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Abstract

The main contribution of this thesis is a new method of image compression based
on a recently developed adaptive transform called Mixtures of Principal Components
(MPC). Our multi-resolution extension of MPC — called Multi-Resolution Mixtures
of Principal Components (MR-MPC) compresses and decompresses images in stages.
The first stage processes the original images at very low resolution and is followed by
stages that process the encoding errors of the previous stages at incrementally higher
resolutions.

To evaluate our multi-resolution extension of MPC we compared it with MPC
and with the excellent performing wavelet based scheme called SPIHT. Fifty chest
radiographs were compressed and compared to originals in two ways. First, Peak
Signal to Noise Ratio (PSNR) and five distortion factors from a perceptual distortion
measure called PQS were used to demonstrate that our multi-resolution extension of
MPC can achieve rate distortion performance that is 220% to 720% better than MPC
and much closer to that of SPIHT. And second, in a study involving 724 radiologists’
evaluations of compressed chest radiographs, we found that the impact of MR-MPC
and SPIHT at 25:1, 50:1, 75:1 on subjective image quality scores was less than the
difference of opinion between four radiologists.
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Chapter 1

Medical Image Compression

1.1 Teleradiology and PACS

Teleradiology and Picture Archiving and Communication Systems (PACS) are med-
ical technologies that improve health care. Teleradiology systems transmit remotely
collected diagnostic images to a central location for expert analysis [21] and allow
physicians to consult with specialists in a more timely manner by eliminating the
need to physically ship images and experts [12]. For example, teleradiology can
enable a busy radiology practice to provide 24 hour coverage to many peripheral hos-
pitals and remote clinics at which patient volumes do not justify retaining a full-time
in-house radiologist for around the clock coverage. Picture Archiving and Commu-
nication Systems (PACS) organize and archive locally collected images and enable

physicians to view radiographic images on computer workstations located whereever
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clinical care is delivered. The benefits of PACS are decreased turnaround time for
both routine and urgent examinations, faster specialist consultation [32] and more

efficient communication between emergency physicians [1].

1.2 Medical Image Size

Implementing teleradiology and PACS is a challenge. Teleradiology requires long
distance transmission of remotely acquired medical images. PACS requires storage of
locally acquired medical images. These requirements are not trivial given the size of
most medical images. For example, to fully represent a single chest radiograph with
50-pm pixels — each logarithmically scaled for dynamic range with guard bits added
to measure the latitude of exposure and corresponding to a limiting resolution of 10
line pairs per millimeter (lp/mm) — requires 120 Mb [11]. Table 1.1 summarizes
the approximate amount of data generated by various imaging procedures. Although
commonly used images are smaller than the chest radiograph just described, a digital

radiology department may nevertheless generate 50 gigabytes of image data on a busy
day [21].
1.3 Image Compression

The solution to dealing with this much data is to represent images in a way that

requires less storage space and transmission time. One way to do this is called loss-
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Procedure Theight
CT 512
MRI 256
UsS 512
PET 128
SPECT-8 128
SPECT-15 128
DSA 1024
DF 1024
CR 2048

MAMMOGRAM 4500

Table 1.1: This table shows the amount of data generated per exam for various
diagnostic procedures [15, 11, 19]. Image dimensions Ixe;gnt and g, and the number
of bits used to represent each pixel Iy, all vary between procedures. Image files are
larger when high spatial and high contrast resolution is needed. Local conventions
determine the number of images collected I,. The amount of data generated per

procedure is Iheight * Lyidtn * Topp * In

Lidth
- 512
256
512
128
128
128
1024
1024
2048
3200

Ibpp
12
12

6
16
8
16
8
8
16
12

30
50
36
62
50
50
20
15

Mb
16.0
6.5
9.5
2.0
0.8
1.6
20.0
15.0
16.0
38.0
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less compression. Lossless compression works by removing image repetition. On still
frame gray scale medical images lossless compression can achive ratios around 4:1.
These ratios however are hard to improve becasue the maximum amount of com-
pression lossless compression can achieve is upper bound by the amount of repetition
[17].

Another way of representing images so they require less storage space and trans-
mission time is called lossy compression. Lossy compression approximates images by
leaving out what’s least important and can — at the price of worse approximation
— attain compression ratios that are orders of magnitude higher than lossless ratios.
The following three recent studies — which are discussed further in chapter 5 — give

an idea as to how much compression lossy compression can achieve:

1. Savcenko et al. [36] assessed the effect of wavelet compression of 60 posterior-
anterior chest radiographs on detection of small uncalcified pulmonary nodules
and fibrosis. They found no substantial difference in the overall diagnostic

accuracy between uncompressed images and ones compressed at 40:1 and 80:1.

2. Erickson et al. [9] assessed wavelet compression of 40 posterior-anterior chest
radiographs on radiologist visibility of anatomic structures. Their findings sug-
gest that lossy compression at 40:1 or more can be used without perceptible

loss in the representation of anatomic structures.

3. Goldberg et al. [27] assessed lossy wavelet compression of twelve abnormal radio-

graphs by presenting original and compressed/decompressed images in random
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order and asked reviewers to judge whether diagnosticly significant image degra-
dation was present. All seven board-certified radiologists found no degradation

below a compression ratio of 30:1.

1.4 Motivation

The best image compression algorithms in existence today are based on the discrete
wavelet transform (DWT) which offers good concentration of energy and decorrelation
for a wide class of signals in both time and frequency. [19, 26, 37, 34, 33]. In
this thesis, we introduce and evaluate a new method of image compression based
on a multi-resolution extension to a recently developed adaptive transform called
Mixtures of Principal Components (MPC) [15, 16]. Although MPC compression is
superior to compression techniques based on and related! to the optimal Karhunen-
Loeve Transform (KLT), MPC does not, like wavelets, exploit repetition present in
between multiple resolution of an image. Our goal was to improve MPC compression

by extending it to process images at multiple resolutions.

The motivation for our work is fourfold. First, there exists the potential to boost
image transmission through put on all present day communication links. This is
important for the cost effective deployment of teleradiology today. Second, there is

the potential to conserve bandwidth in the crowded wireless communication spectrum.

IMPC is superior to the discrete cosine transform (DCT) approximation of KLT used in the
common compressed image format JPEG.
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This will be important for itinerant teleradiology systems in the future. Third, there
is the potential to increase image capacities of all present day storage media. This
is important for storage strained PACS today. Fourth, there is the potential to
boost all future storage media improvements multiplicatively — for example a mere
tenfold improvement in hardware multiplied by 10:1 compression gives a hundredfold

improvement. This will be important for PACS in the future.

1.5 Organization

The remainder of this thesis is organized in five chapters. Chapter 2 reviews some
conventional lossless and lossy compression techniques along with the recently de-
veloped adaptive transform called MPC. Our method, which is a multi-resolution
extension of MPC, is introduced in chapter 3. The performance of the new method
is investigated with chest radiographs first, numerically in chapter 4 and second, em-
pirically in chapter 5. Finally, chapter 6 concludes the thesis by reviewing the salient

points of our method.



Chapter 2

Image Compression

2.1 Lossless Compression

Image compression modifies images so that less storage space and transmission time
are required. Lossless compression is a reversible form of compression that removes
image repetition. For example, images have many areas in which pixels have the same
value. One way to reduce this kind of repetition is to store the value and number of

similar pixels, instead of storing individual pixel values separately.

2.1.1 Run Length Compression

This method — called run length compression — first finds the least frequently oc-
curring pixel value. This value is then used to indicate that the next two items in the

compressed stream refer to a pixel value and the number of pixels in a row having
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01 01 00 00 00 00 00 00 00 02 02 02 02 02 01 07 ..

01 01 07 00 07 07 02 05 01 07 07 01 ...

Figure 2.1: This figure shows run length compression of an image pixel stream. 07 is
known to be the least common value so it is used to indicate that the next two values
specify a compressed run. The compressed data is stored as 01, 01, run of seven 00’s,
01, run of five 02’s, 01 and 07. The last 07 must be represented as a run to avoid
misinterpreting the two values that follow it in the stream. 16 values are compressed
to 12 values achieving 1.33:1 compression ratio.

that value. The scheme is demonstrated in figure 2.1. Three values are required to
describe a run, so runs are compressed if they contain more than three pixels. The
least frequent pixel is the only exception — it must always be encoded as a run to

avoid misinterpreting the two pixels that follow it during decoding.

Run length compression works well when adjacent pixels have the same value
often. If repeated pixels are not next to each other, run length compression fails —
the compressed image file size is larger then the original image file size due to the

overhead of having to represent all occurrences of the least common pixel with three

values.
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pixel value 00 01 02 03 04 05 06 07
frequency 25 4 6 12 2 0 1 50
fixed length code 000 001 010 O11 100 101 110 111
variable length code 01 00001 0001 001 000001 0000000 0000001 1

Table 2.1: This figure demonstrates Huffman compression. A 10x10 image contains
pixel values with indicated frequencies. If each pixel is assigned a 3 bit string, the
image can be encoded in 300 bits. However, if common pixels are assigned shorter
bit strings, the image can be encoded in just 199 bits.

2.1.2 Huffman Compression

An alternative to run length compression that works even when repeated pixels are
not next to each other, is Huffman Compression. This method reduces the average
number of bits necessary to represent each pixel by using the knowledge that some
pixel values repeat more than others. For example a 10x10 image has pixel frequencies
shown in table 2.1. Pixel value 07 occurs 50 times, value 00 occurs 25 times, and so
on. Only eight different pixel values occur altogether. If each pixel is assigned a fixed
3-bit code word, the image can be stored in 300 bits. However, by giving frequently
occurring pixel values short codewords and infrequent pixel values long codewords, a

variable-length Huffman code can represent images more efficiently.

This is shown in table 2.1. The most common pixel value 07 is assigned the 1-bit

string ‘1’ while the least common pixel value 05 is assigned the 7-bit string ‘0000000°.
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Using this code the image can be encoded in just

25%2+4+546x4+12x3+2x64+0%x74+1%7450%1 =199 bits

The variable length code words in table 2.1 are paths from a binary Huffman tree.
Huffman trees are built by successively combining the two least frequent symbols to
form a new composite symbol that represents the frequency of all nodes beneath it. A
code generated in this way has the important property that no bit string is a prefix of
any other. This property simplifies decompression to identifying the initial bit string,
looking up the original pixel value, and repeating the process on any bits that remain.
For example, ‘111 011 001 000 101 011’ compresses to ‘1 001 00001 01 0000000 001’

which decodes to pixel values 07 03 01 00 05 03’.

2.2 Lossy Compression

Although lossless compression schemes such as run length and Huffman compression
are completely reversible, the compression ratios they can achieve are limited by the
amount of repetition present in the original image. On still-frame gray-scale medical
images lossless ratios from 2:1 to 3:1 are hard to improve [17]. To get more compres-
sion we must resort to an irreversible form of compression called lossy compression.
Lossy compression approximates images by leaving out what’s least important. For

example, in most raw medical images the area of interest is surrounded by a useless



CHAPTER 2. IMAGE COMPRESSION 11

border. Removing this border reduces the image size. Further compression can also
be achieved by reducing the number of bits that represent each pixel. This is called
scalar quantization. For example, computed tomography (CT) algorithms require 16
bits per pixel calculating accuracy, but in the final image, only 12 bits are significant

— 4 bits of every pixel are wasted on recording noise and can be removed[21].

2.2.1 Block Coding

Another way to do lossy compression is to first cut images into small non-overlapping
rectangular blocks of pixels. Figure 2.2 shows 1x2 pixel blocks from a typical image.
The pixels in each block P1 and P2 are plotted against each other in D-dimensional
(D = 2) block space. Why do some blocks form linear trends and others appear in
clusters? Trends occur because inside each block pixel values are correlated — in
images dark pixels tend to have dark neighbors and light pixels tend to have light
neighbors. Clusters occur when all pixels in one block have similar values to pixels

in other blocks — in images some patches resemble each other.

2.2.2 Karhunen-Loéve Transform (KLT)

To optimally compress the information present in trends we can use a linear projection
called the Karhunen-Loéve Transform. KLT is a special case of Principal Component
Analysis (PCA) which is defined as follows: For a set of N observed D-dimensional

vectors T'(n), n € 1,..., N, the @ principal axes W(g), ¢ € 1,...,Q, are those
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I
|
I
l.
———————————— | ---==----- P1
I
I
I
I

P2

Figure 2.2: Plot of 2x1 pixel blocks from a typical image. Each block’s two pixels P1
and P2 are plotted against each other in D-dimensional (D = 2) block space.

orthonormal axes onto which retained variance under projection is maximal. It can
be shown that vectors W(q) are the  dominant eigenvectors (dominant = those with

largest associated eigenvalues Y(g)) of the sample covariance matrix
S = exp[(T (i) — U)(T (i) — U)"]

such that

where U is the mean of T'(n).

The @ principal components of observed vector T'(n) are given by vector

X(n) =WH(T(n) - U)
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where

The variables X (j) are decorrelated in that the covariance matrix
exp[X X7

is diagonal with elements Y (g) [20].

PCA is equivalent to KLT when output dimension @ is less than the input di-
mension D. Here the decorrelating property of PCA can be used for optimal dimen-

sionality reduction. The KLT reconstruction of T'(n) is given by
T'(n) = W(X(n) + U)

and is optimal [31] in the sense that it minimizes the sum of squared reconstruction

error

> ((T(n) = T'(n)*)

n

The effect of KLT is to represent image blocks by their projections onto better
axes. Figure 2.3 shows a one component KLT reconstruction. Blocks from figure 2.2
are mapped onto the principal axis along which variability is greatest. 2:1 compression
is achieved because after projection each block is represented by one principal axis

coordinate instead of two pixel value coordinates. More compression is possible when
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Figure 2.3: A one component MPC reconstruction of blocks from figure 2.2. Blocks
are mapped onto the principal axis along which variability is greatest. 2 : 1 compres-
sion is achieved because after projection each block is represented by one principal
axis coordinate instead of two pixel value coordinates.

the dimensionality of blocks is bigger — in practice as few as 4 principal coordinates

can adequately represent 8x8 input blocks, giving 16:1 compression.

Points displaced the least distance by projection have the lowest reconstruction
error. Notice that in figure 2.3 blocks that are greatly displaced are initially far
from the principal axis — with P1 very different from P2. Unfortunately, some of
these blocks represent image edges — any block that spans an edge must have P1
different from P2. Edge blocks are rare with respect to the entire image and are
poorly reconstructed by KLT. This is unfortunate because edge blocks are extremely
important for human observers — hence KLT, although optimal at preserving global
information content, is suboptimal at reconstructing edge blocks that are perceptually

very important.
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2.2.3 Vector Quantization (VQ)

An alternative to KLT relies on the observation that blocks tend to cluster. Clusters
can be compressed using a generalization of scalar quantization called vector quanti-
zation [30]. Scalar quantization maps a signal T'(n) to a series of K discrete messages.
For the k’th message, there exist thresholds H(k) and H(k+ 1), and an output value
U(k) such that H(k) < U(k) < H(k+1). VQ is a D-dimensional generalization
that uses a set — codebook — of representation vectors — codewords — in place of
output levels. Given a codebook of K codewords {W(i)i = 1,...,n}, a vector T'(n)
is represented by the i’th codeword such that the reconstructed vector T"(n) is given
by

T'(n) = W(5)

where

IT(n) = W) = r{lﬁ{l(llT(n) —W(@l)

VQ achieves compression because all the pixels in each image block are represented
by a single cluster index. Figure 2.4 shows a four class VQ reconstruction — blocks
from figure 2.2 map to their nearest cluster centers. Blocks with P1 very different
from P2 are displaced less, which means that VQ represents edges much better than
KLT does. However many clusters are needed to reconstruct non-edge blocks with
fidelity comparable to KLT because VQ does not take advantage of linear trends.

The next section shows how this compromise can be avoided.
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2.2.4 Mixtures of Principal Components (MPC)

Recently [15, 16] have introduced a generalization of VQ and KLT called Mixtures
of Principal Components. MPC partitions data to K non-overlapping regions and
represents each region with a Q-dimensional linear subspace. It can be shown that
MPC is equivalent to VQ when all components retained (@ = D) and KLT when

number of classes is one (K = 1). Thus, if block X is in class C; its MPC encoding is

Y =WX

and decoding is

X' =Wy

A four-class, one-component MPC reconstruction is shown in figure 2.5. Blocks from
figure 2.2 are mapped onto the principal axis of their closest cluster. Both clusters
and trends are taken into account by this method, thereby improving reconstruction

beyond that of either KLT or VQ alone [15, 16].

2.3 Summary

This chapter has distinguished between lossless and lossy compression and reviewed
some basic image compression algorithms to provide the necessary background for

the lossy image compression scheme we introduce in the next chapter.
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Figure 2.4: A four class VQ reconstruction of blocks from figure 2.2. Each pixel in a
given block is mapped to the center of the nearest cluster. Compression is achieved
because all pixels in each block are represented by a single cluster index.

Figure 2.5: A four class one component MPC reconstruction of blocks from figure 2.2.
Each pixel in a given block is mapped onto the principal axis of the closest cluster.
Use of both clusters and trends improves reconstruction beyond that of either KLT
or VQ alone.



Chapter 3

Multi-Resolution MPC

(MR-MPC)

3.1 Introduction

The best image compression algorithms in existence are based on the discrete wavelet
transform (DWT) which offers good concentration of energy and decorrelation for a
wide class of signals in both time and frequency [19, 26, 37, 34, 33]. This chapter intro-
duces an alternative to wavelet compression based on the MPC transform discussed in
section 2.2.4. Although MPC can compress better than the optimal Karhunen-Loéve
Transform (KLT), MPC does not, like wavelet based algorithms, exploit repetition
present in between multiple resolution of an image. Our goal was to improve MPC

compression by extending it to process images at multiple resolutions. We begin by
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reviewing some of the ideas that motivated the development of our algorithm.

3.1.1 Review

Down-sampling removes image detail and reduces image size. For example, figure
3.1 shows an original image (A) down-sampled to half resolution (B) and quarter
resolution (C). Up-sampling increases image size and is, in spirit, the opposite of
down-sampling. For example, figure 3.2 shows an original image (A) up-sampled to
double (B) and quadruple resolution (C). Up-sampling cannot exactly undo down-
sampling because down-sampling removes high frequency information — detail is
lost. The lost detail can, however, be approximated using interpolation during up-
sampling. For example, figure 3.3 shows an image down-sampled to a low resolution
and then up-sampled back to its original resolution using interpolation. In this figure,
the original image (A) and the interpolated image (C) look similar because the detail
lost during down sampling can be interpolated from the low resolution image (B).
The detail that interpolation cannot restore is the difference between images (A) and
(C) shown in image (D). The error image (D) is easy to compress using methods
described in chapter 2 because nearly all its pixels are either zero or close to zero —

that is, it’s mostly black.
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Figure 3.1: This figure demonstrates down-sampling. (A) is the original 512x512
image, (B) is a 256x256 image down-sampled from (A) and (C) is a 128x128 image
down-sampled from (A). Details of down-sampling are discussed in section 3.3.1.
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Figure 3.2: This figure demonstrates up sampling. (A) is the original 128x128 image,
(B) is a 256x256 image up-sampled from (A) and (C) is a 512x512 image up sampled
from (A). Details of up-sampling are discussed in section 3.3.2.
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Figure 3.3: This figure demonstrates that most high resolution detail can be approx-
imated by interpolation of low resolution images. The original 512x512 image (A) is
down-sampled to 256x256 (B) then up-sampled using interpolation to 512x512 (C).
The original image (A) and interpolated image (C) look similar because image detail
lost during down-sampling can be interpolated from the low resolution image (B).
The detail that interpolation cannot restore is shown in the error image (D) which is
the difference between images (A) and (C). The error image (D) is easy to compress
because nearly all of its pixels are either zero or close to zero — it’s mostly black.
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3.2 Design

The ideas in the previous section can be used to extend the MPC compression scheme
proposed by [15, 16]. Our method is called called Multi Resolution Mixtures of
Principal Components (MR-MPC), and is based on two key observations. The first
observation is that high frequency image detail is predictable from lower resolutions.
The second observation is that the detail not predictable from lower resolutions is

easy to compress.

The job of MR-MPC is twofold — compression and decompression. Compression
progressively encodes the original image to a compressed stream. Decompression
progressively decodes the compressed stream and updates an approximation of the
original image. These tasks may run sequentially _ compressing image files on a file
system and later decompressing them as needed — or concurrently — at opposite

ends of a communications link.

MR-MPC compresses and decompresses images in stages. The first stage pro-
cesses the original image at a very low resolution and is followed by stages that process
the encoding errors of the previous stages at incrementally higher resolutions. The
number of stages and resolution at each stage is controlled by a resampling scheme

parameter explained in section 3.2.4.
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3.2.1 Compression Overview

The task of compression is carried out by a pipeline of N stages. Figure 3.4 depicts

the five steps that are carried out in each stage of the compression pipeline.

Step (1) down-samples the full resolution error image Ife(n) to a low resolution

error image Ile(n). This is explained in section 3.3.1.

e Step (2) encodes the low resolution error image Ile(n) to a compressed error

stream Sle(n) using MPC. This is explained in section 3.3.3.

e Step (3) decodes the compressed error stream Sle(n) to Ilr(n) which is a low
resolution reconstruction of Ile(n). This is explained in section 3.3.4. At this
point a copy of Sle(n) is also sent to the step (1) of decompression. This is

explained in section 3.2.2.

e Step (4) up-samples the low resolution reconstruction image Ilr(n) to a full

resolution reconstruction image Ifr(n). This is explained in section 3.3.2.

e Lastly step (5) computes the error image that is processed by the next stage by

subtracting Ifr(n) from Ife(n).

Figure 3.5 shows what happens at each step of a three stage compression pipeline.
When the compression pipeline starts, Ife(1) is set to the original image. At subse-

quent stages, Ife(n) is the full-resolution residual error image from the (n-1)’st stage.
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And when this pipeline finishes, Ife(N+1) is the residual error image from the last

stage.

3.2.2 Decompression Overview

The task of decompression is also carried out by a pipeline of N stages. The n’th

stage of ‘decompression has three steps which are shown in figure 3.6.

e Step (1) decodes the compressed error stream Sle(n) which is the output from
step (2) of compression (described in section 3.2.1) to a low resolution recon-

struction Ilr(n). This is explained in section 3.3.4.

e Step (2) up-samples the low resolution reconstruction image Ilr(n) to a full

resolution reconstruction image Ifr(n). This is explained in section 3.3.2.

e Lastly step (3) computes the full resolution cumulative image for the next stage

Ifz(n+1) by adding Ifr(n) to Ifz(n).

How stages of compression interact with stages of decompression is shown in figure
3.7. When compression starts, Ife(1) is set to the original image. At subsequent
stages, Ife(n) is the full-resolution residual error image from the (n-1)’st stage. When
compression stops, Ife(N+1) is the residual error image. When decompression starts,
Ifz(1) is set to a zero image. At subsequent stages, Ifz(n) is progressively refined
by corrections from the (n-1)’th stage of compression. When decompression stops,

Ifz(N+1) is the recovered image. Figure 3.8 shows an image being progressively
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Figure 3.4: This figure depicts five steps in the n’th stage of MR-MPC’s N stage
compression pipeline. When this pipeline starts, Ife(1) is set to the original image.
At subsequent stages, Ife(n) is the full-resolution residual error image from the (n-
1)’st stage. When pipeline stops, Ife(N+1) is the is residual error image. Step (1)
down-samples. Step (2) encodes error. Step (3) decodes error. Step (4) up-samples.
Step (5) computes error image for compression in stage n+1.
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Figure 3.5: This figure shows what happens in a three stage compression pipeline.
When this pipeline starts, Ife(1) is set to the original image. At subsequent stages,
Ife(n) is the full-resolution residual error image from the (n-1)’st stage. When the
pipeline stops, Ife(4) is the residual error image. Progressive decompression is shown
in figure 3.8.
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decompressed as it’s being received from the three stage compression pipeline in

figure 3.5.

3.2.3 Training Overview

The MPC transforms done in step (2) and (3) of compression and step (1) of de-
compression use K transformation matrices {Wy, W, ..., Wk}. These matrices are
empirically determined by initial training on a pool of images representative of those
that will be compressed in practice. The training is carried out in an N stage pipeline
similar to that used for compression. The n’th stage of this pipeline is shown in figure

3.9. This training stage differs from the compression stage shown in figure 3.4 in only

three ways.

e Firstly, training does not send a copy of the compressed error stream to decom-

pression.

e Secondly, training works with a 3D data structure that contains all training
images whereas compression works with a 2D data structure that contains only

one image.

e Lastly, in step (2) of each training stage, MPC weights are trained first (this
is explained in section 3.3.8) after which, as in the compression procedure, the
weights are used to encode the low resolution error image Ile(n) to a compressed

error stream Sle(n).
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Figure 3.6: This figure depicts three steps in the n’th stage of MR-MPC’s N stage
decompression pipeline. When this pipeline starts, Ifz(1) is set to a null or zero image.
When this pipeline finishes, Ifz(N+1) is the recovered image. Step (1) decodes error
image. Step (2) up-samples. Step (3) computes approximated image for next level.
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Figure 3.7: This figure shows three stages of interaction between compression (figures
3.4 and 3.5) and decompression (figures 3.6 and 3.8). When compression starts,
Ife(1) is set to the original image. At subsequent stages, Ife(n) is the full-resolution
residual error image from the (n-1)’st stage. When compression stops, Ife(4) is the
residual error image. When decompression starts, Ifz(1) is set to a zero image. At
subsequent stages, Ifz(n) is progressively refined by corrections from the (n-1)’th stage
of compression. When decompression stops, Ifz(4) is the recovered image.
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Figure 3.8: This figure shows an image being progressively decompressed as it’s being
received from the three stage compression pipeline in figure 3.5. When decompres-
sion pipeline starts, Ifz(1) is set to a zero image. At subsequent stages, Ifz(n) is
progressively refined by corrections from the (n-1)'th stage of compression. When
decompression pipeline stops Ifz(4) is the recovered image.
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Figure 3.9: This figure depicts the five steps in the n’th stage of MR-MPC’s N stage
training pipeline. Step (1) down-samples. Step (2) trains MPC on Ile(n) then uses
weights learned to encode Ile(n) to compressed error stream Sle(n). Step (3) decodes
error. Step (4) up-samples. Step (5) computes error image for training in stage n+1.
Training differs from compression only in that it trains weights in step (2), works
with data structures that contain all training images and does not send a copy of the
compressed error error stream Sle(n) to decompression.
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3.2.4 Resampling Scheme

Compression (section 3.2.1), decompression (section 3.2.2) and training (section 3.2.3)
tasks consist of multiple stages. The number and resolution of these stages are defined
by an empirically determined N-tuple of integers called the resampling scheme. For
example a (16,4,1) resampling scheme has three stages: the first stage down-samples
by a factor of 16, the second stage by a factor of 4, and the third and last stage

processes the image at full resolution.

Resampling schemes with more and finer spaced stages better reduce inter-
resolution repetition if inter-resolution repetition is present. If not, resampling
schemes with more and finer spaced stages add to overhead and give less compression.
To find a good resampling scheme, we tested several different ones on 512x512 pixel
natural images and 2048x2048 pixel chest radiographs. Octave spaced resampling
schemes worked best. The final decision was between (16,4,1) and (16,8,4,2,1). Both
resampling schemes worked about the same, so we chose (16,4,1) for all subsequent

experiments because it was simpler.

3.3 Detalils

3.3.1 Down-Sampling

In step (1) of compression, which is first mentioned in section 3.2.1, a full resolution

error image Ife(n) is down-sampled to a low resolution error image Ile(n). Down-
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sampling is achieved by dividing an image into equal non-overlapping blocks each of
which determines the value of one pixel in the down-sampled image. One approach
is to use the value of a single pixel in each block — for example, the first pixel. This
is called subsampling and is demonstrated in figure 3.10. Another approach is to

compute and use the block’s average pixel value. This is demonstrated in figure 3.11.

We tried both types of down-sampling and found that although subsampling
was faster, images down-sampled with averaging were better approximated during
subsequent up-sampling. Thus, results reported in this thesis are based on MR-MPC

that down-samples using averaging.

3.3.2 Up-Sampling

In step (4) of compression (section 3.2.1) and step (2) of decompression (section 3.2.2),
a low resolution reconstruction image is up-sampled to a full resolution reconstruction
image Ifr(n). One method of up-sampling is to generate images so that all the pixels in
each non-overlapping block take the value of the corresponding single pixel in the low
resolution image. This approach is demonstrated in figure 3.12. The problem with
this type of up-sampling is that the images it generates are blocky. If this approach
is applied to images that have been down-sampled, the up-sampled images are not
good approximations of what the original images looked like before down-sampling.

This is shown in figure 3.13.

A better way to up-sample is to interpolate the unknown pixels in high resolution
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Figure 3.10: This figure demonstrates down-sampling using subsampling. (A) is the
original 512x512 image, (B) is a 256x256 image generated by dividing (A) into non-
overlapping 2x2 pixel blocks and using the first pixel in each block. (C) is a 128x128
image similarly generated by dividing (A) into 4x4 pixel blocks.
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Figure 3.11: This figure demonstrates down-sampling using averaging. (A) is the
original 512x512 image, (B) is a 256x256 image generated by dividing (A) into non-
overlapping 2x2 pixel blocks and using the average value of all pixels in each block.
(C) is a 128x128 image generated similarly by dividing (A) into 4x4 pixel blocks.
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Figure 3.12: This figure demonstrates up-sampling without interpolation. (A) is the
original 128x128 image. (B) is a 256x256 image generated so all pixels in each non-

overlapping 2x2 pixel block take the value of one (A) pixel. (C) is a 512x512 image
generated similarly with 4x4 blocks.
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Figure 3.13: This figure demonstrates the problem with up-sampling without inter-
polation. The original 512x512 pixel image (A) is down-sampled to 256x256 (B) then
up-sampled without interpolation to 512x512 (C). The up-sampled image (C) looks
blocky and is not a good approximation of the original image (A). The disparity is
shown in the error image (D) which is the difference between images (A) and (C).
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images from values of neighboring pixels in low resolution images. In one dimension
we can estimate the value of an unknown high resolution pixel P(z) at point x as

follows:

P(z) = (1 — h)P(z,) + hP(zs)

where P(z,) and P(z3) are the two closest known neighboring pixels such that z, <=

T <=1 and

h=(z —z4)/(%p — Ta)

is the fraction of distance z is between z, and z; such that 0 <= h <= 1.

Similarly in two dimensions we can use bilinear interpolating to estimate the value
P(x,y) using the four closest known neighboring pixels P(z,, ya), P(zs, Yb), P(Za, Ys),

P(xp,y,) such that z, <=z <= 1, and y, <=y <=y as follows

P(z,y) = (1=h)(1—v) P(a, Ya) +(h) (1-v) P (2, ya) +(R) () P (s, ys) + (1=P) (v) P (24, Ys)

where

h = (z — z4)/ (%5 — Ta)

is the fraction of distance z is between z, and z, such that 0 <=h <=1 and

v = (Y~ Ya)/(¥b ~ Ya)

is the fraction of distance y is between y, and y; such that 0 <=v <=1
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An image up-sampled using this approach is demonstrated in figure 3.14. The
benefit of interpolation during up-sampling is that generated images are smooth.
Moreover, if this approach is applied to images that have been down-sampled, the
up-sampled images are fairly good approximations of what the original images looked
like before down-sampling. This is shown in figure 3.15. All results in this thesis are

based on MR-MPC that up-samples using interpolation.

3.3.3 Error Stream Encoding

In step (2) of compression (section 3.2.1), the low resolution error image Ile(n) is
encoded to a compressed error stream Sle(n). The encoding is done in three steps

shown in figure 3.16.

e Step (1), forward MPC transforms the low resolution error image Ile(n) to

produce transform coefficients tc(n). This is explained in section 3.3.6.

e Step (2), scalar quantizes transform coefficients tc(n) to produce a symbol

stream ss(n). This is explained in section 3.3.5.

e Lastly, in step (3), the symbol stream ss(n) is Huffman coded to produce a com-
pressed error stream Sle(n). Huffman compression was explained and demon-

strated in section 2.1.2.
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Figure 3.14: This figure demonstrates up-sampling with interpolation. (A) is the
original 128x128 image. (B) is a 256x256 image generated so that each pixel’s value
is a distance weighted average of four immediately neighboring pixel values in (A).
(C) is a 512x512 image generated similarly by interpolating (B).
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Figure 3.15: This figure demonstrates the benefit of up-sampling with interpola-
tion. The original 512x512 pixel image (A) is down-sampled to 256x256 (B) then
up-sampled with interpolation to 512x512 (C). Error image (D) is the difference be-
tween images (A) and (C). (D) is mostly black because nearly all it’s pixels are either

zero or close to zero — the up-sampled image (C) is a good approximation to original
image (A).
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i Ile(n) ’I -> | te(n) | -> | ss(m) | -> i Sle(n) ,I

(1) (2) (3)

Figure 3.16: This figure shows the three steps of error stream encoding which is
done in step (2) of compression (section 3.2.1). During error stream encoding a low
resolution error image Ile(n) is encoded to a compressed error stream Sle(n). Step (1)
is the forward MPC transformation. Step (2) is quantization. Step (3) is Huffman
coding.
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3.3.4 Error Stream Decoding

In step (3) of compression (section 3.2.1) and in step (1) of decompression (section
3.2.2), a compressed error stream Sle(n) is decoded to a low resolution error image

Ile(n). The decoding is done in three steps shown in figure 3.17.

e In step (1) Sle(n) is entropy decoded to produce symbols stream ss(n). Entropy
decoding is done using Huffman decoding which is explained and demonstrated

in section 2.1.2.

e In step (2) the symbol stream ss(n) is scalar dequantized to make approximated

transform coeflicients tc(n)’. This is explained in section 3.3.5.

e Lastly, in step (3) the approximated coeflicients tc(n)’ are MPC transformed
to produce the low resolution error image Sle(n). This is explained in section

3.3.7.

3.3.5 Scalar Quantization

Step (2) of error stream encoding scalar quantizes transform coefficients tc(n) to pro-
duce a symbol stream ss(n) and in step (2) of error stream decoding the symbol
stream ss(n) is scalar dequantized to produce approximated transform coefficients
tc(n)’. Scalar quantization is introduced in 2.2 and defined in 2.2.2. Its goal is

to control the tradeoff between goodness of approximation and higher compression.
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(1) (2) (3)

Figure 3.17: This figure shows the three steps of error stream decoding. A com-
pressed error stream Sle(n) is decoded to a low resolution error image Ile(n). Step (1)
is entropy decoding. Step (2) is dequantization. Step (3) is a backward MPC transfor-
mation. Error stream decoding is done in step (3) of compression which is described
in section 3.2.1 and in step (1) of decompression which is described in section 3.2.2.
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To achieve more compression, quantization bins are made larger. To achieve better
approximation, quantization bins are made smaller. All the compression ratios con-
sidered in this thesis were achieved by manually adjusting quantization bin size. This
has to be done manually because the exact relationship between bin size and compres-
sion ratio and quality of image reconstruction is only approximate and is dependent

on the particular image being compressed.

3.3.6 Forward MPC Transformation

In step (1) of error stream encoding (section 3.3.3), a low resolution error image Ile(n)
is MPC transformed to produce coefficients tc(n). The effect of this transformation
is to represent each block z of Ile(n) using the principal coordinates of the cluster for
which reconstruction error is least. A simple example of this is described in section
2.2.4 and is shown in figure 2.5. The transformation is carried out in three steps and
uses K transformation matrices {W;, W, ..., Wk} which are explained in section

3.3.8.

e Step (1) cuts the image into non-overlapping blocks.

e Step (2) classifies each block z € C; if

K
1Pl = min 1Pz
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where

P =W"W;

e Lastly, step (3) projects each block z

y=W,~x

using transform matrix W; of class C;.

The output of these steps tc(n) is the concatenation of all projection coeflicients

y’s and class membership labels Cj’s.

3.3.7 Backward MPC transformation

In step (1) of error stream decoding (section 3.3.4), approximated coefficients tc(n)’
are MPC transformed to reconstruct the low resolution error image Sle(n). In tc(n)’
each image block z is represented by class label C; and principal coordinates y. The
backward MPC transformation converts each block back into image pixel coordinates

as follows

z=Wy

using transform matrix W; of class C;. The origin of W;’s is explained in section 3.2.3.
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3.3.8 MPC Training

The goal of MPC training is to find transformation matrices {W;, W, ..., Wk} for
mapping blocks to and from the principal axis of K classes. A simple example of
such a mapping is provided in section 2.2.4. The initial W;’s are set to randomly
perturbed estimates of the global principal axes which are obtained by applying PCA!
to randomly sampled image blocks. Training consists of two steps that are repeatedly

applied to all image blocks until W;’s converge.
e Step (1) classifies image block z € C; if
K
1Pzl| = max | Pz

where

P, =WT,W,
e Step (2) updates transform matrix W; according to
W,; = Wi + aZ(x, Wl)

where « is a learning rate parameter and Z(z, W;) is a learning rule that itera-

tively converges to the M principal components of z|z € C;.

1PCA is explained in section 2.2.2.



CHAPTER 3. MULTI-RESOLUTION MPC (MR-MPC) | 49

MPC training depends on three parameters: block size, number of clusters and
number of components. Details of tuning these parameters are considered by [15].

Here we briefly review what each does and how it was set.

e The block size is the dimensionality of the MPC input space. Bigger blocks
better reduce intra-resolution repetition but need more processing time and
exponentially more training examples®. At high compression ratios big blocks
introduce noticeable block, stair casing and texturing artifacts. To avoid ar-
tifacts and to keep MPC training time reasonable, the dimensionality of the

input space was set to 64, corresponding to a 8x8 pixel block size.

e The number of components retained determines the dimensionality of the MPC
output space. More components give better reconstruction in each cluster.
Before quantization and Huffman compression are applied, doubling the number
of components retained halves the compression ratio. The number of retained

components was kept constant at 4.

e The number of classes determines how many clusters MPC tries to fit to the
data. Doubling the number of classes adds one bit of overhead to each block
being coded but improves the reconstruction of image discontinuities such as

3

edges and texture®. The number of classes was set by doubling their number

until observed performance ceased to improve. For the chest radiographs de-

2This known as the curse of dimensionality.
3Why more clusters improve reconstruction of image discontinuities is explained in section 2.2.2.
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scribed in section 4.3 we found that 128 classes worked best for mono-resolution

MPC and 16 classes per resolution worked best for MR-MPC.

3.4 Discussion

3.4.1 Similarity to Laplacian Pyramid

The resolution progressive processing of images in MR-MPC is similar to that in Burt
and Adelson’s Laplacian Pyramid (LP) [10]. In each stage of LP a low pass filtered
copy of image is subtracted from the image itself, the low pass filtered image is then
down-sampled and the process is repeated. LP achieves compression because error
images quantized and stored at each stage have lower variance and entropy. MR-MPC

however differs from LP in three significant ways.

e The first difference is that MR-MPC applies the recently developed adaptive
transform MPC (see section 2.2.4) to error images before quantizing and lossless
coding them. LP on the other hand just quantizes and entropy codes error

images.

e The second difference is that MR-MPC passes a residual error image between
stages whereas LP passes a down-sampled version of the original image between
stages — in LP the residual error is lost. Tracking a residual error image between
stages gives MR-MPC lossless reconstruction ability. This is discussed further

in section 3.4.2.
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e The third difference is that MR-MPC compression and decompression work
in the same direction — both process images from low to high resolution —
whereas LP compression and decompression work in opposite directions. LP
compression processes images from high to low resolution, whereas LP decom-
pression processes images from low to high resolution. The significance of this
difference is that unlike LP, MR-MPC can concurrently compress and decom-
press. Compression need not finish processing an image before progressive de-

compression can start.

3.4.2 Lossless Compression

The errors introduced by interpolation and lossy MPC coding at lower resolutions
in preceding stages propagate and are corrected‘ in successive stages that process
images at higher resolutions. This error recovery feature which is missing in LP gives
MR-MPC lossless compression ability. If the output of the last compression stage is

entropy coded and sent, no information is lost.

3.4.3 Progressive Decompression

Progressive decompression is handy for online interactive browsing since a quickly
decoding coarse rendition of an image gives viewers something to look at and the
option of early action — for example, to stop transmission if the image is wrong —

while detail of progressively finer resolutions is added. Unlike that of MPC, the bit
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stream generated by MR-MPC is inherently progressive because a coarse rendition
of an image is encoded first, followed by detail corrections for progressively higher
resolutions. As images are decompressed, they initially appear blurry but come to
“focus” as more bits arrive. This was illustrated in figure 3.8 from left to right. Unlike
that of LP, the MR-MPC compressed bit stream is concurrently progressive. This
was mentioned in section 3.4.1 and means that if the compression and decompression
tasks are running concurrently — for example at opposite ends of a communications
link — progressive decompression of an image can start at the receiving end before

progressive compression at the sending end has finished.

3.4.4 Implementation

MR-MPC compression (section 3.2.1), decompression (section 3.2.2) and training
(section 3.2.3) logic was implemented in UNIX shell scripts that coordinated the
work of 11 program modules written in C. A separate module was dedicated to each

of the following functions:

image down-sampling (section 3.3.1),

image up-sampling (section 3.3.2),
e MPC training (section 3.2.3),
e MPC forward transform (section 3.2.1),

MPC inverse transform (section 3.2.2),
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e image blocking and deblocking (section 2.2.1),
e scalar quantization and dequantization (section 3.3.5),

e Huffman compression and decompression (section 2.1.2).

Module behavior was controlled using command line arguments and all commu-
nication between modules was by means of temporary files on a RAM disk. This
implementation allowed reuse of code written by [15] and made debugging easy be-
cause interaction between modules was minimized — each module ran sequentially in
a separate address space. Another benefit of this design was the potential to pipeline
individual MR-MPC stages across multiple CPU’s using the UNIX remote procedure

call (RPC) subsystem.

3.5 Summary

In this chapter we have discussed the ideas that motivated our multi-resolution ex-
tension to MPC, and provided a description of the algorithm, its components and

implementation. In the next two chapters we describe how our algorithm was evalu-

ated.



Chapter 4

Numerical Evaluation

4.1 Introduction

This chapter evaluates our multi-resolution extension of MPC by comparing it with
MPC and with a multi-resolution wavelet based scheme called Set Partitioning in
Hierarchical Trees (SPIHT) [33] which was picked because of its excellent performance
[19] and availability of working software!. Section 4.2 reviews how lossy compressed
images are evaluated. Section 4.3 describes the set of chest radiograph images used

and how images were compressed. Section 4.2 presents the results.

1A complete description of the SPTHT algorithm along with access to software is available from
[33].
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4.2 Review

4.2.1 Sum of Squared Error (SSE)

To evaluate lossy image compression we must quantify distortion. The simplest way
to do this is to compare compressed images to original images pixel by pixel and add
up squared errors — squaring prevents positive and negative errors from canceling.
So if Ic is the reconstructed image and Io is the original image, a simple measure of

distortion is sum of squared error:

SSE = Y (Ic—Io)?

all pizels

4.2.2 Mean Squared Error (MSE)

The problem with using SSE to measure distortion is that it depends on not only the
disparity between the compressed image and original image but also on the number
of pixels. For example, the SSE from a 512x512 image will be four times higher than
the SSE from a similarly distorted 256x256 image. We can get around this problem
by dividing SSE by the number of pixels N to get a measure called mean squared

error:

MSE = E[(Xi — Xr)?] = SSE/N
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4.2.3 Peak Signal to Noise Ratio (PSNR)

MSE is better than SSE as a measure of image distortion because it is comparable
between images with different number of pixels. -MSE however, is not comparable
among images represented with a different number of bits per pixel (BPP). For ex-
ample, if a single pixel image is represented using 2 BPP the maximum pixel error
possible is 4 and MSE cannot be higher than 16. In contrast, if this image is repre-
sented using 4 BPP, the maximum pixel error possible is 16 and MSE can be as high)
as 256. The solution to this problem is to normalize MSE by the highest possible

pixel error I, as follows:

PSNR = 10 *log,,(IZ,,/MSE)

The logarithmically scaled result is measured in decibels (dB) and is called Peak
Signal to Noise Ratio. Iay is the peak signal and MSE is the noise. PSNR is better
then SSE and MSE for méasuring distortion because it does not depend on the number

or representation of pixels.

4.2.4 Picture Quality Scale (PQS)

The measures of distortion considered so far are widely used in the image compression
literature. They do not, however, accurately capture the subjective impressions of

human observers [18, 8, 25, 35, 22, 25, 23]. Their correlation with perceived image



CHAPTER 4. NUMERICAL EVALUATION | 57

quality is low, about 0.57 [29]. There are two reasons for this. The first is that
measures such as PSNR are sensitive to image distortions that humans miss. For
example, PSNR will report the adding of a constant to every pixel as a large distortion.
For human viewers however, the image has merely been brightened [23]. The second
reason is that these distortion measures only account for random error which is visible
as incremental noise in slow varying image areas and visually masked in active areas.
The error prevalent and most visible in lossy compressed images however, is structured
error, not random error [29]. Human vision is particularly sensitive to errors that
cause small edge misalignments (Vernier acuity), errors that look like texture, and
errors that are linear such as end of block discontinuities (blocking artifacts) from

algorithms that process images in blocks (ie KLT, VQ, MPC, MR-MPC).

Much psychophysical and engineering effort 18, 8, 25, 35, 22, 14, 2, 5] has gone
into models of human vision, and recently Picture Quality Scale (PQS) has been
proposed and used for objective assessment of image quality [29, 28, 7, 3, 4, 6].
PQS works by quantifying distortion using five factors. Factor one measures the
visibility of random error using the CCIR 567-1 noise weighing standard. Factor two
measures random error using a model of vision that ignores errors below a threshold
and accounts for human luminance and contrast sensitivity using the Weber-Fechner
Law and a spatial frequency weighting. Factor three measures blocking artifacts.
Factor four measures errors with a high spatial correlation (texture). Factor five

measures errors such as edge misalignments in the vicinity of high contrast transitions.
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These factors when decorrelated with PCA? and combined with regression, mirror

human opinion of lossy compressed natural images quite well, with 0.92 correlation

[29].

4.3 Method

Fifty images were compressed and decompressed using MPC, MR-MPC and SPIHT
and then compared to originals. The images were chest radiographs (see figure 4.1)
arbitrarily sélected from those collected daily in the radiology department of McMas-
ter University Medical Center using a Fuji AC1 computed radiography system [24].
On disk each radiograph was stored as a 2048x2048 pixel image with 16 BPP and
occupied 8 Mb of space. However the size of the medically useful image area varied
from radiograph to radiograph and only 10 BPP contained significant information.
To address these problems images were initially clipped to 10 BPP and all reported
compression ratios are calculated relative to 5 Mb per image and represent the mean

of all fifty images used for testing.

Prior to compressing the fifty radiograph test set, MR-MPC and MPC were
trained, as described in sections 3.2.3 and 3.3.8, on a separate set of nine radiographs.
MR-MPC had 16 clusters with 4 components in a three stage (16,4,1) re-sampling
scheme for a total of 48 clusters. MPC used 128 clusters with 4 components. Both

MPC and MR-MPC used an 8x8 pixel block size. -

2PCA is explained in section 2.2.2.
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Figure 4.1: This figure shows two chest radiograph images collected in the radiol-
ogy department of McMaster University Medical Center using a Fuji AC1 computed
radiography system [24]. On disk each radiograph was stored as a 2048x2048 pixel
image with 16 BPP and occupied 8 Mb of space. However the size of the medically
useful image area varied from radiograph to radiograph and only 10 BPP contained
significant information. For our evaluation fifty such images were compressed and
decompressed using MPC, MR-MPC and SPIHT and then compared to originals.






ga.%
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4.4 Results

4.4.1 Peak Signal to Noise Ratio (PSNR)

Observed PSNR values for the fifty compressed and decompressed images using the
three algorithms are shown in table 4.1 and plotted in figure 4.2. The variability
in the observed PSNR values for any given algorithm and bit rate is because some
radiographs, for example, those with smaller diagnostic image areas, are easier to
compress. Despite this variability however, it’s clear from plot in figure 4.2 that,
although MPC uses more clusters, use of fewer clusters at multiple resolutions gives
MR-MPC a rate-distortion performance that is much closer to that of SPHIT. The
difference between all algorithms is greatest at lower bit rates and much less at higher
bit rates. For example, to achieve the same average PSNR as MPC at 0.171 BPP,
MR-MPC needs only 0.077 BPP. This is 220% better. To achieve the average PSNR

of MPC at 0.108 BPP, MR-MPC needs only 0.015 BPP. This is 720% better.

4.4.2 Picture Quality Scale (PQS)

PSNR however, may not be the best performance indicator. As explained in section
4.2.4, PSNR is sensitive to distortions that human viewers miss and is insensitive
to structured distortions that human viewers particularly notice. We addressed this
in two ways. The first was by asking radiologists for their expert opinion — this is

discussed in chapter 5. The second way was to compare the compressed radiographs
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Table 4.1: This table shows how observed PSNR. values for MPC, MR-MPC, and
SPIHT varied with bit rate (BPP). Lower BPP indicates more compression. Higher
values of PSNR indicate better reconstruction.



MPC

MR-MPC

SPIHT

8PP PSNR BPP PSNR BPP PSNR| BPP PSNR 8PP Brp PSNR|
8.323E02 2.000E404 1.380€01 4784E401 1.604E.02 2.936E+01 7.797€02 43016401 1884802 4.608E+01 7134602 5027E+01
8675602 30026401 1.30TEN 39926401 1.624E02 29096401 7B1EQR 4317E401 1.484E02 4604E+01 TI4EL2 5.158E+01
9690EL2 3.006E+01 1546E:01 4675401 1625602 29826401 9091EQ2 4.470E401 1.484E02 4567E+01 77342 4863401
9897EQ2 30196404 1560601 4839401 1564602 2911E+01 8.440E02 39306401 148402 462701 7.734EQR 5.017E+01
1.007€01 29866401 1861E01 48046401 1564E-02 29126401 6.564E02 4566E401 1.484E02 4.206E+01 7734602 4.923E+01
1019601 2.993E+01 1.568€-01 46206401 1.580€02 2.967E+01 B.606E02 4.586E+01 1.484E02 4686E+01 7.734E02 5.075E+01
102401 900656401 1570E01 4579€01 1621602 29106401 6.706E02 4513401 1.484E02 4540E401 T734E0 489TE-01
1.006€:01 29466401 1887EM 4605401 1 665602 29106401 8.708E02 4590401 1.484E.02 42056401 773402 5.169E+01
1.030E-01 3.0026+01 1680E01 46TTEA0Y 1.686£.02 2900E+01 0752600 45206401 1484602 4581E401 7.734E02 47026401
1.031E01 2.950E+01 1.590E01 4720E401 1.680E-02 2866E+01 BBT0EQR 4313E401 1.484602 424301 7.734E02 5.424E401
1.036601 2951E+01 1612601 4,606E+01 1685E.02 2917E+01 8.906E-02 4 460E+01 1.484E-02 4.707E+01 7734ER 4847E401
104301 4.136E+01 161401 4TTTES01 1.696E02 28676401 6040602 4486401 1.484E02 45006401 7734602 451E-01
1.089E01 4.108E+01 1.063€01 483E+01 1720E02 2913401 9.180E.02 4563401 1.484E-02 46206401 T734ER2 6.101E+01
1061601 2961E+01 1.658E01 4.710E+01 1TRER 24401 9.2006-02 43BIEAD 1.484E-02 4700401 7.734ER 4944E+01
1082601 2975E-01 168401 47926401 1762602 2934E+01 9374E02 45606401 1484602 4.150E+01 7.734E02 5.04TE+01
1.083€01 2.960E+01 1.664E-01 4630E+01 1676E-02 2879€+01 9867ELR 453E+01 1.484E02 4.360€+01 7734602 4.890E+01
1.067E01 2950E+01 1676E01 4769E+01 1884E2 2661E+01 9976 4 4746401 1484502 4 R0E+01 7.734E02 44196401
1.068E-01 2966E401 1680E01 4620401 1.980E-02 2.906E+01 1.000€:01 43656401 1484602 43126401 7.734E02 52266401
1.071E01 2943401 1.680E-01 4523601 1.960E-02 29226401 1.066E01 4 4626401 1.484E02 4861E-01 T74EQR 4.967E+01
1075601 2914E+01 1.688€01 4666E+401 2. 113E02 2601E+01 1ARE01 4 2206401 1484602 4 580E+01 7.734E02 ATHED1
107501 2903 1.600E01 4T5TE01 2560E-02 I947E-01 1.381E01 5.1026+01 1.484E02 4667E401 773402 4646E401
1.000E-01 2.963E+01 1700601 4374E+01 2500602 39496401 1.20E01 4.906E+01 1.484E02 44748401 773402 49186401
1095601 29266401 1702601 466526401 2606502 39356401 1.490E-01 S001E+01 1.484£02 4.660E+01 773402 4 4506401
1.086E-01 2.937E+01 1.706E-01 46206401 27065602 3926401 15165201 5,000€+01 1484802 47906401 773402 4.993€+01
1006£01 2.909E+01 1710601 462TE+01 2715602 3881E+01 1959E01 4871E-01 1.484E02 436TE0 TT4ER 5016E+01
1097E01 293TE-01 174401 4708401 2727E4R 3940E+01 1.596E.01 "S041E+01 148402 46526401 7734E02 4601E+01
1.007E01 2.951E+01 1722601 4416401 27XER 4000E+01 1.686E01 50256401 1.484E02 43476401 173402 47666401
1.000E-01 2943401 1730E01 45T4E+01 274550 3608401 1.604E-01 4.300E+01 1.884E02 4.264E401 T.734EQ 4984E+01
1.101E01 2926401 173401 47306401 2845602 J936E+01 1.608E01 4.900E+01 1.484E02 AT2E401 7.734EQ 52756401
1112601 2840E+01 1736E01 4147E-01 2950602 36606401 1613601 4 67BE01 1.4846-02 467TE+01 773402 4694E-01
114301 29256401 1.730E01 4.147E401 2965602 3910E+01 1813601 5.064E+01 1.484E02 4B16E+01 7.734E02 4634E+01
1.113601 2914E+01 1762601 4 541E401 J017EQ2 JIBGEE-01 161701 48006401 1.484E:02 4.666E+01 T.734EQR 4.9665E401
1.114€01 2.960E-+01 1.760E-01 4560E+01 J0T5EQ2 3607E+01 1620604 4900E+01 1484602 4.780E+01 TT4EQ2 4991E+01
1116601 2952E+01 1.787E01 44006401 3.084E02 IB40E+01 1.636E01 4.609€+01 148402 45246401 773402 547401
1.4117E01 28456401 1.7D1ED1 4585401 J004E-02 3911E+01 1644E01 5.017E+01 1.484E-02 46036401 T734EQR 4B40E401
1.17E01 2997E+01 1792601 4.205E+01 3106542 3814E+01 1649604 46856401 1.484E02 461601 7734802 5.475E401
1.119601 2940E+01 1.606E:01 4636E+01 3A2ER 3908E+01 1.660E01 4774E401, 1.484E:02 5.067€+01 7.734E02 4917E+01
1121E01 29448401 1.800E-01 462E+01 IR 3913E01 1.666E01 4.906E+01 1484602 4884E-+01 TT4ER 4879E+01
1.126E01 2954401 1813E01 4 226401 3.468E02 3627E+01 1666E01 47E-01 1.484E02 47046401 T734EQR 5.067€+01
1128601 2966E+01 1815601 4 36TE01 32z1ER I906E+01 1872601 4 69TEA01 148402 45806401 7.734E02 4TA1E401
1.120E01 2.820E+01 1.623601 3B844E+01) 32E0 36026401 1.690E01 4682E401 1.484E02 45456401 T7.734602 4504E+01
1432601 2.840E+01 1.63€E01 4613E+01 J2:2EL2 J01E+01 1.686E01 4551401 1.484E02 44TEN 7.734E02 530641
1.136E01 29651E401 1664801 45006401 328TEQR J63E+01 1695601 4678E+01 1.484E-02 4.360E+01 T73EQR 5.160E+01
1136601 2.908E+01 1654601 4574E401 3200602 3684E+01 1716E01 4780E-+01 1.484£02 4.350E+01 77HER 514E+01
1.138E01 2921E+01 1867€01 457901 3200E2 36976401 AH7EQ 49456401 1.484E02 4.360E+01 77HEQR 4.866E+01
1A4E01 2.954E401 1.867E01 4560401 I3MTER JT44E401 171904 4751E+01 1.484E02 5,000E+01 TTBER 4926401
1.441E01 2868E+01 1.868E€-01 4.667E+01 Q319602 3,604E+01 1.743€-01 4.800E+01 1.484£02 45126401 77HEQR 4939E-+01
1142601 2945401 1860E01 4.600E+01 3321EL 36645401 1.746E01 4474E401 1484602 454€+01 7IBELR 481E-01
1.146E01 2939E+01 1917E01 45866401 33ER J.906E+01 1746601 4651E01 1.484E02 4.485E+01 T7BEQR 51326401
1.18E01 2866E+01 1.950€-01 52006401 3B/IER 3605401 1.750E-01 4630E+01 1.496602 4.476E+01 7.736E02 4.406E401
1.164£01 2.966E+01 1973601 42006401 3L1ER I677E+01 1.750€01 47166401 J3OEQ2 4790E+01 1720601 5.130E+01
1.162E01 2.9226401 2081E01 5.106E+01. 3.OER2 3.879E+01 1TMEN 4536E+01 33602 4.860E+01 1.720E01 5.160€+01
1179601 4.064E+01 2246601 4890E-01 34302 3814E+01| 1.797E01 4491E401 J360E-2 49666401 1.720E01 5.318E+01
1183601 40456401 2241EN 60126401 ISINELR 9869E+01 180701 44706401 3350602 4T21E+01 1720601 5224E+01
1204E01 40456401 2294601 5.107E+01 613E02 387E+01 16812601 401E401 3360602 48726401 1.720E:01 5.066E+04
121801 4.060E+01 2302601 52456401 36654E02 37085401 181901 4B46E401 3.360E02 4.800E+01 1720601 5.31E+01
1221E0 4.083E+01 2316E01 4901E401 3664602 38TE 1816E01 4149E401 A3WEQR 4864401 1.720E01 49945401
1230601 3.924E+01] 2320601 49606401 3.7MEQ2 36B1E+01| 1617E01 49156401 3.360E02 5.223E401 1720601 52106401
1234601 J947E01 238E01 6.033€+01 3.765E-02 3.860E+01 187E:01 4.800E401 3350E02 4.598E+01 1720601 63266401
1234601 4.065E+01 23B1E01 5.013E+01 I87EQR JB60E+01 162601 46026401 3360602 45626401 1.720E01 5.0087E+01
1240601 4.060€-+01] 2372601 6.075E+01 3657E0R 3860E+01 1840601 4BBE01 3.360E-02 5447E401 1720601 6.037E-04;
1269601 967E+01 2376601 . 6O7ESO1) 3880602 3.836E+01 184E01 470E401 3.3HEL2 47E-01 1.720E:01 48%E-01
1260601 4.000E+01 23B4E01 51206401 IWBEL2 3IB16E-01 1867E01 4TS5E401 33BE02 4 450E+01 1.720E01 5.067E+01
1.274E01 4.060E+01 23601 5.166E+01 J9WER 38626401 1.860E-01 ABT2E+01 33HEL2 4.908E+01 1.720E01 4.509€+01
1282601 4.076E+01, 243E01 5.034E+01 4010E02 J626E+01 1966E01 43606401 3360602 4767E401 1720601 4T50E+01
1206601 J945E401 2440601 4561E+01 4079602 I867E-01 1866E01 4636E+01 360602 4 BT6E+01 1.720E01 5.451E401
1280601 4.030E+01 2.450E01 4616E+01 4002602 3206401 16880E01 4TT4ED1 3.360E-02 4760E+01 1720601 4986E+01
1206601 J97T7TELDT 2464501 5.237E+01 425TEQR JT20E+04 1840E01 47906401 3.360E02 5 000E-+01 1.720E-01 4986401
1.306E-01 39B1E+01 2461E01 4 920E404 A20E02 3856E+01 1949601 4657401 3.3WEQ2 4T1TE01 1720601 4517E+01
1310601 4.064E-01 242601 5.0206+01 4560E-02 37966401 2006E01 4.380E-01 3350602 4314E01 1720601 5.119E+01
1315601 4.056€+01 247901 490656401 5.306E02 471E0 20%E01 '5.163E+01 3.3WEL2 4649E+01 1720501 5406401
1317E01 4009E+01 2.40£01 AT14E401 5800E02 4505E+01 2240601 4974601 3360602 4.9%E+01 1720601 5.300E401
132601 3544E+01 242601 450E01 583902 4801E401 2240E:01 6.049E+401 3.369E.02 46651401, 1720601 5.324E+01
1320601 4049401 2506601 4636E+01 6.960€-02 4.763€401 230E01 5.183€+01 330602 4 447E01 1.720E:01 5.473E-01
1323601 4.106E+01 2507E01 4990E+01 6.076E02 4TREO 234E01 4818E401 3.30E02 487T1E+01 1720601 5.497E-01
1.34E01 3956E+01 2519601 4 T40E401 6218E-02 4 560601 2B4E01 4 200E+01 3.350E.02 4561E+01 1.720E-01 4916E+01
1.326E:01 4857E+01 2520601 5,063€+01 827E02 4686+01 230601 4761401 J.30E02 5217E+01 1720601 5.600E+01
1.3%6E01 3.996€+01 282601 5.134E+01 6.302E02 A4 TRES 2372601 4TBTE-01 336002 4 BIE-01 1.720E01 4683E-01
1.3%E01 4,006E+01 2526E01 5.070E+01 6.34E02 473301 2.378E01 48696401 33VER2 4.435E401 1720601 5.286E+01
1.397€-01 4.039€E+01 2628601 4796401 6615602 4.500E+01 2.386E01 4.9651E401 336002 441301 1720601 5.2636+01
1344E01 4031E+01 2530601 4541E401 6.857E02 4651E401 2.300E01 4.796E+01 3.360E02 4894401 1720E01 5.101E+0H,
1341E01 3916E+01 2831601 4864E+01 6.662E-02 4.560E+01 230601 40006401 3IWELR 4.620E+01 1.720E01 5043401
1.344E01 39726401 264E-01 6.152E+01 6.71ER 4.496E+01 2.405E01 6.130E+01 3.360E02 4700€+01 1720601 6.030E+01
1345601 4.026E+01 2544601 52708401 6.766E-02 4714E401 2. 416E01 4.900E+01 3360602 4T91E-01 1720601 45666401
1347801 4.084E+01 2546601 49556401 6.840E-02 4.4686+01 2.418E01 4699€+01 3380602 AT20E+01 1720E01 6.076E+01
1359601 JG75E+01 2591E01 4864E+01 6.94TEQ 4891E401 2. 40E01 4807E401 330EL 5.023E+01 1.720E01 53736401
1363601 4049€-01 2608604 4806E+01 6979602 4613601 2.450E01 4720E01 IVEL 4.939E+01 1720601 §.265E+01
1.366E01 36666401 2609601 4.948E401 71490602 4610E+01 24540 4834401 JWER 4.TE0E+01 1.720E01 4960E401
136701 40245401 2B610E01 4679E+01 7170602 4.660€+01 2462601 6.109E+01 A.3BREQ2 5.069€+01 1720601 49TTE-01
1.360€:01 40426401 2615601 486TE-01 720E0 4562E401 281801 49156401 33EL 4.984E+01 1.720E01 4GB1E-01
1.360€-01 4011E-01 263601 4TRE 725602 45406401 2402601 4680E+01 3.380E02 4T12E01 1.7206:01 49936401
1.%B1E0 JIEEE+01 2646501 4.206E401 730E02 4606E-01 2510601 47046401 3360EL2 474104 1720601 50826401
1363601 4.00GE+01 26665601 5.006E+01 730E02 440601 261TE01 4708E+01 9.360EQ2 4697E401 172001 5.130E+01
136701 J9E7E+01 2668601 452TE+01 T A46E02 4 566E401 2523601 49186401 3350602 5.083E+01 1.720E01 6020401
1370601 3.980E+01 2663E01 4934601 7474E02 4511E+01 2524801 4696E+01 33BE2 4776E+01 1720601 §.008E401
131220 3971E+01 2867E01 4870E+01 TAT4EQR 46126401 25RE01 4.536E+01 3.360€-02 50156401 1.720E-01 5071E+01
1374601 39686401 2669601 49GTE-01 7.400602 48048401 253E01 ATETES01 3369602 4.904E+01 1720601 5.181E+01
1.360E01 3.995E+01 2671E01 4804E+01 7556602 4567E+01 256404 4.497€-01 33VE2 5436401 1720601 47926401
1.384£01 3931E+01 2688601 487TE401 7T1EQR 43606401 25602601 4524401 3360602 48256401 172001 4879E+01
1.30E01 J92TE+01 272601 4911E-01 1.781E02 4312601 267TE01 4630E+01 30ER 4660E+01 1.720E01 49026401

Gl
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Figure 4.2: This plot shows how observed PSNR values varied with bit rate (BPP)
and is based on data in table 4.1. Each point corresponds to a single compressed
radiograph. Lower BPP indicates more compression. Higher values of PSNR indicate
better reconstruction.
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to the originals again, this time using the five PQS distortion factors from section
4.2.4. Our PQS results are tabulated in table 4.2 and plotted in figures 4.3, 4.4, 4.5,

4.6, and 4.7.

e The plot in figure 4.3 shows PQS factor one (F1) which measures visibility of
random error using the CCIR 567-1 noise weighing standard. F1 closely mirrors
PSNR — random error is least visible in SPTHT and MR-MPC compressed

images and most visible in MPC compressed images.

e The plot in figure 4.4 shows PQS factor two (F2) which measures random error
using a model of vision that ignores errors below a threshold and accounts for
human luminance and contrast sensitivity using the Weber-Fechner Law and a
spatial frequency weighting. Compared to PSNR and F1, F2 better accounts
for human perception of random error. Nevertheless, it mirrors PSNR and F1
— random error is least visible in SPIHT and MR-MPC compressed images,

and most visible in MPC compressed images.

e The plot in figure 4.5 shows PQS factor three (F3) which measures blocking
artifacts. The F'3 results are similar to those of PSNR, F1 and F2 — blocking
artifacts are least visible in SPTHT and MR-MPC compressed images, and most

visible in MPC compressed images.

e The plot in figure 4.6 shows PQS factor four (F4) which measures error with

high spatial correlation (texture). The observed F4 results are similar to those of
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PSNR, F1, F2 and F3 — errors with high spatial correlation are least visible in
SPIHT and MR-MPC compressed images, and most visible in MPC compressed

images.

e The plot in figure 4.7 shows PQS factor five (F5) which measures errors such as
edge misalignments in vicinity of high contrast transitions. The observed PQS
F'5 results are similar to those of PSNR, F'1, F2, F3 and F4 — edge misalignment
errors are least visible in SPIHT and MR-MPC compressed images, and most

visible in MPC compressed images.

4.5 Summary

In this chapter we have evaluated our multi-resolution extension of MPC by comparing
it with MPC and SPIHT. Fifty chest radiographs were compressed and compared to
originals with PSNR and PQS. Using these images we demonstrated that our multi-
resolution extension of MPC can achieve rate distortion performance that is 220%
to 720% better than MPC and much closer to that of SPIHT. For all numerical
performance measures SPIHT outperformed MPC and MR-MPC by a considerable
margin, with one exception. For PQS F5, a measure of visible edge misalignments,
the performance of MR-MPC strongly overlapped that of SPIHT at all compression
ratios. This reveals a potential advantage of MR-MPC over SPIHT in being able

to reconstruct edges better. It remains to be seen whether this will translate to a
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Table 4.2: This table shows how observed PQS distortion factors for MPC, MR-MPC,
and SPIHT varied with bit rate (BPP). Lower BPP indicates more compression.

Higher values of lower PQS distortion factor values indicate better reconstruction.
Factors are plotted in figures 4.3 to 4.7.
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Figure 4.3: This figure compares MPC, MR-MPC and SPIHT using PQS factor one
(F1) which measures visibility of random error using CCIR 567-1 noise weighing
standard. This plot shows how observed PQS F1 varied with bit rate (BPP). Each
point corresponds to a single compressed radiograph. Lower values of PQS F1 (which
occur near the top of the graph) indicate that less random error is visible.
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Figure 4.4: This plot compares MPC, MR-MPC and SPIHT using PQS factor two
(F2) which measures visibility of random error using a model of human vision that
ignores errors below threshold and accounts for human luminance and contrast sen-
sitivity using Weber-Fechner Law and spatial frequency weighting. The plot shows
how observed PQS F2 varied with bit rate (BPP). Each point corresponds to a single
compressed radiograph. Lower values of PQS F2 (which occur near the top of the
graph) indicate that less random error is visible.



4

810 910 v10 cLo 1o 800 900 00 200 0
: . A _ _ o _ . _
ry
l.l & ﬂl b
| LHIdSW
4
OdW-HW ¢ & °
ddWE o owo
By pR
= ot ¢
| | * 00 0'
% o
. 0“9'0
.
4 L
¢ o of
L YK
E & @

€0-304°}

¥0-300'6

¥0-300°L

¥0-300'S

¥0-300°€

$0-300°}

$0-300°}-

Zd4 sbd

1S



CHAPTER 4. NUMERICAL EVALUATION 68

Figure 4.5: This plot compares MPC, MR-MPC and SPIHT using PQS factor three
(F3) which measures visibility of blocking artifacts. This plot shows how observed F3
varied with bit rate (BPP). Each point corresponds to a single compressed radiograph.
Lower values of PQS F3 (which occur near the top of the graph) indicate that fewer
blocking artifacts are visible.
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Figure 4.6: This plot compares MPC, MR-MPC and SPIHT using PQS factor four
(F4) which measures visibility of error with high spatial correlation such as texture.
This plot shows how observed F4 varied with bit rate (BPP). Each point corresponds
to a single compressed radiograph. Lower values of PQS F4 (which occur near the
top of the graph) indicate that less error with high spatial correlation is visible.
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Figure 4.7: This plot compares MPC, MR-MPC and SPIHT using PQS factor five
(F5) which measures errors such as edge misalignments in vicinity of high contrast
transitions. This plot shows how observed PQS F5 varied with bit rate (BPP). Each
point corresponds to a single compressed radiograph. Lower values of PQS F5 (which
occur near the top of the graph) indicate that fewer edge misalignments are visible.
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performance advantage for real applications.



Chapter 5

Empirical Evaluation

The medical evaluations of lossy compression summarized in section 1.3 are all based
on the same class of compression algorithm — wavelets — applied to the same type
of images — radiographs. Why does each study report a different ‘acceptable’ com-
pression ratio? There are at least two reasons why useful lossy compression ratios

can vary.

e The format of images being compressed can make a big difference. For example,
some images have uniform backgrounds or borders that are highly compressible.
On disk images may be represented with more bits per pixel than are really
significant. Image sampling density may be so high that images are easy to

compress.

e The method of assessment can also make a big difference. Asking experts to

judge whether ‘diagnostically significant image degradation is present’ [27] is
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not the same as asking experts to ‘judge visibility of anatomic structures’ [9]
which is not the same as comparing experts ability to ‘detect small uncalcified

pulmonary nodules and fibrosis’ [36].

Clearly, the best empirical assessment is one that most closely simulates the end
use of compressed images [19]. Educational images meant to demonstrate a known
pathology can be compressed more aggressively than diagnostic images containing
pathology which we want to diagnose. The hard pért however, is establishing what’s
acceptable. Verification of diagnostic accuracy by clinical testing is time consuming
and expensive [13]. Moreover, to get sufficient statistical power an estimated minimum
of 12 radiologists and 520 patient studies are necessary [19]. The empirical evaluation
study we describe in this chapter is much less ambitious in its scope. We wanted
to demonstrate that our method of image compression is as good as the excellent
performing wavelet class of compression algorithms talked about in section 1.3 and

1.4.

5.1 Method

Volunteer radiologists scored radiographs compressed to three target compression
ratios 25:1, 50:1, 75:1 using MR-MPC and SPIHT as described in section 4.3. MPC
was not evaluated due to the clearly superior performance of SPIHT and MR-MPC

demonstrated in sections 4.4.1 and 4.4.2. Four versions of each image — original,
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25:1, 50:1, 75:1 — were printed in random order on radiograph film. Scores were
collected on paper forms — figure 5.1 has sample — that specified the image quality
scale: 1 — poor, 2 — below average, 3 — average, 4 — above average, 5 — excellent. The
radiologists were not specially trained for the judging task nor were their responses
calibrated to any scale. The viewing time, distance and lighting conditions were not

constrained. Judges were simply asked:

“Please score each radiograph independently from 1 to 5 according to
image quality. Your assessment should be made based on your own pro-
fessional standards in terms of image resolution, edge sharpness, noise,
artifact, ability to visualize anatomical structures, and whether the image
is of acceptable quality. Do not include image size or centering in your

evaluation.”

5.2 Results

Our goal was to compare MR-MPC compression to SPIHT compression using the
quality scores assigned by judges to fifty images, each compressed to one of three
target compression ratios — 25:1, 50:1, and 75:1. Using the data collected however,
this could not be done directly because no single judge evaluated both types of com-
pression. Our analysis is instead based on the frequency of scores and the frequency

of score changes. It was carried out in six steps:
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Figure 5.1: This is one of the nine identical evaluation forms each radiologist was
asked to fill out by writing down the film number and check marking the quality of
each image using a five point scale while viewing four versions of each image printed in
random order on radiograph film. When evaluations were complete quality rankings
were assigned back to images by looking film numbers up in a randomization table.



Data C ion Study T .

Please score each radiograph independently from 1 to 5 according to image quality

Your assessment should be made based on your own professional standards in terms of image resolution,
edge sharpness, noise, artifact, ability to visualize anatomical structures, and whether the image is of
acceptable quality

Do not include image size or centering in your evaluation

Film # Image 1 2 3 4 5

AB poor below average average above average excellent
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e Our first step was to assign collected scores back to the known compression

levels for each image. This is shown in table 5.1.

e Our second step was to use table 5.1 to tabulate compressed scores against

uncompressed score frequencies. This is shown in table 5.2.

e Qur third step was to compute and plot the marginal frequencies of scores in

table 5.2. This is shown in figure 5.2.

e Our fourth step was to go back to the collected data in table 5.1 and compute

the changes in scores after compression. This is shown in table 5.3.

e QOur fifth step was to tabulate score changes from table 5.3 against uncompressed

scores 1n table 5.1. This is shown in table 5.4.

e Our sixth step was to compute and plot marginal frequencies of score changes

in table 5.4. This is shown in figure 5.3.

5.2.1 Step 1. Collected Scores

One radiologist (judge A) had reviewed MR-MPC images whereas three radiologists
(judges B, C, and D) had reviewed SPTHT images. Although some radiologists missed
some images, a total of 724 image quality scores were collected. Table 5.1 shows

collected data for all four judges.
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Table 5.1: This table shows quality scores for fifty chest radiographs compressed to
three target compression levels — 25:1, 50:1, 75:1. One radiologist (judge A) evaluated
MR-MPC images. Three radiologists (judges B, C, and D) evaluated SPTHT images.
A total of 724 scores were collected. The blanks indicate missed images.
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5.2.2 Step 2. Compressed vs. Uncompressed Scores

The goal of this step was to compare for each image and judge compressed scores
with uncompressed scores. Table 5.2 shows frequéncy of compressed scores in rows
against uncompressed scores in columns for all compression levels (25:1, 50:1, 75:1),

for each judge (A, B, C, D), and pooled for MR-MPC, SPIHT and entire STUDY.

In each subtable of table 5.2:

-e The above-diagonal entries represent scores that dropped after compression.
For example, at 25:1 for judge B, four images originally ‘excellent’ (score 5)

dropped to ‘above average’ (score 4).

e The diagonal-entries represent scores that remained same after compression.
For example, at 50:1 for judge A, 16 images retained a score of ’acceptable’

(score 3);

e The below-diagonal entries represent scores that went up after compression. For
example, at 75:1 for judge C, 2 images originally ‘acceptable’ (score 3) improved

to ‘above average’ (score 4).

e The entries with zero frequency are blank.
From table 5.2 we made two observations:

e The score frequency pattern of judge D is different from that of judges A, B

and C. It shows less spread and is consistent across compression levels. We took
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this to mean that judge D was insensitive to all levels of compression.

e Most score frequencies for judge A, B and C are either on or above the diagonal.
This means that for these judges scores after compression either remained the

same or dropped.

5.2.3 Step 3. Score Distributions

Both MR-MPC and SPIHT were expected to reduce scores after compression and
indeed this is what we saw — in table 5.2 far more entries were above the diagonal —
indicating a drop in score, than below the diagonal — indicating an increase in score.
To see this effect more clearly we computed and plotted the marginal frequencies
— row and column sums. This is shown in figure 5.2 for uncompressed scores, all
compression levels (25:1, 50:1, 75:1), for each judge (A, B, C, D), and pooled for MR-
MPC, SPIHT and entire STUDY. The first row of histograms is based on column
totals of subtables in table 5.2, the remaining rows of histograms are based on row

totals of subtables in table 5.2.

The histograms in figure 5.2 revealed what score distributions looked like and

allowed us to make two more observations:

e The first observation was that images differed in quality even before compression

was applied. For example, instead of 50 images untouched by compression
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Table 5.2: This table shows compressed vs. uncompressed score frequency for all
compression levels (25:1, 50:1, 75:1), for each judge (A, B, C, D), and pooled for
MR-MPC, SPIHT and entire STUDY.



va

JUDGE A JUDGE B JUDGE C JUDGED MR-MPC WAVELET STUDY
2 3 4 1 2 3 4 2 3 4 5 2 3 4 5 2 3 2 3 4 2 3 4
25:1 1 2 21 1 1 3 3 24 4 1 24 4 1
2 1 6 3 8 7 9 13 1 1 6 23 18 3 34 24 3
3 1 17 1 3 4 1 11 7 20 1 17 1 34 1 2 51 12
4 1 6 1 1 1 1 2 4 3 10
5 1 1 1
50:1 1 2 22 1 6 28 11 1 28 11 1
2 9 6 1 8 13 9 6 18 15 4 27 21 4
3 3 16 2 ¥ 1 5 1 9 21 3 16 2 31 10 5 47 12
4 2 5 1 1 2 1 5 3 10
5
7511 1 1 28 7 1 7 29 14 1 29 14
2 10 6 1 1 8 13 10 6 19 14 3 29 20 3
3 2 16 1 5 7 21 2 16 28 12 2 44 13
4 2 6 1 2 2 2 4 4 10
5




CHAPTER 5. EMPIRICAL EVALUATION 81

having the same score, judge C considered 13 ‘above average’, 24 ‘average’, 11

‘below average’, and 2 ‘poor’.

e The second observation was that score distributions varied among judges. For
example, uncompressed image median score for judges A, C, and D is ‘aver-
age’ but ‘below average’ for judge B. Moreover, uncompressed score frequency
distributions of judge A, C and D are roughly symmetric but distributions of
judge B are negatively skewed. This variability suggests that radiologists use
different criteria to judge image quality, and as a consequence, scores between

judges may not mean the same thing.

5.2.4 Step 4. Compressed Score Differences

Score distribution histograms in figure 5.2 revealed two types of variability. One type
of variability was in score distributions among judges. This variability suggested that
radiologists use different criteria to judge image quality and that scores between judges
may not mean the same thing. If this is true we must take caution in interpreting
scores pooled across judges — ie. those of SPIHT and STUDY. The other type of
variability was among uncompressed images. This variability indicated that images
differed in quality even before compression was applied. We can compensate in part
for this type of variability by looking at the difference in scores of compressed images
relative to their uncompressed counterparts — this is shown in table 5.3 which is

based on table 5.1.
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Figure 5.2: These histograms show score frequency distributions for uncompressed
images, all compression levels (25:1, 50:1, 75:1), for each judge (A, B, C, D), and
pooled for MR-MPC, SPIHT and entire STUDY. The first row of histograms is based
on column totals of subtables in table 5.2, the remaining rows of histograms are based
on row totals of subtables in table 5.2.
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Table 5.3: This table shows differences between compressed and uncompressed scores
and is based on table 5.1. Looking at difference in scores instead of absolute scores
compensates, in part, for the fact that images differed in quality even before com-
pression was applied.
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5.2.5 Step 5. Differences vs. Uncompressed Scores

The differences computed in the previous step can, for a given image and judge, be
attributed to two sources. One source is observer error which, because in our study
images were printed on film in scrambled order and radiologists were not told which
images were which, is just as likely to improve as drop scores. The other source is the
effect of compression which at low levels may improve scores!, but will almost always
make scores drop at higher levels. We suspected that the value of uncompressed
image score also might play a role. To find out we tabulated score differences from

table 5.3 against uncompressed scores from table 5.1. This is shown in table 5.2.

5.2.6 Step 6. Difference Distributions

Score changes are subject to clipping at scale borders. For example, images originally
rated ‘poor’ cannot drop in score, images originally rated ‘below average’ can only
drop to ‘poor’, and so on. Similarly, images originally rated ‘excellent’ cannot go up
in score, images rated ‘above average’ can only go up to ‘excellent’ after compression,
and so on. For this reason the changes in scores after compression must be interpreted
with caution. For example, the frequency distributions of judge B, which appear in

the second column of histograms in figure 5.2 are sharply peaked at the lowest end of

1At low ratios lossy compression low pass filters the high frequency noise that is inherent to
process of image acquisition — this can improve perceived image quality. For example, two of the
three studies summarized in section 1.3 found that “at low compression (10:1) there was a slight
preference for [lossy] compressed radiographs” [9] and “readers performed better on images [lossy]
compressed at 40:1 compared with uncompressed images” [36].
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Table 5.4: This table shows score differences (from table 5.3) in rows against uncom-
pressed scores (from table 5.1) in columns. For example, 11 uncompressed scores of
‘below average’ (score = 2) for judge A at 25:1 compression, had a score changes of 0
(ie, did not change) whereas 6 uncompressed scores of ‘average’ (score = 3) for judge
B had a score changes of -1 (ie, dropped to ‘below average’).



= I3

JUDGE A JUDGE B JUDGEC JUDGED MR-MPC WAVELET STUDY
2 3 4 2 3 4 2 3 4 5 2 3 4 5 2 3 4 2 3 4 2 3 4
2511 -4
-3 1 1 1
-2 1 3 3 4 3 4 3
-1 6 21 8 4 3 9 1 (] 24 18 11 24 24 12
0 11 17 6 3 3 1 7 11 3 13 20 1 17 6 23 34 4 34 51 10
1 1 1 1 1 1 1 1 1 2 1 2 3 1
50:1 -4
-3 1 1 1
-2 6 4 1 4 1 4
-1 6 2 2 7 5 6 8 5 6 28 15 10 28 21 12
0 16 5 1 1 1 4 9 4 13 21 16 5 18 31 5§ 27 47 10
2 1 1 1 2 2 1 5 3
751 -4
-3 1 1
2 7 14 3 14 3
-1 6 1 23 6 5 6 8 6 1 29 14 12 29 20 13
0 10 16 6 1 1 7 13 21 10 16 6 19 28 4 29 4 10
1 2 2 2 2 2 2 2 4




CHAPTER 5. EMPIRICAL EVALUATION | 86

the scale. Judge B probably ranked most compressed images ‘poor’ because he could

not rank them any lower.

From histograms in figure 5.3 we made two final observations. The first obser-
vation was that regardless of amount of compression, judge A (MR-MPC) and judge
D (SPIHT) always saw little or no difference between compressed and uncompressed
images. The second observation was that regardless of compression, judges B and C
(SPIHT) consistently saw a difference of 1-2 points which, in most cases for judge B
and in some cases for judge C, was the most scores could drop due to compression.
To see this, refer also to figure 5.2 which shows somewhat for judge C and mostly for

judge B, scores collecting in the gutter at lowest end of the image quality scale.

5.3 Summary

The effect of lossy compression at all levels was too small on scores of judges A and
D and too large on scores of judges B and C to meaningfully compare MR-MPC
and SPIHT. The only conclusion we can make is that the difference between of MR-
MPC and SPIHT compression is less than the difference of opinion between four

radiologists.
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Figure 5.3: These histograms show frequencies of score differences and are based on
marginals from the tables in figure 5.4. From these histograms we made two final ob-
servations. The first observation was that regardless of amount of compression, judge
A (MR-MPC) and D (SPIHT) always saw little or no difference between compressed
and uncompressed images. The second observation was that regardless of compres-
sion, judges B and C consistently saw a difference of 1-2 points which, in most cases
for judge B and in some cases for judge C, was the most scores could drop due to
compression. To see this, refer also to figure 5.2 which shows somewhat for judge
A and mostly for judge B, scores collecting in the gutter at lowest end of the image
quality scale.
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Chapter 6

Summary

6.1 What

The main contribution of this thesis is a new method of image compression based
on a multi-resolution extension of a recently developed adaptive transform called
Mixtures of Principal Components ! (MPC) [15, 16]. Although MPC compression is
superior to compression techniques based on and related to? the optimal Karhunen-
Loeve Transform® (KLT), MPC does not however, like the best image compression
algorithms in existence [19, 34, 33], exploit repetition present inbetween multiple
resolution of an image. Our goal was to improve MPC compression by extending it

to process images at multiple resolutions.

!How MPC works is explained in sections 2.2.4, 3.3.6, 3.3.7, and 3.3.8
2For example, the discrete cosine transform (DCT) used in JPEG
3How KLT works is explained in section 2.2.2.
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6.2 Why

The motivation for our work is fourfold. First, there exists the potential to boost
image transmission throughput on all present day communication links. This is im-
portant for the cost effective deployment of teleradiology today. Second, there is the
potential to conserve bandwidth in the crowded wireless communication spectrum.
This will be important for itinerant teleradiology systems in the future. Third, there
is the potential to increase image capacities of all present day storage media. This is
important for storage strained PACS today. Fourth, there is the potential to boost
all future storage media improvements multiplicatively — for example a mere ten-
fold improvement in hardware multiplied by 10:1 compression gives a hundredfold

improvement. This will be important for PACS in the future.

6.3 Method

Our multi-resolution extension of MPC — called Multi-Resolution Mixtures of Prin-
cipal Components (MR-MPC) — is based on two key observations®. The first obser-
vation is that high frequency image detail is predictable from lower resolutions. The
second observation is that the detail not predictable from lower resolutions is easy to
compress. MR-MPC applies these observations by compressing and decompressing

images in stages. The first stage processes the original images at very low resolution

4Both observations are developed in section 3.1.1 and illustrated in figure 3.3.
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and is followed by stages that process the encoding errors of the previous stages at

incrementally higher resolutions.

The job of MR-MPC is twofold — compression and decompression. Compression
progressively encodes the original image to a compressed stream. This is explained
in section 3.2.1 and figure 3.4. Decompression progressively decodes the compressed
stream and updates an approximation of the original image. Decompression is ex-
plained in section 3.2.2 and figure 3.6. Figure 3.7 shows how compression and decom-
pression work together and figures 3.5 and 3.8 show what happens to an image as it

is progressively compressed and decompressed.

6.4 Results

To evaluate our multi-resolution extension of MPC, we compared it with MPC and
with the excellent performing wavelet based scheme called SPIHT. Fifty chest radio-
graphs were compressed and compared to originals in two ways. In chapter 4 we used
PSNRS and five distortion factors from a perceptual distortion measure called PQS®.
These numerical measures of distortion demonstrate — in figures 4.2 and 4.3 to 4.;7 e
that our multi-resolution extension of M.PC can achieve rate distortion performance
that is 220% to 720% better than MPC and much closer to that of SPIHT. In chapter

5, the performance of our new method was also investigated empirically in a study

SPSNR is explanation in section 4.2.3. PSNR results are in section 4.4.1 and figure 4.2.
SPQS is discussed in section 4.2.4. PQS results are in section 4.4.2 and figures 4.3 to 4.4.
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involving 724 radiologists’ evaluations of compressed chest radiographs. We found
the effect of lossy compression at all levels was too small on scores of two judges
and too large on scores of the other two judges to meaningfully compare MR-MPC
and SPIHT. The only conclusion we could make was that the difference between
MR-MPC and SPIHT compression is less than the difference of opinion between four

radiologists.
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