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Abstract

Dust grains are a crucial component of disks around young stellar systems where
current observations and theory show that planets form. Dust grains must grow 10
orders of magnitude in size to become planets. However, one of the early steps in this
growth phase faces stringent theoretical constraints. The metre barrier relates to two
well-studied physical mechanisms which inhibit grain growth beyond centimetre sizes.
We report on numerical studies which probe these early stages of planet formation
including instabilities that promote dust concentration such as the streaming instability
(SI). We explore several different SPH models for dusty gas evolution. We find the
linear SI is difficult for SPH to capture because it begins with perturbations below the
1% level. We also employ the Athena 3rd order Eulerian code which has been used to
study the SI in the linear phase and the non-linear or saturated phase. We present
numerical confirmations of recent analytical predictions of enhancements to the SI
growth rates caused by the dust settling to the disk midplane in the earliest stages
of the protoplanetary disk evolution. Symmetric analytical predictions for SI growth
are not directly relevant to the non-axisymetric, planar geometry of the saturated,
non-linear phase. We lay the ground work to explore this in future work.
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Chapter 1

Introduction

The presence of small, micrometre sized grains of solid material in the space between
stars can be inferred by the extinction of observed starlight due to absorption by
the dusty, solid material (Draine 2003). Observations in the infrared spectrum have
demonstrated that dust is a major contributor the mass present in young stellar
systems. It is widely accepted that planets form directly in the dynamic environments
which surround these young stellar objects (de Pater and Jack J. Lissauer 2010). The
mechanisms by which small dust grains become planets are poorly constrained, and
this presents one of the fundamental problems in modern astrophysics.

1.1 Dust observations
The degree of the extinction of starlight caused by dust is highly dependent on the
frequency of the light being observed (Draine 2003). Weingartner and Draine (2001)
discuss a model grain size population distribution that recreates observed peaks in the
extinction spectrum. They conclude that grains in the ISM are primarily 0.1-1 µm in
size (see Figure 1.1), if the grains are modelled as spheres whose size is characterized
by one length scale.

Spectral features from absorbed, scattered, and emitted light from dust grains,
as well as meteorite samples, provide information on the chemical composition of
the interstellar dust grains. Evidence suggests the major contributors to the grain
population are silicates and carbonaceous compounds such as graphite. Polycyclic
aromatic hydrocarbons (PAH’s) are large molecules made of numerous carbon rings,
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and they contribute strongly to emission and absorption in the 3-15 µm wavelength
band, which interferes with parts of the dust grain spectra and makes it difficult to
distinguish which features in this waveband are due to dust grains (Draine 2003).

Figure 1.1: Differential population distribution of grain sizes dngr/da in the ISM, from
a model presented in Weingartner and Draine (2001). This figure is reproduced from
Weingartner and Draine (2001) with permission. The particle size, a, is plotted on the
x-axis. Note the scale of the y-axis: the distribution is multiplied by a4, as the overall
distribution is dominated by a a−4 power law. nH is the number density of H nuclei.
The top panel is for a model of dust grains that are composed of silicates, and the
bottom panel is for carbon-based grains.

Dust emits thermally in the infrared spectrum, and young stellar objects (YSO’s)
exhibit an excess of infrared spectrum intensity when compared to the intensity one
would expect from a lone early star (see Figure 1.2 here, and Greene et al. (1994),
Andre et al. (2000)). The spectral energy distributions (SED) from YSO’s match
emission models for a pre-main sequence star embedded in a circumstellar disk of dusty
material (Adams et al. 1987). Thus the evidence suggests that compact envelopes
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of dust surround these young stars, and they are of sufficient mass to dominate the
infrared emission.

Early observational research surrounding these objects lead to a classification of
YSO’s based on the power-law slope of the infrared excess emission. These classes
are interpreted as an evolutionary sequence which YSO’s follow, where the material
surrounding the young, pre-main sequence star transitions from a large, enveloping
shell of dust to a developed, flattened circumstellar disk, and then to a thin, dispersed
disk that does not provide much excess infrared radiation in the SED of the young
star (Kenyon et al. (1993), Calvet et al. (1994)).

Figure 1.2: Observed spectrum of the young stellar object SU AUR in Taurus from
Adams et al. (1987), reproduced with permission. The triangular points represent
observational data, the dashed line shows a reddened black body, and the solid is the
model developed in Adams et al. (1987) that includes emission from a circumstellar
disk.

Some studies have imaged YSO’s with circumstellar disks in the Orion nebula with
the Hubble Space Telescope (Bally et al. (2000), Smith et al. (2005)). Many of these
objects are surrounded by bright ionization fronts that are around 100 AU in size, and
may also display dark, silhouettes that can be as wide as 1000 AU. At the time, these
object were referred to as proplyds. Some of these silhouettes display a noticeable disk
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shape, and suggest the presence of large a disk of dust grains orbiting these young
stars and blocking their optical light, creating the dark silhouettes.

The Atacama Large Millimeter/submillimeter Array (ALMA, ALMA Science Portal
(2018)) has given the observational community a high level of spatial resolution in the
infrared spectrum that was previously entirely inaccessible. With ALMA, one can
resolve dust structures in these YSO circumstellar disks. Recent observations have
made protoplanetary disks (PPD’s) one of the hottest topics in astronomy. A selection
of ALMA observations of PPD’s is provided in Figure 1.3. This specific selection was
chosen to highlight the variety of shapes present in some of these PPD’s.

Figure 1.3: Observations of protoplanetary disks with ALMA. From left to right: TW
Hya at 0.87 mm, Andrews et al. (2016); Elias 2-27 at 1.3 mm Pérez et al. (2016),
HD 142527 at 0.87 mm Kataoka et al. (2016). All figures are reproduced here with
permission.

The magnitude of the drag force applied to a dust grain as it moves through the
gaseous disk will depend on the size of the dust grain. Thus, the dust structures that
form in PPD’s may vary with grain size. The PPD accompanying the star MWC758
has been imaged in the optical spectrum by the SPHERE instrument on the Very
Large Telescope (Benisty et al. 2015) and at 0.87mm recently by ALMA (Dong et al.
2018). The two observations (provided in Figure 1.4) show how grains of different
sizes are distributed differently in MWC758. In protoplanetary disks, ALMA observes
dust grains near 1mm in size at the midplane of the disk, which emit thermally in
the infrared spectrum. Scattered optical light (which is imaged by SPHERE in the
Benisty et al. (2015) study) typically tracks smaller grains that exist at the surface
layer of the protoplanetary disk. Dong et al. (2018) discuss the differences between
the two images, which may be caused by projection effects or the difference in the
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drag force for grains of different sizes.

Figure 1.4: Observations of the protoplanetary disk MWC758. Left. ALMA 0.87 mm
continuum emission (Dong et al. 2018). Right. 1/r2 scaled SPHERE 1 µm polarized
scattered light image (Benisty et al. 2015). The left panel is reproduced from Dong
et al. (2018) under the Creative Commons Attribution 3.0 licence. The right panel is
reproduced from Benisty et al. (2015) with permission.

The data presented in these ALMA images hint that planets may form early in these
disks and play a central role in the dynamics that follow. They may be responsible for
creating the gaps in the dust structure and the asymmetrical features that have been
observed by ALMA.

1.2 Exoplanet Observations
To date, nearly 4,000 planets external to our own solar system have been detected
(Exoplanet Archive 2018). Most of these exoplanetary systems contain worlds which
are very different in character from the planets we are familiar with. Figure 1.5 shows
the distribution of discovered exoplanets according to their orbital period and mass.

6
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Figure 1.5: Distribution of confirmed exoplanets according to their orbital period and
mass retrieved from Exoplanet Archive (2018), and reproduced here with permission.
The mass data represent the product Mplanet sin i, where i is the angle of inclination
from the line of sight to the orbital plane of the exoplanet-star system and is generally
not known. The data are coloured by the observational technique used to discover
them. Note: error bars have been omitted to reduce clutter. Some data points in this
figure have significant uncertainties.

The general distribution of the planetary characteristics in Figure 1.5 is worth
discussing in further detail, as it may contain clues about the nature of the planet
formation process, and whether it may favour the production of planets of a particular
size at a particular orbital radius over others. First, we will briefly introduce the main
observational techniques used to discover exoplanets and the biases present within
each technique. A more complete overview of these methods is available in Fischer
et al. (2014).

The first Jupiter-mass planet around a Sun-like star was observed using the radial

7



M.Sc. Thesis — Josef J. Rucska McMaster University — Physics & Astronomy

velocity method (Mayor and Queloz 1995), which probes the emission spectra of stars
for a signal that would signify a periodic wobble in the radial (line of sight) velocity of
the star that could be caused by gravitational interactions with a planetary companion.
However, this method is biased towards discovering high mass planets with short
orbital distances to their star, as this would produce the largest possible signal.

For the 15 years that followed the first exoplanet discoveries, the radial velocity
(RV) method proved to be the most efficient mechanism for discovering new planets;
only a dozen or so exoplanets had been discovered using transits by 2007 (Charbonneau
et al. 2007). A transit occurs when an exoplanet passes between its star and an
observer, which results in the partial obstruction of the starlight by the planetary
surface. With a sufficiently sensitive instrument, a periodic dimming of the star’s
brightness can be measured, leading to the conclusion that a non-luminous body
(in optical wavelengths) is orbiting this star. NASA’s Kepler Space Mission which
launched in 2009 was designed to make use of transits to search for Earth-sized planets
orbiting Sun-like stars (Borucki et al. 2010). The Kepler mission planned to monitor
150,000 stars for several years, and was capable of unprecedented photometric precision
(J. J. Lissauer et al. 2014). As of August 2017, nearly 4,500 exoplanet candidates have
been discovered by Kepler, and two thirds of all confirmed exoplanet discoveries have
come from data collected by this mission.

The transit method for detecting exoplanets is also subject to a set of observational
biases. Exoplanets with large radii will provide the strongest signal during a transit.
Also, numerous orbits for each exoplanet need to be observed in order to confirm that
the star dimming events are indeed due to planetary transits. Hence, the four-year
lifespan of the Kepler mission limits the exoplanetary systems than can be confirmed
to those that experience many orbits in the span of four years.

The data in Figure 1.5 suggests most of the observed exoplanets can be organized
into three major groups: 1) 0.01 to 0.05 Jupiter masses, period of 4 to 12 days; 2) 0.2
to 3 Jupiter masses, period of 1 to 8 days; 3) 1 to 10 Jupiter masses, period 100 to
2000 days. For reference, Jupiter’s orbital period is 4,330 days, Earth’s mass is 0.003
Jupiter masses, and Neptune has a mass of 0.054 Jupiter masses and an orbital period
of 6× 104 days (Williams 2018).

The separation in mass for the planets with an orbital period between 1 and 100
days can be explained by the core accretion model, a theory that suggests gas giant
planets form from a core of rocky material that triggers a hydrodynamic instability
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in the gaseous disc when the core reaches a critical mass (Perri and Cameron (1974),
Mizuno et al. (1978)). The instability enables the rapid infall of gas onto the rocky
core, resulting in a rapid overall mass growth. The specific value of this critical mass
is somewhat disputed in the literature, but it is apparent that it depends on the
protoplanetary disk properties and accretion rates. Rafikov (2006) reports that this
value can be between 0.02 and 0.19 Jupiter masses, for example. The gap between
what we’ve called group 1 and group 2 seems to suggest a deficiency of exoplanets in
the range of 0.05 to 0.2 Jupiter masses. Thus, the core accretion theory is a suitable
explanation for the presence of this particular deficiency in the exoplanet population.
It is unlikely that this gap is due to observational bias, as both group 1 and group 2
exoplanets have primarily been discovered by Kepler via the transit method, and if
0.02 Jupiter mass and 1.0 Jupiter mass planets are observable with this method, then
a 0.1 Jupiter mass planet would presumably be observable as well.

The planets in group 1, in the lower left portion of Figure 1.5, have masses that
roughly range from 3 Earth masses to 1 Neptune mass. A recent study by Fulton et al.
(2017) has demonstrated that the planets within this group can be divided into two
further sub-groups according to their radius (see Figure 1.6 below). These two classes
of planets have thus been dubbed super-Earths and mini-Neptunes. Interestingly, there
are no analogous objects in our solar system, yet dozens of such exoplanets have been
discovered.
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Figure 1.6: Histogram of planet radii from Fulton et al. (2017), reproduced with
permission. The key result from this paper is the gap in the distribution that appears
at around 1.8 Earth radii. This Figure is adapted from their Figure 2, which contains
more panels than the three presented here. Each panel considers a subset of the full
sample (except panel a)), and the presence of the gap in each panel supports the
conclusion that this gap exists for exoplanets of many varieties.

Exoplanets have also been discovered using gravitational microlensing. When and
object such as a star, galaxy, or system of stars and planets, crosses the line of sight
between an observer and background stars, the gravity of the foreground object can
create a pair of images of the source stars (Paczyński 1996). These events are in general
rare and require significant observational infrastructure to be seen. However, even
terrestrial mass planets that orbit at a few AU from their host star can be observed
with this technique (Beaulieu et al. 2006). This is a regime of exoplanet properties
that is currently inaccessible to the RV and transit methods. As can be seen in Figure
1.5, a lone pair of exoplanets have been discovered that have masses between 0.01 and
0.03 Jupiter masses and orbital periods of 2,000 to 3,000 days, and both have been
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discovered via microlensing.
Exoplanets that are sufficiently massive, luminous, and spatially separated from

their host star can actually be observed directly in infrared wavelengths with careful
observational techniques. Marois et al. (2008) present the discovery of 3 exoplanets
with a mass of ∼10 Jupiter masses in orbits with semi-major axes that range from
∼20 AU to ∼70 AU. For reference, Jupiter’s orbital semi-major axis is approximately
5 AU. These planets discovered with direct imaging in Figure 1.5 are the only known
exoplanets with orbits longer than 20,000 years.

The current image of the planetary and exoplanetary zoo may be incomplete, but
the main lesson from the observations of exoplanets is that planetary systems come
in all sorts of shapes and sizes, and our theories of planet formation must be able to
account for this.

1.3 Constraints on Planet Formation
Timelines
Theoretical models for the formation of planets have long been accompanied by well-
documented and widely accepted time constraints for the formation timescale.

One well known constraint is reported in Ribas et al. (2014), which says that
the circumstellar disks observed in young stellar objects (c.f. Section 1.1) only exist
for ∼6 Myr (measured from the time the star formed) before the infrared excess
which is characteristic of a circumstellar disk (c.f. Figure 1.2) is no longer observed.
This imposes an upper limit for the timescale of the formation of giant gas planets,
which must gather their gaseous envelopes from the protoplanetary disk. Not all core
accretion models discussed in the literature at the time of the Ribas et al. (2014)
paper were compliant with this constraint. Figure 1.7 demonstrates one of the main
results from the Ribas et al. (2014) paper, plotting the age of various star forming
regions along with the percentage of stars in those regions that display the infrared
excess which is characteristic of a circumstellar disk (c.f. Figure 1.2).
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Figure 1.7: Fraction of stars in young star clusters that show evidence of a circumstellar
disk as a function of the age of each cluster, reproduced from Ribas et al. (2014) with
permission.

Dramatically more pressing time constraints than 6 Myr are imposed on planet
formation when one considers the interactions between the dust grains and the gas in
protoplanetary disks via aerodynamic drag, however.

The gas motions in a protoplanetary disk are dominated by the gravity of the
central star. Thus, in the absence of any significant external perturbers or large
pressure gradients, the gas will orbit on nearly circular, Keplerian orbits. However,
the gas density will on average decrease as a function of distance from the central star,
leading to a pressure gradient that points radially outwards. Thus, the gas will orbit at
a slightly sub-Keplerian velocity. The dust particles—which do not create or respond
to pressure gradients—will orbit at the Keplerian velocity. This results in the dust
grains experiencing a headwind as they orbit in the disk, pushing them along inwardly
spiralling orbits. For large dust objects that are comparable in size to asteroids in our
solar system, their inertia is sufficiently large that their orbits are mostly undisturbed.
Small, micron sized grains (which compose the dust in the interstellar medium, see
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Figure 1.1) are tightly coupled to the gas via aerodynamic drag, and the terminal
velocity in the radial direction is small. However, for dust objects of a specific size,
near 1 metre, this radial drift effect can be substantial. Weidenschilling (1977) is the
seminal paper on this topic. Two figures from this paper are reproduced here in Figure
1.8. A dramatic conclusion from this study is that metre sized objects which form in a
gaseous disk somewhere between 1 and 8 AU will spiral into the central star in less
than 1,000 years!

This result is one of the components of the so-called metre-barrier, and has presented
a serious issue to the field of planet formation since its inception.

Figure 1.8: Rates of the radial drift of solid material orbiting in a gaseous protoplanetary
disk based on analytical models, reproduced with permission from Weidenschilling
(1977). Assumptions of the gaseous disk properties are inset in each panel. Left. The
velocity of the radial drift −dr/dt as a function of the particle size. The three lines
represent three different values for the intrinsic bulk density of the solid material.
Right. The timescale for solid particles to fall into the central star. The x-axis shows
the radial position that each particle started at in the calculation. The different lines
are for different particle sizes, s.
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Figure 1.9: The consequences of collisions between dust grains in astrophysical en-
vironments according to experiments summarized in Blum and Wurm (2008). This
figure displays a collision between two dust particles, and the size of each particle is
represented on the opposing axes. Blue boxes represent a region of the particle size
parameter space where collisions are always constructive, resulting in larger objects
than the original two; orange represents destructive collisions where the resultant
objects are always smaller; and yellow represents no net size change, such as collisions
where the particles bounce off each other. Reproduced from Blum and Wurm (2008)
with permission.

The other component of the metre-barrier comes from experimental studies and
molecular dynamics simulations of collisions between dust grains. The results from a
suite of such experiments is reviewed in Blum and Wurm (2008), and their summary
figure is copied here in Figure 1.9. This figure presents a parameter space for a collision
between two dust grains, where the size of one grain is on one axis and the size of
the other grain is on the opposite axis. We see that when either of the collisional
objects are beyond approximately 1 metre in size, the net result of any collision is
always destructive. That is, the dusty material that leaves the collision is smaller in
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size than either of the original objects that entered it. It is only in the parameter
space where both objects are in the micron to centimetre range where the dust grains
will stick together and become larger. Early models for the formation of planetesimals
(which are solid bodies with sizes on the order of 1 km), relied on extensive dust grain
coagulation (e.g. Weidenschilling (1980)). The results of the experiments presented in
Blum and Wurm (2008) suggest coagulation alone can only bring dust grains to ∼10
cm in size. The dust grains used in these experiments may not be accurate analogues
for dust grains in nature. Empirical data on the small scale, internal structure of
interstellar dust grains is limited, and assumptions about this structure may affect the
results of such collisional coagulation studies.

1.4 Rapid planetary core growth: pebble
accretion
Recent research on a growth mechanism known as pebble accretion suggests that mm
to cm dust grains—which are referred to as pebbles in the associated literature—may
be the main contributor to the growth of small planetary cores (see Johansen and
Lambrechts (2017) for a review). In short, the pebble accretion mechanism states
aerodynamic drag that acts on pebbles as they approach the vicinity of a small
planetary core will increase the likelihood of those pebbles being accreted by the core.
With the pebble accretion mechanism, planetary cores as small as 0.1% of the Earth’s
mass can grow rapidly and become Earth mass cores or larger. Of course, important
questions remain regarding the origins of these planetary cores, but pebble accretion
permits a novel growth mechanism for the planet formation process. Previous gas giant
planet formation theories (e.g. Pollack et al. (1996)) were built on the assumption of
the existence of a large “ocean” of kilometre sized planetesimals which were accreted
by planetary cores. A major problem that has faced such theories is the lack of a
mechanism which can definitively create so many large solid objects. With pebble
accretion, the population of solid bodies in protoplanetary disks can be a heterogeneous
mix. An ocean of planetesimals is no longer required. We only need enough to produce
a handful of planetary cores. The rest of the dust in the disk can remain as cm and
mm dust grains—which have likely been created from the ISM µm dust grains via
coagulation—and need not form planetesimals.
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1.5 Streaming Instability
An important mechanism first introduced by Youdin and Goodman (2005) known as
the streaming instability (SI) seems to offer a potential pathway for overcoming the
metre barrier problem. We will discuss the machinery of the streaming instability in
detail in Chapter 4, but will explore the results of some of the seminal SI studies in
this section to argue for the potential of this instability to address the metre barrier.

1.5.1 Planetesimal formation

One of the major results involving high resolution, 3D simulations of the streaming
instability is reported in Johansen et al. (2007). With a total dust to gas mass ratio
within the simulation domain of 1%, and an initially disperse distribution of dust, the
authors demonstrate that the streaming instability is able to concentrate the dust
particles into locally overdense regions where the dust mass density is over 50 times
as large as the gas density (see Figure 1.10). Within a few disk orbital times1, the
non-linearly evolving streaming instability produces a turbulent saturated state, where
the maximum dust density no longer increases in time (Johansen and Youdin 2007).
In the Johansen et al. (2007) study, once this turbulent state is reached, self-gravity
is activated in the simulation. The authors want to highlight the ability of the SI to
concentrate the dusty material without the influence of gravitational forces between
the dust. If self-gravity was present from the beginning of the simulation, it would be
difficult to distinguish the relative importance of the SI and gravity in forming clumps
of solid material. When self-gravity is activated in the turbulent steady-state, these
overdense regions quickly collapse azimuthally and form numerous bound clumps of
solid material. In their simulations, one of these clumps contained a similar mass to
that of the dwarf planet Ceres. Figure 1.11 shows the evolution of the surface density
of the dust in the radial-azimuthal plane once self gravity was turned on.

This result supports the idea that the streaming instability can seed planetesimal
formation from initially disperse distributions of small, centimetre sized grains. Once
the dust particles are sufficiently clumped, self-gravity is capable of collapsing these
over dense regions into macroscopic astrophysical objects.

1This concentration timescale depends on the properties of the dust and gas (Bai and Stone 2010b).
A few orbital periods is valid for the grains with the fastest growth timescales.
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Figure 1.10: Maximum dust particle density present in the simulation in Figure
1.11 as a function of the elapsed simulation time. The simulation begins with drag
and vertical gravity turned on at t = −10Torb (where Torb is the orbital period).
Initially, the maximum dust to gas density ratio is near 1%. The streaming instability
creates overdense regions that saturate at max(ρp/ρgas) ∼ 50, and when self-gravity is
activated, the maximum observed density increases dramatically. Reproduced from
Johansen et al. (2007) with permission.
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Figure 1.11: Gravitational collapse of over dense dust clumps into bound clumps in
high resolution, 3D simulations of dust and gas in a shearing box, from Johansen et al.
(2007), reproduced with permission. A gas cell resolution of 2563 is used with 8× 106

dust particles. The x and y axes of each image are the radial and azimuthal position,
respectively, in units of the gas scale height. The colour represents dust surface density.
In the middle of the figure, four panels shows the distribution of the different sizes
of grains used simultaneously in their simulation. The inset in the frames displays a
zoom-in of the highest mass clump, which reaches a similar mass as Ceres by the end
of the simulation.
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1.5.2 Multiple grain sizes

The Johansen et al. (2007) study discussed in the previous section did not consider a
large range of particle sizes, and only used grains which span approximately an order
of magnitude in size. Bai and Stone (2010b) use a very similar simulation set-up to
Johansen et al. (2007), but do not consider the effects of self-gravity on the saturated,
non-linearly evolving states. The main objective of this study was to investigate
the differences in the aerodynamic interactions of different sized grains within the
turbulence generated by the SI. We will only discuss a subset of their simulation suite,
with some of the results reproduced here in Figures 1.12 and 1.13.

In order to provide context to the results of this study, we must define the parameter
τs, which is dimensionless, and is represented by,

τs = tsΩ (1.1)

where ts is the drag stopping time. The strength of the drag force that dust grains
experience is characterized by ts. Here, Ω is the Keplerian angular velocity which
has units of inverse time. The stopping time ts scales linearly with the grain size
(for grains pebble sized and smaller), thus, in numerical experiments, τs is typically
the parameter which is varied in order to control the grain size and consequently the
strength of the drag force experienced by the grains. Johansen et al. (2007) used
the notation Ωkτf to represent τs. We see from the middle panel of Figure 1.11, the
authors used four different values for τs in their study: 0.25, 0.5, 0.75 and 1.0.

Small grains with a small τs will be tightly coupled to the gas, and large dust
objects which are not tightly coupled will have large τs. Thus motions of the small
grains will not deviate much from the motions of the gas, and the large inertia of
large dust objects will result in their motions being mostly Keplerian and only slightly
modified by the effects of the drag from the headwind they experience orbiting in
the disk. Grains with an intermediate size which corresponds to τs ∼ 1, however,
experience a relatively large perturbation from their Keplerian orbit due to the drag
force. Johansen et al. (2007) used grains with τs ∼ 1 because the effects of the SI are
most pronounced for grains with a size that corresponds to this value.

These simulations from Bai and Stone (2010b) presented here used 7 different
particles sizes corresponding to the range τs = 10−4 and τs = 10−1. The sizes were
chosen to be equally spaced out in a log scale across this range. The colours represent
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the different sizes, and going from largest to smallest follow the order: black, green,
blue, pink, cyan, yellow, red. Figure 1.12 shows the position of the particles in 3D and
2D simulations, and Figure 1.13 shows the scale heights of each particles species over
time. Three different dust mass fractions were used, corresponding to 1%, 2% and 3%
of the total gas mass.

We can see from the particle plots in Figure 1.12 that these smaller grains—which
are less aerodynamically perturbed than the τs = Ωkτf = 1 grains from the Johansen
et al. (2007) study—do not form dramatically clumped dust regions like the τs = 1
grains. The black grains, which have a size near τs = 0.1, are the only grains that form
significantly dense filaments. In the 2D simulations with higher dust mass fractions,
the particle scale heights are much smaller. This is also apparent in the plots of the
particle scale height over time in Figure 1.13. Note that the y-axis scale in each row is
different.
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Figure 1.12: Particle distribution plots of the SI simulations from Bai and Stone (2010b)
that have reach the saturated, non-linearly evolving stage. This figure is reproduced
from Bai and Stone (2010b) with permission. The colours represent different grain
sizes, and going from largest to smallest follow the order: black, green, blue, pink,
cyan, yellow, red. Seven different particles sizes in the range τs = 10−4 and τs = 10−1

are used. The top panels are for the 3D simulations, and the bottom panels are for
2D. The labels Z1, Z2, and Z3 in the simulation naming convention refers to dust to
gas mass ratios of 1%, 2%, and 3%, respectively.
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Figure 1.13: Particle scale heights over time for the simulations in Figure 1.12. This
figure is reproduced from Bai and Stone (2010b) with permission. The colours represent
different grain sizes, and going from largest to smallest follow the order: black, green,
blue, pink, cyan, yellow, red. Data from the 2D simulations are represented by solid
lines, data from the 3D are represented by the dashed lines. The labels Z1, Z2, and Z3
in the simulation naming convention refers to dust to gas mass ratios of 1%, 2%, and
3%, respectively.
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1.6 Thesis overview
This thesis will discuss our research on the early stages of planet formation, where
millimetre sized dust pebbles must grow to become kilometre sized planetesimals.
However, there is an entire field of research dedicated to studying the late stages of
planet formation. Some of the studies in this field involve investigating the gravitational
interactions between formed planets and a large disk of planetesimal bodies (e.g.
(Thommes et al. 2002), (Capobianco et al. 2011)). These interactions may be required
to explain the organization of the planets in our solar system, such as the position of
the large bodies Neptune and Uranus at large radial distances from the sun.

Numerical simulations provide a controlled environment where the behaviour of
protoplanetary disks and the formation of planetesimals can be studied. The field of
numerical simulations which incorporates hydrodynamics and aerodynamic interactions
between gas and dust is relatively young, and the remainder of this thesis will report
on our assessment and investigation of the state of the art numerical techniques
and what we can learn by applying them to simulations of protoplanetary disks. In
Chapter 2, we will discuss the two main mathematical models that are used to describe
coupled dust-gas systems. In Chapter 3 we will discuss how these models can be
implemented in smoothed particle hydrodynamics (SPH), and the issues facing the
application of these models to full-scale simulations of protoplanetary disks. Noise
present in SPH algorithms impedes the ability of these simulations to evolve small
perturbations. The linear evolution regime of the streaming instability, a proposed
mechanism for overcoming the aforementioned metre barrier to planet formation
which we are interested in studying, requires the ability to numerically integrate such
perturbations. Thus, we decided to use an established Eulerian astrophysics simulation
code to simulate the streaming instability. In Chapter 4 we discuss the streaming
instability in detail including analytical development of expected linear growth rates.
We also discuss our investigation of recent updates reported in the literature via
both analytical work and simulations, discussions of prominent features in the dust
distribution from the non-linearly evolving regime of the streaming instability, and
open questions still facing the mechanism. For example, no serious connection has
been made between the predictions of the analytical linear growth regime results and
the results from the high resolution, 3D simulations of the non-linear regime, and we
believe this is a large open question facing this topic that could provide details about
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the behaviour of the streaming instability in full protoplanetary disks.
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Chapter 2

Modelling Dust

In this chapter we will discuss the mathematical models that we use to describe
an interpenetrating dust and gas fluid. The numerical schemes discussed in further
chapters will be based off the models described here. This discussion will include a
description of the parameters that determine the strength of the aerodynamic drag
interaction between the dust and gas, as well as the dynamical timescales present
in the system and how these timescales guide the time stepping constraints in our
numerical schemes.

2.1 Two Fluid
We can describe a dust-gas mixture as two, interpenetrating fluids, and the equations
governing the motions of these fluids can be written as (Harlow and Amsden (1975),
Monaghan and Kocharyan (1995), Laibe and Price (2012)),

∂vd
∂t

+ (vd · ∇)vd = g + ad −
F drag

ρd
(2.1a)

∂vg
∂t

+ (vg · ∇)vg = g + ag −
∇Pg
ρg

+ F drag

ρg
(2.1b)

∂ρd
∂t

+∇ ·
(
ρdvd

)
= 0 (2.1c)

∂ρg
∂t

+∇ ·
(
ρgvg

)
= 0 (2.1d)
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∂Ud
∂t

+ (vd · ∇)Ud = −Λtherm

ρd
(2.1e)

∂Ug
∂t

+ (vg · ∇)Ug = −Pg
ρg

(∇ · vg) +K(vd − vg)2 + Λtherm

ρg
(2.1f)

where vd is the dust velocity, ρd is the dust density, vg is the gas velocity, and ρg is the
gas density. Here g is the acceleration due to gravity, and ad and ag are accelerations
that individually act on the dust and gas phases respectively due to physics other
than hydrodynamics, gravity and drag, such as magnetic fields. The specific (per unit
mass) internal energy of the gas and dust are given by Ug and Ud respectively, the
K(vd − vg)2 term is the (non-specific) frictional heating energy associated with drag,
and Λtherm is the (non-specific) thermal coupling energy between the dust and the gas
phase1.

In this description we have omitted the buoyancy effects created by the finite size
of the dust particles. Previous studies (e.g. Monaghan and Kocharyan (1995), Laibe
and Price (2012)) have retained these terms in order to develop a general algorithm
for dust-gas mixtures, but in astrophysics the intrinsic density of the dust material is
much higher than the volume density of the dust particles, so we can assume the gas
pressure gradients do not directly impart a force on the dust.

Equation 2.1b demonstrates that a parcel of gas feels a hydrodynamic pressure
(the −∇Pg/ρg term) that is exerted on it by nearby parcels of gas. In contrast, the
dust fluid is pressure-less, and contains no such term. Thus, even in the absence of
more exotic forces that would appear in the ag and ad terms, there will always be a
difference between the net force exerted on the gas and the net force exerted on the
dust.

The drag force F drag can be written simply as,

F drag

ρ(g,d)
= K

ρ(g,d)
(vd − vg) (2.2)

where K is the drag constant. In the Epstein drag regime, where the particle size is
much smaller than the mean free path of the gas (typically valid in astrophysics) and
the gas and dust velocities are subsonic, K is of the form (Epstein (1924), Baines et al.

1For further discussion on these frictional heating and coupling terms, see Harlow and Amsden
(1975) and Laibe and Price (2012)
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(1965), Laibe and Price (2012)),

K = 4π
3

ρdρg
ρgrainsd

√
8
πγ
cs (2.3)

where cs is the sound speed of the gas, γ is the adiabatic index in the typical adiabatic
equation of state P = (γ − 1)ρgUg, where Ug is the gas internal energy, ρgrain is the
intrinsic density of the dust grains and is approximately 2.6 g cm−3 for silicates (Moore
and Rose 1973) and sd is the radius of the dust grains if they are assumed to be
spherically shaped. Note that the above prescription for K is independent of (vd−vg),
so in this case F drag ∝ (vd − vg). In general, K can contain scaling relations with
(vd − vg) and the size of the dust grains that makes the overall scaling of the drag
force with these quantities non-linear.

The material derivative, which considers the time derivative of some quantity R in
the frame moving with a velocity given by V , is represented by,

dR
dt = ∂R

∂t
+ V · ∇R (2.4)

This is a general expression for a frame moving with a constant velocity V , but
for our purposes this velocity will be that of either the gas or the dust fluids. Going
forward, when we write this derivative for dust quantities the velocity used in this
derivative will be vd, the dust fluid velocity, and for gas quantities this will be vg, the
gas fluid velocity. We will not introduce any explicit notation to mark this difference,
but instead rely on the context of each equation to imply which velocity is used.

If we note,
∇ ·

(
ρV

)
= (V · ∇)ρ+ ρ(∇ · V )

and assume no other forces are acting on the system (such as magnetic fields, stellar
winds, etc.), then ad and ag are zero and the complete equations for the interpenetrating
dust and gas fluids become,

dvd
dt = g − K

ρd
(vd − vg) (2.5a)

dvg
dt = g − ∇Pg

ρg
+ K

ρg
(vd − vg) (2.5b)
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dρd
dt = −ρd(∇ · vd) (2.5c)

dρg
dt = −ρg(∇ · vg) (2.5d)

dUd
dt = −Λtherm

ρd
(2.5e)

dUg
dt = −Pg

ρg
(∇ · vg) +K(vd − vg)2 + Λtherm

ρg
(2.5f)

We can see from equations equations 2.5a-b that K must have units of mass density
on time. We can rewrite K to be of the form,

K = ρd
ts

where ts is a dimensional time parameter that characterizes the “stopping time” that
regulates the drag force between the dust and the gas fluids. For the Epstein drag
regime where K is given by equation 2.3, the stopping time is,

ts = 3
4π

ρgrainsd
ρgcs

√
πγ

8 (2.6)

Note that this quantity is dependent on local gas properties like the density ρg
and the sound speed cs, and, crucially, the size of the dust grains sd. As discussed in
Section 1.5.2, it is common to in the context of dust and gas orbiting a young star in
a protoplanetary disk to define a dimensionless stopping time by multiplying ts by the
disk angular frequency Ω.

It is also useful to define a mass ratio between the dust and gas and rewrite the
drag terms using this ratio rather than the dust and gas densities. However, different
conventions exist in the literature for what ratio should be represented. At times the
ratio between the dust and the gas mass is used, and at other times the fraction of the
total fluid mass that is dust is used. We will use both conventions at different sections
in this thesis, so we will define both here with their own symbol.
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We will represent the fraction of the total mass that is dust with ε,

ε ≡ ρd
ρd + ρg

(2.7)

and the dust mass to gas mass ratio, with µ,

µ ≡ ρd
ρg

(2.8)

2.2 One-Fluid
An alternative mathematical description for the two interpenetrating fluids can be
written. Laibe and Price (2014a) refer to this new description as a “one-fluid” scheme,
however, we would like to stress that it is only in a mathematical sense that this
description represents a single, mixed fluid. The physical system being studied is still
two distinct fluids: a gas fluid, and a pressure-less dust fluid.

Following Laibe and Price (2014a), we will implement a change of variables, and
instead of tracking ρd and ρg, we can track the total density ρ = ρd + ρg and dust mass
ratio ε (as defined in equation 2.7). Similarly, instead of evolving vg and vd, we can
follow the differential velocity between the dust and the gas phases, w ≡ vd − vg and
the barycentric velocity,

V bc ≡
ρgvg + ρdvd
ρg + ρd

which is the mass weighted average velocity of the fluid mixture.
We will simply report the results of this rearranging from Laibe and Price (2014a),

who determine the new system of equations to be,

dρ
dt = −ρ(∇ · V bc) (2.9a)

dε
dt = −1

ρ
∇ ·

(
ε(1− ε)ρw

)
(2.9b)

dV bc

dt = −∇Pg
ρ
− 1
ρ
∇ ·

(
ε(1− ε)ρww

)
+ (1− ε)ag + εad + a (2.9c)
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dw
dt = − w

ts(1− ε)
+ (ad − ag) + ∇Pg

(1− ε)ρ − (w · ∇)V bc −
1
2∇

(
(2ε− 1)ρw2

)
(2.9d)

dUg
dt = − Pg

(1− ε)ρ∇ · (V bc − εw) + ε(w · ∇)Ug + ε
w2

ts
(2.9e)

where, as before, ad and ag are accelerations due to physics outside of hydrodynamics,
drag, and gravity, that act on either the dust or gas phase, respectively. Accelerations
that are applied to both fluids are represented by a. In the derivation of these equations
we have assumed that the dust and gas are weakly thermally coupled, so that the
Λtherm term from before is zero.

2.2.1 Terminal velocity approximation

When the stopping time (equation 2.6) is small compared to all other dynamical
timescales in the system, we can assume that the dust rapidly reaches the terminal
velocity set by the local dynamics of the gas (pressure forces, magnetic forces, etc.)
(Youdin and Goodman 2005).

This approximation is valid for large values of K, or, equivalently, small dust grains
(cf. equation 2.3) that are tightly coupled to the gas and feel large drag forces.

In the terminal velocity approximation the relative velocity between the dust and
gas, w, is not explicitly tracked and we say instead,

w ≈ ts

(∇Pg
ρ

+ ∆a
)

(2.10)

and the other one-fluid equations become (Price and Laibe 2015),

dρ
dt = −ρ(∇ · V bc) (2.11a)

dε
dt = −1

ρ
∇ ·

(
ε(1− ε)ρts

(∇Pg
ρ

+ ∆a
))

(2.11b)

dV bc

dt = −∇Pg
ρ

+ (1− ε)ag + εad + a (2.11c)

dUg
dt = − Pg

(1− ε)ρ(∇ · V bc)− εts(
(∇Pg

ρ
+ ∆a

)
· ∇)Ug (2.11d)
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where ∆a ≡ ad − ag.

2.3 Timestepping
When discretizing a system of differential equations, one must take great care in
ensuring that the separation between adjacent points in the discretized domain (i.e.
step size) creates an approximate solution that acceptably reproduces the physical
properties of the real system. Typically, smaller step sizes increase the accuracy of
the approximation, however, when solving these discretized equations using computer
programs, smaller step sizes will require longer computing times. Thus, it is imperative
that the programmer employs the largest possible step size that provides a solution
which is sufficiently accurate.

Consider a differential equation of the form,

∂u

∂t
+ C

∂u

∂x
= 0

where u is a quantity that describes a property in the x-t plane, and C is a constant.
The Courant-Friedrichs-Lewy (CFL) criterion (Courant et al. (1967), LeVeque (2006))
describes the following constraint that is necessary for the stability of the numerical
solution to the above equation,

∆t ≤
∣∣∣∣∆xC

∣∣∣∣ (2.12)

where ∆t is the step size in the t coordinate and ∆x is the step size in the x coordinate.
Differential equations of the above form are common in physics. Particularly,

the continuity equation in fluid mechanics is one such equation, represented here in
equations 2.1c-d. If we consider equations 2.1c-d and fluid with a steady flow described
by a speed cs, then the CFL criterion becomes,

∆t ≤
∣∣∣∣ hcs
∣∣∣∣ (2.13)

where h is the typical 3-dimensional spatial separation between fluid elements.
Equation 2.13 describes a bare-minimum condition that ∆t must comply with2.

For values of ∆t larger than this criterion, the numerical solution is invalid.
2This assumes h is not a tuneable parameter. If it were, then it could be adjusted to ensure the

CFL criterion remains true.
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In the context of astrophysical computer simulations, other time-stepping criteria
can be applied to ensure accuracy in the numerical solution. For instance, for a region
of the simulation where numerical elements are separated in space by h and exposed
to an acceleration a (which could be from a gravitational field, for instance), then one
can write a simple time-stepping constraint of the form (Monaghan 1992),

∆t ≤ η

√
h

a
(2.14)

where η is constant and follows 0 < η < 1.
For aerodynamic drag forces, a simple time-stepping constraint is given by,

∆t ≤ ts (2.15)

where ts is the stopping time (2.6), and is the characteristic dynamical time for the
drag force. For small, tightly-coupled dust grains this becomes a harsh constraint, and
can dramatically slow down computer simulations that include drag physics.

The one-fluid formalism with the terminal velocity approximation (section 2.2.1),
is well suited to tracking dust in this strong drag regime as it removes the physical
dynamics that depend on ts as a timescale and replaces them with an approximation.
An effective dust-gas simulation program would use a two-fluid scheme when ts is
large, and would use a full one-fluid scheme (equations 2.9) or a one-fluid scheme with
the terminal velocity approximation when ts is small.
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Chapter 3

Simulations of full protoplanetary
disks in SPH

Computer simulations employing the numerical method known as smoothed particle
hydrodynamics (SPH) to study the evolution of dust have become prevalent in the
planet formation literature over the past few years. Some studies have attempted to
directly explain the physical origins of features present in ALMA observations of dust
in protoplanetary disks. A few examples of such studies include Dipierro et al. (2015),
who recreated the ring and gap systems in HL Tau, and Price et al. (2018), who
recreated the axisymmetric “horseshoe” shape of HD 142527. SPH has also been used
to study the mechanisms by which planets embedded in dust and gas in protoplanetary
disks can create gaps in the dust distribution more generally (Dipierro et al. 2016),
and how planetesimals and smaller grains of dust can accumulate in the local gas
pressure maxima at the edges of these gaps (Ayliffe et al. 2012). A study published by
Lorén-Aguilar and Bate (2016) reports that toroidal vortices that are created when
the dust grains settle from to midplane of the disk.

One particularly intriguing study from Gonzalez et al. (2017) claimed to have
outlined a mechanism that can overcome the metre barrier problem that faces planet
formation. Their study introduces what the authors refer to as a self-induced dust trap,
which is created when dust drifting radially inward encounters a local gas pressure
maximum. Their description of how these traps are created is as follows: the back-
reaction drag force—the momentum that the dust exerts on the gas, via drag—pushes
the gas outwards, radially, in opposition to the viscous forces which push gas inwards.
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The competition between these two forces enhances the previously existing gas pressure
maximum, which allows even more dust to become trapped and enhance the pressure
maximum even further.

Their suggestion of a new mechanism to form dust traps has interesting implica-
tions for planetesimal formation. Thus, we decided to explore it, which required the
implementation dust-gas models in our own SPH programs. Our collaborators Isaac
Backus and Tom Quinn at the University of Washington have already begun this work
in the highly parallelized SPH code ChaNGa (Menon et al. 2015) which is built
upon the same physics algorithms as Gasoline2 (Wadsley et al. 2017). They had
developed a module for simulating dust according to the one-fluid prescriptions (see
Section 2.2). We decided to try and use this module to explore the results of Gonzalez
et al. (2017) by adapting the code to include the grain growth algorithms described in
the Gonzalez et al. (2017) study.

We discovered that the one-fluid scheme is overly diffusive. This diffusion is a
numerical effect, and artificially limits the ability of the dust mass to clump into high
densities. Also, the one-fluid scheme is best suited for tracking small grains, where
the relative velocities between the dust fluid and the gas fluid is small. The physical
consequences of the Gonzalez et al. (2017) simulations rely on the ability of the dust to
form overdense regions and for the simulation to be able to track the dynamics of large
solid bodies. Thus, we decided we required a two-fluid dust module in ChaNGa,
which was the prescription employed in Gonzalez et al. (2017).

We will begin this chapter with a brief introduction to SPH. We will then discuss
how the one-fluid prescription can be implemented in an SPH formalism, including
the Gonzalez et al. (2017) grain growth model, and a simple test of the algorithm.
We will then discuss the implementation of the two-fluid prescription, and the results
of some tests that reveal the difficulties in using this model to simulate the behaviour
of the dust fluid in full protoplanetary disks.

3.1 Smoothed Particle Hydrodynamics (SPH)
SPH is a numerical particle method for solving the hydrodynamics equations. It is a
Lagrangian method, meaning the equations are solved in the frame of a particle moving
with the fluid. A thorough review of the fundamentals of SPH and early SPH work is
available in Monaghan (1992), and more a recent overview, including a discussion on
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magnetohydrodynamics in SPH, is available in Price (2012).
The fundamental numerical calculation in SPH is the smoothed estimate for physical

quantities at the particle location. The simplest example is the density estimator. For
a particle identified with the subscript a, the estimate is a weighted sum over the
masses of the “neighbours” of a,

ρa(r) =
Nneigh∑
b=1

mbW (ra − rb, h) (3.1)

where the subscript b represents each of the individual neighbours, and there are a total
of Nneigh neighbours. W (ra − rb, h) is the SPH kernel function. For this derivation,
the exact details of the functional form of the kernel are not important, but we note
that it must be a positively-valued function, properly normalized, and Gaussian-like:
spherically symmetric with respect to (ra − rb) and spatially localized.

The parameter h is the SPH smoothing length, which is a measure of the local
numerical resolution and can be estimated in many ways. In the SPH algorithms in
Gasoline and ChaNGa, each SPH particle has the same number of neighbours
Nneigh, and the value of h for each particle will be such that Nneigh particles are
encompassed by the domain of W . Outside of the domain of W , the kernel function is
identically zero.

With this density estimate, we can create an SPH estimator of the acceleration
due to the hydrodynamic force, −∇Pg/ρg (equation 2.5b). The expression for this
force in Gasoline2 is,

dva
dt = −

∑
b

mb

(
Pa + Pb
ρaρb

)
∇aW̄ab(ha) (3.2)

where ∇aW̄ab represents a symmetrized kernel gradient,

∇aW̄ab = 1
2

(
fa∇aW (rab, ha) + fb∇bW (rab, hb)

)
(3.3)

where fa is a correction term of order unity which applies when the smoothing length
h is not constant (c.f. Wadsley et al. (2017)).

Note, equation 3.2 does not include the artificial viscosity term, which is adds
numerical dissipation to provide numerical stability when the code encounters discon-
tinuities with widths that are smaller than the resolution scale (c.f. Wadsley et al.
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(2017)).

3.2 One fluid dust and gas in SPH
The one fluid dust-gas model requires the quantities ε, ρ, V bc, and w to be tracked by
the SPH particles, which now explicitly represent a mixed mass of dust and gas. The
dynamics that govern the motion of these particles are different from gas-only SPH as
well (see section 2.2).

Here, we will only provide an SPH representation of the evolution of the dust to
total mass fraction ε (equation 2.9),

dεa
dt = −

∑
b

mb

(
εa(1− εa)

Ωaρa
wa · ∇aWab(ha) + εb(1− εb)

Ωbρb
wb · ∇bWab(hb)

)
(3.4)

Where Ωa is similar to fa in equation 3.2 and is a term related to the gradient
of the smoothing length. With this expression for dεa/dt, the mass of dust in the
simulation is conserved:

dMd

dt =
∑
a

ma
dεa
dt = 0 (3.5)

3.2.1 Variable grain size

Many of the results presented in the Gonzalez et al. (2017) study depend on their
inclusion of a variable grain size model in their simulation. The size of the dust
grains dictates the strength the of the drag interactions between the dust and the gas,
as the drag coefficient K and consequently the drag stopping time ts both depend
on the grain size (see equations 2.3 and 2.6). Global dust and gas interactions in
protoplanetary disks can vary wildly depending the size of the dust grains involved.
Hence, simulations that include a model that permits this parameter to be a variable
can potentially reveal details about early planet formation that simulations with static
grain sizes cannot.

We developed the capability to include variable grain sizes in ChaNGa, and in
this section we outline the two main components of this model.
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3.2.2 Local grain growth and destruction

Stepinski and Valageas (1996) present a simple model for grain growth via coagulation
that occurs below the numerical resolution scale, and Gonzalez et al. (2017) expand
the model to include the potential for this grain size parameter to decrease due to
destructive collisions. Since this action occurs below the resolution scale or within the
SPH particle, we will refer to it as a “local” effect. The derivatives that guide this
local change in the grain size s are,

ds

dt

∣∣∣∣
local

=

+ε ρ
ρgrain

Vrel Vrel < Vfrag

−ε ρ
ρgrain

Vrel Vrel > Vfrag
(3.6)

where ρgrain is the intrinsic bulk density of the dust grain, ρ ≡ ρd+ρg and ε ≡ ρd/ρ as in
Section 2.1 and Section 2.2. Vrel is another sub-resolution parameter that describes the
average relative velocity between the dust grains themselves, created by gas turbulence.
From Stepinski and Valageas (1996), this parameter is of the form,

Vrel =
√

2α̃
√
τs

1 + τs
cs (3.7)

where α̃ ≡
√

2Ro αss and αss is the Shakura & Sunyaev viscosity parameter (Shakura
and Sunyaev 1973), Ro is the Rossby number, cs is the gas sound speed and τs is the
dimensionless stopping time parameter (equation 1.1).

The Rossby number represents the ratio of the strength of the centrifugal force to
the strength of the Coriolis force. For Ro� 1, the Coriolis force does not significantly
alter motions of the gas from the global rotational flow in the disk, and for Ro� 1
the Coriolis force dominates the local motions of the gas (Zeytounian 1991). The inter-
mediate regime is marked by Ro ∼ 1, and Stepinski and Valageas (1996) emphasizes
as minimum we must have Ro > 3/2 for this local, sub-grid turbulence model to be
self-consistent.

The parameter αss is a dimensionless parameter that characterizes the efficiency
of angular momentum transport due to turbulent motions in gaseous disks. In the
context of protoplanetary disks, this parameter can be used to construct a turbulent
viscosity from dimensional arguments. Following Armitage (2013), we can note the
largest length scale for the turbulent motions is the vertical gaseous scale height, Hg.
Secondly, the speed of the turbulent motions are subsonic, so the largest velocity would
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be the sound speed cs. Thus a turbulent viscosity ν can be defined as,

ν = αsscsHg (3.8)

and in this expression αss is between 10−2 and 10−4 depending on the disk model used.
The parameter Vfrag determines the boundary where collisions are either destructive

or constructive. In reality this value would depend on the composition and structural
integrity (porous, icy) of the dust grains. Gonzalez et al. (2017) explore various values
of Vfrag in their simulation to determine the effects it has on the results.

From section 2.1 we have τs ∝ sd in the Epstein drag regime. This gives Vrel ∝
√
sd/(1 + sd) (holding gaseous properties constant). The form of equation 3.6 guides

the dust grains in the simulation towards a state where Vrel = Vfrag. In the Epstein
drag regime, where Vrel ∝

√
sd/(1 + sd), this means growing or fragmenting towards

one of two specific grain sizes that will satisfy Vrel = Vfrag. This idea is explored in
Appendix A of Gonzalez et al. (2017), and the resulting expression that describes
these grain sizes sfrag are,

s±frag = sdrift

 α̃cs
2

Vfrag
2 − 1±

√
α̃cs

Vfrag

√√√√ α̃cs2

Vfrag
2 − 2

 (3.9)

where sdrift = ρgcs/(ρgrainΩ) is the grain size for τs = 1, Ω is the orbital angular
velocity of the grains.

For a protoplanetary disk with a vertical (out of midplane) Gaussian density profile
characterized by the scale height, Hg, the midplane gas density is given by,

ρg
∣∣∣
midplane

= 1√
2π

Σ
Hg

Note Hg ≡ cs/Ω. Thus for a radial surface density profile given by a power law
Σg = Σ0(r/r0)−1, we have,

sdrift = 46 cm
( Σ0

300 g cm−2

)(
ρgrain

2.6 g cm−3

)−1( r
r0

)−1
(3.10)

Since sdrift and cs depend on disk conditions, for protoplanetary disks where density
and temperature are a function of radius from the central star, the values for sfrag
also change with radius. In Appendix A, Gonzalez et al. (2017) plot sfrag and sdrift
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for the two disk models they studied, and their Figure A1 is provided here below in
Figure 3.1.

Figure 3.1: Radial profiles for sfrag and sdrift in the initial conditions of the simulated
protoplanetary disks studied by Gonzalez et al. (2017), reproduced with permission.
The top panel is for a flat disk, where the surface density does not change with radius,
and the bottom panel is for a disk where the surface density scales with r−1.

As labelled in both panels in Figure 3.1, grains with sizes below and above the
parabolic curves grains will grow, and for grain sizes in the middle of the parabolic
curves grains will fragment. Thus grains below the top half of the curves will attempt
to reach the size described by the bottom curve, and grains outside of the radial extent
of the curves or above the top half of the curves will grow indefinitely, albeit at a
decreasing rate since for large grains with large values of τs, the local growth rate
(equation 3.6) scales as τs−1/2.
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3.2.3 Advection of grain size for one-fluid SPH

In a one-fluid SPH model, when the dust-gas mixture particle exchanges dust mass
with its neighbours as in equation 3.4, the grain size parameter should be modified
accordingly.

We can simply modify the grain size to be an average of the grain sizes from the
SPH neighbours that each particle exchanges dust mass with, and weight the neighbour
sizes by the amount of dust being exchanged in each interaction. For a particle a with
a list of neighbours described by the subscript b, this looks like,

s′a = md,asa +∑
b ∆md,<ab,ba>s<a,b>

md,a +∑
b ∆md,<ab,ba>

(3.11)

where s′a is the value of grain size for particle a on the next time step.
The subscript notation < ab, ba > and < a, b > signifies that the particular dust

mass or grain size that should be used in the sum depends on whether particle a is
giving dust to b, or particle b is giving dust to a.

That is, the grain size that should appear in the weighted sum depends on the
direction of the exchanged dust mass. If a is receiving dust from a neighbour b, then
the sign of the exchanged dust mass, ∆md, will be positive: a’s dust mass is increasing.
In other words, the direction of dust mass transfer is from b to a, so the grain size that
should be used in the sum is sb. We represent the weighted sum of such a transfer
as ∆md,basb. In the opposite scenario, dust is travelling from a to b, so the grain size
that needs to be used in this transfer is sa. Similarly, we represent this transfer with
∆md,absa. Thus we can split the sum in equation 3.11 into two different sums, one for
each of the directions of transfer. This equation becomes,

s′a = md,asa −
∑
b |∆md,ab|sa +∑

b ∆md,basb
md,a −

∑
b |∆md,ab|+

∑
b ∆md,ba

(3.12)

and we have written ∆md,ab as −|∆md,ab| to emphasize that this is a negative value.
When implementing this weighted sum in our one-fluid dust & gas SPH code, we

note that the mass of the dust on each particle md,a is not explicitly evolved, but the
dust mass to total mass fraction ε is. The dust mass that exists on a particle can be
represented by εama where ma is the SPH particle mass, which represents a combined
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dust and gas mass in this formalism. Thus,

∆md,ab = ∆εabma

To compute a ∆ε in code, we first compute an SPH time derivative for ε, dε/dt (as
in equation 3.4), which we will relabel here as ε̇. We then integrate ε forward by one
timestep, ∆t, to get ∆ε. Explicitly,

∆md,ab = ∆εabma = dε
dt

∣∣∣∣
ab
ma∆t = ε̇abma∆t (3.13a)

where the notation ε̇ab signifies that dust mass is being transferred from particle a to
its neighbours b, via a change in ε. Similarly, we have,

∆md,ba = ε̇bama∆t (3.13b)

substituting equations 3.13 into equation 3.11 and rearranging gives,

s′a = (εa −
∑
b |ε̇ab|)sa∆t+ (∑b ε̇basb)∆t

(εa −
∑
b |ε̇ab|∆t) +∑

b ε̇ba∆t
(3.14)

3.2.4 Enforcing physical ranges for dust fraction values

In our one-fluid dust-gas implementation in ChaNGa, we have not added an
appropriate dust-physics based time stepping criterion (c.f. Section 2.3) that would
ensure the numerical stability of the integration for the dust mass fraction ε. In
neglecting to include this times stepping criterion, ε is free to approach non-physical
values when integrated forward in time, such as any value below 0 or above 1. In full
protoplanetary disk simulations, the values for ε in the inner parts of the disk, where
the typical variance of density, temperature, etc. between an SPH particle and its
neighbours is small, the integration for ε remains stable. Recall from equation 3.4 that
the SPH time derivative for ε is,

dεa
dt = −

∑
b

mb

(
εa(1− εa)

Ωaρa
wa · ∇aWab(ha) + εb(1− εb)

Ωbρb
wb · ∇bWab(hb)

)

We can note that the value dεa/dt will take is a weighted average of ε<a,b>(1−ε<a,b>).
Thus if the values of ε amongst the particle a and its neighbours b are similar, then the
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value of the derivative will be within an acceptable range such that εa remains stable.
However, at the boundaries of the disk the variance in the densities is much larger.

To compound this issue, dεa/dt scales inversely with ρ<a,b>, and the densities at the
edges of the disk are the lowest densities in the simulation. This means dεa/dt is free
to approach a very large value, and if the timestep is not appropriately limited, ε will
step beyond physically realistic bounds.

For protoplanetary disk simulations that only span a few dynamical times, this
effect will not impact the simulation domain in the regions that are far away from the
disk edges. This does tell a cautionary tale, however, for studies that use simulations
that span many dynamical times, and those whose results depend on physics that
occurs on the outer edge of the disk, such as the previously mentioned paper by
Gonzalez et al. (2017).

As a fix for ε approaching non-physical values less than 0 or greater than 1, we set
a hard-coded floor and ceiling for ε. If the value for ε at the end of the integration
was outside of the acceptable range, it was simply set to the value at the appropriate
boundary1. This of course invalidates the dust mass conservation that was otherwise
guaranteed by the form of equation 3.4.

An obvious solution to this issue would be to come up with an appropriate timestep-
ping criterion for dεa/dt, as is done with many other derivatives in the simulation
suite. Unfortunately, this would have dire consequences for the computation time
of the simulation, as the temporal integration of the simulation could potentially be
limited by the dust physics that occurs at the edge of the simulation domain, where
the numerical resolution is poor and the physics should not be trusted.

A better solution would be to write an alternative form for dεa/dt that remains
conservative, yet avoids this numerical instability. For this purpose we investigated a
so-called upwinding scheme for ε, and the results of this investigation are presented in
the following section.

1The floor we use is not actually 0, as the computation for the advected grain size (equation 3.14)
scales with ε−1. Hence we use a small, finite value near machine precision such as 10−6.
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3.2.5 Upwinding

From section 3.2, the SPH derivative for the evolution of the dust mass fraction ε in
the one-fluid scheme is,

dεa
dt = −

∑
b

mb

(
εa(1− εa)

Ωaρa
wa · ∇aWab(ha) + εb(1− εb)

Ωbρb
wb · ∇bWab(hb)

)

Through the symmetry of the SPH kernel (equation ??), we can rewrite this as,

dεa
dt = −

∑
b

mb

(
εa(1− εa)

Ωaρa
wa · ∇aWab(ha)−

εb(1− εb)
Ωbρb

wb · ∇aWba(hb)
)

For this section we will rename the second parts of each term to clean up the
notation. We will define two terms, Ga and Gb,

Ga = (1− εa)
Ωaρa

wa · ∇aWab(ha) ; Gb = (1− εb)
Ωbρb

wb · ∇aWba(hb) (3.15)

so that we now have, for a single exchange between particle a and one of its SPH
neighbours b, the dust fraction derivative ε̇ab is,

ε̇ab = −mb

(
εaGa − εbGb

)
(3.16)

It is apparent in this form that this exchange in dust mass fractions is a weighted
sum of the dust fractions for each particle, εa and εb, where the weights are Ga and Gb.

Instead of averaging the two dust fractions, however, we can instead use an
upwinding scheme (Laney 1998) when computing this derivative. As explored in the
previous discussion in section 3.2.3 concerning the transfer of the grain size property s
when dust mass is exchanged, here, we can reconstruct ε̇ab so that the dust mass (maεa)
that is used when computing the derivative will depend on the sign the derivative, or
the direction that dust is being transferred between particles,

ε̇ab =

−εbmb(Ga −Gb), if Ga −Gb < 0

−εama(Ga −Gb), if Ga −Gb > 0
(3.17)

In the top case, ε̇ab is positive valued, so a is receiving dust from b and εbmb is used,
and in the bottom case ε̇ab is negative, a is losing dust mass to b, so εama is used.
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We tested each of the two schemes against a simple settling test, which is designed
to mimic the action of dust settling to the midplane of a protoplanetary disk from
an initially disperse distribution. A collection of one-fluid dust-gas SPH particles was
distributed so that a Gaussian density profile in the z-direction was created, and a
gravitational acceleration in z towards the midplane was applied. Each particle was
given an initial value of ε = 0.099, the size of the dust grain are such that τs � 1,
and as the simulation starts, the dust mass—tracked by ε—falls towards the z = 0
midplane.

In Figure 3.2, we can see a comparison between the shape of the collapsing dust
fraction feature over time. The shape in the upwinding scheme is notably smoother
than in the original scheme, which we will call the arithmetic mean scheme. The peak
is not as high in the upwinding scheme in the final frame, and the sharp, edge features
that exist in the arithmetic scheme are not as pronounced in the upwinding scheme.
The upwinding scheme is certainly more diffusive.

Importantly, the upwinding scheme conserves dust mass much better than the
arithmetic mean scheme with the hard-coded floor and ceiling discussed in the previous
section, as can be seen in Figure 3.3.
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Figure 3.2: Vertical distribution of dust mass fraction ε from the dust settling test.
The results using the upwinding scheme (equation 3.17) are in the left panels, and
the results from the arithmetic average scheme (3.4) are in the right panels. The
numbers inset in each panel represent the elapsed time in the simulation in units of
the Keplerian orbital period. The data for the vertical position of the dust is in units
of the vertical gas scale height.
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Figure 3.3: Conservation of dust mass mε in the upwinding and arithmetic average
scheme. The y-axis represents the total sum of all the dust mass in the simulation,
scaled by the total dust mass in the initial condition.

3.3 Two fluid dust and gas in SPH
To incorporate the two fluid dust-gas model (section 2.1) into an SPH code, another
species of SPH particles for the dust fluid must be created. The dust species and the
ordinary SPH gas species would obey different equations of motion and their own
continuity equation (see equations 2.5).

The primary step to developing an SPH representation of the two-fluid model
involves creating an appropriate expression for the drag term (equation 2.2). We can
write down a simple expression which smooths the drag force with a sum weighted by
the kernel Wai. For the gas particles, this would look like,

(dva
dt

)
drag

= K

ρg
(vd − vg) = ν

∑
i

mi
Kai

ρaρi
(vi − va)Wai(ha) (3.18)

where ν is the number of spatial dimensions in the system. Kai is the drag constant
(e.g. equation 2.3), which in general depends on properties of the gas particle a or the
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dust particles i.
In this expression, and in all other expressions in this subsection, we will denote

quantities belonging to gas particles with a, and quantities belonging to dust particles
with i. Thus equation 3.18 states that the drag acceleration on the gas particle a
involves a sum over only its dust particle neighbours, identified with the subscript i,
and not any of gas particle neighbours.

However, equation 3.18 does not conserve angular momentum. An alternate
expression for the gas acceleration due to drag that does conserve angular momentum
can be written as (Monaghan and Kocharyan 1995),

(dva
dt

)
drag

= K

ρg
(vd − vg) = ν

∑
i

mi
Kai

ρaρi

(
wia · r̂ia)r̂iaDai(ha) (3.19a)

For the dust particles, this looks like,
(dvi

dt

)
drag

= −K
ρd

(vd − vg) = −ν
∑
a

ma
Kai

ρaρi

(
wia · r̂ia)r̂iaDai(ha) (3.19b)

Where wia ≡ vi − va and r̂ia ≡ (ri − ra)/|ri − ra|, i.e. the radial unit vector is
oriented to point from the gas particle to the dust particle, and the drag force now
points along the direction of r̂ia. Note when acting on the gas particle, the drag
acceleration points in the direction of r̂ia(wia · r̂ia), and when acting on the dust
particle, the accelerations points in the direction of −r̂ia(wia · r̂ia).

Figure 3.4 presents an example outlining the difference between these two formula-
tions for the drag.
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Figure 3.4: A graphical description of the two different forms for the SPH version
of the drag term from equations 3.18 and 3.19. In the left frame, a gas particle is
shown as a white circle, and a dust particle is shown as a grey circle. The vector
ria which points from the gas particle to the dust particle is shown in green. We
impart a velocity on the dust particle towards the right, and the gas particle has no
velocity. In the right frame, the drag acceleration imparted on each particle in the
non-projected form in equation 3.18 (subscript np) is represented by the solid arrows,
and the projected drag, equations 3.19 is represented by the unfilled arrows.

In the drag force prescription from equations 3.19 which conserves angular momen-
tum, the drag force is projected along r̂ia. This projected drag acceleration points
in a fundamentally different direction from the non-projected prescription, which in
the SPH formalism of equation 3.18 does not conserve angular momentum and is
oriented in the direction of vd− vg. Thus, from the perspective a dust particle moving
through a cloud of gas, the weights in the sum from equations 3.19 are a maximum
for gas particles whose positions are aligned with the velocity of the dust and vanish
to zero for gas particles that are perpendicular to the dust velocity. There exists a
choice between the model where the direction of the drag force is correct (equation
3.18) or the model where angular momentum is conserved (equations 3.19). Our
implementation and that of Laibe and Price (2012) uses the projected prescription
which conserves angular momentum. Presumably for a simulation involving many
particles the errors introduced by the fact our chosen drag force does not point in the
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direction of vd − vg will be small and average to zero and not affect the macroscopic
results of the simulation.

The final detail to note is the change in notation for the SPH kernel in equations
3.19. The kernel is written as Dai instead of Wai as it was before. Laibe and Price
(2012) argue that the kernel used to the smooth the drag force should be different
from the standard SPH kernels in order to reduce errors. The details concerning these
kernels are available in Laibe and Price (2012).

3.3.1 Radial Drift Test of Two-Fluid Dust in SPH

In order to test numerical codes, the standard practice is to design a simulation where
the behaviour of the quantities tracked by the simulation is known analytically. For
instance, Laibe and Price (2012) (two fluid) and Laibe and Price (2014a) (one fluid)
discuss a“dustywave” and “dustyshock” tests for dust-gas algorithms in SPH. The
dustyshock test is an adaptation of the Sod shock tube test (Sod 1978), a widely
used test for numerical fluid dynamics algorithms. The shock tube test subjects the
numerical suite to discontinuities in fluid properties (density, pressure, velocity) with
the objective of observing how accurately the method treats these discontinuities,
which in general are difficult for discrete methods with finite resolution to handle. The
dustywave test is useful for ensuring the numerical suite produces the appropriate
behaviour for dust of different drag coupling strengths.

While the above tests are useful for ensuring an implementation of dust-gas algo-
rithms has been written correctly and offer some insight into how well the algorithms
perform in difficult scenarios, we believe they do not provide an honest demonstration
of how the numerical suite performs in practical scenarios, such as a protoplanetary
disk.

Hence, we devised a radial dust drift test, meant to determine how well the
numerical suite is able to reproduce the expected inward radial drift rates of dust
particles embedded within a full protoplanetary disk. Following section 4.3 of Armitage
(2013), the analytical drift rates can be derived as follows:

Dust particles in a protoplanetary disk obey the following equations of motion,

dvr
dt = vθ

2

r
− Ω2r − 1

ts
(vr − vr,gas) (3.20)
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d
dt(rvθ) = − r

ts
(vθ − vθ,gas) (3.21)

where vr and vθ are the radial and azimuthal velocities, respectively, of the dust
particles, vr,gas and vθ,gas are the same quantities but for the gas, Ω is the Keplerian
angular velocity, ts is the stopping time (see equation 2.6), and r is the radial coordinate.
Radial velocities in this description are positive for motions towards the outside of
the disk, away from the star. The radial velocity of the gas due to viscous effects is
(Lynden-Bell and Pringle (1974), Birnstiel et al. (2010)),

vr,gas = − 3
Σg

√
r

∂

∂r

(
Σgνg
√
r
)

(3.22)

where Σg is the gas surface density and νg is the gas viscosity. Note that the product
Σgνg
√
r is, on average, a decreasing function of radius, so that overall vr,gas is positive,

and the radial motion of the gas is away from the star.
If we recognize that deviations for the dust particles from circular, Keplerian orbits

will be small, and that the dvr/dt term on the left side of equation 3.20 is also negligible,
than we can say,

vr = τs
−1vr,gas − ηvK
τs + τs−1 (3.23)

where vK is the Keplerian azimuthal velocity, τs = tsΩ as before, and

η = n

(
cs
vK

)2

(3.24)

If we assume the midplane gas pressure in the protoplanetary disk can be written
as a power law in radius, then n is the exponent in the that power law, P ∝ r−n. The
parameter η measures how much the azimuthal velocity of the gas deviates from the
expected Keplerian rotational velocity due to the pressure gradient that points in the
outwards radial direction,

vθ,gas = vK(1− η)1/2 (3.25)

A plot of −vr/vk as a function of τs is shown in Figure 3.5, which matches Figure
4.2 from Armitage (2013). This shows that the velocity of the inward radial drift is a
strongly peaked function of τs, and peaks for dust grains of the size that gives τs = 1.
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Figure 3.5: Velocity of the radial of drift of dust particles as described by equation
3.23, results match Figure 4.2 from Armitage (2013). Here we use η = 7.5× 10−3 and
vr.gas/vK = −3.75× 10−5. The dashed line is the value for vr.gas/vK , and is provided
to show that radial velocity the dust tracks the radial velocity of the gas for small τs.

We tested the ability of our two-fluid dust-gas implementation in ChaNGa to
produce the expected radial drift velocity of equation 3.23. Our simulation consisted of
a protoplanetary disk with a 1 solar mass star at the centre, and 105 SPH gas particles
comprising a 5 × 10−3 solar mass gaseous disk orbiting it. The gaseous disk has a
surface density profile Σg ∝ r−1 and the inner radial boundary was 5 AU and the outer
radial boundary was 200 AU initially.

In the initial condition, 1000 SPH dust particles (individually with a mass that
was a factor of 10−6 less than the gas particle masses so that they did not impart
much momentum on the gas) were evenly dispersed in the midplane of the gaseous
disk around a ring of radius 20 AU centred on the star.

The positions of these dust particles in the rotational (x− y) plane of the disk over
the course of the simulation are shown in Figure 3.6. Simulations from two different
sizes of dust grains are shown. We can see that in only a few orbital times, the ring of
dust rapidly loses its shape, and breaks off into scattered clumps.

We chose to simulate 1000 dust particles so that well defined averaged properties
can be investigated. For the τs = 1 simulation, the radial velocity of the dust particles,
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vr, is shown in Figure 3.7, and the radius of the dust particles, r, is shown in Figure
3.8.

There is a large dispersion in both vr and r for the τs = 1 simulation, which is
unsurprising, considering the significant positional scatter that is present in the dust
particles in Figure 3.6. This dispersion is imparted by the relatively large velocity
dispersion that is present in the SPH gas particles in the protoplanetary disk. This
intrinsic dispersion and velocity noise is discussed in the following section, section
3.3.2, and a technique for reducing it is discussed in section 3.3.3.
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Figure 3.6: Evolution of the dust particle position in the x-y plane for the radial drift
test with a 1,000 particle dust ring. Two different sizes of grains were tested, one with
a size that gives τs = 1 (left) and one with τs = 10 (right).
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Figure 3.7: Averaged radial velocity of the dust particles in the τs = 1 dust ring radial
drift test as a function of elapsed time in the simulation, in units of the Keplerian
orbital period, where this period is computed using the average radial position of the
particles.
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Figure 3.8: Averaged radial position of the dust particles in the τs = 1 dust ring radial
drift test as a function of elapsed time in the simulation, in units of the Keplerian
orbital period, where this period is computed using the average radial position of the
particles.

3.3.2 Gas particle random walk

In this section we will investigate the source of the velocity dispersion in the radial
drift dust ring test seen in Figure 3.7. In our simulations, the only forces acting on the
dust particles are the gravity from the central star and the aerodynamic drag imparted
on the dust by the gas. Thus, the velocity dispersion seen in the dust must have come
from dispersion in the gas as the gravity from the star would not create this dispersion.
In Figure 3.9, the velocity dispersion in the dust and gas, in terms of the r, θ and z
components, is shown for the dust particles in the middle frames of Figure 3.6. Also
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included in this plot is the magnitude of the predicted radial velocity from equation
3.23.

We see the dispersion of the gas is between 2% and 5% of the azimuthal Keplerian
velocity, and this is sufficiently large to stir up the dust particles in the τs = 1 test such
that the dispersion in the dust radial velocity is larger than the radial drift velocity
that we are attempting to measure. We can observe a different measure of the gas
velocity dispersion by observing the path the SPH gas particles take in the r-z plane
over the course of a simulation. Examples of this are presented in Figure 3.10. We plot
the path for three representative particles at three different orbital radii, and observe
that the SPH particles perform a random walk through the r-z plane. For increasing
radial position, the amount of turns and sharp corners in the path decreases, as the
dynamical timescales decrease for increasing distance from the central star.

The dispersion in the τs = 10 simulation is much smaller, and we can see in Figure
3.6 that the positions of the dust particles in the τs = 10 test are significantly less
perturbed from the ring shape than the τs = 1 particles. The τs = 1 grains represent
the grain sizes that are maximally aerodynamically perturbed in the disk. In the radial
drift rates in Figure 1.8 from Weidenschilling (1977), these are the grains for which
the radial drift is a maximum. While τs = 1 grains will be the most disturbed by the
gas velocity dispersion, they also represent the grains which are the most active in the
streaming instability, a proposed mechanism for overcoming the metre barrier that is
introduced in Section 1.5 and covered in more detail in Chapter 4. Thus, while it may
be tempting to use grains with sizes that are either much smaller or larger than τs = 1
to avoid the velocity dispersion issue, it is precisely these grains which drive much of
the interesting dust-gas dynamics in the disk.

It appears for global disk simulations in SPH, the density noise—which is responsible
for generating this dispersion and random walk in the gas particles—is too large to
measure any small signals or perturbations in the dust fluid. As is discussed in the next
section, increasing the numerical resolution (adding SPH particles) should diminish
the noise, but dramatically increased resolution would be required to observe effects
such as the streaming instability. Studies using Eulerian grid codes (discussed briefly
in Section 4.2) employ a physically smaller simulation domain, such as a shearing box
(see Section 4.3.1) in order to represent a very small portion of a protoplanetary disk.
Such adjustments are necessary in order to study physical effects which require high
resolution such as the streaming instability. Presently, no shearing box module exists
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in ChaNGa, thus we plan to develop one, and use it to explore the ability of SPH
to simulate the non-linearly evolving regime of the SI once implemented.

Figure 3.9: Velocity dispersion, σv, in units of the azimuthal Keplerian velocity, vk, in
the radial drift ring test. The top frame is for the τs = 1 test, and the bottom frame
is for the τs = 10 test. The different coloured lines represent a different component of
the velocity, and the dashed and solid lines represent the data for the gas and dust
fluids, respectively. The analytically predicted dust radial velocity from equation 3.23
is given by the grey dashed line.
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Figure 3.10: Random walk of gaseous SPH particles in the radial and vertical direction
in a simulated protoplanetary disk. The numbers represented in the upper-left corner of
each panel represent the elapsed time in the simulation, in units of the Keplerian orbital
period, where this orbital period is calculated for each of the separate panels/particles
individually, according to the particles’ initial radial position. The initial particle
positions are given by the black dots, the path the particle random walks is given
by the red dotted line, the final position is given by the red dot, and the grey lines
represent the vertical disk scale heights.

3.3.3 Increased resolution via particle splitting

The magnitude of the random walk discussed in the previous section, and the scale
of the velocity dispersion, can be somewhat mitigated by increasing the numerical
resolution of gaseous SPH particles in the simulation. For the purposes of this radial
drift test, we would only benefit from an increase in gaseous resolution in the vicinity
of the ring of dust, and increasing the global resolution of the disk would unnecessarily
increase the required computing time of the simulation.

A method for locally increasing SPH resolution known as particle splitting can be
used for this test. This method is introduced in Kitsionas and Whitworth (2002). The
main principle of particle splitting is to replace single SPH particles by multiple SPH
particles, taking care to ensure to the total mass represented by the new particles is
equivalent to the mass of the original particle, and that the spatial distribution of the
new distribution minimally disturbs the original density profile of the domain governed
by the single particle. Kitsionas and Whitworth (2002) discuss an in depth method
for splitting particles into 13 new particles, but we considered a simpler scheme that
splits particles into pairs. For a given single particle with a smoothing length ha and
mass ma, the split pair of particles will be separated from each other by ha. To ensure
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no new net mass is added to the simulation, each of the new particles will have mass
ma/2.

To test whether an increase in resolution could reduce the dispersion of the dust
particles radial velocity for our drifting ring test, we decided to create a locally increased
resolution region in our protoplanetary disk by splitting the gaseous SPH particles until
the smoothing lengths in the new region were roughly half of the original smoothing
lengths. In a three dimensional simulation, this requires an eight-fold increase in the
number of particles.

Using the same protoplanetary disk initial condition as in section 3.3.1 which has
105 SPH particles, we created a region between approximately 40 and 70 AU where the
local number of particles was increased by a factor of 8. We decided to create a buffer
zone between this region and the edges of the disk, so that the numerical experiment
of the radially drifting dust ring is shielded from any problems associated with the
abrupt change in resolution. Thus we created a few regions where the resolution was
decreased in steps from 8 times as many particles to the original number of particles.
This is represented in Figure 3.12. In the region between approximately 40 and 70
AU where the numerical radial drift dust ring experiment is conducted, the average
distance between particles in low resolution disk is roughly twice that of the particles
in the new, high resolution disk. Inside 20 AU and outside 90 AU, the number of
particles is unchanged, and the typical separation between the particles (computed as
l = (mρ)(1/3)) is the same in the unsplit and split disks. Beyond ∼ 25 AU the ratio
of the separation in the unsplit disk and the split disk, lu/ls, increases to ∼ 1.25 in
a region where there are twice as many particles in the split disk as there are in the
unsplit disk, and then to ∼ 1.6 where there are four times as many particles.

A particle plot of the SPH particles in the midplane of the disk within 60 AU is
provided in Figure 3.11 to show how this increase in resolution manifests itself visually
in terms of spatial particle distributions.
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Figure 3.11: Position of the SPH particles in the rotational (x-y) plane of the disk
for the high resolution disk with particle splitting (left) and the original, unsplit disk
(right). Only particles near the disk midplane (within one smoothing length of z = 0)
are shown.
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Figure 3.12: A histogram comparing the particle spacing, binned by midplane radius
(rxy), in the high resolution disk with particle splitting and the original, unsplit disk.
The separation is estimated as l = (mρ)(1/3), and the value on the y-axis the ratio of l
in the unsplit disk to the split disk, lu/ls.

With this new protoplanetary disk, modified with an inner region of increased
numerical resolution, we repeated the same (τs = 1) radial drift dust ring test as
described in Section 3.3.1. For this test, however, the dust ring was placed at 52 AU
instead of 20 AU. The timescales which drive the physics are longer for larger radii,
and we wanted to see if slower dynamics would mitigate the dispersion in the dust.
Figures 3.13 and 3.14 show the radial velocity and the radial position, respectively, of
the dust ring particles, as before. We note that there remains a considerable amount
of scatter in the data, and any improvements in decreasing the scatter are minimal.

In Figures 3.15 and 3.16, we explicitly plot the standard deviation, σ, for the radial
velocity and radial position, respectively. Here it is apparent that the increase in
resolution offers a reduction in the scatter present in the dust particles, but it is not
sufficient enough to offer the ability to clearly measure the expected radial drift signal
of equation 3.23.
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Figure 3.13: Averaged radial velocity of the dust particles in the τs = 1 dust ring
radial drift test, where the results for the higher resolution disk and the original, lower
resolution disk are both shown. The x-axis represents the of elapsed time in the
simulation, in units of the Keplerian orbital period, where this period is computed
using the average radial position of the particles.
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Figure 3.14: Averaged radial position of the τs = 1 dust particles in the dust ring
radial drift test, where the results for the higher resolution disk and the original, lower
resolution disk are both shown. The time axis is in units of the Keplerian orbital
period.
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Figure 3.15: Time evolution of the standard deviation of the radial velocity of the
dust particles in the τs = 1 dust ring radial drift test, where the results for the higher
resolution disk and the original, lower resolution disk are both shown. The time axis
is in units of the Keplerian orbital period.
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Figure 3.16: Time evolution of the standard deviation of the radial position of the
dust particles in the τs = 1 dust ring radial drift test, where the results for the higher
resolution disk and the original, lower resolution disk are both shown. The time axis
is in units of the Keplerian orbital period.

3.4 Conclusions
In SPH and in any numerical simulation scheme, it is important to avoid extracting
physical interpretations from behaviour near the resolution limit. Individual SPH
particles are not meant to represent the motions of gas directly. In order to obtain
an accurate representation of the gas motions, an average over many particles must
be computed. As discussed in Section 3.3.2, the error in the SPH density estimator
results in a minimum level of velocity dispersion in the gas particles that can make
it impossible to track subtle dust motions. In studies published by D. J. Price, who
is one of the main researchers in the field of dust simulations in SPH, and his group,
they are careful to avoid integrating the simulation over many dynamical times in
cases with large outside drivers (such as a perturbing planet or binary), so that these
errors do not compromise the simulation. For any study of full protoplanetary disks
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where small perturbations are key to the result, even with state-of-the-art resolution,
only large scale behaviour and dynamics with timescales smaller than a few orbits can
be studied.

In investigating the results from the Gonzalez et al. (2017) study, we find that the
results of their numerical simulations are apparently inconsistent with the predictions
from the analytical analysis presented in the Appendix of the Gonzalez et al. (2017)
paper (and in Figure 3.1 here). However, the analytic derivation applied to the
midplane properties of the disk, so the results from their study may have originated
from parts of the disk away from the midplane. In order to explore their proposed
dust trap mechanism ourselves, we attempted to reproduce their numerical results in
our own simulations, but were unable to. We did not see the dramatic grain growth
and dust trap described in their study. Gonzalez et al. (2017) ran their simulations
for hundreds of orbits and began with a quiet, featureless disk. As discussed above,
integrating simulations of full three-dimensional disks for many orbital times may
introduce macroscopic features in the disk that are purely due to numerical noise.
Thus, we decided to pursue a different planetesimal formation mechanism which is
more established in the literature.

The streaming instability which is introduced in Section 1.5 is a promising mecha-
nism for overcoming the metre barrier problem. The ability to accurately reproduce the
analytical growth rates from the linear phase of the instability with a numerical code
is seen as an important test for dust and gas simulation codes. However, prominent
researchers in the field have been unable to reproduce these growth rates in SPH (D.
J. Price and G. Laibe, private communications). As mentioned in Section 3.3.2, it
may be possible to study the non-linearly evolving phase of the streaming instability
with SPH, but there is no module for the requisite shearing box boundary conditions
in ChaNGa currently.

Thus, we decided to use Athena (Stone et al. 2008), an Eulerian code developed by
J. Stone and his group which already has all the required computer code to simulate
the streaming instability implemented and tested. We will discuss the streaming
instability and the results of our investigations in the next chapter.
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Chapter 4

Streaming Instability

The streaming instability (SI) was introduced in Section 1.5 as a potential solution to
the metre barrier problem facing the earliest stages of planet formation, where micron
sized grains must become kilometre sized planetesimals. In this chapter we will discuss
the SI in detail.

The streaming instability was first introduced by Youdin and Goodman (2005), who
demonstrated via linear perturbation analysis that in protoplanetary disks, plane waves
which are aligned in the radial and vertical (normal to the rotational plane) directions
can experience substantial growth in amplitude under the right disk conditions. These
rapidly growing waves would then create regions of high dust density, potentially
triggering gravitational collapse, the formation of planetesimals, and laying the seeds
for planet formation. In Section 1.5.1 we discussed results from Johansen et al. (2007),
one of the seminal studies on this topic, which demonstrates the SI (with the help
of gravity) could drive the formation of a Ceres mass object directly from a disperse
distribution of dust. This result garnered much attention from the planet formation
community, and demonstrated that the streaming instability as a planet formation
mechanism deserves to be studied thoroughly.

Following the original Youdin and Goodman (2005) introduction to the SI, Youdin
and Johansen (2007) summarize the requirements of the linear plane wave analysis
and describe methods for testing the analytical predictions in a numerical simulation
suite. In a companion study, Johansen and Youdin (2007) use high resolution 3-D
numerical simulations to investigate the properties of systems which have evolved
beyond the linear growth stage of the SI and hence feature a collection of non-linearly
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evolving dust clumps. Eventually this non-linearly evolving system saturates, and the
densest clumps of dust do not increase in density. The Johansen and Youdin (2007)
study is concerned with characterizing high level properties of these saturated states
in simulations with differing dust properties such as total dust to gas mass ratio, and
grain size. The properties they investigated include maximum dust density achieved,
the population distribution of dust densities, and the radial drift of the dust particles.
Bai and Stone (2010b) used similar high resolution 3-D simulations to demonstrate
dust grains that vary in size by orders of magnitude participate in the streaming
instability on different timescales, and settle to different vertical scale heights in the
disk.

Recently, Squire and Hopkins (2018) suggested the SI should be reclassified to be
one sub-group of a broader range of so-called resonant drag instabilities (RDI). The
authors argue, via a matrix perturbation analysis, that instabilities like the SI will
develop whenever the projection of the relative velocity between the dust and the
gas along a particular direction matches a characteristic speed or timescale present
within the system. This could be the sound speed of the gas, for example, or the
orbital velocity, as is the case in the streaming instability as described by Youdin and
Goodman (2005) and Youdin and Johansen (2007). Interestingly, Squire and Hopkins
(2018) show that the growth rates predicted by the original linear perturbation analysis
work with the SI—which assumed the only steady relative velocity between the dust
and gas is in the radial and azimuthal direction, within the disk midplane—are greatly
enhanced if a non-zero vertical component to the relative velocity is also considered. As
promising as the original SI results are, one serious caveat within that work was that
the growth rates were only sufficiently large for a very specific set of dust parameters.
This Squire and Hopkins (2018) result offers a solution to this problem. Vertical
relative velocities between the dust and gas will naturally be present everywhere within
a protoplanetary disk as the dust settles to the disk midplane, streaming through the
gas. We will discuss and investigate the utility of this prediction further in Section 4.4.

While a solid foundation of theoretical work has been constructed in the literature,
we believe crucial questions regarding the behaviour of the instability in full proto-
planetary disks, in nature, remain unanswered. The high resolutions simulations in
Johansen and Youdin (2007) and Bai and Stone (2010b) require the use of shearing
boxes (see Section 4.3.1), and it is unclear how well behaviour in such a truncated
domain can be extrapolated to the behaviour of a full protoplanetary disk. Also, when
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the non-linear evolution of the streaming instability in the previously mentioned high
resolution shearing box simulations first activates, a particular, striped pattern in
the radial-azimuthal (r-θ) direction appears. This pattern eventually gives way to a
different r-θ pattern and the turbulent evolution of a saturated state. Currently there
are no explanations for the prevalence of any resonant modes in the r-θ plane that
create those patterns.

The original linear analysis of Youdin and Goodman (2005) was strictly axisymmet-
ric; in r-z. Thus, physically, any structures that would form in this analysis represent
axisymmetric rings when they are extrapolated to the full disk. This is similar to the
classic gravitational instability analysis of Toomre (1964) which likewise employed
axisymmetric perturbations. The issue with non-axisymmetric perturbations—those
with an azimuthal component—is the differential rotation in the (nearly) Keplerian pro-
toplanetary disks, which creates time-dependent perturbation terms when an analogous
plane wave perturbation analysis is conducted. This will be demonstrated in Section
4.6, where we will also discuss techniques for probing this system for information about
the growth of the r-θ modes of the SI. We believe this is crucial for understanding
the global implications of the streaming instability, especially since it appears the
dominant mode in the initial non-linear evolution is in r-θ and not r-z.

In this chapter, we will start with an overview of the linear plane-wave perturbation
analysis, then discuss the enhanced growth rates predicted by Squire and Hopkins
(2018) and our confirmation of these enhancements in numerical simulations. We will
conclude by motivating our planned future work which will tackle the unanswered
questions regarding the impact of the truncated of domain of the shearing boxes and
r-θ modes of the SI which were mentioned above.

4.1 Linear plane wave perturbation
In this section we will retrace the original linear plane wave analysis of the streaming
instability from Youdin and Goodman (2005)and Youdin and Johansen (2007), and
explicitly explore some of the mathematical details left out by these papers.

We can rewrite the equations of the two-fluid dust and gas prescription (see
equations 2.5) in terms of the dust to gas mass ratio µ and stopping time ts,

dvd
dt = − 1

ts
(vd − vg) (4.1a)
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dvg
dt = −∇Pg

ρg
+ µ

ts
(vd − vg) (4.1b)

dρg
dt = −ρg(∇ · vg) (4.1c)

dρd
dt = −ρd(∇ · vd) (4.1d)

These equations above can be rewritten to represent a fluid in a rotating frame
where the azimuthal velocity is given by V 0 = −(3/2)Ωxŷ as (e.g. Goldreich and
Lynden-Bell (1965a), Youdin and Johansen (2007)),

∂v

∂t
+ (v · ∇)v − 3

2Ωx∂v
∂y

= 2Ωvyx̂−
1
2Ωvxŷ −

Ω
τs

(v − u) (4.2a)

∂u

∂t
+(u·∇)u− 3

2Ωx∂u
∂y

= 2Ωuyx̂−
1
2Ωuxŷ−cs2∇ ln ρg+2ηvKΩx̂−µΩ

τs
(u−v) (4.2b)

∂ρg
∂t

+ u · ∇ρg −
3
2Ωx∂ρg

∂y
= −ρg∇ · u (4.2c)

∂ρd
∂y

= −ρd∇ · v (4.2d)

where we have made changes to the notation from Chapter 2 which we will use for the
remainder of this chapter.

Equations 4.2 have been written to represent a local spatial expansion about a
point within the rotating planetary disk (as in Goldreich and Lynden-Bell (1965a)).
That is, we have a point with a radial, azimuthal, and vertical coordinate given by (R,
θ, z0), where R = 0 at the position of the star in the centre of the disk and z0 = 0 in
the disk midplane. We then write a new set of coordinates (x, y, z) which represent
radial, azimuthal and vertical displacements from the original (R, θ, z0) co-ordinates.
Thus the position of any point referenced by equations 4.2 with respect to the central
is (R + x, θ + y, z0 + z). For the entirety of this linear perturbation analysis, we will
work within the rotating frame of this local expansion.

The dust velocity is now represented by v, and the gas velocity by u. As before ρd
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and ρg are the dust and gas densities, respectively, cs is the gas sound speed, Ω is the
Keplerian angular velocity.

As in Section 3.3.1, vK is the Keplerian azimuthal velocity, and η is given by,

η = n

(
cs
vK

)2

(4.3)

where we have assumed the midplane gas pressure follows P ∝ r−n.
The analytical growth rate analysis for the SI (Youdin and Goodman (2005)) begins

with a linear plane wave perturbation to equations 4.2. The perturbations will be
represented by the following notation, using the dust velocity as an example,

v = v + δv (4.4)

here v represents a steady, background dust velocity, and δv is a small perturbation
to that value. The perturbation of the dust velocity can be broken down into each of
its components, so, for the x direction,

vx = vx + δvx (4.5)

The perturbations to the density will look a little different,

ρd = ρp0[1 + δρd] (4.6)

so we note here that δρd is a dimensionless quantity. The gas velocity u and the gas
density ρg will also have similar perturbations.

The functional form of the perturbation is a plane wave travelling in the x-z
(radial-vertical) directions,

δf(x, z) = f̃ exp[i(kxx+ kzz − ωt)] (4.7)

where f is a placeholder symbol that would represent any of the velocity or (dimen-
sionless) density perturbations in the same manner. Note that the complex-valued
amplitudes associated with these perturbations, f̃ , will be much smaller than the
background values.

For coupled dust and gas fluids orbiting in a Keplerian protoplanetary disk, the
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steady state equilibrium or background velocities are given by (Nakagawa et al. 1986),

ux = 2µτs
(1 + µ)2 + τs2ηvK (4.8a)

uy = −
1 + µτs

2

(1 + µ)2 + (τs)2

 ηvK
1 + µ

(4.8b)

vx = − 2τs
(1 + µ)2 + τs2ηvK (4.8c)

vy = −
1− τs

2

(1 + µ)2 + (τs)2

 ηvK
1 + µ

(4.8d)

from Section 2.1, µ ≡ ρd/ρg and τs ≡ tsΩ is the dimensionless stopping time. Recall
the dust velocity is now represented by v, and the gas velocity by u. Note, as discussed
in the introduction to this chapter, there is no vertical steady-state relative velocity
between the two fluids in the original SI analysis of Youdin and Goodman (2005) and
Youdin and Johansen (2007). This will be changed in the Squire and Hopkins (2018)
results we discuss later.

In regimes where the dust mass fraction is low (µ � 1) and the dust grains are
small (τs � 1, typically valid for ∼ µm to mm grains) the y velocities are of order ηvK
for both fluids, and the x velocities are of order µτsηvK and τsηvK for the gas and
dust, respectively. The parameter η is typically of order 10−3 Armitage (2013). Note
that in the global frame of the protoplanetary disk, these velocities are measured with
respect to the Keplerian velocity at the radial position R that the local expansion is
centred on.

These background velocities are ultimately generated by the radial pressure gradient
that the gas fluid experiences. The acceleration generated by this gradient is represented
in the 2ηvKΩx̂ term in equation 4.2b, which does not appear in the equation of motion
of the dust particles (equation 4.2a) as the dust particles do not feel this gradient
directly, but will experience it indirectly via the drag force. The −cs2∇ ln ρg term
is also a hydrodynamic force that the dust does not experience that is related to
local gradients in the gas density. We assume that there are no local, macroscopic
background gas density gradients, so the 2ηvKΩx̂ term is the only hydrodynamic term
that generates a stable scenario where the dust is perpetually streaming through the
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gas with a steady state relative velocity. The streaming instability and the other
resonant drag instabilities reported by Squire and Hopkins (2018) cannot not operate
if the dust is not streaming through the gas with a stable relative velocity.

4.1.1 Assumptions and simplifications

In this section we will highlight simplifications that can be applied to equations 4.2
for our purposes.

The full form of the (v · ∇)v terms are,

(v · ∇)v =
vx ∂

∂x
+ vy

∂

∂y
+ vz

∂

∂z

v
Here, the ∂/∂y term is zero, because we will assume there are no y gradients in

the dust or gas velocity, and in general all properties within the disk are axisymmetric.
Recall from equation 4.7 that the plane wave perturbation is only in the x-z direction.
Without this assumption of axisymmetry, non-linear terms that are explicit functions
of time would be required (Goldreich and Lynden-Bell (1965b), see also Section 4.6).
Thus we now have,

(v · ∇)v =
vx ∂

∂x
v + vz

∂

∂z
v


Furthermore, the equilibrium components of the velocity, v, have no spatial

gradients, so we can replace v with just δv in the above, leaving us with

(v · ∇)v =
vx ∂

∂x
δv + vz

∂

∂z
δv


Finally, we note that there is no equilibrium velocity in the z direction, i.e. vz = δvz.

Hence the ∂/∂z term is proportional to the perturbation squared, so it can be ignored.
For the same reason, the perturbation term in vx = vx + δvx, can be ignored. Thus,
the simplified form of the (v · ∇)v term is,

(v · ∇)v = vx
∂

∂x
δv (4.9)

an identical line of reasoning produces an analogous form for the (u · ∇)u terms.
The gas pressure term ∇ ln ρg in equation 4.2b can be simplified with the knowledge
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ρg is of the form in equation 4.6. We can use the logarithm identity,

ln(a+ c) = ln(a) + ln
1 + c

a


to write ln ρg as,

ln ρg = ln ρg0 + ln(1 + δρg)

When evaluating ∇ ln ρg, since ρg0 is a constant value, ∇ ln ρg0 = 0, giving

∇ ln ρg = ∇ ln(1 + δρg) = 1
1 + δρg

∇(1 + δρg) = 1
1 + δρg

∇δρg

We can expand the leading factor 1/(1 + δρg) ∼ 1− δρg to get,

∇ ln ρg ∼ (1− δρg)∇δρg

as before, the −δρg term can be ignored as that will give us a term of order the
perturbation squared, leaving us with a final, simplified expression,

∇ ln ρg ∼ ∇δρg (4.10)

We can ignore the terms with a partial derivative in y, such as

−3
2Ωx∂v

∂y

because we assume there are no gradients for any quantities in y in this analysis. (This
will be changed in our analysis in Section 4.6.)

There are terms in the momentum equations (4.2a and 4.2b) which involve particular
components of the velocity,

2Ωvyx̂−
1
2Ωvxŷ

The form of the equilibrium velocities from equations 4.8 guarantees that the
background components (vx, vy) in these terms will completely cancel the background
components that are contributed by the drag terms, which scale with −(1/τs)(v − u).
The result is in each term that involves the velocities or a component of the velocities,
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such as
2Ωvyx̂−

1
2Ωvxŷ

and the drag terms,
− 1
τf

(v − u)

we may simply substitute the perturbation in for the full expression which would
normally include the background, equilibrium component. By the same effect, the
2ηvKΩx̂ term in equation 4.2b is cancelled by terms from the equilibrium velocities
from equation 4.8.

4.1.2 Plane wave assumption

We will explicitly rewrite equations 4.2 using the simplifications from Section 4.1.1. The
density continuity equations will be normalized by ρp0, ρg0, and we note ∂ρ/∂t = ∂δρ/∂t

and ∇ρ = ∇δρ. The new equations are,

∂δρd
∂t

+ v · ∇δρd = −(1 + δρd)∇ · v (4.11a)

∂v

∂t
+ vx

∂

∂x
δv = 2Ωδvyx̂−

1
2Ωδvxŷ −

Ω
τs

(δw − δu) (4.11b)

∂δρg
∂t

+ u · ∇δρg = −(1 + δρg)∇ · u (4.11c)

∂u

∂t
+ ux

∂

∂x
δu = 2Ωδuyx̂−

1
2Ωδuxŷ − cs2∇δρg +−Ω

τs
(δu− δv) (4.11d)

With the perturbations for each variable given by equation 4.7, for each of the
derivatives involving perturbations, we have,

∇δf = ikδf

∇ · δf = ik · δf
∂f

∂t
= −iωδf

where k = kxx̂+ kz ẑ. Evaluating the derivatives from equations 4.11, the system of
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equations becomes,
−iωδρd + i(v · k)δρd = −i(δv · k) (4.12a)

−iωδv + ivxkxδv = 2Ωδvyx̂−
1
2Ωδvxŷ −

Ω
τs

(δw − δu) (4.12b)

−iωδρg + i(u · k)δρg = −i(δu · k) (4.12c)

−iωδu+ iuxkxδu = 2Ωδuyx̂−
1
2Ωδuxŷ− ics2kδρg−

Ωµ
τs

(
δu−δv−(δρd−δρg)(v−u)

)
(4.12d)

4.1.3 Eigenvalue problem

To emphasize the eigenvalue problem that is involved in this perturbation analysis,
we will write out the full eight equations described by equations 4.12 explicitly. Here,
the complex exponential wave factor of each perturbation δf—which exists in every
term—has been dropped, leaving the complex amplitudes f̃ only. Also wherever
there would be a term proportional to the perturbation squared, it is dropped. These
equations are not explicitly detailed in Youdin and Goodman (2005) or Youdin and
Johansen (2007), but they are essential for numerical studies of the linear regime of
the SI. The amplitudes of each of the fluid properties given by the eigenvector must be
known to a few digits of accuracy in order for the eigenmode to be produced properly
in a simulation.

In full, we have,

−iωρ̃d + ivxkxρ̃d + ikxṽx + ikzṽz = 0 (4.13a)

−iωṽx + ivxkxṽx − 2Ωṽy + Ω
τ s
ṽx −

Ω
τs
ũx = 0 (4.13b)

−iωṽy + ivxkxṽy + 1
2Ωṽx + Ω

τ s
ṽy −

Ω
τs
ũy = 0 (4.13c)

−iωṽz + ivxkxṽz + Ω
τ s
ṽz −

Ω
τs
ũz = 0 (4.13d)
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−iωρ̃g + iuxkxρ̃g + ikxũx + ikzũz = 0 (4.13e)

− iωũx + iuxkxũx − 2Ωũy + ics
2kxρ̃g

− Ωµ
τs

(vx − vx)δρd + Ωµ
τs

(vx − vx)δρg + Ωµ
τ s

ũx −
Ωµ
τs
ṽx = 0 (4.13f)

− iωũy + iuxkxũy + 1
2Ωũx

− Ωµ
τs

(vy − vy)δρd + Ωµ
τs

(vy − vy)δρg + Ωµ
τ s

ũy −
Ωµ
τs
ṽy = 0 (4.13g)

−iωũz + iuxkxũz + ics
2kzρ̃g + Ωµ

τ s
ũz −

Ωµ
τs
ṽz = 0 (4.13h)

These equations can be written in matrix form, as an eigenvalue equation,

[T− iωI]v = 0 (4.14)

where the eigenvector is the complex amplitudes of the perturbations,

v =



ρ̃p

ṽx

ṽy

ṽz

ρ̃g

ũx

ũy

ũz


and the matrix T that defines the system has four parts:

T =
A Cp
Cg F
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A are coefficients for the dust fluid,

A =


ivxkx ikx 0 ikz

0 ivxkx + Ω/τs −2Ω 0
0 Ω/2 ivxkx + Ω/τs 0
0 0 0 ivxkx + Ω/τs


Cp are coefficients for coupling between the dust and the gas,

Cp =


0 0 0 0
0 −Ω/τs 0 0
0 0 −Ω/τs 0
0 0 0 −Ω/τs


Cg are coefficients for coupling between the gas and the dust,

Cg =


0 0 0 0

−(Ωµ/τs)(vx − vx) −Ωµ/τs 0 0
−(Ωµ/τs)(vy − vy) 0 −Ωµ/τs 0

0 0 0 −Ωµ/τs


and F are coefficients for the gas fluid,

F =


iuxkx ikx 0 ikz

ics
2kx + (Ωµ/τs)(vx − vx) iuxkx + Ωµ/τs −2Ω 0

(Ωµ/τs)(vy − vy) Ω/2 iuxkx + Ωµ/τs 0
ics

2kz 0 0 iuxkx + Ωµ/τs


The linear wave perturbation SI analyses of Youdin and Goodman (2005), Youdin

and Johansen (2007) and Squire and Hopkins (2018) explore the solutions to the
eigenvalue equation given by equation 4.14.

Specifically, the imaginary component of the eigenvalue ω, which we will label
s, represents the exponential growth rate of the amplitude of the plane wave (i.e.
f̃(t) ∝ est). The full system described by equations 4.13 is fully characterized by four
values1: τs, µ, kx, and kz. For any set of four parameters, there are eight eigenvalues

1This excludes the gas properties, which determine cs and η, and in most studies are not treated
as tuneable parameters. Bai and Stone (2010c) study the effects of the strength of the radial pressure
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and eigenmodes, and only some of these modes produce a positive value for s.
Figure 4.1 below shows one result from the Youdin and Goodman (2005) study.

The parameters µ and τs are presented on the x and y axes respectively. The value
for kz is fixed, and kx is selected to represent the fastest growing mode, or the mode
with the largest value of s. These maximum values of s for each choice of µ and τs
are shown in the left panel of Figure 4.1, where s is in units of the Keplerian angular
frequency, Ω. Hence a value of log(2πs/Ω) = −1.0 represents a mode with an e-folding
growth timescale of 10 orbits.

The general trends from the left panel of Figure 4.1 conclude that modes with
rapid growth timescale of . 10 orbits are only widely available when τs > 0.1 or µ > 1
and τs > 0.005. The right panel of Figure 4.1 shows what values of kx produced the
highest value for s. The trend presented in this figure shows that for decreasing values
of τs, an increasing value of kx is required to produce the fastest growing mode. The
perturbation becomes increasingly shallow, towards the purely radial direction where
kx/kz is large, and the vertically travelling component is small.

gradient (characterized by η) on non-linear SI growth, and find large radial gradients suppress growth
in regions with high dust mass fractions.
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Figure 4.1: Left. Growth rates, s, of the linear wave perturbation amplitudes due to
the fastest growing mode of the streaming instability. Note, the growth rates are scaled
by a factor 2π/Ω. The growth rates are marked by the contours, and the parameters
space being explored are the dust properties: µ ≡ ρd/ρg on the x-axis, and τs on the
y-axis. Right. The value of kx which produces the fastest growing mode according
to the same parameter space as the left panel, when kz is fixed at a particular value.
From Youdin and Goodman (2005), reproduced with permission.

Figure 4.2 shows a similar analysis of the fastest growing modes in the original SI,
generated from our eigenvalue analysis, which matches results from Squire and Hopkins
(2018). This plot assumes an angle of θk ≡ tan−1(kx/kz) = 30° and explores growth
rates over the range of k ≡

√
kx

2 + kz
2 and a select few choices of τs and µ. This figure

highlights the dependence of the SI growth rate on the wavelength of the perturbation,
which scales as k−1. Indeed, in the original Youdin and Goodman (2005) and Youdin
and Johansen (2007) linear perturbation analysis, only astrophysical systems with a
very specific grain size (characterized by τs), dust to gas mass ratio µ, and perturbation
wavelengths could experience growth with timescales shorter than 100 orbits. The
specificity of the action of the SI presents a problem when considering the instability
as an answer to the metre-barrier problem facing planet formation.
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Figure 4.2: Growth rates of the linear wave perturbation amplitudes due to the fastest
growing mode of the streaming instability. Here, the angle between the perturbation
wave vector components is fixed at θk ≡ tan−1(kx/kz) = 30°. The magnitude of the
wave vector is plotted on the x-axis, with the growth rate s of the fastest growing
mode plotted on the y-axis. A range of systems with various values of τs and µ are
considered. These results match Squire and Hopkins (2018).

From the right panel of Figure 4.1 and Figure 4.2 we can identify a general trend:
as τs decreases, the perturbation wavenumber k ≡

√
kx

2 + kz
2 which corresponds to

the peak growth rate increases, which means the corresponding wavelength λ decreases.
The sound crossing time across the peak perturbation wavelength, which we will call
tc, is given by,

tc = λ

cs
(4.15)

where cs is the sound speed. The properties of the gas such as cs are held constant in
Figure 4.1 and Figure 4.2. Thus, the propagation speed for any of the modes present
in either of the individual figures will be the same, given by cs. The timescales which
describe the dynamics of the propagation of the perturbation wave and the drag force
should be similar in order for the linear plane wave grow via the streaming instability.
For small grains which are tightly coupled to the gas, the timescale which governs the
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aerodynamic drag force, the stopping time, is short compared to the stopping time for
larger grains. Thus, the sound crossing time given by equation 4.15 should by similarly
short. Since cs is the same for all modes in Figures 4.1 and 4.2, this means λ must
become smaller, and k must become larger.

4.1.4 Enhanced growth rates due to vertical dust settling

The primary result from Squire and Hopkins (2018) concerning the SI proposes that
when a vertical component to the relative streaming velocity between the dust and gas
is considered, instead of just a radial-azimuthal streaming velocity, the growth rates
predicted by an identical linear wave perturbation analysis as described above are
noticeably enhanced. That is, the values for the growth rates are higher, and remain
high even for large values of k or small grains with small values of τs, contrary to the
previous analysis that produced the results in Figure 4.2.

We will briefly highlight the differences in the linear perturbation analysis above
that arise from a non-zero vertical streaming velocity. In nature, dust will settle to
the midplane in gaseous protoplanetary disks which have vertically stratified density
profiles that monotonically decrease for vertical positions away from the midplane.
Hence, in our analysis we will decide to apply the steady vertical velocity to the dust
fluid, and we will revisit the simplifications from Section 4.1.1 and derivatives from
Section 4.1.2 assuming that vz is not zero. These details are not included in Squire
and Hopkins (2018), however, we believe they are useful for a complete description of
the origin of the enhanced growth rates.

In the (v · ∇)v term, we can no longer neglect the ∂/∂z term so we have,

(v · ∇)v = vx
∂

∂x
δv + vz

∂

∂z
δv

evaluating the derivatives gives,

(v · ∇)v = ivxkxδv + ivzkzδv (4.16)

The dot product v · k from equation 4.12a now has a term from the z component,

v · k = vxkx + vzkz

and in the (δρd − δρg)(v − u) term in equation 4.12d, v now has a z component.
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The full eight equations, analogous to equations 4.13, now look like,

−iωρ̃d + i(vxkx + vzkz)ρ̃d + ikxṽx + ikzṽz = 0 (4.17a)

−iωṽx + i(vxkx + vzkz)ṽx − 2Ωṽy + Ω
τ s
ṽx −

Ω
τs
ũx = 0 (4.17b)

−iωṽy + i(vxkx + vzkz)ṽy + 1
2Ωṽx + Ω

τ s
ṽy −

Ω
τs
ũy = 0 (4.17c)

−iωṽz + i(vxkx + vzkz)ṽz + Ω
τ s
ṽz −

Ω
τs
ũz = 0 (4.17d)

−iωρ̃g + iuxkxρ̃g + ikxũx + ikzũz = 0 (4.17e)

− iωũx + iuxkxũx − 2Ωũy + ics
2kxρ̃g

− Ωµ
τs

(vx − vx)δρd + Ωµ
τs

(vx − vx)δρg + Ωµ
τ s

ũx −
Ωµ
τs
ṽx = 0 (4.17f)

− iωũy + iuxkxũy + 1
2Ωũx

− Ωµ
τs

(vy − vy)δρd + Ωµ
τs

(vy − vy)δρg + Ωµ
τ s

ũy −
Ωµ
τs
ṽy = 0 (4.17g)

− iωũz + iuxkxũz + ics
2kzρ̃g

− Ωµ
τs
vzδρd + Ωµ

τs
vyδρg + Ωµ

τ s
ũz −

Ωµ
τs
ṽz = 0 (4.17h)

A simple expression for the steady vertical dust streaming velocity and a settling
timescale can be derived as follows, as in Chiang and Youdin (2010).

The equation of motion for the dust grains in the vertical direction is a simple
ordinary differential equation,

z̈ = −ż/ts − Ω2z
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where z is the vertical position, ż and z̈ denote first and second derivatives with respect
to time, respectively, and ts is the dimensional stopping time (c.f. equation 2.6). This
is an equation for a damped harmonic oscillator, which would have a characteristic
damping time (which physically represents a characteristic settling time),

tsettle ∼
1
Ω

(2τs2 + 1
τs

)
(4.18)

For grains falling from one gas scale height, Hg ≡ cs/Ω, the steady vertical dust
streaming velocity can be written as,

vz = Hg

ts
= cs

(
τs

2τs2 + 1

)
(4.19)

Figure 4.6 shows the expected growth rates from an eigenvalue analysis that we
have applied to equations 4.17, where a vertical dust streaming velocity according
to equation 4.19 has been considered. The same sets of parameters as in Figure 4.2
are investigated. The peak growth rates for all sets of parameters are much higher
than those in Figure 4.2, especially in systems with small dust grains (small τs). The
off-peak growth rates in each set of parameters plateau at relatively high values—as
high as s/Ω ∼ 0.03 in τs = 1.0, µ = 0.1—instead of rapidly decreasing for values of k
greater than the peak value as in Figure 4.2.
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Figure 4.3: Growth rates of the linear wave perturbation amplitudes due to the fastest
growing mode of the streaming instability, as in Figure 4.2. However, this analysis
was completed including a vertical component to the steady-state background dust
velocity according to equation 4.19. These results match Squire and Hopkins (2018).

These results suggest the previously mentioned issue concerning the limited range
of parameters for which the SI is effective is mitigated by the addition of a vertical
dust streaming velocity to the system. Grains of all sizes, even those with small values
of τs, can grow rapidly in this scenario, provided the growth timescales are shorter
than the settling timescale. Once the dust particles settle to the midplane, the vertical
velocities will decrease and the enhanced SI growth rates will not apply.

4.1.5 Settling timescale versus growth timescales

We present a quick calculation which investigates whether the growth timescales will
indeed be smaller than the settling timescales outlined in equation 4.18.

We can define a growth timescale simply as tgrowth ≡ 1/s. Then, we want to
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investigate the ratio tgrowth/tsettle,

tgrowth
tsettle

= 1
s

/( 1
Ω

(2τs2 + 1
τs

))
= Ω
s

(
τs

2τs2 + 1

)

For the enhanced SI growth rates from vertical dust streaming to apply, we require
as a minimum constraint tgrowth/tsettle < 1, which translates to,

s

Ω >
τs

2τs2 + 1 (4.20)

For the values of τs in Figure 4.6, namely, 1, 0.1, 0.01, 0.001, the right side of
equation 4.20 evaluates to approximately 0.33, 0.1, 0.01, 0.001 respectively. Taking
a glance at Figure 4.6, we can see that for τs = 1 the condition in equation 4.20 is
not satisfied for any value of k, but for smaller grain sizes/stopping times, the peak
growth rates are large enough to satisfy this condition. Since all the peak values for
each grain size are nearly the same, this condition is easily met for small grains as
tsettle ∼ τsΩ for τs � 1. For the peak growth rates for the τs = 0.001 grains, we have
tgrowth/tsettle ∼ 0.01. From this quick analysis we see that only small dust grains will
be able to experience these increased growth rates, as it takes a long time for these
grains to fully settle to the midplane.

4.2 Eulerian codes for simulation dust and
gas
One method for numerically solving the hydrodynamics equations involves Eulerian or
grid-based domain decompositions. The discrete elements in these methods are fixed,
and do not move with the fluid, unlike Lagrangian methods such as smoothed particle
hydrodynamics. The fluid quantities (density, momentum, etc.) in these schemes
represent the average of each quantity in the volume occupied by the discrete grid or
cell elements. The movement or transfer of each quantity is created by approximating
the fluxes that would be present at the shared interfaces between each cell and its
direct neighbours, and modifying the averaged quantities within the cells according to
that flux.

The most popular grid codes in astrophysics are Godunov type schemes (e.g.
Athena, Stone et al. (2008)), the most popular of these being the Piece-wise Parabolic
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Method from Colella and Woodward (1984). An alternative grid scheme uses a finite
difference approach, one example being the Pencil Code (Brandenburg 2003) employed
by A. Johansen and his group, who feature heavily in the streaming instability work
presented in this chapter. The Pencil code uses sixth order accurate derivatives in
space and is thus formally very accurate, however, finite difference schemes are not
conservative, which creates issues when they are used for non-linear evolving systems
or are integrated for many dynamical times.

To illustrate the behaviour of the evolution of fluid quantities in grid schemes,
we will write down a general equation of the evolution, and pair it with a schematic
representation of these grid elements, following Stone et al. (2008). We will let the
vector U represent the volume averaged fluid quantities, and let the vectors F , G, H
represent the flux of these quantities through the x, y, and z boundaries of each grid
cell, respectively. The diffusion equation that guides the evolution of these vectors is
simply,

∂U

∂t
+ ∂F

∂x
+ ∂G

∂y
+ ∂H

∂z
= 0 (4.21)

This a general expression used for Eulerian schemes. (Note that there are no
material derivatives in this expression, which were denoted by d/dt in Chapters 2 and
3, c.f. equation 2.4.) Figure 4.4 presents a graphical representation of a 3-D grid cell
element. The quantities U represent the average density, momentum, etc. within each
discrete cell, and the fluxes are approximated directly at the boundaries of each cell.

Figure 4.4: Schematic representation of a 3-D grid code resolution element. Modified
from Stone et al. (2008)

When simulating dust particles in grid codes, a common method is to generate
particles which are free to move throughout the gas cells (Youdin and Johansen (2007),
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Bai and Stone (2010a)). In this sense, the Eulerian (grid) and Lagrangian (SPH)
representation of dust are essentially the same. These particles interact with the fluid
grid via momentum exchanges from aerodynamic drag. As discussed in Section 2.1,
the drag force is proportional to the difference in velocity between the dust phase and
the gas phase, which is v − u in the notation from this chapter. When computing the
velocity difference between the free moving particles and the fixed grid, the velocities
must be measured at the same position in space. The positions of the dust particles are
in general different from the centre of each of the gas cells. Therefore computing these
drag forces accurately requires the use of an interpolation function W1 to translate gas
velocities to the location of the gas particles. Following Youdin and Johansen (2007),
the interpolated gas velocity at each of the dust particle positions x(i)

d is,

u(x(i)
d ) =

∑
a

WI(x(i)
d − x(a)

g )u(a) (4.22)

where i and a are superscripts for the dust particles and gas cells respectively, u(a)

is the uninterpolated gas velocity and x(a)
g is the position of the centre of the gas

cell. The weighted sum is computed over the gas cells denoted by a that are direct
neighbours of the cell which contains x(i)

d .
The drag force on each particle is then simply the difference between the particle

velocity and the gas velocity interpolated to this particle position,

f
(i)
d = −v

(i) − u(x(a)
g )

ts
(4.23)

Computing the backreaction drag force on the gas also requires an interpolation
function, to interpolate back to the cell positions from the particle positions. We will
label this function W2. The form of the drag force on the gas cells is then,

f (a)
g = − md

ρ
(a)
g Vcell

∑
i

WA(x(i)
d − x(a)

g )f (i)
d (4.24)

In this drag scheme, linear momentum is conserved,

Vcell
∑
a

ρ(a)
g f (a)

g +md

∑
i

f
(i)
d = 0 (4.25)

However, angular momentum is typically not conserved exactly (for drag, or any

88



McMaster University — Physics & Astronomy M.Sc. Thesis — Josef J. Rucska

other forces) in grid codes.
So long as the particles do not interact with each other (e.g. gravitationally), W1

and W2 can be chosen independently without violating linear momentum conservation.
However, Youdin and Johansen (2007) comment that choosing W1 = W2 is safest
so that the smoothing of both drag forces is symmetric2. The exact shape of the
interpolation functions is a design choice in the construction of this algorithm, with a
common preference being the triangular-shaped cloud scheme (Hockney and Eastwood
(1981)).

4.3 3D Simulations in a shearing box
Some of the most relevant research concerning the streaming instability has been
conducted using high resolution 3-D simulations. The linear SI analysis summarized in
Figures 4.1 and 4.2 suggest that the physical size of the perturbations that can grow
the quickest are quite small, and this presents a significant resolution challenge for
large scale protoplanetary disk simulations.

For instance, the peak growth rate possible in the original SI analysis without the
vertical component of the dust streaming velocity occurs for a system with kηr ∼ 1.
The wavelength this corresponds to is λ = 2π/k = 2πηr, or λ/r ∼ 0.01 for η ∼ 10−3.
Youdin and Johansen (2007) suggest 64 resolution elements per wavelength are required
to resolve the SI accurately. Thus a resolution of 64 elements per 1 percent radial
increments are required to resolve the fastest growing mode of the SI, which is a
resolution scale wholly inaccessible to global disk simulations.

For the enhanced growth rates from vertical dust settling summarized in Figure
4.6, the same analysis for the fastest growing mode for the τs = 0.001 grains gives
λ/r ∼ 1.

In order to faithfully simulate the streaming instability in 3D, studies have had to
rely on domains with periodic boundary conditions. The idea is to simulate a small
portion of the disk which is meant to be representative of the hydrodynamic and aero-
dynamic behaviour of the dust and gas on the smallest length scales. These simulation
domains in these studies represent very small spatial domains when compared to the

2There is a noteworthy similarity between the role of the interpolation function W1 and the SPH
kernel function from Section 3.1. Both decide the weights of quantities for individual resolution
elements in a sum, and the main argument is a spatial separation distance.
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size of full protoplanetary disks, and this allows for sufficient numerical resolution to
observe the SI.

The boundary conditions used in these simulations must be more intricate than
typical periodic conditions. The radial boundary of the boxes must be shear-periodic
to represent the radial gradient in the azimuthal velocity of the dust and gas, which
is predominantly Keplerian. These shearing box simulation domains will be briefly
discussed in the next section.

Lastly, it is important to note that the evolution of the streaming instability studied
in these 3D shearing box simulations is non-linear. The dust density perturbations
in the initial conditions of these studies are too large to be applicable to the linear
growth theory, which requires the amplitude of the perturbations to be much smaller
than the background values.

4.3.1 Shearing box simulation domain

In standard periodic boundary conditions, particles and cells interact with other cells
through the boundaries as though copies of the cubic simulation domain have been
translated beside the original domain. For instance, for a simulation box in 2-D that
has x boundaries at −1 and 1 and y boundaries at −1 and 1, cells at (0.25,1) interact
with cells at (0.25, -1), and cells at (1, 0.25) interact with the cells at (-1,0.25), etc.3

Likewise, particles that would move outside the simulation domain reappear on the
opposite side, and interact with particles on the opposite side of the simulation domain
through the periodic boundary.

In the local expansion described in Section 4.1 and equations 4.2—and in any
Keplerian rotating disk—a radial gradient exists in the azimuthal velocities in the
simulation. For a given radial position R from the central star, material interior to R
has a larger azimuthal velocity than the material at R, and material exterior to R has
a smaller azimuthal velocity. Hawley et al. (1995) designed a simulation domain which
could emulate this shearing, local expansion. At the radial boundary of this domains,
the connections between cells across the periodic boundary shift in the azimuthal
direction over time. This is illustrated in Figure 4.5. In the left panel of this figure, we
see that copies that exist at the two boundaries in the radial direction must shift in
opposing azimuthal directions in order to maintain the shear correctly. A correction

3The concept is easily extrapolated to three dimensions, with analogous behaviour occurring at
the z boundary to that described for the x and y boundaries.
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to the azimuthal velocity within the shearing box simulation domain must also be
applied so that the radial shear exists within the box as well.

Figure 4.5: Schematic representation of the shearing box set-up, based on a similar
figure from Hawley et al. (1995). In both frames, the simulation domain is represented
by the bold rectangles, and the shear-periodic copies of the domain are more transparent.
Left. The copies of the simulation domain on the radial direction (labelled x in the
figure) shift in the azimuthal direction as the simulation moves forward in time. On
the positive-side radial boundary, the image of the domain must move in the negative
azimuthal (−y) direction, and on the negative-side radial boundary, the domain must
move in the positive azimuthal direction. Once the copies of the simulation domain
shift across the entire azimuthal length, the image is recentred so that the images
and the simulation domain are aligned, and the process restarts. Right. A visual
representation of how the connection between cells or grid points across the shear
periodic boundary must in general cross the simulation domain diagonally. The only
exception is when t = 0 or an integer number of the shearing periods (represented by
P in the left frame), in which case the simulation domain and the images in the radial
direction are exactly aligned as in the standard periodic boundary set-up.

4.4 Confirmation of enhanced SI growth rates
in numerical simulations
The crosses marked on Figure 4.6 represent growth rates that were measured from
numerical experiments. We tested the enhanced SI growth rates predicted in Figure
4.6 using the Eulerian astrophysics simulation code Athena (Stone et al. 2008). This
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experiment was slightly modified from those used in Youdin and Johansen (2007) and
Bai and Stone (2010a) to confirm the original SI growth rates from Figures 4.1 and 4.2.
These experiments involve a 2-D box with periodic boundary conditions and a radial
pressure gradient. To date, no confirmation of the enhanced SI growth rates from the
Squire and Hopkins (2018) analysis in numerical experiments have been reported in
the literature. Whether or not these enhancements are applicable in the evolution of
full 3-D protoplanetary disks is an open question worthy of further research.
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Figure 4.6: Confirmation of the enhanced growth rates of the linear wave perturbation
amplitudes from numerical simulations. Crosses mark the numerical results from a
2-D (r-z) periodic box.

4.5 Characteristics of 3-D simulations of the
non-linear SI
In this section we present distributions of dust particles from high resolution simulations
of the non-linear evolution of the streaming instability. We created these simulations
using a shear-periodic box in Athena (Stone et al. 2008). The parameters of the
simulation are described in the caption of Figure 4.7, and are similar to those explored
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by Bai and Stone (2010b). In each of Figures 4.7, 4.8 and 4.9, we present the position
of dust particles, coloured by their local density. These plots demonstrate the three-
dimensional dust structures created by the streaming instability.

Figure 4.7 shows an early stage of the non-linear evolution of the SI. The dust
in this simulation begins dispersed above and below the disk midplane (see Figure
4.9), and once it settles to a thin layer near z = 0 after 6.25 orbits, the SI activates
and the pattern shown in Figure 4.7 appears. The shape of this pattern in the x-y
and y-z plane are shown in Figure 4.8 and 4.9, respectively. We can discern, even
by eye, an angled, striped pattern in the middle frame of Figure 4.8 that suggests
the presence of some dominant resonant mode with a wavevector with an x and y

component. Indeed, when the 2-D fast Fourier transform is applied to the vertically
integrated dust surface density, shown in Figure 4.10, we can observe the prevalence of
modes which lie on an angle θk in the kx-ky plane. This angle is not constant in time
but evolves. A full study would examine to what extent it is tied to the box parameters
or numerical choices rather than purely physical considerations. However, we lack the
starting point of theoretical predictions for the planar, non-axisymmetric case. These
modes were not explored in the axisymmetric linear perturbation analyses of Youdin
and Goodman (2005), Youdin and Johansen (2007) or Squire and Hopkins (2018). A
non-axisymmetric analysis is more difficult. As is discussed in Section 4.6, the growth
rates vary with time and the long term outcomes are difficult to characterize in simple
terms as in the axisymmetric (r-z) case.

In the Johansen et al. (2007) study introduced in Section 1.5.1, they activated
self-gravity in a very similar simulation to that presented here once a saturated state
of the non-linearly evolving SI was reached. An example of the dust distribution in
such a state is shown in the right panels of Figures 4.8 and 4.9. The dust at this
point of the simulation is clumped into long, dense, filamentary structures. Turning
on self-gravity caused these structures to fragment into more compact bound clumps.
A recent study, Simon et al. (2017), explored the mass distribution of the clumps
formed from this method. They conclude that this distribution follows a power-law,
dN/dMp ∝M−q

p , where q ∼ 1.6 and the mass of the clumps or planetesimals is given
by Mp. Interestingly, they claim this power-law may be universal, and is applicable in
simulations with different dust fractions and very different grain sizes.
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Figure 4.7: Distribution of dust in a high-resolution 3-D simulation of dust and gas
in shearing box generated using the Athena astrophysics code. Dust particles are
coloured by the dust density. The number of grid points in x, y and z are 256, 256
and 384, respectively, and 1.8× 107 dust particles are used. Only particles within the
vicinity of the midplane (|z| < 0.03) are shown in the middle square, and the particles
that are shown on the boundaries of the domain, on top of the white mesh, are the
particles within a similar tolerance of each boundary. Note that the true domain of
the simulation extends to ±0.15Hg is z, but only ±0.10Hg is shown in z. A dust to
gas mass ratio of µ = 0.03 is used, and the dust grain size is such that τs = 1. The
radial pressure gradient for the gas is represented by ηvK = 0.05 (see equation 3.24).
The time inset in the top right corner is in units of the orbital period.
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Figure 4.8: Distribution of dust from the same simulation in Figure 4.7, but only
positions in the r-θ (x-y) plane and with |z| < 0.03 are shown. The time inset in the
top right corner is in units of the orbital period.

Figure 4.9: Distribution of dust from the same simulation in Figure 4.7, but only
positions in the r-z (x-z) plane and with |θ| < 0.03 are shown. The time inset in the
top right corner is in units of the orbital period.
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Figure 4.10: Distribution of dust surface density from the same simulation in Figure
4.7 and the 2-D FFT of the surface density. The left panels represent the vertically
integrated dust surface density Σd in the x-y plane of the simulation, and the right
panels represent the magnitude of the 2-D FFT of Σd in the kx-ky plane. The time
inset is in units of the orbital period.
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4.6 Non-axisymmetric perturbations
In this section, we will explore the linear plane wave perturbation analysis as in Section
4.1, but this time we will retain any terms that involve gradients in the y direction
as we will perturb the equations in the x and y direction. Note that there will be no
simple solution as in the axisymmetric case. An exact eigenvector analysis will not be
possible, and we will have to solve the coupled differential equations numerically.

We can start with the equations 4.2, which represent a local expansion of a coupled
dust and gas system in a rotating frame. This time we will retain the ∂/∂y term,
which is associated with advection by the local shear, V 0 = (3/2)Ωxŷ. We will note a
change in the sign convention in this shear flow to point in the positive y direction
(for positive valued x). As a consequence the −(1/2)Ωwxŷ term becomes (1/2)Ωwxŷ.
This is similar to the analysis of Goldreich and Lynden-Bell (1965b), who investigated
a non-axisymmetric perturbation to a gaseous disk. Thus, we have,

∂ρd
∂t

+ v · ∇ρd + 3
2Ωx∂ρd

∂y
= −ρd∇ · v (4.26a)

∂v

∂t
+ (v · ∇)v + 3

2Ωx∂v
∂y

= 2Ωwyx̂+ 1
2Ωwxŷ −

1
τf

(v − u) (4.26b)

∂ρg
∂t

+ u · ∇ρg + 3
2Ωx∂ρg

∂y
= −ρg∇ · δu (4.26c)

∂u

∂t
+(u ·∇)u+ 3

2Ωx∂u
∂y

= 2Ωuyx̂+ 1
2Ωuxŷ−cs2∇ ln ρg+2ηvkΩx̂−

ε

τf
(u−v) (4.26d)

As before, we will apply a small perturbation to the system, and all perturbations
will be represented by a δ. As in Section 4.1, we represent perturbations to the
velocities and densities as,

v = v + δv (4.27)

wx = wx + δwx (4.28)

ρd = ρp0[1 + δρd] (4.29)
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where the overbarred values and values with a subscript 0 are the background values.
For now, we will not prescribe a specific functional form for the perturbations, but
we still require the magnitude of the perturbations to be much smaller than the
background.

Following similar simplifications as Section 4.1.1, the full six equations (note we
are now neglecting vertical gradients entirely) are,

∂δρd
∂t

+
(
wx

∂

∂x
+ wy

∂

∂y

)
δρd + 3

2Ωx∂(δρd)
∂y

= −
(
∂

∂x
δwx + ∂

∂y
δwy

)
(4.30a)

∂wx
∂t

+
(
wx

∂

∂x
+ wy

∂

∂y

)
δwx + 3

2Ωx∂(δwx)
∂y

= 2Ωδwyx̂−
Ω
τs

(δwx − δux) (4.30b)

∂wy
∂t

+
(
wx

∂

∂x
+ wy

∂

∂y

)
δwy + 3

2Ωx∂(δwy)
∂y

= 1
2Ωδwxŷ −

Ω
τs

(δwy − δuy) (4.30c)

∂δρg
∂t

+
(
ux

∂

∂x
+ uy

∂

∂y

)
δρg + 3

2Ωx∂(δρd)
∂y

=
(
∂

∂x
δux + ∂

∂y
δuy

)
(4.30d)

∂ux
∂t

+
(
ux

∂

∂x
+ uy

∂

∂y

)
δux + 3

2Ωx∂(δux)
∂y

= 2Ωδuyx̂

− cs2∂(δρg)
∂x

− Ωε
τs

(
δux − δwx − (δρd − δρg)(wx − ux)

)
(4.30e)

∂uy
∂t

+
(
ux

∂

∂x
+ uy

∂

∂y

)
δuy + 3

2Ωx∂(δuy)
∂y

= 1
2Ωδuxŷ

− cs2∂(δρg)
∂y

− Ωε
τs

(
δuy − δwy − (δρd − δρg)(wy − uy)

)
(4.30f)
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4.6.1 Sheared axis perturbation

Following Goldreich and Lynden-Bell (1965b), we transform to sheared axes, which
we’ll denote with a ′,

x′ = x (4.31a)

y′ = y − (3/2)Ωxt (4.31b)

t′ = t (4.31c)

The derivatives in this sheared frame are,

∂

∂x
= ∂

∂x′
− (3/2)Ωt′ ∂

∂y′
(4.32a)

∂

∂y
= ∂

∂y′
(4.32b)

∂

∂t
= ∂

∂t′
− (3/2)Ωx′ ∂

∂y′
(4.32c)

We will consider the inclusion of these sheared-frame derivatives with just one
equation, for now: equation 4.30. First, we will add the ∂/∂t time derivative, and
change the variable x to x′,
(
∂

∂t′
− 3

2Ωx′ ∂
∂y′

)
δρd +

(
wx

∂

∂x
+ wy

∂

∂y

)
δρd + 3

2Ωx′∂(δρd)
∂y′

= −
(
∂

∂x
δwx + ∂

∂y
δwy

)

which cancels the following term,

−3
2Ωx′∂(δρd)

∂y′

leaving us with,

∂δρd
∂t′

+
(
wx

∂

∂x
+ wy

∂

∂y

)
δρd = −

(
∂

∂x
δwx + ∂

∂y
δwy

)

Now, consider this factor:
wx

∂

∂x
+ wy

∂

∂y
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with the addition of the sheared frame derivatives:

wx

(
∂

∂x′
− (3/2)Ωt′ ∂

∂y′

)
+ wy

∂

∂y′

wx
∂

∂x′
+
(
wy − wx(3/2)Ωt′

)
∂

∂y′
(4.33)

Now, we assume the functional form of the perturbation is a plane wave, in the
sheared axes (with unknown time dependence). Explicitly,

δf(t) ∝ exp i(kxx′ + kyy
′)

so that,
∂δf

∂x′
= ikxδf

∂δf

∂y′
= ikyδf

Thus, returning to the factor in equation 4.33 and applying it to δρd, we now have,
(
wx

∂

∂x′
+
(
wy − wx(3/2)Ωt′

)
∂

∂y′

)
δρd = i

(
wxkx +

(
wy − wx(3/2)Ωt′

)
ky

)
δρd

= iky

(
wy − wx((3/2)Ωt′ − kx/ky)

)
δρd

as in Goldreich and Lynden-Bell (1965b), we define

τ ≡ (3/2)Ωt′ − kx/ky (4.34)

Now, the previous term is,

iky(−wxτ + wy)δρd

Through a similar process,

∂

∂x′
δwx + ∂

∂y′

(
δwy − (3/2)Ωt′δwx

)
= iky(−δwxτ + δwy)
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Finally, we will change the time derivatives to derivatives in τ . Via chain rule,

∂f

∂t′
= ∂f

∂τ

∂τ

∂t′

From equation 4.34, we have,
∂τ

∂t′
= 3

2Ω

and we will define,
k ≡ 2

3Ωky

Now, returning to equations 4.30, the final six equations that describe the perturbed
system are,

∂δρd
∂τ

+ ik(−wxτ + wy)δρd = −ik(−δwxτ + δwy) (4.35a)

∂δwx
∂τ

+ ik(−wxτ + wy)δwx = 4
3δwy −

2
3

1
τs

(δwx − δux) (4.35b)

∂δwy
∂τ

+ ik(−wxτ + wy)δwy = 1
3δwx −

2
3

1
τs

(δwy − δuy) (4.35c)

∂δρg
∂τ

+ ik(−uxτ + uy)δρg = −ik(−δuxτ + δuy) (4.35d)

∂δux
∂τ

+ ik(−uxτ + uy)δux = 4
3δuy − ikcs

2(−τ)δρg

− 2
3
ε

τs

(
δux − δwx − (δρd − δρg)(wx − ux)

)
(4.35e)

∂δuy
∂τ

+ ik(−uxτ + uy)δuy = 1
3δux − ikcs

2δρg

− 2
3
ε

τs

(
δuy − δwy − (δρd − δρg)(wy − uy)

)
(4.35f)

4.6.2 Exploring the non-axisymmetric perturbed system

As mentioned earlier, solving equations 4.35 is more complicated than solving the
axisymmetric equations sets of 4.13 and 4.17 due to the presence of terms which are
time varying. (Note the terms of the form ik(−uxτ + uy).) Solving this system is
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not possible with an eigenvalue analysis, and it will be more difficult to discover a
single growth rate for any set of perturbation parameters. However, outside of the gas
parameters cs and η, the system is still uniquely described by the same four values as
before: µ, τs, kx, ky.

We are interested in exploring the dynamics of this perturbed system by solving
equations 4.35 directly with standard coupled different equation methods such as
Runge-Kutta methods. Integrating this system over the dimensionless time parameter
τ will be computationally inexpensive. Thus the parameter space laid out by (µ, τs,
kx, ky) can be explored by brute force. We have already explored a few cases, but it
is clear that a systematic study which is able to fully characterize the outcomes is
needed. In particular, we would like to identify preferred wavevectors if present and
relate those to the simulation results of Section 4.5. Due to time constraints we were
unable to go further along this path but we intend to in future work.
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Chapter 5

Conclusions

Planet formation is a multi-stage process that follows the growth of micron sized dust
grains to full sized planets that span thousands of kilometres. The earliest stages
of this process, as grains grow to become kilometre sized planetesimals, faces a well-
documented pair of constraints known collectively as the metre barrier. In this thesis
we discuss techniques for studying mechanisms which may be capable of overcoming
the metre barrier with numerical simulations.

A recent study by Gonzalez et al. 2017 reported on a promising mechanism which
claimed self-induced dust traps are capable of forming in protoplanetary disks, and
within these traps, small dust grains could grow to form planetesimals. Thus, we
attempted to explore their results further by using and modifying the one-fluid dust-
gas prescription that our collaborators implemented in our SPH program ChaNGa
(Menon et al. 2015). However, we discovered that one-fluid schemes are overly diffusive,
and thus would not be useful for exploring the results of the Gonzalez et al. 2017
study which depends on strong dust concentration. We decided to develop a two-fluid
dust-gas scheme in ChaNGa, which is the method used in Gonzalez et al. 2017 and
is capable of modelling significant dust coagulation.

In Chapter 2 we explored both one-fluid scheme and two-fluid schemes for described a
coupled dust-gas system. In Chapter 3, we discussed associated SPH implementations
which have been developed and tested by G. Laibe and D. J. Price, two of the
prominent researchers using SPH to study dust in astrophysics (Laibe and Price 2012,
Laibe and Price 2014b). In Sections 3.3.1 to 3.3.3 we outlined our attempts to quantify
the performance of the numerical method in full three-dimensional protoplanetary disk
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simulations. We discovered that, on the scale of full protoplanetary disks, noise present
in the SPH density estimator obscures subtle aerodynamic behaviour of the dust grains
such as radial drift. With these results, along with private communications with Laibe
and Price, we discovered that simulators employing SPH to study dust behaviour must
be careful to avoid integrating simulations for many orbits or dynamical times. These
errors will become imparted on the dust, and may end up manufacturing macroscopic
behaviour that can affect the results of experiment. Thus SPH can be effective for
problems with larger perturbers (e.g. planets and binary companions as in the work of
Price and Laibe) but is has yet to be proven suitable for cases that rely on growth of
small perturbations. The Gonzalez et al. 2017 study ran their simulations for hundreds
of orbits from quiet initial disks, and this could have driven some of their results.

Gonzalez et al. proposed a new growth mechanism in a complex scenario. Based
on our experiences, we decided to examine a simpler and arguably more fundamental
mechanism for the formation of planetesimals known as the streaming instability
(SI) (Youdin and Goodman 2005). The analytical theory behind this mechanism is
thoroughly developed, and high-resolution 3D simulations have demonstrated that
the non-linear regime of this instability can concentrate an initially disperse dust
distribution to large overdensities. The previously mentioned density noise errors
in SPH make it difficult to study the linear evolution of the instability. In private
communications, Price and Laibe have informed us of their unsuccessful efforts to
capture the linear SI in SPH. Thus, we decided to use an established Eulerian
astrophysics code, Athena (Stone et al. 2008). Modules to simulate dust and the
streaming instability in Athena are publicly available and have been tested (Bai
and Stone 2010a). Thus Athena provides a solid framework to explore the analytic
instability as well as a benchmark for comparing alternate methods (such as an
improved SPH treatment). In Chapter 4 we explored our investigations involving the
SI. We confirmed the predicted enhancement to the SI growth rates from Squire and
Hopkins 2018 with our numerical simulations, and have begun an exploration into the
non-axisymmetric modes of the streaming instability.

The original analytic theory for the streaming instability only considered axisym-
metric perturbations to the coupled dust-gas system. This perturbation is analytically
solvable using an eigenvalue analysis, and predicts specific growth rates that could be
confirmed in numerical simulations. We are interested in exploring the presence of
modes in the radial-azimuthal plane (i.e. x-y) which can experience significant growth,
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as it appears it is these modes which dominate the non-linear evolution of the SI in
simulations with periodic shearing boxes. This is at odds with the existing theoretical
frameworks which are not-only axisymmetric but also assume a thick disk extending
in r and z. The non-axisymmetric theory is more complex and difficult to work with
but we have made inroads and will explore this analysis further.

Beyond the non-axisymmetric SI peturbation study, we are interested in exploring
other additions to the non-linear SI theory, including:

• developing a shearing box module in ChaNGa to study the non-linear SI

• exploring how grain growth affects the non-linear evolution of the streaming
instability

The main objective of our research is to build an array of robust numerical ap-
proaches for studying dust in protoplanetary disks during the early stages of planet
formation, and investigate how mechanisms such as the streaming instability are
capable of overcoming the metre barrier.
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