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Abstract

In this thesis we present TREVR (Tree-based Reverse Ray Tracing), a general algo-

rithm for computing the radiation field, including absorption, in astrophysical sim-

ulations. TREVR is designed to handle large numbers of sources and absorbers; it

is based on a tree data structure and is thus suited to codes that use trees for their

gravity or hydrodynamics solvers (e.g. Adaptive Mesh Refinement). It achieves com-

putational speed while maintaining a specified accuracy via controlled lowering of

resolution of both sources and rays from each source.

TREVR computes the radiation field in O (N logNsource) time without absorption

and O (N logNsource logN) time with absorption. These claims are substantiated by

mathematically predicting and testing the algorithm’s general scaling. The scalings

arise from merging sources of radiation according to an opening angle criterion and

walking the tree structure to trace a ray to a depth that gives the chosen accuracy

for absorption. The absorption-depth refinement criterion is unique to TREVR and

is presented here for the first time.

We provide a suite of tests demonstrating the algorithm’s ability to accurately

compute fluxes, ionization fronts and shadows. Two novel test cases are presented

here for the first time as part of this suite.
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Chapter 1

Introduction

Radiation, arguably, plays the determining role in the field of astrophysics. Almost

all of the information we receive from the cosmos comes in the form of photons we

detect on or around earth. Understanding the process of radiative transfer (RT) is

key in interpreting this information, as the photons are affected by the media they

travel through on their way to our telescopes and detectors. Interactions between

photons and these media not only affect the photons themselves but the matter as

well. Photons and baryons exchange energy and momentum, driving both heating

and cooling. This also affects excitation and ionization states and thus determines

the chemical and thermodynamic properties of the gas. Thus radiation is a key player

in many of the astrophysical systems and processes we study.

1.1 Radiation in the Galactic Context

On galaxy scales, a central question is how feedback mechanisms affect star and

galaxy formation. Stellar feedback in particular plays a major role in regulating star
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formation within a galaxy. In order to form stars, the gas that will eventually make

up a star has to become sufficiently cool and dense to collapse and ignite nuclear

fusion. Feedback occurs when surrounding protostars and stars output energy that

heats and disperses the cool, dense gas mentioned before, resulting in stars themselves

suppressing star formation.

Stellar feedback comes in the form of photoionization by ultraviolet (UV) radia-

tion, stellar winds and supernovae (SNe) (Leitherer et al., 1999), the latter of which

has been a main focus in simulations in previous years (Agertz et al., 2013). It is

important to note that even though SNe might be spectacularly powerful events, ion-

izing radiative output from stellar populations contributes two orders of magnitude

more energy before the first SNe (t < 3-4 Myr) and about 50 times more energy over

the course of a stellar population’s lifetime (Figure 1.1).

However, the way in which this massive output of UV radiation is deposited and

consequently affects the interstellar medium (ISM) on galactic scales is still unclear.

While these effects have been numerically explored on local scales via sophisticated

RT methods (Krumholz and Matzner, 2009; Kuiper et al., 2010; Klassen et al., 2016),

larger scale simulations without the use of a full RT method have produced conflicting

results. Simulations done by Gritschneder et al. (2009) and Walch et al. (2012) suggest

that ionizing feedback from large O-type stars before the first SNe, have a significant

effect on star formation rate. Whereas Dale et al. (2012) conclude the effects on star

formation rate to be small. To answer these questions and ultimately account for

all energy and momentum from stellar feedback in galaxies, especially at pre-SNe

times, galaxy simulations must include a comprehensive RT method as part of their

prescription for stellar feedback.

2
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Figure 1.1: Luminosity normalized by solar mass as a function of time for a stel-
lar population having a Chabrier initial mass function (Chabrier, 2003). Data in
this plot was produced by Starbust99 (Leitherer et al., 1999), a code for modelling
spectrophotometric and related properties of star-forming galaxies.
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1.2 The Difficulty with Simulating RT

With the importance of radiative transfer in mind, it may then come as a surprise

that RT has been treated poorly in most galaxy-scale astrophysical simulations, often

as an imposed uniform background which neglects the intricacies of sources of radi-

ation internal to the galaxy. Contributions from these internal sources make up the

interstellar radiation field (ISRF), which has been shown to be the dominant source

of gas heating for the cool (T < 104 K), dense (ρ > 10−2 cm−3) component of the

ISM (Wolfire et al., 2003). We are limited to this poor treatment because RT is an

intrinsically complex and expensive problem. The complexity is immediately evident

from the full RT equation (e.g. Mihalas and Mihalas, 1984),

[
1

c

∂

∂t
+ n · ∇

]
I (x,n, t, ν) = ε (x,n, t, ν)− α (x,n, t, ν) I (x,n, t, ν) . (1.1)

Here, I, ε and α are the intensity, emissivity and extinction coefficients respectively

and all depend on position x, unit direction of light propagation n, time t and fre-

quency ν. Apart from being a seven dimensional problem, RT involves the highest

possible characteristic speed, c, the speed of light. Also, unlike a potential problem

such as gravity, RT depends on the properties of the intervening material via the

absorption term, α.

Because of this complexity, a näıve numerical solution to the RT problem scales

with the number of resolution elements, N , as O
(
N7/3

)
and requires a timestep

thousands of times smaller than typical Courant times in astrophysics. This scaling

arises due to three contributions. Firstly, a radiation field must be computed at each

of the simulation’s N resolution elements. Secondly, each of the resolution element’s

4
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intensity value is made up of contributions from Nsource sources of radiation (Nsource

rays of light being computed per resolution element). This leads to a scaling for the

total number of rays of Nray = N × Nsource, or O (N2) assuming that Nsource ∼ N .

This fact alone limits brute-force RT methods to only small-scale problems, such as

ionization by a few massive stars (Howard et al., 2016, 2017). Finally, each ray of light

interacts with the medium along its path, which is resolved with O
(
N1/3

)
resolution

elements. Thus the computational cost is O
(
N7/3

)
. This poor scaling with number

of resolution elements makes it infeasible, or at least unattractive, to simulate RT

alongside gravity and hydrodynamics methods that scale as O (N logN) or better.

It is evident that much can be gained by reducing the linear dependence on Nsource,

with additional gains from tackling the N1/3 cost per ray.

1.3 Overview of RT Methods

A practical RT method would have to solve a simplified RT problem. The first

simplification has to do with how c is treated in Equation 1.1. If c is left finite, the

partial derivative remains and the radiation field is advected or evolved throughout

the simulation. However, a value of c lower than the physical value (c = 3 × 108 m

s−1) is required to achieve feasible timestep sizes. This approximation is valid as long

as the reduced speed of light is much faster than the characteristic speeds of other

phenomena such as ionization fronts. On the other hand, if the limit were taken

where c is infinite, the partial time derivative in Equation 1.1 goes to zero and the

radiation field is computed instantaneously as a geometry problem. The way in which

c is treated is a way in which RT methods can be categorized - as evolutionary and

instantaneous methods.

5
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1.3.1 Evolutionary Methods

The prototypical evolutionary method is flux-limited diffusion (Levermore and Pom-

raning, 1981). Modern evolutionary methods include moment methods like OTVET

(Gnedin and Abel, 2001) and RAMSES-RT (Rosdahl et al., 2013) as well as photon

packet propagation methods like TRAPHIC (Pawlik and Schaye, 2008), SPHRAY

(Altay et al., 2008) and SimpleX2 (Paardekooper et al., 2010).

Evolutionary methods are typically based on evolving moments of the radiation

field stored at each resolution element. They are insensitive to the number of sources,

and scale as O(N) with the number of resolution elements, allowing them to handle

large numbers of sources and scattering. Although evolutionary methods can handle

both optically thin and thick regimes, they lose directional accuracy in intermediate

regimes and suffer from poor directional accuracy in general. This is immediately

apparent in shadowing and isotropy tests in Figure 16 in Rosdahl et al. (2013), where

depending on the intercell flux function used (GLF or HLL), the radiation field suffers

from diffusivity or preferred directionality respectively.

Photon packet propagation methods, such as TRAPHIC (Pawlik and Schaye,

2008), employ an evolutionary approach in which directional accuracy is easier to

control, in principle. However, the Monte Carlo aspects of how photon packets are

propagated introduce significant Poisson noise into their computed radiation field.

Added Monte Carlo re-sampling is shown to reduce this noise but is quite expensive

and degrades the initially sharp shadows: it is typically not used in production runs.

TRAPHIC also adds virtual particles (ViPs) to propagate their photon packets in

less dense, optically thin regions lacking in SPH particles. TRAPHIC scales linearly

with resolution elements, as mentioned before, multiplied by the number of packets

6
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per element (typically 32-64).

A key limitation for evolutionary methods, whether they are moment or packet

tracing methods is that the radiation field for every element needs to be computed

every timestep. In addition, the speed of light, even when reduced, is substantially

larger than the sound speed and thus many radiation substeps are required compared

to the hydro solver. Thus for photon packet propagation methods every photon packet

typically hops forward several times for each hydro step, even if most elements are

not active members of a substep. A key outcome is that moment methods cannot

take advantage of adaptive timesteps to limit radiation work. Another issue specific

to TRAPHIC, is that N is significantly greater than the number of SPH particles

including the addition of ViPs. These factors dramatically increase the prefactor on

the scaling. Nonetheless, methods such as TRAPHIC represent an effective approach

for large simulations that can handle a variety of regimes of optical depth.

1.3.2 Instantaneous Methods

Instantaneous methods typically take the form of raytracers. Computational methods

in this category include forward ray tracers such as C2Ray (Mellema et al., 2006),

Moray (Wise and Abel, 2011) and Fervent (Baczynski et al., 2015) as well as reverse

raytracers such as TreeCol (Clark et al., 2012), URCHIN (Altay and Theuns, 2013)

and TREERAY (Haid et al., 2018).

Raytracers are the most direct way to solve the RT problem. Forward raytracers

trace many rays outward from sources of radiation, similarly to the actual phenomena,

in the hope that resolution elements will have sufficiently many rays intersecting them

7
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to compute a radiation field. Näıvely, the number of rays per source would be com-

parable to the number of resolution elements, giving a scaling of O
(
NNsourceN

1/3
)
,

as previously noted. However, for forward ray tracing, O
(
N2/3

)
rays per source

are typically sufficient to hit every resolution element when extended to the edge

of the simulation volume (distance O
(
N1/3

)
), so the scaling typically achieved is

O (NNsource).

It is important to note that methods that adaptively split rays (e.g. Healpix

(Górski et al., 2005) used in Moray, URCHIN and TreeCol), do not change the over-

all scaling. For example, a centrally located source requires 6N2/3 rays to strike

all elements in the outer faces of a cubical simulation volume, each with a length

O
(
N1/3

)
. Even with adaptive ray merging near the source, at least N ray segments

are required to intersect each of the N resolution elements. In addition, raytracers

such as Moray rely upon a Monte-Carlo approach to estimate the radiation field and

thus require at least 10 rays to intersect each element, a constant but significant pref-

actor to the overall cost. This scaling usually limits forward raytracers to problems

with few sources to avoid O(N2)-like scaling.

Recently there has been some focus on reverse ray tracing methods by Clark et al.

(2012), Altay and Theuns (2013), Woods (2015) (applied in Kannan et al. 2014) and

Haid et al. (2018). The first two methods listed are not general, as they are designed

to compute external radiation (e.g. from the post-ionization UV background) rather

than internal sources of radiation. The latter two methods are more general and can

handle internal sources.

The idea of reverse ray tracing introduces some advantages relative to forward

ray tracing. Reverse raytracers trace all the rays that strike a specific resolution

8
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element before moving to the next element. Algorithmically, this is equivalent to

tracing in reverse, from the sinks to the sources. This makes it easy to ensure that

the source and absorber angular distributions are well-sampled near the resolution

element as opposed to forward ray tracing where one would have to increase the

number of rays per sink to guarantee this type of accuracy. Put simply, radiation

is computed exactly where it is needed. This is especially advantageous in adaptive

mesh and Lagrangian simulations such as smoothed particle hydrodynamics (SPH)

simulations, as low density regions are represented by few resolution elements, and

thus extra work is not done to resolve radiation in those regions.

A key benefit to reverse ray tracing is the potential for adaptive timesteps to

dramatically reduce the radiation work as only active resolution elements, Nsink, need

to be traced to. This active subset can be a million times smaller than N in, for

example, high-resolution cosmological simulations. Typical hydro and gravity codes

achieve a factor of 100 speed-up by taking advantage of this so it is important that the

radiation code has the same capability or radiation will overwhelm the computation.

Thus a näıve reverse ray trace still scales as O
(
NsinkNsourceN

1/3
)
, with the presence

of many sources presenting the most significant computational barrier.

Until now the poor scaling with source number, as O (NNsource), has severely

limited the applicability and competitiveness of instantaneous ray tracing relative

to evolutionary methods such as TRAPHIC. Recently however, Woods (2015) and

Haid et al. (2018) developed promising generalizations of reverse ray tracing based on

merging of sources that can handle large numbers of internal sources. The basic idea

is to use a tree to combine distant sources and reduce the cost to O (N logN). Haid

et al. (2018) implemented their TREERAY reverse raytracer in the FLASH AMR

9
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code (Fryxell et al., 2000). They employ an Oct-tree, a fixed number of rays (48)

per source and calculate absorption on the fly during the tree-walk. The primary

weakness of the Woods (2015) and Haid et al. (2018) methods is that they lower the

resolution along rays in a preset manner. This prevents them from maintaining the

accuracy of the received flux at higher optical depths. Doing so requires an additional

adaptivity criterion beyond the open angle used in tree codes. This is the focus of

this thesis.

1.4 Thesis Outline

I hope from this introduction three things are apparent. Firstly, RT is an impor-

tant physical process and should be included in simulations of astrophysical systems,

specifically in galaxy simulations. Secondly, RT is an inherently complex and expen-

sive problem to solve numerically and thus clever algorithms must be used to solve

even a simplified RT problem. Finally, that there is room for improvement over the

state of the art in numerical RT methods, especially in the area of instantaneous

methods.

Solving these problems and filling this niche is the topic this thesis addresses.

I will present TREVR, a O
(
N log2N

)
reverse raytracer developed to do just that.

TREVR first began development under R. M. Woods during his Ph.D. thesis (Woods,

2015) and has since continued to be developed by myself.

In Chapter 2, I will detail the specific RT equations TREVR solves (Section 2.1)

and the initial algorithm as developed by R. M. Woods, as well as additions I have

made to the algorithm over the course of my M.Sc. thesis (Section 2.2). In Sec-

tions 2.2.2 and 2.2.5, I analyze and prove the computational complexity of of TREVR.

10
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This analysis had not been done before this thesis and is useful for comparison with

scaling tests of the algorithm’s implementation. Also detailed in this chapter are

specifics of TREVR’s implementation in the SPH code Gasoline that is presented

(Section 2.3).

In Chapter 3, I present a suite of tests demonstrating the algorithm’s ability to

accurately compute fluxes, ionization fronts and shadows in the optically thick and

thin regimes. These tests also allow us to explore how TREVR’s adaptivity criterion

controls error and affects computational cost. The computational cost is bounded

and characterized in the general case to substantiate the O
(
N log2N

)
claim made

earlier.

Finally, in Chapter 4, I discuss TREVR’s strengths and shortcomings and conclude

how they enable and constrain the types of problems TREVR can handle, and discuss

improvements that can be made in the future.

11



Chapter 2

Method

2.1 Simplifications to the RT Equation

Before describing TREVR, I will first define the simplified version of the classical RT

equation that the method solves. Since TREVR is an instantaneous method, c is set

to infinity eliminating the partial time derivative in Equation 1.1 leaving us with the

instantaneous RT equation:

n · ∇I (x,n, t, ν) = ε (x,n, t, ν)− α (x,n, t, ν) I (x,n, t, ν) . (2.1)

The emissivity term in the above equation, ε, describes a continuous emitting medium.

TREVR could assume sources of radiation were continuous, but being a numerical

method it needs to represent sources of radiation as discrete resolution elements such

as “star particles”. In this case ε is a sum of delta functions and the solution to

the RT equation becomes a linear combination of contributions from all sources of

radiation. Also, since we are considering sources one by one we can start using the

12



M.Sc. Thesis - Jasper J. Grond McMaster - Physics & Astronomy

path length s between a source and resolution element as our integration element and

examine just one direction, n,

dI

ds
= −αI. (2.2)

We can then combine the path length and extinction coefficient to solve for intensity

by integrating

dτ = κρds, (2.3)

for τ , the optical depth, where κ is opacity and ρ is density. This leads to

dI

dτ
= −I, (2.4)

which is the final version of the RT problem solved by this method. The solution to

the equation is

I(s) = I(0)e−τ(s), (2.5)

where I(0) is the intensity of the source and τ(s) is the quantity to be integrated in

our method:

τ(s) =

∫ s

0

κ(s)ρ(s)ds. (2.6)

If we assume that the source of radiation is point-like, then the intensity at the

receiver (the sink) is a delta function in angle. In this case, there is a one-to-one

correspondence between the intensity and flux contributions due to that source. The

flux is given by

F =

∫
I(Ω)n′(Ω)dΩ = I(s)n, (2.7)

where n is the unit vector in the direction from the source to the sink.

13



M.Sc. Thesis - Jasper J. Grond McMaster - Physics & Astronomy

For each source, i, we have a luminosity, Li, which can be directly converted to a

contribution to the flux at the sink,

Fi =
Li

4πs2i
e−τini, (2.8)

where τi is the accumulated optical depth along the ray between that source and the

sink and si is the distance. The net flux, F, is then computed by summing up flux

contributions from all sources.

The intensity due to a single source is,

Ii =
Li

4πs2i
e−τi . (2.9)

By summing the intensity from all sources we get the angle-averaged intensity. We

can use this averaged intensity directly in heating, chemistry and ionization rate

expressions. For many applications in astrophysics this is the primary effect of the

radiation field on local gas.

The first order moment of the intensity is the net radiation flux. Higher order

moments such as the radiation pressure, p, can be easily obtained with simple sum-

mations.

2.2 The TREVR Algorithm

The TREVR algorithm is based around a tree data structure which partitions the

simulation volume hierarchically in space. The smallest resolution elements are, or

are contained in, the leaf nodes of the tree data structure. In Lagrangian or “particle”

14
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methods such as SPH, a number of SPH particles can be contained in a leaf node

or “bucket”. The maximum number of particles per bucket is referred to as NB. In

Eulerian or “grid”-based methods the bucket is the smallest grid cell itself, so NB is

effectively one. N resolution elements hold radiation intensity values and represent

the radiation field TREVR computes.

Note that although TREVR has been initially implemented in the SPH code

Gasoline (Wadsley et al., 2004), TREVR is not specific to SPH. The method only

requires that the simulation volume be hierarchically partitioned in space and so it

could be used directly in an adaptive mesh refinement (AMR) code. In the case of

grid codes the algorithm is simplified, as the final SPH particle ray tracing step is not

needed.

2.2.1 Source Merging

As mentioned in the introduction, a näıve algorithm would compute interactions

between a resolution element and all sources of radiation. If we assume the number

of resolution elements is equal to the number of sources, an infeasible number of

interactions would need to be computed, with scaling O (N2). To mitigate this N2

scaling TREVR employs source merging similar to particle merging in the Barnes

and Hut (1986) tree-based gravity solver which has remained popular in astrophysics

(Benz, 1988; Vine and Sigurdsson, 1998; Springel et al., 2001; Wadsley et al., 2004;

Hubber et al., 2011). We first implemented radiation source merging in a rudimentary

version of TREVR that did not consider extinction of any kind (Kannan et al., 2014).

For a given sink point, sources of radiation inside a tree cell are merged together

at their centre of luminosity if they meet an “opening angle” criterion. This criterion
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Figure 2.1: A schematic of TREVR without (left) and with source merging and
adaptive refinement (right). Coloured ray segments correspond to tree cells whose
average properties are used to compute the optical depth along that ray segment.
Dashed and solid lines distinguish consecutive line segments to help associate them
with their corresponding tree cell. The grey cloud represents a feature in the medium
that requires refinement in order to be resolved. The smaller stars which are yellow
in the left panel and white in the right panel represent individual radiation sources.
The larger yellow star in the right panel represents a merged source, as the dashed
red cell encapsulating all sources meets the opening angle (grey region in right panel)
criterion.
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is defined as

θopen > l/r, (2.10)

where l is the distance from the centre of luminosity to the furthest part of the tree

cell, r is distance from the sink to the closest cell edge and θopen is the opening angle,

a fixed accuracy parameter. This is equivalent to the criterion used for gravity in

Wadsley et al. (2004) and ensures parent cells of a point are always opened. Source

merging considerably reduces the number of interactions TREVR computes. This is

illustrated in the left panel of Figure 2.1, where the grey angle represents a cell whose

angular size meets the opening angle criterion. This is the first stage of the algorithm

where the sources that rays will be traced to are found. The next stage is tracing

rays from resolution elements to these radiation sources.

2.2.2 Source Merging Scaling

The cost savings of source merging can be quantified by integrating the number of

tree cells that pass the opening angle criterion and whose contents are treated as a

single source. We will call the total count of the cells used Ncell. We can estimate

Ncell by integrating spherical shells of thickness dr along the path from a resolution

element r, and then dividing the sphere volume by the volume of the cell, Vcell(r).

Ncell =

∫ R

RB

4πr2

Vcell(r)
dr (2.11)

The bounds of the integral are RB, the size of a bucket cell, and R, the length of the

simulation volume. Because the number of particles in a simulation is proportional

to the simulation volume, the lower integration limit can be expressed using particle
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numbers via,

RB

R
=

(
NB

N

)1/3

, (2.12)

the cube root of the ratio of the average number of particles per bucket, NB, to the

total number of simulation particles. Again, note that NB is only needed for particle

methods and is one otherwise. The cell volume can also be rewritten by cubing the

opening angle

Vcell(r) = l3 = θ3openr
3. (2.13)

Substituting gives us the following integral and its solution,

Ncell =

∫ R

(NB/N)1/3

4π

θ3open r
dr ∼ logN/NB. (2.14)

This result means that the number of interactions scales like O (Nsink logN). This

is also the total cost-scaling in the optically thin regime, as expected given that the

RT problem is almost identical to the gravity problem in the absence of intervening

material.

We next consider the second stage of the algorithm, tracing rays in the optically

thick regime.

2.2.3 Tracing Rays

In the presence of absorbing material along a ray, the optical depth needs to be

computed following Equation 2.6. To solve this integral numerically, we traverse the

tree between the source and resolution element to sum the optical depth. This requires

that the tree partitions and fills space, thus all the intervening material is contained

in the tree we traverse. We traverse or walk the tree upwards (upwards being from
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the bucket cells towards the root of the tree) from the source and resolution element

to the point where these two branches of the tree meet. Making use of properties

computed during the tree build, we can compute the optical depth of the i-th piece of

the ray, τi, using the intersection length of the cell and ray, si, as well as the average

density, ρ̄i, and average opacity, κ̄i, in the cell

τi = ρ̄iκ̄isi. (2.15)

The total optical depth is then summed up during the tree walk,

τ =
∑

i

τi, (2.16)

giving us everything needed to evaluate Equation 2.8.

This process is illustrated in the left panel of Figure 2.1. In this figure ray segments

and corresponding cells share the same colour. When referring to specific cell colours,

they will also be identified by two sets of points, [(x, y), (x, y)], corresponding to

the bottom left and top right vertices of the cell respectively. Dotted lines are used

to distinguish consecutive ray segments and help associate ray segments with their

corresponding cells. In the left panel of Figure 2.1 there are two important things

to note. First, since we are performing a reverse ray trace, the resolution element

denoted by the black circle is intrinsically well-resolved at the bucket cell (the blue cell

at [(0, 0), (1, 1)]) level. However, the second point is that as the tree is walked upwards

space becomes less resolved. It should be apparent that the central parts of the ray

are less resolved (the green cell at [(0, 2), (4, 4)]) and as one moves towards the source

or resolution element the ray becomes more resolved (the red cell at [(2, 2), (4, 4)] and
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the orange cell [(0, 0), (2, 2)]). This can be considered in two ways. If the medium

is uniform, the algorithm can be extremely efficient while still being able to resolve

a sharp feature in the radiation field such as an ionization front. However, if the

medium is highly irregular along the ray the algorithm will not be able to resolve

sharp density and opacity gradients which could significantly alter the optical depth.

Thus adaptive refinement is needed during the tree walk to accurately resolve the

medium along the ray.

2.2.4 Adaptive Refinement

The development of a refinement criterion used to control the accuracy of adaptive

ray refinement is the main addition I have made to the original algorithm described

up until now in this thesis, and the Ph.D. Thesis of R. M. Woods (Woods, 2015).

TREVR does not add a new refinement criterion for the simulation elements.

Instead, for each ray, TREVR decides whether to use the full resolution provided by

using bucket cells for each ray segment, or if ray segments intersecting lower resolution

parent cells would be sufficient. In principle, the resolution elements themselves could

be subdivided based on properties associated with RT for even higher resolution, but

that is beyond the scope of the present work.

Consider the right panel in Figure 2.1. A dense blob of gas to be resolved resides

in the orange highlighted cell at [(1, 1), (2, 2)]. At the point in the tree walk where we

reach the orange highlighted cell at [(0, 0), (2, 2)] in the left panel, a decision needs to

be made on whether the current cell sufficiently represents the medium. This decision

is made by a refinement criterion. If the cell passes the criterion to refine, rather than

using its average properties, we recursively check the cell’s children until the criterion
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fails. In this we build a better resolved section of the ray.

Difficulty comes in choosing a refinement criterion that is both accurate and effi-

cient. Ideally, refinement occurs when the average optical depth in a region may not

accurately reflect the true distribution, such as a clumpy medium where the average

density and opacity is much higher than the “effective” density and opacity (Városi

and Dwek, 1999; Hegmann and Kegel, 2003). For this reason, we developed a new,

optical depth-based refinement criterion for TREVR.

Our criterion requires minimum and maximum absorption coefficients, αmin and

αmax, for each cell. These are estimated for the three Cartesian directions (x, y, z)

separately. Leaf cells are assumed to have a single value α = κρ. Then, for example,

we estimate the minimum, x-direction optical depth of the parent cell via the mini-

mum x-direction optical depths of the child cells (either by taking the minimum or

the sum as appropriate) and then dividing by the new total x-cell width to recover

an αmin in the x-direction for the parent cell. By proceeding in a bottom-up fashion

during the tree build, we estimate directional minima and maxima α values for all

cells. We then take the minima and maxima over the three directions and save just

one αmin and one αmax for each cell.

To use the cell-averaged absorption coefficient, α, for a ray segment, we require

that substructure within the cell cannot change the final flux beyond a specified

tolerance. This is equivalent to showing that two rays intersecting the cell, as in

Figure 2.2, give sufficiently similar results. Given αmin and αmax for that cell we can

multiply by the ray segment length intersecting the cell, l, to estimate the minimum,

τmin, and maximum, τmax, possible optical depths that rays might experience. We can
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Figure 2.2: Schematic of a cell to be refined. A parent cell intersected by a ray
contains a feature (grey cloud) to be resolved. The black dotted line partitions the
parent cell into its children. The black intersecting rays represent the hypothetical
case where only a child cell is intersected by a ray. The blue outlined sections on
each ray correspond to the intersection length, l, used to compute the optical depth
through each child cell.
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then test the following refinement criterion

τref < τmax − τmin, (2.17)

where τref is a given, small, tolerance value, and refine if it is true. The fractional

error in flux, per ray segment, for a given value of τref is

F1 − F2

F1

≤ 1− e−(τmax−τmin) . τref , (2.18)

for small τref , making the refinement parameter a convenient choice for controlling

error. Figure 3.5 in Section 3.2 is an example of TREVR’s adaptive refinement in

action.

For a particle code, if refinement is required at the bucket level, individual particles

within a bucket must be considered. A straightforward ray tracing scheme similar to

SPHRay (Altay et al., 2008) can be performed locally on bucket particles and their

neighbours. This particle-particle step is O (Nsink), as each particle element interacts

with a fixed number of neighbour particles.

2.2.5 Refinement Scaling

Fully characterizing the computational cost of the algorithm, including the addition

of adaptive refinement, follows the procedure used earlier. Now, however, instead

of integrating the number of sources we integrate the total number of ray segments

computed. We will look at two cases, one with no refinement at all, and another fully

refining down to the bucket level. This will give us upper and lower bounds for the

algorithm’s scaling.
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First let’s consider the case where the refinement criterion always passes and all

rays are resolved down to the bucket level. The number of segments per ray is then

just the length of a ray divided by the size of a bucket. We can express this as

Nseg =
r

RB

=
r

R

(
N

NB

) 1
3

(2.19)

after substituting for RB using Equation 2.12. Since Nsource is also the number of

rays computed, to get the total number of ray segments we multiply the integrand of

Equation 2.11 by the number of ray segments

Nseg =

∫ R

(NB/N)1/3

4π

θ3open

1

R

(
N

NB

) 1
3

dr ∼ (N/NB)
1
3 . (2.20)

The result is that the total cost of the algorithm scales as O
(
NsinkN

1/3
)

in the worst-

case.

In the case where the refinement criterion never passes, the ray is split into seg-

ments made up of the cells traversed in the tree walk of the sub-tree going from source

to resolution element. The number of cells traversed in a tree walk is equal to the

logarithm of the number of leaf nodes contained within the sub-tree. The number of

leaf nodes in the sub-tree is also given by Equation 2.19, so by taking the logarithm

of Equation 2.19, we arrive at:

Nseg = log2

[
r

R

(
N

NB

) 1
3

]
, (2.21)

where the logarithm is base two, as Gasoline and thus TREVR is implemented using

a binary tree. As before, we multiply Equation 2.11 by the number of ray segments
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and integrate the following:

Nseg =

∫ R

(NB/N)1/3

4π

θ3open r
log2

[
r

R

(
N

NB

) 1
3

]
dr

∼ log2(128N/NB). (2.22)

Thus, in the best-case, the total cost of the algorithm scales as O
(
Nsink log2N

)
.

2.3 Implementation Specifics

As mentioned earlier, TREVR is not specific to either Gasoline or SPH, however,

in this section we introduce Gasoline and the specifics of TREVR’s implementation

in Gasoline. Gasoline is a parallel smoothed particle hydrodynamics code for

computing hydrodynamics and self-gravity in astrophysics simulations.

2.3.1 The Radiation Tree

Gasoline employs a spatial binary tree that is built by recursively bisecting the

longest axis of each cell. In the current version of TREVR, a separate tree is built for

computing radiative transfer. For development purposes, this is a convenient choice

but adds extra cost and in the future a single tree should be adopted.

A special requirement for the radiation tree is that it fills all space. This is in

contrast to both the gravity and hydrodynamics trees which squeeze cell bounds to

the furthest extent of particles within the cell to optimize intersection tests. This

creates gaps between cells which was an oversight that carried over in the original

implementation described in Woods (2015) and does not work in the context of RT as

cell-ray intersections need to be computed to accumulate an accurate optical depth
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along the complete length of the ray.

In the regular tree building phase, Gasoline assigns an “opening radius” about

a cell’s centre of mass to each cell in the tree. This radius is

ropen =
2Bmax√
3θopen

, (2.23)

where Bmax is the distance from the centre of mass of particles within the cell to the

furthest particle from the centre of mass. However, since we are using space-filling

cells for the radiation tree, it is necessary to define Bmax instead as the distance to

the furthest vertex of the cell.

2.3.2 Computing Cell Densities

The initial method used to compute cell densities during the tree build process, de-

scribed in Woods (2015), was to divide the sum of masses of particles within the cell

by the cell volume,

ρcell =

∑
imi

Vcell
. (2.24)

However, during recent testing at high levels of refinement we found that the error

began to increase slightly with increasing refinement accuracy beyond a certain level.

This was because when refining down to the bucket level often enough, NB = 10 was

small enough to introduce Poisson noise in the density estimate. This propagated

as errors in the computed radiation field, noticeable as noise in otherwise uniform

density distributions. To remedy this for particle-based methods, we compute a cell
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density using the particle’s SPH densities via:

ρcell =

∑
imi∑
i
mi

ρi

. (2.25)

2.3.3 Background Radiation

In order to treat simulations properly, we must account for the radiation external to

the simulation volume. Most current codes apply a uniform UV field to the entire

simulation. Specialized codes like URCHIN (Altay and Theuns, 2013) specifically

compute RT from background sources from the edge of their simulation volume.

Methods such as TRAPHIC (Pawlik and Schaye, 2008) make their simulation peri-

odic. We believe that this periodic treatment may be problematic. The cosmic UV

radiation field originates from very large distances on the order of 100’s of Mpc, Thus,

for smaller simulation volumes the radiation field may be too local.

Instead, we have implemented a method involving tracing “background sources”,

similar to URCHIN. Temporary star particles, or background particles, are positioned

in a spiral on the surface of a sphere to approximate an emitting spherical shell. The

luminosity, shell radius and number of background particles on its surface can be

varied to achieve a desired intensity, level of uniformity and level angular resolution

of the background respectively.

Solving for the flux from an emitting spherical shell is a problem similar to New-

ton’s Shell Theorem. However, because intensity is not a vector it does not cancel

like a force and the solution differs and is as follows:

F (r) =
L

8πR
ln

(
R + r

R− r

)
, (2.26)
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where L is the total luminosity of the emitting shell, R is the radius of the sphere

and r is the radius at which the flux is being computed. This function and TREVR’s

numerical solution are plotted in Figure 2.3.

Due to the logarithmic nature of Equation 2.26, the flux asymptotes to become

nearly constant, thus providing a uniform background for the object to be simulated

at small radii. This method allows the intensity contribution from background par-

ticles to computed just as with normal star particles, with one caveat. Note that

in Figure 2.3, the simulation flux is overestimated near the central region and un-

derestimated at large radii. The original method described in Woods (2015) allowed

background particles, which are all located on the surface of the sphere, to be merged.

The merged centres of luminosity will be systematically located at smaller radii than

the sphere radius. Thus, merged background sources must be relocated radially out-

ward onto the sphere’s surface to eliminate this issue.
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Figure 2.3: Flux as a function of radius from an emitting sphere. TREVR’s solution
for background source particles distributed in a spiral on a sphere of radius R = 0.5
(black dotted line) are plotted as the thick orange line. The analytical solution given
by Equation 2.26 is plotted as a thinner black line on top of the numerical solution.
A constant flux of one is plotted by the black dashed line and is achieved in the inner
most region of this simulation at around R . 0.05.
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Chapter 3

Testing

3.1 Sinusoidally Perturbed IC Test

3.1.1 Initial Conditions

To test the accuracy and general scaling of the algorithm we require an initial con-

dition (IC) that is representative of a typical use case. For this we have created a

novel IC comprised of a unit length cube of N uniformly distributed SPH gas and

star particles whose positions have been perturbed by 24 random sinusoidal modes.

This IC tests a generally optically thin, smooth density distribution making it a good

proxy for many astrophysical cases of interest, such as late stage galaxy evolution.

The initial distribution of particles is built from copies of the 163 relaxed glass IC

used to create initial conditions for other tests of Gasoline (Wadsley et al., 2017).

This relaxed IC was also used as the basis for all other tests in this thesis as well.

Initial particle positions in the glass IC were perturbed by adding the sum of
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Table 3.1: Randomly generated ~k and φ values used in generating the sinusoidally
perturbed initial condition.

i kx,i ky,i kz,i φi
01 −3.918398 +1.727743 −4.476095 0.829776
02 −3.681821 −4.619688 +4.865007 3.891157
03 −4.831801 +3.769470 +0.567451 3.668730
04 −2.298279 +1.501757 +4.716946 1.528348
05 −0.289974 −3.097958 +1.270028 4.113001
06 +1.262943 −1.661726 −2.600413 4.481799
07 +1.588224 +4.072259 +0.616444 2.971965
08 −2.253394 −2.806478 +2.749155 0.442241
09 −1.432569 +3.324710 +4.842991 2.871989
10 +1.287742 −4.575517 −4.001723 1.727810
11 +4.769704 +0.540096 −4.203839 5.872117
12 −3.013200 −1.871251 −2.514416 1.574008
13 −4.588620 +4.384224 +1.246849 1.985715
14 −0.372817 +0.195243 +4.074056 6.248739
15 −1.842232 +0.901598 −4.453613 6.273336
16 +1.986937 −1.037650 +1.958888 2.177783
17 −1.748485 −1.386029 +3.755833 0.532604
18 +4.852406 −3.272506 +0.826504 5.525470
19 +3.663293 −4.597598 −0.890135 4.528870
20 −1.720903 +2.726011 +3.192427 3.875610
21 +4.973332 +4.777182 −2.515792 0.406737
22 +0.057238 −2.972427 −1.828550 4.125258
23 +0.938234 −0.487023 −2.755097 1.335299
24 +1.943361 +0.388178 −3.783953 4.774938

sinusoidal modes as in Equation 3.1 below

~r = ~r0 +
24∑

i=1

1

275
sin (kx,irx + ky,iry + kz,irz + φi) , (3.1)

where ~r0 is the particle’s initial position in the glass and ~r is its perturbed position in

the final distribution. The ~ki and φi values are listed in Table 3.1 in order to facilitate

reproduction of the scaling tests. Both gas and star particles are perturbed to have
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the same density distribution. However, the initial particle positions were flipped for

the star particles by reassigning x, y and z coordinates via

xstar = ygas, ystar = zgas, zstar = xgas, (3.2)

to prevent the particles from occupying the same position in space.

The total mass of gas particles is one, and the opacity of each particle is also

one. This results in an optical depth across the width of the box of ∼1, making

the simulation volume marginally optically thin overall, with dense, optically thick

filamentary structure and underdense voids qualitatively similar to the Cosmic Web.

Each star particle is assigned a luminosity of one. A slice of this density distribution

is plotted in Figure 3.1.

3.1.2 Varying The Opening Angle

The opening angle parameter’s affect on accuracy and cost was tested by ray tracing

the optically thin, sinusoidally perturbed IC with θopen varying between 0 and 1.

The results of this test are plotted in Figure 3.2. The measure of cost is plotted as

the total number of rays, Nrays, computed per resolution element on the left y-axis.

The number of rays is equivalent to the number of radiation sink-source interactions

computed in a simulation timestep. Using rays as a measure of cost allows us to

isolate the effects of the refinement parameter on cost. On the right y-axis we have

plotted the root-mean-squared (RMS) fractional error relative to the radiation field

computed with θopen = 0. This test was run with τref = 0.1 and N = 643 star and gas

particles.

At θopen = 0.75, the value used in all other tests and the default value for θopen
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Figure 3.1: A z-plane slice of the sinusoidally perturbed IC. The optical depth along
the longest filament in the slice (left, just below y = 0) is τ ∼ 4. The optical depth
across the largest void (above the aforementioned filament) is τ ∼ 0.1.
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in many gravity solvers, 200 rays are computed per resolution element with an RMS

fractional error of 3%. To achieve a RMS fractional error of about 1%, we suggest

that a lower opening angle of approximately θopen = 0.45 should be used (this is

similar to the value of θopen = 0.5 suggested by Haid et al. (2018)). θopen = 0.45 costs

only 500 rays per resolution element, which is still much less than interacting with

all 643 (2.6× 105) sources.

3.1.3 Varying the Refinement Parameter

Testing the refinement parameter is similar to testing the opening angle parameter.

Again, the sinusoidally perturbed IC was simulated but now with a varying τref value.

The results of this test are plotted in Figure 3.3. The minimum and maximum values

for τref were chosen such that the cost curve flattens out on either side: the left hand

side being where refinement is always performed down to the bucket level and the

right hand side being where refinement is never performed. Where the cost curve

flattens out is an indicator of the useful range of the refinement parameter. However,

these bounds are not the same for each case and depend on the optical depth per

particle resolution of the IC being tested. An opening angle of 0.75 was used and

N = 643 for both star and gas particles. Cost is plotted on the left y-axis and RMS

fractional error on the right y-axis. The measure of cost is now the number of ray

segments per resolution element, since the refinement parameter controls the number

of ray segments a single ray is made up of. The measure of accuracy is again the RMS

fractional error, but now relative to the radiation field computed with τref = 1×10−8,

the lowest value of τref tested.

At τref = 0.1, 1% RMS fractional error is achieved with a cost of approximately 850
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Figure 3.2: A plot of algorithmic cost and accuracy as a function of opening angle.
The number of rays computed per resolution element is plotted in blue, on the left
y-axis with square markers. The blue dashed line shows Nrays/N = N at an opening
angle of θopen = 0, meaning TREVR can perform an O (N2) ray trace if desired
(omitting the cost of absorption). The RMS error in flux relative to θopen = 0 is
plotted in red, on the right y-axis with circular markers.
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ray segments computed per resolution element, less than half the cost of refining all

the way to the bucket level. Note also that RMS fractional error as a function of τref

behaves predictably, lying below the error = τref line and roughly following the error

= τref/10 line plotted in Figure 3.3. This shows that the error per ray segment is well

controlled by our refinement criterion and considerably lower than τref on average.

The RMS fractional error plateaus at 2-3% in this test. In this particular imple-

mentation of TREVR, the walk along the ray goes up from both the bucket where the

radiation sink resides and the opened cell where the source resides, to the top of the

tree. As explained via Figure 2.1 in Section 2.2.3, the walk begins at the bucket level

for the radiation sink side of the tree walk and at the cell representing the merged

source for the radiation source side. This means resolution decreases from the bot-

tom of the walk to the top. This built in level of refinement is the reason for the

low maximum error, as the required resolution may have already been used without

a refinement criterion. Other implementations that walk the ray top down, or up

and then back down the tree, would need to rely more, or solely, on the refinement

criterion. In principle, such a method could perform better than O
(
N log2N

)
.

3.1.4 Scaling

To test cost-scaling as a function of N , we hold θopen constant at 0.75 and vary

N between 323 and 1283 in steps of N1D = 16 for both gas and star particles. To

substantiate the best and worst-case theoretical scaling claims made in Equations 2.22

and 2.20 respectively, the sinusoidally perturbed IC was simulated with τref = 1×106

to ensure refinement was never performed and with τref = 0 to ensure refinement

was always performed down to the bucket level. Data from these tests and the fitted
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Figure 3.3: Algorithmic cost and accuracy as a function of refinement parameter.
The number of ray segments computed per resolution element is plotted in blue, on
the left y-axis with square markers. The RMS error in flux relative to τref = 10−8 is
plotted in red, on the right y-axis with circular markers. Lines of RMS = τref and
RMS = τref/10 are plotted as red solid and dotted lines respectively. The upper line
represents maximum allowable error per ray segment. The RMS relative error lies
along or below the lower line, an order of magnitude less than τref .
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theoretical lines are plotted in Figure 3.4 and correspond very closely to each other.

Note that the only parameter used to fit the theoretical lines is a constant factor

multiplying Equations 2.20 and 2.22.

Scaling behaviour between the upper and lower limits was probed in two ways.

Firstly, simulations were run with τref values of 0.1 and 0.01. Secondly, strong and

weak scaling cases were simulated. The strong scaling case being where the simu-

lation volume was held constant and particle number increased. This is analogous

to increasing the resolution in a standard galaxy simulation. The weak scaling case

is the opposite, in which the simulation volume is increased and particle density is

held constant. This is analogous to simulating larger and larger cosmological boxes

to achieve larger statistical samples. Note that the previously described tests of the

upper and lower scaling bounds were only run as strong scaling tests.

Data from these tests was plotted in Figure 3.4. There are two interesting things

to note: first, the strong scaling case, which is typically the harder case to scale

effectively in other respects (e.g. parallelism), scales better than the weak scaling

case. The strong scaling data is closer to N log2N and costs less than the weak

scaling case for the same N . This is because the larger boxes in the weak scaling case

have larger total optical depths and thus require more ray segments to achieve the

same flux accuracy.

3.2 Isothermal Spheres Test

As mentioned before, the sinusoidally perturbed IC tests a generally optically thin,

smooth density distribution. We now show how well TREVR’s refinement criterion

can handle compact, optically thick features We created an IC featuring a single
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Figure 3.4: Cost, quantified as the number of computed ray segments per resolution
element, is plotted as a function of N1D = 3

√
N . TREVR’s theoretical upper and

lower scaling bounds are plotted as red (solid) and green (dash-dot) lines respectively.
The corresponding simulation data points are plotted as red circles and green squares.
Simulation data points intermediate to the scaling bounds are plotted as combinations
of two parameters - refinement parameter value and the type of scaling. Tests run
with a refinement parameter of τref = 0.1 are coloured orange and make up the lower
two sets of intermediate data. The upper sets of intermediate data, coloured blue,
are tests run with τref = 0.01. Diamond markers denote weak scaling tests and ×
shaped markers denote strong scaling tests.
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radiation source positioned in the top left corner and four spheres with 1/r2 density

profiles (mimicking self-gravitating dense) objects embedded in a uniform region of

opacity and density, both equal to one. The four isothermal spheres have a density

distribution given by

ρ(r) =
ρ0ε

2

r2 + ε2
, (3.3)

where the softening length is ε = 0.002 and the central density is ρ0 = 626. The IC was

made starting with a uniformly dense glass of fixed mass particles. SPH gas particles

were added inside the sphere radii. To do, this the uniform glass was duplicated and

associated with negative radii for a given sphere. A mapping from this initial space

(including both negative and positive radii) to positive radii in the final space was

calculated analytically and gave the desired isothermal density profile for that sphere

while maintaining a glass-like distribution. Any duplicated particles that did not map

to positive radii were then deleted. This technique is able to embed arbitrarily large

non-linear density perturbations in any uniform density particle distribution.

The chosen parameters set the maximum optical depth through a sphere to τmax =

4 (a 98% reduction in flux) and set the density at the edge of the spheres to one,

matching the unit density of the uniform background. The isothermal spheres have

a radius of 0.05 of the box length and are shown as grey circles in Figure 3.5. The

spheres are centred on the x and z axis with y coordinates given by:

yi = 0.75− 1.3−(4−i), (3.4)

where i runs from zero to three. The radiation source, denoted by the black star

in Figure 3.5, is located at (0.49, y0, 0). The total number of particles in the IC is
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Figure 3.5: Left: TREVR’s adaptive refinement criterion (at τref = 0.1) resolving
isothermal spheres in a uniform environment. Particles in a slice along the z-plane of
the isothermal spheres IC are coloured by the logarithm of their flux value (high - low
flux, red - purple). The red line represents the ray traced from the radiation source
(black star) to the receiving cell. Black rectangles represent the spatial boundary of
the tree cells used compute the optical depth of the intersecting ray segment. Right:
A zoo-in of the sphere intersected by the ray to focus on the refinement across the
sphere itself.
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N = 4, 111, 624.

The spheres produce shadows away from the source. Accurate shadows can only

be cast if the sharply peaked spheres are resolved correctly by the refinement criterion.

For example, for any resolution element under the influence of the sphere, either in

the sphere itself or in its shadow, the largest contribution of optical depth comes

from the portion of the ray that intersects the optically thick sphere. Therefore, error

associated with the resolution of that portion of the ray would result in large errors

in intensity. These errors can be isolated in this test by looking at only the particles

in shadow.

3.2.1 Varying the Refinement Parameter

The effects of the refinement parameter on accuracy and cost in this test were analyzed

similarly to the previous test. The main addition in Figure 3.6 is that the subset of

particles in shadow has its RMS fractional error plotted separately to highlight the

refinement criterion’s performance in the optically thick regime. Additionally, the

cost values in this plot are much less than that of the sinusoidally perturbed IC

test, as there is only one source in this test. Again, τref = 0.1 achieves an RMS

fractional error of 1% with very little cost. However, when restricting focus only to

those particles in shadow, the same refinement parameter produces errors higher by

an order of magnitude (∼ 8%). Decreasing the refinement parameter by an order of

magnitude to τref = 0.01 predictably decreases the RMS fractional error on particles

in shadow to 1% with a small increase in cost from that at τref = 0.1, as most of the

simulation volume is fairly optically thin and does not need to be refined in either

case.
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Figure 3.6: A plot of cost and accuracy as a function of refinement parameter. The
number of ray segments computed per resolution element is plotted in blue, on the left
y-axis with square markers. The RMS error in flux relative to τref = 10−8 is plotted in
red, on the right y-axis with circular markers. Lines of RMS = τref and RMS = τref/10
are plotted as red solid and dotted lines respectively. Solid circular markers represent
RMS relative errors computed for all resolution elements and empty markers represent
the errors for resolution elements that fall in shadow. The in-shadow errors match
closely with the all particle points on the RMS = τref line until the all particle points
begin to diverge back onto the RMS = τref/10 line (where they lay in Figure 3.3) at
τref = 10−3.
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The error = τref and error = τref/10 lines are again plotted in Figure 3.6. For the

most part the RMS fractional error is contained between these lines, with only two of

the in-shadow points at τref = 1×10−5 and 1×10−4, and one of the all-particle points

at τref = 1 × 10−4 sitting marginally above the error = τref line. The error bound

represented by Equation 2.18 is tighter for this test, with the overall error closer to

τref .

The isothermal spheres test is an especially difficult test, as there is only one

source and the errors are more systematic. Thus, the errors are less likely to cancel

the way random errors might, particularly with many sources. In most cases we

expect that the net errors for TREVR should perform better than the bound given

by Equation 2.18.

3.2.2 Analytic Solution

The isothermal spheres test is useful not only because it is representative of structure

commonly found in the universe, but because it has an analytic solution. The solution

is non-trivial, so I will derive it here in four separate parts.

Regions Unaffected by the Spheres

Firstly, and most simply, we consider gas not affected by the spheres. This excludes

gas within sphere radii and within the shadows cast by the spheres. Since all of this

gas must exist in the uniform background, the optical depth is just the optical depth

through said uniform background computed at a distance s from the source

τbg(s) = κρbgs, (3.5)
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where κ is a constant opacity (this is true for all cases) and ρbg is the uniform density

of the background. The flux is then just simply

Fbg(s) =
L

4πs2
exp (−κρbgs) , (3.6)

where L is the luminosity of the source.

Shadowed Regions

Secondly, we consider gas that falls within the shadows of the sphere. This is more

involved as we now have to integrate the optical depth along a ray’s intersection with

the sphere. The optical depth through the sphere is now also a function of the ray’s

impact parameter relative to the sphere centre. Figure 3.7 is a diagram of the setup

used to integrate the optical depth. Here b is the impact parameter relative to the

sphere centre, r is the distance from the sphere centre to the integration element dl,

L is half the path length through the sphere and l is the distance to the integration

element along the ray, from the midpoint of the ray intersection. The sphere density

distribution to be integrated across is given by

ρ(r) =
ρ0ε

2

r2 + ε2
, (3.7)

where ρ0 is the central density and ε is the softening length. The integral for optical

depth across the sphere is then

τs(b) = 2κ

∫ L

0

ρ(r)dl. (3.8)
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Figure 3.7: Diagram of the scheme used for integrating optical depth across an isother-
mal sphere. The orange line represents the intersecting ray. b is the ray’s impact
parameter relative to the sphere centre, r is the distance from the sphere centre to
the integration element dl, L is half the path length through the sphere and l is
the distance to the integration element along the ray, from the midpoint of the ray
intersection.
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A substitution of l = (r2 − b2)1/2 and dl = r/ (r2 − b2)1/2 allows us to write down the

integral with respect to r giving us

τs(b) = 2κ

∫ R

b

ρ0ε
2

r2 + ε2
r

(r2 − b2)1/2
dr. (3.9)

To simplify the integral into an easily evaluated form we make a final substitution of

u = r2 + ε2 and du = 2rdr, which is simplified and evaluated to

τs(b) = κρ0ε
2

∫ R2+ε2

b2+ε2

1

u (u− ε2 − b2)du

=
2κρ0ε

2 arctan
(
R2+ε2

b2+ε2
− 1
)1/2

(b2 + ε2)1/2
. (3.10)

Now that we have the optical depth through a sphere we can compute the flux received

at a position within shadow. To do this we have to subtract the distance through the

sphere off of the total distance from the source to the point in shadow. This distance

can be solved for geometrically as (see Figure 3.7):

2L = 2
(
R2 − b2

)1/2
. (3.11)

Putting this all into the flux equation we arrive at

Fs(s, b) =
L

4πs2
exp

(
−κρbg

[
s− 2

(
R2 − b2

)1/2]− τs(b)
)
, (3.12)

as the distance and impact parameter dependent solution for the flux at a point in

shadow. Note the first term in the exponential is the optical depth along the parts of

the ray in the uniform background. The second term is the optical depth contribution
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from the ray-sphere intersection.

The Front Half of a Sphere

The front half of a sphere is defined as being within the sphere radius, between the

source and line perpendicular to the ray going from source to sphere centre and

intersecting the sphere centre. In this case, to get the optical depth inside the spheres

we perform the same integral with the same substitutions for the in-shadow region,

but now with integration limits starting from the front edge of the sphere to the point

of interest within the front of the sphere. The optical depth in this case is

τf (rf , b) =

∫ R

rf

κρ0ε
2

r2 + ε2
r

(r2 − b2)1/2
dr

= κρ0ε
2
arctan

(
R2+ε2

b2+ε2
− 1
)1/2
− arctan

(
rf

2+ε2

b2+ε2
− 1
)1/2

(b2 + ε2)1/2
, (3.13)

where rf is the distance from the sphere centre to the point inside the front of the

sphere. This can then be put into the flux equation, but again we need to subtract

off the portion of the path length inside the sphere to the point inside the sphere, lf .

Again, from the geometry in Figure 3.7 this can be written as

lf =
(
R2 − b2

)1/2 −
(
rf

2 − b2
)1/2

. (3.14)

Putting this all into the flux equation yields

Ff (s, rf , b) =
L

4πs2
exp

(
−κρ

[
s−

(
R2 − b2

)1/2
+
(
rf

2 − b2
)1/2]− τf (rf , b)

)
, (3.15)
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as the distance, impact parameter and radial location dependent solution for the flux

at a point in the front half of a sphere.

The Back Half of a Sphere

The back half of a sphere is defined as being within the sphere radius, behind the

line perpendicular to the ray going from source to sphere centre and intersecting the

sphere centre. This integral is similar to that of a point in the front half of the sphere.

However, in this case we define rb as the radius from the sphere centre to the point

inside the back of the sphere. We also have to add the total optical depth contribution

from the front half of the sphere to the back half in this case

τb(rb, b) =

∫ R

b

κρ0ε
2

r2 + ε2
r

(r2 − b2)1/2
dr +

∫ rb

b

κρ0ε
2

r2 + ε2
r

(r2 − b2)1/2
dr (3.16)

= κρ0ε
2
arctan

(
R2+ε2

b2+ε2
− 1
)1/2

+ arctan
(
rb

2+ε2

b2+ε2
− 1
)1/2

(b2 + ε2)1/2
. (3.17)

Note that the main difference here relative to the front side case is that the arctangents

in the numerator are now added instead of subtracted. Like before we need to subtract

off

lb =
(
R2 − b2

)1/2 −
(
rb

2 − b2
)1/2

, (3.18)

from the entire length of the ray. Putting this into the flux equation yields

Ff (s, rb, b) =
L

4πs2
exp

(
−κρ

[
s−

(
R2 − b2

)1/2
+
(
rb

2 − b2
)1/2]− τb(rb, b)

)
. (3.19)

We compute distances and impact parameters for simulation particles in the
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isothermal spheres IC and use them to divide up particles into the four cases de-

tailed above. The proper solution for each case is then applied, yielding analytical

flux values to compare with at each particle’s position.

3.2.3 Comparison to the Analytic Solution

Figure 3.8 is a particle plot of error in TREVR’s numerical solution for flux, Fn,

computed with τref = 0.1, to the analytic solution, Fa, derived in the previous sub-

section. Per particle errors in the uniform background are typically below ∼ 1% of

the analytic values as predicted by the RMS values plotted in Figure 3.6. Particles

within the sphere shadows, specifically near the shadow edges, also behave according

to Figure 3.6, as the per particle errors typically below ∼ 10%. As one looks closer

to the central regions of the spheres and shadows, errors increase dramatically from

greater than 10% to over 100%.

However, this is not the fault of the TREVR algorithm specifically. In SPH it is

difficult to represent sharp density gradients with discrete resolution elements. These

errors are associated with the discrete representation of the density profile rather than

the RT method. In hindsight, a test that can better compare an analytic solution to

the RT method should have been devised. This could come in the form of a triangular,

trapezoidal, or Gaussian density profile that is not as sharply peaked at the centres.

3.3 Strömgren Sphere Test

Note that the last two code tests were novel to this thesis, whereas the following test

was re-run since Woods (2015) with the updated TREVR algorithm.
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Figure 3.8: Particle plot of error in TREVR’s numerical flux, Fn, computed with
τref = 0.1, relative to the analytic solution for the isothermal spheres IC along a slice
in the z-plane. Grey circles of radius R = 0.05 are plotted as the extents of the
isothermal spheres, for comparison with the shadows.
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3.3.1 Strömgren Sphere Theory

In 1938, Bengt Strömgren first discussed a theoretical ionized sphere of gas as a

model of the HII (ionized hydrogen) region around a hot, young star. The initial

conditions to create such a sphere are simple. A source of radiation is positioned at

the centre of a uniform distribution of neutral hydrogen (HI) gas. As the radiation

source ionizes hydrogen, the optical depth of the gas is decreased in turn. This

allows radiation from the source to travel further and further through the medium

creating an ionization front which moves radially outward from the source with time.

As hydrogen atoms are ionized, their newly liberated electrons will then recombine

back to neutral hydrogen. At a particular radius, the ionization and recombination

rate will reach equilibrium and thus a stable sphere of HII gas, named a Strömgren

sphere, is created. The Strömgren sphere test has become a common code test in

RT methods papers (Pawlik and Schaye, 2008, 2011; Petkova and Springel, 2011) and

comparison papers (Iliev et al., 2006, 2009), as it is a simple test of a method’s ability

to resolve ionization fronts and achieve equilibrium behaviour that may be compared

with analytic results.

The equilibrium, or Strömgren radius RS, is found by simply setting the ionization

and recombination rates equal to each other (e.g. Tielens, 2005),

RS =

(
3

4π

Ṅγ

αn2
H

)1/3

, (3.20)

where Ṅγ is the source luminosity in photons per second, α is the recombination

rate and nH is the hydrogen number density. The radius of the ionization front as a
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function of time can also be solved for (e.g. Spitzer, 1978),

R(t) = RS [1− exp (t/trec)]
1/3 (3.21)

where trec = 1/nHα is the recombination time of the gas. The above derivations

assume that the ionization front is “sharp” or infinitely thin. In practice, structure

exists interior to the sphere which is not described by the above equations. To do

this the hydrogen ionization equation must be considered

∂nHII

∂t
= cσnHInγ − αnenHII, (3.22)

where nx is the number density of species x, σ is the ionization cross-section, c is the

speed of light and α is the recombination rate. Note that collisional ionization has

been omitted in Equation 3.22, which is customary for this test, however it should

be included in general. By integrating flux with absorption (Equation 2.8) as well as

Equation 3.22 above, the relative abundance of HI and HII as a function of both radius

and time can be obtained (Osterbrock and Ferland, 2006). In the following tests, we

include both the theoretical sharp front solution and non-sharp front solutions from

the Iliev et al. (2006) comparison paper to compare to our results. We also attempt

to duplicate the ICs of Iliev et al. (2006) as closely as possible.

3.3.2 The Isothermal Strömgren Sphere

If the ionizing source is assumed to emit monochromatic photons at 13.6 eV, the gas

is ionized but not heated and remains 104 K. We refer to this case as the isother-

mal Strömgren sphere. The medium is initially neutral with a uniform density of

53



M.Sc. Thesis - Jasper J. Grond McMaster - Physics & Astronomy

643 1283 2563

643 1283 2563

Figure 3.9: A slice through the z-plane of the isothermal Strömgren sphere test at
t = 30 Myr (top row) and t = 500 Myr (bottom row). Particle resolutions increase
from left to right denoted by the N value in the top left corner of each pane. Axis
ticks are spaced 2 kpc apart, so note that ionized spheres in the top row are a fraction
of the volume and particle resolution of spheres in the bottom row. The colour map
represents neutral fraction, x, and is similar to that of Pawlik and Schaye (2008) and
Pawlik and Schaye (2011) to allow for ease of comparison. We use the same contour
levels: x = 0.9, 0.5, log x = -1, -1.5, -2, -2.5, -3 and -3.5. The white dashed line is
a circle of radius given by Equation 3.21, the sharp, time-dependent solution to the
isothermal Strömgren sphere.
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Figure 3.10: Figure 6 from Pawlik and Schaye (2008) is plotted in an almost identical
manner relative to Figure 3.9. All plots have a particle resolution of 643 and the
directional accuracy is increased 8 to 128 from left to right and is denoted by the
first three digits in the plot titles. Here we can see that TREVR is more isotropically
symmetric at all resolutions, despite TRAPHIC’s use of Monte-Carlo re-sampling
(bottom row plots). Also note that contour noise is not decreased predictably with
increasing angular resolution, another drawback of the TRAPHIC method.
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nHI = 10−3 cm−3. We use an ionization cross-section of σ = 6.3 × 10−18 cm−2 and

a recombination rate of α = 2.59 × 10−13 cm−3 s−1, characteristic of 104 K gas. At

t = 0 the ionizing source begins emitting at a rate Ṅγ = 5× 1048 γ s−1. These values

yield a Strömgren radius of RS = 5.38 kpc and a recombination time of trec ≈ 125

Myr.

We note that Iliev et al. (2006) use a 6.6 kpc cube which only contains a single

quadrant of the Strömgren sphere for their testing. We have opted to use an 16

kpc cube, increasing the maximum front radius to 8 kpc to avoid any edge effects

(the sphere gets close to the edge of the box for some codes in the above paper). In

order to aid comparison, we still normalize radius values to 6.6 kpc, as is done in

Iliev et al. (2006). As well, we have not imposed a floor on the HII fraction of 0.001,

as was done in their paper. Because the resolution used in the Iliev et al. (2006)

comparison paper was never specifically given, we have opted to run the test with

N = 643, 1283 and 2563 particles to represent the entire sphere. These resolutions

correspond to single quadrant resolutions of N = 323, 643 and 1283 in Iliev et al.

(2006). Varying the number of particles also allows us to investigate how TREVR

converges with resolution. We have re-run our Strömgren sphere tests with fixed

accuracy parameters of θopen = 0.75, τref = 0.1.

Figure 3.9 is a slice through the z-plane of the simulation. The colour map shows

the neutral fraction. The contour levels and colour map have been chosen to closely

mimic Figure 6 in both Pawlik and Schaye (2008) (included in this thesis as Fig-

ure 3.10) and Pawlik and Schaye (2011). We have done this to highlight a key

benefit that ray tracing codes such as TREVR have over photon packet propagation
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Figure 3.11: Spherically averaged neutral and ionized fraction (x and 1−x) profiles for
the isothermal Strömgren sphere test during the fast expansion (left) and equilibrium
(right) stages. Radius on the x-axis is normalised by a box length of 6.6 kpc for
comparison with plotted solutions from the Iliev et al. (2006) comparison paper.

methods such as TRAPHIC - namely, isotropy. At the same N = 643 particle reso-

lution TREVR is more isotropically symmetric than TRAPHIC, even with their use

of Monte-Carlo re-sampling. Furthermore, TREVR outperforms TRAPHIC in this

aspect even at early times (top panels in Figure 3.9). Here the interior of the sphere is

represented by 3.3 times fewer particles than the late time Strömgren spheres plotted

in the TRAPHIC papers.

Figure 3.11 is a plot of neutral/ionization fraction as a function of radius from the

Strömgren sphere centre. We note that for this test, and the remaining comparison

plots mimicking Iliev et al. (2006), different codes employ different assumptions about

radiation bands and ionization treatments which makes detailed comparisons difficult.

The sharp Strömgren radius is plotted as well as non-sharp solutions from all codes

presented in Figure 8 of Iliev et al. (2006). TREVR tends to over-ionize at lower
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resolutions, but recreates the ionization profile quite well overall. At 30 Myr we

converge with resolution to the sharp solution. At 500 Myr we converge to the non-

sharp numerical solutions, which also over-ionize relative to the sharp solution at

late times. Overall, the two higher resolution solutions are within the scatter of the

non-sharp solutions of the codes presented in Iliev et al. (2006).

3.3.3 The Non-Isothermal Strömgren Sphere

In practice, radiation is not monochromatic and photons range across many energies.

When photons of energy greater than 13.6 eV ionize hydrogen, the excess energy

goes into heating the gas. The temperature of the gas affects the recombination rate,

among many other gas properties.

We re-ran the Strömgren test, but this time the ionizing source is assumed to be

a black body emitter at a temperature of 105 K. The cross-section is now photon

weighted, giving σ = 1.63× 10−18 cm−2. The gas has an initial temperature of 100 K

and the recombination rate is a function of temperature set by

α(T ) = 2.59× 10−13
(

T

104 K

)−0.7
cm−3 s−1 (3.23)

to match Petkova and Springel (2009). This test includes heating due to absorption

and cooling due to recombination ∆r, collisional ionization ∆ci, line cooling δl and

Bremsstrahlung radiation ∆B. The rates are taken from Cen (1992) in order to match

Petkova and Springel (2009).

Figures 3.12 and 3.13 show the neutral/ionized fraction and temperature respec-

tively as a function of radius at t = 10, 100 and 500 Myr. These times represent the
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Figure 3.12: Spherically averaged neutral and ionized fraction profiles for the non-
isothermal Strömgren sphere test during the fast expansion (left), slowing down (mid-
dle) and equilibrium (right) stages.
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Figure 3.13: Spherically averaged temperature profiles for the non-isothermal
Strömgren sphere test.
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fast expansion stage, slowing down stage and final equilibrium Strömgren sphere re-

spectively. We have plotted numerical solutions from Figures 16 and 17 in Iliev et al.

(2006) for comparison. Again, TREVR recreates these profiles quite well. TREVR

gives a relatively large sphere radius which is due in part to the ionization code rather

than the radiation method. The temperature profile lies in the middle of the scatter

of the Iliev et al. (2006) solutions.
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Chapter 4

Discussion and Conclusions

4.1 Overview

In this thesis I have presented TREVR, a practical and efficient, general purpose al-

gorithm for computing RT in astrophysics simulations. For a RT method to be these

things it must remain efficient with large numbers of resolution elements and radiation

sources, compute the radiation field to a desired level of accuracy and handle den-

sity and opacity distributions representing the optically thick, thin and intermediate

regimes.

TREVR’s ability to scale feasibly with N and Nsource is achieved by reducing

the cost of each of the three components of a ray trace that make up the näıve

O
(
NNsourceN

1/3
)

scaling:

1. Reverse ray tracing allows for the use of adaptive timesteps. The initial de-

pendence on N resolution elements is reduced to Nsink active radiation sinks.

Nsink is effectively hundreds of times smaller than N when averaged over a large
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number of substeps.

2. Source merging based on an opening angle criterion reduces the linear depen-

dence on Nsource to logNsource.

3. By adaptively reducing the resolution of rays via TREVR’s novel refinement

criterion, the N1/3 cost of computing the optical depth along a ray can be

reduced, while maintaining a specified level of accuracy, to logN .

In Section 2.2 we theoretically predicted TREVR’s O (Nsink logNsource logN) scal-

ing behaviour. In the general case, represented by the sinusoidally perturbed test

case with accuracy parameters of τref = 0.1 and θopen = 0.75 (Figures 3.2, 3.3

and 3.4), we have shown that TREVR can indeed scale as predicted whilst achieving

∼ 1% accuracy. We also note that better than O
(
N log2N

)
scaling (i.e. closer to

O (Nsink logNsource)) could be achieved for a medium with low optical depths via a

more aggressive, top-down ray walk with our refinement criterion.

The only ray-tracing code we are aware of with similar scaling is TREERAY

(Haid et al., 2018). TREERAY does not use an adaptivity criterion and has a fixed

number of rays. This rather rigid approach has a benefit which is that the source and

absorption walks can be combined to give an overallO (NlogN) scaling, albeit without

error controls and limited directional accuracy (e.g. for shadowing). TREERAY as

currently implemented in FLASH, which uses a global timestep and is thus unable

to take advantage of the large speed-ups reverse raytracing can achieve via adaptive

timestepping. However, this is not a limitation intrinsic to the TREERAY method

itself.

In plots of accuracy as a function of τref (Figures 3.3 and 3.6) we have also shown

that TREVR’s refinement criterion provides a predictable bound on accuracy in both
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the optically thick and thin regimes, as we found the RMS relative error is ∝ τref and

the RMS errors do not exceed τref .

This scaling enables TREVR to reap the benefits inherent in instantaneous ray

tracing methods whilst still being practical and general. For example, we can use

any convenient timestep rather than being limited by the speed of light. Directional

accuracy is another one of these benefits as is apparent in the sharp shadows cast

in the isothermal spheres test (Figure 3.5). Low levels of noise and isotropy are also

benefits compared with evolutionary methods as is apparent in the Strömgren sphere

test (Figure 3.9).

4.2 Discussion

4.2.1 The Importance of Characterizing the Method

In this thesis, we have made the effort of characterizing the method’s algorithmic

complexity by means of both mathematical proof and testing of the methods scaling

in multiple regimes. This was motivated in part by the lack of this type of charac-

terization in many other RT methods papers. The importance of this type of honest

characterization is that it allows the reader to answer the following questions:

• How practical is the method?

• Which niches and regimes is the method best suited for?

• What direction should one take in order to improve numerical RT methods in

the future?
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This last point is extremely important as the field of numerical RT methods has

been slow-moving. The overview of methods in the introduction (Section 1.3) was

an attempt at corralling together information on existing methods. This information

was used to motivate and provide a direction for the work done in this thesis, and I

hope it can also be a resource to those working in the field currently or in the future.

4.2.2 Limitations and Possible Solutions

In the version of TREVR as currently implemented, there are still some specific

problems not easily handled.

First, in any completely optically thick medium where high accuracy is required

our method will result in worst-case scaling of O
(
NsinkN

1/3
)

(characterized in Sec-

tion 2.2.5). At face value this limits TREVR to solving only post-reionization cosmol-

ogy or similar problems that are largely optically thin. However, in such a medium

most sources contribute nothing to the local radiation field. Inspired by this fact, we

propose a way in which scaling in this regime could be reduced. Ray traces that are

found to contribute little to no intensity to the final radiation field could be aborted.

While walking the tree and summing up optical depth, a threshold could be met that

would trigger the termination of that ray. A less rigorous suggestion would be to

use information from prior timesteps to disregard rays entirely that contributed very

little intensity as in Howard et al. (2016, 2017). Apart from modifying the TREVR

algorithm itself, one could use a hybrid scheme where a method such as flux limited

diffusion to handle the completely optically thick regime, as is done in Kuiper et al.

(2010) and Klassen et al. (2014).

These optimizations could consequently improve the weak scaling case. In Section
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3.1.4 we noted that simulations with increasing volume have increasing total optical

depths and thus require more ray segments to achieve the same flux accuracy. Termi-

nating ray segments in this case would alleviate this difficulty, but one would have to

be careful to not systematically reduce the total flux received from distant sources.

A second problem is periodicity. Our method of a sphere of background sources

providing a constant central background flux is adequate for isolated objects, but in

the context of large cosmological boxes, such as reionization calculations, periodic

boundaries are required. Because of the infinite c assumption TREVR is based on,

light from an large periodic volume would result in an effect similar to Olber’s paradox,

where particles in the simulation would receive extremely large amounts of light. In

such contexts, light travel times and redshifting are also potentially important. One

could also potentially use a series expansion similar to the Ewald method (Ewald,

1921) (which is already used for gravity in Gasoline) to approximate what the sum

of contributions from infinitely many periodic copies would be. However, whether or

not such a sum would converge in the context of RT is unknown to the author at the

moment and should be investigated. Such factors could be included in principle and

this is a potential direction for future work.

Finally, there is the important issue of complex sources. Consider a group of

sources that meet the opening criterion and are merged, but are also contained within

a region that has clumpy, opaque structures. Depending on the location of the merged

centre of luminosity relative to the opaque clumps, the amount of radiation that

escaped the merged source cell could vary significantly from that computed by the

current algorithm. Such cases would require that the opening criterion take the effect

of nearby absorbers into account, potentially using the information regarding the
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variance in α already recorded for each cell for use by the refinement criterion. Such

extended opening and refinement criterion are very complicated problems and the

subject of ongoing investigations.

It is not clear how the complex sources problem would affect a simulation. Un-

derstanding what the escape fractions are from such stellar populations is an active

area of research, as the scales on which this takes effect are very small. However,

large sources of radiation tend to ionize, heat and disperse the gas surrounding them

clearing away complex structure. If this is in fact the case, the effect that the complex

sources problem introduces may only act on short timescales until the structure is

cleared.

4.2.3 Future Work

In addition to the above, future work could also include the implementation of scatter-

ing. The process of scattering can be recast as an absorption followed by an immediate

re-emission of photons. Thanks to the log(Nsource) scaling with radiation sources, this

process, in principle, can be implemented by considering resolution elements (SPH

gas particles in our case) as sources of radiation without changing the scaling of the

method.

Performing scattering in this way introduces the complication that the re-emitting

gas particles need to know what incoming photons they are scattering away. One way

to provide this information is to use fluxes and intensities from the prior timestep for

scattering during the current step. It is unclear how the error introduced by this

“scattering lag” impacts the validity of this method of scattering. This should be a

main focus of future work on the implementation of scattering.
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Another question about how scattering should be implemented is how much scat-

tered light is emitted in different directions. If the radiation field is isotropic about

the re-emitting particle, then isotropic scattering is not a bad assumption. In the case

where this is not true, like a particle in shadow, some more thought should be put

into how this is done. For instance, one could apply a method similar to that used by

flux limited diffusion, which makes use of the prior flux and intensity to approximate

the directional distribution of pre-scattered light.

An important consequence of assuming an infinite speed of light is that radiation

sinks will not see light as it was when emitted in the past, but as the source appears

at the current time. Although this effect has not been addressed yet, it is an easy

issue to remedy. In Gasoline each source of radiation has an age associated with it.

In the case of a source representing a stellar population, the time and mass depen-

dent luminosity of a source can be computed via data from Starburst99 (Leitherer

et al., 1999) for several different bands of radiation. With this, the distance between

source and sink, and the actual speed of light we can then age the radiation sources

with respect to the receiving resolution element, such that the received photons are

representative of the luminous source as it was.

Currently, TREVR computes the radiation field in specific bands. TREVR can

handle many bands of radiation with only a small constant multiplier added to the

cost. However, it may be advantageous to evolve the initial spectral shape over

distance using an equation for the opacity as a function of wavelength, where the

absorption is provided by a relatively simple or easily characterized set of species.

This would also enable us to incorporate redshifting effects important for the evolution

of large simulation volumes over cosmological time periods.
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Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke,

M., and Bartelmann, M. (2005). HEALPix: A Framework for High-Resolution

Discretization and Fast Analysis of Data Distributed on the Sphere. ApJ, 622,

759–771.

Gritschneder, M., Naab, T., Walch, S., Burkert, A., and Heitsch, F. (2009). Driving

Turbulence and Triggering Star Formation by Ionizing Radiation. ApJ, 694, L26–

L30.

69



M.Sc. Thesis - Jasper J. Grond McMaster - Physics & Astronomy

Haid, S., Walch, S., Seifried, D., Wünsch, R., Dinnbier, F., and Naab, T. (2018). The

relative impact of photoionizing radiation and stellar winds on different environ-

ments. MNRAS, 478, 4799–4815.

Hegmann, M. and Kegel, W. H. (2003). Radiative transfer in clumpy environments:

absorption and scattering by dust. MNRAS, 342, 453–462.

Howard, C. S., Pudritz, R. E., and Harris, W. E. (2016). Simulating radiative feedback

and star cluster formation in GMCs - I. Dependence on gravitational boundedness.

MNRAS, 461, 2953–2974.

Howard, C. S., Pudritz, R. E., and Harris, W. E. (2017). Simulating radiative feedback

and star cluster formation in GMCs - II. Mass dependence of cloud destruction and

cluster properties. MNRAS, 470, 3346–3358.

Hubber, D. A., Batty, C. P., McLeod, A., and Whitworth, A. P. (2011). SEREN -

a new SPH code for star and planet formation simulations. Algorithms and tests.

A&A, 529, A27.

Iliev, I. T., Ciardi, B., Alvarez, M. A., Maselli, A., Ferrara, A., Gnedin, N. Y.,

Mellema, G., Nakamoto, T., Norman, M. L., Razoumov, A. O., Rijkhorst, E.-J.,

Ritzerveld, J., Shapiro, P. R., Susa, H., Umemura, M., and Whalen, D. J. (2006).

Cosmological radiative transfer codes comparison project - I. The static density

field tests. MNRAS, 371, 1057–1086.

Iliev, I. T., Whalen, D., Mellema, G., Ahn, K., Baek, S., Gnedin, N. Y., Kravtsov,

A. V., Norman, M., Raicevic, M., Reynolds, D. R., Sato, D., Shapiro, P. R.,

70



M.Sc. Thesis - Jasper J. Grond McMaster - Physics & Astronomy

Semelin, B., Smidt, J., Susa, H., Theuns, T., and Umemura, M. (2009). Cos-

mological radiative transfer comparison project - II. The radiation-hydrodynamic

tests. MNRAS, 400, 1283–1316.
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Városi, F. and Dwek, E. (1999). Analytical Approximations for Calculating the

Escape and Absorption of Radiation in Clumpy Dusty Environments. ApJ, 523,

265–305.

Vine, S. and Sigurdsson, S. (1998). Simulations of spheroidal systems with substruc-

ture: trees in fields. MNRAS, 295, 475.

Wadsley, J. W., Stadel, J., and Quinn, T. (2004). Gasoline: a flexible, parallel

implementation of TreeSPH. New Astron., 9, 137–158.

Wadsley, J. W., Keller, B. W., and Quinn, T. R. (2017). Gasoline2: a modern

smoothed particle hydrodynamics code. MNRAS, 471, 2357–2369.

Walch, S. K., Whitworth, A. P., Bisbas, T., Wünsch, R., and Hubber, D. (2012).
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