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Abstract

This study has two parts. In the first part we develop a computational approach to

the solution of an inverse modelling problem concerning the material properties of

electrolytes used in Lithium-ion batteries. The dependence of the diffusion coefficient

and the transference number on the concentration of Lithium ions is reconstructed

based on the concentration data obtained from an in-situ NMR imaging experiment.

This experiment is modelled by a system of 1D time-dependent Partial Differential

Equations (PDE) describing the evolution of the concentration of Lithium ions

with prescribed initial concentration and fluxes at the boundary. The material

properties that appear in this model are reconstructed by solving a variational

optimization problem in which the least-square error between the experimental and

simulated concentration values is minimized. The uncertainty of the reconstruction

is characterized by assuming that the material properties are random variables and

their probability distribution estimated using a novel combination of Monte-Carlo

approach and Bayesian statistics. In the second part of this study, we carefully

analyze a number of secondary effects such as ion pairing and dendrite growth that

may influence the estimation of the material properties and develop mathematical

models to include these effects. We then use reconstructions of material properties

based on inverse modelling along with their uncertainty estimates as a framework
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to validate or invalidate the models. The significance of certain secondary effects is

assessed based on the influence they have on the reconstructed material properties.
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Symbols

D+ Diffusion coefficient of positive ions

D− Diffusion coefficient of negative ions

t+ Transference number of positive ions

[cα, cβ] Identifiability interval

F+ Flux of positive ions

F− Flux of negative ions

κ+ Mobility of positive ions

κ− Mobility of negative ions

Rn n-dimensional real space

J Cost functional

U Functional space with Hilbert structure

φ Electric potential

c̃ In-situ experimental concentration
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ξ Step length in gradient direction

c∗∗ Solution of adjoint system obtained by perturbing t+

c+ Concentration of positive ions

c− Concentration of negative ions

D Diffusion coefficient

kB Boltzman Constant

t+
′

Perturbation direction for t+

zi Charge carried by species i

c Salt concentration

j Molar current density
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Chapter 1

Introduction

Lithium (Li) ion batteries are a popular electrochemical energy storage device and

are used in a wide range of electronic devices around the world. Significant research

efforts are being invested into Li-ion batteries right now, because of their potential

applications in next-generation automobiles [65] and green technology [20]. A

complete understanding of the physics and electrochemistry behind the workings of

Li-ion batteries is necessary to further improve their efficiency and performance.

Many researchers across the world have derived mathematical models for Li-ion

batteries for analyzing and optimizing their performance. Two main types of models

that are widely used are equivalent circuit models [15] and physics-based models [88].

Equivalent circuit model is a mathematical model based on a theoretical circuit that

retains average electrical characteristics of the battery [44]. Such models are used to

describe both electrical and mass transport phenomena in the battery [75]. On the

other hand, the underlying physics is captured to describe the working of battery in

the physics-based model [56]. Both types of models have their own advantages and

disadvantages, but to understand the complex behavior of the batteries at various

1
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Figure 1.1: Functional overview of a Li-ion battery.

scales [94], physics-based models are preferred.

In physics-based models, different physical processes are modeled separately and put

together as a closed system of governing equations in which individual components are

allowed to interact with each other. A typical Li-ion battery is made up of solid and

liquid components. The solid components are the anode and the cathode which store

Lithium atoms and also help conduct negatively charged electrons to the external

circuit as shown in Fig. 1.1. The cathode of a Li-ion battery is typically a Lithium-

rich substrate such as Lithium-Nickel-Manganese-Cobalt Oxide (NMC) or Lithium-

Manganese Oxide (LMO). On the other hand, the anode of Li-ion battery is often

made from materials such as graphite or silicon which can absorb Lithium through

the intercalation process to store electrochemical energy [6]. The Li-ion battery is

charged by transporting Li-ions from the cathode and intercalating them onto the

anode and thus increasing the free energy of the system. This system then provides

2
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electric energy by spontaneously discharging in a closed circuit. The liquid component

of the battery is an electrolyte that is made up of a Lithium based salt and a suitable

solvent. This is a crucial component which helps in moving positively charged Li ions

across the electrodes to complete the circuit (cf. Fig. 1.1). The interaction of solid

and liquid components takes place at the solid-liquid interface inside the battery [58].

The transport of Lithium as atoms in the electrode and as ions in the electrolyte is

assumed to be a diffusion-based process in most physics-based models [5, 23, 38,

56]. The transport of Lithium ions in the electrolyte is of particular interest in this

study because those transport properties determine the efficiency and performance

of the battery [63]. Lithium is transported as positively charged ions. They are

driven by the existing electric potential inside the battery. Lithium transport in the

electrolyte can be modeled based on the Planck-Nernst equation. Flux of species i in

the electrolyte can be described based on Planck-Nernst model as [56]

Fi = −Di∇ci −
Dizi
kBT

c(∇φ). (1.1)

This model works well in dilute conditions or the Planck-Nernst equation with

concentration-dependent material properties which works well for the concentrated

electrolytes [23]. The main material properties that are involved in both types of

transport models of Li ions are the electrical conductivity, the diffusion coefficient

and the transference number. Knowledge of these properties for different electrolytes

not only helps us to use them in transport models but also tells us about the intrinsic

nature of the material under consideration. Estimation of the diffusion coefficient and

transference number is the primary focus of this research.
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The diffusion coefficient is typically measured as a constant property using Stokes-

Einstein’s relation [28], NMR spectroscopy [66], and by inverse calculations using

potentiostatic and galvanostatic measurements [96]. The transference number of

Lithium ion, which is defined as the fraction of the applied current carried by the

Lithium ion in the electrolyte, is another important material property. It is usually

approximated as the ratio of diffusion coefficients of two ions as shown below [31]:

t+ =
D+

D+ +D−
. (1.2)

Inverse calculations using galvanostatic and potentiostatic experiments are also

used to estimate the transference number in electrolytic solutions [34]. In all the

above mentioned methods, the diffusion coefficient and the transference number are

measured as constant properties or measured at selected points of salt concentration

[41, 92]. However, modeling studies also provide evidence that models with

concentration-dependent material properties more accurately predict the behavior of

battery systems [42]. Motivated by these results, this study attempts to develop and

validate a framework that estimates the concentration-dependent diffusion coefficient

and transference number of the electrolyte by solving an inverse problem using

experimental data.

Inverse modelling is a framework that combines measurement data and mathematical

models into information about the properties of the system. For example, a

galvanostatic experiment measures the variation in potential with time for a constant

current applied through the electrolyte. With this measurement and a suitable

transport model, an inverse calculation can estimate the material properties of the

electrolyte such as diffusion coefficient, transference number and conductivity. Inverse
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problems are also an area of study that receives significant attention in many research

fields such as medicine [46], earth sciences [27], image processing [9], astronomical

sciences [54], etc.. Specifically, inverse problems in which one estimates material

properties as a function of space are well researched and understood. They serve as

an important tool in modern non-invasive imaging techniques [22] and in medical and

geological applications. In most of these applications, an inverse problem is posed as

an optimization problem constrained by partial differential equations (PDEs). The

use of adjoint analysis [67] to solve PDE-constrained optimization problems for finding

control parameters dependent on space and time is also well understood and effectively

used in advanced optimization algorithms.

Inverse problems also find their application in estimating material properties of Li-ion

battery electrolytes. The seminal study by M. Klett et al. [38] used concentration

data collected using NMR imaging technique to estimate the diffusion coefficient and

transference number as constant properties. That study used the COMSOL software

package to solve the PDE models and MATLAB to solve the optimization problem.

The main novelty of our research is that we develop and validate a method to estimate

material properties such as the diffusion coefficient (D) and transference number (t+)

as a function of concentration using data from similar experiments to those outlined

by M. Klett et al. [38].

Solving an inverse problem to estimate the state-dependent material properties

has been documented for a purely diffusive model by V. Bukshtynov et al. [14].

In that study, a solution to the inverse problem is obtained by solving an

optimization problem using adjoint analysis and the diffusion coefficient is estimated

for manufactured data. That work also addresses the various computational
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challenges related to the accurate and efficient evaluation of cost functional gradients

for optimization. Taking it as a point of departure for the computational setup,

the current study was carried out to estimate two material properties, the diffusion

coefficient and the transference number, that appear in the model for the Lithium

transport in the electrolyte, as a function of concentration. Although the reference

study [14] uses a model simpler than the ones used here, the general guidelines that

it provides are very relevant for our present research.

Inverse problems by their nature are ill-posed and the solution of an inverse problem is

typically uncertain [7]. The presence of noise in the measurements may significantly

affect the reconstructed solution. Uncertainty in the problem can arise from noise

in the experimental data, systematic error in the experiment, and inaccuracy of

the model. Thus, uncertainty estimation is crucial to assess the quality of the

inverse modelling estimates. It can be carried out using deterministic approaches

such as stationary distribution models [4] or by sampling approaches such as Monte-

Carlo analysis [53]. This issue of uncertainty quantification was partially resolved in

our previous research by using a Monte-Carlo approach [79]. The problem with

the stationary distribution models and Monte-Carlo approach is that they only

considers uncertainty that arises due to noise in the data, while other sources are

ignored. Bayesian methods have been proposed to solve inverse problems for a

number of applications in image processing [82], impedance tomography [60], etc..

In a Bayesian approach, the material properties are considered random variables and

their randomness (standard deviation) depends on the quality of the experimental

data and the mathematical model [87]. Because of this important property of the

Bayesian approach, it is used in the present research to estimate uncertainty in the
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reconstructions of both constant and concentration-dependent diffusion coefficient

and transference number.

Inverse modelling and uncertainty quantification with experimental data and the

Planck-Nernst model can sometime fail to provide valid results consistent with the

fundamental principles of thermodynamics [21]. In our research, we encountered

this problem when the inverse modelling framework estimated negative values of the

transference number. As we use a binary electrolyte, negative transference number

is impossible under the laws of thermodynamics [52], and therefore this signals the

loss of validity of the simple Plank-Nernst model. There are a number of possible

additional effects present in the system which may cause such nonphysical results.

Thus, an important property of inverse modelling with uncertainty quantification is

that it can provide insights about the accuracy of the model. We can utilize this

property to justify or invalidate the incorporation of certain physical effects in the

model.

The highlights of this research are the following:

• An inverse modelling framework to estimate both constant and concentration-

dependent material properties in the electrochemical system is developed and

validated [79]. This is a refinement of the approach from my Masters thesis [76].

• An uncertainty quantification method for inverse modelling based on Bayesian

statistics is developed and validated [78].

• The framework consisting of these two constituents is then used to:

– demonstrate the loss of validity of Planck-Nernst model at higher salt

concentrations,
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– show that accounting for ion-pairing effects occurring at such conditions

does not resolve the problem with the validity of the model [69] and

– demonstrate that the presence of dendrite growth in the electrolyte must

be accounted for in the model in order to obtain physically consistent

predictions [77].

The plan of this thesis is as follows: the electrochemical theory and the

mathematical model to describe the transport of Lithium in a battery are discussed

in Chapter 2; then the problem of estimating material properties is defined and the

methodology is outlined in Chapter 3; then in Chapter 4, the tools for uncertainty

quantification are introduced and validated; in Chapter 5 and 6 inverse modelling is

used to validate the models for ion transport in the presence of ion-pairing effects and

in the presence of dendritic growth, respectively. We outline important conclusions

from this study in chapter 7.
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Chapter 2

Material Transport in

Electrochemical Systems

2.1 Experimental Setup

The aim of the experiment is to capture the profile of the salt concentration of the

electrolyte in a simplified working model of a battery. Li-ion battery electrolyte is

typically made by dissolving a Lithium-based salt in an organic solvent resulting in the

dissociation of salt into positive ions (typically Li+) and negative ions. If a differential

electric potential is applied to this electrolyte, these ions migrate causing an electric

current. This ion migration is characterized by material properties associated with

the electrolyte. As our goal is to infer the material properties from their transport, a

simple experiment was set up by our collaborator Dr. Sergey Krachkovisky under the

supervision of Dr. Gillian Goward from the Department of Chemistry at McMaster

University. With his expertise in Nuclear Magnetic Resonance (NMR) imaging [41],

our collaborator designed and developed the experimental techniques described in
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Figure 2.1: NMR tube cell with Lithium electrodes.

this section. In our research, we use data from two different experimental setups

involving two different types of electrolytes and different experimental conditions.

2.1.1 Experiment I

The experimental setup shown in Fig. 2.1 is a simplified setup of a Li-ion

battery in which the space between the electrodes is increased to facilitate the

experiment to capture concentration profiles. Lab-manufactured electrolyte used

in this setup is Lithium bis(trifluoro-methanesulfonyl)imide (LiTFSI) dissolved in

propylene carbonate. The setup consists of a cylindrical cell with a length 20 mm.

The cell is filled with electrolyte of 1000 mol/m3 salt concentration and sealed with

metallic Lithium electrodes. An In-Situ NMR (Nuclear Magnetic Resonance) imaging

technique [66] was used to estimate the concentration of ions present in the electrolyte

when the current was passed through the cell. This experiment is hereafter referred

to as an “in-situ experiment”. In this experiment, an NMR probe was allowed to

scan through the region of the cell filled with electrolyte and measure the intensity of

electromagnetic radiation emitted by Fluorine atoms present in the TFSI− ion due

to the presence of a magnetic field. As it is assumed that the concentration of ions

is directly proportional to the intensity of electromagnetic wave emitted by them,
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the intensity measurement is an indirect measure of the concentration of TFSI− ions

present in the electrolyte. As the NMR probe scans through the length of the cell, it

measures the intensity of the emitted electromagnetic wave across the cell and thus

gives us the intensity profile of the entire cell as output.

Reference data were collected at the beginning of the experiment when no current

was flowing, as the concentration of the salt in the electrolyte was homogeneous

throughout the cell. Then, a constant current of 50µA was allowed to flow through

the cell and the intensity profile was collected at equal time intervals. The intensity

measurements obtained by our collaborators are shown in Fig. 2.2.

The measurement denoted ’0 hours’ in Fig.2.2 will serve as the reference corresponding

to the homogeneous 1000 mol/m3 concentration. With this measurement and

the assumption that the intensity is proportional to the concentration [41], the

concentration profiles at all subsequent time levels can be obtained. Fig. 2.3 shows

the corresponding concentration profiles obtained from electromagnetic wave intensity

measurements at various time points. In this figure, we can see that the concentration

values become polarized as time progresses, which is what we would expect to happen

when negative ions move towards the positively charged electrode.

2.1.2 Experiment II

The second experiment is very similar to the one described in section 2.1.1, except

that a higher current is passed through a commercial electrolyte to probe a larger

range of salt concentrations. The study is carried out under galvanostatic conditions

in a symmetric Li-Li electrochemical cell constructed from a 5 mm diameter NMR

tube, shown in Fig. 2.4, filled with a 1M LiPF6 solution in a binary mixture of
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Figure 2.2: Experiment I: Intensity distribution across the cell with different color
denoting measurement acquired at different time levels

12



PhD. Thesis - A. K. Sethurajan McMaster - CSE

Figure 2.3: Experiment I: Concentration profiles across the cell corresponding to
the intensity profiles shown in Fig. 2.2 with different colors denoting measurement
acquired at different time levels
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Figure 2.4: Experiment II: Concentration profiles obtained via in-situ magnetic
resonance imaging during a galvanostatic polarization experiment.

ethylene carbonate (EC) and dimethyl carbonate (DMC) with 1:1 volume ratios. A

constant current of 75 µA (corresponding to the current density of 382 µA cm−2)

was applied to the cell for 16 hours. Concentration profiles were acquired using

magnetic resonance imaging (MRI). For this experiment, we chose to monitor the 19F

nuclei, which significantly reduces the data acquisition time, since the relative NMR

sensitivity to a 19F nucleus is approximately 3 times higher than to a 7Li nucleus. One-

dimensional 19F NMR images were obtained using a gradient spin-echo pulse sequence

with the magnetic field gradient applied along the x-direction (i.e., along the axis of

the cell), with a 3 ms echo time and a 20 G/cm reading gradient[17]. In the course

of experiment 256 frequency-domain points were collected over the spectral width

of 200 kHz. The combination of the magnetic field gradient and spectral resolution

yielded a spatial resolution of 40 µm. A total of 64 scans with a relaxation delay
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Figure 2.5: Schematic figure illustrating the domain in which Planck-Nernst model is
defined.

of 3.5 s were collected for each image, resulting in an acquisition time of 4 minutes

per image. The imaging measurement sequence was repeated at 2-hour intervals

uniformly spread over the 16 hours duration of the galvanostatic experiment. The

experimentally obtained concentration profiles, hereafter denoted c̃(x, t), are shown

in Fig. 2.4 at different times t ∈ [0, 14 hours] as functions of the space coordinate x.

2.2 Planck-Nernst Model

In this section, we formulate the Planck-Nernst model. We make the following

modelling assumptions based on the experimental setup described in the previous

section in order to obtain the mathematical description of mass transport during the

galvanostatic experiment [79]:

A1: isothermal conditions;

A2: the lack of thermodynamic ideality (i.e., activity coefficient different from one)

and the effect of the solution viscosity accounted for by an a priori undetermined

dependence of the material properties on the salt concentration;

A3: ion transport occurs only in the axial direction x and transport in the radial

direction of the cell is negligible;
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A4: the electrolyte solution is homogeneous at the beginning of the experiment;

A5: the system satisfies local electrical neutrality at every location in the bulk,

which implies that c+ = c− = c, where c+ is concentration of positive ions, c−

is concentration of negative ions and c is the salt concentration;

A6: mass transport occurs only by diffusion and migration in the applied electric

field (i.e., convective transport is neglected);

A7: the cation flux at the two boundaries (x = 0 and x = L) corresponds to

the applied electric current and results in lithium deposition and stripping,

respectively [59, 55].

We begin by postulating the following constitutive equations for the fluxes of positive

ions F+ and negative ions F− in the spatial domain shown in Fig. 2.5:

F+ = −D+
∂c+

∂x
− κ+c+

∂φ

∂x
, (2.1a)

F− = −D−
∂c−
∂x

+ κ−c−
∂φ

∂x
, (2.1b)

where κ+ is the mobility of positive ion, κ− is the mobility of negative ion and φ is

electric potential. Based on the electrical neutrality condition A5, one can write the

charge conservation equation as

∂ (F+ −F−)

∂x
= 0. (2.2)
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The molar mass conservation equations for each of the two species in the system then

can be written as

∂c+

∂t
+
∂F+

∂x
= 0, (2.3a)

∂c−
∂t

+
∂F−
∂x

= 0. (2.3b)

The above equations (2.2) and (2.3) can be supplemented with the suitable boundary

condition at electrode-electrolyte interface. In electrochemical cells with lithium metal

electrodes, lithium ions are stripped from one electrode and deposited onto the other.

At the same time, anions cannot originate from a Li electrode or deposit onto one.

Therefore the appropriate boundary conditions for the ionic fluxes are

F+|x=0,L = j, (2.4a)

F−|x=0,L = 0. (2.4b)

The above governing equations, (2.3a)–(2.3b), together with the equation for charge

conservation (2.2), prescribed flux equation at the boundary (2.4), suitable boundary

conditions for the potential and initial conditions for the charged species and the

potential comprise a closed system of equations that could in principle be solved,

to determine the evolution of the species’ concentrations of c+(x, t) and c−(x, t).

However, in the following subsection we reformulate the system to eliminate the

potential and thus avoid solving the elliptic Poisson equation.

2.2.1 Reformulation of the Transport Model

The equation for the molar current density j is given in terms of the fluxes of the
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different charged species by

j = F+ −F−, (2.5)

where j can be calculated from applied current I using the following expression.

j =
I

FA
, (2.6)

where F is Faraday’s constant and A is the cross sectional area of the cell. Because

of the galvanostatic nature of the experiment the applied current I is constant. On

using (2.1a)–(2.1b) and the electroneutrality condition c+ = c− = c, the following

expression is derived for the gradient in the electric potential:

∂φ

∂x
= − (D+ −D−)

(κ+ + κ−) c

∂c

∂x
− j

(κ+ + κ−) c
. (2.7)

Taking the sum of equations (2.3a) and (2.3b), and once again using the

electroneutrality condition leads to

∂c

∂t
+

∂

∂x

(
F+ + F−

2

)
= 0. (2.8a)

On substituting the respective flux equations, (2.1a) and (2.1b), for F+ and F− and

using (2.7) to eliminate ∂φ/∂x we obtain the conservation equation for c, namely

∂c

∂t
=

∂

∂x

[(
D+ +D−

2
+

(D+ −D−)(κ− − κ+)

2(κ+ + κ−)

)
∂c

∂x
+

κ− − κ+

2(κ+ + κ−)
j

]
, (2.9)

Adding up the boundary conditions (2.4a) and (2.4b), substituting F+ and F− from
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the respective flux equations, (2.1a) and (2.1b), and then using (2.7) to eliminate

∂φ/∂x, we arrive at the following conditions for the gradient of c at the domain

boundaries

∂c

∂x

∣∣∣∣
x=0,L

= −
κ−−κ+
κ++κ−

j

D++D−
2

+ (D+−D−)(κ−−κ+)
2(κ++κ−)

. (2.10)

When combined with appropriate initial conditions for the concentrations of

positive/negative ions, the two boundary conditions (2.10) are sufficient to close the

model equations (2.9).

Finally, to simplify the expression (2.9) and (2.10) we define an effective diffusion

coefficient D, and the transference number t+ by

D =
D+ +D−

2
+

(D+ −D−)(κ− − κ+)

2(κ+ + κ−)
, (2.11a)

t+ =
κ+

κ+ + κ−
. (2.11b)

By using the above definitions in the governing equations (2.9), and in the

boundary conditions (2.10), and by specifying the initial conditions cinit we arrive

at the following closed system to be solved for c:

∂c

∂t
=

∂

∂x

[
D
∂c

∂x

]
− ∂t+

∂x
j in (0, L)× (0, T ], (2.12a)

∂c

∂x

∣∣∣∣
x=0,L

= −(1− t+)j

D
in (0, T ], (2.12b)

c|t=0 = cinit in [0, L], (2.12c)

We note that the effective diffusion coefficient D in (2.11a) does not correspond to

19



PhD. Thesis - A. K. Sethurajan McMaster - CSE

any particular species in the system but the resulting concentration c does represent

the concentration of both positive and negative ions because of the electroneutrality

condition (c = c+ = c−). In the next chapter, we formulate the inverse problem

to reconstruct D and t+ using the model (2.12) and experimental data described in

Section 2.1.
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Chapter 3

Inverse Problem for

Reconstruction of Transport

Coefficients

In this chapter, we formulate our inverse modelling technique by posing it as an

optimization problem. Then, we develop a gradient-based approach to the solution of

this optimization problem in which the gradients of the objective (error) functional

are obtained with adjoint analysis. In the later part of this chapter we validate the

inverse modelling technique using the method of manufactured solution.

3.1 Reconstruction as an Optimization Problem

A common approach to reconstruct material properties is to use some strategy

to minimize the least-square error between the experimental (c̃) and simulated
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concentration values (c). Thus, an optimization problem is posed where such a least-

square error is the cost functional that has to be minimized with respect to the

material properties, namely, the diffusion coefficient D and the transference number

t+, as the control parameters:

J (D, t+) =
1

2

∫ T

0

∫ L

0

(
c(x, t;D, t+)− c̃(x, t)

)2
dxdt, (3.1)

where the dependence of the concentration c(.;D, t+) on the material properties D

and t+ is given by the mathematical model (2.12). Depending on the allowed form

of material properties, the optimization problem can be stated in the following two

distinct ways:

P1 : [D̂, t̂+] = argmin
[t+,D]∈R2

J (D, t+) and

P2 : [D(c), t+(c)] = argmin
[t+(c),D(c)]∈U

J (D, t+),

The problem posed in P1 is simpler as the solution is obtained as a constant vector

in space R2. This type of inverse problem is rather straight-forward to deal with and

the solution methodology involves solving an unconstrained optimization problem in

a 2-dimensional vector space [38]. On the other hand, problem P2 is not trivial as

we need to identify D(c) and t+(c) as function of the concentration c. This chapter

is devoted to the development of a solution strategy for problem P2.

Problem P2 is an unconstrained optimization problem and hence the first-order

optimality condition requires the gradients of cost functional J with respect to control
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parameters to vanish. The symbols ∇DJ and ∇t+J will denote gradients of the cost

functional (3.1) with respect to D(c) and t+(c), respectively. With the help of these

gradients, local minimizers D̂(c) and t̂+(c) can be found using a simple gradient-

descent algorithm

D(n+1)(c) = D(n)(c)− ξ(n)
D ∇DJ

(
D(n)(c), t+(n)(c)

)
n = 1, 2, . . . ,

(3.2a)

t+(n+1)(c) = t+(n)(c)− ξ(n)

t+ ∇t+J
(
D(n+1)(c), t+(n)(c)

)
n = 1, 2, . . . ,

(3.2b)

[D(∞)(c), t+(∞)(c)] = [D̂, t̂+], (3.2c)

where ξ
(n)
D and ξ

(n)

t+ are the lengths of the descent steps at iteration n and D(1) and

t+(1) are the initial guesses. We emphasize that, apart from smoothness and the

behavior at the endpoints (i.e., for c → cα, cβ), no other a priori assumptions will

be made about the functional forms of D(c) and t+(c). Smoothness and continuity

at the endpoints of the material properties D(c) and t+(c) is ensured by choosing

to reconstruct them using the gradient of cost functional defined in a Sobolev space,

which is discussed in detail in Chapter 3.2.1.

There are many ways of formulating a gradient-descent algorithm for problem P2

and Eqn. (3.2) is just one possibility. In this approach the values for D(c) and t+(c)

are updated one after the other based on the Gauss-Seidel iteration for solving linear

systems.

In our study, the initial guess for the solution of problem P2 via iterations (3.2) is

taken as the solution of problem P1, which will help us to avoid sub-optimal local
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minima, i.e.,

[D(c)(1), t+(c)(1)] = [D̂, t̂+]. (3.3)

3.2 Gradients of Cost Functional

Gradients of the cost functional in an appropriate functional space are the key

ingredient for solving problem P2. The gradients of the error functional (3.1) with

respect to concentration-dependent properties D(c) and t+(c) can be calculated

starting from the directional derivatives defined as follows (to simplify the notation,

we will not indicate the dependence on c in this section, for example D(c) and t+(c)

will be denoted as D and t+, respectively.)

J ′([D, t+];D′) = lim
ε→0

ε−1
[
J ([D + εD′, t+])− J ([D, t+])

]
, (3.4a)

J ′([D, t+]; t+
′
) = lim

ε→0
ε−1
[
J ([D, t+ + εt+

′
])− J ([D, t+])

]
, (3.4b)

where D′ and t+
′
are the perturbations of the control variables D and t+, respectively.

In order to identify expressions for the gradients of the error functional as elements

of a functional (Hilbert) space, we use the Riesz representation theorem [47]

J ′([D, t+];D′) =
〈
∇DJ , D′

〉
X
, (3.5a)

J ′([D, t+]; t+
′
) =

〈
∇t+J , t+

′
〉
X
, (3.5b)

where 〈·, ·〉X denotes the inner product in the functional space X (to be specified

below). To fix attention, we begin with the directional derivative (3.4a) with respect
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to the diffusion coefficient D which can be evaluated as follows

J ′([D, t+];D′) =

NT∑
i=1

∫ T

0

∫ L

0

[
c(x, t; [D, t+])− c̃(x, t)

]
δ(t− ti)c′(x, t;D,D′) dx dt,

(3.6)

where δ(·) is the Dirac delta distribution and c′ is the solution of the PDE system

obtained as a perturbation of the governing system (2.12), see (3.9) below. Now the

following transformation is invoked

V (x, t) =

∫ c(x,t)

cα

D(s) ds, x ∈ [0, L] and t ∈ [0, T ], (3.7)

where cα = mint∈[0,T ], x∈[0,L] c(x, t). We will define the identifiability interval I =

[cα, cβ], where cβ = maxt∈[0,T ], x∈[0,L] c(x, t), as the range of concentration values

spanned by solutions of (2.12). To simplify the notation, we also denote

Q(x, t) =
(1− t+)I

FA
. (3.8)

Using these definitions, the perturbation system takes the form

∂c′

∂t
=

∂

∂x

(
∂V ′

∂x
+Q′

)
in (0, L)× (0, T ], (3.9a)(

∂V ′

∂x
+Q′

)∣∣∣∣
x=0,L

= 0 in [0, T ], (3.9b)

c′|t=0 = 0 in [0, L], (3.9c)

25



PhD. Thesis - A. K. Sethurajan McMaster - CSE

where the perturbation variables V ′ and Q′ are expressed as

V ′(x, t) =

∫ c(x,t)

cα

D′(s)ds+D(c)c′(x, t;D′), (3.10)

Q′(x, t) = −
[
dt+

dc
c′(x, t;D′)

]
I

FA
. (3.11)

We now observe that directional derivative (3.6) is not in a form consistent with Riesz

representation (3.5a), because the perturbation variable D′ does not appear explicitly

in it, but is instead hidden (as V ′, cf. (3.10)) in the perturbation system (3.9). In

order to transform the directional derivative (3.6) into the Riesz form (3.5a) we will

employ adjoint analysis.

Multiplying Eqn. (3.9a) by adjoint variable c∗ and integrating over the time and

space domain, we get

∫ L

0

∫ T

0

∂c′

∂t
c∗ dt dx =

∫ T

0

∫ L

0

[
∂2V ′

∂x2
c∗ +

∂Q′

∂x
c∗
]
dx dt. (3.12)

By re-organizing Eqn. (3.12) and integrating it by parts with respect to both space

and time we obtain

∫ L

0

{
[c′c∗]T0 −

∫ T

0

∂c∗

∂t
c′dt

}
dx

=

∫ T

0

{[
∂V ′

∂x
c∗
]L

0

−
∫ L

0

∂V ′

∂x

∂c∗

∂x
dx+ [Q′c∗]L0 −

∫ L

0

Q′
∂c∗

∂x
dx

}
dt. (3.13)

Using Eqn. (3.9a)–(3.9c) we can eliminate a number of boundary terms after which
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we integrate the term with ∂V ′

∂x
by parts one more time, so that we arrive at

∫ L

0

{
[c′c∗]t=T −

∫ T

0

∂c∗

∂t
c′dt

}
dx

=

∫ T

0

{
−
[
∂c∗

∂x
V ′
]L

0

+

∫ L

0

V ′
∂2c∗

∂x2
dx−

∫ L

0

Q′
∂c∗

∂x
dx

}
dt. (3.14)

Now we assume that the adjoint system (defined on the same domain as the governing

system (2.12)) is in the form

−∂c
∗

∂t
= D

∂2c∗

∂x2
+
dt+

dc

I

FA

∂c∗

∂x
+

NT∑
i=1

(c− c̃) δ(t− ti), (3.15a)

∂c∗

∂x

∣∣∣∣
x=0,L

= 0, (3.15b)

c∗|t=T = 0 (3.15c)

which reduces identity (3.14) to the following expression for the directional derivative

of the error functional (see (3.6))

J ′([D, t+];D′) =

∫ T

0

∫ L

0

[∫ c(x,t)

cα

D′(s)ds

]
∂2c∗

∂x2
dx dt. (3.16)

We remark that adjoint system (3.15) is in fact a terminal value problem, cf. (3.15c),

which means that it needs to be integrated backwards in time (however, since the term

with the time derivative has a negative sign, the problem is well-posed). Although

this is not the function space we will ultimately use in the computations, for now we

set X = L2(I) meaning that our function space consists of square-integrable functions
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of the concentration c. The corresponding inner product, needed in (3.5a), is

〈
∇L2

D J , D′
〉
L2(I)

=

∫ cβ

cα

∇DJ (c)D′(c) dc. (3.17)

Changing the order of integration in (3.16) and employing (3.17) we arrive at the

following expression for the L2 gradient of the error functional

∇L2

D J (s) =

∫ T

0

∫ L

0

χ[cα,c(x,t)](s)
∂2c∗

∂x2
dx dt, s ∈ [cα, cβ], (3.18)

where χ[a,b] =


1, s ∈ [a, b]

0, s /∈ [a, b]

is the characteristic function.

Similarly, we can derive the gradient of cost functional with respect to transference

number (for simplicity of notation, the dependence on the concentration is dropped)

by starting with introducing variables V and Q as defined in Eqn. (3.7) and (3.8). The

perturbation system for c′ is the same as Eqn. (3.9), but with the following definitions

V ′(x, t) = D(c)c′(x, t; t+
′
), (3.19)

Q′(x, t) = −
[
dt+

dc
c′(x, t; t+

′
)

]
i

FA
+
[
t+
′
] i

FA
. (3.20)

As the next step, we multiply the perturbation equation on both sides with the second

adjoint variable c∗∗ and integrate over space and time. Then, we perform integration

by parts and use boundary and initial conditions to eliminate the boundary terms.
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The resulting identity is given below

∫ L

0

[
[c′c∗∗]t=T −

∫ T

0

∂c∗∗

∂t
c′dt

]
dx

=

∫ T

0

[
−
[
∂c∗∗

∂x
V ′
]L

0

+

∫ L

0

V ′
∂2c∗∗

∂x2
dx−

∫ L

0

Q′
∂c∗∗

∂x
dx

]
dt. (3.21)

Using, V ′ and Q′ from (3.19), we can finally obtain the second adjoint system as

−∂c
∗∗

∂t
= D

∂2c∗∗

∂x2
+

(
dt+

dc

)
i

FA

∂c∗∗

∂x
+ (c− c̃) , (3.22a)

∂c∗∗

∂x

∣∣∣∣
x=0,L

= 0, (3.22b)

c∗∗|t=T = 0. (3.22c)

With this assumed form of the adjoint system, we can express the directional

derivative of cost functional (3.1) with respect to t+(c) as follows

J ′(D, t+; t+
′
) =

∫ T

0

∫ L

0

∂c∗∗

∂x
t+
′
dxdt. (3.23)

Using the Riesz representation theorem, the gradient of the cost functional in the L2

space can be expressed as

∇L2

t+J (s) =

∫ T

0

∫ L

0

δ(s− c(x, t))∂c
∗∗

∂x
dxdt, (3.24)

where δ(s − c) is the Dirac delta distribution. Eqn. (3.18) and (3.24) are the

expressions for the gradient of cost functional in L2 space. However, before they

can be used in iterations (3.2), their smoothed versions must be obtained.
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3.2.1 Gradient in Sobolev Space

In the previous section, we derived gradient expressions in the L2 space. However,

as pointed out in earlier studies [14, 13], such gradients are not suitable for

the reconstruction of material properties, because they are undefined outside the

identifiability region I and they can potentially be discontinuous. Therefore, in order

to ensure suitable smoothness and domain of definition of the gradients, we will define

them in the Sobolev space H1(I) of functions of the concentration c with square-

integrable derivatives, i.e., in problem P2 we set X = H1(I). This space is endowed

with the following inner product, cf. (3.5a)–(3.5b) (as we did above, we focus here on

∇DJ with the transformation for ∇t+J being analogous)

〈
∇H1

D J , D′
〉
H1(I)

=

∫ cβ

cα

(
∇H1

D J D′ + `2d∇H1

D J
ds

dD′

ds

)
ds, (3.25)

where ` is a parameter with the meaning of a “length-scale”. Invoking again Riesz’

representation theorem [47], now for the inner product (3.25) in the Sobolev space

H1, we obtain from (3.4a)

J ′([D, t+];D′) =
〈
∇L2

D J , D′
〉
L2

=
〈
∇H1

D J , D′
〉
H1
. (3.26)

Using integration by parts we deduce from (3.25)–(3.26)

∫ cβ

cα

∇L2

D J D′(s) ds =

∫ cβ

cα

(
∇H1

D J D′ − `2d
2∇H1

D J
ds2

D′

)
ds+

[
d∇H1

D J
ds

D′

]s=cβ
s=cα

(3.27)
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and then, recognizing that the perturbation D′ ∈ H1(I) is arbitrary except for the

assumption that it satisfies the homogeneous Neumann boundary conditions at the

endpoints c = cα, cβ, we arrive at the following second-order boundary value problem

defining the new smooth gradient ∇H1

D J in terms of the L2 gradient obtained in

(3.18):

∇H1

D J − `2d
2∇H1

D J
ds2

= ∇L2

D J on (cα, cβ), (3.28a)

d

ds
∇H1

D J = 0 c = cα, cβ. (3.28b)

Transformation of the L2 gradient into H1 Sobolev gradient can be interpreted as a

low-pass filtering which suppresses high-frequency noise and this property is necessary

to eliminate the discontinuities which may potentially arise in the L2 gradients [68].

The degree of noise filtration is determined by the Sobolev parameter ` with higher

values of ` resulting in smoother Sobolev gradients. The Sobolev parameter ` is

chosen by trial and error and it is usually the lowest possible value for which the

reconstructed material properties are monotonic as a function of c. The boundary

conditions (3.28b) imply a certain behavior of the reconstructed material properties

D̂(c) and t̂+(c) at the endpoints of the interval [cα, cβ], namely, that their derivatives

with respect to c are unchanged as compared to the initial guesses D(1) and t+ (1),

cf. (3.2c).

3.3 Solution of Optimization Problem P1

Obtaining optimal D̂ and t̂+ as constants (problem P1) is the first step in the

reconstruction of D(c) and t+(c) as functions of the concentration and they serve
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as the initial guess for the problem P2. This first step in itself can give us insights

about the material used and can also provide a credible validation of the model

and experimental technique [59]. This constant parameter optimization is carried

out using the in-built MATLAB function fminsearch, which uses a simplex search

method. Initial guess for D is given in the order of 10−10 and for t+ in the range

between 0 and 1. The surface plot of the dependence of the cost functional J (D, t+)

on D and t+ is also shown in Fig. 3.1 to demonstrate the presence of unique minima.

3.4 Solution of Optimization Problem P2

Reconstructing the concentration dependent material properties is D(c) and t+(c) is

a task that involves various steps. They are described in following sections.

3.4.1 Gradient Validation

As we are using an optimization approach to reconstruct material properties, the

gradient of the cost functional with respect to material properties plays a key role in

this study. So, it is very important to make sure that the gradients which are derived

from the adjoint analysis in Section 3.2 (cf. (3.18) and (3.24)) are accurate. To obtain

the gradient of the cost functional with respect to the control variable, we need to

solve the governing PDE (2.12) and the adjoint PDEs (3.15) and (3.22), and then

evaluate the expressions for gradient (3.18) and (3.24)) .

To validate the gradients derived using adjoint analysis, we use a technique called the

“κ-test”. In the κ-test an arbitrary perturbation of the control variable is assumed
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Figure 3.1: Surface plot of cost functional (3.1) value plotted against D and t+ for
P1 problem
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Figure 3.2: κ test to validate ∇L2
D J using three different perturbation function D′

represented in a) linear and b) log scale

and the corresponding directional derivative approximated using finite differences is

compared with its Riesz representation that involves the gradient with respect to the

control variable in the L2 space. The ratio of these two quantities is defined as κ(ε),

where ε is the size of the perturbation. For the control variable D(c) we can define

κ(ε) as

κ(ε) =
ε−1 [J (D + εD′)− J (D)]∫ cβ

cα
∇J L2

D (s)D′(s)ds
, (3.29)

where D′ is the perturbation. If the gradients are perfectly accurate, the parameter

κ(ε) should be equal to one for all ε, but as we use approximations while solving

PDEs and while evaluating the expression for gradient, we expect the values of κ(ε)

to be only close to one. Fig. 3.2 shows the κ-test result that validates the gradient

∇L2
D J . Since the validation of ∇L2

D J is to make sure that the adjoint analysis and

its implementation are correct, the κ test was carried out for a test problem with

“manufactured experimental” data. For κ test, three different D′ functions are used

34



PhD. Thesis - A. K. Sethurajan McMaster - CSE

10−15 10−10 10−5

1

1.1

1.2

1.3

1.4

ε

κ

 

 

10−15 10−10 10−5 100

−2

−1.5

−1

−0.5

0

ε

lo
g|

1−
κ 

|

 

 
t
+
’=(C/1000)2

t
+
’=1−exp(−C/1000)

t
+
’=1

t
+
’=(C/1000)2

t
+
’=1−exp(−C/1000)

t
+
’=1

Figure 3.3: κ test to validate ∇L2

t+J using three different perturbation function
represented in linear and log scale

(exponential, quadratic and constant) and are plotted as three distinct curves in

Fig. 3.2. As we expect, the κ values are close to one for fairly large range of ε.

The accuracy drops rapidly due to round-off errors for small values of ε and due

to truncation errors for large values of ε. The same test for the gradient ∇L2

t+J is

conducted and the results are presented in Fig. 3.3. These tests are carried out

for the governing system (2.12) described in chapter 2 and during various stages of

code development. Satisfactory results of the κ-test indicate that the cost functional

gradients are sufficiently accurate to be used for the optimization algorithm.

3.4.2 Reconstruction Algorithm

As discussed extensively, the cost functional (3.1) and its gradients play a central role

in the reconstruction of material properties (diffusion coefficient and transference

number) via the solution of problem P2. The reconstruction algorithm is built
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based on a gradient descent method (3.2) using the gradients derived by solving

the governing Eqn. (2.12) along with adjoint Eqn. (3.15) and (3.22). The conjugate

gradient method is used as an accelerated optimization approach for its simplicity and

its proven ability to reduce computational time [80]. The Fletcher-Reeves conjugate

direction g[∇J ] is given by,


g0 [∇J ] = ∇J0

gn [∇J ] = ∇Jn + ∇J Tn ∇Jn
∇J Tn−1∇Jn−1

gn−1 [∇J ] n = 1, 2, 3, ..,

(3.30)

where n is iteration number. Along with the conjugate gradient method, Brent’s

line-minimization technique is used to determine the optimal step length ξn in each

iteration [13]. With consideration of all above mentioned components, the following

algorithm is employed for the reconstruction of material properties by solving the

sequence of problem P1 and P2.
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Algorithm 1 : Iterative minimization algorithm for finding material properties as a
function of concentration.
Input: εJ - adjustable tolerance, l(n) - Sobolev parameter as function of iteration
number, c̃(x, t) - Experimental concentration values, D̃, t̃+ - constant initial guesses
for diffusion coefficient and transference number
Output: D(c) and t+(c)

Solution of problem P1, [t̂+ D̂] ← argmin
t+,D∈R2

J using MATLAB function fminsearch

D(0) ← ones(c)×D̂. Initial guess.

t+(0) ← ones(c)×t̂+. Initial guess.

n← 1

repeat

solve governing Eqn. (2.12) and adjoint Eqn. (3.15)

evaluate ∇L2
D J and solve (3.28) to determine the Sobolev gradient ∇H1

D J

compute the conjugate direction g
[
∇H1

D J
]

using (3.30)

perform line minimization τ̂ ← argmin
τ

{
J
(
D(n−1) − τ g

[
∇H1

D J
]
, t+(n−1)

)}
D(n) ← D(n−1) − τ̂ g

[
∇H1

D J
]

solve governing Eqn. (2.12) and adjoint Eqn. (3.22)

evaluate ∇L2

t+J and solve (3.28) to determine the Sobolev gradient ∇H1

t+ J

compute the conjugate direction g
[
∇H1

t+ J
]

using (3.30)

perform line minimization τ̂ ← argmin
τ

{
J
(
D(n), t+(n−1) − τ g

[
∇H1

t+ J
])}

t+(n) ← t+(n−1) − τ̂ g
[
∇H1

t+ J
]

n← n+ 1

until |J (D(n), t+(n))− J (D(n−1), t+(n−1))| < εJ |J (D(n), t+(n)|

To gain insight about the performance of Algorithm 1, a validation problem is

set up and the target concentration values are “manufactured” using an arbitrarily

assumed concentration dependent diffusion coefficient function and transference
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Figure 3.4: Solution of problem P2 with only (a) concentration-dependent diffusivity
D(c) and (b) concentration dependent transference number t+(c) as unknowns. For
validation purposes manufactured concentration measurements are used. The vertical
lines indicate the boundaries of identifiability region.

number (resembling the actual dependence of D and t+ on c). The optimization to

reconstruct the diffusion coefficient is carried out with manufactured concentration

values using Sobolev gradients. The results are shown in Fig. 3.4. It is clear form

the figure that the reconstructions are sufficiently accurate and closely match the

target values of D(c) and t+(c). In the next chapter we will discuss how to quantify

uncertainty of these reconstructed material properties.
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Chapter 4

Uncertainty Quantification

This Chapter is derived from the results published in the article which appeared in

the Journal of Computational Chemistry [78]. My role in this effort was to develop

and validate the computational framework for uncertainty quantification. Our

collaborators Dr. Sergey Krachkovskiy and Dr. Gillian Goward from the Department

of Chemistry, McMaster University, provided us with the experimental data. This

chapter concerns an important aspect of this research as it addresses the question

of how uncertainty quantification can be incorporated into the reconstruction of

unknown material properties via inverse modelling.

4.1 Introduction

In this study, we develop and validate a probabilistic framework for quantifying

uncertainty in the reconstruction of unknown material properties of the

electrochemical system from experimental data using inverse modelling. In our

research, the experimental measurements are usually contaminated with noise. An
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important question is how this affects the accuracy of the reconstructed material

properties. The reason is that inverse problem often tend to be “ill-posed” [30],

meaning that small modifications of the input data (measurements) may result

in significant changes in the obtained solution (here, the reconstructed material

properties). Therefore, in order to have confidence in the obtained results, it

is necessary to quantify how the measurement uncertainty translates into the

uncertainty of the reconstructed material properties and, if more than one quantity is

reconstructed (as was the case in [79]), whether the uncertainties of the reconstructed

quantities are mutually correlated. An emerging approach which casts the problem

of uncertainty quantification in probabilistic terms is Bayesian inference. In this

framework, which blends prior hypotheses on unknown parameters with information

from measurements in a systematic manner, the reconstructions of parameters are

given in terms of suitable probability densities. General references to Bayesian

inference include [81, 91], whereas a more general perspective which also involves

continuous problems described by differential equations was developed in [86].

Recently, there has been a growing interest in Bayesian approaches to the solution

of inverse problems with applications in electrical impedance tomography [37],

atmospheric science [10, 12], contaminant source identification [50], ground water

modelling [72], etc.. However, in the field of electrochemistry such techniques are

uncommon, although they have been applied to quantify uncertainty in diagnostics

and prognostics of batteries [73], and state estimation in battery management

systems [74]. The proposed approach is quite general and as such may be applicable to

a broad range of similar problems in chemistry governed by macroscopic models. The

main novelty, and at the same time the largest difficulty which had to be overcome,
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is that the uncertainty needs to be quantified for material properties reconstructed in

a continuous setting.

The structure of this chapter is as follows: in the next section we describe the

class of electrochemical systems of interest to us, review their models and the inverse-

modelling approach, and then introduce the Bayesian formulation of uncertainty

quantification; the proposed approach is validated using synthetic data in Section

4.3.1, whereas an application involving actual experimental data is presented in

Section 4.3.2; conclusions and final remarks are deferred to Section 4.5.

4.2 Methodology

In this section we describe different constituents of our methodology: we start with

the measurement data, then introduce the Planck-Nernst system as a mathematical

model for the problem, after that we review the inverse-modelling approach which is

followed by the presentation of a Bayesian strategy for uncertainty quantification.

4.2.1 Experimental Measurements

Here we recall the setup of ‘Experiment I’ from Chapter 2, Section 2.1.1, where the

imaging measurement sequence was repeated at 2-hour intervals uniformly spread

over 16 hours duration of the galvanostatic experiment. The experimentally obtained

concentration profiles, hereafter denoted c̃(x, t) in this chapter, are shown in Fig. 4.1

at different times t ∈ [0, 16 hours] as functions of the space coordinate x. Further

details concerning this experiment can also be found in [79].
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Figure 4.1: Experimental setup and the measured concentration data c̃(x, t) used in
the present study.

4.2.2 The Planck-Nernst Model

Here we recall the classical Planck-Nernst model used to describe the transport of

charged species in dilute electrolytes from Chapter 2 and based on the assumptions

outlined in Section 2.2, we consider a 1D problem with the spatial coordinate

x ∈ [0, L], where L is the length of the electrolyte filled region in the cell, and time

t ∈ [0, T ], where T denotes the duration of the experiment. The assumptions lead

to the following partial differential equation (PDE) describing mass transport in the

electrolyte solution (4.1a), subject to the boundary conditions (4.1b) and the initial

condition (4.1c):

∂c

∂t
=

∂

∂x

[
D
∂c

∂x
+

(1− t+) I

FA

]
in (0, L)× (0, T ], (4.1a)

∂c

∂x

∣∣∣∣
x=0,L

= −(1− t+) I

DFA
in (0, T ], (4.1b)

c|t=0 = cinit in (0, L), (4.1c)
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The Fickian diffusion coefficient D and the transference number t+ are considered

unknown and will be reconstructed from the experimental data c̃ using the inverse

modelling approach described in the following subsection. To simplify our notation,

we will denote the pair of unknown material properties m, regardless of whether

these properties are constant (m = [D, t+]), or concentration-dependent (m =

[D(c), t+(c)]). The solutions of system (4.1) then define a map L from the material

properties m to the space and time-dependent concentrations, i.e.,

c(x, t;m) = L(m), 0 ≤ x ≤ L, 0 ≤ t ≤ T. (4.2)

4.2.3 Inverse Modeling

Here we briefly recall the formulation of the inverse modelling technique as an

optimization problem. The error functional can thus be represented as

J (m) =
1

2

NT∑
i=0

∫ L

0

[c(x, ti;m)− c̃(x, ti)]2 dx, (4.3)

where NT is the number of time points ti where the concentration profiles are acquired

during the experiment. We will consider two distinct formulations corresponding,

respectively, to constant and to concentration-dependent material properties.

P1 : [D̂, t̂+] = argmin
[t+,D]∈R2

J ([D, t+])

P2 : [D̂(c), t̂+(c)] = argmin
[t+(c), D(c)]∈X

J
(
[D(c), t+(c)]

)
,
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where X denotes a suitable function space to which the pair [D(c), t+(c)] belongs.

The functions D(c) and t+(c) are defined on the interval [cα, cβ] bounded by some

minimum and maximum concentrations cα and cβ, respectively. The approach to

solve P2 has the general form of iterative gradient-based minimization

D(n+1)(c) = D(n)(c)− ξ(n)
D ∇DJ

(
D(n)(c), t+(n)(c)

)
n = 1, 2, . . . ,

(4.4a)

t+(n+1)(c) = t+(n)(c)− ξ(n)

t+ ∇t+J
(
D(n+1)(c), t+(n)(c)

)
n = 1, 2, . . . ,

(4.4b)

[D(∞)(c), t+(∞)(c)] = [D̂, t̂+], (4.4c)

where ∇DJ and ∇t+J are the gradients (sensitivities) of error functional (4.3) with

respect to perturbations of, respectively, D(c) and t+(c), whereas ξ
(n)
D and ξ

(n)

t+ are the

corresponding lengths of the descent steps in the two directions. The calculation of

gradients via adjoint analysis is explained in Section 3.2, whereas additional details

and validation of the optimization algorithm are provided in Section 3.4.

The estimates of the material properties obtained by solving problems P1 and

P2 are optimal, in the sense of minimizing the error with respect to measurements,

cf. (4.3). Such inverse problems are however known to be often “ill-posed”, meaning

that the presence of noise in the measurement data may significantly affect the

reconstructed solution [30, 89]. The sensitivity of the obtained reconstructions to

perturbations of the data may be probed by performing a Monte-Carlo analysis [79]

in which problems P1 and P2 are solved repeatedly using measurements c̃ artificially

contaminated with independent noise samples with an assumed (e.g., normal)
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distribution and magnitude determined by the known size of the measurement

errors. While this approach provides valuable insights about the sensitivity of the

reconstructed material properties to noise in the data, it does not quantify their

uncertainty in the sense of indicating which values of the material properties are

most likely. A solution to this problem is presented in the next subsection.

4.2.4 Bayesian Approach to Uncertainty Quantification

We assume here that both the measurements c̃(x, t) and the reconstructed material

properties [D, t+], or [D(c), t+(c)] denoted as m, are random variables characterized

by certain probability density functions (PDFs). More precisely, in the case of

concentration-dependent properties, D(c) and t+(c) are given by suitable probability

distributions for all concentration values c ∈ [cα, cβ] and the same also applies to the

measurements c̃ for different values of x ∈ [−0, L] and t ∈ [0, T ].

It is important to note that in Bayesian framework, the probabilities are

quantifying a state of knowledge and in our case the state of knowledge or how

well we know about the material properties given the evidence of the experimental

data. This framework also is elegant and powerful in a way that it is able to account

for various sources of uncertainty. The probability distribution of the reconstructed

material properties are given in terms of the posterior probability P(m|c̃), which is the

probability of m attaining a certain value (in problem P2, for a given concentration

c) given observations c̃, and can be expressed using Bayes’ rule [86, 81, 91]

P(m|c̃) =
P(c̃|m)P(m)

P(c̃)
, (4.5)
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where P(m) is the prior distribution reflecting our a priori assumptions about the

solution, P(c̃|m) is the likelihood of observing particular experimental data for a given

set of material properties, whereas P(c̃) is a normalizing factor.

In terms of the prior distribution P(m), one can take the distribution of m obtained

by performing a Monte-Carlo sensitivity analysis of the deterministic inverse problems

P1 and P2, as described at the end of section 4.2.3. This is accomplished by solving

problems P1 and P2 N ≥ 1 times, each time using the original measurements c̃

perturbed with normally-distributed noise with a magnitude given by the known

size of experimental errors. The obtained material properties m are then used to

construct the prior distribution P(m). This step appears as STAGE 1 in Algorithms

2 and 3 below. We note that this analysis does not account for how good the fits are,

in terms of the value of the error functional (4.3), for various samples of the noise

perturbing the measurements. An alternative, neutral, approach would be to take

“uninformative” priors given by uniform distributions of m.

As regards the likelihood function, the following ansatz is typically adopted in

Bayesian inference [86, 81, 91]

P(c̃|m) ∝ e−J (m), (4.6)

which expresses the assumption that for a given set of material properties m,

measurements resulting in large values of the error functional (4.3) are less likely

to be observed. The likelihood function P(c̃|m) is approximated by sampling the

distribution in (4.6) using the Metropolis-Hastings algorithm [16] to produce M

samples. This algorithm is based on the Markov-Chain Monte-Carlo (MCMC)

approach [32] employed to sample form the probability distribution of m and at each
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step involves the solution of the governing system (4.1) for modified (trial) material

properties m∗ followed by the evaluation of the error functional (4.3). At each step,

the algorithm moves in the probability space collecting samples from the probability

distribution (4.5). A move in the probability space is accepted or rejected based on

a sample acceptance ratio γ defined based on the posterior distribution (4.5) (see

Algorithm 2 and 3). If one attempts to move to a point in the probability space

that is more probable than the existing point, the move is accepted. On the other

hand, if one attempts to move to a less probable point, the algorithm rejects the

move with some probability based on the steepness of the probability decrease in the

given direction. Thus, the trajectory tends to sample frequently from high-probability

regions while occasionally also sampling from low-probability regions. The MCMC

algorithm involves a “burn-in” process in which a certain number (usually the first

10%) of the total numberM of accepted samples is discarded to avoid outliers common

at initial stages.

While application of the Metropolis-Hastings algorithm is fairly straightforward

in the finite-dimensional setting of problem P1, it is more delicate in the continuous

setting of problem P2. The main difficulty is in constructing random perturbations

of the concentration-dependent material properties D(c) and t+(c) in a way that they

will remain smooth enough for the Planck-Nernst system (4.1) to be well defined

(normally, these functions should be at least once continuously differentiable and this

issue is also addressed in Chapter 3). This is achieved by parameterizing the material
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properties in terms of their truncated cosine-series representations

mP (c) =
m̂0

2
+

P∑
k=1

m̂k cos

[
2πk(c− cα)

cβ − cα

]
, c ∈ [cα, cβ] (4.7)

where m̂k =
2

cβ − cα

∫ cβ

cα

m(c) cos

[
2πk(c− cα)

cβ − cα

]
dc, k = 1, . . . , P

and the number of terms P is a discretization parameter. The choice of the cosine-

series expansion is dictated by the assumed homogeneous behavior of D(c) and

t+(c) at c = cα, cβ. The Metropolis-Hastings algorithm is initialized with a function

mP (c) for which the cosine-series coefficients in (4.7) vanish as |m̂k| ∼ O(k−2). New

trial samples are generated by multiplying the cosine-series coefficients m̂1, . . . , m̂P

by independent random numbers ηk, k = 1, . . . , P , chosen such that |ηk| < C for

all k, where C > 0 is a parameter fixed based on the acceptance rate of the

Metropolis-Hastings algorithm. For sufficiently large P this approach approximates a

continuous random distribution while preserving the required smoothness of the trial

material properties [D(c), t+(c)]. The proposed computational approach for Bayesian

uncertainty quantification is summarized as Algorithms 2 and 3 for the problems

with constant and concentration-dependent material properties, respectively, and is

validated in Section 4.3.1. A discussion about the choice of prior distribution is

presented in Section 4.4.
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Algorithm 2 : Two-stage algorithm to estimate the posterior probability distribution of constant material
properties
MATLAB Functions:

normrnd(M,S) — MATLAB function that samples from normal random distribution with mean M and standard
deviation S,

fminsearch— MATLAB function that uses Nelder-Mead simplex algorithm to minimize cost function.
Input:

c̃ — experimental data,
N,M — numbers of samples generated in STAGE 1 and STAGE 2
εJ — tolerance in the solution of problem P1 in STAGE 1

m(0) — initial guess in the solution of problem P1 in STAGE 1
m̄(0) — initial guess sample in STAGE 2
C — parameter controlling randomization in in STAGE 2

Output:
an approximation of the posterior probability distribution P(m|c̃)

STAGE 1: Construct N samples for prior distribution P(m)
repeat

perturb measurements c̃ with normally-distributed noise (magnitude given by the size of
experimental errors)
find m̂ by solving problem P1 (using function fminsearch and initial guess m(0))
store m̂ as a sample for prior distribution

until N prior distribution samples are obtained
assimilate samples to construct P(m̄)

STAGE 2: Construct M samples for posterior distribution P(m|c̃)
construct initial sample m̄(0)

k=0
repeat

create a new trial position m̄∗ = m̄k + normrnd(0̄, C)

calculate acceptance ratio γ = P(m̄(∗)|c̃)
P(m̄(k)|c̃)

if γ ≥ rand(1): m̄(k+1)=m̄(∗); k=k + 1,
else: discard m(∗)
k = k + 1

until M +M/10 samples are obtained for posterior distribution
discard the first M/10 samples
assimilate the remaining samples to construct posterior probability distribution P(m|c̃)
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Algorithm 3 : Two-stage algorithm to estimate the posterior probability distribution of constant material
properties
MATLAB Functions:

normrnd(M,S) — MATLAB function that samples from normal random distribution with mean M and standard
deviation S,

fminsearch— MATLAB function that uses Nelder-Mead simplex algorithm to minimize cost function.
Input:

c̃ — experimental data,
N,M — numbers of samples generated in STAGE 1 and STAGE 2
εJ — tolerance in the solution of problem P2 in STAGE 1
m̂ — initial guess in the solution of problem P2 in STAGE 1, (here the solution of problem P1 is used as m̂)
m̄i — initial sample in STAGE 2 (chosen such that m̄i ∈ X )
C — parameter controlling randomization in in STAGE 2

Output:
an approximation of the posterior probability distribution P(m|c̃)

STAGE 1: Construct N samples for prior distribution of P(m̄)
repeat

perturb measurements c̃ with normally-distributed noise (magnitude given by the size of
experimental errors)
m̄(0)=m̂ (initial guess)
n=1
repeat

solve governing system (4.2)
evaluate ∇m̄J .
compute the conjugate direction g [∇m̄J ]

perform line minimization: τ
(n−1)
m̄ = argmin

τ

{
J
(
m̄(n−1) − τ g [∇m̄J ] ,

)}
update: m̄(n) = m̄(n−1) − τ (n−1)

m̄ g [∇m̄J ]
n=n+ 1

until |J (m̄(n))− J (m̄(n−1))| < εJ |J (m̄(n)|
store m̄(n) as prior distribution sample

until N prior distribution samples are obtained
assimilate samples to construct P(m̄).
STAGE 2: Construct M samples for posterior distribution P(m̄|c̃)
m̄(0)=m̄i

k=1
repeat

create a new trial position f̄∗ = f̄k × normrnd(0̄, C)
using inverse Fourier transform obtain m̄(∗)

calculate acceptance ratio γ = P(m̄(∗)|c̃)
P(m̄(k)|c̃)

if γ ≥ rand(1): m̄(k+1)=m̄(∗); k=k + 1,
else: discard m̄(∗)

until M+M/10 samples are obtained for posterior distribution
discard the first M/10 samples
assimilate the remaining samples to obtain posterior probability distribution
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4.3 Results

4.3.1 Validation

In this section, we validate the Bayesian approach to uncertainty quantification

introduced in Section 4.2.4. In addition to establishing its consistency, this will also

allow us to assess how the results it produces depend on key numerical parameters

and properties of the data. We will do this for both problems P1 and P2 using

an approach based on “manufactured solutions” [14, 13], where certain values of D

and t+ (in problem P1), or functional forms of D(c) and t+(c) (in problem P2), are

initially assumed and used to generate ”measurements” by solving system (4.1). After

being contaminated with the noise of prescribed magnitude, this data is used to solve

inverse problems P1 and P2 and then to quantify the uncertainty of the obtained

reconstructions using Algorithms 2 and 3. In particular, this approach allows one to

determine how the uncertainty of the reconstructions depends on the level of noise in

the data. This validation study does not consider model inaccuracy and systematic

errors, which might be inherently present in the system.

For problem P1 we assume D = 10−10 m2s−1 and t+ = 0.4, whereas the assumed

functional forms of D(c) and t+(c) in problem P2 are shown with thick dashed lines

in Fig. 4.5a and 4.5b, respectively. We also assume that the electrochemical cell has

length L = 0.002 m and diameter 0.001 m, the applied current is I = 100 µA and

the initial salt concentration is cinit = 1000 mol m−3, whereas the duration of the

experiment is T = 20 hours, all of which are in the ballpark of parameters used in

practice. System (4.1) and its adjoint (3.15) are solved numerically in MATLAB
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(a) (b)

Figure 4.2: Concentration profiles c̃(x, ti), i = 1, . . . , NT , manufactured by solving
problem (4.1) using (a) assumed constant material properties [D, t+] and (b) assumed
concentration-dependent material properties [D(c), t+(c)]. In both cases the added
noise has standard deviation ξ = 25 mol m−3.

with the routine pdepe which uses adaptive spatial discretization and adaptive time-

stepping adjusted such that the relative and absolute tolerances, respectively 10−8

and 10−10, are satisfied at all points in time and space. Computed concentration

profiles recorded at NT = 10 equispaced time levels ti, i = 1, . . . , NT , are used as the

measurements c̃(x, ti) (the integral with respect to time t in (4.3) is therefore replaced

with summation over i = 1, . . . , NT ). Measurements generated in this way are then

perturbed with normally-distributed noise with the frequency 20 kHz and standard

deviation ξ = 25 mol m−3. The concentration profiles c̃(x, ti), i = 1, . . . , NT , obtained

with constant [D, t+] and concentration-dependent material properties [D(c), t+(c)]

are shown in Figures 4.2a and 4.2b, respectively. When sampling the likelihood

function P(c̃|m) in Algorithm 3 expression (4.7) is used with P = 50 terms. The

constant C is fixed at a value where the ratio of number of accepted samples to the

total MCMC step attempted is approximately 0.2.

We begin the presentation of the results by analyzing the effect of the number
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(a) (b)

Figure 4.3: Convergence of the expected (constant) values of (a) D and (b) t+ to the
true values indicated with horizontal lines as the number of samples N and M = N
used in Algorithm 2 is increased. Measurement data is available at NT = 10 time
levels and the noise standard deviation is ξ = 25 mol m−3.
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Figure 4.4: Joint posterior probability distribution of the constant diffusion coefficient
D and transference number t+. Measurement data is available at NT = 10 time levels
and the noise standard deviation is ξ = 25 mol m−3. The contour lines indicate the
boundaries of the credibility region with the corresponding credibility values indicated
next to the contour lines.
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of samples used to approximate the prior probability distribution and the likelihood

function P(c̃|m) on the convergence of the expected values of the constant material

properties in Fig. 4.3. For simplicity, we set M = N in Algorithm 2. In Fig. 4.3a

and 4.3b we see that as the number of Monte-Carlo samples N increases the expected

values of D and t+ estimated based on the posterior probability distributions P(m|c̃)

produced by Algorithm 2, converge to their true values. Acceptable accuracy is

achieved already for N = 5, 000, which is the number of samples we will use below.

Next, in Fig. 4.4, we present the joint probability density of the constant material

properties D and t+ based on the posterior distributions obtained with Algorithm 2.

The approximately circular shape of the isolines in this figure indicates that there is no

significant correlation between the uncertainties in the reconstruction of the diffusion

coefficient and the transference number. The corresponding results obtained with

Algorithm 3 for the problem with concentration-dependent material properties are

presented in Fig. 4.5a and 4.5b for D(c) and t+(c), respectively, together with the

corresponding true distributions. The contour plots shown in these figures should

be interpreted such that their sections at a given value of c produce the posterior

probability distributions functions P(D(c)|c̃) and P(t+(c)|c̃). We observe that, unlike

in Fig. 4.5b where the most likely values of the transference number t+(c) are quite

close to the true distribution for all values of c, in Fig. 4.5a a systematic difference

between the most likely reconstructed values of D(c) and the true values is evident.

We remark here that in the absence of noise in the data, the concentration-dependent

diffusion coefficient D(c) obtained by solving problem P2 is inferred very accurately

and coincides with the true distribution up to the graphical resolution for all values

of c (this result is not shown). Hence, we can conclude that the differences evident
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Figure 4.5: Posterior probability densities of (a) the diffusion coefficient D(c) and (b)
the transference number t+(c) as functions of the concentration c. Measurement data
is available at NT = 10 time levels and the noise standard deviation is ξ = 25 mol
m−3. The thick dashed lines represent the chosen D(c) and t+(c). The contour lines
indicate the boundaries of the credibility region with the corresponding credibility
values indicated next to the contour lines.

in Fig. 4.5a are induced by noise and as such can be attributed to the ill-posedness

of the inverse problem (cf. the discussion in Introduction).

We now move on to characterize the impact of the noise level in the data c̃ on

the uncertainty of the reconstructed material properties. This is done by using

noise with three different values of standard deviation ξ = 25, 50, 75 mol m−3 and

computing the posterior distribution of the constant and concentration-dependent

material properties, [D, t+] and [D(c), t+(c)], using Algorithms 2 and 3. The results

are presented, respectively, in Figures 4.6a and 4.7, where they are shown in terms

of the 95% credibility bounds defined as the boundaries of parameter regions over

which the posterior probability density integrates to 0.95. In this study, we estimate

the credibility region by finding an isoline of the PDF function such that over the

region enclosed by this isoline, this PDF integrated to 0.95. We use the R function

NIntegrate on a probability density region with a threshold value for the PDF and

then optimize with this threshold value used as a control variable to match the desired

55



PhD. Thesis - A. K. Sethurajan McMaster - CSE

ξ=25

ξ=50

ξ=75

(a)

NT=10

NT=7

NT=4

(b)

Figure 4.6: Boundaries of the 95% credibility regions in the joint posterior probability
distributions of the constant diffusion coefficient D and transference number t+

obtained with (a) concentration profiles c̃(x, ti) available at NT = 10 time levels
and perturbed with noise of different magnitudes (dashed — ξ = 25 mol m−3, dot-
dash — ξ = 50 mol m−3, dotted — ξ = 75 mol m−3) , (b) concentration profiles
c̃(x, ti) available at different numbers of time levels (dashed — NT = 10, dot-dash —
NT = 7, dotted — NT = 4) and perturbed with noise of magnitude ξ = 25 mol m−3.

credibility value. In this optimization step, we use the FindRoot function in R to

perform the optimization. For concentration-dependent properties, the credibility

range is collected for all discrete concentration values and they are plotted as a

function of concentration. We observe in these figures that the credibility regions

corresponding to different noise levels have similar shapes and in all cases shrink as

the noise level is reduced, which is the expected behavior.

We close this section by analyzing the effect of the amount of available

measurement data on the uncertainty of the reconstructed material properties. This

is done by varying the number NT of the time points ti where measurements c̃(x, ti),

i = 1, . . . , NT , are available (NT = 4, 7, 10) while keeping the noise standard deviation
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Figure 4.7: Boundaries of the 95% credibility regions in the posterior probability
distributions of (a) the diffusion coefficient D(c) and (b) the transference number
t+(c) for different concentration values. The results are obtained using concentration
profiles c̃(x, ti) available at NT = 10 time levels and perturbed with noise of different
magnitudes (dashed — ξ = 25 mol m−3, dot-dash — ξ = 50 mol m−3, dotted —
ξ = 75 mol m−3). The thick solid lines represent the true distributions of D(c) and
t+(c).

fixed at ξ = 25 mol m−3. The results obtained for problems with constant and

concentration-dependent material properties, [D, t+] and [D(c), t+(c)], are presented,

respectively, in Figures 4.6b and 4.9, again using the 95% credibility bounds for the

posterior probability distributions determined with Algorithms 2 and 3. We can

conclude from these figures that the effect of reducing the amount of available data

is qualitatively similar to the effect of increasing the noise level in the data, as the

uncertainty grows when NT is decreased.

4.3.2 Application to Experimental Data

In this section we apply the methodology for uncertainty quantification described

in Section 4.2.4 and validated in Section 4.3.1 to the inverse problems P1 and P2
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Figure 4.8: Boundaries of the 95% credibility regions of the joint posterior probability
distributions of the diffusion coefficient D(c) and the transference number t+(c) for
different concentration values (a) c = 700 mol m−3 (b) c = 1100 mol m−3 (c) c = 1500
mol m−3. The results are obtained using concentration profiles c̃(x, ti) available at
NT = 10 time levels and perturbed with noise of different magnitudes (dashed —
ξ = 25 mol m−3, dot-dash — ξ = 50 mol m−3, dotted — ξ = 75 mol m−3). The thick
solid lines represent the true distributions of D(c) and t+(c).
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Figure 4.9: Boundaries of the 95% credibility regions in the posterior probability
distributions of (a) the diffusion coefficient D(c) and (b) the transference number
t+(c) for different concentration values. The results are obtained using concentration
profiles c̃(x, ti) available at different numbers of time levels (dashed — NT = 10, dot-
dash — NT = 7, dotted — NT = 4) and perturbed with noise of magnitude ξ = 25
mol m−3. The thick solid lines represent the true distributions of D(c) and t+(c).
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Figure 4.10: Boundaries of the 95% credibility regions of the join posterior probability
distributions of the diffusion coefficient D(c) and the transference number t+(c) for
different concentration values (a) c = 700 mol m−3 (b) c = 1100 mol m−3 (c) c = 1500
mol m−3. The results are obtained using concentration profiles c̃(x, ti) available at
different numbers of time levels (dashed — NT = 10, dot-dash — NT = 7, dotted —
NT = 4) and perturbed with noise of magnitude ξ = 25 mol m−3. The thick solid
lines represent the true distributions of D(c) and t+(c).

involving, respectively, constant and concentration-dependent material properties and

using the experimental data described in Section 4.2.1. The joint posterior probability

density obtained for constant [D, t+] is shown in Fig. 4.11a, whereas the posterior

probability densities of D(c) and t+(c) as functions of the concentrations c are shown

in Figures 4.11b and 4.11c. In addition, in Figures 4.12a–4.12c we also present the

joint posterior probability densities of [D(c), t+(c)] for three selected concentration

values (these distributions are extracted from the data in Figures 4.11b and 4.11c by

constructing sections at the indicated values of c).

First, in Fig. 4.11 we note that the expected values of both constant and

concentration-dependent material properties as well as the trends with changes in

the concentration revealed in the latter case agree with the results known from the

literature [79]. In Fig. 4.11a we also observe that the reconstructed constant material

properties exhibit significant uncertainties which, unlike the validation results from
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Figure 4.11: (a) Joint posterior probability distribution of the constant diffusion
coefficient D and transference number t+, posterior probability densities of (b) the
diffusion coefficient D(c) and (c) the transference number t+(c) as functions of the
concentration c, all obtained based on the measurement data described in Section
4.2.1. The contour lines indicate the boundaries of the credibility region with the
corresponding credibility values indicated next to the contour lines.

Fig. 4.4, are correlated in the sense that larger values of the diffusion coefficient D are

likely to occur together with smaller values of the transference number t+, and vice

versa. On the other hand, in the concentration-dependent case the reconstruction

uncertainty is significantly reduced for both D(c) and t+(c) for all concentration

values c. In both cases this uncertainty is small relative to the variation of D(c)

and t+(c) over the entire range of c. Moreover, Figures 4.12a–4.12c demonstrates

that, in contrast to the case of constant material properties, cf. Fig. 4.11a, in

the concentration-dependent case there is no significant correlation between the

uncertainties of D(c) and t+(c) at particular values of c.

4.3.3 Computational Time

In this section, the computational time associated with various algorithms is

discussed. The data from ‘Experiment I’ (section 2.1.1) and Planck-Nernst model

(2.12) is used to obtain the computational time for estimating diffusion coefficient
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Figure 4.12: Joint posterior probability distribution of the concentration-dependent
diffusion coefficient D(c) and transference number t+(c) at the concentrations (a)
c = 900 mol m−3, (b) c = 1, 000 mol m−3 and (c) c = 1, 100 mol m−3, cf. Figures 4.11b
and 4.11c, obtained based on the measurement data described in Section 4.2.1. The
contour lines indicate the boundaries of the credibility region with the corresponding
credibility values indicated next to the contour lines.

Table 4.1: Computational times required to estimate material properties and quantify
their uncertainty (all calculations performed on single core).

Problem Gradient Descent Monte-Carlo sampling MCMC sampling
Sample size 1 5000 5000
P1 (min) 0.26 1142 32
P2 (min) 9.6 51164 396
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(D) and transference number (t+). We also estimate the computational time needed

to quantify uncertainty in reconstructing the material properties and they are shown

in Table 4.1. As the Monte-Carlo algorithm uses a gradient descent approach to obtain

one sample, the number of times it needs to solve the governing system and adjoint

system is much higher when compared to the MCMC algorithm. The computational

time needed to obtain 5000 samples in the Monte-Carlo algorithm when compared

against the MCMC algorithm is about 35 times larger for P1 problem and 130 times

larger for P2, respectively. Based on the computational time, we can clearly see the

advantage of using MCMC algorithm over Monte-Carlo for computing uncertainty.

4.4 Choice of The Prior Distribution

We note that, somewhat unconventionally, both the prior distribution and the

likelihood function are derived based on the same experimental data. While in this

validation study there is no choice (other than perhaps an uninformative prior), this

will lead to tighter credibility bounds as discussed below. As a Monte-Carlo method

is used to obtain prior, it contains the uncertainty information due to noise. On

the other hand, the likelihood function, related to the error function (J ), quantifies

the uncertainty due to the experimental errors and approximations inherent in the

physics-based model. Though the prior and the likelihood distributions are derived

in a fundamentally different way, the resulting posterior distribution may lead to a

tighter bound because of the same data source. Indeed in Fig. 4.13, we can see that

the knowledge we gain from both the prior and likelihood are similar and leads to a

posterior distribution with lower uncertainty. Because of resulting lower uncertainty,

this choice of prior distribution is not recommended. Therefore in our investigation in
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Figure 4.13: 95% credibility interval calculated for prior, likelihood and posterior
probability distribution functions to show the effect of using prior and likelihood
derived from same data.

Chapter 6, we use a prior obtained based on literature data reported for the material

properties, which is more consistent with the traditional Bayesian approach.

4.5 Conclusions

In this study, we have developed and carefully validated a state-of-the-art Bayesian

approach to quantify the uncertainty of material properties reconstructed from

experimental data. This approach combines a recently developed inverse-modelling

technique capable of inferring general concentration-dependent material properties

subject to minimal assumptions [79] with a Markov-Chain Monte-Carlo method for
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sampling the likelihood function. We emphasize that while the present study focuses

on an electrochemical system modeled by the Planck-Nernst equation (4.1), the

proposed approach is in fact also applicable to a broad range of problems in chemistry

where macroscopic models are used. Extensive numerical tests of the method confirm

that it exhibits the expected behavior as different parameters are varied.

Application of the proposed approach to actual experimental data allows us to

place rigorous “error bounds” in the reconstructed material properties. These results

demonstrate that while the uncertainty can be non-negligible for constant material

properties, it is significantly reduced in the concentration-dependent case. The reason

for this is that the required regularity of D(c) and t+(c) as functions of c imposes

some constraints on how rapidly the material properties can vary with c. As a result,

the reconstruction uncertainty is small relative to the range of variation of both D(c)

and t+(c), which offers confidence in the reliability of inverse modelling.
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Chapter 5

Ion-Pairing Effects

This chapter is derived from the results published in a research article which appeared

in the Journal of Electrochemical Society [69]. My role in this work was to develop the

computational tools for the inverse modelling and extend Planck-Nernst model with

ion-pairing effects along with our collaborators Dr. Giles Richardson, Dr. Jamie Foster

and Dr. Ion Halalay. Our collaborators Dr. Sergey Krachkovskiy and Dr. Gillian

Goward provided us with the experimental data. In this study we first demonstrate

that inverse modelling performed using data from Experiment II described in Section

2.1.2 and the Planck-Nernst equation (2.12) produces negative transference numbers.

Such a physically inconsistent reconstruction of a constitutive relation indicates the

loss of validity of the Planck-Nernst equation as a mathematical model for this

process. Then, we consider the formation of ion pairs and clusters as a possible

effect responsible for the appearance of negative transference numbers and derive an

extended version of the Planck-Nernst system which accounts for these additional

species. However, a careful analysis of this model reveals that incorporation of ion-

pairing effects into the modelling will not change the transference numbers inferred
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from the experimental data via inverse modelling. Thus, other effects need to be

considered, which will be done in Chapter 6. The detailed analysis of ion-pairing

effects is provided below in this chapter.

5.1 Introduction

In this study our collaborators Dr. Sergey Krachkovskiy and Dr. Gillian Goward

determined Li concentration profiles in a symmetric Li-Li cell filled with 1M LiPF6 in a

binary mixture of ethylene carbonate (EC) and dimethyl carbonate (DMC) with a 1:1

ratio by volume under galvanostatic conditions. Applying the inverse modelling (IM)

technique to the data obtained from this experiment leads to negative values of the

transference number t+(c) < 0 at large concentrations. For binary electrolytes based

on lithium salts and neutral organic carbonates, such as the one used in our study,

negative transference numbers are not possible [40, 99]. However, negative values of

lithium transference numbers can occur for lithium salt/ionic liquid ternary mixtures

with two cations and common anion, as reported in [33]. It has long been known that

ion aggregation occurs in certain electrolytes, as has been deduced by Onsager from

experiments in which the conductivity increases with field strength [62, 61]. Initially,

we attributed the predicted negative transference numbers to the omission of ionic

aggregation from the model noting that: (i) there is good evidence that such species

can form in LiPF6 in EC:DMC which has a relatively low dielectric permittivity

(ε ≈ 30) and therefore exhibits a high degree of ion association (ion pairing> 50%)

[40]; (ii) NMR experiments detect all Li nuclei independently of whether they are

in the form of free cations or part of a larger aggregate; and (iii) ion pairs, being

neutral, do not perform a migration motion in an applied electric field. Moreover, it
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has been postulated that a phenomenon which could give rise to negative transference

numbers in binary systems are the formation and transport of ionic aggregates which

form and disintegrate spontaneously at increased electrolyte concentrations [19]. We

demonstrate in the present study that incorporation of ionic aggregation into an

extended Nernst-Planck model does not in fact change the transference numbers that

can be inferred from the data. It is therefore apparent that in order to obtain an

accurate model of ion transport at high concentrations, one must augment the Nernst-

Planck model with other physical effects such as those discussed in Chapter 6. The

structure of the chapter is as follows. In Section 5.2 we describe the experiment to be

modeled. Following that, we recall the standard Planck-Nernst model from Section

2.2 together with all its modelling assumptions, and we present results indicating the

loss of its validity at moderate and high salt concentrations. An augmented model

accounting for ion-pairing effects is introduced in Section 5.4, where careful analysis

demonstrates that in the limit of fast reaction rates this augmented model remains

formally equivalent to the original Planck-Nernst system.

5.2 Experimental

In this section we recall Experiment II described in Section 2.1.2 where we obtained

concentration profiles, hereafter denoted c̃(x, t), are shown in Fig. 2.4 at different

times t ∈ [0, 14 hours] as functions of the space coordinate x.
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5.3 The Planck Nernst Model

Assumptions and derivation of the standard Planck-Nernst model are presented in

Section 2.2. They clearly show that only diffusion and migration are taken into

account in describing the transport of the ions in the electrolyte. In this section, we

use inverse modelling based on model (2.12) to estimate the material properties and

the results are presented below.

5.3.1 Material Properties Estimates Based on the Nernst-

Planck Model

In our prior investigation [76] the inverse modelling approach, described in Section 3.1,

was applied to infer material properties of lithium bis(trifluoromethanesulfonyl)imide

solutions in propylene carbonate with concentrations up to 1.1M and produced

thermodynamically consistent reconstructions of the effective diffusivity and Li+

transference number as functions of the salt concentration. However, when this

approach is applied to the concentration profiles shown in Section 2.1.2, cf. Fig. 2.4,

which feature salt concentrations up to 2.2 M, the results shown in Fig. 5.1

are no longer physically consistent. Specifically, while the reconstruction of the

diffusion coefficient D(c) is in the expected range, the reconstructed values of the Li+

transference number t+(c) are negative for most of the salt concentrations, i.e., at >

0.85M. Under assumptions A1–A8 from Section 2.2, a negative transference number

t+ implies that the cationic current due to migration has a direction opposite to the

electric field, which is physically impossible for binary symmetric electrolytes. At the

same time, we emphasize that the negative transference numbers were obtained as
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Figure 5.1: Constant and concentration-dependent effective salt diffusivities (left) and
Li+ transference numbers (right) reconstructed from the measurement data described
in Section 5.2 using the inverse modelling approach (problems P1 and P2 defined in
Appendix 6.4.1) based on system (2.12)

the constitutive relation in system (2.12) that allows this system to optimally match

the experimental data, in the sense of minimization of the least-square error (for

details, see the minimization problems P1 and P2 defined in Section 3.1). Therefore,

such a result demonstrates that system (2.12) no longer provides a physically valid

description of the data. This failure is clearly attributable to the fact that system

(2.12) does not account for physical effects which become important at higher

concentrations. Such effects may include the formation of neutral ion pairs, different

forms of advection [45] or the motion of the reaction surface as dendrites are formed

on the electrode surfaces. We will discuss the latter effect in the next chapter.

5.3.2 Prior Reports of Negative Cation Transference

Numbers

Several prior studies have reported negative transference numbers and speculate about

their possible origins. For example, investigation [21] provides evidence for a negative

69



PhD. Thesis - A. K. Sethurajan McMaster - CSE

transference number measured in a lithium binary symmetric electrolyte. While the

authors mention a number of possible reasons for negative transference numbers,

they conclude that the formation of large complexes and high molecular weight of the

anion may be the key factor. An analogous opinion is expressed in monograph [71]

where the authors argue that formation of ion complexes of cations and anions with

a net negative charge at a higher salt concentration in a non-symmetric electrolyte

can result in a negative transference number. This hypothesis was also reinforced by

other studies [24]. The thermodynamic validity of negative transference number was

considered in [52]. Based on the analysis presented in that study, one can conclude

that in principle negative transference numbers may arise under certain conditions

in non-binary electrolytes. Since the experimental set-up discussed in Section 5.2

involves a binary electrolyte, this argument cannot explain the results reported in

Section 5.3.1, cf. Figure 5.1. Hence, in the next section, we will address the question

of whether ion-paring effects could be used to justify negative transference numbers.

5.4 Transport Model with Ion-Pairing Effects

In this section, we formulate a generalized version of the Nernst-Planck model

discussed in Section 2.2 that explicitly accounts for the ion-pairing effects. We will

then draw some conclusions about how this extension affects the reconstructions

of material properties via inverse modelling. Henceforth, we will use the term

“ion pair” to describe complexes that are formed when a positive and negative ion

come sufficiently close together to become (reversibly) bound by their Coulombic

interaction. The formation of an ion pair could then occur via the reaction Li++A− 


LiA, where A− represents the anion in the binary symmetric salt LiA. Of course,
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it is conceivable that higher-order clusters (consisting of more than one of either

the positive and negative ions) may form in electrolytic solutions and recent reports

have indicated the presence of higher-order clusters in Li-ion battery electrolytes [90]

based in molecular dynamics (MD) simulations. We note, however, that MD probes

phenomena on time scale several orders of magnitude faster than the timescales for

diffusion in liquids and no reports regarding the lifetime of higher-order clusters was

provided. Furthermore, the absence of the signature typical for the existence of

substantial amounts of triple ions in the ionic conductivity data for LiPF6/carbonates

solutions is also reported [48]. Therefore, for simplicity, in this section, we neglect

the presence of higher-order ion clusters. However, this analysis arrives at the same

conclusions when extended to higher-order clusters, as demonstrated in Appendix A3.

Conservation equations for each of the three species in the system can be written

as follows

∂c+

∂t
+
∂F+

∂x
= −Q(c+, c−, co), (5.1a)

∂c−
∂t

+
∂F−
∂x

= −Q(c+, c−, co), (5.1b)

∂co
∂t

+
∂Fo
∂x

= Q(c+, c−, co), (5.1c)

where c+, c−, and co, are the cation, anion and ion-pair concentrations, respectively,

F+, F−, and Fo, are the corresponding fluxes (specified in Appendix A1), whereas

Q(c+, c−, co) is the rate of the ion-pair formation reaction. In symmetrical

electrochemical cells with lithium metal electrodes, lithium is stripped from one

electrode deposited onto the other. The possible electrochemical reactions that can
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lead to lithium deposition/stripping are [83]

(I) Li
Li+ + e−, (5.2a)

(II) Li + A−
LiA + e−. (5.2b)

For reaction (I) we denote the forward reaction rate (per unit area) by r(I), on the

electrode at x = 0, and by R(I), on the electrode at x = L. For reaction (II) we denote

the forward reaction rate (per unit area) by r(II) on x = 0 and by R(II) on x = L. The

appropriate boundary conditions on the ionic fluxes are thus

F+|x=0 = r(I), (5.3a)

F−|x=0 = −r(II), (5.3b)

Fo|x=0 = r(II). (5.3c)

F+|x=L = −R(I), (5.3d)

F−|x=L = R(II), (5.3e)

Fo|x=L = −R(II). (5.3f)

which can, in turn, be related to the current density flowing through the device via

j|x=0 = F(r(I) + r(II)), and j|x=L = −F(R(I) +R(II)). (5.4)
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5.4.1 Charge Neutrality

As is usual in such charge transport problems, at realistic ion concentrations there is

almost exact charge neutrality

c− ≈ c+

throughout nearly all of the electrolyte, except in very narrow Debye layers adjacent

to the electrodes (typically of size around 1nm). This is a consequence of Poisson’s

equations and the very short Debye length of the electrolytes used in battery

applications.

5.4.2 Reaction Quasi-Equilibrium

Borodin et al. [11] estimate the reaction rate for the dimerization reaction k to be of

the order of 109s−1 and this allows us to determine how close to quasi-equilibrium the

dimerization reaction will be. In the immediate vicinity of the electrodes, we do not

expect the reaction to be close to equilibrium because the reactions occurring there

act to drive the system away from equilibrium. However, by comparing the timescale

for diffusion of ions L2/D to the reaction rate timescale 1/k we can obtain an estimate

of the length scale L away from the electrodes over which the system shows significant

deviation from equilibrium. With an estimate of D ≈ 10−9m2s−1, this gives L ≈ 1nm.

Thus we expect the dimerization reaction to be at quasi-equilibrium throughout the

electrolyte except in narrow reaction layers, of width≈ 1nm, in the immediate vicinity

of the electrodes.
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5.4.3 The Bulk Equations

Away from the Debye layers and reaction layers lying adjacent to the electrodes

we expect almost exact charge neutrality and almost exact equilibrium of the

dimerization reaction. These two assumptions allow us to considerably simplify the

governing equations by writing

c− = c and c+ = c, (charge neutrality) (5.5)

and

co = F (c), (quasi-equilibrium of dimerisation reaction). (5.6)

Here the equilibrium function F (c) can be obtained by balancing the chemical

potential of the electrolyte with that of the dimer. We note that a mass action

balance, as considered for example in [26], would give [c+][c−] = MF [co]
2, with an

equilibrium constant MF . Therefore, we would have F (c) = MF c
2 in (5.6), which is

a special case of the present more general approach. In (5.5) and (5.6) we therefore

have two equations for the three variables c+, c− and co, and we need a further

equation and appropriate boundary conditions that will allow us to fully determine

these variables.
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5.4.4 A Transport Equation for Total Lithium Concentration

in the Bulk

In order to close the problem for c+, c− and co in the bulk region (away from the

Debye and reaction layers adjacent to the electrodes) we seek a diffusion equation for

the total lithium concentration in the electrolyte

[Li] = [Li+] + [Li A] = c+ + co. (5.7)

This should be in a form in which the dimerisation reaction rate Q does not appear

explicitly. Although the reaction occurs close to quasi-equilibrium it is not necessarily

true that the Q terms in (5.1a)-(5.1c) are negligible. In addition, given the experiment

that we are trying to model, we require a relation between the total lithium flux and

the current density at the electrodes. Throughout nearly all the electrolyte (with

the exception of the Debye layer) charge neutrality c− = c+ is satisfied and we can

rewrite (5.7) in the form [Li] = 1
2
(c+ + c−) + co. This motivates us to define the total

lithium concentration cT and the total lithium flux FT (outside the Debye layer) by

the expressions

cT =
1

2
(c+ + c−) + co, and FT =

F− + F+

2
+ F0. (5.8)

We note that while cT does not represent the total lithium concentration [Li] in the

narrow Debye layer, it is still possible to write down a conservation equation for

cT throughout the entire electrolyte (including the Debye layer). This conservation

equation can be obtained by adding twice (5.1c) to (5.1a) and (5.1b) and dividing the

result by two which yields an equation that is independent of the volumetric reaction
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rate Q, namely

∂cT
∂t

+
∂FT
∂x

= 0. (5.9)

Appropriate boundary conditions on this conservation equation for cT can be derived

by re-expressing FT on the boundaries in terms of the reaction rates there, via (5.3a)-

(5.3f) and (5.4). This results in two conditions that are independent of the reactions

occurring in the boundary layers

FT |x=0 =
j(t)

2F
, and FT |x=L =

j(t)

2F
. (5.10)

The total lithium flux FT is related to total lithium concentration cT , except in

the narrow Debye and reaction layers adjacent to the electrodes, via the relation

FT = −D̃(cT )
∂cT
∂x
− j

2F
(1− 2t+). (5.11)

which is derived in Appendix A1, cf. equation (A.17). Even though this definition of

the flux does not apply in the Debye and reaction layers, it holds in the central bulk

region that extends across nearly the entire electrolyte. Since the Debye and reaction

layers are narrow, their capacity for ions and ion pairs is low and consequently the

total flux FT across them is almost uniform (an argument that has been formalized

by conducting a boundary layer analysis of equation (5.9), see appendix A2). Thus

the boundary conditions (5.10) can be applied directly to the bulk flux FT , as defined

in (5.11), even though this relation does not hold in the Debye and reaction layers

adjacent to the reaction surfaces x = 0, L.
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We note that when we substitute equation (5.11) for the flux into the conservation

equation (5.9) and the boundary conditions (5.10), we retrieve equations (4.1a)–(4.1b)

which were used in the original inverse modelling approach, namely,

∂cT
∂t

=
∂

∂x

(
D̃(cT )

∂cT
∂x

)
− ∂t+

∂x

j

F
, (5.12)

D̃(cT )
∂cT
∂x

∣∣∣∣
x=0

= − j
F

(1− t+), (5.13)

D̃(cT )
∂cT
∂x

∣∣∣∣
x=L

= − j
F

(1− t+). (5.14)

where here j is constant and related to the total current I via j = I/A. It is thus

immediately apparent that invoking ion pairing cannot resolve the issue of negative

transference numbers, since the system for the total lithium concentration that we

obtain here is formally identical to the original system investigated in the inverse-

modelling approach used to determine the electrolyte properties.

5.5 Conclusions and Outlook

The formal equivalence of the reduced system (5.12)–(5.14) with the effective diffusion

coefficient D̃, cf. (A.16), and the original Nernst-Planck model (2.12) demonstrates

that accounting for ion-pairing under the assumption of fast reaction rates cannot

affect the transference numbers reconstructed via inverse modelling. In particular,

the incorporation of this effect will not resolve the problem highlighted in Section

5.3.1 where negative transference numbers were obtained from reconstructions. As

demonstrated in Appendix A3, this conclusion still holds even when higher-order

ion clusters are taken into account. These findings, therefore, call into question the
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claim made in [24] about the relation between negative transference numbers and

ion pairing. Since the extended model introduced in Section 5.4 which accounts for

ion pairing still cannot provide a physically consistent description of the galvanostatic

experiment (cf. Section 5.2), one needs to consider other physical effects not accounted

for in the Nernst-Planck model. One such candidate is the incorporation of the motion

of the reaction surface owing to dendrite growth. Inverse modelling in the presence

of such effects will be the topic in the next chapter.
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Chapter 6

Effect of Dendrite Growth

This Chapter is derived from the results of a research article currently under review

[77]. My role in this work was to develop inverse modelling and uncertainty

quantification framework and also to develop an extended Planck-Nernst model to

include dendrite growth in collaboration with Dr. Giles Richardson and Dr. Jamie

Foster. The experimental data was provided by Dr. Sergey Krachkovskiy, Mr. David

Bazak and Dr. Gillian Goward. Here we consider a modification of the Planck-Nernst

model accounting for the loss of Lithium from the electrolyte due to the formation

of dendritic structures near one of the electrodes, an effect which was observed in

experiments. We use the tools of inverse modelling in combination with concentration

measurements acquired with NMR to probe the validity of a modified Planck-Nernst

model in which the depletion of Lithium is described in different ways.
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6.1 Introduction

In the present investigation, we use the inverse-modelling approach to probe the

validity of a family of mathematical models for the transport of charged species in

electrolytes at moderate concentrations where a standard Planck-Nernst theory [55] is

not sufficient. Once such a physically-consistent model is identified, it is used to infer

optimal estimates of the diffusivity and the transference numbers (these estimates

are optimal in a mathematically precise sense, because they minimize suitably defined

prediction errors). Our focus here is on a canonical electrochemical experiment where

a constant current applied across the electrodes [25, 64] is often described in terms of

the Planck-Nernst theory based on assumptions A1–A8 and model (2.12) outlined in

Section 2.2. While constant values of D and t+ correspond to the dilute limit (small

concentrations), concentration-dependent material properties D(c) and t+(c) are used

to effectively account for departures from the ideal behavior. In an earlier study [79]

we were able to estimate consistent material properties using inverse modelling based

on this model and an experiment featuring a rather narrow range of concentrations

between 900 mols/m3 to 1100 mols/m3, demonstrating that system (2.12) provides

an accurate description of transport phenomena in this regime. On the other hand,

application of system (2.12) to model an experiment shown in Section 2.1.2 with

a larger range of concentrations resulting from a higher applied current I leads to

physically inconsistent negative transference numbers obtained via inverse modelling

as shown in Section 5.3.1. The reason for this is that the Planck-Nernst model

(2.12) does not account for some physical effects affecting transport in experiments

conducted at higher concentrations. One such phenomenon is the formation of ion

pairs and higher-order ion clusters. However, as was shown rigorously in Chapter 5
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Figure 6.1: Schematic illustration of the electrochemical cell (a) at the beginning of
the experiment (at time t = 0) when there is no dendritic growth and (b) in the
course of the experiment (i.e., for t > 0) when the dendritic region grows from the
negative (right) electrode. The standard Planck-Nernst model (2.12) is defined on
the domain illustrated in panel (a), whereas the modification of this model given in
(6.1) accounts for the presence of the dendritic region shown in panel (b).

and [69], this effect cannot in fact influence the transference numbers inferred from

the measured concentration profiles via inverse modelling. Influence from advection

effects where there is a motion induced in the liquid owing to the intrusion (recession)

of plating (stripping) electrode. Based on the current of 75 µA and a tube diameter

of 5 mm, we estimate that if the electrode interface were to remain planar (consistent

with assumption A4) and metallic, then the velocity of the interface, ṡ, would be about

7.29 Å/sec. By then comparing the sizes of the fluxes driven by diffusion (Dc/L),

migration ((1 − t+)I/(FA)) and advection (ṡc), we find that advective effects are

insignificant (driving fluxes around one hundred times smaller) compared to diffusion

or migration.

In the present study, we focus on another effect, namely, deposition of lithium

from the electrolyte in the form of dendritic structures near one of the electrodes [95,

57]. This phenomenon leads to the formation of a porous matrix influencing lithium
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transport in the affected region, cf. Figure 6.1, and has been the subject of numerous

investigations surveyed in the recent monograph [97] (in fact, analogous questions

have also been studied for electrodes made from different metals [8]). Some studies

reported that when a single dendrite grows from the substrate, deposition occurs

on its tip due to the strength of the electric field [51, 18, 2, 3]. However, because

of their plastic deformation, the dendrites detach from the substrate, or from one

another, and then deposition transitions to base-controlled growth [29, 36]. On the

other hand, clear experimental evidence of Li deposition occurring in LiPF6–EC/DMC

and resulting in “mossy” dendrite growth was provided by Steiger et al. [84] where

the authors documented mechanisms for lithium deposition away from the base and

dendrite tips. Given these different observations, in our investigation we consider

different ways of macroscopically accounting for the effect of lithium deposition in

a modified Planck-Nernst model and demonstrate using inverse modelling that one

of the proposed approaches does lead to physically consistent reconstructions of the

material properties and to accurate predictions of the evolution of the concentration

profiles in time.

In this study, we consider a standard electrolyte, Lithium Hexafluro Phosphate

LiPF6, dissolved in 1:1 mixture of Ethylene Carbonate (EC) and Di-Methyl Carbonate

(DMC), which is often used in batteries with additives. Determination of the material

properties, diffusivity and the transference number, of this electrolyte, has been the

subject of many investigations [1, 35, 38, 39] and the results are compiled in Figures

6.2 in the case of constant material properties and in Figures 6.3(a) and 6.3(b) when

the material properties depend on concentrations (numerical values of these material

properties are also tabulated in Appendix B1). This data will help us verify that
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Figure 6.2: Values of the constant diffusion coefficient D and the transference number
t+ reported in the literature for LiPF6–EC/DMC [35, 38, 49, 56, 85, 92, 100]. When
the values of both D and t+ are reported, they are represented with a symbol, whereas
if the value of D or t+ is reported only, it is represented with a vertical or a horizontal
line.

the results obtained with inverse modelling and the Planck-Nernst model modified to

account for the dendritic growth do indeed fall in the correct range. Finally, we will

use the recently developed tools of Bayesian inference [78] to blend the results from

the literature together with our experimental data and the assumed mathematical

model to quantify the uncertainty of the reconstructed material properties.

The structure of the chapter is as follows: in the next section we describe our

experimental set-up, whereas the Planck-Nernst model (2.12) is modified to account

for the dendrite growth is introduced in Section 6.3; our computational approach

is then described in Section 6.4 and the main results are presented in Section 6.5;

discussion and final conclusions are deferred to Section 6.6, whereas some additional

data and more technical material is collected in two appendices.
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Figure 6.3: (a) Dependence of the diffusion coefficient D(c) on the concentration c
reported in the literature for LiPF6–EC/DMC [1, 39, 41, 49, 98]. (b) Dependence of
the transference number t+(c) on the concentration c reported in the literature for
LiPF6–EC/DMC [1, 70, 41, 92, 98].

6.2 Experimental

Here we recall the experiment described in Section 2.1.2 where NMR concentration

profiles are obtained in 2-hour intervals for the total of 14 hours for the standard

electrolyte of LiPF6 in EC/DMC. The growth of the dendritic region is modelled

based on a separate experiment designed to probe how this region expands with time,

cf. figure 6.1(b), depending on the applied current I. These results are presented in

Figure 6.5 where we show the position l(t) of the left boundary of the dendritic

region as function of time t. As is evident from this data, there is an approximately

linear dependence of l(t) on time with the magnitude of the proportionality constant

(corresponding to the slope the linear fits to the data in Figure 6.5) increasing with

the applied current. This observation together with the data from Figure 6.4 allows

us to quantify the growth of the dendritic region [l(t), L], which is used to develop a

modified Planck-Nernst model in the next section.
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Figure 6.4: Concentration profiles obtained via in-situ magnetic resonance imaging
during a galvanostatic polarization experiment. The shrinking of the region where
the concentration profiles are acquired with time is evident near the negative (right)
electrode.
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Figure 6.5: Dependence of the location l(t) of the left boundary of the dendritic
region, cf. figure 6.1(b), on time t for different applied currents I.
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6.3 The Planck-Nernst Model with Dendrite

Growth

Based on the observations made in Section 6.2 about the growth of the dendritic

region, we now propose a modification of the Planck-Nernst model (2.12) that will

account for this phenomenon. We emphasize that this is a highly idealized model

which aims only to describe the depletion of lithium from the electrolyte in the

dendritic region without attempting to provide any information about the structure

of this region. In formulating this modified model we retain assumptions A1–A6 from

Section 6.1, replace assumption A7 with a new assumption A8’ given below and add

the following assumptions A8–A10

A7’: cations strip from the positive electrode (at x = 0) uniformly in the transverse

direction and their flux corresponds to the applied electric current [59, 55];

A8: cations deposit onto the negative electrode non-uniformly in space forming

dendrites that grow into the electrolyte at a rate proportional to the applied

current [95]; the domain occupied by the dendrites is [l(t), L], cf. Figure 6.1(b),

where l(t) is a known decreasing function of time such that l(0) = L, cf. Figure

6.5;

A9: Throughout the experiment the dendrites occupy a negligible fraction of the

volume of the electrolyte such that the porosity of this region need not be taken

into account;

A10: The loss of cations from the electrolyte due to their deposition on the dendrites

is modeled by a sink term with a prescribed spatial distribution Fl(t)(x); this
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distribution function vanishes outside the dendritic region [l(t), L].

With these additional assumptions, our model now takes the form

∂c

∂t
=

∂

∂x

[
D
∂c

∂x
+

(1− t+) I

FA

]
− (1− t+) I

FA
Fl(t)(x) in (0, L)× (0, T ], (6.1a)

∂c

∂x

∣∣∣∣
x=0

= −(1− t+) I

DFA
in (0, T ], (6.1b)

∂c

∂x

∣∣∣∣
x=L

= 0 in (0, T ], (6.1c)

c|t=0 = ci in (0, L), (6.1d)

where l(t) = L − kIt with a certain constant k > 0, which is justified by the data

presented in Figure 6.5. We note that the value of the constant k, which describes

how rapidly the dendritic region [l(t), L] spreads into the bulk of the electrolyte, can

be deduced from the concentration measurements shown in Figure 6.4 by assessing

the width L − l(T ) of the dendritic region at the end of the experiment. The key

difference between the standard Planck-Nernst model (2.12) and its modified version

(6.1) is the presence of the sink term proportional to the function Fl(t)(x) which

describes how lithium from the electrolyte is lost due to its deposition within the

growing dendritic region [l(t), L]. While this process can be described in various

ways, the proposed model (6.1a) arguably combines simplicity with flexibility inherent

in different possible forms of the function Fl(t)(x), which we will refer to as the

“sink function”. Given the different lithium deposition scenarios evidenced in the

experimental studies discussed in Introduction, we will consider the following three

distinct forms of “sink function”:

case A: the loss of lithium occurs only at the interface x = l(t) between the bulk of
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the electrolyte and the dendritic region, i.e.,

Fl(t)(x) = δ(l(t)− x), (6.2)

where δ(·) is the Dirac distribution; this corresponds to deposition occurring

at the tips of the growing dendrites only,

case B: the rate of lithium loss decreases linearly from its maximum at the moving

interface (x = l(t)) to zero at the electrode (x = L), i.e.,

Fl(t)(x) =


2(L−x)

(L−l(t))2 l(t) ≤ x ≤ L

0 otherwise

, (6.3)

case C: the loss of lithium occurs uniformly between the moving interface at x = l(t)

and the electrode at x = L, i.e.,

Fl(t)(x) =


1

L−l(t) l(t) ≤ x ≤ L

0 otherwise

. (6.4)

We note that cases A, B and C correspond to the rate of the loss of lithium being

progressively less localized near the tips of the dendrites at x = l(t), and in all cases

the sink function is normalized such that
∫ L
l(t)
Fl(t)(x′) dx′ = 1.
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6.4 Computational Approaches to Inverse

Modelling and Uncertainty Quantification

In this section, we provide an overview of the computational approaches employed to

solve the inverse-modelling problem for both constant and concentration-dependent

material properties and assess their uncertainty. Further details are provided in

Appendices B.

6.4.1 Inverse Modelling

The unknown material properties, D and t+, can be reconstructed based on the

assumed transport model, such as system (2.12) or (6.1), and using the concentration

profiles obtained in the NMR experiment described in Section 6.2. We will use

the inverse modelling approach developed and validated in Chapter 3 in which the

problem is framed as minimization of a cost functional representing the least-squares

deviation between the concentration values predicted by the model (denoted c in

systems (2.12) and (6.1)) and the experimentally determined concentration values c̃.

The cost functional can thus be represented as

J ([D, t+]) =
1

2

NT∑
i=1

∫ L

0

[
c(x, ti;D, t

+)− c̃(x, ti)
]2
dx, (6.5)

where ti, i = 1, . . . , NT , are the time levels when the experimental

6.2).

We will consider two distinct formulations corresponding, respectively, to constant
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and to concentration-dependent material properties.

P1 : [D̂, t̂+] = argmin
[t+,D]∈R2

J (D, t+)

P2 : [D̂(c), t̂+(c)] = argmin
[t+(c), D(c)]∈X

J
(
D(c), t+(c)

)
,

where X denotes a suitable function space to which D(c) and t+(c) belong. The

computational approach required to solve the problem P2 with concentration-

dependent material properties is more involved and necessitates specialized tools

described in detail in Chapter 3.

6.4.2 Bayesian Uncertainty Quantification

In order to quantify the uncertainty arising in estimation due to, e.g., modelling and

measurement errors, we use a state-of-the-art technique based on Bayesian inference

[78] as described in Chapter 4. In this approach a probabilistic setting is adopted as a

way to quantify uncertainty resulting from incomplete knowledge about the problem.

Here we will represent the reconstructed material properties [D, t+], or [D(c), t+(c)],

in terms of random variables characterized by certain probability density functions

(PDFs). More precisely, in the case of concentration-dependent properties, D(c)

and t+(c) are given by suitable probability distributions for all concentration values

c ∈ [cα, cβ] and the same also applies to the measurements c̃ for different values of

x ∈ [0, L] and t ∈ [0, T ].

In the Bayesian framework the probability distribution of the reconstructed

material properties are given in terms of the posterior probability P([D, t+]|c̃), which

is the probability of [D, t+] attaining certain values (in problem P2, for a given
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concentration c) given the entire set of observations c̃, and can be expressed using

Bayes’ rule [86, 81, 91]

P([D, t+]|c̃) =
P(c̃|[D, t+])P([D, t+])

P(c̃)
, (6.6)

where P([D, t+]) is the prior distribution reflecting our a priori assumptions about

the solution, P(c̃|m) is the likelihood of observing particular experimental data for a

given set of material properties and P(c̃) is a normalizing factor.

In the present study the prior P([D, t+]) is constructed using the data reported

in the literature for the diffusivity and the transference numbers for the electrolyte

considered here, cf. Figures 6.2 and 6.3 as well as Appendix B1, and is shown in Figure

6.6. Details concerning the computation of such a prior is provided in Appendix B2.

Priors defined in this way can be “weak” or “strong” [43], depending on their relative

deviation from the uniform distribution which is also reflected in the width of the

range [minD,t+ P([D, t+]),maxD,t+ P([D, t+])]. Given the differences in experimental

conditions resulting in various possible interpretations of the data from the literature,

the prior adopted in the present study is “weak”, cf. Figure 6.6, such that it will not

dominate the posterior probability given in (6.6).

As regards the likelihood function, the following relation is typically adopted in

Bayesian inference [86, 81, 91]

P(c̃|[D, t+]) ∝ e−J (D,t+), (6.7)

which expresses the assumption that for a given set of material properties [D, t+],

measurements resulting in large values of the error functional (6.5) are less likely to
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Figure 6.6: The “weak” prior P([D, t+]) constructed as described in Appendix B2
based on the literature data for diffusivity and the transference numbers, cf. Figures
6.2 and 6.3. Since in the calculation of the posterior suitable normalization is ensured
by the expression in the denominator in (6.6), for simplicity, the prior shown here has
an arbitrary scaling.

be observed. An intuitive motivation for the choice of an exponential function in

(6.7) is that when J ([D, t+]) is quadratic in [D, t+], relation (6.7) produces a normal

distribution. A more rigorous justification of this choice can be found for example in

[86]. The likelihood function P(c̃|[D, t+]) is approximated by sampling the distribution

in (6.7) using the Metropolis-Hastings algorithm [16] to produce M samples. Details

concerning the computational algorithm are provided in Appendix B2.

Thus, the Bayesian representation of the uncertainty (6.6) combines the knowledge

about the material properties already available in the literature as the prior P([D, t+]),

cf. Figure 6.6, with a measure of uncertainty based on how well model (6.1) fits the

data which is represented by the likelihood function P(c̃|[D, t+]). Since a weak prior

is used, the posterior distribution P([D, t+]|c̃) will be in the favor of the likelihood

function. This approach to uncertainty quantification in electrochemical systems was

developed and thoroughly validated in [78].
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6.5 Results

In this section, we present and analyze the reconstructions of the material properties

obtained using the inverse-modelling approach of Section 6.4.1 based on the standard

and modified Planck-Nernst models (2.12) and (6.1). The uncertainty of the obtained

estimates are quantified with the Bayesian approach described in Section 6.4.2. First,

we focus on inferring constant material properties, cf. problem P1, and then consider

reconstruction of concentration-dependent material properties by solving problem P2

for the most accurate variant of the modified model (6.1).

We begin the presentation of our results by showing the optimal reconstructions

D̂ and t̂+ of the constant material properties based on the standard Planck-Nernst

model (2.12) and the modified model (6.1) with three different forms (6.2)–(6.4)

of the sink function Fl(t)(x) in Figure 6.7. The reconstructions are obtained by

solving optimization problem P1 and the corresponding values of the error functional

(6.5) are given in Table 6.1, whereas Figure 6.7 also contains information about the

relative uncertainty of the reconstructions determined as discussed in Section 6.4.2,

i.e. for each panel of Figure 6.7 the solid lines represent the optimal reconstructions

[D̂, t̂+] obtained by solving problem P1 whereas the color contours represent the

corresponding posterior probability distributions (6.6). The data shown in Figure

6.7(a) for the standard Planck-Nernst model (2.12) confirms the observations already

made in Chapter 5, namely, that the inverse modelling leads to a negative transference

number t̂+ < 0 obtained via inverse modelling, which is physically inconsistent and

hence calls into question the validity of the standard Planck-Nernst system (2.12) as

a model for the data described in Section 6.2. This issue is only partially remedied, in

the sense that the obtained values of t̂+ become less negative, when the reconstructions
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are performed based on the modified model (6.1) with the sink function Fl(t)(x)

defined in (6.2) and (6.3), cf. Figures 6.7(b) and 6.7(c). We note that in all these

cases the maximum of the posterior probability distribution P([D, t+]|c̃) corresponds

to positive transference number t+, which is due to the prior obtained based on

positive transference numbers only, cf. Figure 6.6. On the other hand, in Figure

6.7(d) we observe that the reconstructed transference number t̂+ obtained based

on the modified Planck-Nernst model (6.1) with a constant sink function (6.4) is

positive. In this case the optimal reconstructions [D̂, t̂+] are also near the values

of [D, t+] maximizing the posterior probability distribution P([D, t+]|c̃), indicating

that the reconstructions [D̂, t̂+] are now closer to the literature data. Moreover,

since the posterior probability distribution in Figure 6.7(d) is more isotropic than

in the previous cases, this implies a weaker correlation between the uncertainties of

D and t+. By comparing the results shown in Figures 6.7(a)–(d) we note that the

main improvement, both in terms of the reconstructed values and their uncertainties,

results from replacing models with a localized depletion of lithium (i.e., the standard

Planck-Nernst model with the boundary condition (4.1b) and the modified Planck-

Nernst model (6.1) with the sink function given in case A) with models in which this

depletion is distributed in space (the modified Planck-Nernst model (6.1) with the

sink functions given in cases B and C). In order to elucidate how the structure of

the sink function affects the reconstruction of the transference number t+, we have

solved problem P1 using a family of sink function constructed such that the constant

“slope” s = d
dx
Fl(t)(x), x ∈ [l(t), L], was allowed to vary continuously from −∞ to

+∞ while satisfying the constraint
∫ L
l(t)
Fl(t)(x′) dx′ = 1. Thus, the standard Planck-

Nernst model (2.12) and variants A–C of the modified model (6.1), cf. (6.2)–(6.4),
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can be viewed as special cases of this more general family, see Figure 6.8(a). As is

evident from the data shown in Figure 6.8(b), within this family of sink functions,

case C corresponds in fact to the maximum value of the reconstructed transference

number t̂+.

Planck-Nernst Model Sink Function Fl(t)(x) Inverse Problem J ([D̂, t̂+])

standard, Eq. (2.12) — P1 2.61

modified, Eq. (6.1) case A, Eq. (6.2) P1 2.26

modified, Eq. (6.1) case B, Eq. (6.3) P1 2.12

modified, Eq. (6.1) case C, Eq. (6.4) P1 2.21

modified, Eq. (6.1) case C, Eq. (6.4) P2 1.14

Table 6.1: Final values of the error functional J ([D̂, t̂+]) obtained in the different
cases considered.

The experimental concentration profiles c̃(x, ti), cf. Figure 6.4, are compared to the

concentration profiles c(x, ti) predicted by the standard Planck-Nernst model (2.12)

and the modified model (6.1) with a constant sink function (6.4) using their respective

optimal material properties [D̂, t̂+] in Figures 6.9 and 6.10, respectively. The main

difference between these two cases is that in the former the concentration profiles

c(x, ti) predicted by the model exhibit large deviations from the measured profiles

c̃(x, ti) close to the right electrode, which is where the dendritic regions appears.

The quality of fits in this region is noticeably improved when the modified Planck-

Nernst model (6.1) is used, arguably due to a suitable choice of the sink function

Fl(t)(x), cf. (6.4). This improvement is also reflected in the difference of the values

of the error functional (6.5) obtained in the two cases, cf. Table 6.1. As deposition

of lithium continues, a porous structure with a certain porosity φ(x, t) depending on
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Figure 6.7: (red solid lines) Reconstructions of constant material properties [D̂, t̂+]
using (a) the standard Planck-Nernst model (2.12), (b) modified model (6.1) with sink
function (6.2) (case A), (c) modified model (6.1) with sink function (6.3) (case B), and
(d) modified model (6.1) with sink function (6.4) (case C). The associated posterior
probability distributions are indicted with filled contours. The contour lines indicate
the boundaries of the credibility region with the corresponding credibility values
indicated next to the contour lines. Information about the values of the material
properties reported in the literature, cf. Figure 6.2, is contained in the posterior
probability distribution through the choice of the prior, cf. relation (6.6) and Figure
6.6.
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Figure 6.8: (a) Sink functions with different slopes s = d
dx
Fl(t)(x), x ∈ [l(t), L],

varying continuously from−∞ to +∞ (the vertical arrows indicate the trends with the
increase of s whereas the thick red lines represent the standard Planck-Nernst model
(2.12) and the different variants of the modified model (6.1) arising as special cases
for particular values of s); (b) transference numbers t̂+ inferred by solving problem
P1 as function of the slope s characterizing the sink function Fl(t)(x), cf. panel (a).

both space and time is formed in the dendritic region [l(t), L]. The corresponding

volume fractions 1− φ(x, t) occupied by lithium dendrites predicted by the modified

Planck-Nernst model (6.1) with a constant sink function (6.4) are shown in Figure

6.11 for as functions of x ∈ [l(T ), L] for different times spread uniformly between 0

and T . This data illustrates how the dendritic region progressively spreads into the

bulk of the electrolyte. Another interpretation is that if one assumed that all lithium

is deposited on a single dendrite, then the curves shown in Figure 6.11 would describe

its time-evolving shape. The average porosity of the dendritic region at the end of

the experiment is [
∫ L
l(T )

φ(x, T ) dx]/[L− l(T )] = 0.9675.

Since it gives the best results, we now focus on the modified Planck-Nernst model

(6.1) with a constant sink function (6.4) and consider reconstruction of concentration-

dependent material properties, cf. problem P2. The optimal reconstructions D̂(c) and

t̂+(c) are shown as functions of the concentration c in Figures 6.12(a) and 6.12(b),
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respectively, together with the associated posterior probability distributions. As

is evident from these figures, the obtained optimal reconstructions D̂(c) and t̂+(c)

are consistent, both in terms of values attained and the dependence on c, with the

literature data summarized in Figures 6.3(a) and 6.3(b), although the literature data

for the transference numbers exhibits a significant scatter for all values of c. We note

that the uncertainty of D̂(c) and t̂+(c), given by the posterior probability distribution

at the given value of c, is rather modest and significantly smaller than the entire

range of variation of D̂(c) and t̂+(c) for c ∈ [200, 2000]. This uncertainty is also

essentially independent of the concentration c. Finally, in Figure 6.13 we compare

the corresponding concentration profiles c(x, ti) with the experimental profiles c̃(x, ti).

As is evident from the comparison of this figure with Figure 6.10, there is a further

improvement in the quality of the fits, which is also reflected in an additional decrease

of the value of the error function (6.5), cf. Table 6.1.

6.6 Conclusions

In this section, we briefly summarize our findings from Section 6.5. As is evident from

Figure 6.7(d), the modified Planck-Nernst model (6.1) with a constant sink function

(6.4) leads to the most consistent reconstruction of the material properties, since

in all other cases, including the standard Planck-Nernst model (2.12), the inferred

transference numbers t̂+ are negative, cf. Figures 6.7(a)–(c). This demonstrates that

the constant sink function (6.4), describing a uniform in space depletion of lithium,

offers a satisfactory account of the effect of the formation of the dendritic region

on the transport processes in the electrolyte (we have also considered forms of the

sink function Fl(t)(x) other than given in (6.2)–(6.3), but the results were inferior
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with respect to those obtained with (6.4)). This conclusion is reinforced by the

improved quality of the concentration fits near the right electrode obtained with the

modified model (6.1) as compared to the fits obtained with the standard model (2.12),

cf. Figure 6.9 versus Figure 6.10. The fact that the modified model (6.1) reproduces

the experimental measurements most accurately when it is combined with a constant

sink function (6.4) allows us to speculate that lithium is deposited not only on the

tips of the dendrites, but also within the entire dendritic region (for example, in the

form of new dendrites growing from the negative electrode or sideways off the existing

dendrites). Modelling this process based on first principles remains a challenging open

problem [95].

The reconstructions obtained based on the modified model (6.1) with the constant

sink function (6.4) are characterized by the smallest uncertainty with the weakest

degree of correlation between the uncertainties of D and t+. Finally, we also note that

the concentration-dependent diffusivity D̂(c) reconstructed by solving problem P2

agrees well with the literature data, both in terms of the values and the dependence on

c, cf. Figures 6.3(a) and 6.12(a). As regards the concentration-dependent transference

numbers, the obtained reconstruction t̂+(c) corresponds to the lower end of the range

of values reported in the literature, cf. Figures 6.3(b) and 6.12(b). Concerning the

dependence on the concentration, the decrease of the optimally reconstructed material

property t̂+(c) with c is consistent with the trends evident in most, albeit not in all,

data-sets from the literature.

To conclude, we have developed and validated a novel model for the transport

of charged species in electrolytes in the presence of dendritic growth. We also add

that the present study represents an innovative application of the concepts of inverse
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modelling and uncertainty quantification to validate or invalidate different models of

complex transport phenomena.
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Figure 6.9: Experimental concentration profiles c̃(x, ti) (symbols) and the
concentration profiles predicted by the standard Planck-Nernst model (2.12) using

the optimal constant material properties [D̂, t̂+] (solid lines) at different time levels
ti = 4, 6, 8, 10, 12, 14 hours. The size of the symbols (circles) indicates the error in
the experimental data
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Figure 6.10: Experimental concentration profiles c̃(x, ti) (symbols) and the
concentration profiles predicted by the modified Planck-Nernst model (6.1) with a

constant sink function (6.4) and using the optimal constant material properties [D̂, t̂+]
(solid lines) at different time levels ti = 4, 6, 8, 10, 12, 14 hours. The size of the symbols
(circles) indicates the error in the experimental data
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Figure 6.11: The volume fractions 1−φ(x, t) occupied by lithium dendrites predicted
by the modified Planck-Nernst model (6.1) with a constant sink function (6.4) as
functions of x ∈ [l(T ), L] for different times spread uniformly between 0 and T (the
arrow indicates the trend with the increase of time t).
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Figure 6.12: Reconstruction of concentration-dependent (a) diffusivity D̂(c) and (b)
transference number t̂+(c) (black solid lines) together with the associated posterior
probability distributions (filled contours) as functions of the concentration c for the
modified Planck-Nernst model (6.1) with the constant sink function (6.4), case C. The
contour lines indicate the boundaries of the credibility region with the corresponding
credibility values indicated next to the contour lines. Information about the values of
the material properties reported in the literature, cf. Figure 6.3, is contained in the
posterior probability distribution through the choice of the prior, cf. relation (6.6)
and Figure 6.6.
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Figure 6.13: Experimental concentration profiles c̃(x, ti) (symbols) and the
concentration profiles predicted by the modified Planck-Nernst model (6.1) with a
constant sink function (6.4), case C, and using the optimal concentration-dependent

material properties [D̂(c), t̂+(c)] (solid lines) obtained as a solution for problem P2
at different time levels ti = 4, 6, 8, 10, 12, 14 hours. The size of the symbols (circles)
indicates the error in the experimental data
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Chapter 7

Summary, Conclusion and Outlook

In this study, multiple models for material transport in electrolyte were considered

based on the Planck-Nernst theory. Algorithms were developed to obtain the

concentration-dependent material properties and estimate the uncertainty associated

with them. This approach was tested and validated at various levels and then used to

infer the concentration-dependence of material properties of lab-made and commercial

Li-ion battery electrolytes. Important aspects of this thesis are summarized as follows:

• State-of-the-art computational framework for reconstructing the material

properties from experimental data has been developed based on adjoint analysis

and optimization techniques. An additional framework to estimate uncertainty

based on Bayesian statistics has been developed, validated and implemented

to understand how sensitive our estimates of material properties deduced using

inverse modelling are with respect to various sources of uncertainty. These

computational tools have allowed us to draw novel conclusions about the validity

of the Planck-Nernst model and its various modifications.
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• Ion-pairing phenomena have no effect on our inverse-modelling estimates and

therefore the non-physical values obtained for the transference number are likely

not due to these ion-pairing effects as speculated in some electrochemistry

literature.

• Dendrite growth plays an important role in ion transport in the electrolyte and

this phenomenon has a significant effect on our estimates of material properties.

Based on our analysis with inverse modelling and uncertainty quantification, we

can conjecture that uniform deposition of Li can be a possible reason for the

appearance of the negative transference number.

By addressing the above-mentioned problem, the present investigation helps to

make modelling Li-ion batteries more accurate and reliable.
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Appendix A

Ion-Pairing Effects

A1 The Total Lithium Flux in the Bulk

In this appendix we give the details behind the modification to the Nernst-Planck

equations accounting for ion pairing. We begin by stating expressions for the fluxes

of positive ions F+, negative ions F− and ion pairs Fo using the Maxwell-Stefan

diffusion formalism which is applicable to moderately concentrated electrolytes [52]

F+ = −D+c+

RT

∂µ+

∂x
, µ+ = µΦ

+ +RT log a+ + Fφ, (A.1a)

F− = −D−c−
RT

∂µ−
∂x

, µ− = µΦ
− +RT log a− − Fφ, (A.1b)

Fo = −Doco
RT

∂µo
∂x

, µo = µΦ
o +RT log ao, (A.1c)

where Dk, µ
Φ
k and µk, and ak are, respectively, the diffusion coefficient, the reference

and total electrochemical potential and activity of the kth species (for k = +,−, o),

whereas φ is the electric potential. Within the electrolyte and away from the double

layers at the electrode there is almost exact charge electroneutrality, i.e. c+ = c−.
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This allows us to write

c+ = c, and c− = c. (A.2)

Substituting these electroneutrality relations into equations (2.3a)–(2.3b) and

subtracting these two equations gives the following relation for current conservation

∂j

∂x
= 0, where j = F (F+ −F−), (A.3)

in which j is the current density. On substituting for F+ and F− from (A.1a)–(A.1b),

the expression for j may also be written as

j = − Fc
RT

(
D+

∂µ+

∂x
−D−

∂µ−
∂x

)
. (A.4)

At this stage it is convenient to introduce the electrolyte chemical potential µe defined

as

µe =
µ+ + µ−

2
, (A.5)

which has the property that it is independent of the electric potential, since by using

the definitions of the electrochemical potentials found in (A.1a)–(A.1b) and (A.5) we

see that

µe = µΦ
e +RT log(ae(c)), where ae(c) = [a+(c)a−(c)]1/2 and µΦ

e =
µΦ

+ + µΦ
−

2
.

(A.6)

Where the dimerization reaction Li++A− � LiA is in quasi-equilibrium, the

following relation between the chemical potentials is satisfied

µ+ + µ− = µo (A.7)
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Table A1.1: Typical values of dimensional parameters.

Parameter Symbol Value Units Source
Debye Length LD O(10−9) m [93]
Cell Length L O(10−2) m Experiment
Reaction Rate k O(109) 1

s
[11]

Time of Experiment τ O(104) s Experiment
Concentration ĉ 103 mol

m3 Experiment

which in turn implies that

ao = Ka2
e, where K = exp

(
2µΦ

e − µΦ
o

RT

)
, (A.8)

and since ae = ae(c) and ao = ao(co), this implies a functional relationship between

co and c. Since we will be working with the “total concentration” cT = co + c, as

defined in (5.8), it is most helpful to express this in the functional form

co = f(cT ), (A.9)

from which it follows that

c = cT − f(cT ). (A.10)

We now seek to express the ion fluxes, as defined in (A.1a)–(A.1b), solely in

terms of the electrolyte chemical potential µe and the current density j. We do

this (following [55]) by referring to relation (A.4) and recasting (A.1a)–(A.1b) in the
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following form

F+ = − c

RT

[
D+

∂µ+

∂x
− α

(
D+

∂µ+

∂x
−D−

∂µ−
∂x

)]
+ α

j

F
,

F− = − c

RT

[
D−

∂µ−
∂x
− β

(
D+

∂µ+

∂x
−D−

∂µ−
∂x

)]
+ β

j

F

with an appropriate choice of α and β. In this instance, by taking α = t+ and

β = −(1− t+), where the transference number t+ is defined via

t+ =
D+

D− +D+

, (A.11)

we obtain the desired expressions, namely,

F+ = − c

RT

2D+D−
D+ +D−

∂µe
∂x

+
t+j

F
, (A.12a)

F− = − c

RT

2D+D−
D+ +D−

∂µe
∂x
− (1− t+)j

F
. (A.12b)

Defining

D†(c) = c
2D+D−
D+ +D−

∂µe
∂ae

∂ae
∂c

= c
2D+D−
D+ +D−

RT

ae

∂ae
∂c

,

where we used relation (A.6), we can rewrite the fluxes as

F+ = −D†(c) ∂c
∂x

+
t+j

F
, (A.13a)

F− = −D†(c) ∂c
∂x
− (1− t+)j

F
. (A.13b)
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Similarly, defining D†o(co) = coDo
∂µo
∂ao

∂ao
∂co

, we have

Fo = −D†o(co)
∂co
∂x

. (A.14)

Then, using the definition of the total lithium flux FT found in (5.8) together with

the relations (A.13a)–(A.13b) and (A.14), we obtain the following expression

FT = −
(
D†(c)∂cT

∂x

(
1− df

dcT

)
+D†o(co)

df

dcT

)
∂cT
∂x
− j

2F
(1− 2t+), (A.15)

where co and c are given by (A.9) and (A.10), respectively. It is straightforward to

rewrite this expression in terms of an effective diffusivity, defined by

D̃(cT ) = D†(c) +
(
D†o(co)−D†(c)

) df(cT )

dcT
, (A.16)

so that it now reads

FT = −D̃(cT )
∂cT
∂x
− j

2F
(1− 2t+). (A.17)

A2 Fluxes in the Reaction Layers

In this section we offer a systematic demonstration that the fluxes of the charged

species do not vary appreciably across the narrow reaction layers in the vicinity of the

interfaces using asymptotic methods. First, we cast the problem in non-dimensional

form by scaling the dependent variables. Henceforth, quantities marked with a star
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are dimensionless. We write

ci = ĉ c∗i , Q = k ĉQ∗, x = Lx∗, (A.18a)

Fi =
Lĉ

τ
F∗i , Ri =

Lĉ

τ
R∗i , t = τt∗, (A.18b)

where ĉ is a typical value of the ionic concentration, Fi is the flux of species

i = {+,−, o}, τ is a characteristic timescale for the experiment, whereas k is

a characteristic reaction rate. Typical values of some of these parameters are

summarized in Table A1.1. On applying these scaling relations to equations (2.3)

as well as (5.9) and its boundary conditions (5.10) we obtain

∂c∗+
∂t∗

+
∂F∗+
∂x∗

= −Q
∗

δ
,

∂c∗−
∂t∗

+
∂F∗−
∂x∗

= −Q
∗

δ
,

∂c∗o
∂t∗

+
∂F∗o
∂x∗

=
Q∗

δ
, (A.19a)

∂c∗T
∂t∗

+
∂F∗T
∂x∗

= 0, F∗T |x=0 =
J

2
, F∗T |x=1 =

J

2
, (A.19b)

where

δ =
1

τk
� 1, J =

j

FF∗i
= O(1). (A.20)

Here δ is the ratio of the typical timescale of experiment to those for ion-pairing

reactions while J is the ratio of the electronic current density supplied at the contact

to the ionic current density in the solution.

The small value of δ (which can be estimated using the parameter values in

Table A1.1) requires that the bulk of the electrolyte, where x∗ = O(1), be in quasi-

equilibrium. Contrastingly, close to the edges of the domain near the electrodes,

where either x∗ = O(δ) or 1− x∗ = O(δ), the reaction rate could be sufficiently large

that it may appreciably alter the fluxes of some of the different species across these
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narrow layers. Examining (A.19a)–(A.19b) we see that the fluxes of anions, cations

and neutral ion pairs are all altered, but, crucially, the flux of the total mount of

Lithium is unaffected. To demonstrate this we make the following rescalings in order

to form the governing equations in the narrow (of width O(δ)) reaction layers

x∗ = δw∗l , 1− x∗ = δw∗r , (A.21)

so that wl and wr are the local coordinates within the left- and right-hand non-

equilibrium layers, respectively. Under these rescalings the governing system for c∗T ,

cf. relation (A.19b), becomes

∂c∗T
∂t∗

+
1

δ

∂F∗T
∂w∗l,r

= 0 (A.22)

which, on noting the smallness of δ, immediately asserts that

F∗T =
j

2F
+O(δ) (A.23)

so one can thus write

F∗T
∣∣∣
x∗=0+,1−

=
j

2F
+O(δ) (A.24)

throughout the reaction layers adjacent to the electrodes. This more rigorously

justifies the application of the boundary conditions (5.10) to the governing system

for the total Lithium flux in the bulk (5.9).
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A3 Higher-Order Ion Clusters

Here we extend the analysis of Section 5.4 to demonstrate that in fact the same

conclusions also hold when higher-order ion complexes are taken into account. Let

us now consider third-order ion clusters with concentrations denoted as

c1+ — concentration of Li+,

c1− — concentration of N−,

c20 — concentration of LiN ,

c3+ — concentration of Li2N
+,

c3− — concentration of LiN−2 .

Assuming that third-order ion clusters form from ion pairs, we can write the

transformation reactions as follows

Q1 : Li+ +N− 
 LiN, (A.25a)

Q2 : LiN + Li+ 
 Li2N
+, (A.25b)

Q3 : LiN +N− 
 LiN−2 , (A.25c)
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whereQ1, Q2 andQ3 are the corresponding reaction rates. The conservation equations

for the different species can then be written as

∂c1+

∂t
+
∂F1+

∂x
= −Q1 −Q2, (A.26a)

∂c1−

∂t
+
∂F1−

∂x
= −Q1 −Q3, (A.26b)

∂c20

∂t
+
∂F20

∂x
= Q1 −Q2 −Q3, (A.26c)

∂c3+

∂t
+
∂F3+

∂x
= Q2, (A.26d)

∂c3−

∂t
+
∂F3−

∂x
= Q3, (A.26e)

where F(·) are the fluxes of the respective species. Reactions at the electrodes can

now be written as

(I) Li
 Li+ + e−, (A.27a)

(II) Li+N− 
 LiN + e−, (A.27b)

(III) Li+ LiN 
 Li2N
+ + e−. (A.27c)
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At the anode the boundary conditions pertaining to the flux of each species can now

be stated as, cf. (2.4a)–(5.3c),

F1+|x=0 = r(I), (A.28a)

F1−|x=0 = −r(II), (A.28b)

F20|x=0 = −r(III) + r(II), (A.28c)

F3+|x=0 = r(III), (A.28d)

F3−|x=0 = r(I). (A.28e)

(A.28f)

Now let us define FT as, cf. (5.8),

FT = F1+ + F1− + 2F20 + 3F3+ + 3F3−, (A.29)

which at the anode gives, cf. (5.10),

FT |x=0 = r(I) + r(II) + r(III) =
j

F
(A.30)

and similarly for the cathode we can write,

FT |x=L =
j

F
. (A.31)

If we also assume, cf. (5.8),

cT = c1+ + c1− + 2c20 + 3c3+ + 3c3−, (A.32)
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then we can write, cf. (5.9),

∂cT
∂t

+
∂FT
∂x

= 0. (A.33)

Thus, starting from equations (A.32) and (A.33) and following the approach laid down

in Section 5.4, we can show that the transport equation for this extended system will

again be formally equivalent to the Plank-Nernst equation (2.12). This analysis can

be further extended in the same way to fourth- and higher-order ion clusters which

will lead to the same conclusions.
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Appendix B

Bayesian Inverse Modelling for

Planck-Nernst Model with

Dendrite Growth

B1 Values of Material Properties Reported in the

Literature

• Y. Aihara et al., 2004 [1]

c [mol/m3] 100 250 500 750

D [m2/s] 3.5 3.1 2.5 2.1

t+ 0.33 0.35 0.34 0.34

• K. Hayamizy, 2012 [35]

D [m2/s] 1.41

• M. Klett et al., 2013 [38]
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D [m2/s] 1.1

t+ 0.33

• K. Kondo et al., 2000 [39]

c [mol/m3] 1 118 565 1100 1600 2070 2500 2910 3290

D [m2/s] 4.9 4.2 2.7 1.4 0.74 0.37 0.17 0.090 0.061

• S. Krachkovskiy et al., 2013 [41]

c [mol/m3] 200 800 1200 1800

D [m2/s] 2.13 1.11 0.82 0.45

t+ 0.38 0.39 0.39 0.45

• A. Mehrotra et al., 2013 [49]

c [mol/m3] 200 400 600 800

D [m2/s] 7.11 6.54 3.21 2.14

t+ 0.41

• J. Newman et al., 2003 [56]

D [mol/m3] 0.27

t+ 0.5

• M. Riley et al., 2002 [70]

c [mol/m3] 100 250 500 750 1000 1500

t+ 0.3 0.22 0.18 0.12 0.10 0.01

• S. Stewart et al., 2008 [85]

D [mol/m3] 0.77

t+ 0.4

• L. Valoen et al., 2005 [92]
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c [mol/m3] 0 1000 1750 2250

t + 0.4 0.36 0.39 0.37

D [m2/s] 0.87

• J. Zhao et al., 2008 [98]

c [mol/m3] 250 500 750 1000 1500

D [m2/s] 2.14 1.88 2.23 1.70 1.42

t+ 0.557 0.477 0.445 0.408 0.370

• S. Zugmann et al., 2011 [100]

D [mol/m3] 3.37

t+ 0.24

B2 Determination of the Prior and Sampling the

Likelihood Function

The prior P([D, t+]) in Figure 6.6 is constructed based on the literature data for

the diffusivity and the transference numbers for the electrolyte considered in our

study, which is summarized in Figures 6.2 and 6.3, and is also tabulated in Appendix

B1. This is done using the function kde2d from the MASS package in R, where the

bandwidth is suitably adjusted to obtain a prior with the desired “weakness”. For

problem P1 in our study the band widths used were [1× 10−10, 0.2] and [4× 10−10, 1]

in increasing order of weakness. Whereas for P2, each discrete concentration value

has a density function fitted with interpolated experimental data. The bandwidth

used here was [3× 10−10, 0.8].

Sampling the likelihood function (4.6) is performed using the Metropolis-Hastings
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algorithm [16]. For brevity of notation, we will denote m = [D, t+]. This algorithm

is based on the Markov-Chain Monte-Carlo (MCMC) approach [32] employed to

randomize m and at each step involves solution of the governing system (2.12) or

(6.1) for modified (trial) material properties m∗ followed by the evaluation of the

error functional (4.3). At each step the algorithm moves in the probability space

collecting samples from the probability distribution (4.5). A move in the probability

space is accepted or rejected based on a sample acceptance ratio γ defined based on

the posterior distribution (4.5). This approach is summarized as Algorithms 4 and 5,

respectively, for problems involving constant and concentration-dependent material

properties, and further technical details are provided in [78].

Algorithm 4 : Metropolis-Hastings algorithm to estimate the posterior probability distribution of constant
material properties. The algorithm uses the function normrnd(M,S) which samples a normally distributed random
variable with mean M and standard deviation S (a function with this name is available in MATLAB).
Input:

literature data for D and t+, cf. Figure 6.2 and Appendix B1
c̃ — experimental data,
M — numbers of samples generated
m̄(0) — initial guess sample
C — parameter controlling randomization

Output:
an approximation of the posterior probability distribution P(m|c̃)

assimilate literature data to construct prior P(m̄).
construct initial sample m̄(0)

k ← 1
repeat

create a new trial position m̄∗ = m̄k + normrnd(0̄, C)

calculate acceptance ratio γ = P(m̄(∗)|c̃)
P(m̄(k)|c̃)

if γ ≥ rand(1): m̄(k+1)=m̄(∗); k ← k + 1,
else: discard m(∗)
k = k + 1

until M +M/10 samples are obtained for posterior distribution
discard the first M/10 samples
assimilate the remaining samples to obtain posterior probability distribution P(m|c̃)
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Algorithm 5 : Metropolis-Hastings algorithm to estimate the posterior probability distribution of
concentration-dependent material properties. The algorithm uses the function normrnd(M,S) which samples a normally
distributed random variable with mean M and standard deviation S (a function with this name is available in
MATLAB).
Input:

literature data for D(c) and t+(c), cf. Figure 6.3 and Appendix B1
c̃ — experimental data,
M — numbers of samples generated
m̄i — initial sample in (chosen such that m̄i ∈ X )
C — parameter controlling randomization

Output:
an approximation of the posterior probability distribution P(m|c̃)

assimilate literature data to construct prior P(m̄).
m̄(0) ← m̄i

transform m̄(0) to f̄k using cosine transformation
k ← 1
repeat

create a new trial position f̄∗ = f̄k × normrnd(0̄, C)
using inverse cosine transform obtain m̄(∗)

calculate acceptance ratio γ = P(m̄(∗)|c̃)
P(m̄(k)|c̃)

if γ ≥ rand(1): m̄(k+1)=m̄(∗); k ← k + 1,
else: discard m̄(∗)

until 20M +M/10 samples are obtained for posterior distribution
discard the first M/10 samples
randomly select M samples from the remaining set and assimilate them to obtain posterior
probability distribution P(m|c̃)
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