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Abstract

A vast amount of microdata about individuals and entities are collected and pub-

lished for different purposes, such as demographic and public health research.

However, data in its original form contains sensitive information about the in-

dividuals and publishing such data violates individuals privacy. To resolve this

problem, privacy preserving data publishing (PPDP) proposes many approaches

to generate a public version of data that is practically useful and individual’s pri-

vacy is protected. k-anonymity has emerged as an efficient approach to protect

the individual’s privacy by generalizing and/or suppressing portions of the data to

make individuals indistinguishable in the released data.

Existing generalization algorithms focus on minimizing the information loss

during generalization of attribute values. Any data dependencies defined over the

data may be lost during this generalization step. A data dependency is a formal

concept which is used to describe patterns in data. These patterns are employed

during data analysis and data cleaning. A typical data dependency in a database

is a Functional Dependency (FD): X → Y expresses that the values of attribute

X uniquely determine the values of attribute Y e.g. postal code → province means

the value of postal code uniquely determines the value of province.

In this thesis, we study the problem of publishing data with two objectives.

First, protecting the identity of the individuals in the published data through k-

anonymity. Second, to provide high utility by preserving the instances of the data

dependencies in the released data. We introduce dependency loss as a penalty
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measure for the anonymized public data. We define and study the problem of

dependency-preserving generalization for finding a public database instance that

guarantees privacy through k-anonymity and has minimum dependency loss. We

present two clustering-based generalization algorithms that find such a database

instance and we run experiments to show the comparable performance and im-

proved utility in preserving data dependencies of our algorithms.
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Chapter 1

Introduction

A number of organizations collect and publish the microdata about individuals

and entities to third parties for a variety of purposes, such as demographic and

public health research. However, this kind of data often contains personal details

and sensitive information and publishing such data violates individual privacy. To

address this challenge, Privacy-Preserving Data Publishing has become an active

research area in which many data anonymization approaches have been proposed.

1.1 Privacy-Preserving Data Publishing

Privacy-Preserving Data Publishing (PPDP) is the problem of generating a pub-

lic version of a private database while protecting the privacy of individuals and

keeping the published database useful for general data analysis tasks. A relation

R contains a set of attributes A1, · · · , An. For example, the hospital patient data

in Table 2 has six rows and five attributes: age (AGE), gender (GEN), postal code
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(PC), province (PRV) and diagnosis (DIAG). In PPDP, three types of attributes

are considered. Identifiers (such as SSN, first name and last name) that uniquely

identify individuals, quasi-identifiers (QI) (such as age, gender, zipcode, race) that

can uniquely identify individuals when combined together with the external data

and sensitive attributes contains person specific sensitive information (such as di-

agnosed disease, salary).

In order to protect an individual’s privacy, the data publisher removes the iden-

tifiers from the data. De-identifying the data, however, provides no guarantee of

anonymity. According to a study [23], approximately 87% of the United States

population can be uniquely identified by joining or linking the de-identified data

sets with the publicly available data sets on the basis of QI attributes. This kind

of attack is known as a "record linkage" attack. For example, as shown in Table 1

and Table 2, an attacker is able to determine Carol’s sensitive medical information

by joining both tables on AGE, Gender (GEN), Postal code (PC). k-anonymity

has emerged as an efficient anonymization approach to prevent this linkage attack.

FNAME LNAME AGE GEN PC
Andre Brown 54 Male T5H
Carol Anderson 32 female V6J
Beth Hill 48 Female B3M
Ellen Furlan 37 Female T9C
Dan Johnson 52 Male E3A

Andrew Fuller 64 Male B0P

Table 1: Voter registration data.

AGE GEN PC PRV DIAG
32 female V6J BC osteoarthritis
51 male J5B QC atrial flutter
39 female J5B QC pain reliever
43 female K2H ON seizure
54 male R7A MB seizure
48 female K2H ON atrial flutter

Table 2: Hospital patient data.

2
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1.2 k-anonymization

The key idea of k-anonymization [23, 21] is to make an individual’s data indis-

tinguishable from k − 1 other individual’s data by substituting the specific QI

attribute values with more general values and less informative according to the

pre-defined attributes value generalization hierarchies (VGHs). The VGH of an at-

tribute defines a tree whose leaves are the specific values that the attribute can

assume and the root is the most general value. Figures 1(b)-3(b) illustrates ex-

amples of VGHs for the province (PRV), postal code (PC) and medication (MED)

attributes.

Various approaches for generalization have been studied, such as global recoding

[12, 13, 8, 21, 22, 24], and local recoding [14, 19, 25, 3, 16]. Global recoding

anonymize the database at domain level in which an attribute’s current domain

is mapped to a more general domain. For example, all AGE attribute values in

the database are mapped from age in years to 10-year intervals. Local recoding

anonymize the database at a tuple/record level, in which some or all attributes

values in a tuple are more general than the corresponding pre-mapping values. For

example, {32, female, v6J} is mapped to {[30,40], female, unknown}. A general

view of k-anonymity is clustering with a condition such that each cluster must

have at least k tuples. In order to maximize the usefulness of the data, the tuples

in each cluster must be as similar as possible. This guarantees less information

loss when the tuples in a cluster are generalized to have the same QI values.

3
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ID PC PRV MED DIAG

t1 V6J BC ibuprofen osteoarthritis

t2 V6J BC ibuprofen osteoarthritis

t3 J5B QC ibuprofen osteoarthritis

t4 K2H ON ibuprofen osteoarthritis

t5 K2H ON diazepam seizure

t6 J5B QC diazepam seizure

t7 R7A MB diazepam seizure

t8 R7A MB diazepam seizure

Table 3: Private table R.

ID PC PRV MED DIAG

r1 V6J BC ibuprofen osteoarthritis

r2 V6J BC ibuprofen osteoarthritis

r3 [J,K,L] Central Canada ibuprofen osteoarthritis

r4 [J,K,L] Central Canada ibuprofen osteoarthritis

r5 [J,K,L] Central Canada diazepam seizure

r6 [J,K,L] Central Canada diazepam seizure

r7 R7A MB diazepam seizure

r8 R7A MB diazepam seizure

Table 4: 2-anonymous public view R′.

ID PC PRV MED DIAG

m1 V6J BC ibuprofen osteoarthritis

m2 V6J BC ibuprofen osteoarthritis

m3 J5B QC * osteoarthritis

m4 K2H ON * osteoarthritis

m5 K2H ON * seizure

m6 J5B QC * seizure

m7 R7A MB diazepam seizure

m8 R7A MB diazepam seizure

Table 5: 2-anonymous public view R′′.

4
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Figure 3: (a) DGH and (b) VGH of medication (MED).

Example 1.1. Consider the de-identified private hospital patient data R, as shown

in Table 3 containing the patient records with postal code (PC), province (PRV),

and medication (MED) as QI and their diagnosed disease (DIAG) as the sensitive

attribute. Relation R′ in Table 4 is a 2-anonymous view of R in Table 3 since

each tuple in R′ is indistinguishable from at least one tuple w.r.t the QI attribute

set {PC, PRV, MED}. A relation R might have more than one k-anonymous view

by applying different methods of generalization. Relation R
′′ in Table 5 is also a

k-anonymous view of R with k = 2.

5
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1.3 Dependency Loss Penalty

Generalization is accompanied by information loss and to evaluate the usefulness

of a generalized published database, different measures are proposed in the liter-

ature [10, 25, 23, 21, 22]. These are typically general purpose penalty measures

that penalize a generalized database based on the information loss incurred by

the generalization process. Existing penalty measures quantify the data distortion

in the entire generalized public database with respect to the data in the original

specific database and do not consider the loss of data dependencies.

A database dependency is a formal concept that can be used to describe patterns

in data. For instance, a functional dependency (FD): ϕ : X → Y expresses that

the values of attribute X uniquely determine the values of attribute Y . These data

dependencies are often used by the data recipients to perform some data analysis

and data cleaning. Therefore, given an original private relation R that holds a set

of data dependencies, publishing an anonymous public view R′ of R that better

preserves the dependencies is practically useful to the data recipients to enrich and

clean their own stale and inconsistent data. Since the anonymized version of the

original data is a view, duplicate records are possible.

Example 1.2. (ex.1.1 cont.) Let ϕ1 : PC → PRV and ϕ2 : DIAG → MED be the

two FDs that hold over relation R in Table 3 and have 6 dependency instances

w.r.t both ϕ1 and ϕ2 : p1 = (V6J,BC), p2 = (J5B,QC), p3 = (K2H,ON), p4 =

(R7A,MB), p5 = (osteoarthritis, ibuprofen), p6 = (seizure, diazepam). Consider a

data recipient such as an external medical center or a pharmaceutical firm that

owns a inconsistent subset of the original private data R as shown in Table 3. A

6
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2-anonymous view R′′ of R in table 5 better preserves the FDs over R′ in Table 4

because all the six dependency instances are preserved in R′′ without any distortion.

However, in R′, two instances p2 and p3 are distorted and not completely preserved.

Assume there exists a dependency instance p2 = (J5B,X) of the FD ϕ1 : PC →

PRV, in the data owned by the data recipient. In p2, let X represent missing or

inconsistent value. Publishing R′′ in Table 5 provides a valuable commodity to the

data recipient over R′ in Table 4 to clean or update PRV attribute value of p2 in

his/her data because, in R′′, the dependency instance p2 = (J5B,QC) is completely

preserved. However, in R′, p2 is distorted and not completely preserved.

The existing penalty measures do not consider data dependencies. The minimal

distortion penalty measure [21, 23] assigns a penalty to an anonymous relation

based on the domain level of its general values in the DGHs. The penalty of R′

is 8 and R′′ is 4 × 3 = 12 because R′ has eight general values of level 1 (four

values in lPC1 and four values in lPRV1 ) and R′′ has four general values of level 3

(lMED
1 ) according to the generalization hierarchies in Figures 1-3. Therefore, R′

is preferred over R′′ w.r.t minimal distortion penalty measure. In [18], the penalty

of a general relation is based on the number of suppressed values (∗). R′ is favored

over R′′ because R′ has no suppressed values and R′′ has four suppressed values in

MED.

Therefore, we propose a penalty metric known as Dependency Loss (∆) that

quantifies the loss of data dependencies in a public relation by searching for the

dependency instances in the public relation that are most similar to the data de-

pendencies in the private relation. The similarity between any two instances of

7
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dependency is measured by computing the pairwise distance between the attribute

values in the instances. The pairwise distance between any two values of an at-

tribute is measured by an entropy-based distance function. If an instance from

private relation appears at least once in public relation without any distortion,

then the distance is zero. For example, the instance p4 = (R7A,MB) from R ap-

pears in R′′ [m7] without any distortion, therefore the distance is zero. As a special

case, the Dependency Loss of public relation is zero if all the dependency instances

from the private relation appear in the public relation with no distortion. For

example, the Dependency Loss of R′′ in Table 5 is zero w.r.t R in Table 3.

1.4 Dependency Preserving Generalization

We define the dependency preserving generalization problem using the depen-

dency loss measure to find a k-anonymous relation with minimal loss of depen-

dencies. Various research works have shown that optimal anonymization is NP-

hard [21, 18, 1]. In this work, we propose two simple and efficient clustering-based

generalization algorithms, PAIR-ENUM and k-ASSEMBLE for dependency pre-

serving generalization problem. A category of local recoding algorithms with high

utility are clustering based generalization algorithms [25, 19, 3, 16]. The base idea

is to partition the tuples in a private relation into clusters of k size and generalize

the QI attribute values in each cluster to satisfy the privacy requirement. These

algorithms use penalty or utility measures to guide each step of clustering and try

to optimize the output against those measures. We define a utility metric that

8
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measures the quality of clustering more accurately w.r.t preserving the dependen-

cies and use this metric to guide our algorithms towards finding the clustering that

has maximal utility w.r.t dependencies.

PAIR-ENUM starts with an initial set of |R| singleton clusters, which means

each cluster contains a tuple. At each iteration, PAIR-ENUM considers all the

possible pairs of clusters to be merged and greedily merges a cluster pair containing

a set of clusters with the highest utility. After each iteration, PAIR-ENUM seals

the clusters of size k. The sealed clusters are not merged with other unsealed

clusters in the next iteration since these clusters satisfy the k constraint and are

published in the public relation. On the other hand, k-ASSEMBLE initializes a

pool of m clusters, each of size k. A cluster in the pool is generated by randomly

selecting an unsealed tuple from R and grouping with its k − 1 unsealed nearest

neighbours in R. For each tuple in R, we find its k − 1 nearest neighbours using

our entropy based distance measure. Among the m clusters generated in each

iteration, k-ASSEMBLE seals the cluster with the highest utility and is added to

the public relation since the cluster satisfies the k-constraint.

In summary, the key contributions of our work are as follows:

1. We introduce a dependency loss metric to capture the loss of dependencies

via generalization.

2. We present two greedy clustering based generalization algorithms, namely

PAIR-ENUM and k-ASSEMBLE that aim to minimize the dependency loss.

9
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3. We propose optimization techniques that prune the cluster pairs and recom-

pute the utility efficiently to improve the performance of the algorithms by

1.8× and 6.3× at a cost of 3.2% and 5.3% dependency loss.

4. An experimental evaluation that studies our algorithms comparative perfor-

mance with the existing local re-coding algorithms, Top-down and k-member.

We show that k-ASSEMBLE is 94% faster than k-member and the difference

between Top-down and k-ASSEMBLE is about 70%. A qualitative evalu-

ation of the dependency loss of our algorithms shows that PAIR-ENUM

achieves less distortion (4.5% on an average) than k-ASSEMBLE as we vary

the k value. A study on the impact of data skew on the dependency loss

shows that our algorithm generated instances with less dependency loss using

uniform data (6% on an average) over the original skewed data.

10
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Chapter 2

Related Work

In this section, we briefly summarize the related research on data publishing and

generalization methods.

2.1 Privacy Models

Many privacy models have been proposed to provide guarantees about the pro-

tection of an individual’s privacy. These models have been developed considering

different attack scenarios to the data. For example, an attacker having diverse

levels of background knowledge could lead to information disclosure. Some of the

well known models are k-anonymity [23, 21], l-diversity [17], t-closeness [15] and

differential privacy [5].

Among these models, we focus on k-anonymity because it enables general pur-

pose data publication with reasonable utility. This model is in contrast to more

robust models, such as differential privacy which might restrain the usefulness of

11
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the anonymized data in order to provide more rigorous privacy guarantee. Its

conceptual simplicity has made it widely discussed and adopted in a variety of

domains such as healthcare [6, 11] and data mining [10, 25].

2.2 Penalty Measures

K-anonymity adopts generalization and suppression to preserve privacy. So there

will be a certain degree of information loss. A specific value of an attribute can be

replaced with a general value according to a given value generalization hierarchy

(VGH). In Figure 1(b), the parent node Central Canada is more general than its child

nodes QC and ON and the root node * represents the most general value of province

(PRV). In order to describe quantitatively, various metrics have been proposed to

measure the information loss of generalized data. A reasonable information metric

is to measure the similarity between the original data and the anonymous data.

According tominimal distortion metric (MD), a penalty is charged to each instance

of a value that is generalized or suppressed in the anonymized data. For example,

generalizing five instances of QC to Central Canada causes five units of distortion,

and further generalizing these instances to * causes another five units of distortion.

2.2.1 Precision Metric

In [23], Sweeney defined an information theoretic metric known as precision met-

ric to capture the amount of distortion in a generalized version R′. Given a

12
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k-anonymous view R
′ = {t′

1, ..., t
′

|R|} that generalizes original ground relation R

with QIs A1, ..., An, the precision of R′ is defined as follows:

Prec(R′) = 1−

n∑
i=1

|R|∑
j=1

(
level(t′

j[Ai])
hAi

)

|R| × n
,

where hAi is the number of levels in the DGH of Ai. The precision metric is 1 when

all the values in R′ are specific/ground and it is 0 when every values in R′ is ∗.

2.2.2 ILoss Metric

The ILoss metric [10, 25] measures the information loss incurred by replacing a

ground value v′ with the general value v, based on the number of ground descendant

values of a general value v (|base(v)|) according to the attribute’s VGH. That is

ILoss(v) = |base(v)|
|base(∗)| . For example, ILoss(Central Canada) = 2

7 based on VGH in

Figure 1. The ILoss for a tuple t′ is defined as ∑
vi∈t′ wi × ILoss(vi), where wi is

the weight for loss in the i-th QI attribute. The ILoss of a generalized version R′

is the sum of ILoss of its tuples.

2.2.3 Discernibility Metric

The Discernibility metric (CDM ) [2, 13] assigns a penalty to each tuple t′ in a

generalized version R
′ based on the number of tuples that are indistinguishable

13
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from t′. In specific, the penalty of tuple t′ is |G|2, if it belongs to QI-group G

with |G| ≥ k. If t′ is in a QI-group G with size less than k (|G| < k), then t′

is suppressed and its penalty is |R| × |G|. The discernibility penalty for R′ that

generalizes R is defined as follows:

CDM =
∑

∀G s.t. |G|≥k
|G|2 +

∑
∀G s.t. |G|<k

|R|.|G|,

2.2.4 Classification Metric

Iyenar [10] proposed a penalty metric to quantify the loss of a generalized rela-

tion that is used for classification. This metric is useful when the tuples in the

original relation R are assigned a categorical class label in an effort to produce

an anonymous public version R′, where each QI-group in R′ consist of tuples that

are uniform with respect to the class label. No penalty is assigned to a tuple if

it belongs to the majority class within its induced QI-group. All other tuples are

penalized a value of 1. More precisely,

CCM (R′) =
∑

∀G s.t. |G|≥k
(minority(G)) +

∑
∀G s.t. |G|<k

(|G|),

where minority(G) gets a QI-group with labeled tuples and returns a set of tuples

that does not belong to the majority class in the QI-group.

14
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2.2.5 Entropy Generalization Measure

For a private relation R with QI attributes A1, · · · , An, Xi is a random variable

that equals the value of the i-th attribute Ai, 1 ≤ i ≤ n. The entropy generalization

measure [9] of R′ that generalizes R is defined as,

Π(R′) =
∑
t′∈R′

∑
Ai

P (t′[Ai])×H(XAi
| t′[Ai]). (2.1)

in which H(XAi
|t′[Ai]) is a conditional entropy and is defined as,

H(XAi
|t′[Ai]) = −

∑
b∈base(t′[Ai])

P (b)× log P (b). (2.2)

In (2.1), P (v) × H(HAi
|v) defines a penalty measure for value v where P (v) =∑

b∈base(v) P (XAi
= b). The penalty for a ground value v is 0 since the conditional

entropy is 0. The penalty is maximum (i.e. H(XAi
)) when v = ∗.

These are typically general purpose penalty measures that quantify the data

distortion in the entire generalized public database with respect to the data in

the original specific database and do not consider the loss of data dependencies.

Therefore, we propose a penalty measure known as Dependency Loss (∆) that

quantifies the loss of data dependencies in a generalized public database w.r.t the

data dependencies in the original specific database.

15
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2.3 Generalization Algorithms

Currently, there are many generalization algorithms, which are classified into two

categories: global recoding and local recoding.

2.3.1 Global Recoding.

In global recoding, domains (Dom) of QI attributes are mapped to domains with

more general values according to the generalization hierarchies of the attributes.

Single-dimensional generalization is a special form of global recoding that speci-

fies a mapping µi : DomAi → Dom′ for every QI Ai. Full-domain generalization

is a specific form of single-dimensional generalization where all the values in an

attribute are in the same domain level Dom′ according to the attribute’s domain

generalization hierarchy. Table 4 is obtained by single-dimensional generalization

from Table 3 since a value in the former is not generalized to multiple values.

However, Table 4 is not a full-domain generalization of Table 3 because all the

values in an attribute are not from the same domain level. For example, PRV

attribute values BC and Central Canada in Table 4 belong to different levels w.r.t

DGH shown in Figure 1.

A form of global recoding is multi-dimensional generalization that extends single-

dimensional generalization. In multidimensional generalization, QI attribute val-

ues are generalized according to a single mapping µ : DomA1 ×· · ·×DomAn → D
′ .

Intuitively, multi-dimensional recoding divides the domain of QI values into a set

of non-overlapping multidimensional regions, and each region will be replaced with
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generalized values. Representative global recoding algorithms include Datafly [22],

Incognito [12], Mondrian [13].

Datafly [22]: Datafly is a greedy heuristic algorithm that performs single-dimensional

full-domain generalization. The algorithm generates an array of QI-group sizes and

if there exists at least one QI-group of size less than k, it generalizes the attribute

in QI set having the most distinct values until k-anonymity is satisfied. Datafly

algorithm guarantees to generate a k-anonymous relation, it does not provide the

minimal generalization.

Incognito [12]: Incognito is an efficient single-dimensional full-domain generaliza-

tion algorithm that builds a generalization lattice and traverses it using a bottom-

up breadth-first search for computing k-minimal generalization. The key idea of

Incognito is that if a relation R is is k-anonymous w.r.t QI attribute set of m

attributes, then R is also k-anonymous with respect to any QI ′, where QI ′ ⊂ QI.

The DGHs of QI attributes is traversed using bottom-up breadth-first search and

checks for the k-anonymity property. In the first iteration, the algorithm checks

the k-anonymity property for every single attribute in QI, removing those gen-

eralizations in each DGH of QI attribute that does not satisfy k-anonymity. In

the next iteration, it combines the remaining generalization in pairs which forms

generalization lattice and checks for k-anonymity using bottom-up breadth-first

search, then in the triple and so on, until the entire QI attribute set is considered.

In the given DGH of an attribute, when a generalization satisfies k-anonymity, then

all its directed generalization also satisfy k-anonymity and therefore they will not

be taken for consideration.

17
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Mondrian [13]: Mondrian is a greedy algorithm that uses multidimensional global

recoding technique. The QI attribute values are represented as a set of points in

multidimensional space and each attribute represents a dimension. The algorithm

achieves k-anonymity by recursively partitioning the space into regions until each

region contains at least k points (tuples). In every iteration, the algorithm par-

titions the space by choosing a dimension d with the widest range of values and

divides the region at the median value m, such that d > m belongs to one region

and the remaining belong to another region. The division is made if the region

has greater than k points. The tuples in each region are generalized using the

corresponding QI attributes VGHs.

2.3.2 Local Recoding.

In local recoding, same QI attribute values that appear in different tuples might

be generalized to different ancestors in the generalized relation. For example, as

shown in Table 5, MED attribute value ibuprofen remains same in tuples m1,m2

and is generalized to ∗ in tuples m3 and m4 w.r.t VGH shown in Figure 3. A

category of local recoding algorithms is clustering-based generalization methods

that partition tuples into subsets of tuples or clusters of size k and generalize

the tuples in each cluster by unifying their QI attribute values. In local recod-

ing, unlike global recoding, the clusters are not disjoint (overlapping clusters are

allowed), i.e., any two non-distinct individual tuples may belong to different clus-

ters and are generalized to different general values. Representative local recoding

algorithms include Top-down approach [25], k-member clustering [3], One-Pass

K-Means algorithm [16].
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Top-down Approach [25]: The top-down approach is an efficient heuristic local

recoding algorithm for k-anonymization. The general idea of the algorithm is

to perform binary partitioning. That is, in each iteration, the algorithm form

two groups Gx and Gy using two seed tuples x, y ∈ R that maximize penalty if

they are placed into the same group. The algorithm uses a heuristic method to

find the seed tuples. First, the algorithm randomly picks a tuple x1. Then, by

scanning the rest of the tuples in R, the algorithm finds a tuple y1, such that

penalty(x1, y1) is maximized. Next, by scanning all the tuples again, the algorithm

finds tuple x2 that maximizes penalty(x2, y1). This process is repeated until there

is no substantial growth in the penalty(x, y). The two seed tuples x and y form

two groups Gx and Gy and the other tuples in R are assigned to the two groups

in random order. The assignment of a tuple t ∈ R, depends on penalty(Gx, t) and

penalty(Gy, t). Tuple t is assigned to the group that leads to a lower penalty. The

overall partitioning costs O|R2|.

k-member Clustering [3]: The greedy k-member clustering algorithm works as

follows. The algorithm first randomly selects a tuple t from R as a seed to build

a cluster c. Then the algorithm chooses a tuple t′ that incur less information loss

within the cluster c. This process is repeated until the size of cluster c reaches

k. Once the size of the cluster c reaches k, the algorithm selects a tuple that

is furthest from t and repeats the same process to build the next cluster. This

process is repeated until there are less than k tuples left to build a cluster. Finally,

as a postprocessing step, the algorithm iterates over the leftover tuples and assigns

them to their closest clusters. The time complexity of the algorithm is O|R2|.
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One-Pass K-Means Algorithm (OKA) [16]: The greedy OKA algorithm

derives from the K-Means algorithm and the algorithm proceeds in two stages: the

clustering stage and the adjustment stage. In the clustering stage, the algorithm

first randomly pics K = bN
k
c tuples as the seeds to build K clusters, where N is

the total number of tuples in relation R and k specifies the threshold value for

k-anonymity. Other tuples in R are assigned to K clusters in random order. For

the tuple t ∈ R, OKA finds the cluster c that is closest t and assigns t to c and

then updates the centroid of the cluster. The overall clustering costs O(N2

k
). After

the clustering stage, some clusters size might be less than k. Therefore, in the

adjustment stage, some records are removed from the clusters with more than k

tuples and these tuples are added to their respective closest clusters with less than

k tuples. This process is repeated until there exists no cluster with size less than

k.

In summary, generally global recoding generalization algorithms are efficient,

but the quality of information in the anonymized solution is low because anonymiza-

tion is done at a domain level. On the contrary, local recoding algorithms greatly

improve the quality of information because anonymization is done at the tuple

level, but these algorithms are often inefficient because of massive distance com-

putations between the tuples. In this work, we propose two simple and efficient

local recoding algorithms for dependency preserving generalization problem be-

cause the information loss induced by this kind of algorithms is less than the

global recoding algorithms.
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Chapter 3

Preliminaries and Problem

Definition

3.1 Relational Database

We assume that the data is stored in relations. A relation R with schema R =

{A1, ..., An} is a finite set of n-ary tuples {t1, ..., tN} with attributes Ai. A database

D is a finite set of relations R1, ..., Rm with database schema S = {R1, ...,Rm}.

We use A,B,C for attributes and X, Y, Z for sets of attributes. The set of tuples

in a relation R is denoted by N (|R| = N) and the total number of attributes

in R is denoted by n (|R| = n). For a tuple in relation R, each attribute can

be associated with only one value from the set of attribute’s domain values. The

attribute domain is the set of all unique values permitted for an attribute, e.g. a

domain of day-of-week is {Monday, Tuesday, · · · , Sunday}. Each attribute value

in a tuple represents a piece of information about an entity.
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Example 3.1. Table 6 is an example of a relation containing five tuples and five

attributes: First Name (FName), Last Name (LName), Gender (GEN), Postal-

Code (PC), Province (PRV).

FName LName GEN PC PRV

Andre Brown Male J5B QC

Carol Anderson Female R7A AB

Beth Hill Female R7A AB

Ellen Furlan Female K2H ON

Dan Johnson Male K2H ON

Table 6: Relational table.

3.1.1 Functional Dependency

A functional dependency (FD) ϕ over a relation R with schema R is denoted by

ϕ : X → Y , where X, Y are attribute sets in R (X, Y ⊆ R). We say ϕ holds over

R if for every pair of tuples t1, t2 ∈ R, t1[X] = t2[X] implies t1[Y ] = t2[Y ]. We

say R satisfies a set of FDs Σ, R |= Σ, if R |= ϕ, ∀ϕ ∈ Σ. The set of dependency

instances of Σ in R is denoted by Γ.

Example 3.2. An FD that holds true over relation in Table 6 is ϕ1 : PC→ PRV,

since for every two tuples t1, t2 ∈ R, t1[PC] = t2[PC] implies t1[PRV] = t2[PRV].

Example of an instance is (J5B,QC) of ϕ1 : PC → PRV and with Σ = {ϕ1}, the
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set of dependency instances of Σ in R is Γ = {(J5B, QC), (R7A, AB), (K2H, ON)}

and |Γ| = 3.

3.2 Privacy Definitions

Many privacy models are proposed in PPDP [7] to prevent the re-identification of

the individuals in the published relation. k-anonymity has emerged as an effective

model in anonymization [23, 21, 22]. The k-anonymity model assumes the data is

stored in relation and each tuple/record in the relation corresponds to a unique

real-world entity, for example, an organization or a person and various tuples need

not be unique. The tuple ID uniquely identifies each real-world entity.

Definition 1 (Quasi-Identifier (QI)). A quasi-identifier of a relation R denoted as

QI, is the set of attributes in R that could be linked with the external information

to re-identify the individual records with high probability.

Example 3.3. The attribute set {PC, PRV, MED} in Table 7 is a quasi-identifier.

In addition to the QI, a relation may contain publicly unknown highly sensitive

attributes. The attribute Diagnosis (DIAG) in Table 7 is an example of a sensitive

attribute. The quasi-identifiers are determined based on the content of externally

available data and background knowledge obtained from previous data releases.

The main goal of k-anonymity is to anonymize a relation so that no one can link

the records in the published version to the corresponding real-world entities.
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Definition 2 (QI-group). A QI-group of a relation R is a set of tuples in R that

have the same set of values for the QIs.

Example 3.4. In Table 8, the first two rows {r1, r2} form a QI group on {PC,

PRV, MED}.

ID PC PRV MED DIAG

t1 V6J BC ibuprofen osteoarthritis

t2 V6J BC ibuprofen osteoarthritis

t3 J5B QC ibuprofen osteoarthritis

t4 K2H ON ibuprofen osteoarthritis

t5 K2H ON diazepam seizure

t6 J5B QC diazepam seizure

t7 R7A MB diazepam seizure

t8 R7A MB diazepam seizure

Table 7: Private table R.

Definition 3 (k-anonymity property). A view V of a relation R is k-anonymous

if the size of every QI-group in V is at least k with respect to the QI attribute set.

Example 3.5. Table 7 do not satisfy the 2-anonymity property since the tuples

t3, · · · , t6 occur only once.
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ID PC PRV MED DIAG

r1 V6J BC ibuprofen osteoarthritis

r2 V6J BC ibuprofen osteoarthritis

r3 [J,K,L] Central Canada ibuprofen osteoarthritis

r4 [J,K,L] Central Canada ibuprofen osteoarthritis

r5 [J,K,L] Central Canada diazepam seizure

r6 [J,K,L] Central Canada diazepam seizure

r7 R7A MB diazepam seizure

r8 R7A MB diazepam seizure

Table 8: 2-anonymous public view R′.

ID PC PRV MED DIAG

m1 V6J BC ibuprofen osteoarthritis

m2 V6J BC ibuprofen osteoarthritis

m3 J5B QC * osteoarthritis

m4 K2H ON * osteoarthritis

m5 K2H ON * seizure

m6 J5B QC * seizure

m7 R7A MB diazepam seizure

m8 R7A MB diazepam seizure

Table 9: 2-anonymous public view R′′.

Definition 4 (k-anonymization). K-anonymization [12] is a process to modify a

private table to a view that satisfies the k-anonymity property with respect to the QI

attribute set. Since the anonymized version of the original data is a view, duplicate

records are possible.

Example 3.6. Table 8 and Table 9 are two different k-anonymous views of R

in Table 7 with k = 2 considering QI attribute set {PC, PRV, MED} since all

QI-groups are of size 2.

The k-anonymity model assumes that QI is known to the data publisher be-

fore data publishing. k-anonymity provides stronger privacy by including more

attributes in the QI set. However, this also implies that more data distortion is

needed to satisfy k-anonymity requirement because more tuples in a QI-group have

to agree on more attributes.
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One dilemma faced by a data publisher is how to classify attributes in a origi-

nal private table into three disjoint sets, QI, sensitive attributes and non-sensitive

attributes. In general, an attribute A should be included in the QI if the attacker

could potentially obtain A from other external sources. There is no certain answer

to the question of how a data publisher can determine whether or not an attacker

can obtain an attribute A from some external sources, but it is important to under-

stand the consequences of a mis-classification. Mis-classifying an attribute A into

sensitive or non-Sensitive attribute may compromise another sensitive attribute S.

An attacker or the data recipient may obtain A from other external sources and

then use A to perform record linkage on attribute S.

3.3 Generalization

Samarati and Sweeney [21, 22, 23] devised mechanisms for k-anonymization using

the concept of generalization and suppression. Generalization replaces QI values

in a relation with less specific, but semantically consistent values according to

some generalization hierarchies. For each QI attribute A, we assume a set of levels

LA = {lA0 , ..., lAh } with a partial order ≤A, called a generalization relationship

on LA. Levels lAi are assigned with disjoint domain-sets dom(lAi ). The notation

lAj ≤ lAi implies that dom(lAi ) generalizes dom(lAj ). The domain set dom(lAh ) is

the top domain set without a parent and it has only one value. The domain set

dom(lA0 ) is the ground domain set. The domain generalization hierarchy denoted

by DGHA, is defined to be the set of domains that is totally ordered by the domain
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generalization relationship ≤A. We use hA to refer to the number of levels in

DGHA. The domain-set of attribute A, denote by DomA, is a subset of ⋃ dom(lAi ).

Figure 4(a) shows the DGH for the medication (MED) attribute.

*

anesthetics

benzodiazepineinotrope

analgesic

diazepamdigoxin

acetaminophenNSAID

naproxenaddaprin tylenoldolex

𝑙"#$%

𝑙&#$%

𝑙'#$%

𝑙(#$% ibuprofen paracetamol

(b)(a)

Figure 4: (a)DGH and (b)VGH of medication (MED).

A value generalization relationship for attribute A is a partial order �A on⋃ dom(lAi ). It implies a value generalization hierarchy, denoted as VGHA, which is

a tree whose leaves are ground domain-set values (dom(lA0 )) and root is a single

value from the top domain set (dom(lAn )) in DGH. For two values v′ and v in

DomA, v′ �A v implies that v′ is more specific than v according to the VGHA.

Figure 4(b) shows VGH of the MED attribute. The value v′ is ground if there is

no other value more specific than v′. A value is general if it is not ground. For

example in Figure 4(b), ibuprofen is ground and NSAID is general. A relation is

generalized if it has some general values and it is ground if its values are ground. For

a general value v of attribute A, we use base(v) to refer to the set of descendant leaf

nodes of v and level(v) is its level according to the generalization hierarchies of A.

For example, base(NSAID)= {ibuprofen, addaprin, naproxen} and level(NSAID)=1
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and level(ibuprofen)=0 according to generalization hierarchy of MED in Figure 4.

Suppression is a special case of generalization, replaces some values with a special

value(*), indicating that the replaced value cannot be disclosed.

3.3.1 Generalization Penalty

Generalization is accompanied by information loss and to measure the loss vari-

ous generalization penalties have been proposed in PPDP. These existing penalty

measures such as ILoss [10, 25], penalty [18] and precision measure [23] measure

the information loss considering the VGHs of the QI attribute values. Our general-

ization penalty measure is based on an entropy-based generalization measure [9],

which considers both the VGHs and the entropy of QI values in the original ground

relation R.

Example 3.7. Consider the ground relation R in Table 10 and the general values

Central Canada and Prairies in the VGH of the attribute province (PRV) in Figure 5.

According to the ILoss measure, Central Canada and Prairies have the same penalty

value 2 since they both have two ground values according to the VGH of PRV.

However, generalizing MB to Prairies and QC, ON to Central Canada incur different

information loss as the ground value AB does not appear in Table 3. Similarly * in

the VGH of MED has 8 ground values and the ILoss penalty value is 8. However,

only ibuprofen and diazepam appear in Table 3.

28

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.sc Thesis– Harika Gorla; McMaster University– Computing and Software

ID PC PRV MED DIAG

t1 V6J BC ibuprofen osteoarthritis

t2 V6J BC ibuprofen osteoarthritis

t3 J5B QC ibuprofen osteoarthritis

t4 K2H ON ibuprofen osteoarthritis

t5 K2H ON diazepam seizure

t6 J5B QC diazepam seizure

t7 R7A MB diazepam seizure

t8 R7A MB diazepam seizure

Table 10: Private table R.

*

Central Canada West Cost

QC

𝑙"#$%

𝑙&#$%

𝑙'#$% ON

Prairies

AB MB BC

Atlantic Canada

NS NB
(b)(a)

Figure 5: (a)DGH and (b)VGH of province (PRV).

Assuming that the data user has some prior knowledge about the values that

appear in the original relation R, for instance, the data user based on his/her

background knowledge knows that the hospital patient data in Table 10 has no

patient entries from the Alberta (AB) province, then replacing MB with its parent

value Prairies do not induce any uncertainty/information loss for the data user,

which is not taken into consideration for measuring the information loss.
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Entropy-Based Penalty. For every QI attribute A in a ground relation R, XA is

a random variable of values t[A] where t is a random tuple in R. The entropy-based

penalty [9] of a value v in the VGH A is defined as,

E(v) = P (v)×H(XA|v), (3.1)

where P (v) = P (XAi
∈ base(v)) is the probability of values in base(v) in the

original ground relation R and H(XA|v) = −∑
b∈base(v) P (b|v) × log P (b|v) is the

conditional entropy with P (b|v) = P (XA = b|XA � v). When v is a ground value,

the conditional entropy H(XA|v) = 0 and therefore the penalty is minimum, i.e.

E(v) = 0. The penalty is maximum, i.e. E(v) = H(XA), for v = ∗ because

P (∗) = 1. Intuitively, E(v) is an information theoretic measure that penalize v

based on the entropy of values in base(v) in the original ground relation R.

Example 3.8. According to the original relation R in Table 10 and VGH of PRV

in Figure 5, E(Central Canada) = P (Central Canada) × H(XPRV|Central Canada)

≈ 0.5 × 0.3 = 0.15. Here, P (Central Canada) = P (XAi
∈ base(Central Canada))

= P (QC) + P (ON) = 2
8 + 2

8 = 0.5, because base(Central Canada) = {QC,ON}

according to the province (PRV) VGH in Figure 5 and P (QC) = P(ON) = 2
8 in Ta-

ble 10. The conditional entropy H(XPRV|Central Canada) = −∑
b∈base(Central Canada)

P (b|Central Canada)×log P (b|Central Canada) = −(P (QC| Central Canada)×log P (

QC |Central Canada) + P (ON|Central Canada) × log P (ON| Central Canada)) =

−(2× 2
4 × log 2

4) ≈ 0.3. Here P (QC |Central Canada) = P (ON |Central Canada) = 2
4
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w.r.t t3[PRV], · · · , t6[PRV] in Table 10. On the other hand, E(Prairies) = P (MB)×

H(XMB|Prairies) = 2
8×(−2

2×log 2
2) = 0. Here base(Prairies) = {AB,MB} according

to the province (PRV) VGH in Figure 1. However, only MB appears in Table 10

(in t7[PRV], t8[PRV]). Assuming that the data user has some background knowl-

edge about the values that appear in original relation R, replacing MB with Prairies

do not induce any uncertainty to the data user. Therefore, E(Prairies) = 0.

3.4 Clustering Based Generalization

Clustering-based generalization is a class of flexible local recoding generalization

algorithms with high utility [25, 19, 3, 16]. The base idea is to partition a set of

tuples into groups, such that the tuples in the same group are more similar to each

other than tuples in other groups with respect to some defined similarity criteria

and anonymize all the tuples in a group to the same generalized tuple to satisfy

the privacy requirement. These class of algorithms are more flexible than the other

generalization algorithms as they generalize attribute values at the cell level. They

do not overgeneralize a table, and hence, they may minimize the distortion of an

anonymous relation.

Definition 5. (Clustering.) A clustering C of a ground relation R, is a set of

clusters c1, ..., cm such that ci∩cj = ∅, i 6= j and ⋃
ci = R. For a cluster ci, G(ci) is

the QI-group obtained from tuples in ci by unifying their QI values to their lowest

common ancestors according to VGHs. The generalized relation RC = ⋃
ci∈C G(ci).
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Example 3.9. One possible way of clustering tuples in Table 7 is C1 that contains

4 clusters c1,2 = {t1, t2}, c3,4 = {t3, t4}, c5,6 = {t5, t6}, c7,8 = {t7, t8}. R′ in

Table 8 is the generalization w.r.t. C1. In R′, the QI-group of the cluster c1,2 is

G(c1,2) = {r1, r2}. Another possible clustering is C2 with clusters c1,2 = {t1, t2},

c3,6 = {t3, t6}, c4,5 = {t4, t5}, c7,8 = {t7, t8} and the generalization w.r.t C2 is R′′ in

Table 9. The generalization w.r.t the singleton clustering C, where each tuple in R

is assigned to its own cluster C = {c1, ..., c8}, results in the same original ground

relation R.

3.5 Distance and Dependency Loss Measure

In this section, we present the dependency loss measure for quantifying the loss

of a generalized relation. This measure is different from the existing penalty mea-

sures because it takes into consideration the dependency instances in the private

relation and measures how much they are distorted in the generalized relation.

The dependency loss is based on the distance between the values and tuples.

Definition 6. (Distance between two values.) For any two values v, v′ in the

domain of a QI attribute A (domA), the distance δ(v′, v) is defined as follows:

δ(v, v′) =


|E(v′)− E(v)|
H(XA|∗)

if v � v′ or v � v′,

1 otherwise,
(3.2)
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Proposition 1. The normalized distance function δ has the following properties.

For every v, v′, v′′,

(a) δ(v, v) = 0, 0 ≤ δ(v, v′) ≤ 1.

(b) δ(v, v′) = δ(v′, v).

(c) δ(v, v′′) ≤ δ(v, v′) + δ(v′, v′′).

Definition 7. (Distance between two tuples.) For any two tuples t, t′ with

shared attributes A1, ..., Am, the distance function d(t, t′) is defined as follows:

d(t, t′) =


∑
Ai
δ(t[Ai], t′[Ai])

m
if t v t′ or t′ v t,

1 otherwise,
(3.3)

The distance function δ calculates the entropy-based penalty E(v) and the con-

ditional entropyH(XA) on the original ground relation R and returns a normalized

distance value between 0 and 1. If v, v′ are from the same branch in the in VGHA,

then distance is the normalized difference between their information loss. Other-

wise, v, v′ are incomparable, and the distance δ(v, v′) = 1. Note that for a sensitive

attribute, δ(v, v′) is an arbitrary user-defined distance function with a value be-

tween 0 and 1. The distance between tuples is the sum of the pairwise distance

between their corresponding QI attribute values.
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*

Central Canada West Cost

QC

𝑙"#$%

𝑙&#$%

𝑙'#$% ON

Prairies

AB MB BC

Atlantic Canada

NS NB
(b)(a)

Figure 6: (a)DGH and (b)VGH of province (PRV).

ID PC PRV MED DIAG

t1 V6J BC ibuprofen osteoarthritis

t2 V6J BC ibuprofen osteoarthritis

t3 J5B QC ibuprofen osteoarthritis

t4 K2H ON ibuprofen osteoarthritis

t5 K2H ON diazepam seizure

t6 J5B QC diazepam seizure

t7 R7A MB diazepam seizure

t8 R7A MB diazepam seizure

Table 11: Private table R.

Example 3.10. According to the ground relation R in Table 11 and VGH of PRV

in Figure 6, δ(BC, Central Canada)=1 since BC 6� Central Canada and δ(QC, Central

Canada) = |E(Central Canada)−E(QC)|
H(XPRV|∗)

≈ 0.15
0.6 = 0.25 since QC � Central Canada, |E(Central

Canada)-E(QC)|= 0.15− 0 = 0.15 (E(Central Canada) computation is shown in Ex-

ample 3.8) and H(XPRV|∗) ≈ 0.6. According to the VGH of PRV, base(∗)= {QC,

ON, AB, MB, NS, NB, BC}. However, only four descendent leaf nodes {BC, QC,

34

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.sc Thesis– Harika Gorla; McMaster University– Computing and Software

ON, MB} appears in Table 11 (t1[PRV], · · · , t8[PRV]). Therefore, H(XPRV|∗) =

−(P (BC|∗)×log P (BC|∗)+(QC|∗)×log P (QC|∗)+(ON|∗)×log P (ON|∗)+(MB|∗)×

log P (MB|∗)) = −4× 2
8 × log(2

8) ≈ 0.6. Similarly, δ(J5B, [J,K, L]) ≈ 0.25.

Definition 8. (Dependency Loss(∆)) Consider a ground relation R and a set of

FDs Σ that hold on R. The dependency loss of R′ that generalizes R, i.e. R v R′,

is defined as follows:

∆(R′, R,Σ) =
∑
p∈Γ

min
t′∈R′

(d(p, t′)), (3.4)

where Γ is the set of dependency instances of Σ in R.

The Dependency Loss (∆) quantifies the information loss of a generalized version R′

w.r.t to the data dependencies that hold on the relation R. The loss is measured by

computing the distance between every dependency instance p in R and its closest

dependency instance t′ in R′. This measure is different from the existing penalty

metrics because it quantifies the usefulness of an anonymous public version R′

w.r.t to the data dependencies in the original private relation R. We define a new

generalization problem using Dependency loss that aims to maximize the utility

by preserving data dependencies in the anonymous public version R′.
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3.6 Problem Definition

Definition 9. (Dependency-Preserving Generalization.) Given an original

private relation R, set of FDs Σ that holds on R and a value k, the dependency-

preserving generalization problem is to find anonymous private version R′ such

that,

(a) R′ generalizes R i.e. R v R′.

(b) R′ is k-anonymous.

(c) The dependency loss ∆(R′, R,Σ) is minimal.

The previous studies show that the problem of optimal k-anonymity is NP-

hard [18, 9, 1]. In the next section, we present two efficient greedy clustering based

generalization algorithms for the dependency preserving generalization problem.
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Chapter 4

Dependency Preserving

Generalization Algorithms

We propose two clustering based generalization algorithms, namely, PAIR-ENUM

and k-ASSEMBLE to solve the dependency preserving generalization problem. In

order to generate a k-anonymous public view R′ with minimal dependency loss(∆),

we define a utility for clustering. This metric measures the quality of the clustering

w.r.t preserving the dependencies more accurately and guides our algorithms at

each step to find a clustering with maximal utility.

Definition 10. Consider an original ground relation R, set of FDs Σ, and a

clustering C = {c1, ..., cm} of R. The utility of C w.r.t Σ is defined as follows:

utility(C, R,Σ) =
∑
p∈Γ

max
c∈C

(preserve(c, p)). (4.1)
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where 0 ≤ preserve(c, p) ≤ 1 measures how much cluster c preserves instance p

and is defined as,

preserve(c, p) = (1− min
t∈G(c)

(d(p, t)))× |c|
k
. (4.2)

Assuming the instance p is over FD ϕ : X → Y , the distance measure 0 ≤ d(p, t) ≤

1 is defined as,

d(p, t) =
∑
A∈X∪Y δ(p[A], t[A])
|X ∪ Y |

. (4.3)

The utility of a clustering C, is the sum of how much dependency instance p

in Σ of the private relation R is preserved in the clustering C. This is done by

finding the cluster c ∈ C that maximizes preserve(c, p), that is, the cluster c that

best preserves the instance p. The preserve(c, p) measure defined in (4.2) has two

factors. The first factor 1 − mint∈G(c)(d(p, t)) depends on the distance between

the instance p and the closet tuple t in G(c), where G(c) is the QI-group obtained

from unifying the tuples in the cluster c through generalization. The second, |c|
k

measures how close is the cluster c to satisfying the k-constraint. The distance

function d(p, t) in (4.3) is a normalized sum of the pairwise distance (δ) between

the QI attribute values in p and t. The pairwise distance between the attribute

values is computed using the distance function δ defined in (6).
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ID PC PRV MED DIAG

r1 V6J BC ibuprofen osteoarthritis

r2 V6J BC ibuprofen osteoarthritis

r3 [J,K,L] Central Canada ibuprofen osteoarthritis

r4 [J,K,L] Central Canada ibuprofen osteoarthritis

r5 [J,K,L] Central Canada diazepam seizure

r6 [J,K,L] Central Canada diazepam seizure

r7 R7A MB diazepam seizure

r8 R7A MB diazepam seizure

Table 12: 2-anonymous public view R′.

ID PC PRV MED DIAG

m1 V6J BC ibuprofen osteoarthritis

m2 V6J BC ibuprofen osteoarthritis

m3 J5B QC * osteoarthritis

m4 K2H ON * osteoarthritis

m5 K2H ON * seizure

m6 J5B QC * seizure

m7 R7A MB diazepam seizure

m8 R7A MB diazepam seizure

Table 13: 2-anonymous public view R′′.

Example 4.1. (ex. 3.10 cont.) For the dependency instance p1 = (V6J,BC) and

r1 in Table 12, d(p1, r1) = 0 since the same instance appears in R′. For k = 2, the

best cluster in Table 12 that preserves p1 is c1,2 because G(c1,2) = {r1, r2} and the

preserve(c1,2, p1) = (1−d(p1, r1))× |c1,2|
k

= (1−0)× 2
2 = 1, which means the instance

p1 is completely preserved in the cluster c1,2 of R′. For the instance p2 = (J5B,QC)

and r3 in Table 12, d(p2, t3) = δ(J5B,[J,K,L])+δ(QC,Central Canada)
2 = 0.25+0.25

2 = 0.25. The

best cluster in Table 12 that preserves p2 is c3,4, because G(c3,4) = {r3, r4} and

preserve(c3,4, p2) = (1 − d(p2, r3)) × |c3,4|
k

= (1 − 0.25) × 2
2 = 0.75, which means

the instance p2 is partially preserved in the cluster c3,4 of R′ with preserve score of

0.75. In the singleton clustering C, the preserve measure for all the six instances

is 0.5. Therefore, utility(C, R,Σ) = 6 × 0.5 = 3. For the public view R′ in

Table 12, four instances (p1, p4, p5, p6) are completely preserved by the preserve

score of 1 and two instance are preserved by the preserve score of 0.75. Therefore,

utility(R′, R,Σ) = 4×1+2×0.25
6 = 0.75. For the public view R′′ in Table 13, all
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the six instances are completely preserved with a preserve score of 1. Therefore,

utility(R′′, R,Σ) = 6×1
6 = 1.

4.1 PAIR-ENUM Algorithm

The pseudo-code of PAIR-ENUM is shown in Algorithm 1. Given an original

private view R, set of FDs Σ and k value as the input, the algorithm returns a

k-anonymous public relation RC with minimal dependency loss (∆), because the

algorithm evaluates the utility of all the possible clusterings and merges the cluster

pairs that has maximal utility at each step to generate a final k-anonymous view

with minimal dependency loss.

In PAIR-ENUM, S is the subset of tuples in R that are in clusters of size k.

These are called the sealed clusters. S is initially empty (line 1). The algorithm

begins with a single clustering C, where each tuple t ∈ R is assigned to its own

cluster c ∈ C (line 3). The algorithm continues as long as there are at least k tuples

in |R \ S|, that can be sealed. If the number of unsealed tuples in R is less than

k, then these tuples are suppressed since they cannot form a new sealed cluster of

size k and the algorithm stops. The while loop in (line 4) finds the clustering C ′

with maximum utility(C ′, R,Σ) which is obtained from C. To find C ′, the algorithm

iterates over every possible cluster pairs ci and cj that can be merged to generate

the clustering C ′(line 6). The merge function merge(ci, cj) in line 7 returns the

cluster ci,j (obtained by merging the clusters ci and cj) if |ci ∪ cj| ≤ k. Otherwise,
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Algorithm 1: PAIR-ENUM (R,Σ, k)
Input: Private relation R with QI attributes A1, A2, · · · , set of FDs

Σ = {ϕ1, ϕ2, · · · }, k value for k-anonymity.
Output: RC with R v R′ with maximum utility.

1 S := ∅; C = ∅;
2 foreach tuple ti ∈ R do
3 C ← C ∪ {{ti}};
4 while |R \ S| ≥ k do
5 MaxU := 0; C ′ := ∅;
6 foreach pair ci, cj ∈ C such that (ci ∪ cj) ∩ S = ∅ do
7 ci,j := merge(ci, cj);
8 Ci,j := (C \ {ci, cj}) ∪ {ci,j};
9 if |ci ∪ cj| > k then

10 c′ := (ci ∪ cj) \ ci,j; Ci,j := Ci,j ∪ {c′};
11 u := utility(Ci,j, R,Σ);
12 if u > MaxU then
13 MaxU := u; C ′ := Ci,j;
14 foreach cluster c in C ′ \ C do
15 if |c| = k then S := S ∪ c;
16 C := C ′;
17 return RC;
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if |ci ∪ cj| > k (line 10), merge(ci, cj) returns a subset ci,j of ci ∪ cj containing k

closest tuples.

The clustering Ci,j in line 8 is generated by removing the clusters ci and cj from C

and adding the merged cluster ci,j. The tuples left after merging ci, cj form a new

cluster c′ which is added to the clustering Ci,j (line 10). If c is sealed (line 15),

the algorithm adds the tuples in c to S and updates the clustering C to the best

clustering C ′. After the while loop, the algorithm returns the final clustering C

containing clusters of size k. Using C, we generate the final k-anonymous public

view RC, by generalizing the tuples in each cluster ci ∈ C to have the equal QI

values using the attributes generalization hierarchies (VGHs). For each tuple ti in

cluster c = {t1, ..., tk} ∈ C, for each QI attribute A, t′i[A] holds the least common

ancestor of t1[A], ..., tk[A] according to the VGHA.

ID PC PRV MED DIAG

c1 V6J BC ibuprofen osteoarthritis

c2 V6J BC ibuprofen osteoarthritis

c3 J5B QC ibuprofen osteoarthritis

c4 K2H ON ibuprofen osteoarthritis

c5 K2H ON diazepam seizure

c6 J5B QC diazepam seizure

c7 R7A MB diazepam seizure

c8 R7A MB diazepam seizure

Table 14: Singleton clustering C of R.

ID PC PRV MED DIAG

c1,2 V6J BC ibuprofen osteoarthritis

c1,2 V6J BC ibuprofen osteoarthritis

c3 J5B QC ibuprofen osteoarthritis

c4 K2H ON ibuprofen osteoarthritis

c5 K2H ON diazepam seizure

c6 J5B QC diazepam seizure

c7 R7A MB diazepam seizure

c8 R7A MB diazepam seizure

Table 15: Clustering C1,2.
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ID PC PRV MED DIAG

c1 V6J BC ibuprofen osteoarthritis

c2 V6J BC ibuprofen osteoarthritis

c3,4 [J,K,L] Central Canada ibuprofen osteoarthritis

c3,4 [J,K,L] Central Canada ibuprofen osteoarthritis

c5 K2H ON diazepam seizure

c6 J5B QC diazepam seizure

c7 R7A MB diazepam seizure

c8 R7A MB diazepam seizure

Table 16: Clustering C3,4.

ID PC PRV MED DIAG

c1 V6J BC ibuprofen osteoarthritis

c2 V6J BC ibuprofen osteoarthritis

c3 J5B QC ibuprofen osteoarthritis

c4 K2H ON ibuprofen osteoarthritis

c5 K2H ON diazepam seizure

c6 J5B QC diazepam seizure

c7,8 R7A MB diazepam seizure

c7,8 R7A MB diazepam seizure

Table 17: Clustering C7,8.

ID PC PRV MED DIAG

c1,2 V6J BC ibuprofen osteoarthritis

c1,2 V6J BC ibuprofen osteoarthritis

c3,6 J5B QC ibuprofen osteoarthritis

c4,5 K2H ON ibuprofen osteoarthritis

c4,5 K2H ON diazepam seizure

c3,6 J5B QC diazepam seizure

c7,8 R7A MB diazepam seizure

c7,8 R7A MB diazepam seizure

Table 18: Final clustering C.

ID PC PRV MED DIAG

c1,2 V6J BC ibuprofen osteoarthritis

c1,2 V6J BC ibuprofen osteoarthritis

c3,6 J5B QC * osteoarthritis

c4,5 K2H ON * osteoarthritis

c4,5 K2H ON * seizure

c3,6 J5B QC * seizure

c7,8 R7A MB diazepam seizure

c7,8 R7A MB diazepam seizure

Table 19: 2-anonymous public view R′′.

Example 4.2. (ex. 1.2 cont.) The algorithm begins with the singleton cluster-

ing, where each tuple in R is assigned to its own cluster as shown in Table 14

and utility(C, R,Σ) = 6 × 0.5 = 3. The number of possible cluster pairs eval-

uated in iteration 1 is {c1,2, c1,3, · · · , c7,8} = 28. As shown in Table 15, C1,2
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is a candidate clustering for the first iteration generated by merging clusters c1

and c2 and utility(C1,2, R,Σ) = 2 + (4 × 0.5) = 4 since the instances p1 =

(V6J,BC) and p5 = (ibuprofen, osteoarthritis) will be completely preserved by c1,2

with preserve(c1,2, p1) = preserve(c1,2, p5) = 1 and the remaining 4 instances are

partially preserved with preserve score of 0.5. Another candidate clustering C7,8

in Table 17 also has the utility(C7,8, R,Σ) = 2 + (4 × 0.5) = 4 in which in-

stances p4 = (R7A,MB), p6 = (diazepam, seizure) are completely preserved, i.e.

preserve(c7,8, p4) = preserve(c7,8, p6) = 1. For the clustering C3,4, utility(C3,4, R, σ) =

1 + (5× 0.5) = 3.5 as for only one instance preserve(c3,4, p5) = 1 and the remain-

ing 5 instances still have preserve measure 0.5. Among all the possible clusterings

evaluated in iteration 1, the two clusterings C1,2 and C7,8 have the same maximum

utility. The algorithm breaks the tie by choosing the first generated clustering C1,2 as

the best clustering in iteration 1 and continues by replacing C with C1,2. The tuples

in the cluster c1,2 are sealed since |c1,2| = k. Ignoring the tuples in the sealed cluster

c1,2, the possible cluster pairs evaluated in iteration 2 is {c2,3, c2,4, · · · , c7,8} = 15.

Following the same steps, PAIR-ENUM generates the final clustering C as shown

in Table 18 with utility(C, R,Σ) = 6, which means all the six dependency instances

Γ = {p1, · · · , p6} are completely preserved in the final clustering C. Table 19 is the

corresponding k-anonymous public view R′′ obtained by generalizing QI values of

tuples in each cluster ci ∈ C using the VGHs shown in Figures 1-3, with dependency

loss ∆(R′′, R,Σ) = 0.

44

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.sc Thesis– Harika Gorla; McMaster University– Computing and Software

4.2 k-ASSEMBLE Algorithm

The pseudo-code of k-ASSEMBLE is shown in Algorithm 2. At each step, k-

ASSEMBLE initializes a pool of m clusterings, with each clustering containing a

cluster of size k. We compute the utility of each of these m clusterings at each

step and greedily select the clustering among the m clusterings with the highest

utility as an input to the next step. Given that we take a greedy approach, we can

achieve utility that is locally maximal.

In the while loop (line 4), k-ASSEMBLE finds a clustering C ′ that is obtained

from C and has the highest utility, utility(C ′, R,Σ). To find C ′, the algorithm

iterates over a pool of m clusterings, with each clustering containing a new clus-

ter of size k to form C ′. To generate a pool of m clusterings in each iteration,

k-ASSEMBLE randomly picks m unsealed tuples from C and then adds them

to the pool P (line 6 and 7). For each tuple ti in the pool P , k-ASSEMBLE

creates a cluster ci with its k − 1 closest neighbours in C (lines 11 - 14). The

find_best_cluster(C, ci) in (line 12) returns the closest neighbour to ti w.r.t dis-

tance measure defined in Definition 7. The algorithm generates Ci by removing

k − 1 tuples (which are added to ci) from C and adding ci to C. k-ASSEMBLE

adds the tuples in cluster c to S since |c| = k (line 20) and updates the clustering

C to the best clustering C ′. The while loop in line 4 ends by returning the final

clustering C containing clusters of size k and we generalize the tuples in each ci ∈ C

to generate the final k-anonymous public view RC. We can tune k-ASSEMBLE via

m to balance the trade-off between runtime and clustering utility. By assigning a

larger value for m, the pool size increases which may allow k-ASSEMBLE to find
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Algorithm 2: k-ASSEMBLE (R,Σ, k)
Input: Ground relation R with QI attributes A1, A2, · · · , set of FDs

Σ = {ϕ1, ϕ2, · · · }, value k for k-anonymity.
Output: RC with R v R′ with maximum utility.

1 S := ∅; C = ∅; P = ∅
2 foreach tuple ti ∈ R do
3 C ← C ∪ {{ti}};
4 while |R \ S| ≥ k do
5 MaxU := 0; C ′ := ∅;
6 Randomly select m tuples from C such that {t1, · · · , tm} ∩ S = ∅;
7 P = P ∪ ti for i = 1, · · ·m
8 C = C \ {t1, · · · , tm};
9 foreach ti ∈ P do

10 ci := ti;
11 while |ci| < k do
12 tj =find_best_tuple(C, ci) w.r.t d;
13 Ci := (C \ {tj});
14 ci := (ci ∪ {tj});
15 Ci := C ∪ ci;
16 u := utility(Ci, R,Σ);
17 if u > MaxU then
18 MaxU := u; C ′ := Ci;
19 for cluster c in C ′ \ C do
20 S := S ∪ c
21 C := C ′;
22 return RC;
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a clustering with better utility compared to the clustering generated with smaller

m value. However, the complexity is the increase in the runtime because of the

increased number of clusterings generated and evaluated in each iteration.

ID PC PRV MED DIAG

t1 V6J BC ibuprofen osteoarthritis

t2 V6J BC ibuprofen osteoarthritis

t3 J5B QC ibuprofen osteoarthritis

t4 K2H ON ibuprofen osteoarthritis

t5 K2H ON diazepam seizure

t6 J5B QC diazepam seizure

t7 R7A MB diazepam seizure

t8 R7A MB diazepam seizure

Table 20: Original table R.

ID PC PRV MED DIAG

c1,2 V6J BC ibuprofen osteoarthritis

c1,2 V6J BC ibuprofen osteoarthritis

t3 J5B QC ibuprofen osteoarthritis

t4 K2H ON ibuprofen osteoarthritis

t5 K2H ON diazepam seizure

t6 J5B QC diazepam seizure

t7 R7A MB diazepam seizure

t8 R7A MB diazepam seizure

Table 21: Clustering C1.

ID PC PRV MED DIAG

t1 V6J BC ibuprofen osteoarthritis

t2 V6J BC ibuprofen osteoarthritis

t3 J5B QC ibuprofen osteoarthritis

c4,5 K2H ON * *

c4,5 K2H ON * *

t6 J5B QC diazepam seizure

t7 R7A MB diazepam seizure

t8 R7A MB diazepam seizure

Table 22: Clustering C4.

ID PC PRV MED DIAG

c1,2 V6J BC ibuprofen osteoarthritis

c1,2 V6J BC ibuprofen osteoarthritis

c3,6 J5B QC * osteoarthritis

c4,5 K2H ON * osteoarthritis

c4,5 K2H ON * seizure

c3,6 J5B QC * seizure

c7,8 R7A MB diazepam seizure

c7,8 R7A MB diazepam seizure

Table 23: 2-anonymous public view R′′.
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Example 4.3. (ex. 1.2 cont.) Let m = 2 and let t1, t4 be the two random tuples

selected by k-ASSEMBLE from the relation R in Table 20 in the first iteration.

The algorithm generates the clusterings C1 and C4, with the former containing the

cluster c1,2 = {t1 ∪ t2} and the latter contains the cluster c4,5 = {t4 ∪ t5}. Clus-

ters c1,2 and c4.5 are formed by merging the selected tuples t1 and t4 with their

corresponding nearest neighbours t1 and t5 to generate clusters of size k = 2.

For the clustering C1, utility(C1, R,Σ) = 2 + (4 × 0.5) = 4 since two instances

p1 = (V6J,BC) and p5 = (ibuprofen, osteoarthritis) will be completely preserved

by c1,2 with preserve(c1,2, p1) = preserve(c1,2, p5) = 1 and the remaining 4 in-

stances are partially preserved with preserve score of 0.5. For the clustering C4,

utility(C4, R,Σ) = 1 + (5 × 0.5) = 3.5 as for only one instance p3 = (K2H,ON),

preserve(c4,5, p3) = 1 and the preserve score for the remaining 5 instances is 0.5.

k-ASSEMBLE chooses C1 as an input to the next iteration since C1 better preserves

dependency instances (utility(C1, R,Σ) = 4) over C4 (utility(C4, R, σ) = 3.5). The

algorithm seals the tuples in the cluster c1,2 since |c1,2| = k and continues by re-

placing C with C1. In iteration 2, let t5 and t7 be the two random tuples selected

by k-ASSEMBLE from the set of unsealed tuples {t3, t4, t5, t6, t7, t8} in Table 20 to

generate the clustering C5 and C7. Following the same steps, k-ASSEMBLE gen-

erates the final k-anonymous relation R′′ as shown in Table 23, with dependency

loss ∆(R′′, R,Σ) = 0 since all the six dependency instances in Γ = {p1, · · · , p6}

appear at least once in R” without any distortion.
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4.3 Analysis

PAIR-ENUM and k-ASSEMBLE always terminate after a finite number of iter-

ations and returns a final k-anonymous public view RC. In PAIR-ENUM, the

while loop in line 4 terminates because, in each iteration, it merges two clusters

and the resulting clusters are sealed if they have at least k tuples. k-ASSEMBLE

terminates as in each iteration (line 4), a cluster of size k gets sealed and is added

to C that eventually covers all the tuples in R. The worst-case running time of

PAIR-ENUM is O(|R|4 × |Γ|) since there are at most |R| iterations and each it-

eration considers O(|R|2) candidate pairs, and computes utility in O(|R| × |Γ|).

The runtime complexity of k-ASSEMBLE is O(m× |R|
2

k
× |Γ|) since there are |R|

k

iterations and each iteration considers at most m clusterings and computes the

utility of the dependency instances in O(|R| × |Γ|).
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Chapter 5

Optimizations

We propose two optimizations to improve the performance of PAIR-ENUM and

k-ASSEMBLE to O(|R|2 × k × |Γ|) and O(m× |R| × |Γ|) respectively.

The worst-case running time depends on (i) the number of iterations in the

for loop (line 6), that is the number of possible cluster pairs considered at each

step in the PAIR-ENUM algorithm, and (ii) the cost of computing utility in both

PAIR-ENUM (line 11) and k-ASSEMBLE (line 16). To scale-up the algorithm,

we try to optimize with respect to both (i) and (ii).

5.1 Opt-1: Pruning Cluster Pairs.

For (i), we apply an optimization that reduces the number of candidate cluster

pairs in line 6 of PAIR-ENUM. The idea is for each cluster c ∈ C, we index its

q closest clusters according to the distance measure defined in Definition 7 and
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consider only those candidates as possible merges with c at each iteration. This

optimization reduces the O(|R|2) candidate pairs to O(|R|).

5.2 Opt-2: Re-computing the Utility Efficiently.

To reduce the cost of computing the utility for clustering C, for each dependency

instance p ∈ Γ, we index M > 2 × k tuples in a map U , holding the dependency

instances similar to the instance p and use U to efficiently compute the utility of

a new clustering Cij. Merging ci and cj results in new clustering Ci,j and while

computing the utility, we can find the new best tuples that preserve p by looking at

U [p] and the tuples in the result of merging ci and cj. Since M > 2× k, the tuple

that better preserves the instance p is still in U [p]∪ci∪cj. Using U , the worst-case

running time for computing the utility measure will reduce from O(|R| × |Γ|) to

O(k × |Γ|).

51

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


Chapter 6

Experiments

We evaluate our two clustering-based generalization algorithms using two real data

sets. Our evaluation focuses on the following objectives.

1. We study the performance to effectiveness trade-off of our algorithms as we

vary the size of the data set.

2. We evaluate PAIR-ENUM and k-ASSEMBLE performance as we increase

the number of FDs (Σ) in the data set.

3. We compare the performance of PAIR-ENUM and k-ASSEMBLE against

two existing local re-coding algorithms as we scale the number of tuples.

4. A qualitative evaluation of the dependency loss of our algorithms as we vary

the k value. We also study the impact of the data skew on the dependency

loss as we vary the k value.
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6.1 Datasets

Setup: All the experiments were performed on a cluster of Intel core i7-7740X

CPU @ 4.30GHz with 32GB of RAM. The operating system on the machine is

Red Hat Enterprise Linux and the implementation was built and run in Python 3

platform.

Table 24 provides the characteristics of two datasets w.r.t the numbers of

entities (N), attributes (n), QIs (|QI|), set of FDs (|Σ|) and set of dependency

instances (Γ).

Drug Deaths. The accidental drug deaths dataset [4] contains a listing of ac-

cidental deaths associated with drug overdose in Connecticut from 2012 to 2017.

For k-anonymization, we considered sex, race, age, zipcode, residence state, resi-

dence county, death city, death county as the QIs and injury location, description

of injury as the sensitive attributes. The functional dependencies (Σ) that hold

over drug deaths data set are ϕ1 : zipcode→ residence state, ϕ2 : residence county

→ residence state, ϕ3 : death city→ death county and ϕ4 : location→ description

of injury. The VGHs of drug deaths QI attributes can be seen in Appendix A1.

Food Inspections. The New York Restaurants Food Inspections data set [20]

contains inspection results of the retail food establishments in New York. Nine

attributes: borough, address, violation code, violation description, zipcode, cuisine

description, action, inspection type are considered as the QIs and critical flag,

score, grade are the sensitive attributes. The functional dependencies (Σ) that
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hold over Food Inspections dataset are ϕ1 : address → borough, ϕ2 : violation

code → violation description, ϕ3 :zipcode → borough, ϕ4 : cuisine description,

address → borough, ϕ5 : inspection type, critical flag → action and ϕ6 : critical

flag, score → grade. The VGHs of food inspections QI attributes can be seen in

Appendix A2.

Drug Deaths Food Inspections

N 6000 30,000
n 10 11
|QI| 8 8
|Σ| 4 6
|Γ| 998 1866

Table 24: Data characteristics.

Attribute Distinct Values # levels in DGHA

1 sex 2 2
2 race 9 3
3 age 62 6
4 zipcode 220 4
5 residence state 16 3
6 residence county 55 3
7 death city 182 3
8 death county 8 3
9 injury location 4 -
10 description of injury 4 -

Table 25: Description of drug deaths dataset
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Attribute Distinct Values # levels in DGHA

1 borough 5 2
2 address 506 4
3 violation code 84 4
4 zipcode 139 4
5 violation description 81 4
6 cuisine description 63 3
7 action 5 2
8 critical flag 3 -
9 inspection type 28 3
10 score 100 -
11 grade 4 -

Table 26: Description of food inspections dataset

6.2 Performance to Effectiveness Trade-off

We run the algorithms three times and take the average as the reported run-

ning time we set k = 5 as default. The implementation of Baseline refers to

PAIR-ENUM without optimizations. PAIR-ENUM includes Opt-1 to reduce the

number of possible cluster pairs considered at each step. Both PAIR-ENUM and

k-ASSEMBLE include Opt-2 to reduce the cost of computing utility.

Figure 7 reports the execution time behaviors of our algorithms for various car-

dinalities on the food inspections dataset. The Baseline and Baseline+Opt2 run-

time increase exponentially because these algorithms evaluate all the possible pair-

wise clusters in each iteration to generate an optimal output. We terminate these

algorithms after 24 hours. Opt-1 performs better over Baseline and Baseline+Opt2
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because the algorithm prunes the search space and evaluates only reduced candi-

date cluster pairs in each iteration. The PAIR-ENUM and k-ASSEMBLE runtime

increase linearly with the size of the data set because of the increased number of

dependency instances that must be preserved. These algorithms are about 1.8×

and 6.3× faster than Opt-1 because they apply both Opt-1 and Opt-2 that prunes

the cluster pairs and recomputes the utility of the clusterings efficiently.
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Figure 7: Performance to effectiveness trade-off - food inspections dataset.

Figure 8 shows the loss of dependency instances (∆) in R′ from R for various

cardinalities on food inspections data. As shown in the figure, the dependency

loss (∆) decreases with the increase in the size of the dataset because larger the

number of records, greater the flexibility to select the clusters that better preserve

the dependency instances and thereby minimizing the dependency loss(∆). The

figure also highlights the trade-off between performance and data quality. The

56

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/cas


M.sc Thesis– Harika Gorla; McMaster University– Computing and Software

improvement in runtime comes at a cost of 3.2% dependency loss for PAIR-ENUM

and k-ASSEMBLE suffers a dependency loss of 5.3%.
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Figure 8: Performance to effectiveness trade-off - food inspections dataset.

6.3 Performance

Figure 9 reports the performance of k-ASSEMBLE and PAIR-ENUM for the in-

creasing the number of functional dependencies (Σ) using food inspections data.

As shown, the runtime for both algorithms increases with larger |Σ| since a larger

number of dependency instances needs to be evaluated and preserved with minimal

loss. The PAIR-ENUM is 2× slower than k-ASSEMBLE because in each iteration,

PAIR-ENUM enumerates all the possible cluster pairs and re-computes the utility

of each cluster pair.
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In Figure 10, we compare the performance of k-ASSEMBLE and PAIR-ENUM

against the existing algorithms: k-member [3] and Top-down [25] using the food

1500

2500

3500

500
2 3 4 5 6

Ti
m

e
(s

)

K-ASSEMBLE  
PAIR-ENUM

∣∑∣- Number of Functional Dependencies
1

Figure 9: Performance evaluation by varying number of functional dependencies
- food inspections dataset.
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Figure 10: Performance comparison with varied number of tuples - food inspec-
tions dataset.
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inspections data. As shown, the runtime increase almost linearly w.r.t the size

of the dataset for all the four algorithms. The Top-Down performs better than

the other algorithms because it focuses only on generalizing R to generate a k-

anonymous public view R′ with no effort in minimizing the loss of dependen-

cies during anonymization. As a result, the difference between Top-Down and

k-ASSEMBLE is about 70%. k-ASSEMBLE is 94% faster than k-member. We

also note that in k-ASSEMBLE, pool size parameter m acts as a trade-off between

the data quality and runtime. For the larger m value, a large number of clusters

are considered and evaluated in each iteration, thereby providing greater flexibility

to generate the output with minimal dependency loss. PAIR-ENUM is about 34%

slower than k-member due to the enumeration of pairwise cluster candidates and

re-computation of their utility.

6.4 Minimizing Dependency Loss

Figure 11 shows the dependency loss (∆) of PAIR-ENUM and k-ASSEMBLE for

different values of k using the drug deaths data. As shown, the dependency loss

increases with the increase in the k value because more generalization is needed

to satisfy the more restrictive privacy requirement imposed by the larger k values

and thereby increasing the dependency loss (∆) in R′. PAIR-ENUM is able to

generate instances with less distortion (4.5% on an average) than k-ASSEMBLE

for k > 5 because in each iteration, PAIR-ENUM extensively evaluates possible

candidate cluster pairs.
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Figure 11: Dependency Loss for varied values of k - drug deaths dataset.
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Figure 12: Skewed data impact on Dependency Loss for varied values of k - drug
deaths dataset.

In Figure 12, we study the impact of the data skew on the dependency loss

(∆) for different values of k by comparing the original skewed drug deaths data
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to a synthetically generated data with the uniform distribution of data values.

As expected, PAIR-ENUM generated instances with less dependency loss using

uniform data (6% on an average) over the original skewed data. This is because,

in the skewed data, the distribution of the dependency instances is not uniform

and therefore, it is hard to preserve those infrequent dependency instances during

anonymization with minimal loss.
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Chapter 7

Conclusion and Future Work

In this thesis, we presented a new problem in the area of PPDP that aims to

preserve data dependencies while publishing a dataset. We defined the dependency

loss penalty measure that quantifies the loss of dependencies due to generalization

in the published dataset. We proposed two cluster-based generalization algorithms

to solve the dependency preserving generalization problem and optimizations to

improve the performance of the algorithms. Our experimental evaluation shows

the algorithms comparative performance and minimal distortion w.r.t dependency

loss metric using two real datasets.

As next steps, we intend to study:

1. We aim to extend the dependency loss penalty measure to general penalty

definition that considers the loss of general patterns (e.g. values) that are

specified by queries. The penalty in such case depends on the distortion

in the query answers when the query is answered on the anonymized public

version. Dependency loss will be a special case when the query is a projection
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query over the attributes that participate in the functional dependencies.

2. The clusters/QI-groups generated by our algorithms overcome record linkage

attack. However, if the entire cluster has the same sensitive value, it may

aid an adversary to compromise an individual’s sensitive information. To

overcome this limitation, a future extension is towards l-diversity. A public

view of a relation R is said to have l-diversity if every cluster/QI-group of

this view has at least l well represented distinct sensitive attribute values.

In the k-anonymous public view generated by our algorithm, first, we would

remove the clusters that do not satisfy l-diversity requirement. Next, add

the tuples in these clusters to other clusters that already satisfy l-diversity

requirement which cause least dependency loss. The other way is injecting

noise to the sensitive attribute values in these clusters such that we obtain

l-distinct values.

3. In this work, we studied the problem of dependency-preserving generalization

of data that holds functional dependencies. In the future, we will consider

the data that holds Multivalued Dependency (MVD), a type of functional

dependency that exists when there are at least three attributes (X, Y, Z) in

a relation R and for a single value of X, there is a defined set of Y values

(X →→ Y ) and a defined set of Z values (X →→ Z). However, Y and Z

are independent of each other. The set of dependency instances/patterns is

a projection over the attributes {X, Y, Z} in a relation R that we need to

preserve during generalization. As a future work, we will also consider Con-

ditional Functional Dependencies (CFDs) that extend standard functional

dependencies by enforcing patterns of semantically related constants, which
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are used as rules for data cleaning.

4. Our model assumes that QI is known to the data publisher before data pub-

lishing. However, if an attacker has access to additional attributes/columns

(that do not appear in the original private data), then this information may

aid him to compromise an individual’s privacy if there exists some correla-

tion between attributes from the published view of the original private data

and the additional attributes possessed by the attacker. Let QI ={Gender,

Age} and Disease be the sensitive attribute that appears in the published k-

anonymous view of the original private data. If the attacker also has access

to the public data with attributes Street, Disease, then he/she could possibly

compromise an individual’s privacy using this information along with some

additional background information.

For example, from the available public data, the attacker knows that peo-

ple who live on Main Street are predisposed to Cancer. The attacker also

knows Rita age to be 27 living on the Main Street. If the k-anonymous public

view generated by our model has an entry {Female, [20-30], Cancer}, then

this information could enable the attacker to conclude Rita most likely has

Cancer since there exists a correlation between the information possessed

by the attacker and the age attribute in the k-anonymous public view. To

address this limitation, we could change our model to take the publicly avail-

able information into consideration while generalizing the attributes from the

original private data that could be correlated. Given the publicly available

information, we could condition on the attributes from the original private
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data that could be correlated to compute prior probability, which could pos-

sibly change the way we generalize those attributes. The impact on the

performance of the model solely depends on how we make use of the pub-

licly available information. There could be some additional cost involved if

we compute conditional probability distribution on attributes from original

private data that could be correlated with the publicly available data.
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Appendix A1

Drug Deaths Dataset
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Figure A1.1: DGH and VGH of sex.

Hispanic White

𝑙"#$%&

𝑙'#$%& Hispanic Black

(b)(a)

American

Native American Hawaiian BlackAsian Indian Asian Other Chinese

Asian Other

𝑙(#$%& *

Figure A1.2: DGH and VGH of race.
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Figure A1.3: DGH and VGH of age.
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Figure A1.4: DGH and VGH of zipcode (ZC).
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Figure A1.5: DGH and VGH of residence state (RS).
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Figure A1.6: DGH and VGH of residence county (RC).
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Figure A1.7: DGH and VGH of death city (DCITY).
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Figure A1.8: DGH and VGH of death county (DC).
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Appendix A2

Food Inspections Dataset
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Figure A2.1: DGH and VGH of borough (BRH).
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Figure A2.2: DGH and VGH of violation code (VC).
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Figure A2.3: DGH and VGH of zipcode (ZC).
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Figure A2.4: DGH and VGH of violation description (VD).
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Figure A2.5: DGH and VGH of cuisine description (CD).
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Figure A2.6: DGH and VGH of action (ACT).
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Figure A2.7: DGH and VGH of inspection type (IT).
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