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Abstract

Conventional methods for solving image restoration problems are typically built

on an image degradation model and on some priors of the latent image. The model of

the degraded image and the prior knowledge of the latent image are necessary because

the restoration is an ill posted inverse problem. However, for some applications, such

as those addressed in this thesis, the image degradation process is too complex to

model precisely; in addition, mathematical priors, such as low rank and sparsity of

the image signal, are often too idealistic for real world images. These difficulties

limit the performance of existing image restoration algorithms, but they can be, to

certain extent, overcome by the techniques of machine learning, particularly deep

convolutional neural networks. Machine learning allows large sample statistics far

beyond what is available in a single input image to be exploited. More importantly,

the big data can be used to train deep neural networks to learn the complex non-linear

mapping between the degraded and original images. This circumvents the difficulty

of building an explicit realistic mathematical model when the degradation causes are

complex and compounded.

In this thesis, we design and implement deep convolutional neural networks (DCNN)

for two challenging image restoration problems: reflection removal and joint demosaicking-

deblurring. The first problem is one of blind source separation; its DCNN solution

requires a large set of paired clean and mixed images for training. As these paired
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training images are very difficult, if not impossible, to acquire in the real world, we

develop a novel technique to synthesize the required training images that satisfacto-

rily approximate the real ones. For the joint demosaicking-deblurring problem, we

propose a new multiscale DCNN architecture consisting of a cascade of subnetworks

so that the underlying blind deconvolution task can be broken into smaller subprob-

lems and solved more effectively and robustly. In both cases extensive experiments

are carried out. Experimental results demonstrate clear advantages of the proposed

DCNN methods over existing ones.
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Notation and abbreviations

DCNN: deep convolutional neural network

GAN: generative adversarial network

ResNet: residual network

MSE: mean square error

ReLU: rectified linear unit
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Chapter 1

Introduction

Image restoration is a process to recover high quality clean images from their

degraded counterparts. The degradation can have a variety of causes, such as sensor

noises, downsampling, motion blur, reflection and some combinations of the above.

Restoring an input image to its best form is a necessary and important step in many

applications of image processing and low-level computer vision. There is a large body

of literature of image restoration, covering techniques of denoising, superresolution,

deblurring, demosaicking, reflection removal, etc.

Main stream image restoration methods are based on image degradation models

and on some priors of the latent image. However, due to the complexity of real-world

image degradation, it is often extremely difficult to model the process precisely. In

addition, image restoration is in general a severely underdetermined inverse problem,

as a large number of different latent images can degrade into the same image. Solving

the inverse problem requires additional priors, such as low rank and sparsity of the

image signal, to restrict the solution space. However, the priors are necessarily mathe-

matical constructs that are often too idealistic for real-world images. These difficulties

greatly limit the performance of the conventional image restoration algorithms.
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The newly emerged data-driven machine learning method, particularly deep con-

volutional neural networks, open up new possibilities for more powerful and versatile

solutions of image restoration. In machine learning one can use very large sample

data set to make statistical inferences that is much more accurate and robust than

relying only on the observations of a single input image. Also, big data facilitates the

training of deep neural networks to learn highly complex non-linear mapping between

the degraded and original images. This makes it possible to solve the inverse prob-

lem of image restoration without building an explicit realistic mathematical model.

Indeed, past few years have witnessed significant improvements of image restoration

results made by deep learning over traditional image processing methods.

Artificial neural network (ANN) is a widely used method of machine learning that

mimics how the biological neural network processes information in human brain. It

can solve difficult problems in diverged areas of applications, such as computer vision,

natural language processing, text processing, etc. ANNs consist of layers of neurons,

each neuron has a weight associated with it. A neuron is a basic computation unit;

it multiplies the weight with its input, and computes the output with a non-linear

activation function. The networks are optimized by back propagation algorithms to

minimize a loss function, which is, in the case of image restoration, the difference

between the restored and ground truth images.

During training, the network performs forward and backward propagation alter-

natively to evaluate the loss function and update the parameters. The loss function is

the key of training and is carefully designed so that the training process can be seen

as an optimization problem. Besides the loss function, training data also affects the

performance of the network. Insufficient training data and statistically mismatched

training data will cause over-fitting and non-convergence of the network. By increas-

ing the number of hidden layers, the neural network can fit more complex functions

2
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Figure 1.1: Architecture of Alex net.

and it also requires more training data.

With the invention of convolutional neural network (CNN), many attempts have

been made to address different computer vision problems. CNNs are multi-layer

structure neural network and they are aimed to extract complicated information from

the input images. They are trained to learn high-level discriminative features in an

incremental way for classifying structured data such as images and videos. CNN archi-

tecture consists of convolutional, nonlinear, pooling and fully connected layers. Each

convolutional layer applies convolution on its input tensor with its filters, each filter

generates feature maps with an non-linear activation function. Higher level convolu-

tional layers extract more abstract features that contains discriminative information

for making the final decision.

The first successful deep neural network is the well known AlexNet published in

2012 [9]. It made a breakthrough in visual object recognition and achieved unprece-

dented accuracy. The power of AlexNet largely comes from its adoption of convolu-

tional kernels in first few layers of the network, thus this type of network is called

convolutional neural network (CNN). Figure 1.1 depicts the AlexNet architecture.
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Figure 1.2: Building block of GoogLeNet [1].

It consists of five stacked convolutional layers followed by two fully connected lay-

ers. Convolutional layers extract features, while fully connected layers estimate the

probabilities of the output classes based on the features.

Shortly after the AlexNet, deep learning has become an extremely active research

field, drawing attentions from almost all academic disciplines. Thanks to the rapid

advances of high performance computation hardware, especially GPUs, larger and

larger network models can be built. Many researchers have been trying to make

CNNs more powerful by increasing the network depth and width. Based on AlexNet,

VGG net is proposed [10] that increases the number of convolutional layers while

using smaller 3 × 3 kernels. The increase in network depth boosts the performance

significantly, reducing the classification error by a large margin.

In GoogLeNet [1] the authors tried to increase the depth and width of the network.

In order to prevent data overfitting and prevent excessive uses of memory and power

due to the great depth, the authors use 1× 1 filters to reduce the problem dimension-

ality. The GoogLeNet is stacked by the building blocks as shown in Figure 1.2. Even

through GoogLeNet has a deeper and wilder architecture, but it contains far fewer

4



M.A.Sc. Thesis - Zhixiang Chi McMaster - Electrical Engineering

Figure 1.3: Residual block [2].

parameters.

Obviously, the increase in network depth gives better performance, but new issues

have emerged. As the network depth increases, it becomes harder to train because of

the notorious gradient vanishing problem. He et al. [2] claimed that as the network

is going deeper, accuracy gets saturated and then suddenly degrades. To solve the

problem, they proposed a residual block as shown in Figure 1.3. The input of the

residual block x goes through convolution-rectified linear unit-convolution sequentially

to learn the residual F (x). The output is obtained by the addition of the residual and

its input as F (x) + x. The authors stacked the residual blocks to build a 152-layer

network that reduced the error rate significantly. The reason for why the network can

go deeper is that the gradient can easily flow through the identity mapping during

the back propagation process.

In addition to the successes of deep learning techniques in image recognition, image

restoration can also be performed by CNN-based deep learning with the quality of

restored images far exceeding that of traditional methods. A straightforward way of

deep learning for image restoration is to remove the fully connected layers of a CNN
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classification network. Early methods simply stack convolution layers to perform

mapping between degraded and latent images with respect to a specific restoration

problem [11]. A more effective approach is to use deep convolutional encoder-decoder

networks, first proposed by Mao et al. [12]. In many applications, the degraded image

and its clean version are very close, it will be more efficient to only learn the difference

between them. Hence, stacking residual blocks becomes a popular technique and it

generates superior results [13, 5].

For supervised image restoration algorithms, CNNs are commonly optimized to

minimize the mean squared error (MSE) between restored image and its ground truth.

However, algorithms optimized by MSE tend to average possible solutions hence limit

the ability to capture the significant high-frequency information. With the inven-

tion of Generative Adversarial Network (GAN) [14], it has been applied to generate

photo-realistic images [13]. The generator network is aimed to learn the true data

distribution and is encouraged to produce images towards to natural images. It will

be penalized by a discriminator network if the restored image is not a sample from the

ground truth distribution. Even though the generated images sacrifice the pixel-wise

measurements such as PSNR and SSIM, they are more perceptually satisfying.

In this thesis, we design and implement deep convolutional neural networks (DCNN)

for two challenging image restoration problems: single reflection removal and joint

demosaicking-deblurring. The first problem is one of blind source separation. Since

the DCNN solution requires a large-scale data for training and gathering paired degra-

dated and clean images is not easy in real world, we develop a novel technique to

synthesize the required training images that satisfactorily approximate the real ones.

For the joint demosaicking-deblurring problem, we propose a new multiscale DCNN

architecture consisting of a cascade of subnetworks so that the underlying blind de-

convolution task can be broken into smaller subproblems and solved more effectively

6
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and robustly. In both cases extensive experiments are carried out. Experimental re-

sults demonstrate although the neural networks learn only from synthetic data, the

proposed techniques generalize well on real-world images, outperforming the other

tested state-of-the-art techniques.
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Chapter 2

Single image reflection removal

2.1 Introduction

Photographing a scene behind a transparent medium, most commonly glasses,

tends to be interfered by the reflections of the objects on the side of the camera.

The intended reflection-free image, which we call the transmission image T , becomes

intertwined with the reflection image R, and is consequently recorded as a mixture

image I. The reflections cause annoying image degradations of arguably the worst

kind and make many computer vision tasks, such as segmentation, classification,

recognition, etc., very difficult if not impossible. For a range of important applications,

the separation and removal of reflection image R from the acquired mixture image I

is a challenging image restoration task out of necessity.

A widely adopted and satisfactory model for the formation of the mixture image

is

I = αT + βR + n. (2.1)

where n is the noise term, α and β are the transmittance and reflection rate of the

8
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glass, respectively; they determine the mixing weights of the two component images.

Compared with other image restoration tasks, such as denoising, superresolution, de-

blurring, etc., reflection removal is far more difficult. The underlying inverse problem

is one of blind source separation and it is more severely underdetermined as there

are not one but two unknown images T and R that need to be estimated from the

observed image I. Adding to the level of difficulty is that both component signals T

and R are natural images of similar statistics.

Many researchers have taken on the technical challenge of reflection removal and

proposed a number of solutions for the problem. But the current state of the art

is still quite limited in terms of the performance, robustness and generality. One

approach is the use of specially designed optical devices, such as polarizing filters, to

obtain a series of perfectly aligned images with different levels of reflections for layer

separation [15]. Although such optical devices make the reflection removal problem

easier to tackle, they incur additional hardware costs, reduce light influx, and have

limited scope of applications. Thus, many techniques use multiple images of the

targeted scene taken from slightly different viewing positions instead to get varied

reflections [16, 17]. However, as these techniques require accurate image registration,

they are only applicable when the imaged objects are relatively flat and not in motion.

Ideally, a reflection removal algorithm should work with a single mixture image,

albeit a daunting task. Some attempts have been reported in the literature on single-

image reflection removal [18, 19]. In these papers, the authors adopted the image

formation model of Eq. (3.1) and formulated the problem as the decomposition of the

observed mixture image I into two components T and R of different characteristics.

In order to separate the reflection from the transmission, they all made some explicit

assumptions about the reflection image R so it can be distinguished from the trans-

mission image T . For instance, Shih et al. proposed to use the double image caused by

9
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Figure 2.1: The proposed reflection removal technique separates reflections from a
given reflection-interfered image (left) and outputs a clean image (upper right) without
the reflection artifacts. The technique also employs adversarial loss to preserve the
naturalness of the output.

the two surfaces of the glass to identify reflection [20]. But unless the camera is close

to the glass, the double image effect is too insignificant to be useful. Other techniques

also try to exploit the smoothness and sparsity of the reflection layer [21]. However,

transmission image can have smooth and sparse regions as well, making these priors

non-discriminative.

Apparently, the task of single image reflection removal has been greatly hindered

by the inability of conventional statistical models to separate reflection and transmis-

sion images. We humans can, on the other hand, mentally separate the two images

although being visually disturbed. The difference lies in that humans can perform

the separation task largely relying on the coherence of high-level semantics of the

two images, while existing models cannot. This suggests that machine learning is a

sensible and promising strategy for overcoming the persistent difficulties in removing

reflections based on a single mixture image. Furthermore, the machine learning ap-

proach, with properly chosen training data, can also circumvent the obstacle of grossly

ill conditioning in solving the problem directly using the image formation model of

Eq. (3.1), in which the number of unknowns greatly exceeds the number of equations.

10
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In this paper, instead of using an explicit model like most existing techniques, we

propose a data-driven approach based on deep convolutional neural network (CNN)

for removing reflections in a single image as shown in Figure 2.1. Similar to many

CNN based image restoration techniques for problems like inpainting, denoising and

superresolution, the proposed approach recovers a reflection-free image from a given

image by learning an end-to-end mapping of image pairs with and without reflec-

tions. To fully exploit the fact that the reflection image, the addictive “noise” to

be removed, is also a natural image as discussed previously, we design a novel three-

stage deep encoder-decoder network that first estimates the reflection layer and then

reconstructs a high quality transmission layer based on the estimated reflection and

perceptual merits. Due to the difficulty of obtaining a sufficiently large set of real

image pairs for training the neural network, we carefully model the physical forma-

tion of reflection and synthesize a large number of photo-realistic reflection-tainted

images from reflection-free images collected online. Extensive experimental results

show that the neural network can generalize well using only synthesized training data

and significantly outperform other tested techniques for real-world images.

2.2 Related Work

Many existing reflection removal methods rely on two or more input images of the

same scene with different reflections to estimate the transmission layer. To obtain

such images of varied reflections, several photography techniques can be used. Some

reflection removal methods employ polarizing filter to manipulate the level of the

reflections [22, 23, 24]. The physically-based method proposed by Schechner et al.

shows the advantages of using orthogonal polarized input images [25]. Kong et al.

further improve this idea by exploiting the spatial properties of polarization [15].

11
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Similar to polarizing filtering, flash lighting [26, 27] and defocus blurring [28, 29]

can help generate images with varied reflections without moving the camera as well.

Keeping the camera relatively stationary is crucial to the efficacy of these device-based

reflection removal techniques, as if the objects behind the glass are also not in motion,

the only changing components among the input images are the reflections while the

transmission layer is invariant.

There are also many multi-image techniques that exploit the motion of the camera

as a cue for reflection removal. These techniques first align the objects in a series of

images taken from slightly different viewing positions and then separate the invariant

layer as the reflection-free image [30, 16]. To align images interfered by reflections,

Tsin et at. [31] and Sinha et al. [32] use efficient stereo matching algorithms. Guo

et al. exploit the sparsity and independence of the transmission and reflection layers to

improve the robustness of image alignment [33]. Off-the-shelf optical flow algorithms

are also employed for aligning images [17, 34]. With motion smoothness constraints,

optical flow techniques can be more accurate and robust for the layer separation task

[35, 36]. For the cases where the camera is stationary while the objects are moving,

the reflection layer is relatively static and must be handled differently [37, 38].

If only one image of the scene is given, which is the case tackled by this thesis, the

task of reflection removal becomes much more challenging. Only a few single image

reflection removal techniques have been reported in the literature. Many of these

techniques still rely on some extra information provided by light field camera [39, 40]

or the user [41, 42]. One of the first attempts to solve the problem without any user

assistance is [18], which minimizes the total amount of edges and corners in the two

decomposed layers of the input image. Akashi et al. [43] employ sparse non-negative

matrix factorization to separate the reflection layer without a explicit smoothness

prior. The work of Li and Brown [21] assumes that the reflection layer is smoother

12
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than the transmission layer due to defocus blur and hence has a short tail gradient

distribution. With a similar smoothness assumption for the reflection layer, Fan et al.

[19] use two cascaded CNN networks to reconstruct a reflection reduced image from

the edges of the input image. Arvanitopoulos et al. [44] formulate the reflection

suppression problem as an optimization problem with a Laplacian data fidelity term

and a total variation term. Wan et al. [45] combine the sparsity prior and nonlocal

prior of image patches in both the transmission and reflection layers together. They

further increase the effectiveness of the nonlocal prior using image patches retrieved

from an external dataset. The work of Shih et al. [20] takes advantage of ghosting,

the phenomenon of multiple reflections caused by thicker glass, and decomposes the

input image based on Gaussian mixture model (GMM). To deal with reflections from

eyeglasses in frontal face image, Sandhan and Choi [46] exploit the bilateral symmetry

of human face and use a mirrored input image as another input of varied reflections.

For more detailed review on the existing techniques for reflection removal, we refer

readers to two excellent surveys [47] and [48].

2.3 Preparation of Training Data

The proposed technique recognizes and separates reflections from the input image

using an end-to-end mapping trained by image pairs with and without reflections.

The effectiveness of our technique, or any machine learning approaches, greatly relies

on the availability of a representative and sufficiently large set of training data. In

this section, we discuss the methods for collecting and preparing the training images

for our technique.

To help the proposed technique identify the patterns of reflections in real-world

scenarios, ideally, the training algorithm should only use real photographs as the

13
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training data. Obtaining an image with real reflections is not difficult; we can capture

such a mixture image I, as in Eq. (3.1), by placing a piece of reflective glass of

transmittance α in front of the camera. The corresponding clean image T of the same

scene is also attainable using the same camera setup but without the glass. However,

training images collected using this scheme have several non-negligible drawbacks and

limitations. First, it is almost impossible to get a pair of images that are perfectly

aligned. Even with a tripod that stabilizes the camera, the motions of objects within

the scene can still cause misalignment between two images captured consecutively.

Furthermore, due to the effects of refraction, the glass shielding the scene shifts

the path of light transmitting through the glass and can also lead to the alignment

problem. By the reflection formation model in Eq. (3.1), these differences introduced

by the misalignment between the mixture image I and its reflection-free counterpart

T can be seen as a part of the noise term n, where

βR + n = I − αT. (2.2)

Since the noise introduced by misalignment has similar characteristics as a natural

image, it is difficult to accurately distinguish the noise n from the reflection image

βR. As a result, a training algorithm could erroneously attribute part of the noise

n as the effects of the reflection βR, interfering the learning of the true reflections.

Similarly, regional illumination changes between a pair of images can lead to the

increase of structural noise in training data as well. Although it is possible to reduce

these adverse effects by carefully shooting only static scene from a stationary camera

or using thinner reflective glass with small refraction, these methods greatly limit the

flexibility and practicality of collecting real images as training data.

Due to the unavoidable limitations discussed above and the prohibitive cost of

14



M.A.Sc. Thesis - Zhixiang Chi McMaster - Electrical Engineering

building a large enough training set of real images, we use synthetic images con-

structed from images collected online for training instead. The main idea of the

synthesis process follows the physical reflection formation model in Eq. (3.1), which

interprets a reflection-interfered image I as the linear combination of two reflection-

free natural images T,R. The formation model, however, cannot be applied directly

to most of the JPEG-compressed images available online. The reason is that, to take

advantage of human’s non-linear light sensitivity, JPEG images have to be gamma

corrected before being stored on camera, hence their pixel values are not linear to

the light intensities captured by image sensor. Consequently, the direct summation

of two gamma-corrected images does not conform the physics of light superposition

as required by Eq. (3.1), resulting unrealistic reflection-interfered image. To correct

this problem, we can either only use raw image or apply inverse gamma correction on

the collected JPEG images, as follows

X = (X ′)1/γ, (2.3)

where X ′ is a gamma corrected image and X is the corresponding light intensity

image. The gamma correction coefficient γ for each color channel is often available in

exchangeable image file format (EXIF) segment attached in each JPEG image. In the

following discussion, we still use the linear formula as in Eq. (3.1) and assume that

all the pixel values are restored to the raw light intensity readings from image sensor.

To accurately simulate the formation of reflection-interfered image, we also con-

sider the blur effect in the reflections. In many real images, the focal planes of the

camera are on the objects behind the glass rather than the reflected objects, since

what behind the reflective glass are normally the objects of interest. As a result,

reflections are often blurry due to the defocus effect [21, 19]. To reflect this common
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Figure 2.2: Samples of synthesized images. The synthetic training set contains images
with blurred, sharp and double reflections.

effect in the training data, we blur some reflection image R with a Gaussian kernel G

of random variance before superimposing it into a synthetic image IB, as follows,

IB = αT + βR ∗G (2.4)

Since the reflected objects can be in focus as well in practice, synthetic images with

sharp reflections are also included in the training set.

In addition to the reflection blurring, we also consider the double reflection effect

in synthesized image. Double reflection effect is formed due to the reflections from

the two surfaces of the reflective glass [49]. This reflection effect can be simulated

by convolving the reflection image R with a random kernel K with two pulses of

amplitude 1 and α2, where α is the transmittance [20]. Combining the blurring

and double reflection effects together, we arrive at a generic formula for synthesizing

reflection-interfered image I.

I = αT + βR ∗G ∗K. (2.5)

Shown in Figure 2.2 are some samples of the synthesized images.
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Figure 2.3: The left is the residual learning from [2] and the right is the proposed
method

2.4 Proposed Method

2.4.1 Network Architecture

Similar to many deep learning based image restoration techniques, the proposed

reflection removal method adopts the basic architecture of a convolutional encoder-

decoder network [12]. The ultimate goal of our method is to find an optimal end-to-end

mapping T ′ = F (I) from a reflection-interfered image I = T ′ +R′ to its transmission

layer T ′, where R′ is the reflection layer of I. The transmission layer T ′ = αT is a

glass-free image T of the targeted scene attenuated by α, the transmittance of the

reflective glass in image I, as in the training data synthesis formula Eq. (2.5). Since

the reflection layer R′ is likely weak and smooth in comparison with T ′ [21, 44], T ′

should be similar to I in pixel values. Therefore, it is easier to optimize mapping

T ′ = F (I) than to optimize the mapping from I to T directly, even if transmittance

α is known to the network. Once the solution to the transmission layer T ′ is given, it

is trivial to restore a realistic reflection free image T from T ′.

Another option is to train a residual mapping from image I to its reflection layer

R′ = I − F (I). Since R′ is relatively flat, the optimization of the residual mapping

should be very effective. Residual learning has set the state of the art for many dif-

ferent image restoration problems [13, 50, 2]. However, none of the existing residual
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Figure 2.4: Architecture of the used convolutional auto-encoder with symmetric short-
cut connection.

learning networks suits the characteristics of the reflection removal problem. In most

residual learning techniques, the residual is the missing detail to be recovered and

added back to the input image, while in our case, the residual is unwanted reflection

that should be subtracted from the input. Furthermore, residual learning tends to

emphasize on the fidelity of the recovered residual as the loss function is normally

applied on the residual. But for the reflection removal problem, as long as the re-

covered transmission layer has reduced interference and looks natural, the restoration

quality of the reflection layer is irrelevant. Due to these limitations, it is difficult to

get satisfactory results for reflection removal by using residual learning directly. Thus,

we place a residual learning based reflection recovery sub-network at the middle of

our end-to-end mapping T ′ = F (I) network, in order to exploit the efficiency of resid-

ual learning without affecting the output quality. The analogy of our method to the

residual learning is shown in Figure 2.3

The proposed network consists of 12 convolutional layers and 12 deconvolutional

with one rectified linear unit (ReLU) following each of the layers. The left graph of

Figure ?? shows how ReLU works.The convolutional layers are designed to extract and

condense features from the input, while deconvolutional layers rebuild the details of

reflection-free image from feature abstractions. Overall, the architecture of proposed
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conv2 conv4 conv6 Input

deconv2 deconv4 deconv6 Reflection

deconv7 deconv9 deconv11 Transmission

Figure 2.5: Sample feature maps at different stages of the network. These feature
maps show that the network is working as intended in each stage.
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Figure 2.6: The topology of a single shortcut connection.

Negative slope

Figure 2.7: Rectified linear unit (ReLU) and leaky rectified linear unit (leaky ReLU).
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encoder-decoder network can be divided into three stages:

1. Feature extraction. The 6 convolutional layers in this stage extract features

for both transmission and reflection layers as illustrated in Figure 3.2. The

outputs of the convolutional layers are shown in the first row of Figure 2.5.

2. Reflection recovery and removal. In this stage, the first 6 convolutional

layers and following 6 deconvolutional layers are set to learn and recover reflec-

tion. Additionally, to preserve the details of the reflection layer better, two skip

connections are added in the second stage to inherit the features learned from

previous convolutional layers [12]. The topology of skip connection is illustrated

in Figure 2.6. As shown in the second row of Figure 2.5, by minimizing the error

of the output against the ground-truth reflection, this stage preserves only the

features of the reflections and removes the transmission layer gradually from the

input. At the end of this stage, the extracted reflection features are removed

before deconv 7, the seventh deconvolutional layer, by using an element-wise

subtraction [51] followed by a ReLU activation max(0, conv 6−deconv 6).

3. Transmission layer restoration. The reflections might not be removed com-

pletely after previous stage by simply subtracting the estimated reflection, as

shown in the last row of Figure 2.5. Thus, this stage tries to restore a visually

pleasing transmission image from the reflection subtracted image. To achieve

this goal, 6 deconvolutional layers are used to recover transmission layer from

the features of the targeted scene.

For image classification tasks, pooling layers are necessary as it extracts main

abstract features that are crucial for final decision [2]. However, as the redundant

information increases the difficulty for deconvolutional layers to recover the image
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Figure 2.8: Illustration of VGG 19 perceptual loss

[12], pooling layers are omitted in our reflection removal network. Another important

factor that affects the performance of our encoder-decoder network is the size of the

convolutional kernel. To make the network learn the semantic context of an image,

we employ relatively large kernels (5 × 5). But if the input image contains double

reflections of large disparity, we find a larger kernel (9× 9) for the first convolutional

layers (conv 1 and conv 2) and the last deconvolutional layers (deconv 11 and deconv 12)

is necessary to achieve the best performance.

2.4.2 Loss functions

Content and perceptual loss

In many neural network based image restoration techniques, such as denoising

[52], debluring [53] and super resolution [50], the networks are commonly optimized

using mean square error (MSE) between the output and the ground truth as the loss
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function as follows,

L`2 = ‖F (I)− αT‖22 + ‖FR(I)− (1− α)R‖22, (2.6)

where, in our case, F (I) and FR(I) correspond to restored transmission and reflection

layers. However, a model optimized using only `2-norm loss function often fails to

preserve high-frequency contents. In the case of reflection removal, both the reflection

and transmission layers are natural images with different characteristics. To get the

best restoration result, the network should learn the perceptual properties of the

transmission layer. Inspired by [54, 55], we employ a loss function that is closer to

high-level feature abstractions. Based on Ledig et al. [13], the VGG loss is calculated

as the `2-norm of the difference between the layer representations of the restored

transmission T ′ = F (I) and the real transmission image αT on the pre-trained 19

layers VGG network proposed by Simonyan and Zisserman [10]:

LVGG =
M∑
i=1

1

WiHi

|φi(αT )− φi(F (I))‖22 (2.7)

where φi is the feature maps obtained by the i-th convolution layer (after activation)

within the VGG19 network; M is the number of convolution layers used; and Wi and

Hi are the dimension of i-th feature map. In our model, the feature maps of the first

5 convolution layers are used (M = 5) to build the perceptual loss. The illustration

of VGG 19 loss is shown in Figure 2.8

Figure 2.9 presents some of the results from two reflection removal models trained

with loss functions in Eqs. (2.6) and (2.10) respectively. As shown in the figure, the

output images (3rd column) from the model trained with the mixed loss function as

in Eq. (2.10) is much cleaner and closer to the ground-truths (4th column) than those
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Figure 2.9: From left to right: input reflection-interfered images, network optimized
for `2-norm loss, network optimized for both `2-norm and VGG losses, the ground-
truth transmission images.

output images (2nd column) from the model trained solely with `2-norm loss as in

Eq. (2.6).

Adversarial loss

To reduce any objectionable restoration artifacts and bring the restored image

closer to natural images, we follow the idea of the two-player minimax game in [14]

and employ a discriminator network DφD which optimizes the following problem:

min
φF

max
φD

EαT∼pdata(αT )[logDφD(αT )] + EI∼pdata(I)[log(1−DφD(FφF (I))]. (2.8)

The discriminator network DφD is a trained classifier that estimates the likelihood of

an input being a real reflection-free image or a restored image. If a well-trained DφD

cannot easily differentiate the output of the proposed reflection removal network from

real reflection-free images, then the output should look natural and free of artifacts.

Thus, in addition to the interlayer feature loss of VGG, we also include the naturalism
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loss based on the probability of DφD(F (I)) as:

Ln = −
∑
i

logDφD(FφF (I)) (2.9)

The discriminator network DφD consists of five convolution layers followed by a fully

connected layer and a softmax activation. Following each convolution layer are a

batch normalization layer and a LeakyReLU layer with negative slope coefficient 0.2.

The filter size is set to 5× 5 with stride 2. The number of feature maps doubles after

each convolution layer from 64 to 512.

The final loss of our model is calculated as weighted sum of VGG interlayer feature

loss and naturalism loss:

L = L`2 + λ1LVGG + λ2Ln, (2.10)

where λ1 and λ2 balance the contribution from each portion.

2.5 Experiments

2.5.1 Data Preparation

To simulate the scenarios where reflections interfere the formation of images, 2303

images from the indoor scene recognition dataset [56] and 2622 street snap images

[57] are collected online. We choose the images of natural landscapes and images

taken inside a mall as the reflections. Leaves could create sparse shadow on the

window interfering the transmission image, and the lights from a shop sign create

strong and sharp reflection, which are also extremely common in real life reflection-

interfered images. To ensure the size of training dataset and avoid over-fitting, each
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Figure 2.10: Comparison of reflection removal algorithms using synthetic images.

transmission image is synthesized with 18 randomly chosen reflection images using

Eq. (2.5). To simulate the different blurriness of the reflections, the variance of the

Gaussian blur kernel is selected randomly from 1 to 5. The transmittance α is also

a random number between 0.75 to 0.8 for each synthetic image. Before generating a

synthetic image, the transmission layer is resized to 128× 128, whereas the reflection

layer is randomly cropped from a large reflection image and then resized to 128×128.

The reason for this step is that the reflected objects are normally far away from the

glass, as a result, larger objects in the reflection scene appear relatively smaller in the

reflection-interfered image. Finally, all the synthesized images are split into a training

set of 66540 images and a testing set of 22110 images.

2.5.2 Network Training

The training of the end-to-end mapping network T ′ = F (I) can be seen as solving

the following optimization problem,

min
θF

1

N

N∑
n=1

L(F (In), αTn) (2.11)
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where θF denotes the weights and biases of the network, N is the size of training set

and L is the combined loss functions defined in Eq. (2.10). We set 64 filters for all

the convolutional and deconvolutional layers and λ1 and λ2 are set to 10−3 and 10−4

respectively. The network is optimized by Adam optimizer [58] with a learning rate

of 10−4 and β1 = 0.9, batch size is set to 64 to accelerate the training process. All

the experiments, including the following performance evaluation, are conducted on a

computer with a Intel i7-6700K CPU, 16GB RAM and a NVidia Titan X GPU.

2.5.3 Evaluation

Figure 2.10 shows some results of the proposed method in comparison with the re-

sults of two state-of-the-art reflection removal techniques [44] and [19] using synthetic

data. It is expected that the proposed method outperforms the compared techniques

in this case, as our network is trained with images generated by the same data syn-

thesizer. For real-life images collected by us or provided by the authors of [44], the

results of proposed method are still the best among the tested techniques, as shown

in Figure 2.11. The technique in [19] relies on the smoothness prior of the reflection

image. However, in cases where the assumption is not true, as exemplified in the

sample images, [19] could even enhance the reflections, making the results worse than

the inputs. Our method, on the other hand, does not require the reflection image to

be smooth; it works well even if the reflection is in focus and sharp. The problem of

[44] is the severe loss of details in its output, resulting unnatural looking image. In

the cases where the reflections are much stronger than the transmission layer, none

of the tested algorithms can yield satisfactory results.

Reported in Table 2.1 are the PSNR and SSIM results of the tested techniques. In

addition to the synthetic images, we tested benchmark sets provided by the authors

27



M.A.Sc. Thesis - Zhixiang Chi McMaster - Electrical Engineering

Input [44] [19] Ours

Figure 2.11: Comparison of reflection removal algorithms using real images.
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Figure 2.12: Comparison of reflection removal algorithms using real images.29
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[44] [19] Ours
PSNR SSIM PSNR SSIM PSNR SSIM

Synthetic Images 22.15 0.8455 22.14 0.8396 29.85 0.9303
Postcard Set [48] 21.05 0.8602 21.29 0.8692 22.53 0.8743

Solid Object Set [48] 22.36 0.8327 24.00 0.8669 24.93 0.8808

Table 2.1: PSNR and SSIM results of tested techniques using synthetic images and a
benchmark dataset.

of [48]. Our method achieves the highest average PSNR and SSIM in these tests. The

running times of the proposed method are comparable to other deep learning based

image restoration techniques. The proposed method takes around 0.6 s to process a

128× 128 image and 2 s to process a 512× 512 image.

2.6 Conclusion

The task of removing reflection interference from a single image is a highly ill-posed

problem. We propose a new reflection formation model taking into the consideration

of physics of digital camera imaging, and apply the model in a deep convolutional

encoder-decoder network based data-driven technique. Extensive experimental results

show that, although the neural network learns only from synthetic data, the proposed

method is effective on real-world images.
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Chapter 3

Joint demosaicking and deblurring

3.1 Introduction

In consumer photography applications, objectionable blur artifacts caused by the

shake of handheld camera is often unavoidable. The movement of the imaged sub-

jects further complicates the blur problem. As shown in [59], the blur artifacts can

significantly degrade the performance of an image processing technique that is tuned

only for clear images. Therefore, it is important to clear up a blurry image not

only for viewing pleasure but also for the accuracy of many computer vision applica-

tions. Deblurring algorithms can be categorized into two streams, non-blind and blind

deblurring. The former is to recover sharp images with known blur kernels, whereas

blind deblur methods simultaneously estimate the blur kernel and latent sharp image.

Early deblurring methods focused on idealistic spatial-invariant blur or blur caused

by simple translational/rotational motion. However, in practice, blur comes from

various sources, such as depth variation, object motion and camera shake, and it is

highly non-uniform. Due to the large number of unknown variables to the deblurring

problem, it is extremely challenging to get a good estimate of the latent sharp image,
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especially in non-uniform blur cases. Nevertheless, most of the deblurring techniques

are built on the blur image degradation model as follows [60, 61]:

Y = X ~K +N, (3.1)

where ~ denotes convolution operation, Y is the blurred image, X is the sharp and

clean image, and K, N are blur kernel and unknown noise respectively. Additionally,

these techniques often rely on some explicit assumptions on blur kernels or image

statistical priors in order to make the under-determined inverse problem tractable.

These assumptions, however, might not hold in real-world scenarios, causing new

artifacts in the deblurred image.

Recently, convolutional neural network (CNNs) based techniques have made great

progress for various computer vision problems including blind deblurring. For in-

stance, [5, 62] restore sharp images directly from the blur images without learning

explicit motion blur estimation; [63, 64, 65] learn the complex non-linear mapping be-

tween blur and sharp images through extensive training pairs; [63, 64] train networks

on synthetic images and generalize well on real-world situations; [5] creates a training

set by taking average on consecutive frames from videos captured in dynamic scene

and does not need any degradation model.

The majority of cameras are designed to retain only one of primary colours per

spatial pixel location by placing a colour filter array (CFA) in front of the sensor

array. The most wildly used CFA is Bayer pattern which keeps twice green as red

and blue as shown in Figure 3.1. The process of inferring two missing colours for

each pixel in the mosaicked image to get the full RGB colour image is commonly

referred as demosaicking. Demosaicing is one of the first and key components in the

pipeline of camera image processing. Common demosaicking techniques, especially the
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Figure 3.1: Mono-CCD technology outline, using the Bayer Colour Filter Array [3].

ones implemented in cameras, use some simple interpolation methods to estimate the

missing colours from the surrounding pixels. These techniques often cause moire and

zigzagging artifacts near edges, adversely affecting the performance of other computer

vision operators, such as image restoration, classification, segmentation etc.

Demosaicking and deblurring have been studied in depth independently over the

last a few decades. However, as we show in this chapter, demosaicking artifacts can

greatly deteriorate the performance of a deblurring technique, thus, a good strategy

is to tackle the two problems jointly. In this chapter, we propose a novel network

architecture for joint demosaicking and deblurring.

3.2 Related Work

3.2.1 Demosaicking

To estimate the true colour image, early works use different interpolations to fill

in the missing colours [66]. These methods are easy to implement, but are also prone

to severe artifacts and false colour near the high frequency areas. Since there are

more green pixels in a Bayer CFA, many techniques try to improve the green channel
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estimate accuracy near the high frequency areas. Edge-adaptive methods can yield

better solution by demosaicking along edges instead of crossing them [67, 68]. Heide

et al. [69] proposed a flexible end-to-end camera image processing system (FlexISP)

to solve image reconstruction problems using natural priors via joint optimization.

Recently, Gharbi et al. [70] proposed a deep neural network based method trained

with a large dataset. This method yields better results than traditional methods.

3.2.2 Deblur

Conventional blind deblur algorithms require additional assumptions or priors on

image statistics to restrict the solution space. [60, 61] modeled non-uniform blur

caused by camera shake and parametrized blur kernels to recover sharp images iter-

atively. Chakrabarti [63] built a CNN to find Fourier coefficients of a deconvolution

filter to restore image patches and them estimate a global blur kernel to restore the

observed blurry image. Nah et al. [5] stacked modified residual blocks to build a

multi-scale CNN to mimic coarse-to-fine approaches. They claimed that latent sharp

images in coarser scale provide crucial features that can help deblurring in finer scale.

Ramakrishnan et al. [62] proposed a generative model based on generative adversarial

network (GAN) and densely connected network to tackle the blind non-uniform blur

removal problem. The network was designed to make independent decision for every

convolutional unit based on the entire lower level activations.

3.2.3 Joint application multi-tasking

It has been shown that jointly solving multiple tasks in image processing pipeline

can achieve superior results. Gharbi et al. [7] proposed a neural network architec-

ture to solve demosaicking and denoising. They first extracted four colours in Bayer
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Figure 3.2: Architecture of proposed joint demosaicking and deblur neural network.

pattern to form a 5D tensor with an additional Gaussian noise term. The network

is specialized to exploit the structure of Bayer pattern but also generalizes well on

non-Bayer patterns. Zhou et al. [71] jointly solved demosaicking and super resolu-

tion in a single step using deep residual network. To match the Bayer structure and

also consider the neighboring information, they set the first convolutional layer with

kernel size 4× 4 and stride 2. The proposed method successfully generated artifacts

free colour high-resolution images from Bayer low-resolution images. Yoo et al. [72]

tried to solve demosaicking and deblurring simultaneously. Their technique first es-

timates the edge direction and edge strength from Bayer domain and then performs

edge adaptive deblurring and edge-orientated interpolation from the estimated edge

information.

In this chapter, we introduce a deep leaning architecture to perform end-to-end

mapping between Bayer blurry images to colour sharp images. The network consists

of a subnetwork to perform deblurring recursively in a coarse-to-fine manner. To the

best of our knowledge, we are the first to address joint demosaicking and blind deblur

using deep learning techniques.
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Figure 3.3: Residual blocks. The left one is the original one proposed by [2] and the
right one is the modified residual block.

3.3 Proposed method

The proposed technique is a single end-to-end neural network that recovers colour

and sharp images from blurry images recorded in Bayer pattern. The technique

employs a novel demosaicking module which contains four separate convolutional

layers applied on different structures of Bayer pattern respectively. With large amount

of training data, the network is able to learn the colour of each pixel accurately without

using explicit model of Bayer patterns. The network can then generate correct colour

sharp images with a recursive multi-scale debur module in a coarse-to-fine fashion.

[13, 2, 5] successfully applied the idea of residual networks to build deeper and

more powerful architectures for various image restoration problems. Since the blurry

image and its ground truth are similar in pixel values, it is essential to learn only

the residual between each two layers. The significant features can be inherited by

identity mapping. In the proposed technique, we employ stacked residual blocks to
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Figure 3.4: 3x3 structures in Bayer pattern

build the network. Like [5], we do not use the activation function in residual block after

shortcut and we also omit the two batch normalization layers as shown in Figure 3.3.

Batch normalization layer is not necessary in our method as we are using small mini-

batch size during training. As each normalization layer consumes a large amount of

GPU memory, as much as a convolutional layer, it is more cost-effective to remove

normalization layer and invest the resource into building a deeper and larger network

instead.

3.3.1 Demosaicking Module

In Bayer images, only one colour, red (R), green (G) or blue (B), is sampled for

each spatial pixel location. The Bayer pattern is repetitive in the unit of a 2 × 2

window, where each window contains 2 green, 1 blue and 1 red pixels. As we can see,

there are four different 3× 3 structures in Bayer pattern; each has one of four colours

at the center as shown in Figure 3.4. [7, 70] rearranged colours in the mono-channel
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Bayer image to form a 4D quarter-resolution tensor at the beginning of the network.

[71] claimed the neighboring colours also may also effect the results. They performed

colour extraction in the first convolutional layer by setting the filter size to 4× 4 with

spatial stride 2.

We apply four branches of convolutional layers on the independent Bayer struc-

tures separately. Each branch contains 32 (3× 3) kernels and is only responsible for

convolving with the same Bayer structure centered at one of the ′GRBG′ pixel as

illustrated in Figure 3.2. The center of the kernels is the spatial location under the

consideration for demosaicking. The neighbors of the centered pixel are crucial as

they provide correlated information to estimate the missing values. In the first layer,

each branch takes one exact colour and estimates the other two with its eight local

neighbors. After that, the feature maps are concatenated to form a 128-channel ten-

sor. The next 8 residual blocks as described above extract the features non-linearly.

Convolution on the concatenated feature maps achieved information sharing among

all the Bayer structures. Thus, the network has wilder receptive field and better

colour estimation accuracy than the existing techniques.

To implement this, the Bayer input of dimension n×n is pre-paded with one extra

pixel on the border while maintaining the Bayer pattern. Before first convolution, each

branch extracts n×n slice starting from one of the coordinates: [0, 0], [0, 1], [1, 0], [1, 1].

The purpose is to align the center of the kernels with one specific colour for each

branch. During the convolutions, padding is not used and spatial stride is set to 2 to

ensure every kernel is convolved with the same structure. After the first layers, the

spatial dimension is decreased to n
2
× n

2
.
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Figure 3.5: Patch recurrence across scales in sharp images [4].

3.3.2 Deblur Module

Cross-scale recurrence property indicates that redundant patches recur across scale

in sharp images as shown in Figure 3.5. This property has been successfully applied

in blind super-resolution [73]. [4] borrowed that idea and the fact that blurriness

diminishes at coarser scales of the image. They claimed that sharper image patches

maintain the similar structures in coarser scale blur image. They have shown that the

patches in coarser image scales can be served as a stable patch prior for deblurring.

Thus, it is relatively easier to perform deblurring in coarser scale.

[5] adopted the coarse-to-fine approach, and designed a three-scale network to

recover sharp images in different resolutions. Finer scale stage inherits the property of

the recovered latent sharp images in coarser scale. However, two flaws are presented

in the network: i) The network for each scale level is doing the same work which

brings redundancy to the whole network. ii) Degraded images with various degree of

blur require networks trained on different number of scale levels. The networks have

to be re-trained from the beginning. The training process is time consuming and

computationally expensive as the number of convolutional layers increases linearly

with the number of scale levels.

To tackle the aforementioned problems, we propose a subnetwork to perform the
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coarse-to-fine approach recursively. As indicated in Figure 3.2, the subnetwork takes

two inputs: a blurry image and its latent sharp image in half of its resolution. The

output of the subnetwork is a sharp image of the same size as the blurry input image.

Generally speaking, the low-resolution latent sharp input has the full low-frequency

structures of the image, and it also preserves some of the high-frequency informa-

tion, useful for the reconstruction of the full-resolution image. In the subnetwork, the

latent sharp image is first fed through a convolution layer then followed by a upcon-

volution layer [74]. The image is then concatenated with the blurry image followed

by a convolution layer to convert them to feature maps. After that, the subnetwork

employs 25 stacked ResBlocks as described above to generate the output sharp im-

age. Spatial resolution is preserved with zero-padding throughout the subnetwork.

Our intention is to use the same subnetwork to perform deblurring at different scale

levels. Compared with [5] where 40 convolution layers are used for each scale level,

our recursive subnetwork uses 54 convolution layers, regardless of the number of scale

levels. For instance, if there are 3 scale levels, the proposed network only needs less

than half of the convolution layers used by [5]. Additionally, to add more scale levels

for more severe blur, we can simply cascade the subnetworks without training the

whole network.

Shown in Figure 3.2 is the architecture of the proposed network for joint demosaicking-

deblurring. The outputs of mosaicking module and subnetwork are concatenated. The

concatenated tensor contains inferred chrominance as well as high-frequency informa-

tion in intensity. It is then fed to a convolutional layer followed by 20 ResBlocks. The

last layer outputs sharp colour images. We set 12 filters for convolution layers before

the sub-pixel upsampling layer [74]. The upsampling layer efficiently reshapes the

tensor of shape H×W ×C into a tensor of shape r ·H×r ·W × C
r2

, where r represents

the up-sampling factor. The up-sampling factor r is set to 2 in our method. We set
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128 filters for convolution layers in ResBlocks in demosaicking module and 64 filters

for those that are not specified. Small kernels (3 × 3) are employed throughout the

whole network. Although in each subnetwork, the size of the convolution kernels are

small, the combined network still has a large effective receptive field that is excellent

for dealing with very blurry images, thanks to the coarse-to-fine multi-scale structure.

3.3.3 Loss Functions

Many supervised learning based image restoration techniques employ mean square

error (MSE) between the restored image and ground truth as the loss function[12]. In

the proposed multi-scale network, each subnetwork also uses MSE loss, as the network

is aimed to produce images as close to the ground truth as possible at every scale level.

We define the content loss function as follows:

L`2 =
I∑
i=1

1

hiwici
‖Fi(Bi, θ)− Si‖22 (3.2)

where Bi and Si are training pairs of blurry and sharp images. Function F (B, θ) is the

CNN parametrized by θ. I denotes the total level of scales used in the network. The

loss is weighted by the total number of pixels hiwici. However, using MSE alone tends

to result overly smoothed images with significant loss of high-frequency information

[75]. Moreover, the MSE of a slightly blurry image is already low in general, making

further optimization by MSE difficult. To restore sharper edges and get perceptual

satisfying results, we need additional comparison in structure. Inspired by [55], we

employ a loss function that compares features in high-level abstraction to compensate

the drawbacks from MSE optimization. As defined as follows, the loss function takes

the Euclidean distance between feature maps in a pre-trained CNN of the ground
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truth and restored image,

Lvgg =
1

hi,jwi,j

Wi,j∑
x=1

Hi,j∑
y=1

(φi,j(F (B))x,y − φi,j(s)x,y) (3.3)

where φi,j are the feature maps generated from a pre-trained VGG-19 network [10]

at ReLU 4 4 layer. Scalars Hi,j and Wi,j are the corresponding height and width.

Overall, the loss function used for training the network is a weighted average between

MSE and VGG interlayer perceptual loss:

L = L`2 + λLvgg, (3.4)

where λ is empirically set to 2× 10−6 in our experiments to balance the two portions

of losses.

3.4 Experiments

3.5 Experiments

3.5.1 Training Data Preparation

Half of the image pairs for training the proposed network come from the Go-

Pro dataset [5]. In this dataset, each blur image is synthesized by averaging several

successive frames from 240 fps video clips captured by a GoPro camera, and the cor-

responding sharp group truth image is the middle frame in the sequence. Using this

method, we can obtain a large amount of paired training data without modelling blur

kernels. The drawback is that, coming from a video clip, the ground truth images are
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Figure 3.6: Demosaicking and deblurring results on different datasets. The first row
are results on two images taken from GoPro dataset [5]. The rest are from Lai et al.’s
dataset [6]. From left to right, the shown results are Matlab + [5], [7] + [5], proposed
multi-scale method, proposed recursive multi-scale method and ground truth.
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Figure 3.7: Demosaicking and deblurring results on different datasets. The first row
are results on two images taken from GoPro dataset [5]. The rest are from Lai et al.’s
dataset [6]. From left to right, the shown results are Matlab + [5], [7] + [5], proposed
multi-scale method, proposed recursive multi-scale method and ground truth.
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often not sharp enough, as a result, the network cannot properly learn the high fre-

quency features of sharp images from such a non-ideal training dataset. In addition,

this datasse contained limited number of scenes and that may lead to network over-

fitting. To alleviate this problem, we also synthesize training data from the DIV2K

dataset [76] using non-uniform blur kernels with a method similar to [77].

The DIV2K dataset contains 900 high-quality images with different types of scenes.

From the dataset, we extract colour patches of size 256 × 256, and resample them

to Bayer pattern images. These Bayer pattern images are then pre-padded to size

258× 258 and used as the inputs to the finest level. For the coarser levels, the colour

patches are used directly, as the demosaicking problem has been solved in the first

level and all the images are now in full colour. To get more data, we also perform

data argumentation by flipping and rotating the blur kernels. In total, 0.22 million

training pairs of Bayer pattern blurry and sharp images are produced.

3.5.2 Training Details and Evaluation

Loss functions MSE
Scale levels I = 1 I = 2 I = 3 I = 4

PSNR 27.0591 27.8193 28.2261 28.3373
SSIM 0.8756 0.8899 0.8959 0.9004

Loss functions MSE+VGG
PSNR 26.9725 27.8335 28.2907 28.4663
SSIM 0.8719 0.887 0.894 0.9033

Table 3.1: Progressive results of multi-scale recursive subnetwork on GoPro dataset
[5].

In our experiment, we train the subnetwork recursively using 3 scale levels. If

more scale levels are necessary in the testing phase, we can simply stack more of the

trained subnetwork together without retraining the whole network. In the testing

phase, the PSNR and SSIM performances of the network generally increase with the
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GoPro dataset [5]

Measure Colour + [5] Matlab + [5] [7] + [5]
Ours (multi-scale)

I = 1 I = 2 I = 3
PSNR 29.0570 26.1923 26.8237 26.4943 29.3 29.3812
SSIM 0.9106 0.8618 0.8663 0.8672 0.9133 0.9135

Köhler dataset [77]
PSNR 24.5376 22.3496 24.2043 23.831 24.234 24.5675
SSIM 0.8517 0.7937 0.8399 0.8424 0.85 0.8558

Table 3.2: PSNR and SSIM results of previous techniques on GoPro dataset [5] and
Köhler dataset [77].

GoPro dataset [5]

Measure
Ours (multi-scale + recursive)

I = 1 I = 2 I = 3 I = 4 I = 5
PSNR 26.3177 27.4621 29.0395 29.4134 29.3061
SSIM 0.8677 0.8828 0.9121 0.9176 0.9156

Köhler dataset [77]
PSNR 23.7651 23.8505 23.9787 24.8294 24.9083
SSIM 0.8447 0.8457 0.8464 0.8613 0.8625

Table 3.3: PSNR and SSIM results of the proposed method on GoPro dataset [5] and
Köhler dataset [77].

number of scale levels. Even though the network is trained recursively using 3 scale

levels, it performs better when we use 4 scale levels in the testing phase. As 4 scale

levels have already offered 24 = 16 scale factor, the blur in the downsampled image

is negligible, hence the benefit of adding more levels in the testing phase is marginal.

Shown in Table 3.1 are the results of the network evaluated using the GoPro dataset.

As demonstrated in the table, the VGG perceptual loss can also slightly improve the

results.

As there is no existing joint deep learning based joint demosaicking and deblurring

technique in the literature, we cascade state-of-the-art deblurring algorithm [5] and

demosaicing algorithm [7] together and solve the problem in two steps. The deblurring

algorithm [5] uses a 3-scale-level network, which is retrained using the same training
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Figure 3.8: Filter coefficients for linear interpolation [8].
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data as our technique. To further investigate effects of demosaicking to the second

step deblurring, we also test the Matlab build-in function demosaic as a demosaicking

operator, due to its similarity to the algorithms used by common cameras. The Matlab

function uses simple linear interpolation, which can be implemented efficiently with

low-power hardware. The filter coefficients for this function is shown in Figure 3.8.

The deep neural network based demosaicking approach [7] can also deal with noise.

To reduce the interference from the denoising part, we turned this function off in

our experiments. We also trained a non-recursive version of our method as in [5].

We set 14 residual blocks for each coarser scale level so that the total number of

parameters is similar to the recursive method. The recursive network is trained using

4 levels: demosaicking module plus 3 stacked subnetworks. We adopt the trained

subnetwork from experiments of Table 3.1, it is then fine tuned during the training of

the whole network. The pixel value of input images are scaled between range [−1, 1].

All convolutional layers are activated by LeakyReLU with negative slope equals to 0.2

except the output layers use tanh activation. T he right graph of Figure 2.7 shows

how LeakyReLU works. The network is optimized by Adam optimizer [58] with mini-

batch size 4. We set the initial learning rate to 10−4 and reduce to 10−5 when the loss

plateaus. All the experiments are implemented with Tensorflow library on a computer

with a Intel i7-6700K CPU and a NVIDIA Titan X GPU.

We report three separate networks for non-recursive method, each uses different

number of scale levels as [5]. As for our recursive method, we report 5 number of

scales levels using the same subnetwork recursively. All methods are evaluated and

compared on the following benchmarks:

GoPro Dataset [5]: This dataset contains blurry images generated by averaging

consecutive sharp frames in videos captured by GoPro. 634 images are used for

testing and the rest are used to generate training data. The PSNR and SSIM results
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are reported in Table 3.2 and Table 3.3. When demosaicking and deblurring are

solved in sequence, the performance of the deblur model deteriorates because of the

induced artifacts by demosaicking. Deep learning based demosaicking is ineffective

in improving either PSNR or SSIM. For our multi-scale methods, more stages results

in higher PSNR and SSIM as expected. The recursive method yields the best results

when the number of scale levels equals to 4.

Köhler dataset [77]: The authors recorded 6D camera trajectories to simulate

the blur over 4 latent sharp images, each image is blurred by 12 different kernels.

The quantitative results are reported in Table 3.2 and Table 3.3. Similar results are

observed as in GoPro dataset: the joint method performs better than the sequential

methods. It is notable that, unlike the results on GoPro dataset, the proposed recur-

sive method has the highest PSNR and SSIM values when the number of scale levels

is 5.

To investigate the degradation from demosaicking process, deblurring algorithm

[5] is performed directly on colour images. The results can be found in the first

column of Table 3.2. As shown in the table, given Bayer pattern input, our technique

still outperforms deblurring [5] on full colour images. This demonstrates the great

effectiveness of our technique.

Some sample images are provided in Figure 3.6 and Figure 3.7. Since the blurry

and ground truth images are not aligned in Lai et al.’s dataset [6], we only report

qualitative results. The first row contains the testing cases from GoPro dataset and

the rest of the rows are from Lai et al.’s dataset. As shown in the results, the tested

two demosaicking methods bring different impacts to the same deblur model. Matlab

recovers colour images using simple interpolation and generates severe artifacts such

as zigzagging and false colour. Those artifacts will be accumulated as they are not

typically observed as dominated noise in blurred images. A better demosaicking
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method alleviates those problems by passing reduced noises to the next stage, as

referred to the second columns in Figure 3.6. But, the performance highly depends

on how the demosaicking model is trained. In some cases, it interferes the deblurring

operator more than the Matlab method. The proposed recursive method produces

more visually pleasing results than the non-recursive version.

3.6 Conclusion

Two non-invertible tasks, demosaicking and deblurring, have been studied ex-

tensively and independently in the literature. However, treating the two problems

separately often results severe artifacts accumulation. To combat this problem, the

proposed technique works on blurry Bayer pattern images directly. Extensive ex-

periments show that the joint demosaicking and deblur method gives better results

compared with alternative solutions.
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Chapter 4

Conclusion

Various common types of image degradations, such as sensor noise, downsam-

pling, motion blur, etc., can greatly affect the visual quality of an image. For many

image processing and computer vision applications, it is imperative to digitally inverse

the degradation processes and restore high fidelity images from the degraded versions.

However, most image restoration problems are ill-posed; there are often countless pos-

sible solutions that yield the same degraded image. In order to find the best one of the

solutions, conventional approaches generally rely on some image degradation models

and image statistical priors to limit the solution space. Unfortunately, these explicit

assumptions pertaining to the degradation processes and image statistics are often

too simplistic and idealistic out of engineering necessity. As a result, conventional

approaches often perform poorly in real-world scenarios with complex or compound

degradations or both.

In comparison, the newly emerged data driven approach, DCNN, is potentially

more robust for real-world image restoration problems. Without employing any ex-

plicit degradation models, DCNN based techniques learn the mapping from a degraded

image to its corresponding clean image through a large number of such sample pairs.
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Given sufficient training data, a well designed DCNN technique can generalize well

on images that are statistically similar to the training data.

Armed with the deep learning techniques, in this thesis, we tackle two image

restoration problems: single image reflection removal and joint demosaicking and de-

blurring. For the former problem, we propose a new reflection formation model for

generating synthetic photo-realistic images as training data, and we design a three-

stage convolutional encoder-decoder network to remove reflections. The feature maps

in each convolutional layer for the trained encoder-decoder network show that each

stage is working as intended. For the second problem, we proposed recursive multi-

scale network to solve demosaicking and deblurring jointly in a coarse-to-fine manner.

The network explores the information on four independent Bayer structures. Com-

bining with a subnetwork that performs deblurring process recursively, the network is

able to produce high fidelity images from blurry Bayer images. Extensive experimen-

tal results show that the proposed methods outperform other state of arts for both

applications.
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