2 as the optimal route is that they include service legs 

with very high population exposure (PE) compared to that of the service legs in the 

optimal route.  More specifically, in route 𝑙1 service leg 2-1 has the PE of 55,737 

and in route 𝑙2 service leg 2-4 has the PE of 17,512 which are much higher than the 

PE of the different service legs used in the optimal route, where service leg 4-3 has 

the largest PE of 12,007.   

For the second instance, consider Figure 4.10c, where CVaR measure 

generates the optimal route when N=80.  Note that the shipment arrives at yard #12, 

goes to transfer yard #15, and comes back to yard #12.  Why did it not go directly 

to the destination node (i.e., #11) following a transfer operation at yard #12?  More 

specifically:  

2 - 6 - 7 - [ 22 ] - 24 - 25 - [ 12 ] - 11 

{2}  {8}  {31} 
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Figure 4.11. Using side service legs and transferring yards for the largest 

𝑵=120 and 𝜶 = 𝜶𝟒 = 𝟎.𝟗𝟗𝟗𝟗𝟗𝟗 

 

The answer to this question is that, the CVaR value of the above route is 

11,086 (while still considering the configuration N=80, C#4 and for 𝛼4), which is 

greater than the CVaR value of the optimal route in Figure 4.10c (10,913).  This 

confirms that the algorithm has correctly reported the best optimal CVaR route and 

the reason is that it avoids doing the transferring operation at yard #12 and 

postpones it to be done at yard #15 even it requires passing the service leg 12-15 

twice, which has the population exposure of 3,934 (for carrying 80 hazmat railcars).  
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That is because the population exposure (for 80 hazmat railcars) at yard #15 is 

62,240 while at yard #12 is 67,760.  

4.3.3.4. CVaR value stability 

In the fourth and fifth property given in section 4.2.5, we have shown how rail 

routes can slightly change while their CVaR values remain stable. To provide an 

example for them, suppose that for the transportation of 60 hazmat railcars from the 

origin (node #2) to the destination (node #11), we use the configuration N=60, C# 

1 and confidence level 𝛼 = 𝛼4. The optimal CVaR route will be: 

2 - 6 - 8 - [ 9 ] - 10 - [ 14 ] - [ 13 ] - 11 

{4}   {12}   {6}   {29} 

Let name this route 𝑙, then the 𝐶(𝑡)
𝑙  and 𝑃(𝑡)

𝑙 , where 𝑡 ∈ {0,1,2, … , 10} will be: 

𝑡 
Service Leg / 

Transferring Yard 

Train 

Service 
𝐶(𝑡)
𝑙  𝑃(𝑡)

𝑙  ∑𝑃(𝑖)
𝑙

𝑡

𝑖=0

 

0 --- --- 0 0.99999628 0.99999628 

1 6-8 {4} 596 3.23E-07 0.99999660 

2 [13] {6}, {29} 2,760 4.14E-08 0.99999664 

3 9-10 {12} 2,796 7.00E-07 0.99999734 

4 14-13 {6} 4,563 3.28E-07 0.99999767 

5 8-9 {4} 5,312 3.01E-07 0.99999797 

6 [14] {12}, {6} 5,940 4.14E-08 0.99999801 

7 10-14 {12} 7,364 5.67E-07 0.99999858 

8 2-6 {4} 7,560 5.67E-07 0.99999914 

9 13-11 {29} 8,435 8.15E-07 0.99999996 

10 [9] {4}, {12} 22,920 4.14E-08 1.00000000 

 

Therefore VaR𝛼
𝑙 = 7,560 and CVaR𝛼

𝑙 = 8,909. In addition to what is shown in 

route 𝑙, train service {12} continues from node #14 to node #13 as well. Therefore 
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we can remove transferring yard [14] (and consequently train service {6}) from 

route 𝑙 and gain route 𝑙 as follows (the new route makes sense): 

2 - 6 - 8 - [ 9 ] - 10 - 14 - [ 13 ] - 11 

{4}   {12}   {29} 

Because the consequence of transferring yard [14] is less than VaR𝛼
𝑙  (5,940 <

7,560 ), the new route 𝑙  has the same VaR and CVaR values: VaR𝛼
𝑙 = 7,560 

and CVaR𝛼
𝑙 = 8,909 as shown below: 

𝑡 
Service Leg / 

Transferring Yard 

Train 

Service 
𝐶(𝑡)
𝑙  𝑃(𝑡)

𝑙  ∑𝑃(𝑖)
𝑙

𝑡

𝑖=0

 

0 --- --- 0 0.99999632 0.99999632 

1 6-8 {4} 596 3.23E-07 0.99999664 

2 [13] {12}, {29} 2,760 4.14E-08 0.99999668 

3 9-10 {12} 2,796 7.00E-07 0.99999738 

4 14-13 {12} 4,563 3.28E-07 0.99999771 

5 8-9 {4} 5,312 3.01E-07 0.99999801 

6 10-14 {12} 7,364 5.67E-07 0.99999858 

7 2-6 {4} 7,560 5.67E-07 0.99999914 

8 13-11 {29} 8,435 8.15E-07 0.99999996 

9 [9] {4}, {12} 22,920 4.14E-08 1.00000000 

 

Now suppose we replace transferring yard [13] of route 𝑙 with transferring 

yard [14] and route 𝑙" is generated as follows: 

2 - 6 - 8 - [ 9 ] - 10 - [ 14 ] - 13 - 11 

{4}   {12}   {29} 

This replacement makes sense because train service {29} includes service leg 14-

13 as well. Since the consequences of both transferring yards [13] and [14] are less 

than VaR𝛼
𝑙  (2,760 & 5,940 < 7,560) plus they have the same accident probability 
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(4.14E-08), the new route 𝑙" has the same VaR and CVaR values: VaR𝛼
𝑙" = 7,560 

and CVaR𝛼
𝑙" = 8,909 as shown below: 

𝑡 
Service Leg / 

Transferring Yard 

Train 

Service 
𝐶(𝑡)
𝑙  𝑃(𝑡)

𝑙  ∑𝑃(𝑖)
𝑙

𝑡

𝑖=0

 

0 --- --- 0 0.99999632 0.99999632 

1 6-8 {4} 596 3.23E-07 0.99999664 

2 9-10 {12} 2,796 7.00E-07 0.99999734 

3 14-13 {29} 4,563 3.28E-07 0.99999767 

4 8-9 {4} 5,312 3.01E-07 0.99999797 

5 [14] {12}, {29} 5,940 4.14E-08 0.99999801 

6 10-14 {12} 7,364 5.67E-07 0.99999858 

7 2-6 {4} 7,560 5.67E-07 0.99999914 

8 13-11 {29} 8,435 8.15E-07 0.99999996 

9 [9] {4}, {12} 22,920 4.14E-08 1.00000000 

 

4.3.3.5. Impact of train length 

Finally, we investigate the impact of train length on optimal CVaR values.  To that 

end, the CVaR Algorithm was applied to short and long trains with 40 and 200 

railcar lengths, respectively.  In Figure 4.12, the best optimal CVaR for different 

number of hazmat railcars and confidence levels, which are found using short and 

long trains are compared with the ones found by the medium train. This shows that 

the long train has a better performance as it yields lower optimal values for CVaR, 

in part because of the potential to exploit the decile-based configuration more 

appropriately. More specifically, each decile in a long train can carry up to 20 

hazmat railcars compared to a maximum of 4 and 12 hazmat railcars in short and 

medium trains, respectively. Therefore, given a fixed number of hazmat railcars to 
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be shipped, when using a long train, decision makers are more able to put as many 

hazmat railcars as possible in the deciles with lower conditional derailment 

probabilities (see Tables 3.1 and 3.2). Consequently, according to (3.1) and (3.2), 

smaller accident probabilities in the service legs and transferring yards of the 

network will be expected when long trains are used, which in turn will result in 

lower CVaR values.  
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Figure 4.12. The best optimal CVaR found using short, medium, and long 

trains 

4.4 Conclusion 

Rail hazmat incidents, conceivably much lower in probability, could be 

significantly more catastrophic because of the involvement of multiple railcars than 

those from highway hazmat episodes.  This phenomenon necessitated the 

development of a risk-averse routing methodology for routing rail hazmat 

shipments, and the emergence of value-at-risk (VaR) measure.  Though VaR 

overcomes the risk-neutral behavior of the existing traditional risk approach and 

also has a relatively easy interpretation, it has a crucial limitation in that it cuts off 

and thus ignores the tail of the distribution, i.e., the region where catastrophic 

outcomes reside.   
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We have made the first attempt to propose a CVaR-based risk assessment 

methodology for rail hazmat shipments, which considers the confidence level of the 

decision maker to generate risk-averse routes.  It is important that the proposed 

methodology is more complex than that for highway hazmat shipments since it 

incorporates information about pre-defined train services, transfer operations at 

intermediate yards, and the optimal configuration of trains.  The methodology 

development entailed: providing a clear definition of CVaR for hazmat shipments, 

which was missing in the existing literature; delineating several relevant properties; 

and, an optimization program.  The validation of the proposed methodology was 

accomplished by applying it to study several realistic size problem instances, which 

were further analyzed to conclude: first, CVaR is both distinct and superior to both 

TR and VaR measures; second, CVaR provides risk-averse routing of hazmat 

shipments; and third, CVaR generates different optimal routes based on the 

confidence-level of the decision makers.   

There are a number of future research directions, including applying the 

proposed risk measure in the railroad blocking, railroad routing, train make-up 

decisions, train scheduling, etc.  Two immediate research areas of interest to the 

authors including the railroad blocking problem taking into consideration both 

transport cost and hazmat risk, and the tactical planning problem of routing hazmat 

shipments.   
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Chapter 5. Routing Plan for Multiple Rail Hazmat 

Shipments with Optimal Conditional Value-at-Risk 

(CVaR) and Risk Equity 

5.1 Introduction 

Railroad is one of the safest modes for hazardous materials (hazmat) transportation. 

There is always, however, a small risk of catastrophic repercussion associated with 

the train carrying a shipment composed of multiple hazmat railcars. The tragedy 

occurred in Lac-Megantic (Quebec, Canada), in July 2013, provides a dramatic 

example of damage and loss of human life that rail hazmat shipments can cause. It 

is, therefore, crucial to implement a risk-averse routing plan for railroad 

transportation of hazmat, by reason of low probability–high consequence nature of 

rail hazmat incidents.  

The risk-neutral behavior of the existing traditional risk models in the 

literature on routing rail hazmat shipments called for the development of value-at-

risk (VaR) measure in Hosseini and Verma (2017), as a risk-averse methodology. 

VaR, however, has been criticized because of its deficiency in capturing the whole 

long tail of the risk distribution which is the residence of catastrophic outcomes. To 

overcome such a defect that brings about ignorance of extreme rail hazmat events, 

Hosseini and Verma (2018) developed conditional value-at-risk (CVaR) measure 

as an extension of VaR in a more sophisticated manner. The proposed CVaR-based 

risk assessment methodology not only incorporates the characteristics of railroad 



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

107 
 

accidents, which is then utilized to provide risk-averse routing of rail hazmat 

shipments with the capability to generate various optimal routes based upon the 

confidence-level of decision makers, but also establishes that it is superior to both 

traditional risk (TR) and VaR measures. Readers are referred to Kang et al. (2014a) 

and Hosseini and Verma (2018) for a review of risk models for hazmat 

transportation in road and rail domain, respectively. CVaR measure was first 

adapted by Toumazis et al. (2013) to provide a risk-averse and flexible routing plan 

for highway hazmat shipments. It was then extended in the works of Toumazis and 

Kwon (2013), Faghih-Roohi et al. (2015), and Toumazis and Kwon (2016).  

In this research we extend the work of Hosseini and Verma (2018) and adapt 

the CVaR methodology they developed for a single rail hazmat shipment, single 

origin-destination (O-D) pair, to multiple rail hazmat shipments. This aspect leads 

to a harder class of problems that involve multi-commodity and multiple O-D hazmat 

routing decisions. On the other hand, it may happen that certain links and yards of the 

railroad network tend to be overloaded with hazmat traffic and risk. This becomes 

crucial when certain populated zones are exposed to an intolerable level of risk 

resulting from the routing decisions. To overcome this issue, we also promote equity 

in the spatial distribution of risk throughout the railroad network. Therefore, the main 

problem is to find minimum risk routes, as measured by CVaR methodology, while 

limiting and equitably spreading the risk in any zone where the railroad network is 

embedded.  
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To the best of our knowledge, no work in the literature of rail hazmat 

transportation has incorporated risk equity. There are, however, several models that 

have addressed risk equity in the context of road hazmat transportation. Risk equity 

has been defined as the largest difference in the level of risk among a set of 

individuals in Keeney (1980). Gopalan et al. (1990) developed an integer 

programming model to generate an equitable set of routes for road hazmat 

shipments, while the total risk of travel is minimized, and risk is equitably spread 

among the population zones of the transportation network by ensuring that the 

difference in risk entailed in the zones is less than a threshold. They showed a high 

degree of equity can be achieved by modest increase in the total risk. Current and 

Ratick (1995) proposed a multi-objective model considering both the location of 

facilities that handle hazmat, and the routing of hazmat to these facilities. Risk 

equity is imposed by minimizing the maximum allowable risk exposure for each 

zone. Carotenuto et al. (2007)’s model generates minimal risk paths for the road 

transportation of hazmat, which minimize the total risk of hazmat shipments. The 

risk imposed on population is spread in an equitable way by limiting the risk on 

each link to be less than an upper threshold. Lagrangian relaxation method is then 

applied to provide a lower bound on the optimal solution. Kang et al. (2014b) used 

the same method of modeling equity proposed in Gopalan et al. (1990), but unlike 

Current and Ratick (1995) and Carotenuto et al. (2007) which studied a single 

hazmat trip, they developed a more general model that allows multiple O–D pairs 

and multiple trips for each O–D pair. Additionally, instead of traditional risk 
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measure used in the majority of the literature, they utilized VaR as the risk measure 

to be minimized in the objective. A Lagrangian relaxation heuristic is then 

developed to obtain an efficient solution method. 

Unlike road domain, transportation in railroad network is performed using a 

set of pre-defined train services, each of which starts from its origin yard, traverses 

a set of intermediate rail arcs and yards, and finally stops at its destination yard. 

Being constrained to these itineraries requires us to commonly exploit a 

combination of different train services for moving shipments between given O-D 

pairs. Thus, each hazmat shipment, before reaching its destination yard, typically 

undergoes several transfer operations in the intermediate yards where it is first 

unloaded from one train service then gets loaded into the next one. To assure risk 

equity in the proposed model, we not only restrict the expected risk on rail arcs to 

be less that an upper limit, but also enforce the expected risk at the transferring yard 

to not exceed a set threshold. Of course, such assurance is achieved simultaneously 

with minimizing the total risk of transporting hazmat shipments as measured by 

CVaR. 

The remainder of the chapter is organized as follows. The next section defines 

the problem under consideration in detail and presents the mathematical 

formulation. In Section 5.3, we develop the corresponding solution framework 

which consists of a Lagrangian, subgradient, and heuristic algorithm. Section 5.4 
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presents the computational results based on data in Midwest United States. Finally, 

in Section 5.5, conclusion remarks and suggestions for future research are provided. 

5.2 Problem Description 

In an effort to formulate the problem, we first introduce appropriate concepts and 

notations pertinent to railroad transportation system in Section 5.2.1 It is then 

followed by Sections 5.2.2 and 5.2.3 in which the application of CVaR measure to 

multiple rail hazmat shipments with risk equity consideration is discussed.      

5.2.1. Railroad Transportation System 

A railroad transportation network 𝐺 = (𝒴,𝒜, 𝑆) consists of a set of yards 𝒴, a set 

of (undirected) arcs 𝒜, and also a set of available train services 𝑆. Each train service 

is a pre-determined itinerary composed of a set of (directed) service legs and a set 

of yards. There is a set of hazmat shipments 𝑉, each of which contains 𝑁(𝑣) hazmat 

railcars that is to be transported throughout the network from the origin 𝑂(𝑣) to the 

destination 𝐷(𝑣) using the on-hand train services. The notations to represent the 

sets and parameters used in the chapter are as follows: 

Network 𝐺 = (𝒴,𝒜, 𝒮) 

𝒴: set of yards in the networks, indexed by 𝑖, 𝑗, 𝑘 

𝒜: set of (𝑢𝑛𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑) arcs in the networks, indexed by (𝑖, 𝑗) and (𝑘, 𝑗) 

𝒮: set of train services in the network, indexed by 𝑠 (and/or 𝑠́) 

𝒴𝑠 ∈ 𝒴: set of yards in train service {𝑠}, indexed by 𝑖𝑠, 𝑗𝑠, 𝑘𝑠 
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𝒜𝑠 ∈ 𝒜: set of (𝑑𝑖𝑟𝑒𝑐𝑡𝑒𝑑) service legs in train service {𝑠}, indexed by (𝑖𝑠, 𝑗𝑠) and (𝑘𝑠, 𝑗𝑠) 

𝑉: set of shipments in the network, indexed by 𝑣 

𝑁(𝑣): number of hazmat railcars in shipment 𝑣 

𝑂(𝑣): origin of shipment 𝑣 

𝐷(𝑣): destination of shipment 𝑣 

The above notations are then used to define the following binary decision 

variables for routing the shipments through the railroad network using the available 

train services: 

𝑥𝑖𝑠𝑗𝑠
𝑣

= {
1,   if shipment 𝑣 is carried using arc (𝑖, 𝑗) of train service {𝑠} (service leg (𝑖𝑠, 𝑗𝑠)) 

 
0,   otherwise                                                                                                                                 

 

 

𝑥𝑘𝑠́𝑘𝑠
𝑣

= {
1,   if 𝑘 is a transferring yard between train services {𝑠́} and {𝑠} (𝑘𝑠𝑠́) for shipment 𝑣 

 
0,   otherwise                                                                                                                                        

 

Next, we can build the routing constraints (𝑋 ∈ 𝜓) based on the decision variables 

as follows: 
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∑𝑥𝑖𝑠𝑗𝑠
𝑣

𝑗𝑠

−∑𝑥𝑗𝑠𝑖𝑠
𝑣

𝑗𝑠

=

{
 
 

 
 
1,         if 𝑖𝑠 = 𝑂(𝑣)                                                                             

 
0,        if 𝑖𝑠 ≠ 𝑂(𝑣) or 𝐷(𝑣)                                                              

      (for any non−transferring yard 𝑖𝑠 for shipment 𝑣)
 

−1,     if 𝑖𝑠 = 𝐷(𝑣)                                                                             

∀𝑣, ∀𝑖𝑠 

 

 

 

∑𝑥𝑘𝑠𝑗𝑠
𝑣

𝑗𝑠

−∑𝑥𝑗𝑠́𝑘𝑠́
𝑣

𝑗𝑠́

= 0,        for any transferring yard 𝑘𝑠𝑠́ for shipment 𝑣          ∀𝑣, ∀𝑘𝑠𝑠́  

 

 

Shipment 𝑣 traverses through route 𝑂(𝑣) − 𝐷(𝑣) using 𝕊 out of 𝒮 available train 

services in the network, which consists of a set of transferring yards 𝒴𝑣 = ⋃ 𝒴𝑠𝑠∈𝕊  

and a set of service legs 𝒜𝑣 = ⋃ 𝒜𝑠𝑠∈𝕊 , i.e. totally 𝑛𝑣 = |𝒴𝑣 ∪𝒜𝑣| items. We 

define the following parameters for the route 𝑂(𝑣) − 𝐷(𝑣) of shipment 𝑣: 

𝑝𝑘
𝑣: Accident probability at transferring yard 𝑘 resulting from transporting 𝑁(𝑣) 

hazmat railcars 

𝑐𝑘
𝑣: Accident consequence at transferring yard 𝑘 resulting from transporting 

𝑁(𝑣) hazmat railcars 

𝑝𝑖𝑗
𝑣 : Accident probability in arc (𝑖, 𝑗) resulting from transporting 𝑁(𝑣) hazmat 

railcars 
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𝑐𝑖𝑗
𝑣 : Accident consequence in service leg (𝑖, 𝑗) resulting from transporting 𝑁(𝑣) 

hazmat railcars 

The techniques used to estimate the above parameters are borrowed from 

other peer-reviewed works, whose details are provided in Hosseini and Verma 

(2017). They categorized trains into three groups: short can carry up to 40 railcars; 

medium, between 41 and 120 railcars; and, long, the rest. To calculate the accident 

probability in the yards and arcs, the derailment probability of train and then 

multiplication of conditional probabilities which finally lead to release from a 

hazmat railcar derailed are computed based on the ten deciles of the train (i.e., the 

length of the train is divided into 10 equal parts). This means, 𝑝𝑘
𝑣 and 𝑝𝑖𝑗

𝑣  depend on 

the numbers of hazmat railcars in each train-decile (i.e., train configuration), which 

in total equal 𝑁(𝑣). Hosseini and Verma (2018) followed the same strategy for the 

accident probabilities, although showed that long trains yield a lower optimal value 

for CVaR and so have a better performance compared to short and medium trains. 

Regarding this fact and also by reason of remaining close to the main theme of this 

research, we assume that all trains used in the train services are long, and we use 

the average values of the conditional probabilities. Hence, 𝑝𝑘
𝑣 and 𝑝𝑖𝑗

𝑣  do not depend 

on the train configuration any more, although they are still dependent upon the 

number of hazmat railcars 𝑁(𝑣). On the other side, the consequences, i.e., 

𝑐𝑘
𝑣 and 𝑐𝑖𝑗

𝑣 , are estimated as the population exposure due to the release from 𝑁(𝑣) 

hazmat railcars traversing transferring yard 𝑘 and arc (𝑖, 𝑗), respectively, given the 
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accident in them. In brief, the accident probability and consequence in the 

transferring yards and arcs of the network enlarge with increase in the total number 

of hazmat railcars (hazmat volume) traversing them. More numerical details will 

be provided in Section 5.4. 

5.2.2. CVaR for Rail Hazmat Shipment 

Let 𝐶(𝑡)
𝑣  denote the 𝑡th smallest value in the set {𝑐𝑘

𝑣 ∪ 𝑐𝑖𝑗
𝑣  ∶  𝑘 ∈ 𝒴𝑣  &  (𝑖, 𝑗) ∈

 𝒜𝑣} , 𝑃(𝑡)
𝑣  be the corresponding accident probability, and 𝑅𝑣 be the discrete random 

variable denoting the risk associated with route 𝑂(𝑣) − 𝐷(𝑣). Then 𝑅𝑣 can take the 

following values:  

𝑅𝑣 =

{
 
 
 
 
 

 
 
 
 
 
𝐶(0)
𝑣 = 0,         with probability  𝑃(0)

𝑣 = 1 −∑𝑃(𝑖)
𝑣

𝑛𝑣

𝑖=1 
𝐶(1)
𝑣 ,                  with probability  𝑃(1)

𝑣                             
 .                                         .                                               .                                         .                                               .                                         .                                               

 

𝐶(𝑡)
𝑣 ,                 with probability  𝑃(𝑡)

𝑣                              
.                                         .                                               
.                                         .                                               
.                                         .                                                

𝐶(𝑛𝑣)
𝑣 ,                with probability  𝑃(𝑛𝑣)

𝑣                            

 

where 𝐶(0)
𝑣 < 𝐶(1)

𝑣 < 𝐶(2)
𝑣 < ⋯ < 𝐶(𝑛𝑣)

𝑣  and  𝑡 ∈ {0, 1, 2, … , 𝑛𝑣} . According to 

Hosseini and Verma (2017), for a specific confidence level 𝛼 ∈ (0, 1), VaR is the 

minimal threshold level 𝛽 such that the hazmat risk 𝑅𝑣 does not exceed 𝛽 with the 

least probability of  𝛼 : VaR𝛼
 (𝑣) = min{𝛽 | Pr(𝑅𝑣 ≤ 𝛽) ≥ 𝛼} =

min{𝛽 | 𝐹𝑅𝑙(𝛽) ≥ 𝛼}. Hosseini and Verma (2018) demonstrated that since there 
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are discontinuities in the risk distribution function, CVaR cannot be interpreted 

simply as the average of the consequences greater than or equal to VaR. Instead, it 

has a more subtle delineation: CVaR is represented as a weighted average of VaR 

and the risk greater than that: 

CVaR𝛼
 (𝑣) = 𝜆𝛼

𝑣  VaR𝛼
 (𝑣) + (1 − 𝜆𝛼

𝑣 ) 𝐸(𝑅𝑣 | 𝑅𝑣 > VaR𝛼
 (𝑣)) 

where 𝜆𝛼
𝑣  indicates the probability allocated to the risk amount VaR𝛼

 (𝑣) by the 𝛼-

tail distribution of 𝑅𝑣 as follows: 

𝜆𝛼
𝑣 =

𝐹𝑅𝑣(VaR𝛼
 (𝑣)) − 𝛼

1 − 𝛼
 

where always 𝐹𝑅𝑣(VaR𝛼
 (𝑣)) ≥ 𝛼 by definition of VaR. 

Considering confidence level 𝛼 ∈ (0, 1), we define 𝑇 be equal to 0 if 0 <

𝛼 ≤ 𝑃(0)
𝑣 , otherwise it is the unique index such that ∑ 𝑃(𝑡)

𝑣𝑇−1
𝑡=0 < 𝛼 ≤ ∑ 𝑃(𝑡)

𝑣𝑇
𝑡=0 . The 

𝛼-VaR of the risk along route 𝑂(𝑣) − 𝐷(𝑣) is then VaR𝛼(𝑣) = 𝐶(𝑇)
𝑣 , and the 𝛼-

CVaR of the risk associated with train service {𝑠} is 

 CVaR𝛼(𝑣) = 𝐶(𝑇)
𝑣 +

1

1 − 𝛼
[ ∑ 𝑃(𝑡)

𝑣  (𝐶(𝑡)
𝑣 − 𝐶(𝑇)

𝑣 )

𝑛𝑣

𝑡=𝑇+1

] (5.3) 

The detailed methods to calculate the above VaR and CVaR are described in 

Hosseini and Verma (2017) and Hosseini and Verma (2018), respectively. In our 

problem, the objective at the given confidence level 𝛼 is to 



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

116 
 

 min∑CVaR𝛼(𝑣)

𝑣

  

which means to do the routing of all rail hazmat shipments using the available train 

services in the network in such a way that the summation of the risks generated by 

them and measured by CVaR is minimized. 

5.2.3. Risk Equity for Rail Hazmat Shipment 

Each yard in the network may be used as a transfer operation node between two 

train services for several shipments. Likewise, it is very likely that (undirected) arcs 

of the network be utilized by a (directed) service leg of several train services for 

carrying hazmat shipments. We enforce threshold restrictions on the both two types 

of the risks which might be imposed on the transferring yards and arcs of the 

network, so that equitable distribution of risk over the network is guaranteed. In 

order to define the equity constraints, we first need to calculate the total hazmat 

volume transferred at each transferring yard 𝑘 and also the total hazmat volume 

carried via arc (𝑖, 𝑗) of the network, which are gained as follows 

 𝑁(𝑘) = ∑𝑁(𝑣) 𝑥𝑘𝑠́𝑘𝑠
𝑣

𝑣,𝑠́,𝑠

 (5.4) 

 

 𝑁(𝑖, 𝑗) =∑𝑁(𝑣) 𝑥𝑖𝑠𝑗𝑠
𝑣

𝑣,𝑠

 (5.5) 

Then we define the following parameters for the yards and arcs in the network: 
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𝒫𝑘: Accident probability at transferring yard 𝑘 resulting from hazmat volume 

𝑁(𝑘) 

𝒞𝑘: Accident consequence at transferring yard 𝑘 resulting from hazmat volume 

𝑁(𝑘) 

𝒫𝑖𝑗: Accident probability in arc (𝑖, 𝑗) resulting from hazmat volume 𝑁(𝑖, 𝑗) 

𝒞𝑖𝑗: Accident consequence in arc (𝑖, 𝑗) resulting from hazmat volume 𝑁(𝑖, 𝑗) 

Consequently, we define the equity constrains as follows: 

 𝒫𝑘 𝒞𝑘 ≤ 𝛿𝑘          ∀𝑘  

 

 𝒫𝑖𝑗 𝒞𝑖𝑗 ≤ 𝛿𝑖𝑗           ∀(𝑖, 𝑗) 

They ensure that the expected consequence in each transferring yard and arc of the 

network resulting from transporting multiple rail hazmat shipments will not exceed 

the threshold values 𝛿𝑘 and 𝛿𝑖𝑗, respectively. Therefore, the proposed problem 𝑃 is  

 min∑CVaR𝛼(𝑣)

𝑣

 (5.6) 

                                                     Subject to 

 𝒫𝑘 𝒞𝑘 ≤ 𝛿𝑘          ∀𝑘 (5.7) 

 

 𝒫𝑖𝑗 𝒞𝑖𝑗 ≤ 𝛿𝑖𝑗           ∀(𝑖, 𝑗) (5.8) 
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 𝑋 ∈ 𝜓 (5.9) 

5.3 Optimization Program 

Considering different alternative routes in the network available for each shipment, 

our objective is to determine the route  𝑂(𝑣) − 𝐷(𝑣)  which has the minimum 

CVaR. To do that, we extend (5.1) as follows  

CVaR𝛼
𝑟 (𝑣) = 𝐶(𝑟)

𝑣

+
1

1 − 𝛼
(∑ ∑ 𝑝𝑘

𝑣(𝑐𝑘
𝑣 − 𝐶(𝑟)

𝑣 )𝑥𝑘𝑠́𝑘𝑠
𝑣

 

𝑘,𝑐𝑘
𝑣>𝐶(𝑟)

𝑣𝑠, 𝑠́

+∑ ∑ 𝑝𝑖𝑗
𝑣 (𝑐𝑖𝑗

𝑣 − 𝐶(𝑟)
𝑣 )𝑥𝑖𝑠𝑗𝑠

𝑣

 

(𝑖,𝑗),𝑐𝑖𝑗
𝑣>𝐶(𝑟)

𝑣𝑠

) 

where 𝐶(𝑟)
𝑣 ; 𝑟 ∈ {0, 1, 2, … ,𝑀} (𝐶(0)

𝑣 = 0) is the 𝑟th smallest value in the set {𝑐𝑘
𝑣 ∪

𝑐𝑖𝑗
𝑣  ∶  𝑘 ∈ 𝒴  &  (𝑖, 𝑗) ∈ 𝒜}, and 𝑀 is the total number of yards and arcs of all train 

services available in the rail network. Therefore, for each shipment the objective is 

to CVaR𝛼
∗ (𝑣) = min

𝑟
CVaR𝛼

𝑟 (𝑣), and so the objective of problem 𝑃, (5.4), can be 

rewritten as  

 min
𝑟
∑(𝐶(𝑟)

𝑣 +
1

1 − 𝛼
 𝑔𝑟(𝑣))

𝑣

 (5.10) 

where  



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

119 
 

𝑔𝑟(𝑣) = min
𝑋∈𝜓

(∑ ∑ 𝑝𝑘
𝑣(𝑐𝑘

𝑣 − 𝐶(𝑟)
𝑣 )𝑥𝑘𝑠́𝑘𝑠

𝑣

 

𝑘,𝑐𝑘
𝑣>𝐶(𝑟)

𝑣𝑠, 𝑠́

+∑ ∑ 𝑝𝑖𝑗
𝑣 (𝑐𝑖𝑗

𝑣 − 𝐶(𝑟)
𝑣 )𝑥𝑖𝑠𝑗𝑠

𝑣

 

(𝑖,𝑗),𝑐𝑖𝑗
𝑣>𝐶(𝑟)

𝑣𝑠

) 

5.3.1. Lagrangian Relaxation Method 

To solve our problem, we apply Lagrangian relaxation method and dualize the 

constraint sets (5.5) and (5.6). The exact left-hand-side values of these constraints 

are calculated using 𝑁(𝑘) and 𝑁(𝑖, 𝑗) in (5.2) and (5.3), respectively, as follows 

𝑝𝑘
∑ 𝑁(𝑣) 𝑥𝑘𝑠́𝑘𝑠

𝑣
𝑣,𝑠́,𝑠

 𝑐𝑘
∑ 𝑁(𝑣) 𝑥𝑘𝑠́𝑘𝑠

𝑣
𝑣,𝑠́,𝑠

≤ 𝛿𝑘          ∀𝑘 

𝑝
𝑖𝑗

∑ 𝑁(𝑣) 𝑥𝑖𝑠𝑗𝑠
𝑣

𝑣,𝑠
 𝑐
𝑖𝑗

∑ 𝑁(𝑣) 𝑥𝑖𝑠𝑗𝑠
𝑣

𝑣,𝑠
≤ 𝛿𝑖𝑗          ∀(𝑖, 𝑗) 

Although, to use the Lagrangian method, we have to approximate them as follows 

 (∑∑𝑁(𝑣) 𝑥𝑘𝑠́𝑘𝑠
𝑣

𝑠, 𝑠́𝑣

)𝑝𝑘 𝑐𝑘 ≤ 𝛿𝑘          ∀𝑘 (5.11) 

 

 (∑∑𝑁(𝑣) 𝑥𝑖𝑠𝑗𝑠
𝑣

𝑠𝑣

)𝑝𝑖𝑗 𝑐𝑖𝑗 ≤ 𝛿𝑖𝑗           ∀(𝑖, 𝑗) (5.12) 

where 𝑝𝑘 (or 𝑝𝑖𝑗) and 𝑐𝑘 (or 𝑐𝑖𝑗) are the accident probability and consequence, 

respectively resulting from transporting one hazmat railcar at transferring yard 𝑘 

(or in arc (𝑖, 𝑗)). Hence, the Lagrangian function 𝐿(𝑢) will be  
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𝐿(𝑢) = min
𝑟
∑(𝐶(𝑟)

𝑣

𝑣

+
1

1 − 𝛼
(∑ ∑ 𝑝𝑘

𝑣(𝑐𝑘
𝑣 − 𝐶(𝑟)

𝑣 )𝑥𝑘𝑠́𝑘𝑠
𝑣

 

𝑘,𝑐𝑘
𝑣>𝐶(𝑟)

𝑣𝑠, 𝑠́

+∑ ∑ 𝑝𝑖𝑗
𝑣 (𝑐𝑖𝑗

𝑣 − 𝐶(𝑟)
𝑣 )𝑥𝑖𝑠𝑗𝑠

𝑣

 

(𝑖,𝑗),𝑐𝑖𝑗
𝑣>𝐶(𝑟)

𝑣𝑠

))

+∑(∑∑𝑁(𝑣)𝑥𝑘𝑠́𝑘𝑠
𝑣

𝑠, 𝑠́𝑣

)𝑢𝑘  𝑝𝑘 𝑐𝑘
𝑘

+∑(∑∑𝑁(𝑣) 𝑥𝑖𝑠𝑗𝑠
𝑣

𝑠𝑣

)𝑢𝑖𝑗  𝑝𝑖𝑗 𝑐𝑖𝑗
(𝑖,𝑗)

                                  

−∑𝑢𝑘𝛿𝑘
𝑘

−∑𝑢𝑖𝑗𝛿𝑖𝑗
(𝑖,𝑗)

 

             Subject to 

𝑋 ∈ 𝜓 

where 𝑢𝑘 ≥ 0, ∀𝑘 and 𝑢𝑖𝑗 ≥ 0, ∀(𝑖, 𝑗) are the vectors of dual variables (Lagrangian 

multipliers) for constraint sets (5.9) and (5.10), respectively. After some 

computation, we can rewrite the Lagrangian function as follows 
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𝐿(𝑢) = min
𝑟
∑(𝐶(𝑟)

𝑣 +∑ ∑ (
𝑝𝑘
𝑣(𝑐𝑘

𝑣 − 𝐶(𝑟)
𝑣 )

1 − 𝛼
+ 𝑁(𝑣) 𝑢𝑘 𝑝𝑘 𝑐𝑘)𝑥𝑘𝑠́𝑘𝑠

𝑣

 

𝑘,𝑐𝑘
𝑣>𝐶(𝑟)

𝑣𝑠, 𝑠́𝑣

+∑ ∑ (
𝑝𝑖𝑗
𝑣 (𝑐𝑖𝑗

𝑣 − 𝐶(𝑟)
𝑣 )

1 − 𝛼

 

(𝑖,𝑗),𝑐𝑖𝑗
𝑣>𝐶(𝑟)

𝑣𝑠

+ 𝑁(𝑣) 𝑢𝑖𝑗 𝑝𝑖𝑗 𝑐𝑖𝑗) 𝑥𝑖𝑠𝑗𝑠
𝑣 )                                                      

−∑𝑢𝑘𝛿𝑘
𝑘

−∑𝑢𝑖𝑗𝛿𝑖𝑗
(𝑖,𝑗)

 

            Subject to 

𝑋 ∈ 𝜓 

This Lagrangian function separates into |𝑉| distinct shortest path problems; it will 

become more evident if we make the following modifications  

 

𝑤𝑘
𝑣

= {

𝑝𝑘
𝑣(𝑐𝑘

𝑣 − 𝐶(𝑟)
𝑣 )

1 − 𝛼
+ 𝑁(𝑣) 𝑢𝑘 𝑝𝑘 𝑐𝑘  ,     if    𝑐𝑘

𝑣 > 𝐶(𝑟)
𝑣              ∀𝑘 , ∀𝑣       

 
𝑁(𝑣) 𝑢𝑘 𝑝𝑘 𝑐𝑘,                                    otherwise                                     

 

(5.13) 
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𝑤𝑖𝑗
𝑣

= {

𝑝𝑖𝑗
𝑣 (𝑐𝑖𝑗

𝑣 − 𝐶(𝑟)
𝑣 )

1 − 𝛼
+ 𝑁(𝑣) 𝑢𝑖𝑗 𝑝𝑖𝑗 𝑐𝑖𝑗  ,     if    𝑐𝑖𝑗

𝑣 > 𝐶(𝑟)
𝑣              ∀(𝑖, 𝑗) , ∀𝑣

 
𝑁(𝑣) 𝑢𝑖𝑗 𝑝𝑖𝑗  𝑐𝑖𝑗,                                     otherwise                                    

 

(5.14) 

This way the Lagrangian function will be 

𝐿(𝑢) = min
𝑟
∑(𝐶(𝑟)

𝑣 +∑∑𝑤𝑘
𝑣 𝑥𝑘𝑠́𝑘𝑠

𝑣

 

𝑘𝑠, 𝑠́

+∑∑𝑤𝑖𝑗
𝑣  𝑥𝑖𝑠𝑗𝑠

𝑣

 

(𝑖,𝑗)𝑠

)

𝑣

−∑𝑢𝑘𝛿𝑘
𝑘

−∑𝑢𝑖𝑗𝛿𝑖𝑗
(𝑖,𝑗)

 

            Subject to 

𝑋 ∈ 𝜓 

which can be restated as follows 

𝐿(𝑢) = min
𝑟
∑(𝐶(𝑟)

𝑣 + 𝑓𝑟(𝑣))

𝑣

−∑𝑢𝑘𝛿𝑘
𝑘

−∑𝑢𝑖𝑗𝛿𝑖𝑗
(𝑖,𝑗)

 

where 

 𝑓𝑟(𝑣) = min
𝑋∈𝜓

(∑∑𝑤𝑘
𝑣 𝑥𝑘𝑠́𝑘𝑠

𝑣

 

𝑘𝑠, 𝑠́

+∑∑𝑤𝑖𝑗
𝑣  𝑥𝑖𝑠𝑗𝑠

𝑣

 

(𝑖,𝑗)𝑠

) (5.15) 

which is a shortest path problem. We then develop an algorithm to solve 𝐿(𝑢) as 

follows 
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Lagrangian Function Algorithm 

1. For 𝑣 = 1 to |𝑉| (all shipments) do: 

1.1  Generate 𝐶(𝑟)
𝑣  and their corresponding 𝑃(𝑟)

𝑣 ∶  𝑟 = 0, 1, 2, … ,𝑀. 

1.2  For 𝑟 = 0 to 𝑀 do: 

1.2.1 Do the modifications (5.11) and (5.12), then solve problem 

(5.13), 𝑓𝑟(𝑣), using Dijkstra’s Shortest Path Algorithm. It 

also gives the corresponding route 𝑋𝑟(𝑣). 

1.2.2 Calculate 𝐶(𝑟)
𝑣 + 𝑓𝑟(𝑣). 

1.3  Let 𝑟∗ = arg min
𝑟=0,1,…,𝑀

(𝐶(𝑟)
𝑣 + 𝑓𝑟(𝑣)). Save the best route 𝑋𝑟

∗
(𝑣). 

2. Calculate 𝐿(𝑢) = ∑ (𝐶(𝑟∗)
𝑣 + 𝑓𝑟

∗
(𝑣))𝑣 − ∑ 𝑢𝑘𝛿𝑘𝑘 − ∑ 𝑢𝑖𝑗𝛿𝑖𝑗(𝑖,𝑗) .  

 

5.3.2. Subgradient Search Algorithm 

The Lagrangian dual problem, max{𝐿(𝑢) | 𝑢 ≥ 0}, is in general difficult to solve 

exactly, and may be approximately solved by means of the well-known and widely-

used subgradient technique (Held et al., 1974). Let Γ(𝑢̅) denote the set of optimal 

solutions for the Lagrangian function at 𝑢̅, if 𝑥̅ ∈ Γ(𝑢̅), then the following vectors 

𝛾̅ are subgradients of 𝐿(𝑢) at 𝑢̅ 

𝛾̅𝑘 = −𝛿𝑘 + (∑∑𝑁(𝑣) 𝑥̅𝑘𝑠́𝑘𝑠
𝑣

𝑠, 𝑠́𝑣

)𝑝𝑘 𝑐𝑘          ∀𝑘 
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𝛾̅𝑖𝑗 = −𝛿𝑖𝑗 + (∑∑𝑁(𝑣) 𝑥̅𝑖𝑠𝑗𝑠
𝑣

𝑠𝑣

)𝑝𝑖𝑗  𝑐𝑖𝑗          ∀(𝑖, 𝑗) 

Next, we utilize them to develop the following algorithm: 

Subgradient Optimization Algorithm 

Step 1: (Initialization) Let 𝑞 ← 0, 𝑢𝑞 ≥ 0, 𝜖 > 0.  

Step 2: Do the Lagrangian Function Algorithm using 𝑢𝑞 and find  

𝑋𝑞 ∈ Γ(𝑢𝑞 ), and 

𝐿(𝑢𝑞) =∑(𝐶(𝑟∗)
𝑣 + 𝑓𝑟

∗
(𝑣))

𝑣

−∑𝑢𝑘
𝑞𝛿𝑘

𝑘

−∑𝑢𝑖𝑗
𝑞 𝛿𝑖𝑗

(𝑖,𝑗)

 

Step 3: Calculate the subgradients using the result of the Lagrangian Function 

Algorithm (𝑋𝑞) 

𝛾𝑘
𝑞 = −𝛿𝑘 + (∑∑𝑁(𝑣) 𝑥𝑘𝑠́𝑘𝑠

𝑣 𝑞

𝑠, 𝑠́𝑣

)𝑝𝑘 𝑐𝑘          ∀𝑘 

𝛾𝑖𝑗
𝑞 = −𝛿𝑖𝑗 + (∑∑𝑁(𝑣) 𝑥𝑖𝑠𝑗𝑠

𝑣 𝑞

𝑠𝑣

)𝑝𝑖𝑗 𝑐𝑖𝑗          ∀(𝑖, 𝑗) 

Step 4: Let 𝑢𝑞+1 ← max{0, 𝑢𝑞 + 𝑡𝑞𝛾
𝑞} where 𝑡𝑞 is a positive scalar called the 

step size. 

Step 5: If ‖𝑢𝑞+1 − 𝑢𝑞‖ < 𝜖 stop, else let 𝑞 ← 𝑞 + 1 and go to Step 2. 

By means of the above algorithm, the sequence of dual solutions {𝑢𝑞} approaches 

an optimal solution {𝑢∗}, however the value of 𝐿(𝑢𝑞+1) is not necessarily greater 
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than 𝐿(𝑢𝑞). In fact, according to the fundamental theoretical result (Held et al., 

1974), the sequence {𝐿(𝑢𝑞)} converges to 𝐿(𝑢∗) if the sequence {𝑡𝑞} converges to 

zero and ∑ 𝑡𝑞
∞
𝑞=0 = ∞. It is common to determine 𝑡𝑞 by a formula such as 

𝑡𝑞 =
𝜃𝑞(𝐿

𝑢𝑏 − 𝐿(𝑢𝑞))

‖𝛾𝑞‖2
 

where 𝜃𝑞 is a positive scalar between 0 and 2 (Martin, 1999). We determine 𝜃𝑞 by 

setting 𝜃0  = 2 and halving 𝜃𝑞  whenever 𝐿(𝑢)  fails to increase for some fixed 

number of iterations. 𝐿𝑢𝑏 is an upper bound on the optimal value 𝐿(𝑢), which can 

be the value of any primal feasible solution. 

Note that the Lagrangian relaxation method has been introduced here to 

supply us with a lower bound on the optimal solution. This enables us to evaluate 

the maximum distance from the optimality of the solutions generated by the 

heuristic to be described in the following section. 

5.3.3. A Heuristic Algorithm for 𝒌-minimal CVaR Paths Determination 

In this section, we propose a greedy heuristic algorithm to determine 𝑘-minimal 

CVaR paths while the equity constraints are satisfied. This algorithm is developed 

based upon Yen's 𝑘-shortest path algorithm (Yen, 1971). It not only provides a good 

initial primal feasible solution to be used in the Subgradient algorithm, but also can 

be regarded as a stand-alone solution algorithm, as will be shown in the next 

section.  



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

126 
 

The main idea in this algorithm is that we start with the shipment which has 

the highest number of hazmat railcars and do its routing in such a way that the 

CVaR risk associated with the generated route is minimized. We repeat this process 

for the next highest number of hazmat railcar shipment, but then check if the created 

minimum CVaR route violates any of the risk equity constraints for the arcs and/or 

transferring yards or not. If so, we remove the corresponding arcs and/or 

transferring yards from the network and do a rerouting to find the next minimal 

CVaR route for this shipment. This process is repeated as many times as required 

until a minimal CVaR route is found for the shipment. Likewise, this procedure is 

iterated until all hazmat shipments in the network are routed. It is worthwhile 

mentioning that when a yard is removed from the network as a transferring yard, it 

may still be used in the routing of the next shipments as a transshipment yard.  

To implement the proposed heuristic algorithm, we first rewrite the objective 

function of problem 𝑃, (5.4), by using (5.8) as follows: 

min
𝑟
∑CVaR𝛼

𝑟 (𝑣̅)

𝑣̅

= min
𝑟
∑(𝐶(𝑟)

𝑣̅ + 𝑓̅𝑟(𝑣̅))

𝑣̅

 

where 

 𝑓̅𝑟(𝑣̅) = min
𝑋∈𝜓

(∑∑𝑤̅𝑘
𝑣̅ 𝑥𝑘𝑠́𝑘𝑠

𝑣̅

 

𝑘𝑠, 𝑠́

+∑∑𝑤̅𝑖𝑗
𝑣̅  𝑥𝑖𝑠𝑗𝑠

𝑣̅

 

(𝑖,𝑗)𝑠

) (5.16) 

where 
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 𝑤̅𝑘
𝑣̅ = {

𝑝𝑘
𝑣̅(𝑐𝑘

𝑣̅ − 𝐶(𝑟)
𝑣̅ )

1 − 𝛼
  ,     if    𝑐𝑘

𝑣̅ > 𝐶(𝑟)
𝑣̅              ∀𝑘 , ∀𝑣̅       

 
0,                                otherwise                                     

 (5.17) 

 

 𝑤̅𝑖𝑗
𝑣̅ = {

𝑝𝑖𝑗
𝑣̅ (𝑐𝑖𝑗

𝑣̅ − 𝐶(𝑟)
𝑣̅ )

1 − 𝛼
  ,     if    𝑐𝑖𝑗

𝑣̅ > 𝐶(𝑟)
𝑣̅              ∀(𝑖, 𝑗) , ∀𝑣̅

 
0,                                  otherwise                                    

 (5.18) 

Next, we develop the following steps to obtain the 𝑘-minimal CVaR paths as the 

equity considerations are taken into account. 

Step 1.  Sort the shipments in descending order in terms of 𝑁(𝑣). It gives a new 

set of index 𝑣̅ = {1, 2, … , |𝑉|} such that 𝑁(1) ≥ 𝑁(2) ≥ ⋯ ≥ 𝑁(|𝑉|) 

Step 2.  Define the cumulative risk on yard 𝑘 and arc (𝑖, 𝑗) of the network after 

routing the first 𝕍 voluminous shipments as follows 

CR𝑘
𝕍 = (∑∑𝑁(𝑣̅) 𝑥𝑘𝑠́𝑘𝑠

𝑣̅

𝑠, 𝑠́

𝕍

𝑣̅=1

)𝑝𝑘 𝑐𝑘

= (∑∑𝑁(𝑣̅) 𝑥𝑘𝑠́𝑘𝑠
𝑣̅

𝑠, 𝑠́

𝕍−1

𝑣̅=1

)𝑝𝑘 𝑐𝑘 + (∑𝑁(𝕍) 𝑥𝑘𝑠́𝑘𝑠
𝕍

𝑠, 𝑠́

)𝑝𝑘 𝑐𝑘 

CR𝑖𝑗
𝕍 = (∑∑𝑁(𝑣̅) 𝑥𝑖𝑠𝑗𝑠

𝑣̅

𝑠

𝕍

𝑣̅=1

)𝑝𝑖𝑗 𝑐𝑖𝑗

= (∑∑𝑁(𝑣̅) 𝑥𝑖𝑠𝑗𝑠
𝑣̅

𝑠

𝕍−1

𝑣̅=1

)𝑝𝑖𝑗 𝑐𝑖𝑗 + (∑𝑁(𝕍) 𝑥𝑖𝑠𝑗𝑠
𝕍

𝑠

)𝑝𝑖𝑗  𝑐𝑖𝑗 

Step 3.  Set initial CR𝑘
0 = 0 ∀𝑘, and CR𝑖𝑗

0 = 0 ∀(𝑖, 𝑗) 
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Step 4.  Let 𝑣̅ ← 1 

Step 4.1.  ∀𝑘 ∈ 𝒴 (for all yards in the network) do: If CR𝑘
𝑣̅−1 = 𝛿𝑘 , the risk 

capacity of yard 𝑘 is already reached, so remove the yard from the 

network for routing the rest of shipments. 

Step 4.2. ∀(𝑖, 𝑗) ∈ 𝒜 (for all arcs in the network) do: If CR𝑖𝑗
𝑣̅−1 = 𝛿𝑖𝑗 , the risk 

capacity of arc (𝑖, 𝑗) is already reached, so remove the arc from the 

network for routing the rest of shipments. 

Step 4.3. Generate 𝐶(𝑟)
𝑣̅  and their corresponding 𝑃(𝑟)

𝑣̅ ∶  𝑟 = 0, 1, 2, … ,𝑀. 

Step 4.4. For 𝑟 = 0 to 𝑀 do: 

Step 4.4.1. Do the modifications (5.15) and (5.16), then solve problem 

(5.14), 𝑓̅𝑟(𝑣̅), using Dijkstra’s Shortest Path Algorithm. It 

gives the corresponding route 𝑋𝑟(𝑣̅). 

Step 4.4.2. Calculate 𝐶(𝑟)
𝑣̅ + 𝑓̅𝑟(𝑣̅). 

Step 4.5. Let 𝑟∗ = arg min
𝑟=0,1,…,𝑀

(𝐶(𝑟)
𝑣̅ + 𝑓̅𝑟(𝑣̅)). CVaR𝛼

𝑟∗(𝑣̅) = 𝐶(𝑟∗)
𝑣̅ + 𝑓̅𝑟

∗
(𝑣̅). 

Hold the best route 𝑋𝑟
∗
(𝑣̅) for shipment 𝑣̅. 

Step 4.6. ∀𝑘 ∈ 𝑋𝑟
∗
(𝑣̅) (for each yard in the current shipment’s route) do:  

Step 4.6.1. Update CR𝑘
𝕍 by setting 𝕍 up to shipment 𝑣̅, as the 

summation of CR𝑘
𝕍−1 and the risk added to yard 𝑘 by the 

current shipment 𝑣̅. 
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Step 4.6.2. If CR𝑘
𝕍 > 𝛿𝑘 , remove yard 𝑘 from all train services of the 

network temporarily (only for the routing of this shipment). 

Step 4.7. ∀(𝑖, 𝑗) ∈ 𝑋𝑟
∗
(𝑣̅) (for each arc in the current shipment’s route) do:  

Step 4.7.1. Update CR𝑖𝑗
𝕍  while 𝕍 up to shipment 𝑣̅, as the summation of 

CR𝑖𝑗
𝕍−1 and the risk added to arc (𝑖, 𝑗) by the current 

shipment 𝑣̅. 

Step 4.7.2. If CR𝑖𝑗
𝕍 > 𝛿𝑖𝑗 , remove arc (𝑖, 𝑗) from all train services of the 

network temporarily (only for the routing of this shipment). 

Step 4.8. If at least one yard or arc is temporarily removed from the network 

in steps 4.6.2 and/or 4.7.2, go to Step 4.3, else go to Step 5. 

Step 5.  Add the temporarily removed yards and arcs to the network. 

Step 6.  If 𝑣̅ = |𝑉| stop, else let 𝑣̅ ← 𝑣̅ + 1 and go to Step 4.1. 

Step 7.  Calculate ∑ CVaR𝛼
𝑟∗(𝑣̅)𝑣̅ = ∑ (𝐶(𝑟∗)

𝑣̅ + 𝑓̅𝑟
∗
(𝑣̅))𝑣̅ . 

 

5.4 Computational Analysis 

The proposed routing methodology was tested on a realistic infrastructure of a Class 

1 railroad operator in the Midwest United States (Figure 5.1). This network has 25 

yards each of which is an origin and destination for the others, i.e., at most 600 

origin-destination pairs. However, we considered 560 different hazmat shipments 
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(O-D pairs) in the computational study, whose number of hazmat railcars to be 

shipped from origin to destination, 𝑁(𝑣), ranges in [1,15]. We also assume there is 

a total of 31 different train services available in the network, each of which is 

identified by origin and destination yards, intermediate stops, and service legs that 

connect them. All algorithms have been implemented in Java 1.9 and run on a 2.90 

GHz Intel Core i7 PC with 8 GB of RAM. 

 

Figure 5.8. Railroad network in the Midwest United States [Source: Verma et 

al., (2011)] 

 

As explained in Section 5.2.1, accident probabilities in yards and arcs, 𝑝𝑘
𝑣 

and 𝑝𝑖𝑗
𝑣 , depend on the number of hazmat railcars in shipment 𝑣, 𝑁(𝑣). In addition, 

𝑝𝑖𝑗
𝑣  is dependent on the length of the arc as well. They are computed as follows: 

𝑝𝑖𝑗
𝑣 = arc (𝑖, 𝑗)′s length (mile) × 7.35 × 10−11 × 𝑁(𝑣) and 𝑝𝑘

𝑣 = 6.42 ×
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10−10 ×𝑁(𝑣). To calculate accident consequences in yards and arcs, 𝑐𝑘
𝑣 and 𝑐𝑖𝑗

𝑣 , 

ArcGIS (ESRI, 2007) was used to estimate population exposure which is utilized 

as the measure of consequence in this research. The techniques used to estimate 

these parameters are borrowed from other peer-reviewed works. For the sake of 

brevity, we do not repeat the details here, and refer the reader to Verma and Verter 

(2007), Verma (2011), and Hosseini and Verma (2017). 

5.4.1. Role of Train Service Design 

Our first intention was to wholly comply with the train services used in Verma et 

al. (2011), but we realized that the current design does not allow us to obtain 

adequate results by conducting the k-minimal CVaR paths algorithm. This derived 

us to re-design them for this computational study and also made us discern how 

important the role of train service design in ensuring risk equity is. By employing 

the current design of the train services, all shipments from yards 16 and 17 to other 

yards are forced to be transported only through service leg 16 -> 18 (see Figure 

5.2). The total hazmat volume for these shipments is equal to 346 railcars, therefore 

the risk load on arc (16,18), i.e. the LHS of (5.10), is always greater than or equal 

to (346) × 161 × 0.735 × 10−10 × 1940 = 0.007943, where 161 is the length 

of arc (16,18) in miles, and 1940 shows the population exposure around this arc. 



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

132 
 

 

Figure 5.9. Re-designing the train services to ensure risk equity 

Therefore, it is not possible to reduce the risk load on this overloaded arc (just 

by rerouting the shipments) unless new service legs are provided. In fact, when arc 

(16,18) is removed from the network by the k-minimal CVaR paths algorithm, no 

alternative service legs are provided by the train services to be used for routing 

shipments like (O = 17, D = 14) and (O = 16, D = 14), hence Dijkstra’s shortest 

path algorithm becomes infeasible too soon and the algorithm stops. We resolved 

this issue by re-designing the two of current train services in the network, namely, 

train service {4} and {13}, and changed them from 2 -> 6 -> 8 -> 0 and 9 -> 7 -> 

17 -> 16 to 17 -> 6 -> 8 -> 0 and 9 -> 7 -> 17 -> 18, respectively. This way, two 

new service legs 17-> 6 and 17-> 18 will be added to the network (see Figure 5.2), 

which help to prevent overloading on arc (16,18) and consequently enhance risk 

equity in the whole network. 



Ph.D. Thesis - S. Davod Hosseini - McMaster University; Business - Management Science 

133 
 

5.4.2. Risk Equity Analysis 

In this section, we analyze how imposing risk equity constraints on transferring 

yard and arcs, namely, (5.9) and (5.10), respectively, affect optimal CVaR routing 

of the rail hazmat shipments throughout the network. To do so, we initially solve 

problem 𝑃 without enforcing risk equity constraints, where the objective is just to 

do the routings in such a way that the total CVaR risk generated along the routes of 

all hazmat shipments is minimized. It turns out that the maximum risk loads occur 

on arc (2,6) and transferring yard 2 with the associated values of 242 × 10−5 and 

21 × 10−5, respectively. In the next step, we first enter the risk equity constraint of 

arcs, (5.10), into the model, then remove it and only enter the transferring yard risk 

equity, (5.9), into the model, and finally consider the whole problem 𝑃, i.e. with 

both risk equity constraints. The 𝑘-minimal CVaR paths algorithm is then applied 

to each of these three scenarios while 𝛿𝑖𝑗 and 𝛿𝑘 values are set to gradually decrease 

from the maximum risk load numbers found above (when there are no risk equity 

constraints in the problem). Reducing 𝛿 values continues until the algorithm reports 

an error resulting from the infeasibility of Dijkstra’s shortest path algorithm since 

no alternative route can be found after all overloaded arcs and/or transferring yards 

are removed from the network. 

In the first scenario, where only the risk equity of arcs is considered in 

problem 𝑃, as the max risk allowed on the arcs declines gradually, the transferring 

yard risks increase. Figure 5.3 depicts how making the 𝛿𝑖𝑗 values tighter causes the 
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risk load at the riskiest transferring yards of the network to enlarge. It means that 

ensuring a lower level of risk on all the arcs of the network accompanies by the 

higher level of risk at the transferring yards. Figure 5.4 provides an example of step-

by-step rerouting done by the 𝑘-minimal CVaR paths algorithm in order to finally 

find a route for the 468th shipment with 𝑂=14, 𝐷=1, and 𝑁=3, while the risk equity 

of 187 × 10−5 is met on all the arc of the network. In every step, the arcs which 

violated the risk equity constraint in the previous step and are removed for rerouting 

are shown by dotted lines. The transferring yards are enclosed by a rectangle and 

different colors are used to distinguish the various train services in the network.  In 

addition, the CVaR along the generated route and the risk load on the arcs which 

exceed the risk equity are indicated in each step as well. It is intuitive to predict 

that, in every step, the optimal CVaR value of the route which will be generated in 

the next step, after that the overloaded arcs are removed from the network, will 

increase. 
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Figure 5.10. Increase in transferring yard risks as risk equity becomes tighter 

on arcs  

 

Likewise, in the second scenario, we impose risk equity constraints only at 

the transferring yards (decrease in 𝛿𝑘) and analyze its impact on the risk loads of 

the eight riskiest arcs of the network. The result is represented in Figure 5.5. The 

details of applying the 𝑘-minimal CVaR paths algorithm to the 547th shipment with 

𝑂=15, 𝐷=18, and 𝑁=2, while the risk equity of 10 × 10−5 is guaranteed at all the 

transferring yards of the network is described in Figure 5.6. The transferring yards 

which violated the risk equity constraint in the previous steps and are removed for 

rerouting of this shipment are enclosed by dotted red lines. Note that a yard may be 

identified as an overloaded transferring yard and so not be used for the new routes 

of the shipment, but it can still be used as a transshipment yard (along a single train 
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service) for the rerouting of the shipment since no transfer operation (between two 

train services) will be implemented at this point.  

Finally, in the last scenario, we solve the whole problem 𝑃 using the 𝑘-

minimal CVaR paths algorithm, where both risk equity constraint on arcs and 

transferring yards are considered. Figure 5.7 demonstrates the steps have been taken 

by the algorithm for rerouting and consequently building a route for the 497th 

shipment with 𝑂=7, 𝐷=3, and 𝑁=2, while maximum risk load 𝛿𝑖𝑗 = 220 × 10−5 

and 𝛿𝑘 = 16 × 10−5 are imposed on all the arcs and transferring yards of the 

network, respectively. This time, the algorithm performs the rerouting in such a 

way that both overloaded arcs and transferring yards are avoided simultaneously. 

The number of shipments rerouted by the algorithm to ensure risk equity throughout 

the network in all the three scenarios are depicted in Figure 5.8. Furthermore, as 

discussed above, CVaR value along with the generated route for each hazmat 

shipment increases as the risk equity constraints on arcs and transferring yards 

become tighter. The reason is clear; the limitation imposed by the risk equity causes 

the shipments to undergo possible several re-routings. This means deviation from 

the original routes with the corresponding minimum CVaR values which could be 

achieved in the absence of risk equity constraints. Figure 5.9 elucidates how the 

total optimal CVaR value, gained by the summation of optimal CVaR values of all 

the shipments in the network (after the re-routings), rise by imposing the maximum 

risk enforcement on the arcs and transferring yards in all the three scenarios. 
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Figure 5.11. 𝒌-minimal CVaR paths determination for the 468th shipment by 

imposing risk equity constraint (only) on arcs: 𝜹𝒊𝒋 = 𝟏𝟖𝟕 × 𝟏𝟎−𝟓 
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Figure 5.12. Increase in the risk load of arcs as risk equity becomes tighter on 

transferring yards 
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Figure 5.13. 𝒌-minimal CVaR paths determination for the 547th shipment by 

imposing risk equity constraint (only) on transferring yards: 𝜹𝒌 = 𝟏𝟎 × 𝟏𝟎
−𝟓 
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Figure 5.14. 𝒌-minimal CVaR paths determination for the 497th shipment by 

imposing risk equity constraint on arcs and transferring yards: 𝜹𝒊𝒋 =

𝟐𝟐𝟎 × 𝟏𝟎−𝟓 and 𝜹𝒌 = 𝟏𝟔 × 𝟏𝟎
−𝟓, respectively 
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Figure 5.15. No of shipments rerouted by the 𝒌-minimal CVaR paths 

algorithm to ensure risk equity constraints 

 

 

 

Figure 5.16. Increase in the total optimal CVaR value by imposing risk 

equity constraints 
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5.4.3. Optimality Evaluation of Solution Values  

In this section, we attempt to solve the Lagrangian dual problem max{𝐿(𝑢) | 𝑢 ≥

0} and so achieve an effective lower bound on the optimal solution values for the 

scenarios studied above. To do so, we plug the values of ∑ CVaR𝛼
𝑟∗(𝑣̅)𝑣̅ , which are 

gained by the 𝑘 -minimal CVaR paths algorithm and used to build the above 

discussions in Sections 5.4.1 and 5.4.2, into the Subgradient algorithm, where at 

each step, they are used as 𝐿𝑢𝑏, an upper bound on the optimal value 𝐿(𝑢), in the 

step size 𝑡𝑞 calculation. At each iteration 𝑞 of the Subgradient algorithm, we first 

calculate 𝐿(𝑢𝑞) using the Lagrangian function algorithm, which is then utilized to 

compute the subgradients 𝛾𝑞. Consequently, we update Lagrangian multipliers 𝑢𝑞 

by means of the step size 𝑡𝑞 =
𝜃𝑞(𝐿

𝑢𝑏−𝐿(𝑢𝑞))

‖𝛾𝑞‖2
. Note that at iteration 𝑞 = 0, we start 

with all the multipliers 𝑢𝑘
0, ∀𝑘 and 𝑢𝑖𝑗

0 , ∀(𝑖, 𝑗) being equal to zero. 

It turns out that 𝐿(𝑢) fails to increase for some fixed number of iterations for 

all the scenarios. An example is provided in Figure 5.10 for the case in which we 

impose the maximum risk of 240 × 10−5 only on the arcs and get ∑ CVaR𝛼
𝑟∗(𝑣̅)𝑣̅ =

 151,244.00. In Table 5.1, we compare the solution values ∑ CVaR𝛼
𝑟∗(𝑣̅)𝑣̅  (i.e. the 

values of total CVaR for all the shipments in the network) gained by the 𝑘-minimal 

CVaR paths algorithm for all the different scenarios with the Lagrangian lower 

bound LB. It lists the values of the relative gap (in percentage) of the solution values 

with respect to the lower bound, i.e. ((∑ CVaR𝛼
𝑟∗(𝑣̅)𝑣̅ − 𝐿𝐵)/𝐿𝐵)%. Comparing 
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to the lower bound, we conclude that the quality of the solution values is high with 

an average relative gap of 1.40% and a maximum value of 8.19%. 

 

Figure 5.17. Change in Lagrangian function by iterating Subgradient 

algorithm for risk equity 𝛿𝑖𝑗 = 240 × 10
−5 
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Max-Risk Imposed 

Only on Arcs  

𝜹𝒊𝒋 (× 𝟏𝟎
−𝟓) 

Gap 

Max-Risk Imposed 

Only on Yards  

𝜹𝒌 (× 𝟏𝟎−𝟓) 
Gap 

Max-Risk Imposed       

on Both Arcs and Yards  

𝜹𝒊𝒋 & 𝜹𝒌 (× 𝟏𝟎−𝟓) 
Gap 

235 0.08% 19 0.13% 235 & 19 0.20% 

230 0.12% 18 0.15% 230 & 18 0.26% 

225 0.24% 17 0.30% 225 & 17 0.50% 

220 0.40% 16 0.48% 220 & 16 0.98% 

215 0.53% 15 0.88% 

210 0.68% 14 1.45% 

205 0.95% 13 2.05% 

200 1.29% 2 3.88% 

195 1.47% 11 5.52% 

190 1.94% 10 8.19% 

187 2.26% 

 

Table 5.15. 𝒌-minimal CVaR paths algorithm gap from the 

Lagrangian lower bound 

 

5.5 Conclusion 

In this chapter, we proposed a CVaR-based routing plan with risk equity 

considerations for multiple hazmat shipments each of with is specified by origin-

destination pair and the number of hazmat railcars to be shipped throughout the 

railroad network. The primary objective is to find the best route for each rail 

shipment with the aim of minimizing the summation of the risks generated along 

the routes as measured by CVaR. The maximum risk limitations, however, have 

been also added to the model in order to prevent particular arcs and transferring 

yards of the network being too much overloaded. A 𝑘 -minimal CVaR paths 

algorithm has been developed and experimentally evaluated on a US railroad 
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network, the efficiency and effectiveness of which is also demonstrated by the 

lower bound provided by a Lagrangian method.  

As described, the itineraries of the train services used in the network to 

transport the hazmat shipments play an important role in reducing the total risk 

throughout the network. We assumed that the train services are predefined in this 

chapter, but an interesting extension to this work is to study the problem from a 

more strategic perspective where minimizing the total CVaR risk and risk equity 

consideration are taken into account beside other affecting factors when the train 

services are designed. 

In addition to the safe and equitable route selection, there is another issue in 

the context of multiple rail hazmat shipments that deserves adequate consideration. 

When there are many rail hazmat shipments in the network, which are usually 

executed simultaneously, the safe scheduling of all these shipments becomes 

critical. One way to address this issue is to integrate routing and scheduling 

decisions, although it increases the complexity of the model dramatically. For 

example, a safe hazmat shipment scheduling should avoid doing a transfer 

operation at a yard when the risk is high because of another transfer operation being 

carried out in the yard at the same time.  

Another direction for future research is to relax this assumption in the chapter 

that all arc and yard attributes in the network including the accident probabilities 

and consequences are known. Robust optimization methods can be employed to 
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help provide us with routing strategies which are less sensitive to changes in arc 

and yard attributes and also are robust to the inaccuracy of data. 
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Chapter 6. Conclusion and Future Research 

Railroad is one of the safest modes for transporting hazmat, although the possibility 

of catastrophic events because of the involvement of multiple railcars, however 

small, does exist. Low probability-high consequence nature of rail hazmat incidents 

necessitates the development of a risk-averse routing methodology for routing rail 

hazmat shipments, while the efficacy of the risk assessment methodologies 

developed in the last two decades has been limited, since they either are risk neutral, 

hence unable to prevent high consequence events, or yield a single route between a 

given origin-destination pair, regardless of the risk preference of decision makers.  

To fill this gap in the literature, we made the first attempt to develop a Value-

at-Risk (VaR) assessment methodology to facilitate risk-averse and flexible routing 

of rail hazmat shipments. The proposed VaR methodology was then used to study 

232 problem instances generated using the realistic infrastructure of a railroad 

operator in Midwest United States. The further analysis showed that by focusing on 

the tail of the distribution, VaR is a more suitable measure of hazmat risk than the 

three most popular measures (i.e. traditional risk (TR), incident probability (IP), 

and population exposure (PE)), although it still cuts off and thus ignores the adverse 

tail of the risk distribution, i.e. the region where catastrophic outcomes reside.  This 

crucial limitation plus optimal VaR value of zero, which implies that complete risk 

measure for the corresponding route could not be generated, does create an 
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incentive to search for alternative risk measures that could quantify the affected 

populace beyond the threshold VaR. 

One such alternate measure is conditional value-at-risk (CVaR) which is an 

extension of VaR. We have made the first attempt to propose a CVaR-based risk 

assessment methodology for rail hazmat shipments. The methodology development 

entailed: providing a clear definition of CVaR for hazmat shipments, which was 

missing in the existing literature; delineating several relevant properties; and, an 

optimization program.  The validation of the proposed methodology was 

accomplished by applying it to study several realistic size problem instances, which 

were further analyzed to conclude: first, CVaR is both distinct and superior to both 

TR and VaR measures; second, CVaR provides risk-averse routing of hazmat 

shipments; and third, CVaR generates different optimal routes based on the 

confidence-level of the decision makers.   

The analyses conducted on the case study, i.e. the realistic infrastructure of a 

railroad operator in Midwest United States, show that for a given origin-destination 

pair, both optimal VaR and CVaR values have a positive relationship with both the 

hazmat volume, and the confidence level (or risk-preference) of the decision maker. 

Also, at higher confidence levels (i.e., risk-averse), safer but longer VaR and CVaR 

routes that make use of the service legs and yards at the periphery of the network 

are generated. More specifically, as confidence level goes from the theoretical 

minimum value of zero to the theoretical maximum value of one, the decision 
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maker moves away from being risk-neutral and towards becoming risk-averse. 

Finally, for a given route, longer trains would result in lower VaR and CVaR values 

because of the potential to exploit the decile-based configurations more 

appropriately. 

It is important that developing such routing plans using VaR and CVaR 

methodologies in a railroad setting is more complex than in highway transportation 

because of three reasons: first, the characteristics of railroad operations need to be 

taken into consideration; second, one could only work with the given set of pre-

defined train services, which would entail transfer operations at yards and thus the 

corresponding risk; and third, decision about optimal train configuration should 

also be taken into consideration.   

While in Chapters 3 and 4, the problem focuses on a single shipment and a 

single origin-destination hazmat routing plan, Chapter 5 involves multiple shipments 

and multiple origin–destination hazmat routing decisions. We developed an 

optimization framework to minimize the total CVaR throughout the whole network, 

which takes into account risk equity as well, i.e. dispersing hazmat traffic flows to 

reduce the accumulative consequences brought by busy rail links and transferring 

yards. This way, not only the total risk over the population is controlled, but also 

the equity distribution of this risk over population zones, which can only be 

achieved by simultaneously considering all of the local route planning problems, 

i.e. through global route planning, is guaranteed as well. An effective algorithm has 
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been then developed to determine the 𝑘-minimal CVaR paths by conducting several 

re-routings for each shipment until all maximum risk limitations are satisfied. The 

superior quality of the proposed algorithm has been demonstrated by comparing its 

results with the lower bound produced by the Lagrangian and subgradient methods. 

Finally, the same network utilized in the previous two chapters has been studied to 

provide several experimental analyses.  

This work can be expanded in a significant direction towards a more realistic 

multi-trip framework: One could develop a bi-objective optimization framework 

which takes into account both risk and cost. This aspect leads to a harder class of 

problem that can address the interests of two stakeholders in rail hazmat 

transportation, i.e. regulatory agencies and railroad companies. The proposed 

framework would contain both railroad blocking problem, with the objective of 

minimizing classification and flow cost, in order to take into consideration the 

perspective of the railroad company, and CVaR risk methodology, to control the 

risk induced by rail hazmat transportation over the population and the environment, 

which is the primary concern for the regulator. This way, significant managerial 

insights with regard to trade-offs between cost and risk could be gained. In fact, the 

main aim would be to develop a Pareto frontier, which could be used by the two 

primary stakeholders to make judicious decisions in an effort to achieve significant 

reductions in population exposure (or avoid catastrophe) without incurring 

unacceptable increases in operational costs. 
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There are several other directions for future research. The proposed VaR and 

CVaR approaches assume a static setting, when in fact, a time-dependent 

transportation network would be more realistic.  Both the accident probabilities and 

consequences associated with the service legs and rail-yards would vary based on 

a pre-defined time period such a day, week or month.  Hence, an interesting 

extension could be the adaptation of the proposed approaches within a dynamic or 

stochastic setting.  In addition to the dependence on time, both accident 

probabilities and consequences could have some inherent imprecision, which may 

impact the analysis.  Hence, one other related area of research could involve 

applying a robust optimization technique to overcome data uncertainty when 

preparing risk-averse routing plans using VaR and CVaR.   

Another future research direction includes applying the proposed CVaR risk 

measure in the tactical planning problem for railroad transportation of hazmat. The 

problem is to determine the number of trains of different types needed in the 

network, the number and makeup of each type of train service, and the itineraries 

for each shipment such that the transport cost and the transport risk are minimized 

for the given set of demand for mixed freight. The application of the proposed 

CVaR methodology can also be built on rail–truck intermodal transportation 

(RTIM), which exploits the positive attributes of both trains and trucks. The 

problem then would be to determine the best shipment plan for both hazardous and 

non-hazardous freight in an RTIM network, wherein a set of pre-defined lead times 

must be satisfied in choosing the truck routes and the intermodal train services to 
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be used. The objective is to minimize the total cost as well as the total CVaR risk 

associated with intermodal hazmat shipments.  
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