DOSIMETRY OF ELECTRON SOURCES NEAR

PLANAR TISSUE INTEREACES

DOSIMETRY OF ELECTRON SOURCES NEAR PLANAR TISSUE INTERFACES

 BY SIU-KI YU, B.Sc.A Project Report Submitted to the School of Graduate Studies in Partial Fulfilment of the Requirements for the Degree

Master of Science

McMaster University
(c) Copyright by Siu-Ki Yu, May 1989

```
MASTER OF SCIENCE (1989)
    MCMASTER UNIVERSITY
    (Physics)
    Hamilton, Ontario
TITLE : Dosimetry of Continuous Electron Sources
near Planar Tissue Interfaces
AUTHOR : Siu-Ki Yu, B.Sc. (McMaster University)
SUPERVISOR : Dr. C.S. Kwok
NUMBER OF PAGES : xiii, 134
```


Abstract

The beta dose distributions in red bone marrow equivalent material due to imbedded continuous sources were measured experimentally with ultra thin Lif thermoluminescent dosimeters near planar interfaces of oortigal bone (CB) and red bone marrow (RBM), and RBM and dir. It has been also investigated numerically by cyltran, :he Monte Carlo code.

In the Monte Carlo Approach, the dose enhancement ratio for a planar CB-RBM interface increases with electron energy and riaches a plateau at 0.50 MeV while the dose reduction tatio for a planar vacuum-RBM interface decreases to a :teridy ralue from 1.00 MeV onwards.

With a semi-infinite source of ${ }^{32} \mathrm{P}$, dose enhancement ratioz at 0-9, 79-88, and $157-166 \mathrm{mg} / \mathrm{cm}^{2}$ separations from a planar cb-RBM interface were measured to be 1.07 ± 0.01, 1.03 ± 0.03 and 0.99 ± 0.03 respectively. The dose reduction ratios at these separations from a planar AIR-RBM interface were Eound to be $0.82 \pm 0.01,0.94 \pm 0.03$ and 0.97 ± 0.03 respectively. Both the dose enhancement ratios and dose roduction ratios agree with the results calculated by the Monte Farlo approach within one standard deviation except Eot the dose reduction ratio at $0-9 \mathrm{mg} / \mathrm{cm}^{2}$ from the $A I R-R B M$ intertace. The experimental result in this case is about three atandard deviations less than the Monte Carlo results.

Using the same Monte Carlo code, the dose enhancement そatio at 0-20 micron aeparation from a planar CB-RBM interface due to a point or piane source of 0.50 MeV
eieverons at the interface reaches saturation at appreximateiy 0.22 times the CSDA range of 0.5 MeV electron in B for both plane and point source configurations. The saturation dose enhancement ratio for both configurations is i. 0 + 0.01 .

ACKNOWLEDGMENTS

```
    wouid like to thank my supervisor, Dr. C.S.Kwok, for
hie suidance and advice throughout this project. I am also
grateful to the opportunity and financial support from
McMast!r Iniversity and Dr. C.s.Kwok to complete this work.
A special thanks to Josane Nunes, Patrick Tam, and Vinay fitin to: their constant encouragement and helpful muggestions.
Ginally, it is with deep gratitude that I acknowledge the support my family has provided me in all my endeavor.
```


TABLE OF CONTENTS

Page
ABSTRACT iii
ACKNOWLEDGEMENTS vi
TABLE OF CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xii
CHAPTER 1 INTRODUCTION 1
1.1 BONE MARROW STRUCTURE 2
1.2 RADIOIMMUNOTHERAPY 6
1.3 BONE MARROW RADIATION DOSIMETRY 8
1.4 INTERACTIONS OF ELECTRON WITH MATTER 10

1. A. 1 ELECTRON-ELECTRON INTERACTIONS 10
1.4.2 ELASTIC INTERACTIONS WITH NUCLEI 11
1.4.3 INELASTIC INTERACTIONS WITH NUCLEI 12
1.4.4 ELECTRON RANGE 13
2. 5 BACK SCATTERING OF ELECTRONS 14
1.6 THERMOLUMINESCENT DOSIMETRY 17
CHAPTER 2 MONTE CARLO CALCULATIONS 20
2.1 MONTE CARLO CODE AND GEOMETRY 20
2.2 DATA ANALYSIS 27
2.3 RESULTS 37
CHAPTER 3 EXPERIMENTAL MEASUREMENTS OF DOSE 46 DISTRIBUTION NEAR INTERFACES
3.1 MATERIALS AND METHOD 46
3.2 EXPERIMENTAL PROCEDURE 51
3.2.1 TLD CALIBRATION 51
3.2.2 DOSE MEASUREMENT IN PHANTOM 52
3.3 RESULTS 57
CHAPTER 4 SUPPLEMENTARY EINDINGS WITH POINT 60 SOURCES OR PLANE SOURCES AT INTERFACES
4.2 EFFECT OF CORTICAL BONE THICKNESS 60 ON ELECTRON BACKSCATTER DOSE
4.2 DOSE RATIO FOR POINT SOURCES OF 67 FLECTRONS AT A VAC-RBM INTEREACE
4.3 FFFECT OF MYLAR USED IN EXPERIMENTS 71 ON DOSE RATIO
CHAPTER 5 OONCLUSIONS 74
REFERENCES 81
APPENDIX A 86
APPENDIX B 117
AEPENDIX C 126
APPENDIX D 134

LIST OF FIGURES

Figure Title Page
1.1 Organisation of bone marrow in a 5
haemopoietically-active long bone
1.2 Basic components of a typical 19 thermoluminescent readout system
2.1 Geometry of the upper half cross section in 25 the Monte Carlo calculations
2.2 Three-dimensional view of the geometric 26 specifications used in the Monte Carlo calculations
2.3 Dose at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ from the respective 30 interface due to a plane source of 0.5 MeV electrons as a function of plane source position P
2.4 Dose distribution near the respective 35 interface due to a semi-infinite sources of 0.5 MeV electrons as a function of scaled distance s
2.5 Dose at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ from the respective 36 interface due to a semi-infinite sources of electrons as a function of electron energy
2. 6 Dose enhancement ratio and dose reduction 43 ratio at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ from the respective interface due to a semi-infinite sources of electrons as a function of electron energy
3.1 Assemble Process of a group of TLD 49
3.2 Experimental setup for measuring backscatter 50 dose near planar tissue interfaces
3.3 Simplified algorithm of TDRD and 3-D 54 geometry of the activity distribution
3.4 Experimental and Monte Carlo calculated 58 results of dose enhancement ratio as a function of absolute distance from the planar CB-RBM interface
3.5 Experimental and Monte Carlo calculated 59 results of dose reduction ratio as a function of absolute distance from the planar AIR-RBM interface
4.1 Geometry of the upper cross section in the 62 Monte Carlo calculations
4.2 Dose enhancement ratio as a function of 64 scaled CB thickness at $0-2.094 \mathrm{mg} / \mathrm{cm}^{2}$ from planar CB-RBM interface for the point source and RBM-CB-RBM system
4.3 Dose enhancement ratio as a function ot 65
scaled $C B$ thickness at $0-2.094 \mathrm{mg} / \mathrm{cm}^{2}$ fromplanar CB-RBM interface for the plane sourceand RBM-CB-RBM system
4.4 Dose enhancement ratio as a function of 66 scaled CB thickness at 0-2.094 mg/cm from planar CB-RBM interface for the point source and VAC-CB-RBM system
4.5 Geometry of the upper cross section in the 69 Monte Carlo calculations
4.6 Geometry of the upper cross section in the 73
Monte Carlo calculations
5.1 Comparison of Monte Carlo results with 76
Bergers' results by plotting normalized dose at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ as a function of electron energy

LIST OF TABLES

Table Title Page
2.1 Dsx(0,E) at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ or $0-0.05 \mathrm{~mm}$ in RBM 37
for the RBM-RBM geometry
$2.2 \mathrm{Dex}_{\mathrm{E}}(0, \mathrm{E})$ at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ or $0-0.05 \mathrm{~mm}$ in RBM 38 for the CB-RBM geometry
$2.3 \mathrm{Dsin}^{2}(0, \mathrm{E})$ at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ or $0-0.05 \mathrm{~mm}$ in RBM 39
for the VAC-RBM geometry
$2.4 D_{B I}(X(E), E)$ at $79-91 \mathrm{mg} / \mathrm{cm}^{2}$ or $0.75-0.80 \mathrm{~mm}$ 40 in RBM
$2.5 \operatorname{Dex}(X(E), E)$ at $157-169 \mathrm{mg} / \mathrm{cm}^{2}$ or $0-0.05 \mathrm{~mm}$ 41
in RBM
2.6 Numerical dose ratio near the interfaces for 44 ${ }^{32} \mathrm{P}$
2.7 Numerical dose ratio near the interfaces for 44 204 Tl
2.8 Numerical dose ratio near the interfaces for 45 ${ }^{147} \mathrm{Pm}$
3.1 Experimental dose ratio near the interfaces 57
4.1 Dependence of electron backscattering from a 63 point or a plane source of 0.5 MeV electrons on CB slab thickness
4.2 Dose reduction ratio for different mass 70 densities of dose scoring region resulting from a point source of monoenergetic electrons at a VAC-PST interface
4. 3 Dose reduction ratio for different mass 70 densities of dose scoring region resulting from a point source of ${ }^{204} \mathrm{Tl}$ or ${ }^{147 \mathrm{Pm}}$ at the VAC-PST interface
5.1 Comparison of the Monte Carlo results with 77 Bergers' results

CHAPTER 1

INTRODUCTION

Recent advances in immunological technology lead to the use of tumor-associated monoclonal antibodies as carriers of beta radiation to small but widespread neoplasms for therapy. Owing to a combination of several factors including the radiosensitivity of the red bone marrow (RBM) and rapid entry of labeled antibody into bone marrow from the circulation, the RBM and to less extent the endosteal cells of the bone are likely to be the dose limiting tissues for systemic applications. Therefore, it is clinically important to quantitate their dose.

Although most tumors have soft tissue composition, their nejghborhood may include air and bone interfaces with very different physical properties such as mass density. Electrons are backscattered more from bone than from soft tissue thereby increasing radiation dose to the tissues adjacent to bone. In contrast, dose to the soft tissue near an air interface drops. One goal of this work was to estimate the perturbation in dose distributions due to uniform semi-infinite sources of electrons at planar interfaces of cortical bone - red bone marrow, and soft tissue - air. It has been investigated by both experimental approach and Monte Carlo method.

The trabecular bone is composed of thin lamellae of cortical bone (CB) with a wide range of thicknesses. They are called trabeculae and they form a meshwork of interconnecting spaces which contain bone marrow. Another
goal of the work was to investigate the effect of thickness of the trabeculae on the backscatter dose to the bone marrow imbedding uniform sources of electrons.

This chapter gives background material for this project. Chapter two describes the Monte Carlo code, the method of data analysis, and results of the Monte carlo calculations. In chapter three, the materials, method, experimental procedure and experimental results are presented. Chapter four contains some essential findings in this project including the effect of trabecular bone thickness on electron backscatter dose. The final chapter discusses the Monte Carlo and experimental results and their comparison with other researchers' findings.

1.1 BONE MARROW STRUCTURE

The architecture of bone marrow is best understood in relation to its vascular anatomy. Figure 1.1 gives a schematic representation of a cross section of the shaft of a long bone containing hemopoietic marrow [23]. Hemopoietic marrow is largely confined to a zone adjacent to the endosteum.

The marrow cavities of the skull, vertebrae, ribs, sternum, pelvis and the articular ends of long bones contain numerous cancellous trabeculae in addition to marrow. In large mammals the hemopoietic activity of the marrow is not uniform in all bone cavities. Whereas the marrow of axial skeleton is intensely hemopoietic (red marrow), that of the limb bones of adults contains mainly adipose cells (yellow marrow). In addition, the general cellular content of the bone marrow is age-dependent. At birth, no adipose cells are present in the marrow.

Bone marrow is a well vascularized organ composed of hematopoietic parenchyma and a supporting stroma. Cellular exchange between the hematopoietic and the vasculature compartments occurs across the walls of the vascular sinusoids. The wall of the sinusoids is composed of a luminal layer of endothelial cells, which forms a complete inner lining, and a lining of adventitial reticular cells, which forms an incomplete outer coat. There is evidence that the sinusoids are permeable to large molecules such as plasma proteins, and the plasma proteins are also capable of noving back into bloodstream [16,17]. Whether circulating blood enters hematopoietic compartments through the wall of vascular sinusoids or from arterial terminals whose connection with the sinusoids has been disturbed is not GDear. The permeability of the RBM to large molecules like antibodies plays a significant role in the rapidity of RBM uptake of radiolabeled antibodies and the residence time of the antibodies in the RBM. Whether the sinusoids are open or closed is still a controversial question. This is an assential feature of the bone marrow in radiolabeled nonorionai antibody dosimetry.

The Done marrow is the site for blood cell formation. The principal control of blood cell formation is exerted at Ghe pevel of the stem cells. In the bone marrow, stem cells constimate a pool of self-perpetuating cells differing in apociaidation from being multi- or pluri- potential to being committed to one cell line only. Functionally, the mutipotential stem cells have been identified by their capacity to repopulate the bone marrow after hematopoietic injury.

Abstract

Radiation-induced bone marrow failure is considered to result primarily from the destruction of hemopoietic stem cells. Lord [18] reported a concentration gradient of the multipotential stem cells (CFU-S) in mouse bone marrow, the CFU-S concentration being threefold greater near the bone surface than near the central longitudinal axis of the femoral medullary cavity. However, Maloney [19] presented contrary results. The existence of a stem cell gradient is therefore still an open question. If there is a higher concentration of stem cells near the bone surface of the bone marrow, then the effect on bone marrow toxicity due to backscattering of electron at bone/marrow interfaces becomes more important.

Figure 1.1. Organisation of bone marrow in a haemopoietically-active long bone

1.2 RADIOIMMUNOTHERAPY

Radioimmunotherapy (RIT) is the use of radiolabeled tumor-associated antibodies for cancer treatment. It is rapidly attracting interest as a potential weapon for cancer therapy. A first consideration in the use of radiolabeled antibody in diagnosis and therapy are the antigens, which are the potential targets of such antibody. In 1980, order [13] described the delivery of therapeutic radiation in humans using ${ }^{131}$ I-labeled polyclonal antibodies against tumor-associated antigens such as ferritin. Order [14] also showed a much higher specificity and affinity of monoclonal antibody over polyclonal antibody a year later.

Obviously, the success of any radiolabeled tumor-seeking antibody therapy will depend on the specificity and affinity of the antibody for the tumor. Monoclonal antibodies provide homogeneous molecules to be radiolabeled in order to target specific antigens. Indeed the specificity of antibody from a single cell clone is such that the antibody only reacts with a discrete portion and configuration of the antigenic molecule. A variety of tumor-seeking monoclonal antibodies can now be produced through the application of cell hybridization technology developed by Kohler and Milstein [10] in 1975. This technology opens the door for the effective development of the use of antibodies as carriers of radionuclides for cancer therapy.

[^0]Fidimbion lose to the tumor is detwi.. n both the Whysiai properties of the labeling radionuciide and the biologioal half-life of the antigen-radiolabeled antibody complex. The toxic effect to normal tissue is logically less with a higher speed of clearance, and adminstration of Larger therapeutic dose is allowed consequently.

The nolecular size of intact immunoglobulin molecules doe: int aliow them to move rapidly. This prolongs the time Erom injection to tumor lotake, thereby decreasing the radiation delivered to the tumor and increasing the total body lose the solution of this problem is to use their active Erammente Sor substitution. The rotive fragments can je eroduces by enzymatic diuestion inoter appropriate ronditions. Increases in the uptsko or adiolabeled
 Hhisity or this technology to fight witur -unor. However, , Limiting Eacor in this modality is tho tok ot adequate Hond flow rit the tumor. The ffect: of nculed nyperthermia unthe uptake of radiolabeled monoclonal mimibodies are 'eing studied in humar melanoma senograftz initiated in the "in". legs of mule mice by Kwok et al. [2g] and Stickney et 11. [24].

Tumor morpiologies are extremely varied, and antibody ljmidig and rotention will also vary depending on the Antibody or antibody Eragment used. To optimize the Gieatment :It a particular cancer it may therefore be necesaary to select a suitable antibody radiolabel to suit the individual tumor. Lists of suitable radionuclides for ieheling tumor-associated or tumor-specific antibodies have Deen given by wessels and Rogus [1:], William and Irving [75], and Fumm [12].

Abstract

Togans that might commonly be expected to set upper limite on tumor dosage would include bone marrow because of che sy access of the antibody to the bone marrow and its figh radiation sensitivity. Therefore, it is clinically Emporgant to quantitate the dose to this tissue.

1.3 BONE MARROW RADIATION DOSIMETRY

The absorbed dose to any target tissue in the body is th? nergy absorbed per unit mass of tissue. In the MIRD scherna, the general equation employed is

$$
\begin{equation*}
D_{T}=A_{0} \sum \tau_{A} S(T \leftarrow h) \tag{1.1}
\end{equation*}
$$

where
$D_{T}=$ the dose to target tissue T ($m G y$)
$\Lambda_{0}=$ the activity injected into the body (MBq)
$S(T \leftarrow h)=$ the absorbed dose in tissue T per
disintegration in source region h (mGy/MBq-sec), called the S-value
$\tau_{n}=$ the residence time in source region
h (sec). It also takes into account
the fraction of Λ_{0} taken up by h.

For RIT applications, the radiolabeled antibody is often metabolized by several organ systems, most notably those invoived in excretory functions. Therefore, the blood, -iver, kidneys, bladder, and possibly gastrointestinal organs may be significant source organs for irradiation of marrow. The marrow will also irradiate itself due to the
activity in blood which can possibly enter the marrow space by either the capillary circulation of the bone marrow or extravascular diffusion of antibody through the sinusoidal walls. Since many possible candidates of radionuclides used for $R I T$ applications involve a large beta and electron component, the dose from the marrow to itself may be of primary importance

Thus, the total marrow absorbed dose should be calculated as

$$
\begin{align*}
D_{R N}= & A_{D}\left(\sum\left(\tau_{A}-\left(\tau_{N A} m_{A} / m_{R B}\right)\right) S(R N \leftarrow h)+\right. \\
& \left(\tau_{N M}-\left(\tau_{A B} m_{R N} / m_{R A}\right)\right) S(R M \leftarrow R N)+ \\
& \left.\left(\tau_{R B} m_{T B} / m_{R A}\right) S(R M \leftarrow T B)\right\} \tag{1.2}
\end{align*}
$$

where terms have the same meaning as in Eqn. 1.1 except with specific source and target organs :
$m=$ mass of organ
$R M=$ red bone marrow
$h=$ source region
$T B=$ total body
$R B=$ remainder of body

This system is attractive and convenient, however, it fails to be predictive when examining non-uniformly distributed particulate radiation in the subcentimeter range, at tumor boundaries, or at organ interfaces. Early modeling approaches typically assumed an absorbed fraction of 1.0 for nonpenetrating radiation, but all the energy emitted from high energy electrons within the marrow spaces would not be deposited in the marrow. Therefore,
alectrons cannot be classified as nonpenetiating radiation and the absorbed fraction of energy must be analytically, numericaily , or experimentally determined.

1.4 INTERACTIONS OF ELECTRONS WITH MATTER

Interactions of electron with matter can be divided into thres ategories : electron-electron interactions, elastic interactions with nuclei, and inelastic interactions with matei.

1.4.1 Electron-electron interactions

Eluctrons traversing a medium transfer energy to orbital electrons of the medium. Impinging electrons Lose energy and are feflected at some angle with respect to their originai direction. An electron receiving energy may be raiser to an -xcited state (excitation) or may be fjecter from the atom (Sonization).

The inear sperific energy loss ciue to excitation and oniaation has been derived by Bethe [1] as

$$
\begin{align*}
-\left(\frac{d E}{d X}\right)_{0}= & \frac{2 \pi \theta^{4} N Z}{m V^{2}}\left(\ln \frac{m V^{2} E}{2 l^{2}\left(1-\beta^{2}\right)}-\ln 2\left(2\left(1-\beta^{2}\right)^{\frac{1}{2}}-1+\beta^{2}\right)+\right. \\
& \left.\left(1-\beta^{2}\right)+\frac{1}{8}\left(1-\left(1-\beta^{2}\right)^{\frac{1}{2}}\right)^{2}\right) \tag{1.3}
\end{align*}
$$

where
e=electron charge
$N=$ number density of the absorber atoms
$V=$ velocity of electron
$m=$ electron rest mass
E - impinging electron energy
I-average excitation and ionization potential of absorber
$Z=$ atomic number of absorber atoms $\beta=\frac{V}{C}$, and C is the speed of light in vacuum
1.4.2 Elastic interactions with nuclei

When an electron passes the neighborhood of a nucleus, it may undergo an elastic scattering. Backscattering of electron is primarily due to elastic scattering by nuclei, where electron undergoes sufficient deflection so that it re-emerges from the surface through which it entered. According to the Rutherford scattering formula,

$$
\begin{equation*}
\Xi d \omega=\frac{N}{A}\left(\frac{Z e^{2}}{4 E}\right)^{2} \frac{d \omega}{\sin ^{4}\left(\frac{1}{2}\right)} \tag{1.4}
\end{equation*}
$$

where
$\Xi d \omega=$ probability per $g-\mathrm{cm}^{2}$ of an electron scattered in to the solid angledw aboute(from its original direction)

The probability of elastic interactions with nuclei varies with Z^{2} of the absorber and approximately with ($1 / E^{2}$), where E represents the kinetic energy of the
incident electrons. Thus, backscattering is most pronounced for electrons with low incident energy and absorbers with high atomic numbers.

1.4.3 Inelastic interactions with nuclei

An electron passing near a nucleus (i.e. distance of approach is smaller than the atomic radius but larger than nuclear radius) may be deflected with reduced velocity. The interaction is inelastic if energy is released as electromagnetic radiation during the encounter. Radiative energy loss is caused by an acceleration of the electron under the influence of the electric field of a nearby nucleus. The radiated energy is known as bremsstrahlung. The linear specific energy loss through this radiative process [1] is

$$
\begin{equation*}
-\left(\frac{d E}{d X}\right)_{r}=\frac{N E Z(Z+1) \varepsilon^{4}}{137 m^{2} C^{4}}\left(4 \ln \frac{2 E}{m C^{2}}-\frac{4}{3}\right) \tag{1.5}
\end{equation*}
$$

where the terms have the same meaning as in the preceding equation.

From the specific energy loss equation for collision processes and for radiative processes, it is obvious that collision energy loss increases with Z and lnE while radiative energy loss increases with Z^{2} and E. Therefore, radiative loss are always a small fraction of energy losses due to ionization and excitation for low electron energies (less than a few MeV), and are significant only in absorber materials of high atomic number. As the electron energy increases, radiative energy loss becomes
signjeicant. At a certain energy called the critical energy, the two are equal. The ratio of the specific energy losses [1] is

$$
\begin{equation*}
\frac{\left(\frac{d r}{d x}\right)_{r}}{\left(\frac{d x}{d x}\right)_{0}} \propto \frac{E Z}{700} \tag{1.6}
\end{equation*}
$$

where E is electron energy in MeV

The effective atomic number for RBM is 5.93 [21] so that the critical energy should be approxiamtely 118 MeV according to equation (1.6). Thus, the radiative stopping power for electron in RBM is negligible in the range of electron energy considered in this work (note that the maximum electron energy considered in this work is 1.75 MeV).

The total linear stopping power for electrons is

$$
\begin{equation*}
\frac{d E}{d X}=\left(\frac{d E}{d X}\right)_{c}+\left(\frac{d E}{d x}\right)_{r} \tag{1.7}
\end{equation*}
$$

1.4.4 Electron range

The continuous-slowing-down-approximation (CSDA) is a schematization in which the rate of energy loss at each point along an electron trajectory is assumed to be equal to the mean energy loss given by the Bethe stopping power formula [2].

The CSDA range R_{E} can be defined as follows

$$
\begin{equation*}
R_{F}=\int_{E}^{0} \frac{d E}{\left(\frac{d F}{d x}\right)_{E}} \tag{1.8}
\end{equation*}
$$

where

$E=$ initial electron energy

$\left(\frac{d E}{d X}\right)_{g}=$ Bethe stopping power for electron

with energy E

However, this formula ignores multiple scattering and only suitable for heavy charged particles or low energy electrons (e.g. 0.1 MeV to critical energy in polystyrene). For electron energies much larger than the critical energy, the concept of electron range is meaningless because of cascade shower production. In addition, electrons are also subject to range straggling, defined as the fluctuation in path length for individual electrons of the same initial energy. This is caused by statistical fluctuations of the rate of energy loss along the electron track. Some energy is transported to distances greater than the CSDA range because of this energy loss straggling.

1.5 Back Scattering of Electrons

When a stream of electrons is directed against a solid target, most of the electrons penetrate into the target but some come out again. Most of the returning electrons are members of the original beam which have penetrated to a greater or lesser extent into the target, suffered elastic or inelastic collisions or both, and returned to the entrance surface of the target. Of course there are a Eew secondary electrons escaping from the target as well,
however, they are generally having an enerly less than 50 eV. Holiday et al. [26] reported that electron backscattering depends on the atomic number of the target material at energies above approximately 5 KeV . They suggested that research on electron backscatter dose at the interface should be focused on electron energies higher than 5 KeV .

There are two existing theories namely Diffusion Theory and Large Angle Single Elastic Scattering Theory to explain this phenomenon [27].

According to the Diffusion theory, electrons are supposed to travel straight into the target up to a certain specified distance, after which they diffuse evenly in all directions. It acknowledges the fact that an electron's progress eventually becomes random due to multiple collisions. However, it ignores the possibility of electrons undergoing large single reflections somewhere between the surface and the depth of complete diffusion. The depth of complete diffusion is defined as the depth at which the average cosine between the actual direction of the primary beam becomes $1 / e$ (i.e. the directions differ by an angle of 68.4°). Suppose a stream of monoenergetic electrons is moving towards the center of a sphere and starts to move equally in all directions at the depth of complete diffusion. The electrons can only escape from the sphere within a solid angle such that their overall paths are equal to or less than their full range. The ratio of this solid angle to the solid angle of the complete sphere (i.e. 4 pi) is defined as the back-scattering coefficient. The back-scattering coefficient R deduced by this theory is

$$
\begin{equation*}
R=\frac{(7 Z-80)}{(14 Z-80)} \tag{1.9.1}
\end{equation*}
$$

where Z is the atomic number of the target

According to the Large Angle Elastic Scattering Theory, electrons are supposed to travel straight into the target, suffering retardation and also undergoing elastic collisons in accordance with Rutherford's law of scattering, but it ignores the diffusing effect of multiple scattering. Only those reaching the surface before fulfilling their total range escape from the target. The relevent back scattering coefficient $R_{\text {I }}$ is

$$
\begin{equation*}
R_{5}=\frac{\left(a-1+0.5^{a}\right)}{(a+1)} \tag{1.9.2}
\end{equation*}
$$

where
$a=\frac{\pi Z^{2} e^{4} N_{A}}{m^{2} c A}$
$c=\left(\frac{16 \pi N_{A} e^{4} Z}{m^{2} A}\right) \ln \left(\frac{2 E}{J}\right)$
$N_{\mathbf{A}}=$ Avogadro's number
$J=11.5 \mathrm{Z} \mathrm{eV}$
$m=$ electron mass
$\mathrm{E}=$ electron energy in eV

Archard [27] combined the above theories and the combination of the theories is composed of three regions. For low Z target (below $Z=11$) the depth of complete diffusion (Xd) is large compared to the range of the electrons in the target material (Xr) so that Large Single Elastic Scattering Theory predominates for this range of Z. As Z rises, the ratio of $X d / X r$ falls and many more electrons diffuse back to the surface. In regions of high Z (above $Z=60$) the ratio of $X d / X r$ is very small; electrons
become diffused almost immediately and there is little chance for large single elastic scattering. Therefore, Diffusion Theory predominates in this region. In the region of medium $Z(11<Z<60)$ Archard found that the mean of the two theories agreed well with experimental results. All materials used in this investigation have effective atomic numbers less than 11 (Ze for $C B$ and RBM are 10.50 and 5.93 respectively [1]), thus Large Single Elastic scattering Theory applies to this work.

1.6 THERMOLUMINESCENT DOSIMETRY

Thermoluminescence (TL) has been used as a useful means of radiation dosimetry since the early 1950's [8,9]. During exposure to radiation, electrons in the crystalline structure of a thermoluminescent phosphor are excited to higher energy levels. Some of the electrons fall into and stay in so called "traps" where they remain after the irradiation. The traps are created by the inherent. impurities and defects in the crystal. If the distance of the trap energy level below the conduction band is sufficientily large, there is only a small probability per unjt time at ordinary room temperatures that the electron will escape the trap by being thermally excited back to the conduction band.

When the irradiated sample is sufficiently heated, trapped electrons migrate to combine with holes or holes migrate to combine with trapped electrons releasing photons. If the photon energy is about 2 to 3 eV , the emitted photons are in the visible region. It is this portion of the light spectrum which is normally used in thermoluminescence. The amount of light emitted is directly proportional to the irradiation dose. The light
yield as a function of temperature is recorded in a "glow curve". Therefore, the area under the glow curve is proportional to the irrediation dose.

Th practice, not all the electron traps are of the same energy level. The shallow traps are somewhat unstable even at ordinary room temperature. Therefore, it is necessary to allow the thermoluminescent dosimeter (TLD) to "fade" before reading out. In the readout process, TLD is heated to a sufficient temperature to deplete most of the electron traps. In order to ensure that all the traps have been depleted, the TLD must be annealed before reuse.

In this project, ultra thin LiF TLD discs, 50 microns thick, were used to measure the dose distribution near planar interfaces of air - red bone marrow (AIR-RBM), and cortical bone - red bone marrow (CB-RBM). Of all TLD materials, Lif has proved to be the most popular because of its small fading at room temperature and its low average atomic number, which does not differ greatly from that of air or tissue. The minimum sensitivity of LiF is about 10^{-4} Gy. The TL output of LiF as a function of energy absorbed is linear 1 p to about 10 Gy , and then becomes superlinear.

The basic components of most commercial TLD reading systems are illustrated in Figure 1.1. The commercial system which was used in this project is the Harshaw TLD system 4000.

Figure 1.2 Basic components of a typical thermotuminescent readout system

CHAPTER 2

MONTE CARLO CALCULATIONS

A Monte Carlo electron transport code, Cyltran [29], was used in this work to calculate the backscatter dose as a function of distance from planar $C B-R B M$ and AIR-RBM interfaces due to a semi-infinite uniform source of monoenergetic electrons. Since Cyltran has a built-in algorithm for selecting the appropriate step size for electron trajectories and it is several times faster than EGS [30], it was used in this work. The backscatter dose in a scoring region with inhomogeneous geometry (CB-RBM or VAC-RBM geometry) was divided by the dose in the same region with homogeneous geometry (RBM-RBM geometry) to yield a dose ratio. Variation of the dose ratio with electron energy of the serni-infinite source was also investigated. The dose ratio at three particular distances from the interfaces due to a :semi-infinite uniform source of ${ }^{\mathbf{3 3}} \mathrm{P}$ was also calculated in order to compare with experimental results.

Since low energy beta nuclides could be used to label anti-tumor antibodies for treating occult micrometastases and single tumor cells, the calculation was extended to low energy beta emitters such as ${ }^{204} \mathrm{Tl}$ and ${ }^{147} \mathrm{Pm}$.

2.1 MONTE CARLO CODE AND GEOMETRY

Cyltran was obtained from Oak Ridge National Laboratory. Being one of the base codes of the Integrated TIGER Series (ITS) [29], Cyltran employs a fully three-dimensional description of particle trajectories within an axisymmetric
cylindrical material geometry. The ITS is a group of multimaterial and multidimensional Monte Carlo codes designed to provide a description of the production and transport of the electron/photon cascade. Its base codes were primarily designed for transport at primary source energies from a few tens of MeV down to 1.0 and 10 KeV for electrons and photons, respectively. The ITS consists of an electron/photon cross section data file (XDATA), a cross section generation program (XGEN), and several Monte Carlo program files (e.g. Cyltran in this work). Program XGEN looks for the cross section and atomic data in XDATA while it is being executed to create cross section input for the specified Monte Carlo program. In addition, a problem specific input file must be provided. The values of the keywords in the input file for this work are described in the following.

GEOMETRY [parameter(1)]

[parameter(2)][parameter(3)].....[parameter(5)]

This keyword signals the beginning of the geometry information. [parameter(1)] is the number of input zones. Immediately after the keyword line there must follow a series of [parameter(1)] lines, one for each input zones. [parameter(2)] through [parameter(5)] specify the minimum z boundary, the maximum z boundary, the minimum radius, the maximum radius and the material, respectively.

DIRECTION [parameter(1)][parameter(2)]
[parameter(1)] and [parameter(2)] are the spherical polar angles in degrees that defined the source reference direction.

Default values, zero for both parameters, were used to define source reference position at positive z direction in this work

```
ISOTROPIC [parameter(1)]
    Defines angular distribution of source
    particles as being isotropic with respect
    to the reference direction.
    [parameter(1)] = 180.0 (i.e. a 4 pi
        isotropic source)
                        in this work
```


ELECTRONs

This keyword defines the source particles to be electrons rather than photons.

ENERGY [parameter(1)]
This keyword specifies a monoenergetic source of energy [parameter(1)] in MeV .
$[$ parameter $(1)]=0.1,0.2,0.35,0.50,0.75$, $1.00,1.25,1.50$, or 1.75 in this work

POSITION [parameter(1)][parameter(2)][parameter(3)] [parameter(1)] through [parameter(3)] are the x, y and z coordinates of the center of the source, respectively, in cm.
[parameter(1)] = [parameter(2)] = 0 in this work [parameter(3)] $=0,1 / 18,1 / 9,1 / 6,2 / 9,1 / 3,2 / 3$,

```
1, 10/9, or 4/3 times the CSDA
range of the electron source
in this work
```

```
RADIUS [parameter(1)]
    This keyword defines the radius [parameter(1)]
        in cm of a disk source with the reference
        position at its center. The normal to the
        disk will be the reference direction as
        defined by the DIRECTION keyword.
        [parameter(1)] = 2 in this work
```

CUTOFFS [parameter (1)][parameter(2)]
[parameter(1)] and [parameter(2)] are the cutoff
energies (MeV) at which electron and photon histories
are terminated, respectively.
$[$ parameter (1)] $=[$ parameter(2)] $=0.001$ in this work
HISTORIES [parameter(1)]
[parameter(1)] is the number of primary particle
histories to be followed.
$[$ parameter (1)] $=50000$ in this work
BATCHES [parameter(1)]
[parameter(1)] is the number of batches of primary
particles to be run. The total number of histories is
divided into [parameter(1)] batches containing an equal
number of source particles in order to obtain estimates
of statistical uncertainties.
[parameter(1)] = 10 in this work

Some keywords other than the above had not been specified and default settings were then automatically activated such that histories of knock on delta rays were

Eollowed; histories of all bremsstrahlung photons and relaxation radiation resulting from electron impact ionization were followed; electron loss straggling was taken into account.

As illustrated in Figure 2.1 and 2.2 , the cylindrical regions of cortical bone, red bone marrow, and vacuum simulate the cortical bone equivalent plastic, gelatin, and air which were used in the experiments. Twelve small disc-like dose scoring regions (DSR) in RBM were equally spaced from the interfaces up to $11 / 9$ times the CSDA range. They were defined in the geometry of the Monte carlo calculations to simulate the LiF TLD used in the experiments. The mass density of the TLD was assumed to be $2.39 \mathrm{~g} / \mathrm{cm}^{3}$ according to the specifications from the manufacturer. The dose scoring regions had the same mass thickness of $12 \mathrm{mg} / \mathrm{cm}^{2}$ as the 50 microns thick TLD but the radius was set to be 1 cm in RBM (mass density $1.047 \mathrm{~g} / \mathrm{cm}^{3}$) so as to improve counting statistics in the DSRs. Note that the composition of the scoring regions was RBM instead of LiF. It has been proven that there is no significant difference in the dose ratio of inhomogeneous geometry to homogeneous geometry by using RBM to imitate the LiF TLD in experiment [21]. By defining two distinct materials in the simulation instead of three, it was shown that the CPU time for each Monte Carlo run was decreased by 23% [21].

Figure 2.1 Geometry of the upper half cross section In the Monte Carlo calculations

Figure 2.2 Three-dimensional view of the geometric specifications
used in the Monte Carlo calculations

Note that the radius of the $D S R$ was tet to be 1 cm instead of the actual radius of the TLD (i.e. 0.3 cm) because as long as the radius of the source is much larger than that of the DSR the absorbed dose in the DSR is independent of its actual magnitude. The radius of the plane source was set to be 2 cm . Since the maximum CSDA range (i.e. for 1.75 MeV electron) in RBM is about 0.84 cm , the radius of the plane source had more than one maximum CSDA range than the radius of the dose scoring regions. Therefore, the plane source could be treated as infinitely large with respect to the DSRs. Similarly, the lateral dimensions of the $R B M, C B$ and vacuum region were greater than the diameter of the DSR by 4 cm . Thus, these regions act as infinite media to the DSRs and the plane source. There were ten source positions (i.e. $P=0,1 / 18,1 / 9,1 / 6$, 2/9, $1 / 3,2 / 3,1,10 / 9,4 / 3$ CSDA range) in the Monte Carlo calculations.

2.2 DATA ANALYSIS

270 Monte Carlo calculations had been done for the spatial distribution of absorbed dose in RBM with or without a heterogeneous interface due to the plane sources of monoenergetic electrons at different source positions and at different energies. Fifty thousand electron histories were followed for each Monte Carlo run. The results are presented in appendix A. The absorbed dose in the DSRs is expressed as a function of their scaled distance from the interface, the scaled source position, and electron energy. The scaled distance s and the scaled source position P are defined as the ratio of the absolute distances from the interface to the CSDA range $\mathrm{ro}(\mathrm{E})$ of electrons with energy E in RBM. These scaled quantities facilitate interpolation to any source energy and distance from the interface.

The dose to any one of the DSRs due tomi-infinite inhform source of monoenergetic electrons in $3 B M$ could be caichiated as the integral of the dose contributed by the plane sources with the source position.

$$
\begin{equation*}
D_{s 1}(S, E)=\int_{0}^{4 / 3} D_{P}(S, P, E) d P+\int_{4 / 3}^{s+4 / 3} D_{P}(S, P, E) d P \tag{2.1}
\end{equation*}
$$

where

$D_{s I}(B, E)=$	dose in a DSR at scaled distance
	S due to a semi-infinite uniform
	source of electrons with energy E
$D_{P}(S, D, E)=$	dose in the same DSR at scaled distance
	S due to a plane source of riectrons
	with energy E at scaled sourco position
	P

The first term on the right hand side of equation (2.1) calculatoss the dose to the DSR at S due to electron sources in the region from the interface to the scaled distance of 4/3. Note that there iz less than $4 / 3$ times the CSDA range Erom the DSR to the end of the region (i.e. scaled distance $=4 / 3$; except for the DSR at the interface. Therefore, the second term on the right hand side of equation (2.1) is in=ioduced to calculate the dose to the DSR from a second source region which is from scaled distance of $4 / 3$ to $4 / 3$ times the CSDA lange from the DSR.

$$
\text { Let, } \mathrm{J}=\mathrm{P}-\mathrm{S} \text {, }
$$

$$
\begin{align*}
\int_{4 / 3}^{9+4 / 3} D_{P}(S, P, E) d P & \Rightarrow \int_{4 / 3-3}^{4 / 3} D_{P}(S, U+S, E) d U \\
& \Rightarrow \int_{4 / 3-3}^{4 / 3} D_{P}^{N B M-K B M}(O, U, E) d U \tag{2.1}
\end{align*}
$$

Since the second source region is at a distance more than $4 / 3$ times the CSDA range away from the interface, the dose to the DSR due to the second source region is equivalent to the dose to the DSR at the interface due to a source region from scaled distance of (4/3-5) to scaled distance of $4 / 3$ in RBM-RBM geometry.

Dp(O,P,E), was fitted by weighted least-squares method to a degree six polynomial function or to a cubic spline function for comparison. The reason of using a degree six polynomial is that the largest decrease of residual variance occurred in going from degree five to degree six. The residual variance is the sum of squares of the residual values divided by the degree of freedom. $D_{p}(0, P, 0.5)$ for the three different geometries were plotted in Figure 2.3 for illustration.
$-6-V A C-\operatorname{RBM}-A-C B-P B M$ RBM-RBM

Figure 2.3 Dose at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ from the respective interface due to a plane source of 0.5 MeV electrons as a function of plane source position P

Fitting function : cubic spline

```
    The uncertainty of the integratico % mated in two
ways. The first was to calculate the stmuc:da urror of the
    .um Erom the coefficients and their associatod uncertainties
    of :He polynomial function. The general equation of an N
    urse polynomial function is :
```

$$
\begin{equation*}
Y=\sum_{i=1}^{N} P_{i} X^{(-1} \tag{2.2}
\end{equation*}
$$

Where $P_{1}=$ coefficent of the term X^{1-1} of the polynomial

The integral I of the function in the interval a to b is
$I=\int_{a}^{b} Y d X=I_{a}+I_{b}=\sum_{i=1}^{N} \frac{P_{i} b^{i}}{i}-\sum_{i=1}^{N} \frac{P_{t} a^{i}}{i}$

The absolute standard error $\sigma(I)$ of the integral is
$\sigma^{2}(I)=\sum_{i=1}^{N} \sum_{l=1}^{N}\left(\frac{d l_{0}}{d P_{i}}\right)\left(\frac{d I_{0}}{d P_{1}}\right) \sigma^{2}\left(P_{W}\right)+$

$$
\begin{equation*}
\sum_{i=1}^{N} \sum_{l=1}^{N}\left(\frac{d l_{a}}{d P_{i}}\right)\left(\frac{d l_{a}}{d P_{j}}\right) \sigma^{2}\left(P_{1}\right) \tag{2.4}
\end{equation*}
$$

$\sigma^{2}\left(P_{1}\right)=$ element i, j in the variance-covariance matrix

A computer program was written to perform the polynomial fitting, integration of the fitted curve and error estimation; it is listed in appendix B.

The second way is an approximate method whereby the absolute error is expressed as the absolute difference of two area integrations divided by 2 as follows.

$$
\begin{equation*}
E R R_{g}(S, E)=\frac{A 1-A 2}{2} \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& A 1=\int_{0}^{4 / 3} D_{P}(S, P, E)\{1+\operatorname{RELERR}(S, P, E)\} d P+ \\
& A 2=\int_{0 / 3-3}^{4 / 3} D_{P}^{\text {RaM-RBM }}(O, P, E)\{1+\operatorname{RELERR}(O, P, E)\} d P \\
& \\
& \quad \int_{4 / 3}^{4 / 3} D_{P}(S, P, E)\{1-\operatorname{RELERR}(S, P, E)\} d P+ \\
& E R R(S, E)=\text { absolute error of } D_{S I}(S, P, E) \\
& \operatorname{RELERR}(S, P, E)=\text { relative error of } D_{P}(S, P, E)
\end{aligned}
$$

In the approximate method, curves of dose \pm one standard deviation versus source position were fitted by cubic spline function. This method was used for the rest of the integrations even though this method over-estimates the uncertainty of the integration because the polynomial function is not always a good fitting function to the data. on the contrary, the cubic spline function is a more flexible fitting function in general.

Since the separations of the dose scoring regions were expressed in terms of the CSDA range, the corresponding scaled distance $X(E)$ of an absolute distance r for electron energy E can be calculated as

$$
\begin{equation*}
X(E)=\frac{\left(\rho_{\text {AOM }}\right) r}{r_{0}(E)} \tag{2.6}
\end{equation*}
$$

$X(E)=$ scaled distance for electron energy E
 $\rho_{\text {RAM }}=$ density of RBM

$=1.047 \mathrm{~g} / \mathrm{cm}^{2}$

```
r=absolute distance from interface
    =0.075 cm or 0.15cm
ro(E)=CSDA range for energy E in water; unit = g/cm}\mp@subsup{}{}{2
```

The doses due to a semi-infinite source at absolute distances of 0.75 mm and 1.50 mm from the interface were эbtained by interpolation to the $\mathrm{Dax}_{\mathrm{ar}}(\mathrm{S}, \mathrm{E})$ with respect to S . Curves were fitted by weighted least-squares method to the discrete values of $D_{s x}(S, E)$ and the choice of the fitting Eunction depended upon the shape of the curves. The fitting functions for these curves are listed in appendix C. Dsx(3.0.5) for VAC-RBM, RBM-RBM and CB-RBM were plotted in ifgure 2.4 as examples.

Fer $D(r, E)$ be the dose at an absolute distance r from the interface as a function of electron energy E for the inhomogeneous geometry and $D_{H}(r, E)$ be that for the homogeneous geometry. $D_{x}(r, E)$ and $D_{H}(r, E)$ were assumed to be increased linearly with electron energy from 0 to 0.1 MeV. The fitting functions for $D_{x}(r, E)$ and $D_{H}(r, E)$ are listed in appendix a. Figure 2.5 illustrates $D_{x}(0, E)$ for the VAC-RBM, and CB-RBM geometries and $D_{H}(O, E)$ for the RBM-RBM geometry. The dose ratio $R(r)$ of the inhomogeneous geometry to the homogeneous geometry due to a serni-infinite beta source was evaluated for an absolute distance r from the interface.

$$
\begin{equation*}
R(r)=\frac{\int_{0}^{E_{0}} D_{1}(r, E) B(E) d E}{\int_{0}^{E_{0}} D_{H}(r, E) B(E) d E} \tag{2.7}
\end{equation*}
$$

where $B(E)$ is the beta spectrum of ${ }^{32} \mathrm{P}$ ($\mathrm{E}_{0}=1.71 \mathrm{MeV}$), 204 Tl (Eo $=0.766 \mathrm{MeV}$) or ${ }^{147 \mathrm{Pm}}\left(\mathrm{E}_{0}=0.224 \mathrm{MeV}\right.$). The former two nuclides have allowed transitions while the last one has first-forbidden transition. A computer program has been developed by W.V. Prestwich, Ph.D. to evaluate the beta spectra. Integration of a beta spectrum with $D(r, E)$ is required for determining the average dose per beta decay and $i t$ was done numerically by using a program developed by P.J. Bialobzyski [3].

The error $\sigma(R)$ in R is given by

$$
\begin{equation*}
\left(\frac{\sigma\{R(r)\}}{R(r)}\right)^{2}=\left(\frac{\sigma\left\{\int D_{1}(r, E) d E\right\}}{\int D_{1}(r, E) d E}\right)^{2}+\left(\frac{\sigma\left\{\int D_{H}(r, E) d E\right\}}{\int D_{H}(r, E) d E}\right)^{2} \tag{2.8}
\end{equation*}
$$

where

$$
\sigma\left\{\int D(r, E) d E\right\rangle=\sum_{\text {and }}^{N} \sum_{l=1}^{N}\left(\frac{d\left\langle\int D(r, E) d E\right\rangle}{d P_{t}}\right)\left(\frac{d\left\{\int D(r, E) d E\right\rangle}{d P_{1}}\right) \sigma^{2}\left(P_{1}\right)
$$

$P_{1}=$ coefficient of the ith term in the fitting function $\sigma^{2}\left(P_{6}\right)=$ element i, j in the variance-covariance matrix
$-\theta-\quad V A C-R B M$ R- RBM-RBM -A-- CB-REM

Figure 2.4 Dose distribution near the respective interface due to a semi-infinite sources of 0.5 MeV electrons as a function of scaled distance S

Fitting function : listed in appendix C
$-\theta-V A C-R B M$ RBM-RBM -A-- CB-RBM

Figure 2.5 Dose at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ from the respective interface due to a semi-infinite sources of electrons as a function of electron energy

Fitting function : listed in appendix C

2.3 RESULTS

Tibles $2.2,2.2$ and 2.3 list $D_{s x}(0, \Sigma)$ for the RBM-RBM, CB-SBM and VAC-RBM geometries respectively and their arresponding estimated uncertainties for the dose scoring region located at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ from the interface using the polynomial fit or the cubic spline fit respectively. Cbvionsiy, the estimated uncertainties for curves fitted by The mbic spline Eunction are significantly higher than the ancertianties astimated by the other method.

TABLE 2.1
DBI ($0, E$) it $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ or $0-0.05 \mathrm{~mm}$ in RBM for the RBM-RBM geometry

Blectron$\begin{aligned} & \text { energy } \\ & (\text { MeV }) \end{aligned}$	(1) Cubic spline		(2) Polyroma.aia		, difizerence$\frac{(2)-(1): \times 100 \%}{(2)}$
	dose*	\% error	dose*	\% exror	
0.10	7.4546	1.12	7.4361	0.50	0.4
0.20	3.7097	1.70	3.7301	0.69	0.5
0.35	2.4119	1.93	2.3691	0.77	1.8
0.50	2.0129	1.65	1.9919	0.69	1.1
0.75	1.6078	2.01	1. 6054	0.91	0.1
1.00	1. 4994	1.99	1.4985	0.89	0.06
1.25	1.4133	2.28	1.4109	1.00	0.2
1.50	1.3271	3.26	1.3474	1.46	1.5
1.75	1.3081	2.45	1.3086	0.94	0.04

TABLE 2.2
Dax ($0, E$) at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ or $0-0.05 \mathrm{~mm}$ in RBM for the CB-RBM geometry

Electron energy (MeV)	$\begin{aligned} & \text { (1) Cubic } \\ & \text { spline } \end{aligned}$		(2) Polynomial		* difference$\frac{:(2)-(1): \times 100 \%}{(2)}$
	dose*	\% error	dose*	\% error	
0.10	7.5830	1.43	7.6014	0.84	0.2
0.20	3.8126	1.64	3.8238	0.66	0.3
0.35	2.5834	1.49	2.5893	0.67	0.2
0.50	2.1510	2.19	2.1337	1.02	0.8
0.75	1.7881	2.44	1.7655	0.95	1
1.00	1.6296	1.70	1.6240	0.59	0.3
1.25	1.5254	2.16	1.5385	0.91	0.9
1.50	1.4652	2.30	1.4686	0.92	0.2
1.75	1.4082	2.49	1.4116	1.07	0.2

TABLE 2.3
$D_{s x}(0, E)$ at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ or $0-0.05 \mathrm{~mm}$ in $R B M$ for the VAC-RBM geometry

Electron energy (MeV)	(1) Cubic spline		(2) Polynomial		\% difference
	\% error	dose*	\% error	$\frac{(2)-(1) \text { ix } 100 \%}{(2)}$	
0.10	7.2878	1.13	7.3040	0.51	0.2
0.20	3.4271	1.34	3.4357	0.60	0.3
0.35	2.1272	1.69	2.1223	0.74	0.2
0.50	1.7222	2.42	1.7252	0.87	0.2
0.75	1.3565	2.07	1.3531	0.99	0.3
1.00	1.1880	2.69	1.1737	0.31	1
1.25	1.1081	2.12	1.1064	1.04	0.2
1.50	1.0732	2.52	1.0695	1.12	0.3
1.75	1.0409	2.02	1.0417	0.79	0.08

* The unit of dose is 10^{-11} Gy per electron

Tables 2.4 and 2.5 show the variation of the dose with electron energy at absolute distances of 0.75 mm and 1.50 mm, respectively.

TABLE 2.4
Dsi(X(E),E) at $79-91 \mathrm{mg} / \mathrm{cm}^{2}$ or $0.75-0.80 \mathrm{~mm}$ in RBM

Electron energy (MeV)	VAC-RBM		RBM-RBM		CB-RBM	
	dose*	\% error	dose *	\% error	dose*	\% error
0.10	8.7906	1	8.7965	1	8.7980	1
0.20	5.5306	1	5.5321	1	5.5355	1
0.35	4.3222	2	4.3498	2	4.4063	1
0.50	3.1927	2	3.2280	2	3.1791	2
0.75	2.4437	2	2.4507	2	2.4669	2
1.00	1.8129	3	1.9586	2	2.0420	2
1.25	1.5990	2	1.7934	2	1.8575	2
1.50	1.4759	2	1.6499	2	1.7468	2
1.75	1.3441	2	1.4944	3	1.5582	2

* The unit of dose is 10^{-11} Gy per electron

TABLE 2.5
Dsa(X(E),E) at $157-169 \mathrm{mg} / \mathrm{cm}^{2}$ or $1.50-1.55 \mathrm{~mm}$ in $R B M$

Electron	VAC-RBM		RBM-RBM		CB-RBM	
energy (MeV)	dose*	\% error	dose*	\% error	dose*	\% error
0.10	8.5996	1	8.7965	1	8.7980	1
0.20	5.1106	1	5.5321	1	5.5355	1
0.35	4.3422	2	4.3498	2	4.3496	1
0.50	3.4093	2	3.4620	2	3.3845	2
0.75	2.8540	2	2.8507	2	2.8167	2
1.00	2.3062	2	2.3304	2	2.3712	2
1.25	1.9634	2	2.0696	2	2.0928	2
1.50	1.7612	2	1.8677	2	1.9363	2
1.75	1.5822	3	1.6838	3	1.7364	2

* The unit of dose is 10^{-11} Gy per electron.

Dose enhancement ratio and dose reduction ratio can be defined respectively as the dose ratio of the CB-RBM geometry and VAC-RBM geometry to the RBM-RBM geometry due to the semi-infinite sources of electrons.

The dose enhancement ratio and dose reduction ratio at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ separation from the respective interface are plotted as a function of the energy of an isotropic source of monoenergetic electrons in Figure 2.6. The dose nhancement ratio increases with electron energy and reaches a plateau at 0.50 MeV while the dose reduction ratio lecreases and becomes steady from 1.00 MeV onwards. The maximum dose enhancement ratio and dose reduction ratio are 2.30 ± 0.03 and 0.79 ± 3 respectively.

Tabies $2.6,2.7$ and 2.8 summarize the dose ratios at 0-2, 79-91 and $1.57-169 \mathrm{mg} / \mathrm{cm}^{2}$ from the planar interfaces Eor nuclides ${ }^{32} \mathrm{p},{ }^{204 \mathrm{Tl}}$ and ${ }^{174 \mathrm{Pm}}$ respectively. Neither dose enhancement nor dose reduction were observed at 157-169 $\mathrm{mg} / \mathrm{cm}^{2}$ (i.e. 0.15 cm) from the interfaces for the three ruclides and at $79-91 \mathrm{mg} / \mathrm{cm}^{2}$ for the last two nuclides as well. The dose enhancement ratios, are $1.07 \pm 0.01,1.04 \pm$ 0.01 and 1.02 ± 0.01 at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ (i.e. 0 cm) for ${ }^{32 \mathrm{p}}$, 204 m 1 and 174 Pm , respectively. The dose enhancement ratio and the dose reduction ratio are 1.02 ± 0.03 and 0.97 ± 0.03 respectively at $79-91 \mathrm{mg} / \mathrm{cm}^{2}\left(i . e .0 .075 \mathrm{~cm}\right.$) for ${ }^{32 \mathrm{p}}$.

Figure 2.6 Dose enhancement ratio and dose reduction ratio at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ from the respective interface due to a semi-infinite sources of electrons as a function of electron energy

Fitting function :

$$
\begin{aligned}
& Y=A+B(1-\exp (-C X)) \text { for dose enhancement ratio } \\
& Y=A+B * \exp (-C X) \text { for dose reduction ratio }
\end{aligned}
$$

where Y = dose ratio
$\mathrm{X}=$ electron energy (MeV)
A, B and C are fitting parameters

For dose enhancement ratio

$$
\begin{array}{ll}
\mathrm{A}=0.994 \pm 0.009 & \mathrm{~A}=0.724 \pm 0.005 \\
\mathrm{~B}=9.87 \pm 0.01 & \mathrm{~B}=0.290 \pm 0.009 \\
\mathrm{C}=3.4 \pm 0.9 & C=2.8 \pm 0.2
\end{array}
$$

For dose reduction ratio

TABLE 2.6
Numerical dose ratio near the interfaces for ${ }^{32} p$

Distance from interface $\left(\mathrm{mm}, \mathrm{mg} / \mathrm{cm}^{2}\right)$	Dose enhancement ratio for CB-RBM interface	Dose reduction ratio for VAC-RBM interface
$0-0.05,0-12$	1.07 ± 0.01	0.87 ± 0.01
$0.75-0.80,79-91$		
$1.50-1.55,157-169$	1.02 ± 0.03	0.97 ± 0.03

TABLE 2.7
Numerical dose ratio near the interfaces for ${ }^{204} \mathrm{Tl}$

Distance from interface $\left(\mathrm{mm}, \mathrm{mg} / \mathrm{cm}^{2}\right)$	Dose enhancement ratio for CB-RBM interface	Dose reduction ratio for VAC-RBM interface
$0-0.05,0-12$	1.04 ± 0.01	0.93 ± 0.01
$0.75-0.80,79-91$	1.00 ± 0.03	1.00 ± 0.03
$1.50-1.55,157-169$	0.99 ± 0.03	1.00 ± 0.03

TABLE 2.8
Numerical dose ratio near the interfaces for ${ }^{147} \mathrm{Pm}$

Distance from interface $\left(\mathrm{mm}, \mathrm{mg} / \mathrm{cm}^{2}\right)$	Dose enhancement ratio for CB-RBM interface	Dose reduction ratio for VAC-RBM interface
$0-0.05,0-12$	1.02 ± 0.01	0.96 ± 0.01
$0.75-0.80,79-91$		
$1.50-1.55,157-169$	1.00 ± 0.03	1.00 ± 0.03
1.00 ± 0.03	1.00 ± 0.03	

CHAPTER 3

EXPERIMENTAL MEASUREMENTS OF DOSE DISTRIBUTION NEAR INTERFACES

With a uniform continuous source of ${ }^{32}$ p inside a well designed phantom, beta doses at various separations from the $A I R-R B M$, and $C B-R B M$ planar interfaces were measured by groups of ultra thin LiF thermoluminescent dosimeters (TLDS). The dose near the planar interfaces due to changes in the backscattering of electrons is then compared with the dose in homogeneous RBM. Due to the long half-lifes of ${ }^{147 \mathrm{Pm}(2.623}$ years) and $204 \mathrm{Tl}(3.779$ years), experiments for these two nuclides were not performed. In this chapter, the materials, experimental procedure and results are presented.

3.1 MATERIALS AND METHOD

A cortical bone equivalent plastic plate, $78 \times 78 \mathrm{~mm}^{2}$ in area and 12 mm in thickness, was used as a substitute for cortical bone. The plastic was obtained from Dr. Rodney Bigley, Sloane Kettering Cancer Center, New York, New York and it has the same number of electrons per gram and mass density as real cortical bone [3]

As a substitute for RBM containing uniformly distributed 32p, Knox gelatin solution [5], 50 gram per litre of water in concentration, was mixed uniformly with a sodium phosphate ${ }^{32} \mathrm{p}$ solution. The source of ${ }^{32} \mathrm{P}$ was purchased from Merck Frosst Canada Inc., Kirkland, Quebec. The gelatin solution was mainly a very diluted mixture of water-soluble proteins composed of atoms with low atomic numbers.

Therefore, the effective atomic number ($Z e$) of the mixed solution should be comparable to the $Z e$ of water. The $Z e$ of RBM, RBM equivalent plastic, polystyrene and water are 5.93, 5.53, 5.29 and 6.6 respectively [21]. The specific activity of the mixed solution was in the range of $185-262 \mathrm{KBq} / \mathrm{ml}$ and the final volume of the solution was 200 ml . A volume of 0.15 ml of formaldehyde was also added into the solution not only to prevent bacterial invasion during the experiments, but also to increase the melting point of the gelatin [4].

Abstract

The solubility of LiF in water, although slight, makes it unsuitable for dosimetry when it is in contact with aqueous solution because the solution will etch the surface and perhaps release the energy previously stored [6]. The TLDs would become contaminated while in contact with the ${ }^{32} p$ gelatin source. Thus, a group of five TLDs were sandwiched by two mylar sheets (13.4 micron in thickness each) mounted firmly on two polystyrene frames as shown in Figure 3.1, and air between the mylar sheets was evacuated. Since the CSDA range of the end point energy Eo of ${ }^{32} \mathrm{p}$ in water is about $0.84 \mathrm{~cm}[20]$, the TLDs were separated from the inner edge of the frames and from each other by at least 1.5 cm (i.e. more than 1.5 times the CSDA range) in order to prevent mutual interaction.

A polystyrene rectangular phantom was used in these experiments. Dimensions of the phantom are greater than twice the CSDA range of Eo of ${ }^{32} \mathrm{P}$ so that charged particle equilibrium is established at the center region of the phantom. As shown in Figure 3.2, the piece of $C B$ equivalent plastic was inserted into the phantom against a sidewall, and the assembled frames were inserted vertically into the phantom. The portable slab was removed after the mixed
solution had solidified so that the phantom had a CB-RBM interface on one side and an AIR-RBM interface on the opposite side.

Three groups of TLDs were used in the experiments. Group (A) and group (C) were used to measure the dose at a distance less than one CSDA range from the CB-RBM and AIR-RBM interfaces respectively. Group (B) was located between the other two groups at a distance more than one CSDA range away from each of them. Group (B) therefore measured the dose in an infinite medium of RBM. The positions of the groups of TLDs were varied by placing known thicknesses of polystyrene frames (1.5 mm thick each) and mylar frames (0.25 mm thick each) between the groups of TLDs and the interfaces.

Figure 3.1 Assemble Process of a Group of TLD

Figure 3.2 Experimental setup for measuring backscatter dose near planar tissue interfaces

3.2 EXPERIMENTAL PROCEDURE

3.2.1 TLD Calibration

The TLDs, 6 mm diameter x nominal 50 micron thickness, were purchased from Teledyne Isotopes, Westwood, New Jersey. 110 TLDs were annealed in an annealing oven for two hours at $(300 \pm 1)^{\circ} \mathrm{C}$ and then 24 hours at $(80 \pm 1)^{\circ} \mathrm{C}$. One hundred of the TLDs were calibrated individually with 3 GY of ${ }^{60} \mathrm{Co}$ gamma rays five times. The remaining ten TLDs were not irradiated and were used to monitor the background radiation.

Irradiated TLDs were allowed to fade for 24 hours and then read out consecutively with a Harshaw TLD system 4000 TLD reader. The parameters for the programmed heating cycle during readout had been set to : heating rate, $10^{\circ} \mathrm{C} / \mathrm{s}$; preheating annealing constant temperature, $150^{\circ} \mathrm{C}$ for 5 s ; constant temperature for reading, $240^{\circ} \mathrm{C}$ for 20 s . TLDs were washed with 70\% ethanol before readout in order to remove possible build up of electrostatic charge and dirt on the surface of the TLDs.

The sensitivity of the TLDs could be defined as the TLD response (i.e. light output) divided by the calibration dose. The TLDs were annealed after each calibration. The sensitivity of an individual TLD in each calibration was recorded, and the records of the sensitivity and history were kept. Only those TLDs with less than 1% change of sensitivity in the last three consecutive calibrations were used for experiments.

Each unirradiated TLD was placed in the aluminum planchet of the $T L D$ reader and read twice. A small transparent pyrex glass slab was placed on the top of the TLD to ensure that it made good thermo-contact with the planchet. The initial background reading was acquired and it was read again for the residual background after the planchet was cooled down to $30^{\circ} \mathrm{C}$. The total background reading is calculated to be the sum of the initial and residual readings. Each irradiated TLD was read twice in the same way for the initial and residual readings. Thus, the TLD response could be calculated as the difference of the total readings and the total background readings.

3.2.2 Dose Measurement In Phantom

After the phantom had been assembled as illustrated in Figure 3.2 , the radioactive gelatin solution was poured into the phantom. The phantom was then stored in a refrigerator at $4^{\circ} \mathrm{C}$ for one hour in order to solidify the gelatin. A TLD was placed on the inside surface of the portable slab to monitor the dose to the group (C) TLDs during solidification. This dose is named as solidification dose. The TLD was covered by a sheet of mylar. The phantom was then put on the floor of an isolated room without any other scattering material except the floor in a radial distance of at least 1 m . Two TLDs were placed underneath the phantom for measuring background radiation. Since the thickness of the walls of the phantom was 2 cm (i.e. more than twice the CSDA range of Eo of ${ }^{32 p}$ in RBM), the TLDs for background counting would not be irradiated by the beta particles of 32 p .

The TLDs in the phantom were irradiated for 3 days in order to obtain a less than 1% noise to signal ratio. Since the group (B) TLDs measured the dose due to an infinite source of ${ }^{32} p$, a correction factor, $C 1(z)$, must be multiplied to the dose of group (B) TLDs to convert it to the dose at a distance z within a semi-infinite source of ${ }^{32} \mathrm{P}$. Thus, the dose ratio due to a semi-infinite source of ${ }^{32} \mathrm{p}$ at a distance z from the interface can be calculated.
T.et Do be the equilibrium absorbed dose rate that would prevail everywhere in an unbounded homogeneous water medium if an uniform isotropic source of ${ }^{32} P$ were distributed throughout the entire medium. Let $D(z)$ be the corresponding absorbed dose rate at a depth $z>0$ in water if the source were confined to the half-space $z \leq 0$. A reduction factor $G(z)$ for ${ }^{32} \mathrm{P}$ in a water medium can be expressed as follows

$$
\begin{equation*}
G(z)=\frac{D(z)}{D_{0}} \tag{3.1}
\end{equation*}
$$

Dose distributions in the water medium were found by convolution of the beta dose point kernel for ${ }^{33}$ p with the activity distribution of the source. The beta dose point kernel for ${ }^{32 P}$ has been calculated by Prestwich et al. [22] and the results were fitted by a lognormal-cum-exponential function. A program called TDRD which has been developed by Dr. C.S. Kwok was used to calculate $D(z)$ and Do. A simplified algorithm of TDRD can be found in Figure 3.3

Figure 3.3 Simplified algorithm of TDRD and 3-D geometry of the activity distribution

In the experiments, TLDs were placed at $0,0.075$ and 0.15 centimeters away from the interfaces. Since the nominal thickness of the TLDs is 50 microns, the 'distance intervals' (i.e. front side to back side) of the TLDs from the interface in $\mathrm{mg} / \mathrm{cm}^{2}$ are

$$
\begin{equation*}
z=\rho_{\text {gil }} d \rightarrow\left(\rho_{\text {gel }} d+\rho_{T w} T\right) \tag{3.2}
\end{equation*}
$$

where
$\rho_{\text {gal }}=$ density of the gelatin
$\rho_{\text {TL }}=$ density of the TLDs

$=0,0.075$ or 0.15 cm
T-the TLD thickness
$-0.005 \mathrm{~cm}$

Thus, the distance intervals of the TLDs are 0-9, 79-87 and 157-166 $\mathrm{mg} / \mathrm{cm}^{2}$ corresponding to the absolute distance of 0 , 0.075 and 0.15 cm .

The density of the TLDs was measured to be $1.71 \mathrm{~g} / \mathrm{cm}^{2}$. Density of the gelatin was measured to be approximately 1.05 $\mathrm{g} / \mathrm{cm}^{3}$.

$$
\begin{equation*}
\text { Thus, } C l(z)=1-G(z) \tag{3.4}
\end{equation*}
$$

$$
\begin{array}{ll}
C 1(0 \mathrm{~cm}) & =C 1\left(0-9 \mathrm{mg} / \mathrm{cm}^{2}\right)=0.50 \\
C 1(0.075 \mathrm{~cm}) & =C 1\left(79-B 7 \mathrm{mg} / \mathrm{cm}^{2}\right)=0.749252 \\
C 1(0.15 \mathrm{~cm})=C 1\left(157-166 \mathrm{mg} / \mathrm{cm}^{2}\right)=0.903633
\end{array}
$$

The dose enhancement ratio at z from the CB-RBM interface was then calculated as follows:

$$
\begin{equation*}
R_{c a-\operatorname{nom}}(z)=\frac{A}{B}\left(1 \geqslant\left(\left(\frac{\sigma(A)}{A}\right)^{2}+\left(\frac{\sigma(B)}{B}\right)^{2}\right)^{\frac{1}{2}}\right) \tag{3.5}
\end{equation*}
$$

where
$A=$ mean dose of the group (A) TLDs
$B=$ (mean dose of the group (B) TLDs) $\times C I(z)$

And the dose of either group TLD = (TLD response background)/(sensitivity factor)

Similarly, the dose reduction ratio at z from the AIR-RBM interface was calculated by

$$
\begin{equation*}
R_{A I R-\operatorname{RBM}}(z)=\frac{C}{B}\left(1 \pm\left(\left(\frac{\sigma(C)}{C}\right)^{2}+\left(\frac{\sigma(B)}{B}\right)^{2}\right)^{\frac{1}{2}}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& C=\text { mean dose of the group (C) TLDS } \\
& B=\text { (mean dose of the group (B) TLDS) } \times C 1(z)
\end{aligned}
$$

For this equation,
the dose of group (C) TLD = (TLD response - background - solidification dose)/(sensitivity factor)
and
the dose of group (B) TLD = [(TLD response background) x C2]/(sensitivity factor)
where $C 2=1-\frac{\text { dose received during solidification }}{\text { total dose recieved }}$

$$
\begin{equation*}
=1-\frac{(1-\exp }{\left(1-\exp ^{-\left(\lambda . \frac{1}{x}\right)}\right)} \tag{3.7}
\end{equation*}
$$

$\lambda=$ decay constant of ${ }^{32} P$ in the unlt of day ${ }^{-1}$

3.3 RESULTS

Table 3.1 summarizes the results of the experiment. The experimental results in table 3.1 and the Monte Carlo results in table 2.6 are presented in Figure 3.4 and Figure 3.5 for the $C B-R B M$ and $A I R-R B M$ interfaces respectively. The data points in Figure 3.4 are fitted by linear functions, while the data points in Figure 3.5 are fitted well by exponential functions. The experimental results agree with the Monte Carlo results except for the dose reduction ratio at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$, where the experimental result (i.e. $0.82 \pm$ 0.02) shows about three standard deviations less than the Monte Carlo result (i.e. 0.87 ± 0.01)

TABLE 3.1
Experimental dose ratio near the interfaces

Distance from interface $\left(\mathrm{mm}, \mathrm{mg} / \mathrm{cm}^{2}\right)$	Dose enhancement ratio for $\mathrm{CB}-\mathrm{RBM}$ interface	Dose reduction ratio for AIR-RBM interface
$0-0.05,0-9$	1.07 ± 0.01	0.82 ± 0.02
$0.75-0.80,79-87$		
$1.50-1.55,157-166$		

Experimental - - - Monte Carlo results resuits


```
Zitting function : Y = 1 + A*EXP(-B*X) for both curves
where Y = dose ratio
        X = absolute distance
        A and B are fitting parameters
```

Eor solid line
a $=7.0401 E-2$

1. 1848
mare $=1.14 \mathrm{E}-2$
for dotted line
$A=7.04748-2$
$B=7.7725$
hi cquare $=5.577 \mathrm{E}-\mathrm{s}$

Tiqure 3.5 Experimental and Monte Carlo calculated results of dose reduction ratio as a function of absolute distance from the planar AIR－RBM interface

```
Fitting function : Y = 1 - A*EXP(-B*X) for both curves
where Y = dose ratio
    X = absolute distance
    A and B are fitting parameters
\begin{tabular}{|c|c|}
\hline Sor solid line & Eor dotted line \\
\hline  & \(\mathrm{A}=1.3028 \mathrm{E}-1\) \\
\hline \(B=1.5514\) & \(3=2.1532\) \\
\hline
\end{tabular}
```

war $=1.890$
Thi squat $=1.013 \mathrm{EW-1}$

CHAPTER 4

SUPPLEMENTARY FINDINGS WITH POINT SOURCES OR PLANE SOURCES AT INTERFACE

4.1 EFFECT OF CORTICAL BONE THICKNESS ON ELECTRON BACKSCATTER DOSE

Since trabecular bone is composed of a network of fine lamellae of cortical bone with a wide range of thicknesses and mumerous cavities which contain the red marrow, it will be essential to repeat Monte Carlo calculations for sources of electrons in such cavities surrounded by different thicknesses of bone. Previous Monte carlo calculations assumed infinitely thick layers of bone surrounding the cavities.

The same Monte Carlo transport code, Cyltran, was used to investigate the electron backscatter dose as a function of scaled cortical bone slab thickness which is defined as the thickness divided by the CSDA range of the electron in bone. The geometry of the Monte Carlo calculations was similar to the one described in chapter 2 except for the following. (a) A point source or a plane source of isotropically emitting electrons of 0.50 MeV at the junction of the $C B-$ RBM interface was used. (b) $2.094 \mathrm{mg} / \mathrm{cm}^{2}$ instead of $12 \mathrm{mg} / \mathrm{cm}^{2}$ thick dose scoring regions were defined. (c) Vacuum or a thick slab of RBM was placed behind the CB slab in this simulation. Figure 4.1 gives details of
the geometry. The scaled $C B$ slab thickness was varied from more than 9 to 0.03 . Eifty thousand electron histories were Eollowed in each Monte Carlo run.

In table 4.1, Monte Carlo results for the dose enhancement ratio at $0-20$ micron separation from the interface with different bone thicknesses are given. As expected, the dose ratio increases rapidly with thickness until a saturation value of 1.06 ± 0.01 is reached. The results are also presented in Figures 4.2, 4.3 and 4.4 for the point source and RBM-CB-RBM system, the plane source and RBM-CB-RBM system, and the point source and VAC-CB-RBM system, respectively. The saturation dose ratio for all these systems agrees with the dose ratio for infinitely thick $C B$ within one standard deviation. At 99% saturation, the craled thicknesses of the CB slab are (0.22土 0.05), (0.3 ± 0.1) and (0.22 ± 0.01) for the point source and RBM-CB-RBM system, the plane source and RBM-CB-RBM system, and the point source and VAC-CB-RBM system, respectively. It may then be concluded that the saturation thickness of $C B$ is approximately 0.22 times the CSDA range for 0.5 MeV electrons for both the point source and plane source confrigurations. The range of the dose ratio for the VAC-CB-RBM system (i.e 0.89 to 1.07) is greater than that for the RBM-CB-RBM system (i.e. 1.to 1.07). Therefore, the VAC-CB-RBM system is suggested to be used in further investigations for other electron energies.

Planar Source
Polnt Source

Figure 4.1 Geometry of the upper half cross section in the Monte Carlo calculations

TABLE 4.i
Dependence of electron backscattering from a point or a plane source of 0.5 MeV electrons on $C B$ slab thickness

Scaled CB thickness	Dose enhancement ratio at $0-20$ micron separation from interface		
	RBM-CB-RBM		VAC-CB-RBM
	point source	plane source	point source
0.03		1.00 ± 0.02	0.89 ± 0.01
0.05	1.02 ± 0.01	1.01 ± 0.03	0.93 ± 0.01
0.07			0.98 ± 0.01
0.10	1.03 ± 0.01	1.01 ± 0.02	1.00 ± 0.01
0.13			1.02 ± 0.01
0.15	1.04 ± 0.01	1.05 ± 0.01	1.05 ± 0.01
0.17	1.05 ± 0.01		1.04 ± 0.01
0.20	1.06 ± 0.01	1.05 ± 0.03	1.04 ± 0.01
0.25	1.05 ± 0.01	1.05 ± 0.01	1.06 ± 0.01
0.30	1.05 ± 0.01	1.05 ± 0.02	1.06 ± 0.01
0.35		1.07 ± 0.02	1.07 ± 0.01
0.40	1.05 ± 0.01		1.07 ± 0.01
more than 9	1.07 ± 0.01	1.06 ± 0.02	1.07 ± 0.01

Figure 4.2 Dose enhancement ratio as a function of scaled CB thickness at $0-2.094 \mathrm{mg} / \mathrm{cm}^{2}$ from planar CB-RBM interface for the point source and RBM-CB-RBM system

```
Eitting Function : Y = A + B ( 1 - EXP(-CX))
```

Where $Y=$ Dose ratio
$X=C B$ thickness in CSDA range
A, B and C are fitting parameters
$A=1.000 \pm 0.002$
$B=0.060 \pm 0.006$
$c=8 \pm 2$

Tiqure 4.3 Dose enhancement ratio as a function of scaled $C B$ thickness at $0-2.094 \mathrm{mg} / \mathrm{cm}^{2}$ from planar CB-RBM interface for the plane source and RBM-CB-RBM system

Fitting Function : $Y=A+B(1-\operatorname{EXP}(-C X))$

Where Y = Dose ratio
$\mathrm{X}=\mathrm{CB}$ thickness in CSDA range
A, B and C are fitting parameters
$A=0.9981 \pm 0.005$
$B=0.067 \pm 0.01$
$C=6 \pm 2$

Figure 4.4 Dose enhancement ratio as a function of scaled $C B$ thickness at $0-2.094 \mathrm{mg} / \mathrm{cm}^{2}$ from planar $C B-R B M$ interface for the point source and VAC-CB-RBM system

```
Eitting Function : Y = A + B ( 1 - EXP(-CX))
```

Where $Y=$ Dose ratio
$\mathrm{X}=\mathrm{CB}$ thickness in CSDA range
A, B and C are fitting parameters
$A=0.79 \pm 0.01$
$B=0.27 \pm 0.01$
$C=14.7 \pm 0.8$

4.2 DOSE RATIO FOR POINT SOURCES OF ELECTRONS AT A VAC-RBM INTERFACE

The dose distribution of a beta point source at a planar interiace of air and polystyrene has been studied by Kwok et a1. [3,21]. They found experimentally that the beta dose at 0-12 $\mathrm{mg} / \mathrm{cm}^{2}$ from the air-polystyrene interface decreased by $(23 \pm 2) \%$ and (14 $\pm 3) \%$ respectively for point sources of 204 Tl and 147 Pm compared with the dose in an unbounded polystyrene medium. However, the corresponding dose reductions according to their Monte Carlo calculations were respectively $(6 \pm 1) \%$ and $(2 \pm 1) \%$. Unfortunately, they used a wrong cross section data file for polystyrene in the Monte Carlo calculations. There is another reason for repeating the calculations. The mass density of the TLD had been assumed to be $2.39 \mathrm{~g} / \mathrm{cm}^{3}$ in the previous work according to the manufacturer's specification, but the mass density of che TLDs used in the experiments was measured to be (1.71 \pm $0.03) \mathrm{g} / \mathrm{cm}^{3}$.

The geometry for the repeated Monte carlo calculations is illustrated in Figure 4.5. Six electron energies ranging from 0.1 to 0.75 MeV were used. Forty thousand electron histories were followed for each Monte carlo run.

A comparison of the dose ratio for different mass densities of the dose scoring region resulting from a point source of monoenergetic electrons at the VAC-PST (where PST stands for polystyrene) interface is presented in Table 4.2. The dose reduction ratios for the two different mass densities of DSR agree within one standard deviation except at 0.2 MeV where the dose ratio for the DSR with greater mass density (i.e. 0.94 ± 0.01 for $2.39 \mathrm{mg} / \mathrm{cm}^{3}$) is about two standard deviation greater than the dose ratio for the DSR
with smaller mass density (i.e 0.91 ± 0.01 for $1.71 \mathrm{mg} / \mathrm{cms}^{3}$). Curves of dose versus electron energy in the range of 0.1 HeV to 0.75 MeV for homogeneous and inhomogeneous geometries were fitted by weighted least-squares method to a polynomial function. Linear functions were used in the region below 0.1 MeV. The fitting functions, listed in appendix D, were integrated with the beta spectra of ${ }^{204} \mathrm{Tl}$ and ${ }^{147} \mathrm{Pm}$. The dose ratio for the beta sources was calculated by equation 2.3 and is given in Table 4.3. There is no significant effect of the change of mass density of the TLD on the dose reduction ratio since the two sets of Monte Carlo calculation results agree within one standard error. However, a significant discrepancy between Monte Carlo results and experimental results was still observed and the cause of this discrepancy remains unexplained.

Figure 4.5 Geometry of the upper half cross section in the Monte Carlo calculations

TABLE 4.2
Dose reduction ratio for different mass density of dose scoring region resulting from a point source of monoenergetic electrons at a VAC-PST interface

Electron energy (MeV)	Mass density $2.39 \mathrm{mg} / \mathrm{cm}^{3}$	Mass density $=1.71$ $\mathrm{mg} / \mathrm{cm}^{3}$
0.1	1.01 ± 0.01	1.00 ± 0.01
0.15	0.97 ± 0.01	0.95 ± 0.01
0.2	0.94 ± 0.01	0.91 ± 0.01
0.25	0.90 ± 0.01	0.88 ± 0.01
0.35	0.87 ± 0.01	0.86 ± 0.01
0.50	$0.84+0.01$	0.84 ± 0.01
0.75	0.83 ± 0.01	0.84 ± 0.01

TABLE 4.3
Dose reduction ratio for different mass densities of dose scoring region with a point source of ${ }^{204} \mathrm{Tl}$ OR ${ }^{147 \mathrm{Pm}}$ at the
VAC-PST interface

Isotope	Mass density $2.39 \mathrm{mg} / \mathrm{cm}^{3}$	Mass density $1.71 \mathrm{mg} / \mathrm{cm}^{3}$	Experimental results
204 Tl	0.91 ± 0.01	0.91 ± 0.01	0.77 ± 0.07
147 Pm	0.99 ± 0.01	0.98 ± 0.01	0.9 ± 0.1

4.3 EFFECT OF MYLAR USED IN EXPERIMENTS ON DOSE RATIO

There was a difference in the geometry between the Monte arlo ealculations and the experiment. In the experiment, rrDe were sandwiched by two thin layers of mylar and they had not been taken into account in the Monte carlo aalculations. Thus, it is essential to investigate the抽e: of the presence of these layers of mylar on the dose wati, rspecially the dose reduction ratio at the VAC-RBM interface.

Two geometries were used in the Monte Carlo calculation is :hown in Eigure 4.6. In geometry (1) a plane source of O. 1 MeV electrons was set at the VAC-RBM interface and a lose sooring region with equivalent mass density of 2.39 $\mathrm{mg} / \mathrm{mi}^{3}$ was defined just behind the plane source. It has the same geometry and the same assumed value of mass density of TTD described in chapter 2 . Fifty thousand electron hiatories were followed. Geometry (2) is the same as geometry (I) except that a layer of PST with equivalent Ghickness (i.e. 13.4 micron) and mass density (i.e. 1.66 g/rmº of the mylar used in the experiment was placed in Eron- of the plane source, and the mass density of the dose scoring region was $3.71 \mathrm{mg} / \mathrm{cm}^{3}$ (i.e. the same as the TLDs a;ed in the experiment). One hundred and fifty thousand - legtron histories were followed.

Electrons with energy of 0.1 MeV were chosen because Whey have the shortest CSDA range among those used in the Monte Carlo calculations described in chapter 2 . Therefore, the thickness of the mylar represented the biggest fraction \therefore E the CSDA range. The method of calculating dose ratio is the same as in the previous section. The dose reduction caticz calculated by using geometry (1) or (2) are $0.79 \pm$

```
0.02 and 0.83 \pm 0.04 respectively. They are not
statistically different. It justifies not including the myiar in most of the Monte Carlo calculations. If the thin layers of mylar does not affect the dose reduction ratio, it is expected not to cause any change to the dose enhancement ratio previously obtained as well.
```


Mylar
葸縭 Planar Source

Figure 4．6 Geometries of the upper half cross section in the Monte Cario calculations

CHAPTER 5

CONCLUSIONS

Tumor-associated monoclonal antibodies are potential carriers of ionizing radiation to the tumor site for cancer therapy. Practically, this technology is limited among other factors by radiotoxicity to the red bone marrow due to its high radiosensitivity and rapid entry of the labeled antibodies into the bone marrow from the circulation. Since the neighborhood of tumors may include air and bone interraces, radiation dose near the interfaces should be quantitated.

In chapter 2 , the dose near tissue irtorfaces due to a semi-tnfinite source of monoenergetic alectrons was assumed to be "inearly increased with electron enercy from o to 0.1 MeV (see Figure 2.5). Since the function of variation of dose with electron energy was integrated with the spectrum of b beta source to calculate the average dose per beta decay, $i t$ iz important to compare this function with other resenrchers, findings.

Berger [2] calculated the reduction factor $G(z)$ for a zemi-trifinite source of monoenergetic electrons in water as detined in equation 3.1, where z is the distance away from the source and is in scaled distance. The absorbed dose rate at z inside the source is equal to the equilibrium cose rate times (l-G(z)). Since the mass thickness of the DSRs was defined to be $12 \mathrm{mg} / \mathrm{cm}^{2}$ in chapter 2 , the maximum value of z, z_{m}, cor the DSR at the interface for each monoenergetic

```
eigc-ron source is equal to the mass thickness of the DSR divised by the CSDA range ro of the electron in water. The ro of electron in water was taken from ICRU report 37 [20].
```

The percentage of the equilibrium energy deposition, P , in the DSR at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ from the interface for a monoenergetic electron source can be calculated by the following equation.

$$
\begin{equation*}
P=\frac{\int_{0}^{z_{m}}(1-G(z)) d z}{C} \times 100 \tag{5.1}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
\mathrm{z}_{\mathbf{m}} & =0.012 / \mathrm{r}_{0} \\
\mathrm{C} & =1 \text { if } \mathrm{z}_{\mathbf{m}} \leq 1 \\
C & =\mathrm{z}_{\mathbf{m}} \text { if } \mathrm{z}_{\mathrm{m}}>1
\end{aligned}
$$

Thus, the energy deposited in the $D S R$ at $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ by Gne iisintegration of the electron source is the product of P ind the electron energy of the source. The normalized dose in table 5.1 was calculated by dividing the energy leposition for the monoenergetic electron zources by the aichest energy deposition value among them. Likewise, the Monte Carlo results in table 2.3 were normalized in the same way. The normalized doses obtained by the two methods were alottiad as a function ot electron energy in Figure 5.1 for - omparison.

TABLE 5.1
Comparison of the Monte Carlo results with Bergers' results

Electron energy (MeV)	CSDA range in water (g/cm)	\% of total energy deposition	Normalized dose from Berger	Normalized dose from Monte Carlo
0.01	$2.515 \mathrm{E}-4$	99.732	0.1392	
0.015	$5.147 \mathrm{E}-4$	99.448	0.2083	
0.02	$8.566 \mathrm{E}-4$	99.078	0.2766	
0.03	$1.756 \mathrm{E}-3$	98.108	0.4109	
0.04	$2.919 \mathrm{E}-3$	96.860	0.5409	
0.05	$4.320 \mathrm{E}-3$	95.357	0.6656	
0.06	$5.940 \mathrm{E}-3$	93.623	0.7842	
0.08	$9.773 \mathrm{E}-3$	89.540	1.0000	
0.1	$1.431 \mathrm{E}-3$	71.065	0.9921	1.00 ± 0.01
0.15	$2.817 \mathrm{E}-2$	31.358	0.6566	
0.2	$4.487 \mathrm{E}-2$	17.934	0.5007	0.50 ± 0.01
0.3	$8.421 \mathrm{E}-2$	8.650	0.3623	
0.35	$1.060 \mathrm{E}-1$		0.3285^{*}	0.323 ± 0.006
0.4	$1.288 \mathrm{E}-1$	5.377	0.3003	
0.5	$1.767 \mathrm{E}-1$	3.804	0.2655	0.270 ± 0.005
0.6	$2.268 \mathrm{E}-1$	2.905	0.2434	
0.75	$3.046 \mathrm{E}-1$		$0.2218 *$	0.216 ± 0.004
0.8	$3.308 \mathrm{E}-1$	1.943	0.2170	
1	$4.378 \mathrm{E}-1$	1.447	0.2020	0.201 ± 0.004
1.25	$5.731 \mathrm{E}-1$		$0.1921 *$	0.190 ± 0.004
1.5	$7.090 \mathrm{E}-1$	0.877	0.1837	0.176 ± 0.004
2	$8.448 \mathrm{E}-1$		0.629	0.1756

* interpolated values by using cubic spline fitting

قrom rable 5.1 and Figure 5.l, it in is eserved that buth sets aE sesults agree within one tanarad deviation Gxarte at 3.5 MeV and 0.75 MeV . For these electron energies, the rormalized Monte Carlo dose is about two standard loviations less than the normalized dose from Bergers' rosulta. Linear increase of dose from 0 to 0.08 MeV was wherved Erom the Bergers' results. The actual highest dose acomis momewhere between 0.08 and 0.1 MeV. The assumption of Lisurtr increase of dose from 0 to 0.1 MeV in chapter 2 is miniefore justified. The yood agroement between the two Gentulhes beyomd o. MeV implies that the method of data aidizais tor obtaining the dose due to a semi-infinite \therefore anioe of monoenergetic electrons described in chapter 2 was Mlidile. Therofore, i-he results Eor VAC-RBM and CB-RBM montionations are coneluentiy acceptable.

In :he Monte Carlo approach, the lo:ie wnancoment ratio Go who \rightarrow B-RM interface increases with olectron energy and uncines a biateau at 0.50 MeV while the dowe reduction ratio St he thC-RBM interface lecreases and becomes eteady from $\therefore 0 \mathrm{O}$ leV onwards. The dose enhancement ratios at 0-12, 79-91 ind :57-1.59 mg/cm separations from the CB-RBM interface due $\therefore a \quad$ ami-infinite source of 32 P were calculated to be 1.07 $\pm 0.01,2.02 \pm 0.03$ and 3.00 ± 0.03 respectively. The dose roduction ratios at those separations from the VAC-RBM intertace due to a semi-infinite source of ${ }^{32} p$ were $\because a l c u l a t e d$ to be $0.37 \pm 0.01,0.97 \pm 0.03$ and 1.00 ± 0.03 nespectively. The dose enhancement ratios and dose reduction ratios dt $0-12 \mathrm{mg} / \mathrm{cm}^{2}$ were calculated to be 1.02 ± 0.01 and 0.06 ± 0.01 respectively for 147 Pm and 1.04 ± 0.01 and 0.93 ± 0.01 respectively for $204 T 1$. No dose enhancement or dose reduction were found at the other separations from the interfaces for ${ }^{147} \mathrm{Fm}$ and 204 Tl . (refer to chapter 2)
in the experimental approach, tho lose enhancement racius at $0-9,79-89$ and $157-166 \mathrm{mg} / \mathrm{cm}^{2}$ separations from the $\therefore B-F B M$ interface due to a semi-infinite source of ${ }^{3 \times 2}$ p were measured to be $1.07 \pm 0.01,1.03 \pm 0.03$ and 0.99 ± 0.03 respoctively. The dose reduction ratios at those separations from the VAC-RBM interface due to a semi-infinite source of 32 p were measured to be $0.32 \pm 0.01,0.94 \pm 0.03$ and $0.97 \pm$ 0.03 espectively. (refer to chapter 3)

With a point source of monoenergetic electrons at a VAC-RBM interface, the same dose reduction ratio was observed for $9 \mathrm{mg} / \mathrm{cm}^{2}$ and $12 \mathrm{mg} / \mathrm{cm}^{2}$ thicknesses of the DSR. Since dose distribution near the VAC-RBM interface varies more rapidly than that near a $C B-R B M$ interface, it is Logical to expect no significant effect of the different mass :hicknesses of the $D S R$ on the dose enhancement ratio.

The dose enhancement ratio and the dose reduction ratio obtained by the Monte Carlo approach and the experimental approach agree within one standard deviation except for the dose reduction ratio at $0-12 \mathrm{mg} / \mathrm{cm} 2$ (i.e. Monte Carlo setting) or $0-9 \mathrm{mg} / \mathrm{cm}^{2}$ from the interface (i.e. experimental settinc). The experimental result, 0.32 ± 0.02, in this case is abont three standard deviations less than the Monte Carlo result, 0.37 ± 0.01 (refer to chapter 4 , $\operatorname{section~4.2).~}$ Although the dose reduction ratios from the two approaches Hgree reasonably well for the semi-infinite source vonfriguration, there is still an unexplained discrepancy between Monte Carlo results and experimental results for the point source confriguration (refer to chapter 4, section 4.2). More research work for dose reduction near VAC-RBM is erpuised to find out the cause of this discrepancy.

The trabecular bone is composed of thin lamellae of cortical bone with a wide range of thicknesses and they form a meshwork of interconnecting spaces which contain bone marrow. Using the Cyltran Monte Carlo code, the dose enhancement ratio at $0-20$ micron separation from the CB-RBM interface due to a plane or point source of 0.5 MeV electrons at the interface, increases rapidly with the scaled $C B$ thickness until a saturation value is reached (refer to chapter 4 , section 4.1). The 99% saturation occurs approximately at 0.22 times the CSDA range for 0.5 MeV electrons for both plane source and point source configurations. The saturation dose enhancement ratio for both configurations is 1.06 ± 0.01.

The present work only investigated the thickness of $C B$ required for the saturation of backscatter dose for 0.5 MeV electrons. Further investigation of the effect of the $C B$ thickness on the dose enhancement ratio for other electron energies is recommended.

REFERENCES

[1] Glenn, F. Knoll. Radiation Detection and Measurement. John Wiley and Sons, Toronto, 1979. pp. 56-62.
[2] Berger, M.J. 1973. "Improved Point Kernels for Electron and Beta Ray Dosimetry". Washington, D.C. : U.S. National Bureau of Standards. NBSIR 73-107.
[3] Bialobzyski, P.J. 1987. Electron Dose Distribution Near Tissue-Bone Interfaces. M.Sc. Project Report, McMaster University.
[4] Blechinger, J.C., Madsen, E.L., Frank, G.R. "Tis-sue-mimicking gelatin-agar gels for use in magnetic resonance imaging phantoms". Medical Physics, Vol. 15, No. 4, Jul/Aug 1988.
[5] Wessels, B.W., Griffith, M.H. "Miniature Thermoluminescent Dosimeter Absorbed Dose Measurements in Tumor Phantom Models". The Journal of Nuclear Medicine, Vol. 27, No. 8, Aug 1.986.
[6] Kastner, J., Hukkoo, R., Oltman, B.G., Dayal, Y. "Thermoluminescent Internal Beta-Ray Dosimetry". Radiation Research 32, pp. 625-640, 1967.
[7] Barber, D.E., Moore, R., Hutchinson, T. 1.974. "Response of LiF To $1.0-4.0 \mathrm{KeV}$ Electrons". Health Physics Pergamon press 1975. Vol. 28 (Jan), pp. 13-15.
[B] Cameron, J.R., Suntharalingam, N., Kenney, G.N. "Thermoluminescent Dosimetry" Madison, Wisconsin, The University of Wisconsin Press, 1968.
[9] Daniels, F.. Boyd, C.A., Saundas, D.F. "Thermoluminescence as a research tool". Science 117, 343-349 (1953).
[10] Kohler, G., Milstein, C. "Continuous culture of fused cells secreting antibody of proven defined specificity". Nature 256, pp. 495-497, 1975.
[11] Wessels, B.W., Roger, R.D. "Radionuclide selection and model absorbed dose calculations for radiolabelled tumor associated antibodies". Medical Physics, Vol. 11; pp. 638-645, 1984.
[12] Humm, J.L. "Dosimeteric Aspects of Radiolabelled AntiDodies for Tumor Therapy". Journal of Nuclear Medicine, Vol. 27 : 1490-1497, 1986.
[13] Order, S.E., Klein, J.L., Ettinger, D., Alderson, P., Siegelman, S., Leichner, P. UUse of Isotopic Immunoglobulin in Therapy". Cancer Research 40 : 3001-3007, 1980.
[14] Order, S.E. "Monoclonal Antibodies : potential role in Radiation Therapy and Oncology". Internation Journal of Radiation Oncology, Biology, Physics, Vol. 8, PP. 1.193-1.201, 1981.
[15] William, F.B., Irving, L.S. "Stuaies Directed Toward The Use Of Antibodies As Carriers Of Radioactivity For Therapy". Advances in Biology \& Medical Physics, pp. 295-356.
[16] Zamboni, L., Pease, D.C. "The vascular bed of red bone marrow". J Ultrastructure Research, 5 : 65-85, 1961.
[17] Dewey, W.C. "Vascular - extravascular exchange of I-131 plasma proteins in the rat". American Journal of physiology, 197 : 423-431, 1959.
[18] Lord, B.I., Hendry, J.H. "The distribution of haemopoietic colony-forming units in mouse femur, and its modification by X rays". British Journal of RadiOlogy, 45, pp. 110-115, 1972.
[19] Maloney, M.A., Lamela, R.A., Dorie, M.J., Patt, H.M. "Concentration Gradient of Blood Stem Cells in Mouse Bone Marrow - An Open Question". Blood, vol. 51, No. 3 , 1978.
[20] International Commission on Radiation Units and Measurements, Stopping Powers For Electrons And Positions, ICRU report 37 , Oct 1984.
[21] Kwok, C.s., Bialobzyski, P.J., Prestwich, w.V., "Effect of tissue inhomogeneity on dose distribution of low energy electrons", submitted to Medical Physics.
[22] Prestwich, W.V. Nunes, J. Kwok, C.S. "Beta Dose Point Kernels for Radionuclides of Potential Use in Radioimmunotherapy", accepted for publication in Journal of Nuclear Medicine.
[23] Wickramasinghe, S.N. Human Bone Marrow, Blackwell Scientific Publications, 1975.
[24] Stickney, D.R., Gridley, D.S., Kirk, G.A., Slater, J.M. "Enhancement of Monoclonal Antibody Binding to Melanoma With Single Dose Radiation or Hyperthermia", NCI Monographs, No. 3, 1987.
[25; Holliday, J.E., Sternglass, E.J. "Backscattering of 5-20 KeV Electrons form Insulators and Metals", Journal of Applied Physics, Vol. 28, No. 10, 1957.
[26] Al-Beteri, A.A., Raeside, D.E. "An Improved Electron Multiple-Scattering Distribution for Monte Carlo Transport Simulation", Medical Physics, Vol. 15, No. 3, 1.988.
[27] Archard, G.D. "Back Scattering of Electrons", Journal of Applied Physics, Vol. 32, No. 8, 1961.
[23] "Private communication from Dr. C. S. Kwok : Physics Department, Ontario Cancer Foundation".
[29] Radiation Shielding Information Center Computer Code Collection 467, Integrated TIGER Series of Coupled Electron/Photon Monte Carlo Code System, Oak Ridge National Laboratory (1985).
(30) Ford, R.L., Nelson, W.R., "The EGS rode System", SLAC Report No. 210 (1978)

APPENDIX A

In this appendix, the Monte Carlo results are tabulated in the form of the energy deposition per electron, s, in a dose scoring region due to a plane source of monoenergetic electrons with energy E at source position P for RBM-RBM, CB--RBM and VAC-RBM geometries. The positions of the DSR are listed as the nearest scaled distance of the DSR from the intertace. The mass thickness and the mass of the DSR are 12 $\mathrm{mg} / \mathrm{cm}^{2}$ and 0.037695 g , respectively.

The Eollowing equation can be used to convert the unit of the results into Gray per electron.

$=4.2499 \times 10^{-9} \mathrm{~S}$ (Gy/electron)
$\square S R=0$
MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{-2}$

$P \backslash E(M \odot U)$	0.10	0.20	0.35	0.50	0.75	1.00	1.25	1.50	1． 35
0	1．24BE－02	1．484E－02	$1.385 \mathrm{E}-02$	1．351E－02	$1.339 \mathrm{E}-02$	1．402E－02	1．409E－02	1．38アE－02	1．429E－02
1／16	$1.461 E-02$	1．POOE－02	1．632E－02	$1.516 E-02$	1．139E－02	1．069E－02	9．861E－03	B．961E－03	E． $882 \mathrm{E}-03$
1／9	1．608E－02	$1.791 \mathrm{E}-02$	1．396E－02	1．085E－02	8．483E－03	？．848E－03	7．19EE－03	7．27日E－03	7．024E－03
$1 / 6$	1．724E－02	1．800E－02	$1.081 E-02$	6．693E－03	7．069E－03	$6.465 E-03$	6．096E－03	5．827E－03	5．935E－03
$2 / 9$	$1.835 E-02$	1．662E－02	9．199E－03	7．605E－03	6．0ア8E－03	5．633E－03	5．261E－09	5．044E－03	4．929E－03
1／3	1．943E－02	1．163E－02	6．902E－03	5．781E－03	4．506E－03	4． $309 \mathrm{E}-03$	4．021E－03	3．78日E－03	3．756E－03
2／3	1．654E－02	4．627E－03	2．425E－03	1．7ア5E－03	1．SOOE－03	1．278E－03	1．240E－03	1．109E－03	9．970E－04
1	6．238E－03	3． 319E－04 $^{\text {a }}$	3．432E－05	1．503E－05	7．11PE－06	6． $394 \mathrm{E}-06$	3．091E－06	5．450E－06	2．645E－06
10／9	4．086E－03	6．372E－05	2．063E－06	2．368E－07	3．245E－07	9．936E－08	2．118E－07	8．97PE－07	5．632E－07
4／3	1．264E－03	$9.145 E-07$	2．190E－07	1．OODE－D8	1．DOOE－OE	1．OOOE－OB	1．OOOE－D日	1．140E－06	3．113E－G7
		CORRESFOMDING		－ABSOLIJTE	UNCERTAINTIES				
$P \backslash E(M)$	0.10	0.20	0.35	0.50	0.75	1.00	1.25	1.50	i
0	1．248E－04	2．968E－04	2． 3 POE－04	$1.351 E-04$	2．6TEE－04	1．402E－04	$1.409 E-04$	1．38アE－U．	2．6．trui
$1 / 18$	$1.461 E-04$	1． $200 \mathrm{E}-04$	$1.632 \mathrm{E}-04$	$1.516 E-04$	1．139E－04	$1.063 E-04$	$1.972 \mathrm{E}-04$	1． $292 \mathrm{E}-04$	1．3＊） 3 \％
1／9	$1.608 E-04$	$1.791 E-04$	1．396E－04	1．085E－04	8．483E－05	1．5POE－04	？．198E－05	1．456E－04	1．405F－04
1／6	$1.724 E-04$	$1.800 E-04$	2．163E－04	1．739E－04	$1.414 E-04$	$1.293 E-04$	1．219E－04	$1.74 \mathrm{EE}-04$	1．TETE O．
$2 / 9$	$1.834 E-04$	1．662E－04	9．199E－0S	$1.521 E-04$	1．216E－04	1．127E－04	1．OS2E－04	1．009E－04	9．85EE－O5
1／3	$1.943 E-04$	2．325E－04	$1.3 \mathrm{AOE-04}$	$1.156 E-04$	9．011E－05	8．618E－05	0．041E－05	$1.136 E-04$	7．513E－05
2／3	$1.654 \mathrm{E}-04$	9．653E－05	7．275E－05	3．550E－05	5．998E－05	5．112E－05	6．199E－05	B．870E－05	3．968E－05
1	1．248E－04	3．819E－05	9．265E－06	5．711E－06	4．697E－06	3． $383 \mathrm{E}-06$	3．OSOE－D6	3．P06E－06	2．275E－06
10／9	日． 1 P2E－05	9．559E－06	1．898E－06	2．273E－07	2． $226 E-07$	9．836E－0E	1． $1.843 E-07$	8．8日アE－07	4．393E－07
4／3	3． $393 \mathrm{E}-05$	7．041E－07	2．168E－07	9．900E－09	9．900E－09	9．900E－09	$9.900 E-09$	1．083E－06	3．020E－07

P\E(MoV)	0.10	0.20	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	1.360E-02	1.590E-02	1.556E-02	1.512E-02	1.417E-02	1.505E-02	$1.431 \mathrm{E}-02$	1.499E-02	1.523E-02
1/18	1.524E-02	1.798E-02	1. $738 \mathrm{E}-02$	1.599E-02	1.209E-02	1.045E-02	$1.012 \mathrm{E}-02$	1.015E-02	9.697E-03
$1 / 9$	1.662E-02	1. 852E-02	$1.446 \mathrm{E}-02$	$1.110 \mathrm{E}-02$	9.191E-03	8.401E-03	7.989E-03	7.743E-03	7.290E-03
1/6	1. $1.78 \mathrm{E}-02$	1.846E-02	1.177E-02	9.657E-03	7.786E-03	7.171E-03	6.612E-03	6. 476E-03	6.168E-03
2/9	1.859E-02	$1.715 \mathrm{E}-02$	9.717E-03	7.954E-03	6.893E-03	6.086E-03	5.861E-03	5.662E-03	5. 328E-03
1/3	$1.941 \mathrm{E}-02$	1.222E-02	7.473E-03	6.169E-03	5.364E-03	4.852E-03	4. 405E-03	4.153E-03	4.149E-03
2/3	1.684E-02	4.640E-03	2.503E-03	1.846E-03	1.606E-03	$1.461 \mathrm{E}-03$	$1.418 \mathrm{E}-03$	1.235E-03	1.062E-03
1	6.360E-03	3.920E-04	5.384E-05	1.782E-05	2.116E-06	5.999E-06	2.999E-06	2.097E-06	3. 482E-06
10/9	$4.220 \mathrm{E}-03$	5. 47PE-05	1.632E-06	3.019E-07	4.032E-07	4.350E-07	4.563E-07	3.930E-07	4.610E-07
4/3	$1.280 E-03$	6. 906E-07	$7.248 E-07$	1.799E-07	4.7日7E-07	$1.000 E-08$	6.810E-07	9.975E-08	1.000E-07
		CORRESPONDING RBSOLUTE			UNCERTAINTIES				
P\E(MoV)	0.10	0.20	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	2.721E-04	1.590E-04	1.556E-04	3.024E-04	1.417E-04	$1.505 E-04$	1.431E-04	2.998E-04	3. 045E-04
1/18	1.524E-04	1. 799E-04	$1.738 \mathrm{E}-04$	1.599E-04	2.418E-04	$1.045 \mathrm{E}-04$	2.024E-04	2.030E-04	1.939E-04
1/9	$1.662 \mathrm{E}-04$	$1.852 \mathrm{E}-04$	$1.446 E-04$	2.219E-04	1.838E-04	8.401E-05	$7.989 E-05$	1.549E-04	7.290E-05
1/6	$1.738 E-04$	$1.846 E-04$	$2.353 E-04$	$1.931 \mathrm{E}-04$	$1.557 E-04$	$1.434 \mathrm{E}-04$	$1.322 \mathrm{E}-04$	$1.943 \mathrm{E}-04$	1.234E-04
219	$1.859 \mathrm{E}-04$	1. P15E-04	1.943E-04	$1.591 \mathrm{E}-04$	$1.379 E-04$	6.086E-05	1.172E-04	1.699E-04	1.598E-04
1/3	$1.941 \mathrm{E}-04$	2.443E-04	$7.473 E-05$	$1.234 E-04$	1.609E-04	9.704E-05	8.810E-05	8.305E-05	1.245E-04
2/3	3.367E-04	9.280E-05	7.509E-05	9.228E-05	4.817E-05	2.923E-05	5.670E-05	3. 706E-05	4.248E-05
1	$6.360 E-05$	3.136E-05	8.615E-06	6.23eE-06	1. PTPE-06	2. 700E-06	$2.519 \mathrm{E}-06$	$1.531 \mathrm{E}-06$	2.194E-06
10/9	8.440E-05	7.667E-06	$1.142 \mathrm{E}-06$	2.657E-07	$3.991 \mathrm{E}-07$	$2.393 E-07$	3.057E-07	3.890E-07	4.102E-07
4/3		$6.83 P E-07$	5.436E-07	1. $781 \mathrm{E}-\mathrm{O}$	$4.452 \mathrm{E}-07$	9.900E-09	$6.742 \mathrm{E}-07$	9.875E-08	9.900E-08

P\E（MoV）	0.10	0.20	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	9．886E－03	1．115E－02	9．329E－03	9．549E－03	$9.216 E-03$	9．162E－03	9．332E－03	9．590E－03	9．431E－03
1／18	1．351E－02	1．47アE－02	1．401E－02	1．276E－02	9．412E－03	7．825E－03	7．366E－03	7．092E－03	7．042E－03
1／9	1．549E－02	1．662E－02	1．250E－02	8．655E－03	6．825E－03	6．044E－03	5．759E－03	5．588E－03	5．363E－03
1／6	1．66TE－02	1．690E－02	9．366E－03	7．199E－03	5．890E－03	5．258E－03	4．901E－03	4．714E－03	4．417E－03
2／9	1．756E－02	1．564E－02	8．OOOE－03	6．309E－03	4．929E－03	4．402E－03	4．208E－03	3．990E－03	4．035E－03
1／3	1．890E－02	1．095E－02	6．266E－03	4．922E－03	3．965E－03	3． $481 \mathrm{E}-03$	3．181E－03	3．139E－03	3．091E－03
2／3	1．635E－02	4．578E－03	2．244E－03	1．791E－03	1．327E－03	1．155E－03	1．066E－03	9．779E－04	9．274E－04
1	6．399E－03	3． $724 E-04$	3．585E－05	1．527E－05	2．495E－06	2．263E－06	$7.970 E-06$	7．105E－07	6．873E－06
$10 / 9$	4．246E－03	4．183E－05	2．834E－06	1．OOOE－07	1．000E－07	2．548E－07	$1.847 \mathrm{E}-06$	1．D00E－06	1．000E－0？
4／3	1．283E－03	4．966E－07	7．851E－07	1．823E－07	$1.000 E-07$	3．046E－08	$1.803 E-06$	1．000E－07	4．100E－07
			CORRESPONDING		UNCERTAINTIES				
P\E（MoV）	0.10	0.20	0.35	0.50	0.75	1.00	1.25	1.50	1.
0	9．886E－05	$1.115 E-04$	1．866E－04	$1.910 E-04$	$1.843 E-04$	1．832E－04	$1.866 E-04$	2．87アE－04	9．402m．00
1／18	1．351E－04	1．47アE－04	2．803E－04	2．552E－04	$9.412 \mathrm{E}-05$	1．565E－04	$1.473 E-04$	$1.416 E-04$	1．406E 04
1／9	$1.549 E-04$	$3.324 E-04$	2．500E－04	8．655E－05	$1.365 E-04$	1．209E－04	1．152E－04	1．118E－04	S． 363 E －05
1／6	1．667E－04	$1.680 E-04$	9．366E－05	7．199E－05	1．178E－04	1.57 1．04	9．802E－05	9．42EE－05	8．834E 05
$2 / 9$	1．756E－04	$1.564 E-04$	8．DOOE－05	1． $893 \mathrm{E}-04$	1．479E－04	8．804E－05	1．262E－04	7．980E－05	B．OPOE－05
1／3	1．B80E－04	1．095E－04	6．266E－05	9．844E－05	7．930E－05	6．962E－05	3．181E－05	6．27日E－05	6． 1 E2E－05
2／3	$1.635 E-04$	9．156E－05	$6.733 \mathrm{E}-05$	5．322E－05	5．308E－05	2．310E－05	5．329E－05	4．889E－05	2．782E－05
1	1．280E－04	2．234E－05	5．378E－06	5．346E－06	$1.921 E-06$	$1.584 E-07$	$5.021 E-06$	$4.974 E-07$	3． $711 \mathrm{E}-06$
$10 / 9$	8．493E－05	6．693E－06	$1.984 E-06$	9．900E－08	9．900E－08	2．523E－07	B． $313 \mathrm{E}-07$	9．ア03E－07	9．900E－08
4／3	3．848E－05	3．327E－07	$4.632 \mathrm{E}-07$	1．804E－07	9．900E－08	3．015E－08	1．749E－06	9．900E－08	4．059E－07

GEDMETRY : RBM-REM

P\E(MeV)	0.10	0.20
0	$8.509 E-03$	$1.054 E-02$
$1 / 18$	$1.021 E-02$	$1.191 E-02$
$1 / 9$	$1.248 E-02$	$1.497 E-02$
$1 / 6$	$1.463 E-02$	$1.710 E-02$
$2 / 9$	$1.618 E-02$	$1.803 E-02$
$1 / 3$	$1.829 E-02$	$1.655 E-02$
$2 / 3$	$1.824 E-02$	$6.729 E-03$
1	$6.974 E-03$	$1.253 E-03$
$10 / 9$	$6.233 E-03$	$3.800 E-04$
$4 / 3$	$2.435 E-03$	$3.316 E-06$

$\square S R=1 / 9$

0.35	0.50
$8.866 E-03$	$8.292 E-03$
$1.079 E-02$	$1.020 E-02$
$1.415 E-02$	$1.387 E-02$
$1.632 E-02$	$1.519 E-02$
$1.427 E-02$	$1.062 E-02$
$9.153 E-03$	$7.630 E-03$
$3.941 E-03$	$2.946 E-03$
$2.918 E-04$	$1.808 E-04$
$3.086 E-05$	$1.416 E-05$
$1.964 E-09$	$2.673 E-08$

MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{-2}$

CORRESPONDING ABSOLUTE UNCERTAINTIES

P\E(MOV)	0.10	0.20	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	8.509E-05	2.108E-04	8. 866E-05	1.658E-04	1.509E-04	2.158E-04	1.368E-04	6.671E-05	$1.085 E-04$
1/18	1.021E-04	1.191E-04	2.158E-04	1.020E-04	1.852E-04	8.938E-05	1. POEE-04	1.672E-04	$1.351 \mathrm{E}-04$
1/9	$1.248 \mathrm{E}-04$	1.487E-04	2.831E-04	$1.387 E-04$	2.737E-04	2.750E-04	2.741E-04	2.860E-04	2.409E-04
1/6	$1.463 E-04$	3. 420E-04	1.632E-04	1.519E-04	2.250E-04	1.995E-04	$1.914 E-04$	2.674E-04	2.243E-04
2/9	1.618E-04	1.803E-04	1.427E-04	1.062E-04	8.829E-05	1.616E-04	$1.444 E-04$	7.276E-05	1.159E-04
1/3	1.829E-04	1.655E-04	1.831E-04	1.526E-04	1.268E-04	5.525E-05	1.083E-04	5.194E-05	1.168E-04
2/3	1.824E-04	1.346E-04	1.182E-04	5.892E-05	7.518E-05	6.359E-05	3.974E-05	5. $743 \mathrm{E}-05$	4. 544E-05
1	8.974E-05	3. $359 \mathrm{E}-05$	2.335E-05	1.627E-05	2.666E-05	1.020E-05	1.926E-05	1.233E-05	$1.331 \mathrm{E}-05$
10/9	1.247E-04	2.280E-05	5.556E-06	5.238E-06	6.838E-06	4.696E-07	2.274E-06	3.193E-06	1.988E-06
4/3	4.971E-05	1.75PE-06	$1.944 \mathrm{E}-09$	2.646E-08	1.855E-07	1.169E-09	3. 126E-0?	1.492E-06	3.755E-07

EEONETRY : CB-RBM

DSR=1/9
0.10
9.211 E-03 $1.267 E-02$ $1.497=-02$ 1.634 E-02 1. 8225-02 1.867E-02 9.217E-09
6.340E-03
$\begin{array}{ll}6.350 E-03 & 3.5 R E-04 \\ 2.536 E-03 & 2.23 E-06\end{array}$
0.20
0.35
0.50
0. 3 1.149E-02 1.417E-02
1.635E-02
1.4355-02 9.269 3.956E-03 3.429E-04 2.995E-05 2.917 E-07
9. $1465-09$ 1.038 -03 1.454 -02 1.547E-02 1.058E-02 2.513E-03 3.151E-03 1.731E-04 9.058E-06 4.917E-08
0.75
1.00
1.25
1.50
1.75

PVE(MoU)
0
$1 / 10$
$1 / 9$
$1 / 6$
$2 / 9$
1/3
1
10/9
$4 / 3$
9. $107 \mathrm{E}-03$ 9.440E-03 1. 3eve-02 1.151E-02 6. 322E-03 6. 28EE-03 2.590E-09 1.05xE-04 3.766E-06 $1.0005-07$

MASS THICKNESS $=12 \mathrm{mg} / \mathrm{Om}^{-2}$

CARRESPONOING ROSOLUTE UNCERTAINTIES

PVE(MOU)	0.10	0.20	0.35	0.50	0.73	1.00	1.25	1.50	1.10
0	9.211E-05	1.1491-04	1.999E-04	2.74TE-04	B. 107E-05	2.9435-04	7.556E-0.	1.457E-04	1. 1 - 4 L 04
1/18	1.06 WE-04	1.279E-04	1.149E-04	2.076E-04	1.88ex-04	1.900E-04	1.836E-04	1.781E-04	1. 410504
$1 / 9$	1.267E-04	1.5105-04	1.417E-04	1.454E-04	2.3PEE-04	2.896 -04	1.412-04	2. ${ }^{\text {20ese-04 }}$	2.406E-04
1/6	1.497E-04	1. P9PE-04	1.65SE-04	1.547E-04	2.301E-04	1.034E-04	9.6441-05	1.914E-04	1.445x-04
$2 / 9$	1.684E-04	1.734E-04	1.435E-04	1.038E-04	6. 732E-05	1.603E-04	?.631E-05	7.152t-05	1.123c-0.4
1/3	1. 1222504	1.687t-04	1.834E-04	1.508E-04	1.8eex-04	1.1681-04	1.6705-04	1.051E-04	Q.1995-03
$2 / 3$	1.067t-04	6.667tion	2.911E-05	1.260E-04	5.179E-05	6. 3948 -05	8.500E-05	5. 5 SEE-05	6.195E-05
1	1.843E-04	5.017E-05	2.743E-05	1.731E-05	1.579E-05	9.5885-06	1.364E-05	1.7618-05	1. 4S0E-05
$10 / 9$	1.24e5-04	2.145E-05	3.293E-06	2.808E-06	2.0845-06	2.681E-06	3.199E-06	4.4635-06	8.029E-06
43	5.073E-05	1.765E-06	2.888E-07	4.86es-08	9.900E-06	2.3838-07	9.9005-01	3.518-0?	2. 006E-07

GEDTETRY :	RBM-REM		DSR $=2 / 9$		MASS THICKNE	$55=12 \mathrm{mg}$	-2
PVECMEN)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	7. 100E-03	6. 322E-03	5.581E-03	5.262E-03	4.9758-03	4. TEeE-03	4.961E-08
1/10	9. O06E-03	7. 394E-03	6.612E-03	5.971E-03	5.912E-03	5. Sccerob	5. 2905-03
$1 / 8$	9.2658 -03	8.354天-03	7.4182-03	7.112E-03	6.93cE-03	6.780 -09	6.640ri-03
1/6	1.0e9E-02	1.001E-02	0.95415-09	8.7396-03	9. 707E-09	8. 2405-03	8. 326E-08
218	1.418E-02	$1.85 \sim E-02$	1.967E-02	1.365E-02	1.409E-02	1.434-02	1.447E-02
1/3	1.403E-02	1.057E-02	8.487E-03	2.816E-03	?.664E-03	3.0192-09	6.761E-03
2/3	5. 376E-03	4.345\%-08	3.982k-09	9.041E-03	2.928E-03	2.814E-03	2.719 -03
1	1.229E-03	9.0905-04	6.027E-04	4. 499E-04	5.074E-04	4.900E-04	4.842E-04
$10 / 9$	3.43PE-0.4	2.044E-04	1.173E-04	9.190E-05	1.264E-04	8.235E-05	$1.06+8-04$
$4 / 8$	3. 296E-07	3.0034-08	3.552E-0?	1.329E-06	2.909E-07	$4.959 E-08$	$2.131 E-07$
		CORRESPONDING MOSOLUTE		UNCERTAINTIES			
P\E(Moy)	0.35	0.50	0.73	1.00	1.25	1.50	1.75
0	1.420E-04	6.322E-03	1.116E-04	1.579E-04	1.493E-04	9.536E-05	4. $961 \mathrm{E}-05$
1/18	$0.0065-05$	1.479E-04	1.322E-04	1.194E-04	1.192E-04	1.115E-04	5. 230E-08
1/9	9.265E-05	B. 356E-05	7.4198-05	1.422E-04	$1.399 E-04$	$1.3408-04$	1.325E-04
1/6	$1.099 E-04$	$2.0025-04$	$1.791 E-04$	1. 2 4ere-04	8.707E-05	1.64ce-04	1. 70st-04
2/8	$1.4188-04$	1.854-04	2.7398-04	2. 780\%-04	1.4005-04	2. 968E-04	2.9944-04
$1 / 3$	$1.4085-04$	2.134E-04	8.487E-05	$1.563 E-04$	1.503E-04	1.403E-04	2.0285-04
2/3	$1.075{ }^{\text {1 }}$-04	4.345E-05	1.075E-04	6.082E-05	-. 70EE-05	5.629t-05	2.136t-05
1	2.456E-05	3.28sc-05	5.424E-05	1. T9YE-05	2.597 E-05	1.4908-05	2. coste-05
$10 / 9$	2.4095-05	1.839 -05	1.058E-05	1.2e7E-05	1. 29 OE-05	$1.310 E-05$	1.277E-05
$4 / 3$	3.269E-07	3.764E-00	3.516E-07	9.09YE-07	2.763E-07	3.471E-0?	2.110800

GEDMETRY ：	CB－RBM		$D S R=2 / 9$		MASS THICKNE	$55=12 \mathrm{mg} /$	－2
P\E（MeV）	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	P．P48E－03	6．926E－03	6．191E－03	5．853E－03	5．608E－03	5．168E－03	5．159E－09
1／18	8．271E－03	7．546E－03	6．795E－03	6．309E－03	6．198E－03	5．821E－03	5．765E－03
1／9	9．398E－03	8．P05E－03	7．740E－03	7．233E－03	6．889E－03	6． $225 \mathrm{E}-03$	6．673E－03
1／6	$1.079 \mathrm{E}-02$	1．020E－02	$9.312 \mathrm{E}-03$	8．P83E－03	8．565E－03	8．525E－03	8．215E－03
219	$1.423 E-02$	$1.399 \mathrm{E}-02$	1．395E－02	1．402E－02	$1.422 \mathrm{E}-02$	$1.388 \mathrm{E}-02$	1．424E－02
1／3	1．356E－02	1．007E－02	6．558E－03	7．719E－03	2．411E－03	6．966E－03	7．134E－03
213	5．543E－03	4．446E－03	3．65PE－03	3．180E－03	2．939E－03	2．967E－03	2．668E－03
1	1．168E－03	7．482E－04	6．502E－04	5．424E－04	5．025E－04	4． $711 \mathrm{E}-04$	5．065E－04
$10 / 9$	3．219E－04	$1.866 \mathrm{E}-04$	$1.312 \mathrm{E}-04$	1．104E－04	7．469E－05	$9.693 \mathrm{E}-05$	9．350E－05
4／3	$4.814 \mathrm{E}-07$	7．786E－07	3．552E－07	$1.000 \mathrm{E}-08$	$4.695 E-08$	$1.560 \mathrm{E}-06$	1．876E－07
		CORRESPONDING RBSOLUTE		UNCERTAINTIES			
P\E（Mov）	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	2．324E－04	1．385E－04	6．191E－05	1．756E－04	1．122E－04	$1.034 \mathrm{E}-04$	1．548E－04
1／18	$1.654 E-04$	$1.509 E-04$	$1.359 E-04$	$1.262 \mathrm{E}-04$	6．198E－05	$1.164 \mathrm{E}-04$	5．765E－05
$1 / 9$	9．398E－05	$1.741 E-04$	7．740E－05	7．233E－05	1．378E－04	$1.345 E-04$	1．335E－04
1／6	1．079E－04	2．039E－04	1．862E－04	日．793E－05	2．569E－04	$1.705 E-04$	1．643E－04
$2 / 9$	2．847E－04	1．399E－04	$1.395 E-04$	1．402E－04	2．844E－04	1．38be－04	2．848E－04
1／3	$1.356 E-04$	2．015E－04	日．558E－05	7．719E－05	$1.482 \mathrm{E}-04$	$1.393 E-04$	1．423E－04
$2 / 3$	1．109E－04	8．893E－05	1．097E－04	$6.361 E-05$	5．8PBE－05	5．934E－05	5．335E－05
1	5．842E－05	2．993E－05	5．852E－05	2．712E－05	3．517E－05	4．240E－05	2．533E－05
10／9	2．576E－05	2．239E－05	1．050E－05	1．657E－05	8．216E－06	B． $224 \mathrm{E}-06$	1．496E－05
4／3	3．947E－07	$5.606 E-07$	$3.516 E-07$	9．900E－09	$4.648 \mathrm{E}-08$	$1.544 \mathrm{E}-06$	1．857E－07

$P \backslash E(M \odot V)$	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	5．9E1E－03	5．375E－03	4．516E－03	4．535E－03	4．326E－03	4．246E－03	4．027E－03
1／1日	7．720E－03	6．B30E－03	6．2ア1E－03	5． $245 \mathrm{E}-03$	5．47アE－03	5．404E－03	5．243E－03
1／9	8．950E－03	B． $140 \mathrm{E}-03$	$7.576 E-03$	7．O4DE－03	6．662E－03	6．447E－03	6．620E－03
1／6	1．056E－02	$9.811 E-03$	$9.043 E-03$	8．586E－03	日．171E－03	日．282E－03	8．076E－03
2／9	$1.374 E-02$	1．38アE－02	1．332E－02	1．39PE－02	1．376E－02	1．40アE－02	1．456E－02
1／3	1．391E－02	1．028E－02	0．593E－03	7．86EE－03	7．122E－03	6． $669 \mathrm{E}-03$	7．038E－03
$2 / 3$	5．0P7E－03	4．25日E－03	3．430E－03	3．275E－03	3．061E－03	2．794E－03	$2.688 \mathrm{E}-03$
1	1．156E－03	7．892E－04	6．433E－04	4．999E－04	4．446E－04	4．809E－04	$5.017 \mathrm{E}-04$
$10 / 9$	3．431E－04	$2.014 E-04$	1．341E－04	1．022E－04	8．890E－05	日．376E－05	$1.147 E-04$
4／3	2．894E－07	1．DOOE－0？	$7.354 E-07$	1．DOOE－07	1．3P1E－07	5． $358 \mathrm{E}-07$	1．OOOE－0？
		CORRESPONDING		UNCERTAINTIES			
P\E（MeV）	0.35	0.50	0.35	1.00	1.25	1.50	1.75
0	1．794E－04	$1.075 E-04$	4．516E－05	9．069E－05	8．652E－05	日．492E－05	8．055E－05
1／18	$1.544 E-04$	$1.366 E-04$	6． $271 \mathrm{E}-05$	1．149E－04	5．4アフE－05	$1.621 E-04$	1．049E－04
1／9	$2.695 E-04$	2．442E－04	7．576E－05	1．40EE－04	1．332E－04	$1.934 E-04$	1．324E－04
1／6	2．111E－04	2．943E－04	1．809E－04	1.71 PE－04	$1.634 E-04$	1．656E－04	1．615E－04
$2 / 9$	1．3P4E－04	2．775E－04	2．663E－04	1．397E－04	2．752E－04	4．220E－04	4．368E－04
1／3	$1.391 E-04$	1．028E－04	$1.719 E-04$	$1.574 E-04$	1．424E－04	$1.374 E-04$	2．111E－04
2／3	$1.523 E-04$	8.51 PE－05	1．029E－04	$6.549 E-05$	9．184E－05	S．58EE－0S	1．344E－04
1	4．626E－05	6．313E－05	2．573E－05	2．999E－05	2．223E－05	4．32BE－DS	4．014E－05
$10 / 9$	1．715E－05	$2.416 E-05$	1．8P日E－05	$1.635 E-05$	1．334E－05	1．256E－05	2．293E－05
4／3	2． $662 \mathrm{E}-07$	9．900E－08	4．PEOE－07	9．900E－08	1．35アE－07	3．590E－D7	9．900E－OB

GEOMETRY :	Rem-rami		OSR=1/3		MASS THICKNE	$55: 12 \mathrm{~mol}$	-2
PVE(MoU)	0.35	0.50	0.75	2.00	1.25	1.50	1.73
0	5.466E-03	4.621E-09	4.421E-09	4.021E-03	9. 725E-03	9.781E-03	9.636E-03
$1 / 80$	6. 3 P6E-03	5.370e-09	5.0981-08	4.614E-03	4.84er-03	4.183E-03	8. 907E-09
$1 / 9$	7.276E-03	6.890k-03	5.657E-03	5.0ssar-08	8.020E-08	S.00715-03	4.539E-03
1/6	7. 8 70타-03	7.27-48-09	6.627-03	6.1685-03	5.9205-09	5.740r-08	5.6576-03
2/9	9.231E-03	8.2681-03	7.743E-09	7.199E-03	6. 730E-03	6.674E-03	6. 2ace-03
$1 / 3$	1.4205-02	1.3s0e-02	1.8432-02	1.351E-02	1.3605-02	$1.4148-02$	1.4628-02
$2 / 8$	6. 992t-03	5.689E-08	4.6088-03	4.295E-03	3.892E-03	3.9048-08	8.794i-03
1	2. 523E-03	1.877E-03	1.504E-03	1.189E-03	1.205E-03	1.145E-03	1.003t-03
10/9	1.292E-03	9.3538-04	6. $2608-04$	4.948E-04	4.461E-04	4.742 Cl -04	4. 503E-04
48	3.247E-05	9.163E-06	5.371E-a?	3.200E-06	3.9425-06	6. 916E-07	7.594E-06
		CORRESPOMOIMG		LnCERTAINTIES			
PVE(MiN)	0.35	0.50	0. 35	1.00	1.25	1.50	1.75
0	$1.0935-04$	9.242t-03	8.0425-03	0.043E-05	7. 4ROE-0	7. 562E-05	1.091E-04
1/18	$6.3 P 6 E-05$	5.570\%-05	1.01515	9.227E-05	0.779E-03	1.286E-04	1.172E-04
$1 / 9$	1. 43se-04	6.990\%-05	$1.1312-04$	1.020E-04	1.004E-04	1.0015-04	1. aset-04
$1 / 6$	7. 8poc-05	2.1928-0.4	1.32me-04	1.293E-04	1.10cr-04	1.722E-04	1.131E-04
2×9	9.2915-05	8. 268E-05	7.7431-05	1.42eE-04	$1.3478-04$	1.836E-04	1.3626-04
1/3	2.840E-04	1.350E-04	1.843E-04	1.351E-04	2.720E-04	$1.414 E-04$	$2.924 \mathrm{E}-04$
$2 / 3$	1.3985-04	1.138E-04	4. $6081-05$	0.46CE-05	1.150E-04	3.6005-[5	1.13et-04
1	7. 569E-05	5.631E-05	6.017E-05	8.398E-05	4.821E-05	4.580E-05	3.26-61-05
10%	5. 169E-05	4.176E-05	4.31es-05	3.46aE-05	8.922E-06	3. 7946-05	2.292E-05
$4 / 3$	6. 495t-06	9.574i-06	2. $2975-07$	2. 464 E -06	2.286E-06	6.847E-07	5.816E-06

MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{-2}$

P\E(MoV)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	5.861E-03	5.305E-03	4.735E-03	4.348E-03	4.127E-03	3.841E-03	3.978E-03
1/18	6. 325E-03	5. 735E-03	5.040E-03	4.628E-03	4. 482E-03	4.172E-03	4.259E-03
$1 / 9$	P.162E-03	6. 500E-03	5.755E-03	5.354E-03	5.163E-03	5.041E-03	4.896E-03
1/6	7. 763E-03	7.360E-03	6.396E-03	$6.061 \mathrm{E}-03$	5.718E-03	5.754E-03	5.413E-03
219	9.250E-03	8. 494E-03	7.57PE-03	?.254E-03	7.034E-03	6.552E-03	6.686E-03
1/3	1.403E-02	$1.370 \mathrm{E}-02$	$1.399 \mathrm{E}-02$	1. 400E-02	1.385E-02	$1.411 \mathrm{E}-02$	1.452E-02
2/3	7.070E-03	5.792E-03	4.686E-03	4.310E-03	3.922E-03	3.865E-03	3.651E-03
1	2.539E-03	1.745E-03	$1.453 \mathrm{E}-03$	1.262E-03	1.207E-03	1.108E-03	1.054E-03
$10 / 9$	1.205E-03	8.324E-04	5.666E-04	5.378E-04	5.247E-04	5.19PE-04	4.752E-04
4/3	2.933E-05	1.387E-05	$1.021 \mathrm{E}-05$	6.629E-06	P. $361 \mathrm{E}-06$	1.67PE-06	1.739E-05
		CORRESPONDING RESOLUTE		UNCERTAINTIES			
P\E(MOU)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	1.172E-04	$1.061 E-04$	9.4P0E-05	8.696E-05	8. 254E-05	7.6日1E-05	1.193E-04
1/18	1. 265E-04	$1.147 E-04$	1.008E-04	4.628E-05	1.345E-04	8.345E-05	B.518E-05
1/9	1.432E-04	$1.300 E-04$	1.151E-04	$1.071 \mathrm{E}-04$	$1.033 \mathrm{E}-04$	$1.008 E-04$	9.792E-05
1/6	7.763E-05	1.472E-04	1.279E-04	$1.212 \mathrm{E}-04$	$1.716 E-04$	5.754E-05	1.624E-04
219	1.850E-04	8.494E-05	7.577E-05	7.254E-05	1. 407E-04	1.310E-04	1.337E-04
1/3	$1.403 E-04$	1.3 POE-04	2.798E-04	2.800E-04	2. 37OE-04	2.822E-04	2.904E-04
2/3	$1.414 E-04$	$1.158 \mathrm{E}-04$	1.874E-04	B.620E-05	1.176E-04	1.160E-04	7.302E-05
1	7.616E-05	6.979E-05	5.812E-0S	3. $785 \mathrm{E}-05$	4. $930 \mathrm{E}-05$	8.862E-05	6.325E-05
$10 / 9$	$3.614 \mathrm{E}-05$	2.497E-05	2.266E-05	2.689E-05	3. $148 \mathrm{E}-05$	3.118E-05	3.801E-05
4/3	?.625E-06	3.051E-06	5.617E-06	3.845E-06	4. 384E-06	1.023E-06	7.649E-06

QROMETRY:	VAC-REMM	OSR $=1 / 3$			Mass THICKNESS $=12 \mathrm{mg} / \mathrm{Om}^{-2}$		
P\E (MaN)	0.35	0.30	0.75	1.00	1.25	1.50	1.75
0	4.948d-03	4.4105-03	3.865E-09	3.895E-03	-. 390E-03	3. 241 E-03	3.274E-09
$1 / 80$	6. 2205-03	5.5100-09	4.9305-09	4.512E-03	4.169E-03	3.9025-09	4.1151-08
$1 / 9$	$6.914 \mathrm{E}-09$	6.9196-09	5.807E-09	5.210z-08	5.08se-08	4.3911-09	4. e4xer-0a
$1 / 5$	8. 155it-09	7.0015-03	6.576E-03	5.991E-03	S.601E-01	5.462E-03	5.4405-03
$2 / 9$	9.012. -08	8.3085-09	7.901E-03	7.120E-03	6.609E-09	6.sere-08	6.70ee-08
$1 / 3$	1. 809t-02	1. 390E-02	1.303E-02	1.380E-02	1. 39eE-02	1.460r-02	1. 460E-02
$2 / 3$	6.760 c-08	5.666E-03	4.001E-03	4. 4A6E-09	4.074	3. 7Etse-03	3. 7eet-03
1	2. 4621-08	1.70st-03	1.48PE-09	1.226E-03	1.074E-03	1. Oser -03	1.0e9e-03
1019	$1.8028-09$	0.093E-04	5.940E-04	4.02ex-04	4.719E-04	4.6698-04	4.737E-04
48	$3.872 E-05$	$1.846 E-05$	6.60GE-O6	2.035E-03	1.000e-09	1.3926-06	1.407E-08
		CORRESPONOING PESOLUTE		UNCERTAINTIES			
P\E (MEV)	0.38	0.50	0.75	1.00	1.25	1.90	2.75
0	1.403e-04	8.819E-05	7.730E-05	1.100E-04	6.7964-05	1.0021-04	6. 548E-05
1/10	1. exer-04	1.65sE-04	9.861E-05	9.185E-05	0.337E-03	7.965t-05	1.285E-04
1/9	1.8ese-04	$1.2645-04$	1.061E-04	1.56EE-04	1.014E-04	9.581E-05	9.895E-05
$1 / 6$	1.631E-04	2.100E-04	1.973E-04	$1.198 \mathrm{e}-04$	1.680E-04	1.0924-04	5.448k-05
$2 / 9$	9.012705	1.6618-04	1.476E-04	$1.424 E-04$	$1.3505-04$	1.976E-04	1.3425-04
$1 / 8$	1.3894-04	$1.8905-04$	$1.903 E-04$	2.720E-04	1.999E-04	2.9198-04	2.919E-04
2/3	1.35eriona	$1.193 E-04$	1.440E-04	4.436E-05	-. 1 4T-05	1.126E-04	$1.515 E-04$
1	7.3872-05	6. $221 E-05$	7.199t-05	6. 12eE-05	S.968E-05	3.19er-05	4. 358E-05
10/9	3. 907t-03	4.047E-05	2.376E-05	1.3795-05	2.839E-05	$4.197 E-05$	2.3545-05
48	8.42se-06	4.710t-06	2.67 CE-06	1.64SE-06	9.900E-09	9.257E-07	1.294-06

MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{\sim} 2$

P\E(MOV)
0
1/19 $1 / 9$
$1 / 6$
$2 / 9$
$1 / 3$ $2 / 3$
1
$10 / 9$
4/3
0.35
0.50
1.25
4.093E-03 3.453E-09 4. 883E-03 5. 542E-03 6. $212 \mathrm{E}-03$ 7.060E-03 4. $801 \mathrm{E}-03$ 5.471E-03 9.058E-03 6.270E-03 0.471E-03 7.512E-03 3.144E-03 $1.786 E-03$
$1.692 E-04$
0.75
3.177E-03
3. B0アE-03
4.329E-03
5.006E-03
5.676E-03
3.75PE-03
6.056E-03
2.422E-03
1.422E-03
$1.036 E-04$
1.00
1.00

OTEE-03 $4.556 E-03$
$4.123 E-03$ 4. $582 \mathrm{E}-03$ 7.152E-03 5.621E-03 $2.011 E-03$ $1.341 E-03$
$1.062 E-04$
2.824E-03
3. 185E-03
3. 83EE-03 4. 724E-03
4.821E-03
6.890E-03
5.325E-03
2.088E-03
2.088E-03
$1.209 \mathrm{E}-03$
7.500E-05
1.50
1.75
2.763E-03
2. $340 \mathrm{E}-03$ 3.245E-03 3.659E-03 4.263E-D3 4. 898E-03 6.679E-03 5.104E-03 2.046E-03 1.109E-03 7. $774 \mathrm{E}-05$
3. 107E-03 3. 54BE-03 4. 197E-03 4.651E-03 6. 585E-03 4. 820E-03 1.863E-03 1.165E-03 9. 324E-05

CORRESPONDING ABSOLUTE UNCERTAINTIES

P\E(MOV)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	1.210E-04	$1.036 \mathrm{E}-04$	9.532E-05	6.151E-05	2.824E-05	8.220E-05	B. 290E - 05
1/18	$1.465 E-04$	$1.291 \mathrm{E}-04$	7.614E-05	7.113E-05	1.274E-04	6.490E-05	9.321E-05
1/9	$1.108 E-04$	9.603E-05	0.659E-05	0.246E-05	7.675E-05	3.659E-05	7.097E-05
1/6	$1.242 E-04$	1.094E-04	1.001E-04	9.364E-05	9.447E-05	1.279E-04	8. $393 \mathrm{E}-05$
2/9	$1.412 E-04$	6.2P0E-05	1.135E-04	1.026E-04	9.643E-05	9.677E-05	9.302E-05
1/3	9.03日E-05	1.694E-04	1.551E-04	7.152E-05	1.378E-04	$1.336 E-04$	$1.317 E-04$
$2 / 3$	1. $378 \mathrm{E}-04$	1.502E-04	$1.211 \mathrm{E}-04$	1.124E-04	1.065E-04	$1.021 E-04$	9.640E-05
1	3. POPE-0S	6.287E-05	2.422E-05	6.034E-05	6. $264 \mathrm{E}-05$	1.023E-04	7.451E-05
10/9	7.598E-05	5.357E-05	7.112E-05	5. 363E-05	4.836E-05	3.326E-05	5. $323 \mathrm{E}-05$
4/3	3.117E-05	1.861E-05	1. $866 \mathrm{E}-05$	9.561E-06	1.275E-05	1.011E-05	1.305E-05

DSR $=4 / 9$

GEOMETRY ：	URC－REM		$D S R=4 / 9$		MASS THICKNE	ESS $=12 \mathrm{mg} /$	$\mathrm{m}^{\wedge} 2$
P\E（MeV）	0.35	0.50	0.75	1.00	1.25	1.50	1.35
0	3．940E－03	3．367E－03	3．023E－03	2．864E－03	2．639E－03	2．643E－03	2．420E－03
1／18	4．658E－03	4．250E－03	3．908E－03	3．47TE－03	3．198E－03	2．926E－03	3．114E－03
1／9	5．301E－03	5．079E－03	$4.141 \mathrm{E}-03$	3．993E－03	$4.051 \mathrm{E}-03$	3．P31E－03	3．675E－03
1／6	6．190E－03	5．505E－03	4．869E－03	4．58be－03	4．490E－03	4．060E－03	4．024E－03
2／9	6．952E－03	6．287E－03	$5.512 \mathrm{E}-03$	5．354E－03	5．105E－03	4．834E－03	4．326E－03
$1 / 3$	9．343E－03	8．400E－03	7．598E－03	P．102E－03	6．854E－03	6．P01E－03	6．435E－03
2／3	9.1 PTE－03	P．269E－03	6．470E－03	5．522E－03	$5.235 E-03$	5．092E－03	4．75SE－03
1	3．740E－03	2．962E－03	2．448E－03	2．064E－03	1．950E－03	$1.888 \mathrm{E}-03$	2．001E－03
10／9	2．564E－03	1．818E－03	$1.391 \mathrm{E}-03$	1．199E－03	1．196E－03	$1.100 \mathrm{E}-03$	1．127E－03
4／3	3．875E－04	2．080E－04	$1.298 \mathrm{E}-04$	$1.022 E-04$	6．899E－05	$1.047 E-04$	8．692E－05
		CORRESPONDING RBSOLUTE		UNCERTAINTIES			
P\E（MeV）	0.35	0.50	0.35	1.00	1.25	1.50	1.75
0	7．880E－05	6．735E－05	9．069E－05	5．329E－05	7．898E－05	1．057E－04	4．839E－05
1／18	$9.316 E-05$	8．500E－05	1．172E－04	$6.954 E-05$	9．594E－05	0．7ア7E－05	6．227E－05
1／9	1．060E－04	$1.524 E-04$	8．2日3E－05	$1.198 E-04$	$1.215 E-04$	7．461E－05	7．350E－05
$1 / 6$	$1.238 E-04$	$1.101 \mathrm{E}-04$	9．738E－05	9．176E－05	8．980E－05	B．120E－05	1．207E－04
2／9	$1.390 E-04$	6．28PE－05	1．102E－04	1．606E－04	$1.532 E-04$	$1.450 \mathrm{E}-04$	1．418E－04
1／3	9．343E－05	1．680E－04	7．598E－05	2．131E－04	$1.371 E-04$	$1.340 \mathrm{E}-04$	1．297E－04
$2 / 3$	$1.835 E-04$	$1.454 E-04$	2．58日E－04	1．104E－04	1．047E－04	$1.018 \mathrm{E}-04$	1．427E－04
1	7．4日1E－05	$1.491 E-04$	9．791E－05	$6.191 \mathrm{E}-05$	5．851E－05	$7.553 E-05$	8．004E－05
10／9	5．127E－05	7．270E－05	4．174E－05	4．798E－05	5．982E－05	4．401E－05	7．887E－05
4／3	3．100E－05	2．288E－05	$1.817 \mathrm{E}-05$	1．532E－05	1．656E－05	1．884E－05	1．651E－05

DSR $=5 / 9$
MASS THICKNESS $=12 \mathrm{mg} / \mathrm{Om}^{\sim} 2$

MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{2}$

P\E（MOU）	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	2．594E－03	2．323E－03	2．004E－03	1．918E－03	1．920E－03	1．791E－03	1．729E－03
1／18	3．169E－03	3．002E－03	2．711E－03	2．518E－03	2．282E－03	2．246E－03	2．419E－03
1／9	3． $313 \mathrm{E}-03$	3．743E－03	3．154E－03	2．902E－03	2．76EE－03	2．899E－03	2．721E－03
1／6	4．507E－03	4．066E－03	3．865E－03	3．401E－03	3．371E－03	3． $149 \mathrm{E}-03$	3．038E－03
219	5．337E－03	4．760E－03	4．299E－03	4．014E－03	3．750E－03	3．780E－03	3．472E－03
1／3	$6.976 E-03$	6．383E－03	5．559E－03	$5.211 E-03$	4．947E－03	5．064E－03	4．615E－03
2／3	1．406E－02	$1.041 E-02$	日．769E－03	7．833E－03	7． $312 \mathrm{E}-03$	6．983E－03	6．900E－03
1	5．371E－03	4．296E－03	3．608E－03	3．205E－03	2． $840 \mathrm{E}-03$	2．754E－03	2．719E－03
$10 / 9$	4．0日0E－03	3．O30E－03	2．422E－03	2．136E－03	2．142E－03	1．934E－03	1．842E－03
$4 / 3$	1．312E－03	8．068E－04	$6.213 E-04$	5．451E－04	4．916E－04	4．324E－04	5．096E－04

CORRESPONDING RESOLUTE UNCERTAINTIES

P\E（MoV）	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	$1.014 E-04$	6．969E－05	8．016E－05	3．836E－05	7．679E－05	3．5B3E－05	6．916E－05
1／18	6．338E－05	9．006E－05	E．132E－05	5．035E－05	6．84PE－05	4．492E－05	4． $\mathrm{B} 38 \mathrm{E}-05$
1／9	7．627E－05	7．485E－05	3．154E－05	5．805E－05	5．536E－05	8．516E－05	5． $442 \mathrm{E}-05$
1／6	1．352E－04	1．220E－04	1．159E－04	$6.803 E-05$	1．011E－04	6．29アE－05	6．076E－05
$2 / 9$	1．067E－04	9．520E－05	1． $720 E-04$	8．027E－05	1．125E－04	$7.560 E-05$	6．944E－05
1／3	$1.395 E-04$	2．559E－04	5．55日E－05	1．563E－04	9．894E－05	$1.013 E-04$	9．229E－05
2／3	1．406E－04	2．082E－04	1． $754 \mathrm{E}-04$	1．56PE－04	1．462E－04	1．397E－04	6．900E－05
1	1．611E－04	8．592E－05	1．082E－04	9．615E－05	5．680E－05	5．509E－05	5． $438 \mathrm{E}-05$
$10 / 9$	1．224E－04	1．212E－04	7．266E－05	1．068E－04	6．425E－05	5．803E－05	7． $369 \mathrm{E}-05$
$4 / 3$	5．249E－05	7．261E－05	4．970E－05	2．725E－05	1．966E－05	2．362E－05	3．567E－05

```
GEOMETRY : RGM-RBM
```

MRSS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{\sim} 2$

P\E（Mov）	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	1．205E－03	1．069E－03	1．087E－03	9．361E－04	1．049E－03	1．026E－03	1．0PSE－03
1／18	1．957E－03	1．723E－03	1．685E－03	1．528E－03	1．540E－03	1．430E－03	$1.432 \mathrm{E}-03$
1／9	2．479E－03	2．343E－03	2．128E－03	1．97PE－03	$1.918 \mathrm{E}-03$	1．900E－03	1． $756 \mathrm{E}-03$
$1 / 6$	3．044E－03	2．975E－03	2．601E－03	2．497E－03	$2.313 \mathrm{E}-03$	2．326E－03	2．233E－03
2／9	3．953E－03	3．569E－03	3．235E－03	2．921E－03	2．834E－03	2．723E－03	2．711E－03
1／3	$5.416 \mathrm{E}-03$	4．867E－03	4．3P2E－03	4．016E－03	3．7ア6E－03	3．527E－03	3．566E－03
2／3	$1.414 \mathrm{E}-02$	1．367E－02	$1.396 E-02$	1．390E－02	1．404E－02	1．403E－02	1．467E－02
1	7．072E－03	5．620E－03	4．688E－03	4．129E－03	3．859E－03	3．927E－03	3．481E－03
10／9	5．468E－03	$4.411 \mathrm{E}-03$	3．670E－03	3．132E－03	2．916E－03	2．925E－03	2．711E－03
4／3	2．530E－03	1．899E－03	$1.390 \mathrm{E}-03$	1．355E－03	1．201E－03	$1.060 \mathrm{E}-03$	1．121E－03
		CORRESPONDING RESOLUTE		UNCERTAINTIES			
P\E（MoV）	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	4．819E－05	5．344E－05	6．520E－05	2．928E－05	3．146E－05	4．102E－05	0.00004298
1／18	7．928E－05	6．日93E－05	6．740E－05	3．056E－05	6．161E－05	4．290E－05	0.00005726
1／9	9．915E－05	7．028E－05	8．511E－05	7．908E－05	5．255E－05	S．701E－05	0.00003512
1／6	9．131E－05	0．924E－05	1．041E－04	9．98日E－05	6．940E－05	6．977E－05	0.00006699
2／9	1．186E－04	7．138E－05	9．706E－05	5．842E－05	E．501E－05	B．169E－05	0.0000133
1／3	1．625E－04	9．733E－05	$1.312 \mathrm{E}-04$	8．032E－05	$1.133 E-04$	1．058E－04	0.00010698
2／3	$1.414 \mathrm{E}-04$	2．734E－04	$1.396 E-04$	1．390E－04	2．80日E－04	2．805E－04	0.00014668
1	$1.414 E-04$	1．686E－04	$1.406 E-04$	1．239E－04	7． $218 \mathrm{E}-05$	7．854E－05	0.00006962
10／9	$1.640 E-04$	8．822E－05	7．340E－05	$1.253 E-04$	1．166E－04	B．PP6E－05	0.00005421
4／3	7．599E－05	5．696E－05	4．171E－05	8．128E－05	4．802E－05	7．417E－05	0.00004482

MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{-2}$

P\E(MoV)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	$1.094 \mathrm{E}-03$	1.071E-03	1.226E-03	1.077E-03	1.138E-03	1.078E-03	1.05PE-03
1/18	1. $1.802 \mathrm{E}-03$	1.660E-03	1.568E-03	$1.513 \mathrm{E}-03$	1.454E-03	1.375E-03	$1.351 E-03$
1/9	2.594E-03	2.355E-03	2.056E-03	2.030E-03	1.896E-03	1. $268 \mathrm{E}-03$	1. B02E-03
$1 / 6$	3.279E-03	2.35日E-03	2.681E-03	2.523E-03	2.173E-03	2.223E-03	2.226E-03
219	3.918E-03	3.727E-03	3.285E-03	2.944E-03	2.925E-03	2.810E-03	2.566E-03
1/3	5.360E-03	4. 765E-03	4.294E-03	3.946E-03	3. $778 \mathrm{E}-03$	3.65PE-03	3.692E-03
2/3	1.398E-02	1. 362E-02	1.354E-02	1.372E-02	1.416E-02	1.409E-02	1.460E-02
1	7.022E-03	5.510E-03	4.817E-03	4. D日3E-03	4.071E-03	3.807E-03	3.816E-03
10/9	5.419E-03	4. 306E-03	3.622E-03	3. 183E-03	$2.919 \mathrm{E}-03$	2. 706E-03	2.825E-03
4/3	2.407E-03	$1.743 E-03$	1.398E-03	1. 300E-03	1.225E-03	1.133E-03	1.144E-03
		CORRESPONDING RBSOLUTE		UNCERTAINTIES			
P\E (MeU)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	3. 281E-05	5.355E-05	6.132E-05	5. 384E-05	3. $413 \mathrm{E}-05$	5.390E-05	5. 285E-05
1/18	5. 407E-05	B. 300E-05	6.270E-0S	4. 539E-05	2.908E-05	5.498E-05	B. 107E-05
1/9	7. $783 \mathrm{E}-05$	7.064E-05	6.169E-05	8.121E-05	5.657E-05	P.072E-DS	P.206E-05
1/6	9.837E-05	0.274E-05	$1.072 E-04$?.570E-05	$6.518 \mathrm{E}-05$	6.670E-05	6.67PE-05
2/9	7.836E-05	7.453E-05	6.571E-05	9.932E-05	B. P76E-05	5.620E-05	7.699E-05
1/3	$1.608 E-04$	9.530E-05	8.588E-05	7.891E-05	3. 378E-05	1.097E-04	7. 383E-05
$2 / 3$	$1.398 E-04$	$1.362 \mathrm{E}-04$	$1.354 E-04$	$1.372 \mathrm{E}-04$	$1.416 \mathrm{E}-04$	2.817E-04	$1.459 E-04$
1	7.022E-0S	$1.102 E-04$	9.634E-05	4.083E-05	0.142E-05	$1.142 E-04$	$1.145 E-04$
10/9	$1.084 \mathrm{E}-04$	$1.292 \mathrm{E}-04$	7.244E-05	6. 366E-05	5.837E-05	1.083E-04	5.650E-05
4/3	9.627E-05	S.228E-05	5.593E-05	3.899E-05	4.898E-05	$4.532 \mathrm{E}-05$	5. P22E-05

GEOMETRY : UAC-RBM

P\E(MOV)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	1.220E-09	1.129E-03	1.101E-03	1.122E-03	1.097E-03	1.033E-03	9.545E-04
1/18	$1.761 \mathrm{E}-03$	$1.751 \mathrm{E}-03$	1.520E-03	1.553E-03	1.487E-03	1.402E-03	1.382E-03
$1 / 9$	2.438E-03	2. $315 \mathrm{E}-03$	2.097E-03	1.995E-03	2.006E-03	1.925E-03	1.674E-03
1/E	3.034E-03	2.851E-03	2.735E-03	2. 400E-03	2.394E-03	2.319E-03	2.098E-03
219	3.902E-03	3.758E-03	3.131E-03	3.128E-03	2.815E-03	2.661E-03	2.506E-03
1/3	5.412E-09	4.889E-03	4.350E-03	3.996E-03	3.891E-03	3.692E-03	3.583E-03
2/3	1.443E-02	$1.371 E-02$	$1.341 \mathrm{E}-02$	1.390E-02	1.407E-02	1.427E-02	1.439E-02
1	6. 976E-03	5.608E-03	4.921E-03	4.227E-03	4.078E-03	3.826E-03	3. $359 \mathrm{E}-03$
10/9	5.497E-03	4. 353E-03	3.507E-03	3.105E-03	$2.936 \mathrm{E}-03$	2. $285 \mathrm{E}-03$	2.744E-03
4/3	2.546E-03	1.827E-03	2.511E-03	1.35PE-03	1.238E-03	1.188E-03	1.068E-03
	CORRESPOMDING RBSOLUTE UNCERTAINTIES						
P\E(MoV)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	4. 880e-05	4. $514 \mathrm{E}-05$	5.503E-05	6. 732E-05	5. 484E-05	3.099E-05	1.90SL
1/19	7.045E-05	5.252E-05	P.598E-05	7. $366 E-05$	4. 460E-05	4.207E-05	4.145E 0 (1)
$1 / 9$	2.315E-05	6. 946E-05	6.291E-05	5.984E-05	4.011E-05	5.775E-05	9.368E OS
$1 / 6$	9.102E-05	8.552E-05	1.094E-04	3.201E-05	7.182E-05	6.956E-05	4.196E 05
$2 / 9$	7.804E-05	1.127E-04	9.394E-05	3. 128E-05	8.446E-05	7.984E-05	5.013E-05
1/3	1.082E-04	1.467E-04	B.699E-05	1.199E-04	1.556E-04	7.384E-05	1.075E-04
2/3	$1.443 E-04$	2. $341 \mathrm{E}-04$	2.681E-04	2. P80E-04	2.813E-04	2.854E-04	1.439E-04
1	$1.395 E-04$	1.6日2E-04	9.642E-05	9.454E-05	0.155E-05	$1.148 E-04$	7.519E-05
10/9	1.099E-04	$1.741 E-04$	$1.403 E-04$	$9.314 E-05$	8.807E-05	5.571E-05	8.231E-05
4/3	$1.018 E-04$	1.461 E-04	1.256E-04	6. 785E-05	P.427E-05	4. P53E-05	6. 405E-05

MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{-2}$

$P \backslash E(M \odot V)$	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	3．618E－04	3．618E－04	4．398E－04	3．200E－04	3．5SOE－04	4．185E－04	3．999E－04
1／18	7．306E－04	$6.550 E-04$	7．364E－04	$6.717 E-04$	7．146E－04	6．922E－04	$6.541 E-04$
1／9	1.21 アE－03	1．191E－03	1．100E－03	1．038E－03	1．058E－03	1．046E－03	$1.021 \mathrm{E}-03$
$1 / 6$	1．830E－03	1．778E－03	1．562E－03	$1.591 \mathrm{E}-03$	$1.474 \mathrm{E}-03$	1．475E－03	1．506E－03
2／9	2．390E－03	2．346E－03	2．124E－03	1．997E－03	$1.918 \mathrm{E}-03$	1．907E－03	1．905E－03
1／3	3．959E－03	3．B05E－03	3．244E－03	2．855E－03	2．961E－03	2．598E－03	2．599E－03
213	$9.214 \mathrm{E}-03$	B．458E－03	$7.800 E-03$	7．005E－03	6．85PE－03	$6.634 E-03$	$6.504 E-03$
1	0．995E－03	7．5P7E－03	6．0P5E－03	5．529E－03	5． $301 \mathrm{E}-03$	5．205E－03	$4.815 \mathrm{E}-03$
10／9	$6.954 E-03$	5．991E－03	4．732E－03	4．243E－03	3．950E－03	$3.810 \mathrm{E}-03$	3．601E－03
4／3	3．916E－03	2．974E－03	2．393E－03	2．257E－03	2．072E－03	$2.041 E-03$	1．930E－03
		CORRESPONDING		UNCERTAINTIES			
P\E（Mou）	0.35	0.50	0.35	1.00	1.25	1.50	1.75
0	3．980E－05	3．256E－05	3．958E－05	1．920E－05	2．840E－05	$2.511 E-05$	2． $399 E-05$
1／18	3．653E－05	3．275E－05	4．418E－05	2．68PE－05	4．288E－05	4．153E－05	2．616E－05
1／9	4．867E－05	5．952E－05	6．598E－05	5．189E－05	3．175E－05	5．229E－05	B． 1 POE－05
1／6	$9.152 \mathrm{E}-05$	7．110E－05	6．247E－05	7．954E－05	7．372E－05	4．425E－05	4．519E－05
$2 / 9$	7．169E－05	4．692E－05	6．371E－05	7．98日E－05	5． $754 \mathrm{E}-05$	5．722E－05	5． $716 E-05$
1／3	$1.188 E-04$	7．609E－05	9．733E－05	日．564E－05	8． $8 \mathrm{B4E-05}$	7． $295 E-05$	5．197E－05
$2 / 3$	1．843E－04	$1.692 \mathrm{E}-04$	$1.560 E-04$	1．401E－04	1．371E－04	1．327E－04	$1.301 E-04$
1	1．799E－04	7．577E－05	1．822E－04	1．106E－04	1．060E－04	1．041E－04	9．629E－05
10／9	2．0日6E－04	1．198E－04	$9.463 E-05$	E．485E－05	7．899E－05	1．143E－04	1．080E－04
4／3	7．832E－05	8．922E－05	7．178E－05	6． 7 P2E－05	$6.214 E-05$	6． $122 \mathrm{E}-05$	7．720E－05

GEOMETRY :	CB-RBM		$D S R=7 / 9$	MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{\wedge} 2$			
P/E(MeV)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	3. 402E-04	4.082E-04	4.527E-04	3. 343E-04	3.869E-04	3.732E-04	3.986E-06
1/18	6.405E-04	7.499E-04	6.566E-04	6.689E-04	6.295E-04	6.919E-04	6.751E-04
1/9	1.189E-03	$1.225 E-03$	1.251E-03	1.105E-03	$1.061 \mathrm{E}-03$	$1.070 E-03$	1.022E-03
1/6	$1.835 E-03$	$1.711 \mathrm{E}-03$	$1.551 \mathrm{E}-03$	1.425E-03	$1.324 E-03$	$1.510 \mathrm{E}-03$	$1.370 \mathrm{E}-03$
2/9	$2.518 \mathrm{E}-03$	2.360E-03	2.07SE-03	2.055E-03	$1.970 \mathrm{E}-03$	1. PEPE-03	$1.842 \mathrm{E}-03$
1/3	3. B23E-03	3.685E-03	3.233E-03	2.973E-03	2.762E-03	2.803E-03	2.596E-03
2/3	9.189E-03	7.947E-03	7.718E-03	7.031E-03	7.154E-03	$6.615 \mathrm{E}-03$	6.717E-03
1	$9.154 E-03$	7.469E-03	$6.244 E-03$	5. $229 \mathrm{E}-03$	5.166E-03	5.013E-03	4.751E-03
10/9	7.070E-03	$5.458 \mathrm{E}-03$	4.806E-03	4.081E-03	3.679E-03	3. $382 \mathrm{E}-03$	3.640E-03
4/3	3. $295 \mathrm{E}-03$	3.132E-03	$2.414 \mathrm{E}-03$	2.156E-03	1.977E-03	1.9P2E-03	2.013E-03
		CORRESPONDING RBSOLUTE		UNCERTAINTIES			
P\E(MoV)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	3.062E-05	2.449E-05	3.621E-05	3.009E-05	2. 708E-05	4. 105E-05	1.594E-u\%
1/18	3.843E-05	3. 750E-05	3.939E-05	$4.013 \mathrm{E}-05$	$3.147 \mathrm{E}-05$	2.076E-05	4.050 E 05
1/9	4. 758E-05	8.572E-05	7.507E-05	5.524E-05	4.243E-05	6.420E-05	5.111E OS
1/6	5.505E-05	3. 422E-05	4.653E-05	5. 700E-05	$6.618 \mathrm{E}-05$	6.040E-05	5. 480E-05
2/9	P.554E-05	9.440E-05	6.226E-05	6.164E-05	7.880E-05	7.149E-05	7.367E-05
1/3	$1.529 E-04$	1. 105E-04	9.698E-05	8.919E-05	8.286E-05	0.408E-05	7. $788 \mathrm{E}-05$
$2 / 3$	9.189E-05	$2.384 E-04$	$2.315 E-04$	1.406E-04	$1.431 \mathrm{E}-04$	$1.323 E-04$	1.343E-04
1	9.154E-05	$1.494 E-04$	$1.249 E-04$	5. 729E-05	$1.033 \mathrm{E}-04$	1.003E-04	9.502E-05
10/9	$1.414 E-04$	$1.092 \mathrm{E}-04$	4.806E-05	B. 162E-05	$1.104 E-04$	3. 782E-05	?.280E-05
4/3	7.590E-05	9.396E-05	7.241E-05	6.469E-05	S. $931 \mathrm{E}-05$	5.917E-05	$6.038 \mathrm{E}-\mathrm{n5}$

MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{-2}$

P\E(MoU)	0.35	0.50	0.75	1.00	1.25	1.50	1.35
0	3.793E-04	3. $323 \mathrm{E}-04$	3.612E-04	3. $332 \mathrm{E}-04$	4.168E-04	4. $319 \mathrm{E}-04$	3.731E-04
1/18	6.618E-04	7.270E-04	6.466E-04	7.188E-04	6.985E-04	6.865E-04	6.874E-04
$1 / 9$	1.189E-03	$1.245 \mathrm{E}-03$	1.147E-03	$1.063 \mathrm{E}-03$	1.062E-03	1.083E-03	9.816E-04
$1 / 6$	1.744E-03	$1.765 E-03$	$1.617 \mathrm{E}-03$	1.499E-03	1.595E-03	1.365E-03	1.383E-03
2/9	2.390E-03	2.342E-03	2.005E-03	1.992E-03	1.907E-03	1.748E-03	1.765E-03
1/3	3.798E-03	3.544E-03	2.924E-03	2.919E-03	2.978E-03	2.823E-03	2.599E-03
2/3	9.206E-03	8.504E-03	7.162E-03	$7.211 \mathrm{E}-03$	6.724E-03	6.707E-03	6.667E-03
1	9.082E-03	P. $314 \mathrm{E}-03$	6.448E-03	5.930E-03	5.373E-03	4. 787E-03	5.020E-03
10/9	6. 676E-03 $^{\text {a }}$	$5.693 \mathrm{E}-09$	4.748E-03	4.095E-03	3.859E-03	3. 790E-03	3.658E-03
4/3	3. 9 99E-03	3.124E-09	$2.480 \mathrm{E}-03$	2.291E-03	2.107E-03	1.944E-03	1.817E-03
		CORRESPONDING RESOLUTE		UNCERTAINTIES			
P\E(MOU)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	2.276E-05	3.351E-05	$3.251 \mathrm{E}-05$	3.832E-05	3. $335 \mathrm{E}-05$	3.023E-05	2. 639E-0S
1/18	2.64PE-05	4.362E-05	1.940E-05	2.875E-05	3.493E-05	$4.119 \mathrm{E}-05$	4.125E-05
$1 / 9$	5.945E-05	4. 980E-05	2.293E-05	4. 253E-05	$5.311 \mathrm{E}-05$	$5.414 \mathrm{E}-05$	3.926E-05
1/6	Q. 722E-05	7.060E-05	6.469E-05	7.495E-05	4. $784 \mathrm{E}-05$	4.096E-05	5.530E-05
219	9.560E-05	4.685E-05	8.018E-05	5.975E-05	3.814E-05	6.992E-05	B. 823E-05
1/3	3.798E-05	7.087E-05	8.7ア3E-05	B. $256 \mathrm{E}-05$	5. $356 \mathrm{E}-05$	5.645E-05	7.797E-05
213	1.841E-04	$1.701 \mathrm{E}-04$	$1.432 E-04$	$1.442 \mathrm{E}-04$	6. $324 \mathrm{E}-05$	$1.341 E-04$	1. $333 \mathrm{E}-04$
1	9.082E-05	$1.463 E-04$	6.44日E-05	1.186E-04	5.373E-05	9.574E-05	1.004E-04
$10 / 9$	2.063E-04	$1.139 E-04$	9.49PE-05	8.189E-05	7.717E-05	P.579E-05	7.316E-05
4/3	P.759E-05	9.373E-05	9.918E-05	6.872E-05	4.214E-05	P. PTPE-05	7.268E-05

P\E（MOU）	0.35
0	$3.662 E-05$
$1 / 18$	$1.676 E-04$
$1 / 9$	$3.940 E-04$
$1 / 6$	$7.241 E-04$
$2 / 9$	$1.159 E-03$
$1 / 3$	$2.397 E-03$
$2 / 3$	$7.301 E-03$
1	$1.368 E-02$
$10 / 9$	$9.179 E-03$
$4 / 3$	$5.385 E-03$

0.50	0.75
$7.824 E-05$	$5.445 E-05$
$1.447 E-04$	$1.95 E E-04$
$3.6 B 1 E-04$	$3.971 E-04$
$7.469 E-04$	$6.905 E-04$
$1.169 E-03$	$1.201 E-03$
$2.430 E-03$	$2.054 E-03$
$6.439 E-03$	$5.861 E-03$
$1.022 E-02$	$6.595 E-03$
$7.507 E-03$	$6.229 E-03$
$4.393 E-03$	$3.731 E-03$

1.00
1.25
1.50
1.75
$6.943 E-05$
$2.112 E-04$
$3.651 E-04$
$6.892 E-04$
$1.073 E-03$
$1.965 E-03$
$5.132 E-03$
$7.616 E-03$
$5.626 E-03$
$3.209 E-03$
2．012E－04
3．544E－04
7．303E－04 9．7PEE－04 1．979E－03 4．791E－03 3． $400 E-03$ 5．183E－03 3．001E－03

3．637E－05 2．18EE－04 4．511E－04 7． $312 E-04$ 1．000E 09 1．85アE－03 4．7ロ4E－03 6． $6.926 E-03$ $6.926 E-03$
$4.933 E-03$ 2．872E－03

B．OOBE－05 1．POOE－04 3．724E－04 6．396E－04 1．056E－03 1．P92E－03 4．632E－03 ア．105E－03 4．989E－03 2． $857 E-03$

CORRESPONDING RESOLUTE UNCERTAINTIES

$P \backslash E(M \rho V)$	0.35
0	$6.226 E-06$
$1 / 18$	$1.50 E E-05$
$1 / 9$	$3.152 E-05$
$1 / 6$	$3.620 E-05$
$2 / 9$	$4.637 E-05$
$1 / 3$	$9.58 B E-05$
$2 / 3$	$1.460 E-04$
1	$2.735 E-04$
$10 / 9$	$9.179 E-05$
$4 / 3$	$1.615 E-04$

0.50

0.75
1.00
1.25
1.50
1.75

1．330E－05 •．078E－06
1．591E－05 1．301E－05
2．944E－05 3．574E－05
4．482E－05 3．453E－05
4．67EE－05 6．004E－05
7．291E－05 8．214E－05
1．2日フE－04 1．172E－04
1．2日アE－04 1．172E－04
1．022E－04 2．5PEE－04
7．507E－05 1．246E－04
9． $320 E-06$
1． $145 \mathrm{E}-05$
2．323E－05 2．615E－05
6．547E－06
06 9．610E ：
1．969E－05 1．530E OS 3．608E－05 1．日62E
$\begin{array}{llll}3.2 B 6 E-05 & 1.41 E E-05 & 3.60 E E-0 S & 1.85 E \\ 2.757 E-05 & 2.191 E-05 & 5.119 E-0 S & 3.837 E\end{array}$
$\begin{array}{llll}2.757 E-05 & 2.191 E-05 & 5.119 E-05 & 3.837 E-05 \\ 5.366 E-05 & 5.867 E-05 & 5.399 E-0 S & 6.337 E-05\end{array}$
5．894E－05 5．93日E－0S 7．429E－05 5．376E－05
1．026E－04 9．582E－05
1．026E－04 9．582E－05
1．125E－04 1．03PE－04
1．2日4E－04 6．002E－05
4．704E－05 1．390E－04
1．385E－04 1．421E－04
9．866E－05 9．977E－05
5．744E－05 8．571E－N5

DSR＝8／9

P\E（MOV）	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	5．152E－05	6．217E－05	6．322E－05	7．065E－05	$6.996 E-05$	6．029E－05	7．845E－05
1／18	$1.514 E-04$	1．374E－04	2．076E－04	$1.366 E-04$	1．597E－04	1．721E－04	$1.981 \mathrm{E}-04$
$1 / 9$	3．191E－04	4．731E－04	4．035E－04	3．497E－04	3． $344 E-04$	3．602E－04	3．513E－04
$1 / 6$	6． $736 \mathrm{E}-04$	$7.031 E-04$	7．306E－04	7．438E－04	6． 77 EE－04	$6.953 E-04$	6．429E－04
2／9	1．127E－03	1．114E－03	$1.016 E-03$	1．144E－03	1．026E－03	9．896E－04	9．649E－04
1／3	2．514E－03	2．227E－03	$1.984 E-03$	$1.893 \mathrm{E}-03$	$1.932 \mathrm{E}-03$	$1.917 \mathrm{P}-03$	1．382E－03
2／3	7．201E－03	6．265E－03	5．657E－03	5．223E－03	4． $488 \mathrm{E}-03$	4． $792 \mathrm{E}-03$	4．805E－03
1	1． 3 P9E－02	1．043E－02	8．679E－03	7．903E－03	7．418E－03	7．230E－03	6．B20E－03
$10 / 9$	9．OPOE－03	7．415E－03	6．158E－03	5． $438 E-03$	5．062E－03	5．OOSE－03	4．918E－03
4／3	5．378E－03	$4.398 E-03$	3．630E－03	3．20アE－03	$3.000 E-03$	2．994E－03	$2.719 \mathrm{E}-03$
		CORRESPONDING ABS		UNCERTAINTIES			
$P \backslash E(M O V)$	0.35	0.50	0.35	1.00	1.25	1.50	1.7
0	1．082E－05	1．554E－05	1．TOTE－05	1．272E－05	1．469E－05	$9.044 E-06$	1．491．
1／18	$1.666 E-05$	1．648E－05	1．86EE－05	1．247E－05	1．118E－05	2．480E－05	
$1 / 9$	3．510E－0S	4．731E－05	3．22BE－05	2．448E－0S	3．076E－05	3． $242 \mathrm{E}-05$	1．405E is
1／6	4．042E－05	$2.812 \mathrm{E}-05$	$5.114 E-05$	2． $975 \mathrm{E}-05$	4．06PE－05	2． $381 \mathrm{E}-05$	4．501E 05
$2 / 9$	6． $764 \mathrm{E}-05$	5．568E－05	4．064E－05	4．576E－05	4．102E－05	3．958E－05	3． $860 E-05$
1／3	7．541E－05	6．6B0E－05	9．920E－05	5．650E－05	7．726E－05	5．750E－05	B．909E－05
2／3	$1.440 \mathrm{E}-04$	$1.259 E-04$	1．697E－04	1．045E－04	9．7アアE－05	$1.438 E-04$	$9.610 E-05$
1	1．379E－04	1．043E－04	1．736E－04	$1.581 E-04$	$1.484 \mathrm{E}-04$	1．446E－04	1．364E－04
$10 / 9$	$1.814 E-04$	$1.483 E-04$	1．847E－04	$1.631 E-04$	5．062E－05	1．001E－04	9．836E－05
4／3	$1.076 E-04$	$1.319 E-04$	$7.260 E-05$	$6.413 E-05$	6．DODE－05	S．987E－05	8．157E－חS

GEOMETRY ：	REM－RBM		$D S R=1$		MASS THICKNE	$5 S=12 \mathrm{mg} / \mathrm{c}$	n^{-2}
P\E（MeV）	0.35	0.50	0.75	1.00	1.25	1.50	1.35
0	E．391E－09	1．132E－06	1．837E－06	7．37アE－06	1．549E－06	2．572E－06	2．245E－06
1／18	1．024E－05	1．23日E－05	2． $994 E-06$	1．555E－05	7．881E－06	2．297E－05	$1.216 \mathrm{E}-05$
1／9	5．294E－05	3．625E－05	4．939E－05	7． $203 E-05$	4．489E－05	6．109E－05	$6.483 E-05$
1／6	1．438E－04	1．372E－04	1．440E－04	2．001E－04	2．194E－04	1．963E－04	1．TOOE－04
$2 / 9$	3．327E－04	3．532E－04	4．044E－04	3．480E－04	4．225E－04	4． $211 \mathrm{E}-04$	3．625E－04
1／3	1．198E－03	1．126E－03	1．043E－03	$1.063 \mathrm{E}-03$	9．830E－04	1．065E－03	1．O22E－03
2／3	5．626E－03	4．975E－03	4．272E－03	3．945E－03	3． $764 E-03$	3．550E－03	3．490E－03
1	1．421E－02	1．372E－02	1．356E－02	1．411E－02	1．388E－02	1．427E－02	$1.466 E-02$
$10 / 9$	1．390E－02	1．071E－02	日．505E－03	7．62TE－03	7．332E－03	6．937E－03	6．935E－03
4／3	7．113E－03	5．PE1E－03	4．75PE－03	4．396E－03	4．02PE－03	3．783E－03	3．B80E－03
		CORRESPONDING FBSOLUTE		UNCERTAINTIES			
P\E（MeV）	0． 35	0.50	0.75	1.00	1.25	1.50	1.75
0	8．30アE－09	8．374E－07	日．266E－07	3．836E－06	$1.534 E-06$	1．852E－06	1．684E－06
1／18	4．200E－06	5．696E－06	1．POTE－06	6．222E－06	2． $443 \mathrm{E}-06$	$5.054 E-06$	4． $133 \mathrm{E}-06$
$1 / 9$	6．882E－06	6．888E－06	1．235E－05	1．695E－05	$7.173 E-06$	1．955E－05	9．076E－06
1／6	1．150E－05	1．3P2E－05	1． $328 \mathrm{E}-05$	2．401E－0S	1．974E－05	2．356E－05	2．210E－05
219	2．661E－05	2．119E－05	1.61 EE －0S	2．088E－05	3．380E－05	4．692E－05	2．900E－05
1／3	4．794E－05	4．504E－05	4．174E－05	$5.316 E-05$	3．932E－05	5．326E－05	4．0日アE－05
$2 / 3$	1．125E－04	9．950E－05	日．543E－05	$1.184 E-04$	1．129E－04	1．065E－04	3．490E－05
1	2． $842 E-04$	$2.749 E-04$	2． $711 \mathrm{E}-04$	$1.411 E-04$	2． 3 P6E－04	1．42アE－04	4．397E－04
$10 / 9$	$1.390 E-04$	$2.142 E-0.4$	8．505E－05	$1.525 E-04$	$1.466 E-04$	1.38 PE－04	6．935E－05
4／3	$2.134 E-04$	1．156E－04	9．514E－05	8．T92E－05	1．20日E－04	$1.135 E-04$	1．164E－04

GEOMETRY :	CB-REM		OSR=1		MASS THICKNE	$5=12 \mathrm{mg}$	-2
P\E(MOU)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	1.503E-06	1. ODOE-O7	4.343E-08	4.508E-07	2.442E-06	1.265E-06	8. 750E-06
1/19	6. 188E-06	5.797E-06	4.989E-06	4.529E-06	$1.454 \mathrm{E}-05$	1.903E-05	1.934E-05
1/9	$6.211 \mathrm{E}-05$	4. 470E-05	0.035E-05	4.127E-05	4.619E-05	7.256E-05	7.988E-05
1/6	1.474E-04	1.523E-04	1.650E-04	1.851E-04	$1.527 E-04$	1.920E-04	1. $761 \mathrm{E}-04$
2/9	3.405E-04	3.333E-04	4.200E-04	4.173E-04	3.563E-04	4.199E-04	$3.811 \mathrm{E}-04$
1/3	$1.025 \mathrm{E}-03$	1.233E-03	1.086E-03	1.085E-03	9.970E-04	9.996E-04	9.651E-04
2/3	5.438E-03	4.764E-03	4.184E-03	3.926E-03	3.975E-03	3.638E-03	3. 722E-03
1	1.36日E-02	1. 375E-02	1.368E-02	$1.415 \mathrm{E}-02$	$1.359 E-02$	$1.442 E-02$	$1.448 \mathrm{E}-02$
10/9	$1.381 \mathrm{E}-02$	$1.028 E-02$	6. 725E-03	7.665E-03	7.496E-03	6.90日E-03	6.808E-03
4/3	$6.973 \mathrm{E}-03$	5.843E-03	4.742E-03	4.467E-03	4.162E-03	3.635E-03	3.679E-03
		CORRESPONDING RESOLUTE		UNCERTAINTIES			
P\E(MOV)	0.35	0.50	0.75	1.00	1.25	1.50	1.75
0	7.965E-07	9.900e-08	4.300E-08	4. 463E-07	2.174E-06	0.854E-07	5.686 t i.
1/18	2.475E-06	4. $116 \mathrm{E}-06$	4. 490E-06	3. 950E-06	5.234E-06	5.898E-06	6. 190E Ibe
$1 / 9$	9.316E-06	$1.028 \mathrm{E}-05$	1.205E-05	7.429E-06	9.699E-06	$1.306 E-05$	1.598 E O
$1 / 6$	$1.474 E-05$	1.371E-05	2.310E-05	3.14PE-05	1.527E-05	1.152 E -05	$1.056 E-05$
$2 / 9$	2.043E-05	2.666E-05	3. 360E-0S	4. 1 P3E-0S	3.206E-05	3.359E-05	2. 28TE-05
1/3	4.098E-05	6.167E-05	3.259E-05	5. 426E-05	6.979E-05	5.997E-05	5. 790E-05
2/3	$1.088 \mathrm{E}-04$	1.429E-04	8.367E-05	7.652E-05	7.749E-05	7.276E-05	7.443E-05
1	$1.367 E-04$	2.749E-04	2.736E-04	$1.415 E-04$	2.717E-04	$1.442 E-04$	1.448E-04
10/9	$1.381 E-04$	1.028E-04	1. $745 \mathrm{E}-04$	$1.533 E-04$	1.499E-04	1.382E-04	$1.362 E-04$
4/3	$1.395 E-04$	$1.169 E-04$	$1.423 E-04$	$1.340 E-04$	8.324E-05	3.270E-05	$1.104 \mathrm{E}-\mathrm{Q4}$

SEQMETEY ：URC－REM

PVE（MEV）	0.35	0.50	0.75
0	$1.000 E-07$	$3.171 E-06$	$2.850 E-06$
$1 / 1 E$	$1.0 E 2 E-05$	$1.190 E-05$	$1.027 E-05$
$1 / 9$	$4.117 E-05$	$0.223 E-05$	$5.345 E-05$
$1 / E$	$1.521 E-04$	$1.902 E-04$	$2.05 E E-04$
$2 / 9$	$3.567 E-04$	$3.517 E-04$	$4.120 E-04$
$1 / 3$	$1.295 E-03$	$1.105 E-03$	$1.159 E-03$
$2 / 3$	$5.557 E-03$	$4.601 E-03$	$4.404 E-03$
1	$1.396 E-02$	$1.376 E-02$	$1.343 E-02$
$10 / 9$	$1.365 E-02$	$1.026 E-02$	$6.611 E-03$
$4 / 3$	$6.975 E-03$	$5.749 E-03$	$4.83 P E-03$

MASS THICKNESS $=12 \mathrm{mg} / \mathrm{cm}^{-2}$

1.00	1.25
$2.234 E-07$	$2.522 E-06$
$1.527 E-05$	$1.412 E-05$
$5.029 E-05$	$6.069 E-05$
$1.590 E-04$	$1.629 E-04$
$4.113 E-04$	$4.329 E-04$
$1.181 E-03$	$1.033 E-03$
$3.892 E-03$	$3.777 E-03$
$1.385 E-02$	$1.391 E-02$
$7.592 E-03$	$7.202 E-03$
$4.251 E-03$	$4.061 E-03$

$1.961 E-06$	$1.631 E-06$
$9.411 E-06$	$1.456 E-05$
$4.943 E-05$	$5.720 E-05$
$1.82 P E-04$	$2.101 E-04$
$4.163 E-04$	$3.440 E-04$
$1.048 E-03$	$1.02 P E-03$
$3.837 E-03$	$3.589 E-03$
$1.407 E-02$	$1.449 E-02$
$6.796 E-03$	$6.658 E-03$
$3.855 E-03$	$3.658 E-03$

1.75

CORRESPONDING FESOLUTE UNCERTAINTIES

$P \backslash E(M \odot V)$	0.35	0.50	0.35	1.00	1.25	1.50	1．75
0	9．900E－08	3．139E－06	1．909E－06	2． $212 \mathrm{E}-07$	2．497E－06	1．941E－06	9．947E
1／18	$5.412 E-06$	3．927E－06	4．314E－06	4．580E－D6	$6.211 E-06$	3．492E－06	4.515 Em
1／9	7．410E－06	1．645E－05	1．015E－05	1．106E－0S	9．710E－06	1．285E－05	1．DETE S
1／6	2．129E－05	1．902E－05	2．469E－05	1．908E－05	2．200E－05	1．827E－05	2．101E\％05
$2 / 9$	2．49PE－05	3．869E－05	2． $884 \mathrm{E}-05$	2．056E－05	3．463E－05	2． $498 \mathrm{E}-05$	3．440E－05
1／3	5．139E－05	6．62日E－05	5．P88E－05	2．362E－05	4．131E－05	3．145E－05	6．163E－05
$2 / 3$	1．111E－04	9．202E－05	1．321E－04	ア． $784 \mathrm{C}-05$	7．553E－05	7．674E－05	1．077E－04
1	2． 273 CO －04	2．753E－04	2．686E－04	2． $720 \mathrm{E}-04$	1．391E－04	4．221E－04	1．449E－04
10／9	2．ア30E－04	2．052E－04	1． $722 \mathrm{E}-04$	1．51EE－04	1．440E－04	1．359E－04	1．332E－04
4／3	1．375E－04	1．150E－04	1．451E－04	8．503E－05	B．121E－05	7． $210 \mathrm{E}-05$	$1.097 E-04$

APPENDIX B

PROGRAM POLY6
DOUBLE PRECISION A(7,7),Y(7),C(7),DET(2)
DOUBLE PRECISION WORK(7),SUM(20)
DIMEN8ION IPVT(7)
REAL $X(10), Z(10)$, UNC $(10), S T D, U L, T O T A L$
DOUBLE PRECISION P(10), DOSE(10), ERR(10)
DOUBLE PRECISION VAL(10), D(7), E
CHARACTER IN*15,OUT*15
PRINT*, 'INPUT FILE?'
READ*, IN
PRINT*,'OUTPUT FILE?'
READ*, OUT
OPEN(UNIT=1,FILR=IN)
OREN (UNIT=2,FILE='B: \111\'//OUT)
DO $5 I=1,20$
$\operatorname{SUM}(I)=0.000$

CONTINUE
GRITE(2,*) 'THE INPUT FILE: ', IN
WRITE(2,*) '
WRITE $(2, *)$ 'THE DATA POINTS : '
HRITE $2, *$) X Y
UNCERTAINTY'
DO $10 \quad I=1,10$
READ(1,*) X(I), Z(I), UNC(I)
TRITE (2,*) $X(I), Z(I), U N C(I)$
$P(I)=D B L E(X(I))$
DOSE (I) = DBLE(Z (I))
$\operatorname{BRR}(I)=\operatorname{DELE}($ UNC (I))
CONTINUE
DO $15 I=1,10$
$\operatorname{SUM}(1)=\operatorname{SUM}(1)+1.0 / E R R(I) * * 2$
$\operatorname{SUM}(2)=8 U M(2)+P(I) / E R R(I) * * 2$
$\operatorname{SUM}(3)=\operatorname{SUM}(3)+P(I) * * 2 / \operatorname{ERR}(I) * * 2$
$\operatorname{SUM}(4)=\operatorname{SUM}(4)+P(I) * * 3 / \operatorname{ERR}(I) * * 2$
$\operatorname{SUM}(5)=\operatorname{SUM}(5)+\mathrm{P}(\mathrm{I}) * * 4 / \operatorname{ERR}(I) * * 2$
$\operatorname{SUM}(6)=\operatorname{SUM}(6)+P(I) * * / \operatorname{ERR}(I) * * 2$
$\operatorname{SUM}(7)=\operatorname{SUn}(7)+P(I) * * 6 / \operatorname{ERR}(I) * * 2$
$\operatorname{SUM}(8)=8 U M(8)+P(I) * * / \operatorname{ERR}(I) * * 2$
$\operatorname{SUM}(9)=\operatorname{SUM}(9)+P(I) * * 8 / \operatorname{ERR}(I) * * 2$
$\operatorname{SUM}(10)=\operatorname{SUM}(10)+P(I) * * 9 / E R R(I) * * 2$
$\operatorname{SUM}(11)=\operatorname{SUM}(11)+P(I) * * 10 / E R R(I) * * 2$
$\operatorname{SUM}(12)=8 \operatorname{UM}(12)+P(I) * * 11 / \operatorname{ERR}(I) * * 2$
$\operatorname{SUM}(13)=\operatorname{SUM}(13)+P(I) * * 12 / E R R(I) * * 2$
$\operatorname{SUM}(14)=\operatorname{SUM}(14)+\operatorname{DOSE}(I) / \operatorname{ERR}(I) * * 2$
$\operatorname{SUM}(15)=8 \operatorname{UM}(15)+\operatorname{DOSE}(I) * P(I) / E R R(I) * * 2$
$\operatorname{SUM}(16)=84 \min (16)+\operatorname{DOSR}(\mathrm{I}) * \mathrm{P}(\mathrm{I}) * 2 / E R R(I) * * 2$

CORTY:5
do

```
```

```
    DO 20 I=1,7
```

```
    DO 20 I=1,7
                                    -19
                                    -19
            DO 30 J=1,7
            DO 30 J=1,7
    A(I,J j=SUM(I+J-1)
    A(I,J j=SUM(I+J-1)
    CONTINUE
    CONTINUE
    CONTINUE
    CONTINUE
    DO 40 I=1,7
    DO 40 I=1,7
    Y(I)=SUM(I+13)
    Y(I)=SUM(I+13)
        CONTINUE
        CONTINUE
    N=7
    N=7
        LD=N
        LD=N
    CALL DGEFA(A,LD,N,IPVT, INFO)
    CALL DGEFA(A,LD,N,IPVT, INFO)
        JOB=11
        JOB=11
        CALL DGEDI(A,LD,N,IPVT,DET, WORK,JOB)
        CALL DGEDI(A,LD,N,IPVT,DET, WORK,JOB)
        DO 50 I=1,7
        DO 50 I=1,7
            C(I)=0.0DO
            C(I)=0.0DO
        DO 60 J=1,7
        DO 60 J=1,7
            C(I)=C(I)+A(I,J)*Y(J)
            C(I)=C(I)+A(I,J)*Y(J)
            CONTINUE
            CONTINUE
        CONTINUE
        CONTINUE
            WRITE(2,*) ',
            WRITE(2,*) ',
            WRITE(2,*) ' X CALCULATED Y
            WRITE(2,*) ' X CALCULATED Y
            HRITE(2,*)' '
            HRITE(2,*)' '
            STD=0.0
            STD=0.0
            DO 70 I=1,10
            DO 70 I=1,10
            VAL(I)=C(1)+C(2)*P(I)+C(3)*P(I)**2+C(4)*P(I)**3
            VAL(I)=C(1)+C(2)*P(I)+C(3)*P(I)**2+C(4)*P(I)**3
    + +C(5)*P(I)**4+C(6)*P(I)**5+C(7)*P(I)**5
    + +C(5)*P(I)**4+C(6)*P(I)**5+C(7)*P(I)**5
            WRITB(2,*) SNGL(P(I)},SNGL(VAL(I)),
            WRITB(2,*) SNGL(P(I)},SNGL(VAL(I)),
    + SNGL(ABS((Z(I)-VAL(I))*100/Z(I)))
    + SNGL(ABS((Z(I)-VAL(I))*100/Z(I)))
        STD=STD+((Z(I)-VAL(I))**2)/3.0
        STD=STD+((Z(I)-VAL(I))**2)/3.0
    CONTINUE
    CONTINUE
    WRITE (2,*) ' '
    WRITE (2,*) ' '
    WRITE(2,*) 'COEFFICIENTS AND THEIR UNCERTAINTY :'
    WRITE(2,*) 'COEFFICIENTS AND THEIR UNCERTAINTY :'
    NRITE(2,*) ' '
    NRITE(2,*) ' '
    DO 55 I=1,7
    DO 55 I=1,7
        WRITE(2,*) SNGL(C(I)),'+/-',SNGL(SQRT(A(I,I)))
        WRITE(2,*) SNGL(C(I)),'+/-',SNGL(SQRT(A(I,I)))
    CONTINUE
    CONTINUE
    WRITE(2,*) ' '
    WRITE(2,*) ' '
    WRITE(2,*) 'VARIANCE OF THE FITTED CURVE :',STD
    WRITE(2,*) 'VARIANCE OF THE FITTED CURVE :',STD
    UL=4/(3.0)
    UL=4/(3.0)
    TOTAL=C(1)*UL+(C(2)*UL**2)/2+(C(3)*UL**3)/3+
    TOTAL=C(1)*UL+(C(2)*UL**2)/2+(C(3)*UL**3)/3+
+(C(4)*UL**4)/4+(C(5)*UL**5)/5+(C(6)*UL**6)/6+
+(C(4)*UL**4)/4+(C(5)*UL**5)/5+(C(6)*UL**6)/6+
+ (C(7)*UL**7)/7
+ (C(7)*UL**7)/7
    E=0.0D0
    E=0.0D0
    DO 75 I=1,7
    DO 75 I=1,7
        D(I)=(UL**I)/REAE(I)
        D(I)=(UL**I)/REAE(I)
    CONTINUE
    CONTINUE
    00 80 I=1.7
    00 80 I=1.7
        00 &5 J=L.7
```

```
        00 &5 J=L.7
```

```


```

```
        OWTZNUE
```

```
        OWTZNUE
```

 * ERROR * Y
    ```
        * ERROR * Y
    CONTIWUE
```

 CONTIWUE
    ```
```

 E=SQRT(E)
 NRITE(2,*) ' '
 WRITE(2,*) 'TOTAL DOSE : ',TOTAL,'+/-',SNGL(E)
 PRINT*,TOTAL
 WRITE(2,*)',
 PRINT*, ' '
 WRITE(2,*) '* ERROR : ',(SNGL(E)/TOTAL)*100
 PRINT*,(SNGL(E)/TOTAL)*100
 CLOSE(UNIT=1)
 CLOSE(UNIT=2)
 END
 SUBROUTINE DGEFA(A,LDA,N,IPVT,INFO)
 INTEGER LDA,N,IPVT(N),INFO
 DOUBLE PRECISION A(LDA,N)
 DOUBLE PRECISION T
 INTEGER IDAMAX,J,K,KP1,L,NM1
 INPO = 0
 NH1 = N - 1
 IF (NM1 .LT. 1) GO TO 70
 DO 60 K = 1, NM1
 KP1 = K + 1
 L = IDAMAX(N-K+1,A(K,K),1) + K - 1
 IPVT(K) = L
 IF (A(L,K).EQ. O.ODO) GO TO 40
 IF (L .EQ. K) GO TO 10
 T = A(L,K)
 A(L,K) =A(K,K)
 A(K,K)=T
 CONTINUE
 T = -1.0D0/A(K,K)
 CALL DSCAL(N-K,T,A(K+1,K),1)
 DO 30 J = KP1, N
 T = A(L,J)
 IF (L .EQ. K) GO TO 20
 A(L,J) = A(K,J)
 A(K,J) = T
 CONTINUE
 CALL DAXPY(N-K,T,A(K+1,K),1,A(K+1,J),1)
 CONTINUE
 GO TO 50
 40 CONTINUE
INFO = K
CONTINUE
60 CONTINUE
70 CONTINUS
Teve(告) = N
* (A(N,N) .EC. O.ODO! INPO = N
MENORH
3%4

```
```

 SUBROUTINE DGEDI(A,LDA,N,IPVT,DET
 INTEGER LDA,N,IPVT(N),JOB
 DOUBLE PRECISION A(LDA,N),DET(2),ADRK, ()
 DOUBLE PRBCISION T
 DOUBLE PRECISION TEN
 INTEGER I,J,K,KB,KP1,L,NM1
 IF (JOB/10 .EQ. O) GO TO 70
 DET(1) = 1.0DO
 DET(2) = 0.0DO
 TEN = 10.0DO
 DO 50 I = 1, N
 IF (IPVT(I) .NE. I) DET(1) = -DET(1)
 DET(1) = A(I,I)*DET(1)
 IF (DET(1) .EQ. O.ODO) GO TO 60
 IF (DABS(DET(1)) .GE. 1.0DO) GO TO 20
 DET(1) = TEN*DET(1)
 DET(2) = DET(2) - 1.0DO
 GO TO 10
 CONTINUE
 IF (DABS(DET(1)) .LT. TEN) GO TO 40
 DET(1) = DET(1)/TEN
 DET(2) = DET(2) + 1.0DO
 GO TO 30
 CONTINUE
 CONTINUE
 CONTINUE
 CONTINUE
IF (MOD(JOB,10) .EQ. 0) GO TO 150
DO 100 K = 1, N
A(K,K) = 1.0DO/A(K,K)
T = -A(K,K)
CALL DSCAL(K-1,T,A(1,K),1)
KP1 = K + 1
IF (N .LT. KPI) GO TO 90
DO 80 J = KP1,N
T=A(K,J)
A(K,J) = 0.0DO
CALL DAXPY(K,T,A(1,K),1,A(1,J),1)
CONTINUE
CONTINUE
CONTINUE
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 140
DO 130 KB = 1, NM1
K = N - KB
KP1 = K + 1
DO 110 I = 4%%, 对

```

```

 A(I.R) = 0.0DO
 CONTMNTE
    ```
```

 DO 120 J = KP1,N
 T = WORK(J)
 CALL DAXPY(N,T,A(1,J),1,A(1,K),1)
 CONTINUE
 L=IPVT(K)
 IF (L .NE. K) CALL DSWAP(N,A(1,K),1,A(1,L),1)
 CONTINUE
 140 CONTINUE
150 CONTINUE
RETURN
END
SUBROUTINE DAXPY(N,DA,DX,INCX,DY,INCY)
DOUBLE PRECISION DX(1),DY(1),DA
INTEGER I, INCX, INCY, IXIY,M,MP1,N
IF(N.LE.O)RETURN
IF (DA .EQ. O.ODO) RETURN
IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
IX = 1
IY = 1
IF(INCX.LT.0)IX = (-N+1)*INCX + 1
IF(INCY.LT.O)IY = (-N+1)*INCY + 1
DO 10 I = 1,N
DY(IY) = DY(IY) + DA*DX(IX)
IX = IX + INCX
IY = IY + INCY
10 CONTINUE
RETURN
20M=MOD(N,4)
IF(M.EO. 0) GO TO 40
DO 30 I = 1,M
DY(I) = DY(I) + DA*DX(I)
30 CONTINUE
IF(N.LT. 4) RETURN
40MP1 = M + 1
DO 50 I = MPI,N,4
DY(I) = DY(I) + DA*DX(I)
DY(I + 1) = DY(I + 1) + DA*DX(I + 1)
DY(I + 2) = DY(I + 2) + DA*DX(I + 2)
DY(I + 3)=DY(I + 3) + DA*DX(I + 3)
50 CONTINUE
RETURN
END

```



```

OCT =0.0TE
MEME = 0. प"4

```
```

 IF(N.LE.O)RETURN
 IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO
 IX = 1
 IY=1
 IF(INCX.LT.0)IX = (-N+1)*INCX + 1
 IF(INCY.LT.O)IY = (-N+1)*INCY + 1
 DO 10I = 1,N
 DTEMP = DTEMP + DX(IX)*DY(IY)
 IX = IX + INCX
 IY = IY + INCY
 10 CONTINUE
 DDOT = DTEMP
 RETURN
 20M=MOD(N,5)
 IF(M.EQ. O) GO TO 40
 DO 30 I = 1,M
 DTEMP = DTEMP + DX(I)*DY(I)
 30 CONTINUE
 IF(N .LT. 5) GO TO 60
 40MP1 = M + 1
 DO 50 I = MP1,N,5
 DTEMP = DTEMP + DX(I)*DY(I) + DX(I+1)*DY(I+1) +
 DX(I+2)*DY(I+2) + DX(I+3)*DY(I+3) + DX(I+4)*DY(I+4)
 50 CONTINUE
60 DDOT = DTEMP
RETURN
END
SUBROUTINE DSCAL(N,DA,DX,INCX)
DOUBLE PRECISION DA,DX(1)
INTEGER I,INCX,M,MP1,N,NINCX
IF(N.LE.O)RETURN
IF(INCX.EQ.1)GO TO 20
NINCX = N*INCX
DO 10I = 1,NINCX,INCX
DX(I) = DA*DX(I)
10 CONTINUE
RETURN
20M=MOD(N,5)
IF(M.EQ. O) GO TO 40
DO 30 I = 1,M
DX(I) = DA*DX(I)
30 CONTINUE
IF(N.LLT. 5) RETURN
40 MP1 = M + 1
DO 50I = MP1,N,5
DX(I) = DA
DX(I + 1) =DA*DX(I + 1)
DX(I + 2) * DA*DX(I + 2)
DX(I + 3) = DAxDX(T + 3)

```
```

 DX(I + 4) = DA*DX(I + 4)
 50 CONTINUE
 RETURN
 END
 SUBROUTINE DSWAP (N,DX,INCX,DY,INCY)
 DOUBLE PRECISION DX(1),DY(1),DTEMP
 INTEGER I,INCX,INCY,IX,IY,M,MP1,N
 IF(N.LE.0)RETURN
 IF(INCX.EQ.1.AND.INCY.EQ.1)GO TO 20
 IX = 1
 IY = 1
 IF(INCX.LT.O)IX = (-N+1)*INCX + 1
 IF(INCY.LT.0)IY = (-N+1)*INCY + 1
 DO 10 I = 1,N
 DTEMP = DX(IX)
 DX(IX) = DY(IY)
 DY(IY) = DTEMP
 IX = IX + INCX
 IY = IY + INCY
 10 CONTINUE
RETURN
20M=MOD(N,3)
IF(M .EQ. O) GO TO 40
DO 30 I = 1,M
DTEMP = DX(I)
DX(I) = DY(I)
DY(I) = DTEMP
30 CONTINUE
IF(N .LT. 3) RETURN
40 MP1 = M + 1
DO 50 I = MP1,N,3
DTEMP = DX(I)
DX(I) = DY(I)
DY(I) = DTEMP
DTEMP = DX(I + 1)
DX(I + 1) = DY(I + 1)
DY(I + I) = DTEMP
DTEMP = DX(I + 2)
DX(I + 2) = DY(I + 2)
DY(I + 2) = DTEMP
50 CONTINUE
RETURN
END
INTEGEW FUWCTYON IOANAXIG,DX,IMCX)
DOUBLE PRECISION DK(3),D4AK
INTEGER I,INCX,IX,N
IDAMAX = 0

```
```

 IF(N .LT. 1) RETURN
 ここ
 IDAMAX = 1
 IF(N.EQ.1)RETURN
 IF(INCX.EQ.1)GO TO 20
 IX = 1
 DMAX = DABS(DX(1))
 IX = IX + INCX
 DO 10 I = 2,N
 IF(DABS(DX(IX)).LE.DMAX) GO TO 5
 IDAMAX = I
 DMAX = DABS(DX(IX))
 IX = IX + INCX
 10 CONTINUE
RETURN
20 DMAX = DABS(DX(1))
DO 30 I = 2,N
IF(DABS(DX(I)).LE.DMAX) GO TO }3
IDAMAX = I
DMAX = DABS(DX(I))
30 CONTINUE
RETURN
END

```
```

APPENDIX C
The Eittina function used for Dsx(X(E), i) Noterpolations :
For . . 35 MeV, fitting function : Y = A + BX + CX2
Where }\because=\mathrm{ dose x 101}\mathrm{ Gy per electron
X = scaled distance S from 0 to 2/3
A, B and C are fitting parameters
Eor RBM-RBM geometry for VAC-RBM geometry
A=2.46\pm0.04 A = 2.19 土0.01
B=4.7 2.4
B = 5.3 土 0.1
C=-2.1 土 0.6
C=-3.3 +0.2
for CB-RBM geometry
A=2.61 土0.05
B=3.4\pm0.4
S=-1.3土0.6

```
```

EOr 0.50 MeV, fitting function : Y = A - exp (-CX))

```
where \(Y=\) dose \(x 0^{11}\) Gy per electron
    \(\mathrm{X}=\) scaled distance S from 0 to \(8 / 9\)
    \(A, B\) and \(C\) are fitting parameters
for RBM-RBM geometry
for VAC-RBM geometry
\(A=2.01 \pm 0.06\)
\(A=1.72 \pm 0.02\)
\(B=1.51 \pm 0.03\)
\(B=1.72 \pm 0.03\)
\(C=3.7 \pm 0.2\)
\(\mathrm{C}=4.3 \pm 0.2\)
for CB-RBM geometry
\(A=2.14 \pm 0.02\)
\(B=1.30 \pm 0.03\)
\(C=3.6 \pm 0.2\)

Eor 0.75 MeV , fitting function : \(Y=A-B X+\mathrm{CX}^{2}+\mathrm{DX}^{3}\)
```

where Y = dose x 1011 Gy per electron
X = scaled distance S from 0 to 2/3
A, B, C and D are fitting parameters

```
for RBM-RBM geometry for VAC-RBM geometry
\begin{tabular}{ll}
\(A=1.59 \pm 0.03\) & \(A=1.35 \pm 0.03\) \\
\(B=6.6 \pm 0.6\) & \(B=8.1 \pm 0.5\) \\
\(C=-17 \pm 2\) & \(C=-20 \pm 2\) \\
\(D=18 \pm 2\) & \(D=19 \pm 2\)
\end{tabular}
for CB-RBM geometry
\(A=1.76 \pm 0.03\)
\(B=5.5 \pm 0.6\)
\(C=-15 \pm 2\)
\(D=16 \pm 2\)
```

For 1.00 MeV, fitting function : Y = A - %

```
```

where Y = dose x 1011}\mathrm{ Gy per electron
X = scaled distance S from 0 to 4/9

```
    \(A\) and \(B\) are fitting parameters
for RBM-RBM geometry
for VAC-RBM geometry
\(A=1.59 \pm 0.02\)
\(A=1.32 \pm 0.02\)
\(B=2.07 \pm 0.09\)
\(B=2.75 \pm 0.07\)
for \(C B-R B M\) geometry
\(A=1.71 \pm 0.01\)
\(B=1.84 \pm 0.05\)

For 1.25 MeV , fitting function : \(\mathrm{Y}=\mathrm{A}+\mathrm{BX}\)
```

where Y = dose x 1011 Gy per electron
X = scaled distance S from 0 to 4/9
A and B are fitting parameters

```
for RBM-RBM geometry
    for VAC-RBM geometry
\(\mathrm{A}=1.52 \pm 0.02\)
\(A=1.23 \pm 0.02\)
\(B=2.02 \pm 0.08\)
\(B=2.66 \pm 0.08\)
for CB-RBM geonetry
\(A=1.62 \pm 0.02\)
\(B=1.72 \pm 0.08\)

For 1.50 MeV , fitting function \(: Y=A+B X\)
```

where Y = dose x 1011 Gy per electron
X = scaled distance S from 0 to 4/9
A and B are fitting parameters

```
for RBM-RBM geometry
for \(V A C-R B M\) geometry
\begin{tabular}{ll}
\(A=1.43 \pm 0.02\) & \(A=1.19 \pm 0.02\) \\
\(B=1.97 \pm 0.08\) & \(B=2.58 \pm 0.07\)
\end{tabular}
for \(C B-R B M\) geometry
\(A=1.56 \pm 0.02\)
\(B=1.71 \pm 0.08\)
For 1.75 MeV , fitting function \(: Y=A+B X\)
where \(Y=\) dose \(x 0^{11}\) Gy per electron
    \(X=\) scaled distance \(S\) from 0 to \(4 / 9\)
    \(A\) and \(B\) are fitting parameters
for RBM-RBM geometry
\(A=1.31 \pm 0.02\)
\(B=2.04 \pm 0.08\)
\(A=1.11 \pm 0.02\)
\(B=2.56 \pm 0.07\)
\(A=1.11 \pm 0.02\)
\(B=2.56 \pm 0.07\)
for VAC-RBM geometry
\(A\) and \(B\) are fitting parameters

The Eitting functions for \(D(r, E)\) :

For 0.0 .05 mm , fitting function \(: Y=A+B * \exp (-C X)\)
where \(Y=\) dose \(x 10^{11}\) Gy per electron \(X=\) scaled distance \(S\) from 0 to \(8 / 9\)
\(A, B\) and \(C\) are fitting parameters
for RBM-RBM geometry
for VAC-RBM geometry
\(A=1.8 \pm 0.1\)
\(A=1.6 \pm 0.2\)
\(B=7.6 \pm 0.9\)
\(B=6.3 \pm 0.9\)
\(C=2.8 \pm 0.4\)
\(C=2.4 \pm 0.5\)
for CB-RBM geometry
\(A=1.8 \pm 0.2\)
\(B=8 \pm 1\)
\(C=3.0 \pm 0.6\)

For 0.75-0. 80 mm , fitting function : \(Y=A+B * \exp (-C X)\)
where \(Y=\) dose \(x 10^{11}\) Gy per electron
\(X=\) scaled distance \(S\) from 0 to \(8 / 9\)
\(A, B\) and \(C\) are fitting parameters
for RBM-RBM geometry
\(A=1.56 \pm 0.02\)
\(B=8.5 \pm 0.2\)
\(C=3.17 \pm 0.09\)
for \(C B-\) RBM geometry
\(A=1.56 \pm 0.02\)
\(B=8.9 \pm 0.2\)
\(C=3.37 \pm 0.09\)
for VAC-RBM geometry
\(A=1.32 \pm 0.03\)
\(\mathrm{B}=7.7 \pm 0.5\)
\(C=2.71 \pm 0.07\)
```

For 1.50-1.55 mm, fitting function : Y = \therefore - 3 + exp (-CX)

```
```

where Y = dose x 1011 Gy per electron
X = scaled distance S from 0 to 8/9
A, B and C are fitting parameters

```
for RBM-RBM geometry for VAC-RBM geometry
\(A=1.58 \pm 0.03\)
\(B=11.0815 \pm 0.0009\)
\(A=1.58 \pm 0.03\)
\(B=11.200 \pm 0.001\)
\(\mathrm{C}=2.8 \pm 0.1\)
\(C=0.2 \pm 0.1\)
for \(C B-\) RBM geometry
\(A=1.87 \pm 0.03\)
\(B=0.794 \pm 0.001\)
\(C=3.2 \pm 0.1\)

\section*{APPENDIX D}
```

For mass density of TLD = 1.71 mg/cm}\mp@subsup{}{3}{

```
```

Eitting function : Y = A + BX + CX2
where Y = energy deposition (MeV/electron)
X = electron energy (MeV)
A, B and C are fitting parameters
PST-PST geometry VAC-PST geometry
A=0.0468 土0.0006 A = 0.0498 \pm0.0006
B = -0.043 土0.004
B = -0.084 土0.004
C=0.037 \pm0.004
C=0.083 \pm0.004

```
For mass density of \(\mathrm{TLD}=2.39 \mathrm{mg} / \mathrm{cm}^{3}\)
```

Eitting function : Y = A + BX + CX' + DX'3
where Y = energy deposition (MeV/electron)
X = electron energy (MeV)
A, B, C and D are fitting parameters
PST-PST geometry VAC-PST geometry
A=0.037 土0.001
A = 0.044 土0.001
B = 0.17 土 0.01
B =0.10 \pm0.01
~ = -0.44 \pm0.04
c}=-0.32\pm0.0
D = 0 . 2 5 \pm 0 . 0 3

```
```


[^0]: The time factor is another important consideration such as the rapidity of tumor uptake, the biological half-life of the antibody in the tumor, and the speed of clearance from the normal tissues. In practice, the

