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Abstract

A volume average model to study the transition of a semi-solid mushy zone

to a planar solid/liquid interface in a static temperature gradient is presented.

This model simulates the principal phenomena governing mushy zone dynamics

including solute diffusion in the interdendritic and bulk liquids, migration of

both the solid-liquid interface and the mushy-liquid boundary at the bottom

and top of the mushy zone, and solidification.

The motion of the solid-liquid interface is determined analytically by per-

forming a microscopic solute balance between the solid and mushy zones. The

motion of the mushy-liquid boundary is more complex as it consists of a transi-

tion between the mushy and bulk liquid zones with rapidly changing macroscopic

properties. In order to simulate this motion, a control volume characterized by

continuity in the solute concentration and a jump in both the liquid fraction

and the solute concentration gradient was developed.

The volume average model has been validated by comparison against prior

in-situ X-ray radiography measurements [1], and phase-field simulations [2] of

the mushy-to-planar transition in an Al-Cu alloy. A very good similarity was
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achieved between the observed experimental and phase-field dynamics with this

new model even though the described system was only one-dimensional. How-

ever, an augmentation of the solute diffusion coefficient in the bulk liquid was

required in order to mimic the convective solute transport occurring in the in

situ X-ray study. This new model will be useful for simulating a wide range of

natural and engineering processes.

Keywords: Solidification, Volume averaging method, Phase field method,

Synchrotron x-ray radiography, Temperature gradient zone melting

1. Introduction

At the scale of microstructure, alloys either solidify via continuous cooling2

or in a static temperature gradient. The first case is well known, represent-

ing most industrial and physical processes where materials solidify in a certain4

temperature interval when the melt is cooled down. The second case, while

being less common, nevertheless represents an important process occurring in6

diverse situations such as at the surface of an exoplanet [3], in a lava lake [4],

or in the concrete-uranium mixture known as corium that forms during nuclear8

accidents [5]. Solidification in a static temperature gradient occurs because

the transient heat transfer initially creating the mushy zone has reached steady10

state conditions. In the case of nuclear accidents, for example, steady state heat

transfer is established after a certain time period whereby the heat released by12

the decaying uranium is balanced by the heat absorbed by the ground [6]. The

result is that an initially dendritic structure will evolve into a planar interface14

and thus solidify in a manner similar to temperature gradient zone melting

(TGZM) [7, 8, 9]. If such a transition occurs, it significantly modifies the heat16

transfer through the system and thus affects the survival and integrity of the

various reactor structures [5].18

Solidification within a static temperature gradient has been the focus of a

number of recent studies. Fischer et al. [10] investigated mushy zone dynamics20

in a temperature gradient for Al-Cu alloys, extracting local mean composition

2



and solid fraction data from the experimental results. D. Liu et al. [11] eval-22

uated the influence of thermal stabilization on the solute concentration within

the melt in both directionally solidified Al-Ni and Al-Cu systems, illustrating24

the contrasting effects of Ni and Cu elements on segregation. T. Liu et al. [12]

performed a similar study on a Ti-43Al-3Si alloy in order to investigate mecha-26

nisms for obtaining a lamellar microstructure. Recently, Salloum-Abou-Jaoude

et al. [1] carried out a series of X-ray radiography experiments at the Euro-28

pean Synchrotron Radiation Facility (ESRF) to directly observe the evolution

of an Al-Cu mushy zone in a static temperature gradient of approx. 2700 K/m.30

Through this work they showed that it was the competition between diffusion

processes in the bulk and in the mushy zone that led to the planar interface.32

Concurrent to experiments, mathematical models have been proposed with

the objective of providing a theoretical framework of this process and a quanti-34

tative prediction of its dynamics. Combeau et al. [5] approximated solidification

within a static temperature gradient using an analytical approach in order to36

determine the time delay required for the planar interface to fully develop in

corium alloys of different silica composition. They showed that the transition38

can follow two regimes, depending on the partition coefficient of the alloy. How-

ever, this model did not accurately consider the motion of the two boundaries40

between the solid, mushy, and liquid zones. Gewecke and Schulze [13] presented

a similar model to study the evolution of a mushy zone cooled from below. This42

model included a description of the migration of the solid-mushy and mushy-

liquid boundaries, coupled to the diffusion in the bulk liquid. However, it was44

only suitable for alloys containing perfect immiscibility, i.e. the partition co-

efficient k = 0. Further, as shown in the present paper, the treatment of the46

mushy-liquid boundary as a sharp interface is not necessarily justified. Recently,

Boussinot and Apel [2] studied the complete solidification of an Al-Cu mushy48

zone in a static and unidirectional thermal gradient of 104 K/m by directly

simulating microstructure evolution using the phase field method. This work50

showed clearly that liquid domains migrate toward the bulk liquid, forming a

liquid channel that decreases in length due to the same process as TGZM. How-52
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ever, the computation cost of spatially resolved phase-field simulations limits the

accessible parameter range, in particular alloy composition and thermal gradi-54

ents that correspond to the necessary domain size to fully represent the mushy

zone. In addition, resolidification is a slow process compared to primary solidi-56

fication and thus requires the simulation of longer time periods. The phase-field

computation time for the 2D simulations used as benchmark data in this paper58

was of the order of two months.

In this paper, a volume average model is proposed to study solidification60

within a static temperature gradient. A schematic of the simulation domain

showing the model’s three zones (solid, mushy, and liquid), the two mobile62

interfaces (solid crust (zsc) and mushy-liquid (zml)), along with relevant dimen-

sions is given in Fig. 1. The new model includes solute diffusion in the mushy64

zone as well as in the liquid zone ahead of zml, and takes into account the initial

undercooling of the dendrite tip. The advantage of the volume average method66

over phase field is the significant reduction in computational time, and the cor-

responding ability to simulate low thermal gradients that match laboratory and68

industrial solidification processes. However, the description of the transition

region between the mushy and liquid zones must be carefully considered with70

the use of averaged quantities. Prior volume average models of solidification

(e.g. [14]) focused on the case of continuous cooling, and used a growth kinet-72

ics law for a paraboloid dendrite tip to track the dendritic front. In the case

of a static temperature gradient, the shape of the solid grains is transitioning74

from dendritic to planar. As a dendrite-tip model cannot handle such a tran-

sition, the motion of zml needs to be considered at the macroscale where only76

the primary variables, namely the fraction solid and the solute concentration,

are evaluated. Thus, special interfacial conditions are needed to describe the78

boundary between the two zones. First, we present the volume average model,

derive the interfacial conditions and clearly show all assumptions taken. We80

then carefully verify these assumptions by comparison against volume average

results of phase-field simulations [2]. Finally, the model is compared against82

prior experimental results [1] and phase field studies [2] in order to demonstrate
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the applicability of the volume average approach.84

2. Prior Experimental and Numerical Work

2.1. Experimental86

An example sequence of synchrotron X-ray radiographs taken from the work

of Salloum-Abou-Jaoude et al. [1], who observed solidification of an Al-4wt.%Cu88

alloy sample 5 × 37 mm and 200µm in thickness in a static temperature gra-

dient, is given in Fig. 2. Due to macrosegregation effects, caused by repeated90

melting and discussed below, the initial composition of the melt was actually

Al-5wt.%Cu. The initial columnar dendritic structure, shown in Fig. 2(a), was92

obtained by directionally solidifying the sample in a Bridgman furnace. Once

the mushy zone height reached approximately two-thirds of the X-ray field of94

view, the cooling was stopped, resulting in a static temperature gradient, thus

initiating the holding stage. The full procedure is described in [1]. As can be96

seen, during the holding stage the mushy zone evolved over time into a planar

solid-liquid interface (Fig. 2(b,c,d)). This experiment showed that the evolution98

of the mushy zone can be characterized by two phenomena: an advance of the

solid crust, zsc, and a retreat of the mushy-liquid boundary, zml. Specifically,100

zml retreats with an initially high velocity that is gradually reduced, while zsc

advances until the two interfaces merge. From the collected data, the evolu-102

tion in solute composition and its gradient both in the liquid and mushy zones

were measured and the evolution of the liquid fraction in the mushy zone was104

estumated.

A sequence of four experiments was performed at the ESRF. In each run,106

the solid structure was first melted to obtain an initial planar interface in a gra-

dient of 2000–3000 K/m at the bottom of the field of view. Then the hot zone108

was cooled at a constant cooling rate while maintaining the cold-zone temper-

ature constant (power-down method). This triggered the growth of columnar110

dendrites from the initially planar interface. After the subsequent holding stage

the procedure was repeated. The phenomena observed during the holding stage112
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and their dynamics were similar in the four experiments [1, 15]. The duration of

the solidification stage was of the order of 15 min and that of the holding stage114

was of the order of 2 h. A post-mortem composition analysis of the sample by

wavelength dispersive spectroscopy (WDS) was made after the last experiment116

in order to check whether the repeated melting and solidification of the sample

led to macrosegregation of copper in the liquid. The calibration of the radio-118

graph grey levels to the WDS measurements showed the initial concentration of

copper in the liquid in the last experiment was 5 wt.%. This solute concentration120

is thus used as the initial value in the comparison volume average simulations

presented in this paper.122

2.2. Phase Field Simulation

The 2D phase field simulation of Boussinot and Apel [2] that predicts the124

evolution of an Al-4wt.%Cu alloy from a single dendrite to a planar solid-liquid

interface in a static temperature gradient is given in Fig. 3 along with the sup-126

plementary movie S1. The simulation domain was 0.8×31.5 mm, which included

a 2D domain 10.5 mm in height and a 1D extension of 21 mm to solve the far-128

field Cu concentration in the bulk liquid; only a 2 mm portion encompassing the

dendrite tips is shown in Fig. 3. Both the static temperature gradient and the130

growth speed of the primary dendrite tips during the solidification stage were

around 4.5 times higher than in the experiments of Salloum-Abou-Jaoude. As132

can be seen, the simulation results match qualitatively the observations from

Fig. 2, however, additional details regarding the transformation from a den-134

dritic structure to a planar interface are revealed. First, comparing Fig. 3(a)

and (b), it can be seen that the position of zml actually continues to advance136

over the first 100 s of the holding stage because of the “inertia” effect, i.e. the

relaxation of the parabolic solutal pile-up around the dendrite tip, following the138

sudden stopping of the cooling. This was not observed in the ESRF experi-

ments; possibly the phenomenon was weaker because of a smaller difference in140

the solute concentration gradient in the mushy and in the liquid zones. Then,

zml retreats because of a flux of Cu towards the liquid zone, Fig. 3(c), before142
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reaching a minimum and slowly advancing, Fig. 3(d). Second, while contour

lines of solute concentration deep in the mushy zone are horizontal, matching144

the thermal gradient, the contour lines near zml instead follow the shape of the

dendrite tips. This is most evident in Fig. 3(a) but can be seen in all four146

images. Deep in the mushy zone, the rate of phase change is slow therefore

the liquid composition is very close to the thermodynamic equilibrium imposed148

by the solid-liquid interfaces and follows the imposed thermal field. The situa-

tion at the tips during the solidification stage and during the first 1000 s of the150

holding stage is different. The rate of solidification/melting, causing significant

rejection of solute/solvent by the solid, is fast compared to the solute diffusion152

rate and therefore this region is out-of-equilibrium. It is this non-equilibrium

state that provides the driving force for the retreat of zml. Third, in Fig. 3(d),154

a long liquid channel parallel to the thermal gradient is observed. This channel

is similar to the channel structures observed in the experiment and forms due156

to processes similar to TGZM. The channel disappears at longer times.

3. Volume Average Model of the Mushy Zone158

The 1D volume average model proposed in this study describes the evolution

of a mushy zone in a static temperature gradient from a columnar dendritic160

microstructure to a planar interface.

3.1. Initial conditions162

It is assumed that the initial mushy zone between solid and liquid zones

formed during steady-state directional solidification in a fixed temperature gra-

dient. The initial position of the solid crust, z0sc, can be given by the solidus

or the eutectic isotherm or another phenomenon depending on the solidification

conditions. This will be discussed in more detail later on. The initial position

of the mushy-liquid boundary, z0ml, is defined by the position of the undercooled

primary dendrite tips. The constitutional undercooling of the tips, ∆Tc, can

be calculated using the KGT model [16]. Then, the temperature at the initial
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position of the mushy-liquid boundary is given by

T (z0ml) = Tm +m · C0 + ∆Tc , (1)

where Tm is the melting point of the pure material, m is the linearized slope of

the liquidus line from the phase diagram, and C0 is the bulk alloy composition.164

As a static temperature gradient is assumed, the temperature field is sta-

tionary and does not change with time. This temperature field is given by

T (z) = T (z0ml) +Gth · (z − z0ml) , (2)

where Gth is the temperature gradient. It is also assumed that the mushy zone

behind the primary dendrite tips is locally in thermodynamic equilibrium. The

corresponding solute concentration field in the liquid, within the mushy zone, is

thus also stationary and is given by

Cmz
l (z) = C0

l (z0ml) +
Gth · (z − z0ml)

m
, (3)

since the composition gradient in the mushy zone is directly proportional to the

temperature gradient by 1/m. The term C0
l (z0ml) = (T (z0ml) − Tm)/m is the166

initial liquid composition at the mushy-liquid boundary, which will be different

than C0 because of the constitutional undercooling related to the dendrite tip168

growth kinetics.

The initial solute composition in the liquid zone is given by the steady-state

solution of a diffusion field ahead of a boundary at C0
l ,

C lz,0
l (z) = C0 + (C0

l (z0ml)− C0) · exp

(
− (z − z0ml)

L

)
, (4)

where L = Dl/Vtip is the diffusion length, i.e. the ratio of the solute diffusion170

coefficient in the liquid, Dl, and the dendrite growth velocity, Vtip, at the instant

the temperature field is frozen.172

Finally, the initial liquid fraction field in the mushy zone is determined using

the lever rule,

g0l (z) =
C0 − k · Cmz,0

l (z)

(1− k) · Cmz,0
l (z)

, (5)
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where gl is the liquid fraction, k is the partition coefficient, and the initial solute

composition in the solid is equal to k · Cmz
l at the initial timestep. Because of174

the constitutional undercooling of the dendrite tips, the position of zml is below

the liquidus temperature of the alloy. Thus, in the mushy zone, the maximum176

liquid fraction is ≈ 0.93.

3.2. Governing Equations178

Equations (4) and (5) describe the initial state of the solute fields in the

mushy and liquid zones and the liquid fraction field in the mushy zone. The

model then predicts the evolution of these quantities with time using the gov-

erning equations described below. The evolution in liquid fraction at a given

position is coupled to the solute transport, which is assumed to be by diffusion

only. The governing equation for this problem is found by expressing the vol-

ume average solute conservation for the liquid phase, within the mushy zone,

assuming lever rule conditions [5],

∂(gl · Cmz
l )

∂t
= Dmz · ∂

∂z

(
gl ·

∂Cmz
l

∂z

)
+ k · Cmz

l · ∂gl
∂t
− (1− gl) · k ·

∂Cmz
l

∂t
. (6)

The first term on the r.h.s. of Eq. (6) describes the diffusion at the scale of the

mushy zone. The second and the third term account for the exchange of solute180

at the local scale due to the phase change and due to the fast diffusion at the

local scale in both phases, resulting in lever rule solidification. Dmz is the solute182

diffusion coefficient in the liquid phase within the mushy zone.

Accounting for the assumption of a frozen temperature gradient, which also

implies
∂Cmz

l

∂t = 0, Eq. (3) is substituted into Eq. (6), giving the equation for

the evolution of the liquid fraction,

(1− k) · Cmz
l (z) · ∂gl

∂t
= Dmz · Gth

m
· ∂gl
∂z

. (7)

Thus the mushy zone can be completely described by the liquid fraction field184

and the position of the boundaries zml and zsc, since Cmz
l is given by Eq. 3.

In the liquid zone, the solute concentration field is given by Fick’s second

law,
∂C lz

l

∂t
= Dlz · ∂

2C lz
l

∂z2
, (8)

9



where Dlz is the solute diffusion coefficient in the liquid zone. Theoretically, the186

solute diffusion coefficient in the mushy and liquid zones should be nearly equal

since the temperatures in these regions are similar. The need for using different188

diffusion coefficients will be discussed in Section 5.

3.3. Boundary Conditions190

The simulation domain is considered closed, and thus solute does not leave

the top of the liquid zone, nor the bottom of the solid zone, i.e. ∂C/∂z = 0.

The boundary conditions zml and zsc are key to solving this problem. Motion

of zsc is given by the migration of the solid-liquid interface at the bottom of the

mushy zone. The solute diffusion at this interface is essentially one-dimensional

and thus the migration of zsc is given by a solute mass balance,

(1− k) · Cmz
l (zsc) · vsc(zsc) = −Dmz · Gth

m
, (9)

where vsc is the interface velocity. In this balance it is assumed that the diffusion

in the solid is nil and that the concentration gradient in the liquid perpendic-

ular to the interface is Gth/m. Note that this balance is not a balance at

the macroscopic solid-mushy boundary, formulated in terms of volume averaged

quantities, but a local solute balance at the solid-liquid interface, formulated in

terms of local quantities. It includes the assumption that on the local (micro-

scopic) scale the solute concentration within the liquid varies in the same way

as on the macroscopic scale, i.e. following Eq. (3). This assumption will be ver-

ified later on. Eq. (9) is a first-order differential equation that has an analytical

solution. The relation for vsc is obtained by incorporating Eq. (3) into Eq. (9)

and setting z0sc = 0,

vsc(zsc) =
Dmz

(1− k)
(

Tm−T (z0
sc)

Gth
− zsc

) . (10)

This equation shows that the velocity increases with the advancement of the

interface in the temperature gradient. The reason is that the solute (1 − k) ·

Cl(zsc) rejected at the interface actually decreases with increasing temperature

but is evacuated by diffusion through a solute concentration gradient, Gth/m
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that is constant. By integrating Eq. (10), the equation governing the evolution

of zsc is obtained,(
Tm − T (z0sc)

Gth

)
· zsc(t)−

zsc(t)
2

2
=

(
Dmz

1− k

)
· t. (11)

The more complex boundary is between the mushy and liquid zones. This

transition is more difficult to define; it does not consist of a sharp physical in-192

terface like zsc but rather of a transition between the fully liquid zone and the

mushy zone. The shape of the solid-liquid interface, the local solute concen-194

tration field and their evolution with time are all complex and evolve in two

dimensions. It is therefore not possible to introduce a local description of mi-196

croscopic interface conditions into the model, as has been carried out for the

solid-mushy interface. The mushy-liquid boundary needs to be considered as198

a macroscopic interface and its description requires a proper application of the

volume average method. The use of volume averaging is restricted to media200

where the length scales across which macroscopic inhomogeneities are encoun-

tered are much larger than the size of the averaging volume. At the mushy-liquid202

boundary, the condition for the validity of the averaging procedure is thus not

necessarily satisfied. In such cases, where macroscopic boundaries between two204

regions are characterized by rapid changes of macroscopic properties, they re-

quire a special treatment. Such interfaces must be treated as sharp surfaces206

where the averaged macroscopic quantities can experience a jump. Constitutive

relations that describe the relationships of the properties of both domains to208

that of the interface must be provided. A general framework for the derivation

of such relations has been developed by Hassanizadeh and Gray [17].210

The solute mass balance for the boundary region is established on a control

volume of finite thickness, shown in Fig. 4. The lower (–) and upper (+) edges of

the control volume are in the well-defined mushy and liquid region, respectively,

and move at the same rate, i.e. v+ml = v−ml = vml. A balance of the total solute
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mass in both phases for this control volume is written as

εml
∂〈C〉ml

∂t
= vmlC

+

l −vmlg
−
l C

−
l −vml(1−g−l )C

−
s +Dlz

(
∂Cl

∂z

)+

−g−l D
mz

(
∂Cl

∂z

)−

,

(12)

where εml = z+−z− is the thickness of the control volume, 〈C〉ml is the average

solute concentration in the control volume, χ+ and χ− signify the average of

a quantity χ across the upper and lower volume boundary, respectively, and

the subscript ‘s’ stands for the solid phase. A few assumptions can be made to

simplify this balance. If the lower bound of the control volume is sufficiently

far within the mushy zone, it can be safely assumed that the average solute

concentration in the liquid at that boundary is at local equilibrium, i.e. following

Eq. (3). The phase field simulation, Fig. 3, illustrates this point quite clearly;

the contour lines of composition are horizontal within the mushy zone, but

not at the dendrite tips. It follows that C
−
l = Cmz

l (z−) and (∂Cl/∂z)
−

=

GT /m. Within the mushy zone (lower bound), it is further assumed that the

solute concentration in the solid can be approximated by the equilibrium solute

concentration, i.e. C
−
s = kC

−
l . Thus, Eq. (12) can be simplified to

εml
∂〈C〉ml

∂t
= vml

(
C

+

l − kC
−
l − g−l (1− k)C

−
l

)
+Dlz

(
∂Cl

∂z

)+

− g−l D
mzGth

m
.

(13)

Two further assumptions are made that are more difficult to justify but that

lead to a significant simplification of the model. First, it is assumed that the

thickness of the boundary region, εml, is small compared to the thickness of the

mushy zone and that difference between the solute concentrations at the two

bounds is therefore small. Thus, Cml ≈ C
+

l ≈ C
−
l . It is further assumed that

the accumulation term in the balance (the l.h.s. term of Eq. (13)) is negligible.

By introducing a representative liquid fraction for a sharp boundary, gml, the

control volume balance is transformed into a boundary condition,

(1− gml) · (1− k) · Cml · vml = gmlD
mzGth

m
−DlzGsol. (14)

The liquid fraction at the boundary is obtained from the solution of Eq. (5),

i.e. gml = gl(zml), the solute concentration in the liquid is the equilibrium con-212
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centration, i.e. Cml = Cmz
l (zml), and Gsol is the solute gradient in the liquid

zone just ahead of zml. Gsol has a negative value. The same solute concen-214

tration is used as a boundary condition for the diffusion equation in the liquid

zone, Eq. (8): C lz
l (zml) = Cmz

l (zml). The solution thus features continuity of216

the solute concentration in the liquid and a jump of the liquid fraction and of

the solute concentration gradient at the mushy-liquid boundary. The validity218

of the different assumptions taken in deriving this interface balance will be ver-

ified through comparisons to the phase-field simulation of Boussinot [2], which220

provides detailed information on the local fields.

3.4. Solution Methodology222

Equations (3), (7), (8), (10), and (14), together with the initial conditions

in Eqs. (4) and (5) provide the complete problem statement to determine the224

evolution of a mushy zone within a static temperature gradient. The governing

equations were discretized within MATLAB using a centred implicit scheme in226

both the liquid and mushy zones, and then resolved using the Gauss-Seidel cal-

culation method. Each zone is discretized into 50 grid points. Unlike the models228

of Beckermann et al. [14, 18], which used a single-domain formulation and thus

required a strong grid refinement at the interface to describe the jump between230

the mushy and liquid zones as a sharp transition of a continuous property,

this model describes the interfaces as boundary conditions between the three232

subdomains. In this way, the jumps are easily accommodated and accurately

described without the need of grid refinement.234

To account for the motion of the interfaces zml and zsc, Landau transforma-

tions were applied giving two new position variables for the liquid and mushy

zones, ξ ∈ [0, 1] and η ∈ [0, 1],

ξ(z) =
z − zml

H − zml
(15)

η(z) =
z − zsc
zml − zsc

(16)
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where H is the total height of the domain. This enabled the system to be

solved with fixed boundaries. The solute conservation equation in the liquid

zone, Eq. (8), and the equation for the evolution of the liquid fraction in the

mushy zone, Eq. (7), in the transformed coordinate system are

∂C lz
l

∂t
= −vml ·

(
ξ − 1

H − zml

)
· ∂Cl

∂ξ
+

Dlz

(H − zml)2
· ∂

2C lz
l

∂ξ2
(17)

and

∂gl
∂t

=

(
vsc + η(vml − vsc)

zml − zsc
+

DmzGth

m(1− k)Cmz
l (z)(zml − zsc)

)
∂gl
∂η

. (18)

The solute balance at the mush-liquid interface, Eq. (14) is transformed to

(1− gml) · (1− k) · Cml · vml = gmlD
mzGth

m
− Dlz

H − zml

∂gl
∂ξ

. (19)

The equation for the solute concentration field in the liquid, within the mushy

zone (Eq. (3)), and the expression for the velocity of the solid crust (Eq. (10))236

remain the same using the transformations between the fixed and the Landau

coordinates.238

At each time-step, the solute concentration in the liquid zone and the liquid

fraction in the mushy zone are calculated, and then the boundary conditions240

are applied to determine the evolution in zsc and zml.

4. Validation by comparison to phase-field simulations242

4.1. Application of volume averaging in a columnar mushy zone

The volume average method is based on the concept of a representative el-244

ementary volume (REV). An REV must be sufficiently large to represent the

averaged quantities of the local (microscopic) structure at the mesoscopic length246

scale, yet small enough such that important variations in the temperature, com-

position, and solid fraction can be captured over the entire (macroscopic) sim-248

ulation domain. Fig. 5 provides a comprehensive analysis of the application of

the volume average formalism on a columnar mushy zone. Different sizes of250

REV are used to average the detailed microstructure that was obtained by the
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phase-field simulation in order to investigate the influence of the REV size on252

the representation of the mushy zone. In Fig. 5(a), the obtained variation in

solid fraction as a function of height at the start of the holding stage is shown.254

A line average of the volume of the solid phase (i.e. an average made only across

the width of the phase-field simulation domain), shown as a black line, repre-256

sents the 1D distribution of the local solid fraction along the height of the mushy

zone. Along with it, three coloured lines are shown that represent the solid frac-258

tion calculated by applying a centred moving average using averaging volumes

of different height to the phase field data. As can be seen, the phase field result260

shows a non-monotonic decrease in solid fraction from the base of the domain to

the dendrite tip. The maxima represent the secondary arms and the deep min-262

ima represent the interdendritic regions between the arms. The coloured lines

demonstrate the volume average representation of the mushy zone; each aver-264

aged domain has approximately the same solid fraction as given by the phase

field simulation, but all of the details representing the internal microstructure,266

i.e. the secondary arms and the interdendritic liquid, are not resolved. Far away

from the dendrite tip, at high solid fraction, there is not much difference when268

using averaging volumes of different sizes, but the differences magnify as the

dendrite tip is approached, because the macroscopic gradients become larger.270

The variation in solid fraction with position obtained with the largest REV

clearly shows that the average is not representative in the region where the272

length scale of the macroscopic variations is smaller than the REV size. Sim-

ilarly, the solid fraction obtained with the smallest REV show wiggles that274

reflect local microstructural variations. Further, the location corresponding to

the mushy-liquid boundary itself is at different positions depending on the size of276

the averaging volume, and none of them correspond to the phase field dendrite

tip position. The mushy-liquid boundary consisting of dendrite tips represents278

a macroscopic discontinuity and thus cannot be averaged in a way that is in-

dependent of the size of the averaging volume. The average on both sides of280

such a macroscopic boundary is applicable only down to a distance of half the

size of the REV from the boundary [19, 17, 20] (note that in general the sizes282
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of the REV in the two macroscopic media can be different). As mentioned in

Section 3.3, the boundary region itself represents a macroscopic discontinuity284

and must be treated separately.

Also shown in the figure is the analytically calculated solid fraction given by286

the Scheil equation, using the nominal solute concentration, C0. The difference

in the position of the mushy-liquid boundary is a consequence of the constitu-288

tional undercooling of the tip related to the dendrite tip growth kinetics. Using

the Scheil equation, the mushy-liquid boundary is predicted to occur at a higher290

position (temperature) within the domain, corresponding to the phase diagram.

The Scheil equation also gives a much higher solid fraction in the region be-292

hind the tip because of the assumption of infinitely fast diffusion in the liquid

that does not account for the diffusion-controlled solidification kinetics. An ad-294

ditional contribution that lowers the solid fraction is the segregation of solute

that transports solute by diffusion through the mushy zone towards the tips.296

In steady-state directional solidification, this segregation results in an increased

average solute concentration (C > C0) behind the tips and thus delays solidifi-298

cation [21, 2]. The difference near the base of the mushy zone is due to the fact

that the phase field simulation includes diffusion in the solid, while the Scheil300

equation does not [2].

Fig. 5(b) shows the variation in solid fraction at two positions within the302

phase field simulation domain as a function of the REV size. The locations of

these positions are identified in Fig. 5(a) by markers (A) and (B). Three different304

regimes can be identified. Regions 1 and 3 represents averaging volumes where

the solid fraction changes significantly with increasing domain size, while Region306

2 represents averaging volumes where there is only minimal change in solid

fraction with varying domain size. In the case of Region 1, the averaging volume308

is too small to adequately smooth out local microstructural variations. Spatial

variations in averaged fields that are defined by too small averaging volumes310

cannot be adequately described by volume average equations. In the case of

Region 3, the averaging volume is too large to resolve the macroscale variations312

in solid fraction. The use of averaging volumes that are too large would thus
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lead to a loss of macroscopic information. Region 2 represents the adequate314

range of averaging volumes. The minimum averaging volume in the initial state

of the mushy zone thus is 500 µm, which corresponds to approximately twice316

the secondary dendrite arm spacing (λ2) seen in the phase field simulation [2].

Thus, 2 · λ2 is proposed as the ideal cell size for volume average methods.318

4.2. Comparison between the volume average model and the phase field simula-

tion320

A validation of the volume average model is important because the simpli-

fying assumptions taken to describe the mushy-liquid boundary may critically322

affect the prediction of the mushy zone dynamics. The phase field simulation

of solidification in a static temperature gradient [2] can be used to validate the324

proposed volume average approach to this problem. The main focus of the val-

idation is to ensure that the motion of zml is correct; the application of the326

volume average model deep in the mushy zone is rather trivial.

The process parameters and material properties used in the volume average328

model were identical to those used in the phase field simulation. The only

exception were the diffusion coefficients of the solute in the mushy and liquid330

zones. In the volume average model they were assumed to be 4.00× 10−9 m2/s,

and 6.23×10−9 m2/s, respectively, instead of the temperature dependent values332

used in the phase field simulations. These diffusion coefficients were calculated

based on the Arrhenius law provided in [2] using the median temperatures of334

each zone. All of the other required model inputs, including the initial position

of the dendrite tips, z0ml, and tip undercooling, ∆Tc, were also taken from [2],336

and shown in Table 1. The initial conditions were determined as stated in

Section 3.1. The mushy and liquid domains were discretized using a fixed grid338

size of ∆ε = ∆η = 0.02 in the Landau transformed coordinates, and a time

step of 0.1 s was applied. The simulation time was negligible, on the order of 5340

minutes.

Fig. 6 shows the evolution of zml for both the volume average model and the342

phase field simulation in order to compare the overall system dynamics. Given
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the simplifications in the description of the mushy-liquid boundary, Eq. (13), it344

is quite impressive that the zml curve from the volume average model follows

the same shape as in the phase field simulation. That is, an initial increase346

in zml because of the inertia effect due to the sudden freezing of the thermal

gradient followed by a decrease in zml until a minimum point is reached and348

then a slow advance. The difference between the two curves is less than 2% of

the length of the mushy zone, although it would seem that the velocity of the350

mushy-liquid boundary, vml, is greater in the volume average model than the

phase field simulation when t > 1000s. This is evident from the fact that the352

two curves are diverging.

Fig. 7 compares several physical quantities between the two simulations: (a)354

the solute composition in the liquid at zml, (b) the average composition gradient

in the liquid just ahead of zml, and (c) the liquid fraction in the mushy zone at356

zml. For (a) and (c), the averaging volume of 500µm ≈ 2 · λ2 applied to the

phase field result was situated entirely within the mushy zone as indicated by358

the dotted box in the inset images of (a). The average composition gradient

was calculated by applying a central-difference first derivative, centred at one360

grid distance ahead of zml to the line average across the width of the phase field

domain. In all of these figures, the results obtained from the volume average362

model match closely to the phase field results, although they are not identical.

Three additional lines are plotted on Fig. 7(a). These lines correspond to C∗
l364

calculated from the phase diagram based on temperatures at the bottom, mid-

dle, and top of the averaging volume associated with the curve “Phase Field366

(500 µm avg domain)”. As can be seen, the average phase field solute com-

position in the liquid at zml matches quite well against the equilibrium solute368

concentration at the mid-height of the averaging volume, especially at longer

times. The initial difference between these two curves is due to the fact that370

the region near the dendrite tips in the phase field simulation is initially out-

of-equilibrium with the thermal fields whereas complete equilibrium is assumed372

to always exist in the volume average simulation. As can be seen in the inset

contour plots showing some phase field results, the solute contours at t = 0374
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follow the shape of the dendrites and thus the average value is greater than the

equilibrium value at mid-height. As time advances, the lateral solute concen-376

tration gradients diminish and the solute concentration in the liquid approaches

the equilibrium solute concentration, resulting in a match between these two378

curves. The volume average model prediction of the solute composition in the

liquid at zml is seen to be quite lower than the average value from the phase380

field simulation, and is near the equilibrium solute concentration found at the

top of the averaging volume. This is because the zml predicted by the volume382

average model is at a higher position and thus at a higher temperature within

the domain as compared to the phase field result.384

The results shown in Fig. 7 demonstrate clearly that the volume average

method can be successfully applied to simulate solidification within a static386

temperature gradient at high thermal gradients, as well as simulate the evolu-

tion of the mushy-liquid interface, even though the microstructure within the388

mushy zone substantially changes over time starting from a parabolic dendrite

tip evolving towards a rather planar front with liquid channel (Fig. 7 (a)). The390

volume average model does not account for this internal morphology changes

but obviously captures the major contributions to the average front movement.392

These figures can also be used to explain the similarities and differences in

zml between the two curves seen in Fig. 6. First, by analyzing the boundary394

condition at zml, Eq. (14), it can be seen that the sign of the velocity vml is de-

termined by the difference between the two fluxes on the r.h.s. of the equation,396

i.e. vml > 0 when (mGsol/gmlGth) > 1, and vice versa. Second, the magnitude

of the velocity vml is given by Cml and gml; specifically vml is equal to the flux398

difference divided by (1 − k)(1 − gml)Cml. Examining Fig. 7(a) and (c), it can

be seen that while the difference in Cml between the volume average model and400

the phase field simulation is of the order of 20% during the whole evolution, the

difference in gml increases with time and becomes larger than 50% at t = 3500s.402

Since (1 − gml) is thus too large, and Cml is too small in the volume average

model as compared to the phase field simulation, they seem to compensate each404

other. The error in the magnitude of the solute concentration gradient in the
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liquid, Fig. 7(b) follows a similar trend to gml both in magnitude and in sign.406

Thus, as compared to the phase field simulation, both terms on the r.h.s. of the

simplified solute balance, Eq. (13), are too small in the volume average model.408

Specifically, the solute flux on the liquid side, which pulls zml to advance, is

weaker than in the phase field simulation because of the error in the solute con-410

centration gradient, while the solute flux on the mushy side, which pulls zml to

retreat, is weaker because of the error in gml. Nevertheless, as it is the difference412

of these two fluxes that results in the observed evolution in zml, a strong match

between the volume average model and the phase field simulation is achieved.414

5. Comparison between the volume average model and the ESRF

experiments416

The comparison between the volume average model and phase field simula-

tion validated the use of a volume averaging method for simulating mushy zone418

dynamics within a static temperature gradient. A comparison against the ex-

perimental data [1] is now performed in order to demonstrate that this approach420

properly describes the observed phenomena. For this comparison, the diffusion

coefficient of the solute in the mushy zone was taken from [1]. The mushy and422

liquid zones were again discretized using a fixed grid size of ∆ε = ∆η = 0.02

in the Landau transformed coordinates and a time step of 0.1 s was applied.424

∆Tc = 0.89◦ C and C0
l (z0ml)= 5.32 wt.Cu% were determined using the KGT

model from the dendrite tip velocity measured in the ESRF experiment at the426

end of the cooling stage (which corresponds to the beginning of the holding

stage) [1]. All of the other input parameters, including z0ml were taken from [1],428

and shown in Table 1.

Fig. 8 compares the evolution in zml and zsc between the ESRF experiments430

and the volume average simulations. First, as can be seen, the volume average

predictions of zml are strongly linked to the the diffusion coefficient. WhenDlz =432

Dmz, the retreat of zml occurs relatively quickly, and the planar interface (i.e.

zsc = zml) is achieved in the simulation far earlier than the ESRF experiment.434
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However, an increase in Dlz to 3 · Dmz results in excellent agreement between

the simulation and experiment. Theoretically, Dmz and Dlz should be quite436

similar, since the thermal gradient is relatively low. The need to increase Dlz

by a significant amount provides strong indication that, in addition to diffusion,438

solute convection is occurring within the liquid zone of the ESRF experiment.

An indication of convection currents was already observed in the experimental440

images from the curvature within the columnar front and the presence of liquid

channels along the sides of the sample [1, 22]. Second, the volume average442

predictions of zsc match closely the ESRF experiment, and are independent of

Dlz. This is not surprising, given that the motion of zsc is governed only by Dmz
444

as shown in Eq. 10. The final time for the transition to a planar interfact found

using the volume average model was 9420s, whereas in the ESRF experiment it446

was 9815 s. Given all the assumptions inherent in the volume average method,

the similarity is excellent.448

Fig. 9 compares several physical quantities at mushy-liquid boundary pre-

dicted by the volume average model and measured in the experimental data:450

(a) solute composition in the liquid at zml, (b) diffusive flux in the liquid ahead

of zml, and (c) the liquid fraction in the mushy zone at zml. The measurements452

were performed using X-ray radiographic image processing methods as detailed

in Section 2.3 of [1]. Note, that in Fig. 9(b), the diffusive flux was plotted in the454

figure and not the solute concentration gradient (Fig. 6(b)) because of the artifi-

cial enhancement of the liquid diffusion coefficient in the volume average model.456

In all cases, given the model assumptions and complexity in experimental mea-

surements, the results between the VA model and experimental observations are458

seen to be quite similar. As seen in Fig. 9(b) and (c), the calculations of the

evolution in the diffusive flux in the liquid ahead of the mushy zone and the liq-460

uid fraction at the interface accurately describe the experimental observations.

Although the calculations of the solute concentration evolution at zml do not462

exactly fit the experimental measurements, Fig. 9(a), the observed difference is

similar to the difference seen in Fig. 6(a) in both magnitude and sign.464

The results shown in Figs. 8 and 9 demonstrate that while the volume average
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method is able to describe the observed phenomena when solidification is oc-466

curring within a static gradient, it is necessary to account for convection within

the liquid. This allows for greater understanding of solidification phenomena468

occurring during X-ray radiographic imaging. However, accurate knowledge of

the initial alloy composition is needed to understand the additional observed470

discrepancies.

6. Conclusions472

A volume average model to study the transition of a semi-solid mushy zone

to a planar interface in a static temperature gradient is proposed. This model474

does not directly describe microscopic phenomena such as liquid film migration,

coarsening, thermo-solutal migration, TGZM, and microsegregation patterns.476

Instead, it provides a volume average description of the principal phenomena

governing the mushy zone dynamics, including solute diffusion in the interden-478

dritic and bulk liquids, the migration of the solid-liquid interface at the bottom

of the mushy zone, the motion of the boundary between the mushy and bulk480

liquid zones, and the liquid-to-solid phase transformation.

A significant effort has been applied to properly describe the boundary be-482

tween the mushy and liquid zones. It has been shown that a standard volume

average description is not applicable to its treatment. Instead, a special control484

volume enclosing the boundary must be used in order to introduce the mass

transfer balance that determines its motion. Using simplifying assumptions486

related to solute diffusion at the microscale, these balance equations can be

reduced to a boundary condition. A phase-field simulation providing detailed488

data on the dendrite morphologies and on the solute fields in the liquid near the

dendrites was used to verify the simplifying assumptions to the mushy-liquid490

boundary. Although a certain error is introduced by the simplifications, the

interface dynamics can nonetheless be accurately predicted.492

The new volume average model has been validated by comparison against

both in-situ experimental observations and phase-field simulations of the mushy-494
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to-planar transition in an Al-Cu alloy. A very good prediction of the observed

experimental and phase-field dynamics was achieved with this new model even496

though the described system was only one-dimensional. However, an augmen-

tation of the solute diffusion coefficient in the bulk liquid was required in order498

to mimic the convective solute transport present in the in situ experiment. This

new volume average model provides a more accurate description of the mushy500

zone dynamics as compared to previous models by taking into account solute

partitioning and the motion of the two boundaries between the solid, mushy, and502

liquid zones. Further, the need to carefully describe the mushy-liquid boundary

when using volume average approaches to model solidification mechanisms is504

demonstrated.
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Table 1: Thermophysical properties and solidification parameters used in the volume average

simulations.

Comparison ESRF

with phase-field experiment

Bulk copper concentration, C0 (wt.%) 4 5

Partition coefficient, k (–) 0.17 0.10

Liquidus slope, m (K/wt.%) -3.37 -2.70

Melting point of pure Al, Tm (K) 933.45 933.45

Diffusion coefficient in the liquid zone, Dlz (m2/s) 6.23·10−9 9.30·10−9

Diffusion coefficient in the mushy zone, Dmz (m2/s) 4.00·10−9 3.10·10−9

Temperature gradient, Gth (K/m) 10000 2700

Initial velocity of the dendrites, Vtip (m/s) 6.4·10−6 6.4·10−6

Initial position of the mushy-liquid interface, z0ml (m) 9.49·10−3 5.00·10−3

Initial position of the solid-mushy interface, z0 (m) 0 0

Dendrite tip constitutional undercooling, ∆Tc (K) 5.20 0.89

Total height of the domain (m) 3.15·10−2 3.70·10−2
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Figure 1: Schematic of the volume average model domain showing the three regions of interest

(solid, liquid, mushy), along with the two mobile interfaces (solid-crust (zsc) and mushy-liquid

(zml)). The dimensions refer to the prior X-ray radiography experiments [1] and phase field [2]

simulations used for comparison purposes.

Figure 2: ESRF X-ray radiography experiment [1] to observe Al-5wt.%Cu solidifying in a

static temperature gradient. The images represent 0, 2015, 6701, and 9815 s after the start of

the hold period.
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Figure 3: Phase field simulation of Al-4wt.%Cu solidifying in a static temperature gradient [2].

The images show contours of Cu concentration at t=0, 100, 1000, and 5915 s after the start

of the hold period (see also accompanying video S1). The image dimensions given on the left

and bottom sides of the figure are in units of metres, and the concentration legend on the

right side of the figure has unit of wt.%

Figure 4: Schematic of the mushy / liquid interface showing the regions that are in equilibrium

(Liquid, Mushy), and out-of equilibrium (Dendrite tips).
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(a)

(b)

Figure 5: (a) Variation in the phase field predicted solid fraction as a function of length at

the start of the hold (t = 0), along with the Scheil predictions based on the local solute

composition. The coloured lines represent the average solid fraction for different moving

average subvolumes; their length provides an indication of the difference in subvolume size.

The markers (1), (2), and (3) refer to the Position 1 and Position 2 in (b), and the dendrite tip,

respectively; (b) Variation in the phase field predicted solid fraction at two positions within

the mushy zone as a function of averaging subvolume. The regions (1), (2), and (3) denote

averaging volumes that are too small, ideal, and too large, respectively.
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Figure 6: Comparison of the evolution in zml between the volume average model and the

phase field simulation. Note that the volume average result is shifted by 50 s to the right in

order to improve the figure clarity.
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(a) (b)

(c)

Figure 7: Comparison of the evolution in (a) C∗
l , (b) ∂Cl

∂z
, and (c) fl at zml between the

volume average model and the phase field simulation. The inset contour plots in (a) show the

out-of-equilibrium solute field in the liquid relative to the thermal gradient; the dotted-line

boxes identify the averaging domain.
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Figure 8: Comparison of the evolution in zsc and zml between the volume average model

(using two different values for Dlz ) and the ESRF X-ray radiography experiment. The curves

beginning at 0 mm and 5 mm correspond to zsc and zml respectively. Note that two VA curves

for zsc (Dl = Dmz and Dl = 3Dmz) overlap.
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(a)

(b)

(c)

Figure 9: Comparison of the evolution in (a) C∗
l , (b) −D · ∂Cl

∂z
, and (c) fl at zml between the

volume average model assuming Dlz = 3 ·Dmz, and the ESRF X-ray radiography experiment.
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