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Abstract

Multi-view datasets arise naturally in statistical genetics when the ge-

netic and trait profile of an individual is portrayed by two feature vectors.

A motivating problem concerning the Skin Intrinsic Fluorescence (SIF)

study on the Diabetes Control and Complications Trial (DCCT) subjects

is presented. A widely applied quantitative method to explore the cor-

relation structure between two domains of a multi-view dataset is the

Canonical Correlation Analysis (CCA), which seeks the canonical load-

ing vectors such that the transformed canonical covariates are maximally

correlated. In the high dimensional case, regularization of the dataset is

required before CCA can be applied. Furthermore, the nature of genetic

research suggests that sparse output is more desirable. In this thesis, two

regularized CCA (rCCA) methods and a sparse CCA (sCCA) method

are presented. When correlation sub-structure exists, stand-alone CCA

method will not perform well. To tackle this limitation, a mixture of

local CCA models can be employed. In this thesis, I review a correla-

tion clustering algorithm proposed by Fern, Brodley and Friedl (2005),

which seeks to group subjects into clusters such that features are iden-

tically correlated within each cluster. An evaluation study is performed

to assess the effectiveness of CCA and correlation clustering algorithms

using artificial multi-view datasets. Both sCCA and sCCA-based correla-

tion clustering exhibited superior performance compare to the rCCA and

rCCA-based correlation clustering. The sCCA and the sCCA-clustering

are applied to the multi-view dataset consisted of PrediXcan imputed gene

expression and SIF measurements of DCCT subjects. The stand-alone

sparse CCA method identified 193 among 11538 genes being correlated

with SIF#7. Further investigation of these 193 genes with simple linear

regression and t-test revealed that only two genes, ENSG00000100281.9

and ENSG00000112787.8, were significant in association with SIF#7. No

plausible clustering scheme was detected by the sCCA based correlation

clustering method.
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Chapter 1

Introduction

1.1 The DCCT/ EDIC study

1.1.1 Diabetic Control and Complication Trials(DCCT)

The Diabetes Control and Complications Trial (DCCT) study was a clinical trial de-

signed to test the hypothesis that “achieving near-normal glucose would ameliorate

the long-term complications of diabetes” (DCCT/EDIC Research Group, 2014) and

investigate the possibility of delaying or preventing the complications of type 1 dia-

betes (T1DM) through intensive insulin therapy. The study was conducted over 1441

T1DM patients at 29 clinical centres across North America, from 1982 to 1993. The

study consisted of two treatment groups - one treatment group used intensive therapy,

which aimed at achieving non-diabetic level of glycemia as safely as possible, and the

other group used conventional therapy, which aimed to maintain safe asymptomatic

glucose control (DCCT/EDIC Research Group, 2014). There were also two patient

cohorts - the primary prevention, consisting of patients without retinopathy symptom,

and the secondary intervention, consisting of patients at an early stage of retinopathy.

The participants were recruited during 1983 - 1989 under the criteria summarized in

Table 1.1, and randomly assigned to either intensive or conventional treatment group

upon enrolment. The experimental set-up and descriptive information of the partici-

pants are summarized in Table 1.2 by treatment group. Participants in the intensive

treatment group received insulin through at least three daily injections or continu-

ous subcutaneous insulin infusion using external pumps guided by self-monitoring of

blood glucose. Whereas in the conventional treatment group, participants received

only one or two insulin injections daily and there was no self-monitoring of glucose.

In the case of glycemia exceeding the pre-set upper bound of 13.5%, the patient was

switched to intensive therapy independently of whether any symptom was presented.
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Glycated hemoglobin (HbA1c) and blood pressure measurements were taken quar-

terly from the participants of the conventional treatment group and monthly from

the intensive treatment group. Several other measurements were taken for various

studies, such as the Density Gradient Ultracentrifugation (DGUC) and the Skin In-

trinsic Fluorescence (SIF). Over 99% of participants were studied for on average 6.5

years before termination of the trial. The study exhibited significant reduction in the

level of glycated hemoglobin under intensive treatment, resulted a mean HbA1c of

7.2% for intensive treatment compare to the mean HbA1c of 9.1% for conventional

treatment as Figure 1.1 shows. This translated to a 35 to 76% reduction in the early

stages of micro-vascular complications(DCCT/EDIC Research Group, 2014).

Common Characteristics
Fasting C-peptide <0.2nmol/L

History of Cardiovascular disease No
Hypertension No
Dyslipidemia No
Neuropathy No

Other Severe Diseases No
Primary Prevention Cohort

T1D Duration (Years) 1-5
Evidence of retinopathy None

Albumin excretion rate (AER) < 40 mg per 24 h
Secondary Intervention Cohort

T1D Duration (Years) 1-15
Evidence of retinopathy At least one microaneurysm in either eye

Albumin excretion rate (AER) < 200 mg per 24 h

Table 1.1: The enrolment criteria for DCCT participants
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Figure 1.1: The median glycated hemoglobin (HbA1c) level of DCCT and EDIC
participants by the original treatment group. The vertical bars refer to the 1st and
3rd quantiles. Source: (DCCT/EDIC Research Group, 2014)

Intensive Conventional
Cohort(n)
Primary Prevention 307 344
Secondary 330 323
Gender(n)
Male 332 363
Female 305 304
Characteristics of participants
Age of Enrolment (years) 27.2± 7.1 26.5± 7.1
Duration of participation (years) 6.3± 1.7 6.2± 1.6
Eligibility HbA1C (%) 9.07± 1.58 9.00± 1.61
Mean HbA1C (%) 7.22± 0.93 9.06± 1.24
Stimulated C-peptide
at DCCT baseline (pmol/ml) 0.111± 0.119 0.117± 0.119

Table 1.2: Experiment set-up and characteristics of total 1304 DCCT participants by
treatment group. Source: (Paterson et al., 2009)

1.1.2 Epidemiology of Diabetes Interventions and Complica-
tions (EDIC)

Upon observing the improved result in HbA1c level with intensive treatment, the

DCCT was prematurely terminated in 1993 as it was no longer ethical to keep the
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intensive treatment from the other half of the patients. In order to further investigate

the durability of the effect of the intensive insulin therapy, the researchers initiated

a long term follow up and observational program - Epidemiology of Diabetes Inter-

ventions and Complications (EDIC). As an observational study, researchers visited

the participants less frequently than in the DCCT, however the same key measure-

ments(HbA1c, complications) were taken from the participants as in the earlier study.

The gap in the glycemia level between the two original therapy groups gradually nar-

rowed and eventually disappeared, as shown in Figure 1.1 (right). The long term

observational window of EDIC also enabled the researchers to investigate the possi-

ble impact of intensive insulin therapy over some more advanced complications. The

study demonstrated effectiveness of intensive therapy in preventing several advanced

complications including retinopathy, nephropathy, and autonomic manifestations of

neuropathy (DCCT/EDIC Research Group, 2014).

1.2 Human Genome, GWAS and PrediXcan

1.2.1 Human Genome

The Human Genome consists of 23 pairs of chromosomes, including 22 pairs of au-

tosomes and 1 pair of sex chromosomes. Each parent contributes to half of an indi-

vidual’s genome content as a result of sexual reproduction process. A chromosome is

essentially a Deoxyribonucleic acid (DNA) macro-molecule folded into an extremely

condensed form under the effect of package proteins. The collection of DNA molecules

carries the entire set of genetic instructions by which human being grow and repro-

duce. Each DNA molecules is composed of two biopolymer strands, which coil around

each other and form a double helix structure. The basic building blocks for DNA are

four types of nucleotides. These four types of nucleotides are adenine(A), thymine

(T), cytosine (C) or guanine(G). Nucleotides form base-pairs through a hydrogen

bond, with A pairs with T and C pairs with G. Genetic instructions are coded by

the sequence of nucleotides. A section of DNA which codes for a functional molecule

(such as a protein) is called a gene. A gene can influence a specific characteristic of

through a complex chain of molecular processes, therefore genetic variation can lead

to variation in traits. The most common form of genetic variation involves changes

to one single base pair at a given location on the DNA called a single-nucleotide

polymorphism (SNP). In recent years a wide range of human disease have been found

to be associated with SNPs.
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A locus refers to a certain location in the genome and the variants of the DNA

sequence at such locus are referred to as alleles. The genotype of a SNP is deter-

mined by the combination of two alleles for a diploid organism. Let B and b denote

the major allele (the most frequently observed in population) and minor allele (the

less frequently observed) respectively, then BB and bb represent homozygous alleles

and Bb represents heterozygous alleles. Allele frequency is the percentage of the pop-

ulation that carries a certain allele, which can also be interpreted as the probability

of observing that allele in a randomly selected individual. Minor Allele Frequency

(MAF) then refers to the allele frequency of the less common allele. We typically

denote the genotype with no minor allele 0 (e.g. BB), genotype with one minor allele

1 (e.g. Bb), and the genotype with a pair of minor alleles 2 (e.g. bb). Linkage Dise-

quilibrium (LD) measures the level of association between two SNPs at different loci.

SNPs are said to be in LD if the joint distribution of the genotypes is different from

the distribution assuming they are independent (e.g. the product of their marginal

distribution).

1.2.2 Genome-wide Association Study (GWAS)

A widely used method in statistical genetics is the genome-wide association study

(GWAS), which is used to identify SNPs that are associated with a phenotype of

interest. SNP data are collected from the subjects and genotyped via some genotype

calling algorithm. Poor sample data quality may result in missing values of SNP

genotypes, these SNPs may be abandoned or have their genotypes imputed via sta-

tistical inference techniques using know haplotypes in a population ( typically from a

large human genetic study program such as HapMap or the 1000 Genomes Project)

(Y. Li, Willer, Sanna, & Abecasis, 2009). A dosage value from 0 to 2 are calculated,

where dosage of 0 refers to the genotype bb and 2 refers to the genotype BB. The

traits measurements are regressed against each SNP. Test of significance is performed

individually on the resulted SNP coefficients and the associated p-values are calcu-

lated. Significantly small p-value indicates strong association between the SNPs and

the trait of interest. The most commonly used tool to visualize the result is the

Manhattan Plot, with SNPs plotted on the horizontal axis and the negative base-10

logarithm of the p-values of the observed odd ratio on the vertical axis. Most of

SNPs will have a low profile due to low level of association to the trait, Spikes in the

plots will represent the SNPs that are significantly associated to the trait of interest.

Multiple comparisons problem can arise as GWAS typically performs a large number
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of statistical inferences simultaneously, and therefore the p-value threshold for signif-

icance needs to be corrected(Miller, 1981). Various techniques for multiple testing

correction exist and the most widely used on is perhaps the Bonferroni adjustment,

which deems a test score significant only if the corresponding p-value is less than

α/n, where α and n refers to the significant threshold and number of separate tests

(Johnson et al., 2010; Noble, 2009).

1.2.3 PrediXcan

Expression quantitative loci(eQTLs) are the genomic regions that influence the mes-

senger RNA (mRNA) level which indicates the gene expression level (Rockman &

Kruglyak, 2006), and how actively a gene is transcribed influences the abundance of

certain types of protein which eventually links to the variation of traits. PrediXcan is

a gene-based association method that aims to directly test the molecular mechanisms

through which genetic variation affects phenotype (Gamazon et al., 2015). With the

built-in gene expression imputation model, the PrediXcan predicts the expression of

genes that are regulated by eQTLs (B. Li et al., 2018).

Genomic and transcriptomic data from three different sources were used to develop

a parsimonious additive linear model for gene expression - the whole blood RNA-Seq

data and genome-wide genotype data for 922 individuals from the Depression Genes

and Networks(DGN) cohort, all of European ancestry, were used to generate the

model; RNA-Seq data from 421 lymphoblastoid cell lines from the Genetic European

Variation in Health and Disease (GEUVADIS) consortium and the Genotype-Tissue

Expression (GTEx) RNA-Seq Data across 9 tissues were used for testing the model

trained by the DGN data. The gene expression is proposed to be characterized by an

additive linear model for the form,

Yg =
∑
k

ωk,gXk + ε (1.1)

where Yg denotes the expression level of gene g, ωk,g stands for the effect size for

SNP k for the expression level of gene g, Xk denotes the dosage for SNP k in the set

of all cis-regulatory SNPs, and ε represents environmental factors that influence the

gene expression level, therefore the summation Σkωk,gXk represents the Genetically

Regulated Expression (GReX).

The model was trained using LASSO and Elastic Net, the eQTLs that are iden-

tified to be in association with the expression traits and their estimated effect sizes
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(ω̂k,g) are stored in the PredictDB data repository by the GTEx tissue type and are

available through (http://predictdb.org/).

To implement the PrediXcan method, we initially impute the genetically regulated

expression for each subject with the additive linear model,

ˆGReXg =
∑
k

ω̂k,gXk (1.2)

and then associate the imputed gene expression values with the physiological traits

in the same fashion as GWAS, to identify genes whose genetically regulated expression

is significantly associated with the traits of interest.

Compared to GWAS which typically require 5-10 million single tests of signifi-

cance, PrediXcan features a much smaller multiple testing burden and usually only

requires roughly 10 thousands tests. PrediXcan also utilizes the relatively more ac-

cessible SNPs data to impute the gene expression for a gene-based association study,

with no actual transcriptome data required, making this method widely applicable to

many existing studies with SNP genotype datasets.

1.3 Motivating Problem - the Skin Intrinsic Fluo-

rescence data

Advanced glycation end products (AGEs) are the end result of a complex chain of bio-

chemical process under the condition of accelerated glycation due to hyperglycemia,

and are known to be risk factor for micro-vascular and macro-vascular diabetes com-

plications. Given the fluorescent nature of some AGEs, non-invasive means such as

optical spectroscopy can be applied to measure the accumulated level of AGEs in

the skin. Compare to the traditional skin biopsy method, this greatly promotes the

feasibility of large scale study of the association between genetic variation and AGEs.

Such optical spectroscopy devices emit light at multiple wave length (visible and

near-ultraviolet) to illuminate the subject’s left forearm skin. The induced skin fluo-

rescence reflectance is captured by a specially designed fiber-optic probe and relayed

to a spectrograph (Hull et al., 2014). The skin AGEs level can be characterized by 15

measurements of skin fluorescence reflectance, ordered by the excitation wavelength

and emission range, this can be considered as a 15-dimensional feature vector. Previ-

ous studies had revealed the association between markers near the N-acetyltransferase

2 (NAT2) gene and skin fluorescence traits (Eny et al., 2014). Roshandel et al. (2016),
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performed a meta-GWAS study involving 1359 patients from the Diabetes and Com-

plications Control Trail and 278 patients from the Wisconsin Epidemiologic study of

Diabetic Retinopathy to identify additional genetic loci that are associated to the

skin fluorescence traits in type I diabetes. Beside the known locus of NAT2, a new

locus on chromosome 1 was found to be significantly associated with the SF in T1D

patients, and such association was not observed for non-diabetic patients (Roshandel

et al., 2016).

1.4 Canonical Correlation Analysis

1.4.1 Basics of Canonical Correlation Analysis

Many genetic studies, such as the earlier described skin intrinsic fluorescence study,

generate so called “multi-view data”, where the subjects are portrayed by two fea-

ture vectors, each feature vector consists of a set of variables. Researchers are often

interested in studying the correlation structures between the two domains of vari-

ables. For example, we may want to study the correlation between an individual’s

gene expression profile (approximately 10,000 variables) and the skin fluorescence

measurements (15 variables). An useful analytical approach to such multi-view data

is Canonical Correlation Analysis (CCA). The purpose of canonical correlation anal-

ysis is to identify and quantify the correlation structure between two sets of random

variables (Fern, Brodley, & Friedl, 2005).

Let us consider a multi-view data in which subjects are described by two feature

vectors, X = (x1, x2, ...xp)
T and Y = (y1, y2, ...yq)

T . Mathematically, CCA seeks the

transformations a and b, respectively to X and Y , such that the linear correlation

between the two transformed quantities u = aTX and v = bTY (called canonical

variables) is maximized (Hotelling, 1936). That is,

(a∗, b∗) = argmax
a,b

Corr(u, v) (1.3)

Similar to principal component analysis, we denote the u and v found as above

u1 and v1 and name it the first pair of canonical variables. If we repeat this process

subject to the constraint that the newly found canonical variables are uncorrelated

with u1, v1, then we obtain the second pair of canonical variables, u2 and v2. We

may continue this procedure up to d = min(p, q) times and acquire up to d-th pair of
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canonical variables. Let rk denote the correlation between the the k-th pair of canon-

ical variables, this algorithms yields canonical variables with decreasing correlations,

that is rk > rk+1, for k = 1, . . . , d− 1.

Computationally, this optimization problem can be solved by finding the eigen-

value and eigenvectors of two matrices Mx and My. Let Σxy be the covariance matrix

with the (i, j)-th entry σxiyj , where i = 1, . . . , p and j = 1, . . . , q and let

Mx = Σ−1xxΣxyΣ
−1
yy Σyx

and

My = Σ−1yy ΣyxΣ
−1
xxΣxy

The eigenvalues of Mx and My are identical and in fact the k-th eigenvalue equals

to the square of the k-th canonical correlation, that is λk = r2k. If we arrange the

eigenvalues in decreasing order, the corresponding k-th eigenvectors of Mx and My are

the transformation vectors ak and bk. Let M denote a canonical correlation model

(Assume we only utilize the first K order canonical variables),

M = {(uk, vk), rk, (ak, bk), k = 1, . . . , K}

where (uk, vk) and rk are the k-th pair of canonical variables and their correspond-

ing correlation coefficient, and (ak, bk) stands for the corresponding transformation

vector. We refer to M as a CCA model (Fern et al., 2005). Because the correlation

rapidly becomes weaker as k increases (that is, as k increases, the canonical variable

pairs contains less and less useful information), in most real world application, it is

sufficient for us to only consider the first 1-3 pairs of canonical variables. In this

study, only the first order canonical variable will be used.

1.4.2 Regularized Canonical Correlation Analysis

Special treatment is required when the CCA is implemented over high dimensional

data, where the number of feature variables greatly exceeds the number of observa-

tions. The standard CCA we described earlier cannot be effectively performed due

to ill-conditioned variance-covariance matrices that arise in the high dimensional set-

ting. In such cases, the resulted canonical correlation will always be close to 1 and

not actually provide any meaningful information(González, Déjean, Martin, Baccini,

et al., 2008). One way to tackle this issue is to include a data regularization step

prior to implementation of the standard CCA.
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A cross validation based regularization approach was firstly proposed by Vinod

(1976) and further developed by Leurgans, Moyeed, and Silverman (1993). A pair

of tuning parameters λ = (λ1, λ2) is introduced to replace the original covariance

matrices ΣXX and ΣY Y by

SXX(λ1) = ΣXX + λ1Ip

and

SY Y (λ2) = ΣY Y + λ2Iq

where Ip and Iq are diagonal matrices of dimension p× p and q × q respectively.

Define ρ
(−i)
λ be the first the order canonical correlation of CCA, having the i-th

observation removed, and (a
(−i)
λ , b

(−i)
λ ) be the corresponding projection vector associ-

ated with the first order canonical covariates. We carry out this calculation for all

subjects in a leave-one-out cross validation manner and obtain n pair of projection

vectors {(a(−i)λ , b
(−i)
λ )}ni=1. Define the leave-one-out cross validation score (CV-score)

as (Leurgans et al., 1993),

CV (λ) = Corr({Xia
(−i)
λ }ni=1, {Yib

(−i)
λ }ni=1) (1.4)

A good λ would be the one that maximize the leave-one-out cross validation score,

that is,

λ∗ = (λ∗1, λ
∗
2) = argmax

(λ1,λ2)

CV (λ1, λ2) (1.5)

Finding the best λ becomes an optimization problem on the R2. A strategic ap-

proach to perform this optimization would be constructing a“grid of points” over the

region of “reasonable” values for the λ, and evaluate the CV-score at each grid point

and simply pick the λ corresponding to the maximized CV-score (Friedman, 1989;

González et al., 2008; Guo, Hastie, & Tibshirani, 2006). Such region of search de-

pends on the experience of user, in the absence of prior knowledge, it is recommended

that one may apply this optimization process recursively to approach the optimal

λ - first construct the searching grids over [0, 1] × [0, 1] and then locate the region

where the optimal λ may be reached and further construct searching grids over such

region (González et al., 2008). However a significant drawback of this cross-validation

regularization is the associated computing cost, when the dimension of the dataset

rises the required computing time increases dramatically.

Schäfer and Strimmer (2005), proposed a analytical and computationally more

efficient approach of estimating the covariance matrix in the high dimensional setting
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based on the principle of shrinkage estimation and the Ledoit-Wolf Lemma. Consider

a dataset of p variables and sample size n, the empirical covariance matrix S is a p×p
matrix with entries

si,j =
1

n− 1

n∑
k=1

(xk,i − x̄i)(xk,j − x̄j)

for i = 1, . . . , p and j = 1, . . . , p, where x̄i = 1
n

∑n
k=1 xk,i. However this empirical

covariance matrix is ill-suited to the high dimensional case and tend to perform very

poorly in estimating the true covariance matrix Σ. Schäfer and Strimmer (2005),

proposed to replace the empirical covariance matrix with a shrinkage estimator. Let

S̃ denote the shrinkage estimator, construct a convex combination of S and a target

matrix T such that

S̃ = δS + (1− δ)T (1.6)

where δ is the shrinkage parameter in the range 0 to 1 and T is a diagonal matrix

with entries ti,j = sii(the diagonal entry of the empirical covariance matrix S) if i = j

and 0 otherwise. Define a risk function R(δ),

R(δ) = E[

p∑
i=1

(S̃i − Σi)
2] (1.7)

and δ is chosen such that the risk function R(δ) is minimized, that is,

δ∗ = min
(0,1)

R(δ) (1.8)

Instead of carrying out the optimization through computationally expensive proce-

dures such as Cross-validation, Schäfer and Strimmer (2005) pointed out the optimal

shrinkage parameter δ can be achieve analytically by employing a lemma derived by

Ledoit and Wolf (2003). Assume the existence of the first two moments of S and T ,

Equation (1.7) can be expanded and re-written as (Schäfer & Strimmer, 2005)

R(δ) =

p∑
i=1

δ2 Var(Ti+(1−δ) Var(Si)+2δ(1−δ) Cov(Ti, Si)+[δE(Ti−Si)+Bias(Si)]
2

(1.9)

Through some tedious algebraic calculation after applying the result of Ledoit and

Wolf (2003), the optimal δ is obtained as

δ∗ =

∑p
i=1 Var(Si)− Cov(Ti, Si)− Bias(Si)E(Ti − Si)∑p

i=1E[(Ti − Si)2]
(1.10)
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Replace all the expectation, variance and covariance in Equation (1.10) with the

sample estimates, this yields

δ̂∗ =

∑p
i=1 V̂ar(Si)− ˆCov(Ti, Si)− ˆBias(Si)(Ti − Si)∑p

i=1(Ti − Si)2
(1.11)

Applying Equation (1.10) to our optimization problem leads to the following ex-

pression,

δ̂∗ =

∑
i 6=j V̂ar(rij)∑

i 6=j r
2
ij

(1.12)

where rij is the empirical correlation coefficient(e.g. rij =
sij√
siisjj

, i, j = 1, . . . , p).

Compare to the cross-validation based regularization described earlier, this ap-

proach is significantly less computationally expensive as it requires simple algebraic

calculation to the sample correlation coefficients. The efficacy and computational

cost of both methods will be evaluated in chapter 2.

Both standard canonical correlation analysis and the cross-validation based regu-

larization can be carried out by the R package CCA (González & Djean, 2012). Another

R-package mixOmics, developed by mixOmics project team allows the implementa-

tion of the alternative regularization through shrinkage (Rohart, Gautier, Singh, &

LeCao, 2017).

1.4.3 Sparse Canonical Correlation Analysis

The regularized CCA solves the ill-conditioned covariance matrix problem when ap-

plying classical CCA to the high dimensional dataset. However, in the real-world

genetic research, it is common that within a huge number of genetic variables, only

a very tiny subset of them are actually associated with the phenotypes of interest,

while all the other variables constitute the background noise. For a study intending

to examine the correlation structure between the genetic and trait domain, a sparse

representation of the canonical loadings for both domains would provide improved

model interpretability.

Witten, Tibshirani, and Hastie (2009), presented a sparse CCA method using

some optimization algorithm that is part of a technique they named Penalized Matrix

Decomposition (PMD).

Let X denote the n× p data matrix of View 1 from a multi-view dataset, and Y

the n×q matrix for the View 2, then the classical canonical correlation analysis seeks

the canonical vectors u and v such that the correlation between the canonical variates
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Xu and Y v are maximized (Hotelling, 1936), and algebraically, this is equivalent to

the following optimization problem (Witten et al., 2009),

maximizeu,vu
TXTY v having uTXTXu ≤ 1 and vTYTY v ≤ 1 (1.13)

Witten et al. (2009), proposed to introduce sparsity to the output by imposing L1

penalty on the u and v, that is,

maximizeu,vu
TXTY v having uTXTXu ≤ 1, vTYTY v ≤ 1

P1(u) ≤ c1 and P2(v) ≤ c2
(1.14)

where P (·) denotes the L1 penalty constraint, and c1 and c2 refer to the bounds

of penalty for u and v respectively. Some researches had shown that treating the

variance-covariance matrix as diagonal can potentially produce satisfactory result

in high dimensional case (Dudoit, Fridlyand, & Speed, 2002; Tibshirani, Hastie,

Narasimhan, & Chu, 2003). Replacing the the XTX and YTY in (1.14) with Identity

matrices yields the following form,

maximizeu,vu
TXTY v having ||u||22 ≤ 1, ||v||22 ≤ 1

P1(u) ≤ c1 and P2(v) ≤ c2
(1.15)

To solve this optimization problem, Witten et al. (2009) proposed the following

algorithm (Algorithm 1),

Computation of the first order canonical vectors
1. Initialize v for ||v||2 = 1
2. Until convergence, Do:
(a) u← argmaxu u

TXTY v having P1(u) ≤ c1, ||u||22 ≤ 1
(b) v ← argmaxv u

TXTY v having P2(v) ≤ c2, ||v||22 ≤ 1
3. d← uTXTY v

Table 1.3: Algorithm 1: Computation of first order canonical vectors, source (Witten
et al., 2009)

In practice, Witten et al. (2009) suggest using the first right singular vector of

XTY as the initial value of v in step 1. The output u, v are the first order canonical

vectors and d is the first order canonical correlation. To compute multiple order of

canonical vectors, the following algorithm 2 was proposed, which involves repeatedly

implementing algorithm 1,
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Computation of K orders of canonical vectors

1. Let XTY (1) ← XTY .
2. For k = 1, ..., K
(a) Find uk, vk and dk of XTY (k) using Algorithm 1
(b) XTY (k+1) ← XTY (k) − dkukvTk

Table 1.4: Algorithm 2: Computation ofK orders of canonical vectors, source (Witten
et al., 2009)

where K = min(p, q), the output uk, vk refer to the kth order canonical vector

and dk is the kth order canonical correlation.

Witten et al. (2009) tested this sparse CCA method on both simulated data and

real genomic data. In both cases, the proposed method demonstrated its capability to

successfully impose sparsity on the model output and identify the true sparse factors

that are in correlation.

1.5 Correlation Clustering

Canonical correlation analysis is designed to detect the global linear correlation be-

tween two domains of a dataset and one can expect it to perform poorly if some type

of correlation sub-structure exists in the dataset. For example, if the subjects of a

genetic study can be sub-divided into groups by the correlation behaviour between

certain genetic variables and some phenotype measurement. Then a straight forward

application of CCA will not yield meaningful output. One way to tackle this limita-

tion is by incorporating a mixture of local linear correlation models such that each

local model captures the local linear correlation structure within the whole dataset.

Fern et al. (2005), proposed a canonical correlation analysis based correlation clus-

tering algorithm, intended to simultaneously group subjects in to clusters according

to their local correlation structure in the dataset, such that within each cluster, two

domains of the multi-view dataset are identically linear correlated, and each cluster

is portrayed by a local CCA model. The correlation algorithm was proposed based

on the following two intuitions:

• Intuition 1. If sub-correlation structure exists across the multi-view data matrix,

the linear correlation generated by canonical correlation analysis on such dataset

is expected to be very weak.

• Intuition 2. For a set of instances, one should be able to predict one canonical

variate from another (within the pair of canonical variates of the same order)
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using a simple linear regression model, if strong linear correlation exists across

the two domains.

Based on these two intuitions, Fern et al. (2005) proposed a K-means style clus-

tering algorithm. The core idea is to initialize the algorithm by randomly assigning

each subject to one of the k (pre-determined) clusters. Within each iteration, canon-

ical correlation analysis is separately applied to each of the k clusters of subjects to

generate a local CCA model. Then for each subject in the sample, a “correlation”

based distance between the subject and the an existing cluster is calculated and the

subject is assigned to the cluster corresponding to the least distance. It is hoped that

through this iteration process a k-group clustering scheme would be formed such that

within each cluster the variables across the two domain correlates in the same way

(Fern et al., 2005). A full description of the algorithm is presented in Table 1.5.
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Model Input
- A multi-view dataset of n subjects with two domains, each domain
described by a feature vector ~x or ~y
- k, a pre-determined number of clusters
- d, the number of canonical variables used by local CCA model

Model Output
- k clusters of grouped subjects
- k local CCA models, one for each cluster

Clustering Algorithm
1. Initialization
Randomly assigning each subject to k clusters

2. Local CCA model
Apply canonical correlation analysis to each cluster i, and contruct a
local CCA model Mi = {(uj, vj), rj, (aj, bj), j = 1...d}, ∀i = 1...k,
where (uj, vj) are the j-th pair of canonical variables, rj the
correlation coefficient between the j-th canonical variables and (aj, bj)
the corresponding projection vector

3. Reassignment
- for each local CCA mdoel Mi for the cluster i, construct a family of d
linear regression models v̂j,i = βj,iuj,i + αj,i for j = 1, . . . , d
- for each subject in the cluster i, compute its canonical variables uj,i and vj,i
using local model Mi, and the estimation v̂j,i using the regression model
described above, for j = 1, . . . , d
- compute the weighted error for cluster i as erri = Σd

j=1
rj,i
r1

(vj,i − v̂j,i)2
- Reassign the subject to the cluster with the minimal erri

4. Output
Return the current clusters and CCA models if no re-assignment occurs or
reaching the maximum iteration. Otherwise, repeat step 2.

Table 1.5: The CCA correlation clustering algorithm

Like regular k-means clustering, the proposed method is essentially a greedy algo-

rithm, which means the final output is initial condition dependent and the iteration

can potentially become stuck with some local optimal solution. One way to tackle this

issue and improve the accuracy of the algorithm is by repeating the process multiple

time with different initializations and compare the outputs at different trials. However

unlike the usual k-means clustering based on traditional distance metrics, the pro-

posed correlation clustering algorithms do not guarantee convergence, furthermore,

the new clusters resulting from each iteration are not guaranteed to have stronger

local linear correlation than before(Fern et al., 2005). The test result from Fern et
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al. (2005) suggests that the objective function (prediction error) typically rapidly de-

creases before it begins to oscillate within some relatively narrow range, and based

on their experience they recommend setting a maximum number of iterations of 200.

Another important consideration for the practical application of this algorithm is

number of clusters to be used. The best guidance would come from our prior knowl-

edge about the studied subjects (such as case-control set-up or clustering naturally

existing in the population e.g. ethnicity, gender, presence of a certain disease). In

the absence of prior knowledge, there are various computational techniques (such as

gap statistics and cluster ensembles) that can aid in the selection of k, however these

techniques are purely numerical, the reasonableness of their outputs needs to be ex-

amined with caution. The algorithms also require the user to specify the number of

pairs of canonical covariates d to be included in the local canonical correlation model.

In this thesis we set d to be 1.

The proposed clustering algorithms was tested on a simple artificial dataset in

order to examine its efficacy. The testing data was a mixture of two equal-sized

datasets each with a distinct correlation pattern, for a total of 2000 subjects. The

experiment demonstrated that the proposed method was able to successfully form a

partition over the artificial dataset based on the correlation sub-structure and recover

the original local linear correlation structure by their design. The proposed algorithm

performed consistently well on the artificial dataset, on average only 2.5% of the 2000

subjects were assigned to the wrong cluster (Fern et al., 2005). However higher

level of instability of the algorithm was observed when it was applied to a real-world

earth science data which naturally has greater complexity in terms of the underlying

correlation structure. Nevertheless, in the application to the earth science dataset,

the proposed algorithm was still able to identify interesting patterns in the data that

the traditional CCA was incapable of finding (Fern et al., 2005).

1.6 Review of Related Work

Existing studies concerning both genetic variation and complex traits are primarily

GWAS based. In an earlier study, the N-acetyltransferase 2 (NAT2) was the only locus

known to be associated with the SIF (Eny et al., 2014). In Roshandel et al. (2016),

a meta-GWAS study was performed over 1359 subjects from DCCT/EDIC and 278

subjects from the Wisconsin Epidemiologic Study of Diabetic Retinopathy(WESDR)

with the aim of identifying additional genetic loci influencing skin fluorescence in type

1 diabetes. A new locus, rs7533564 on Chromosome 1 was found to be significantly
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associated with the SF in the type 1 diabetes patients, and such association was not

observed for Non-Diabetic subjects (Roshandel et al., 2016).

Waaijenborg, de Witt Hamer, and Zwinderman (2008) applied a penalized canoni-

cal correlation analysis to DNA-markers (e.g.polymorphisms, gene copy numbers) and

gene expression data with the aim to investigate the inter-domain correlation structure

and to identify groups of co-expressed and co-regulated genes. They adapted elastic

net to the conventional canonical correlation analysis to address the issues raised by

high dimension data and to improve the interpretability of the output. The hybrid

method was demonstrated to work over the high dimension data. Parkhomenko,

Tritchler, and Beyene (2007, 2009) independently developed an sCCA algorithm that

works very similar to the sCCA by Witten et al. (2009).

Very few direct application of canonical correlation analysis to genetic studies

were found, possibly due to the high dimensional nature of the genetic datasets.

There are a number of applications of sCCA in the genetic researches. Subrama-

nian, Chidester, Ma, and Do (2018), applied both CCA and sparse CCA to exam-

ine the correlation structure between cellular feature imagings and gene expression

data of 615 breast cancer samples from The Cancer Genome Atlas (TCGA) program

(https://cancergenome.nih.gov/), and were able to uncover significant correlation of

several cellular image features with expression of PAM50 genes. Chi et al. (2013),

extended the sCCA model to account for correlation structure in both datasets and

applied their method to a simulation study to investigate the correlation between ge-

netic variants and phenotypic variations in brain function and structure. Witten and

Tibshirani (2009), further extended the sparse CCA method in Witten et al. (2009)

in two ways - a sparse supervised CCA was developed by incorporating experiment

outcome measurement and a sparse multiple CCA was proposed that allows perform-

ing sparse CCA and simultaneous integrative analysis over datasets with more than

two domains. Chen, Han, and Carbonell (2012), extended the sparse CCA method

in Witten et al. (2009) via a “structured-sparsity-inducing penalty” , a technique of

introducing sparsity incorporating the group structural prior knowledge, in order to

study the correlation between genetic variation and expression traits in yeast cells.

Clustering algorithms had been widely applied to genetic studies, especially to

gene expression data, however the use of clustering methods has been primarily lim-

ited to performing data visualization and generating hypotheses about the relation-

ships between genes (Ben-Dor, Shamir, & Yakhini, 1999; D’haeseleer, 2005; Eisen,

Spellman, Brown, & Botstein, 1998; Herrero, Valencia, & Dopazo, 2001; Jiang, Tang,

& Zhang, 2004; Yeung & Ruzzo, 2001). My focus in this thesis is different - I look
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to investigate the correlation structure between imputed gene expression and a mul-

tivariate phenotype, and identify potential sub-correlation structures in the dataset.

This requires clustering algorithms that group subjects based on a correlation-based

distance rather than the traditional distance metrics, hence we focused on the cor-

relation clustering algorithm proposed by Fern et al. (2005). Several related works

have been found. Lei, Miller, and Dubrawski (2017), proposed a correlation clustering

algorithms named Canonical Least Square (CLS) clustering method. Similar to the

clustering algorithm by Fern et al. (2005), the CLS clustering constructs local CCA

models on the interim clusters, however the CLS clustering re-assigns the subjects

based on the Euclidean distance between the subjects and each interim cluster instead

of the squared error on predicted canonical covariates as in the CCA clustering. Sun,

Lu, Xu, and Bi (2015), developed a multi-view sparse Co-Clustering algorithm via

proximal alternating linearized minimization (PALM) which co-clusters row features

and column features simultaneously through decomposing multi-view data matrices

into product of sparse rows and columns. However, to my understanding this clus-

tering method does not concern the correlation structure of the multi-view dataset

therefore it is not best suited to our research purpose. The CCA correlation clustering

algorithm, along with the two related works, were proposed and developed concerning

only regular multi-view data, that is where sample size exceeds the dimension of fea-

ture vector. We were not able to find any evaluation studies of this framework in the

high dimensional case or any literature assuring its efficacy when applied to the high

dimensional data. We found a number of applications of the correlation clustering

method to earth science data, however up this point, we were not able to find any

literature concerning the application of this method on any genetic study.

1.7 Rationale and Objectives of the Thesis

1.7.1 Rationale of the thesis

Existing studies have shown association between genetic variation and skin intrinsic

fluorescence measures. These studies are typically GWAS-based, which rely on single

variant test of association for each SNP across the entire genome to identify loci

showing significant association with the phenotypes of interest. PrediXcan allows us

to impute the locally genetically regulated expression via parameters stored in the

PredictDB and test the association between the genetic profile to phenotype at the

gene level, this greatly reduces the computational cost(approximately 10,000 genes

vs. approximately 5-10 million SNPs) and can be done without actual transcriptome
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data, which are often unavailable as the gene expression id cell-type dependent and

acquiring such data usually require invasive procedure. In this thesis I propose an

integrative approach to examine the skin intrinsic fluorescence data using canonical

correlation analysis and correlation clustering. Treating the imputed gene expression

and the SIFs measures as a multi-view dataset, through canonical correlation analysis

I will aim to examine the correlation structure between gene expression and SIFs

measures. With the CCA-based correlation clustering algorithm, I will investigate

whether sub-structure exists across the domains.

1.7.2 Objectives of the thesis

This thesis consists of the following three research objectives,

• Objective 1. An artificial multi-view dataset will be generated by a design

intended to capture the characteristics of the real-world imputed gene expression

- SIF data and the association between the true sparse genes and phenotype of

interest. Three canonical correlation methods - regularized CCA via shrinkage,

regularized CCA via Cross-Validation and Sparse CCA, will be applied to the

artificial data and their efficacy and performances will be evaluated.

• Objective 2. A multi-view dataset with two intrinsic clusters will be created,

where each cluster has distinct gene-trait association, assembling an artificial

dataset with correlation sub-structure. A high dimensional version of the corre-

lation clustering algorithms proposed by Fern et al. (2005) will be constructed

and applied to this two-cluster simulated data. The efficacy and performance

of the correlation clustering algorithms in the high dimensional realm will be

tested and evaluated.

• Objective 3. Canonical correlation analysis will be applied to the multi-view

data combining the imputed gene expression via PrediXcan and SIF measures

on the DCCT subjects. Correlation structure between the genetic and trait

domain will be examined. The correlation clustering algorithm will be applied

to the same dataset to investigate the existence of potential correlation sub-

structure between the two domains.
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Chapter 2

Evaluation of Canonical
Correlation Analysis Methods

A series of evaluation studies were developed to test and compare the performances

of the various canonical correlation analysis methods described earlier. Section 2.1

discusses the core design of the artificial test dataset and our experiment. In Section

2.2, regularized CCA methods (via shrinkage or cross-validation) and the sparse CCA

were separately applied to the artificial data. In Section 2.3, the performances of

these methods are evaluated and compared and the implications to the real-world

application were discussed. All methods and experiments were performed using R

software Version 3.4.3, the corresponding code scripts are in Appendix B.

2.1 Artificial Dataset and Design of Experiment

2.1.1 The core design of artificial test dataset

An test dataset was generated in an attempt to reflect the dimensional characteristics

and the correlation structure (both inter-domain and intra-domain) of the real world

DCCT-SIF multi-view dataset.

Consider a multi-view dataset with View 1 containing the subject gene expression

profiles, and View 2 for the corresponding skin intrinsic fluorescence measurements.

Let n denotes the sample size, p and q denote the dimension of the feature vector X

of View 1 and Y of View 2, hence the View 1 and View 2 are matrices of size n× p
and n× q, respectively.

Assume the feature vectors X and Y follow multivariate normal distributions and

for the core design of the artificial data, we assume that there is no correlation within

the genetic nor the trait domain.
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To create the artificial dataset, matrices consisting of the “background noise”

were first generated for View 1 and View 2, then certain variables in each view were

selected and designated as the “interactive variables”, finally a mapping between the

interactive variables across the two domains was introduced.

Hence the View 1 matrix for the genetic variables is generated by a multivariate

normal generator with mean vector

µ1 =


µ1,1

µ2,1
...
µp,1


and a tridiagonal covariance matrix

Σ1 =


σ11,1 0

σ22,1
. . .

0 σpp,1


Similarly, the View 2 matrix for the trait variables is generated by a multivariate

normal generator with mean vector

µ2 =


µ1,2

µ2,2
...
µq,2


and a tridiagonal covariance matrix

Σ2 =


σ11,2 0

σ22,2
. . .

0 σqq,2


In most genetic studies, only a very small collection of genes (even just one or two)

are truly associated with the phenotype of interest. We tried to reflect this important

characteristic in our simulated data by introducing a linear model depicting the gene-

trait association mechanism. To achieve this, ng genes were chosen from View 1

and designated as the “target genes”, and nt traits were chosen from View 2 as the

“influenced traits”. We portray the gene-trait association via the following linear

mapping,
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yij =

ng∑
k=1

xikβjk + εij (2.1)

where i = 1, 2, ..., n and j = 1, 2, ..., nt. That is, for individual i, the value of the

jth influenced trait is determined by a linear combination of expression levels of the

ng target genes in View 1, plus some random noise εij which is assumed to follow a

normal distribution with mean and variance later specified. Finally we replace the

original values of the element yi,j, i = 1, 2, ..., n and j = 1, 2, ..., nt with the values

resulted in Equation (2.1).

For simplicity, we set µj,1 to be 3 and σjj,1 to be 0.1 for j = 1, 2, ..., p in View

1 and we set µj,2 to be 5 with σjj,2 0.1 for j = 1, 2, ..., q in the View 2. In the core

design, we select the first 10 genes in View 1 and the first nt = 5 variables in View 2

to be our “target genes” and “influenced traits” across the two domains respectively,

this allow us to check the performance of the CCA methods more easily by plotting

the canonical loadings.

2.1.2 The existence of intra-domain correlations

However the intra-domain correlation does exist in reality(e.g. co-expression of genes,

correlation between SIF variables). To reflect this concern in the artificial data, we

introduced the intra-domain correlation in the following way as a variation to our

core design. The covariance matrix of the genetic domain will have the following

tri-diagonal form,

Σ1 =


σ11,1 σ12,1
σ21,1 σ22,1 σ23,1

σ32,1
. . . . . .
. . . . . . σ(p−1)p,1

σp(p−1),1 σpp,1


where σij,1 = ρ1σii,1σjj,1 for i, j = 1, 2, ..., p, ρ1 is the correlation level between

genetic variables to be specified later. Instead of picking the first 10 genetic variables

as the target genes in the core design, we choose the #1, #2, #11, #12, #21, #22,

#31, #32, #41 and #42 to be the truly associated genes in this variation design, such

that each of them is correlated to one truly associated gene and one noise variable.

The covariance matrix of the trait domain will have the following compound sym-

metric form,
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Σ2 =


σ11,2 σ12,2 . . . σ1q,2

σ21,2 σ22,2
...

...
. . . σ(q−1)q,2

σq1,1 . . . σq(q−1),2 σqq,2


where σij,2 = ρ2σii,2σjj,2 for i, j = 1, 2, ..., q, ρ2 is the correlation level between

trait variables to be specified later. We remain to choose the first 5 trait variables as

the truly associated ones.

2.1.3 Design of Experiment

The primary interest of our evaluation study is assessing the performance of various

CCA methods when they are applied to the high dimensional and high background

noise multi-view type of dataset that often arise in genetic studies. Similar studies

were carried out in order to demonstrate the effectiveness of the proposed sCCA

approach in some other articles (Chu, Liao, Ng, & Zhang, 2013a; Hardoon & Shawe-

Taylor, 2011; Waaijenborg et al., 2008; Witten et al., 2009), where high dimensional

matrices existed in both domains. However as illustrated by our motivating question,

“asymmetric high dimensional multi-view data” can rise naturally in many genetic

studies, where we typically have a high dimensional data matrix for the genetic domain

and low-dimensional matrix for the trait domain. Evaluation of the performance of

CCA methods on this type of data was not found in existing literature.

The ultimate goal of applying CCA to high dimensional data is that the process

could simultaneously detect and portray the inter-domain correlation while correctly

identifying the truly associated variables across two domains among a large number of

background noise feature variables. I am also be interested in comparing the efficiency

of different approaches. To serve these objectives, I propose to adopt the following

metrics to the CCA model output. Terminologically, let the “effect size” of a variable

be the absolute value of its assigned canonical coefficient.

• Distinctiveness of interactive variables (DIV)

Defined as the number of the truly associated variables successfully identified

by the CCA method. More specifically, it is the number of truly associated vari-

ables with the effect size greater than the mean effect size of the noise variables.

We are interested in whether the process assigns significantly non-zero canoni-

cal coefficient to the interactive variables. Ideally the true interactive features

should be assigned with canonical coefficients with significant magnitude.
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• Level of Sparsity (S%)

Defined as the ratio of number of noise features with zero canonical loading

versus the total number of noise features in a particular domain. This metric

indicates how effectively a CCA method suppresses the noise features in a given

domain.

• Mean and Standard deviation of noise loadings (M, SD)

The mean and standard deviation of the canonical loadings assigned to all noise

features, in order to examine how are these coefficients distributed.

• Degree of Separation (DOS)

Defined as the quotient of the mean effect size of the truly associated features

divided by the mean effect size of the noise features. The value of DOS ranges

from 0 to ∞, the greater DOS value indicates stronger separation between the

truly associated feature and the background noise.

• Canonical Correlation (CC)

The correlation between the first order canonical covariates.

• Running Time (RT) Measurement in seconds of the amount of time each

CCA method requires to run, within the same system computing environment.

It is crucial to point out that none of these metrics serves as a single-best metric

to model performance.

2.2 Evaluation of CCA methods

2.2.1 Preparation of artificial test data

Our motivating questions suggest that in real world genetic studies we could be po-

tentially required to handle feature vectors of dimensions approximately 10,000 for

View 1 and 10-15 for View 2. For this evaluation study, I aimed to create an artificial

dataset that is roughly 1/10 of the real-world dimension, and assess the performance

of various canonical correlation analysis methods. The variation design of the arti-

ficial data considering existence of the intra-domain correlation is used here. The

specifications of the artificial multi-view dataset are presented using Table 2.1, with

the Gene-Traits association mapping coefficients presented in the following Table 2.2.

25



Table 2.1: Specifications of Simulated data for evaluation of CCA methods

Dimension
Total Observations n 100
Dimension of View 1 features p 1000
Dimension of View 2 features q 10
Number of designated genes 10
Number of designated traits 5
Embedded Gene - Trait Association
Target Genes (position in feature array) View 1 variables #1, #2, #11, #12

#21, #22, #31, #32, #41 and #42
Influenced Traits (position in feature array) View 2 variables #1 to #5
Correlation level of genetic variables ρ1 0.5
Correlation level of trait variables ρ2 0.85

Table 2.2: Specifications of simulated gene-trait mapping coefficients

Traits\Genes g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

t1 0 0 1 1 1 1 -1 -1 -1 -1
t2 -1 -1 0 0 1 1 -1 -1 1 1
t3 1 -1 1 -1 0 0 1 -1 1 -1
t4 -1 -1 -1 1 1 1 0 0 -1 1
t5 1 1 1 -1 -1 -1 1 -1 0 0

2.2.2 Regularized Canonical Correlation Analysis

When the number of feature variables exceeds the sample size, a regularization step

is required before conventional CCA can be applied, in order to avoid singularity

and ensure invertibility. Existing literature provides two options for regularization,

namely regularization through cross-validation or through shrinkage. In this study I

examines both options.

rCCA via Shrinkage

Regularized CCA via shrinkage was carried out through the rcc function in the

mixOmics package by setting the method = ‘‘shrinkage’’ (Rohart et al., 2017).

The embedded shrinkage regularization process yielded regularization parameters

of 0.9481 and 0.1066 for λ1 and λ2 respectively. Subsequently, we obtained the first

three order canonical correlations to be 0.5999, 0.5932 and 0.5776 respectively.

Figure 2.1 shows a plot of the canonical coefficients for both genetic and trait do-

main against the corresponding variables, with loading coefficients associated to the

“target genes” and “influenced traits” plotted in solid triangle symbol and marked in
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Figure 2.1: Plot of the canonical loadings vs. feature variables under the shrinkage-
rCCA. Green horizontal line indicates the zero level. Truly associated variables in
View 1 and View 2 are marked by red and blue triangle symbols respectively.

red and blue respectively, and the model output of the rCCA via shrinkage regular-

ization are summarized by Table 2.3. In the genetic domain, the DIV scored 5/10,

which means 5 out of 10 truly associated genes were successfully identified, where

in the trait domain, the DIV scored 0/5, that is none of the truly associated traits

were identified. In both domains, there are also many unassociated variables being

assigned large coefficients as shown in Figure 2.1, this is also reflected in the relatively

low score of DOS, 1.0312 and 0.2849 for the genetic and trait domain, respectively.

rCCA via Cross Validation

The regularization via cross-validation(cv-rCCA) was carried out by function

estim.regul() in the CCA package, yielding λ1 and λ2 as the regularization parame-

ters González and Djean (2012). The cross-validation process yielded regularization

parameters 0.75025 for λ1 and 0.001 for λ2. The regularized CCA was subsequently

performed by function rcc using the obtained regularization parameters.

27



Method of Regularization Shrinkage
Regularization Parameters
λ1 0.9481
λ2 0.1066
First three order Canonical Correlations 0.5999, 0.5932 and 0.5776
Non-Zero Parameters in View 1 1000
Non-Zero Parameters in View 2 10
Distinctiveness of Int. variables (DIV)
View 1 5/10
View 2 0/5
Level of Sparsity (S%)
View 1 0%
View 2 0%
Degree of Separation (DOS)
View 1 1.0312
View 2 0.2849
Mean & Standard deviation of Canonical Loadings
View 1 0.002822, 0.07951
View 2 0.5229, 0.3935
Running Time 1.3205 secs

Table 2.3: Summary of model output by Shrinkage rCCA

Figure 2.2 shows the plot of the canonical loadings versus the corresponding vari-

ables for both domains, and the model output of the cv-rCCA are presented in Table

2.4. The plot suggests that the the cv-rCCA resulted in lower effect sizes of the noise

variables compare to the sh-rCCA. This is reflected in the performance metrics - in

the genetic domain, 5 of 10 truly associated genes were successfully identified and in

the trait domain, 2 of 5 truly associated traits were identified; in both genetic and

trait domain, the cv-rCCA achieved higher DOS scores of 2.0277 and 1.2140, which

indicates better separation of the true variables from the background noise. All coef-

ficients naturally remain non-zero and contribute to the background noise as rCCA

has no way to introduce any sparsity.
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Method of Regularization Cross Validation
Regularization Parameters
λ1 0.75025
λ2 0.001
First three order Canonical Correlations 0.7802, 0.6924 & 0.7671
Non-Zero Parameters in View 1 1000
Non-Zero Parameters in View 2 10
Distinctiveness of Int. variables (DIV)
View 1 5/10
View 2 2/5
Level of Sparsity (S%)
View 1 0%
View 2 0%
Degree of Separation (DOS)
View 1 2.0277
View 2 1.2140
Mean & Standard deviation of Canonical Loadings
View 1 0.0005254, 0.02180
View 2 -0.2636, 0.6122
Running Time 18264.8394 secs

Table 2.4: Summary of model output by Cross-Validation rCCA
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Figure 2.2: Plot of the canonical loadings vs. feature variables under the Cross
Validation-rCCA. Green horizontal line indicates the zero level. Truly associated
variables in View 1 and View 2 are marked by red and blue triangle symbols respec-
tively.

2.2.3 Evaluation of Sparse CCA

The sparse canonical correlation analysis (sCCA) developed by Witten et al. (2009) is

carried out by the CCA function within the R-packge PMA (Witten, Tibshirani, Gross,

& Narasimhan, 2018).

The sCCA was applied to the same artificial data. Figure 2.3 shows the plot of the

canonical loadings versus the corresponding variables for both domains, and the model

output of the sCCA are presented in Table 2.5. The sCCA successfully identified 8

of 10 truly associated genes and only 1 of 5 truly associated traits. The sCCA

successfully introduced sparsity to the output by setting the loading of most noise

variables to zero or very close to it, the genetic and trait domain achieved 99.09%

and 100% level of sparsity. The degree of separation of the true variables from the

background noise was also improved, the genetic and trait domain achieved DOS

score of 491.71 and Inf (which indicates perfect separation) respectively, which is a

great improvement compare to the result of rCCA methods.

Num non-zeros u’s: 9
Num non-zeros v’s: 1
Penalty for x(L1 Bound): 0.1
Penalty for z(L1 Bound): 0.1
Cor(Xu,Zv): 0.9601
Distinctiveness of Int. variables (DIV)
View 1 8/10
View 2 1/5
Level of Sparsity (S%)
View 1 99.09%
View 2 100%
Degree of Separation (DOS)
View 1 491.71
View 2 Inf

Mean & Standard deviation of Canonical Loadings
View 1 5.9298×10−5, 0.006632
View 2 0, 0
Running Time 6.7692 secs

Table 2.5: Summary of model output by Sparse CCA
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Figure 2.3: Plot of the canonical loadings vs. feature variables under the sparse CCA.
Green horizontal line indicates the zero level. Truly associated variables in View 1
and View 2 are marked by red and blue triangle symbols respectively.

2.2.4 Comparison and Discussion

We draw the following conclusions from the output of our evaluation study,

• In our experiment the cv-rCCA outperformed the sh-rCCA in terms of the

model quality. In View 1, despite both method identified the same number

of truly associated variables, the cv-rCCA was able to yield model with lower

effect sizes for the noise variables, this is confirmed by the higher DOS value

achieved by the cv-rCCA. In View 2, the sh-rCCA failed to identified any of

the truly associated trait variables due to large loadings assigned to the noise

variables, the cv-rCCA identified 2 of 5 truly associated variables.

• The sparse CCA method appeared to outperform both regularized CCA meth-

ods. In View 1 the sCCA detected 8 of 10 truly associated genetic variables,
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however in View 2, the method identified only 1 of 5 truly associated trait vari-

ables, and excluded all other variables from the model. In both domain, the

sCCA was able to effectively suppress the weights of the most non-interactive

coefficients to near zero level, if not exactly zero. This fact is reflected by the

DOS score. the sCCA achieved 491.71 and Inf(perfect separation) in View 1

and View 2 respectively. The sCCA process returned the first order canonical

correlation of 0.9601, which also improved on both rCCA methods.

• Another important consideration is the computational cost of the proposed

method. To carry out the same analytical task using the same machine, it

took the sh-rCCA 1.32 seconds and the cv-rCCA 18264.83 seconds, that is

cross validation regularization outperforms the shrinkage method in terms of

the model quality at the cost of much greater computing time. On the other

hand, sCCA is able to yield much more satisfying output with only 6.77 seconds,

making sCCA the most favourable method among the three.

32



Chapter 3

Evaluation of Correlation
Clustering

3.1 Overview

The efficacy and performance of the correlation clustering algorithm was tested and

evaluated using an artificial multi-view dataset with two intrinsic clusters.

The artificial dataset was created for the purpose of evaluating the effectiveness and

performance of the correlation clustering algorithm in the high dimensional setting.

Fern et al. (2005) tested the proposed correlation algorithms using a simple two-

cluster artificial dataset and found that the proposed method was able to correctly

partition the testing data and assign instances to the appropriate cluster according

to the underlying correlation sub-structure introduce by design. However the case of

high dimensional and high background noise data were not addressed in Fern et al.

(2005), where the dimension of the features greatly exceeds the sample size and the

interested correlation structure exists amongst only a small collection of features in

the presence of strong background noise. I believe that this algorithm should also be

applicable to this type of dataset, as the two intuitions on which the algorithm was

based should remain true under the new setting. However there remain questions and

concerns regarding how the high dimensional feature and sparse nature of the target

variables impact the clustering performance. In each iteration, the reassignment of

individual to clusters relies on the quality of the local CCA model output of the

interim clusters, which was greatly challenged by the high dimensional data with

sparse target variables.

Two versions of the correlation clustering algorithms will be tested in this simulation

study with one uses regularized CCA and one uses the sparse CCA. The primary

modification to the correlation clustering algorithm was to replace the conventional
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CCA component in Step 2 of the original algorithm with regularized CCA or sparse

CCA. For the regularized CCA correlation clustering, cv-rCCA will be used as the

previous simulation study had shown that sh-rCCA failed to effectively extract the

correlation structure of a multi-view dataset in the high dimensional setting, despite

it having a significant advantage in computational cost compared to the cv-rCCA.

The code for these two correlation clustering algorithms have been written in R and

provided in Sections B.8 and B.9 of Appendix B.

My experiment primarily investigate the following two aspects of the output:

• Error rate of clustering output - The assigned membership of two resulting

clusters are compared with the true membership. Error rate is calculated as

the percentage of subjects being assigned with false membership.

• Local CCA model output - The final local CCA models of the clustering

algorithm were examined for whether they successfully captured the correlation

structure of the original clusters by our design(e.g. whether the truly associated

variables were correctly identified).

Section 3.2 discusses the design and specification of our artificial test data. The im-

plementation of the two versions of the correlation clustering methods are in Sections

3.3 and 3.4 for rCCA and sparse CCA respectively. Results are discussed in Section

3.5.

3.2 Preparation of artificial data

The artificial data was created by stacking two multi-view datasets that differ by the

target variables and mapping coefficients. The core design of the artificial data, which

assumes no intra-domain correlation, is used here. For the convenience of visually

examining the result, we select the first 10 and the last 10 View 1 variables to be the

“target genes”, and the first 5 and the last 5 View 2 variables to be the “influenced

traits”, for the Cluster 1 and Cluster 2 respectively. The mapping coefficients for

Cluster 1 and Cluster 2 are given in the Table 3.2 and 3.3 respectively. The Cluster 1

and Cluster 2 datasets have distinct correlation structures, and the combined dataset

has correlation sub-structure. A summary of two clusters in the multi-view dataset is

in Table 3.1. The goal of the test is to examine the ability of the correlation clustering

algorithm to identify the true clustering scheme and recover the local correlation

structure within each cluster. The R-code for creating the simulated data is available

in Section B.7.
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Table 3.1: Specifications of the two-cluster simulated data

Cluster 1 Cluster 2
Matrix Dimension
View 1 Features 1000 1000
View 2 Features 10 10

Sample size 100 100
Target Variables

View 1 #1, #2,...,#10 #991, #992,...., #1000
View 2 #1, #2,..., #5 #6, #7,..,#10

Table 3.2: Specifications of gene-trait mapping coefficients in Cluster 1

Traits\Genes g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

t1 0 0 1 1 1 1 -1 -1 -1 -1
t2 -1 -1 0 0 1 1 -1 -1 1 1
t3 1 -1 1 -1 0 0 1 -1 1 -1
t4 -1 -1 -1 1 1 1 0 0 -1 1
t5 1 1 1 -1 -1 -1 1 -1 0 0

Table 3.3: Specifications of gene-trait mapping coefficients in Cluster 2

Traits\Genes g991 g992 g993 g994 g995 g996 g997 g998 g999 g1000

t6 1 -1 1 -1 1 -1 1 -1 0 0
t7 -1 1 -1 1 -1 1 0 0 -1 1
t8 1 1 1 1 0 0 -1 -1 -1 -1
t9 -1 -1 0 0 -1 -1 1 1 1 1
t10 0 0 1 -1 1 -1 1 -1 1 -1

3.3 Evaluation of rCCA correlation clustering

The cross validation regularization was adopted for the rCCA clustering as the cv-

rCCA exhibited stronger performance over the sh-rCCA in the previous evaluation

study. A leave-one-out cross validation was performed over the entire simulated data

(two clusters combined) in order to seek for the optimal regularization parameters.

The process returned λ1 = 1 and λ2 = 0.001 with CV-score 0.1378.

The cv-rCCA based correlation clustering was then applied to the simulated data

with the obtained regularization parameters. The number of clusters k was set to

2 and the clustering algorithm was run for 50 iterations. The clustering algorithm
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partitioned the simulated dataset into two clusters with error rate oscillating between

44.5% to 45.5%. 113 subjects were assigned to the Cluster 1 and 87 were assigned

to the cluster 2. The clustering algorithm had not converged after 50 iterations, as

the error rate started to oscillate after initial decline. The interim error rate of the

iteration process is plotted in Figure 3.1. The local CCA model output is summarized

in Table 3.4. The local loadings are plotted in Figure 3.2 for visual examination of

the quality of local CCA models.

Table 3.4: Summary of local CCA model output for the rCCA-clustering

Cluster 1 Cluster 2

View 1 View 2 View 1 View 2

Identified True Variables 7/10 2/5 8/10 4/5
Degree of Separation 1.5867 0.6142 1.5382 1.5463
Canonical Correlation 0.7258 0.7654
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Figure 3.1: The interim error rate of the rCCA based correlation clustering.
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Figure 3.2: Plot of the canonical loadings vs. feature variables of both clusters
under the rCCA-clustering. Green horizontal line indicates the zero level. Truly
associated variables in View 1 and View 2 are marked by red and blue triangle symbols
respectively. 37



3.4 Evaluation of sCCA correlation clustering

The sparse CCA correlation clustering was tested on the same simulated data with

number of clusters k set to 2 and iteration set to 50. The clustering algorithms per-

fectly partitioned the simulated dataset and recovered the original clustering scheme

with 0 % error rate, The clustering algorithm converged after 9 iterations. The in-

terim error rate of the iteration process is plotted in Figure 3.3 The local CCA model

is examined and summarized in Table 3.5. The loadings are plotted in Figure 3.4.

Table 3.5: Summary of local CCA model output for the sCCA-clustering

Cluster 1 Cluster 2

View 1 View 2 View 1 View 2

Identified True Variables 6/10 1/5 7/10 1/5
Degree of Separation 171.3502 Inf 279.4076 Inf

Sparsity Level 98.69% 100% 98.58% 100%
Canonical Correlation 0.8620 0.9095

3.5 Discussion

In this evaluation study, sCCA clustering demonstrated the capability of correctly

recovering the original clustering scheme and producing meaningful local CCA models

output that rCCA clustering lacks.

In our experiment, The rCCA correlation clustering failed to partition the subjects

correctly and the local CCA models in the two clusters failed to meaningfully isolate

the truly associated variables from the unassociated ones. The sCCA clustering, on

the other hand, was able to perfectly recover the original clustering scheme. In both

local clusters under the sCCA clustering, the unassociated variables were assigned

zero or very close-to-zero coefficients. This fact is also reflected in the DOS score,

the degree of separation of the truly associated variables from the background noise

was significantly improved by sCCA clustering compare to rCCA clustering. However

some of the truly associated variables were not included in the sCCA local models, 6

and 7 out of 10 truly associated variables in View 1 were identified in Cluster 1 and

Cluster 2 respectively, only 1 out of 5 true variable was detected in View 2 for both

clusters.

The same evaluation was repeated a number of times using different seeds for the

artificial data generator. I have made the following observation through my repeated
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Figure 3.3: The interim error rate of the sCCA based correlation clustering. The error
rate fairly consistently declined through the first 14 iterations. At the 15th iteration
the error rate sharply jumped to 100% percent, despite the dramatic effect, this in
fact indicates perfect segregation of the experiment data points - with the interim
tags completely opposite to the original assignment.

trials, however for them to constitute an evidence-supported conclusion, a rigorous

simulation study of a much larger scale is required in order to fully explore the capa-

bility and limitation of the correlation clustering algorithm in the high dimensional

setting.

• There appears to be a trade-off between the strength of penalty used in the

sCCA clustering versus the effectiveness of the clustering and the quality of

the resulted local models - weak penalties tends to make the clustering fail as

the truly associated variables could not be well separated from the background

noise, while strong penalties tend to yield good clustering result at the cost of

sacrificing some truly associated variables.

• The good performance of sCCA clustering is not guaranteed. While the sCCA
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clustering in general greatly outperforms the rCCA clustering, there are times

sCCA clustering failed to output desired result.

These observations suggest that caution needs to be used when applying the sCCA

clustering algorithm to the real world data.
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Figure 3.4: Plot of the canonical loadings vs. feature variables of both clusters
under the sCCA-clustering. Green horizontal line indicates the zero level. Truly
associated variables in View 1 and View 2 are marked by red and blue triangle symbols
respectively. 41



Chapter 4

Applications

4.1 Expression-SIF multi-view data

Professor Sara Good modelled the mean logarithm of HbA1c level of DCCT par-

ticipants against the PrediXcan-imputed genetically regulated expression plus other

covariates in her recent study, where the gene expression profiles of DCCT subjects

were imputed using the PrediXcan weights trained via the Depression Genes and

Networks(DGN) Whole Blood model as well as the Version 6 GTEx tissue models.

She generously granted me the permission to use the imputed gene expression data

from her work for my thesis. Dr. Paterson and Dr. Roshandel from The Hospital for

Sick Children, Toronto generously provided me access to the skin fluorescence(SIF)

data of the DCCT subjects. In this thesis, for a demonstration of the sCCA method

and correlation clustering algorithm and as an exploratory study, I will use the gene

expression data as the View 1 matrix and the SIF data as the View 2 matrix, our

goal is to examine the correlation structure of the Expression-SIF multi-view dataset,

and investigate the existence of possible correlation sub-structure.

In this thesis, the imputed gene expression predicted by the DGN whole blood train-

ing will be used as it contains the highest number of genes and is not tissue-dependent.

Gene expression profiles for 1304 DCCT subjects were imputed from their SNPs while

the SIFs were measured only on a subset of 1082 subjects, and the two datasets pre-

sented the measurement of subjects in different order. To create a usable multi-view

dataset, imputed expression table were inner-joined with the SIF table by the subject

ID. View 1 and View 2 matrices were then further extracted from the joined table.

Consequently View 1 matrix contains the imputed expression of 11538 genes of 1082

participants and View 2 contains 15 SIF measurements from the same participants.

Data points were arranged in the same order by subject ID in both Views. The mean

and variance of the SIF measurements were calculated and presented in Table 4.1, a
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Sample Mean Sample Variance Minimum Maximum

SIF1 22.6678 22.8966 8.7043 53.9731
SIF2 25.2242 47.3764 11.1644 76.3693
SIF3 14.0543 7.8103 5.4363 28.8863
SIF4 8.4468 4.004 2.6774 19.5894
SIF5 8.4822 4.3003 3.0593 23.0109
SIF6 9.9712 6.2918 3.6186 28.4303
SIF7 6.4663 2.6045 2.3378 17.1020
SIF8 7.5909 3.7177 2.7486 20.9174
SIF9 3.7144 0.7909 1.3119 8.2732

SIF10 5.0766 1.7562 1.8972 13.7144
SIF11 2.8730 0.5312 1.0135 6.3975
SIF12 2.6472 0.4460 0.9626 5.9605
SIF13 2.0292 0.2558 0.9143 5.0389
SIF14 1.4757 0.1247 0.6725 3.2374
SIF15 1.3581 0.1039 0.6384 3.0007

Table 4.1: The mean and variance of SIF variables by SIF ID

box plot was created in Figure 4.1 and a correlogram of the SIF variables is available

in Figure 4.2. A preliminary examination to the data suggest that the magnitude

of the mean and variance of the SIF variables decline as SIF ID number increases,

the box-plot also indicates that for all SIF variables appear to be right-skewed and

fat-tailed, this is verified by the histograms of the SIF variables in Figure C.1. The

correlogram suggests that the SIF variables are in general highly correlated to each

other.

4.2 Application of Sparse Canonical Correlation

Analysis

The Sparse CCA was applied to the expression-SIF multi-view data. The Lasso

penalty was applied in the penalized matrix decomposition process to enforce sparsity

of the canonical loadings. The penalty optimization function CCA.permute() yielded

penalties 0.1 for both domains, which were subsequently applied to the sparse CCA

model fitting. The sCCA model achieved correlation of 0.6585 between the genetic

and SIF domains, with 193 genes from the expression domain and one (#7) from the

SIF domain assigned with non-zero canonical loadings. The canonical loadings are

plotted against variables by Figure 4.3.
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Figure 4.1: The box plots of SIF variables

In order to further investigate the association between the selected genes and the

trait, a simple linear regression model (SLR) was fitted to the 193 identified genes

individually, where the SIF #7 measurement was regressed against the PrediXcan

imputed gene expression. T-tests were performed at significance level of α = 0.05.

To counteract the multiple testing problem, the significance level was adjusted by

Bonferroni correction, that is, we test the null hypothesis of βi = 0 at significance

level α̃ = 0.05
193

= 0.0002591, for i = 1, 2, . . . , 193, where βi is the coefficient in the

simple linear model for the ith gene.

A Manhattan plot is used to visualize the resulted p-values, where the −log10 trans-

formed p-value was plotted against the genes, as shown in Figure 4.4. Two genes,

ENSG00000100281.9 and ENSG00000112787.8, were identified as significantly asso-

ciated to the trait SIF #7.
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Figure 4.2: The Correlogram of SIF variables

4.3 Application of Correlation Clustering

The sCCA powered correlation clustering algorithm was then applied to the

expression-SIF dataset. The number of clusters K was set to 2, 3, 4, 6 and 8, with

50 iterations in each case. The local cluster canonical correlations, the number of

variables with non-zero loadings and the number of individuals in a cluster were ex-

tracted from the model output in order to examine the quality of clustering and local

CCA models. The clustering output was summarized in Table 4.2.

Our result shows that all the local CCA models have some close-to-1 correlation at

very low level of sparsity in the genetic domain. In these local models, the number

of genetic variable with non-zero loadings greatly exceeded the number of elements

in the cluster, indicating that the sparsity was not well enforced and result is likely

implausible.
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Figure 4.3: The canonical loadings of genetic and SIF variables of 1082 DCCT sub-
jects. 193 genes and SIF#7 were identified and assigned non-zero canonical loadings.
The horizontal red line indicates the zero level of efficacy.

Table 4.2: Summery of clustering output under different number of clusters
Num. of
Clusters

Parameters Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8

K =2 Local correlations 0.9459 0.9795
Non-zero V1 Variables 9273 9299
Non-zero V2 Variables 10 11
Number of elements 727 355

K =3 Local correlations 0.9891 0.9656 0.9567
Non-zero V1 Variables 9091 9680 9236
Non-zero V2 Variables 11 10 10
Number of elements 216 262 604

K =4 Local correlations 0.9711 0.9557 0.9488 0.9945
Non-zero V1 Variables 8080 519 579 7655
Non-zero V2 Variables 9 1 1 10
Number of elements 401 270 296 115

K =6 Local correlations 0.9709 0.9909 0.9303 0.9197 0.9938 0.9938
Non-zero V1 Variables 1223 9193 335 334 9136 9136
Non-zero V2 Variables 1 10 1 1 12 12
Number of elements 300 113 192 159 83 235

K =8 Local correlations 0.9809 0.9363 0.9932 0.9934 0.9941 0.9174 0.9543 0.9954
Non-zero V1 Variables 1182 339 3738 9303 9189 476 284 9261
Non-zero V2 Variables 1 1 4 12 10 1 1 10
Number of elements 175 201 93 79 82 232 156 64

4.4 Discussion

The sCCA method resulted in an interesting model output. 193 Genes were identified

among 11538 candidates to be in association with SIF variable #7, under penalty 0.1
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Figure 4.4: The Manhattan plot of the p-values of 193 individual t-tests to the iden-
tified genes, the red line indicates the significance threshold.

for both genetic domain and the SIF domain. To validate this result and explore

how the value of the penalties impact the model output, a series of experiments were

performed, which involved increasing and decreasing one penalties while keep another

fixed. Our experiments confirmed that the penalty optimization function did yield

the optimal result - increasing in penalty for the genetic domain will improve the

sparsity in View 1 at the cost of reduced canonical correlation, while decreasing will

do the opposite. Increasing the penalty for the trait domain does not exhibit any

impact, however decreasing the penalty in the SIF domain will cause deterioration of

the sparsity level in the genetic domain. Particularly, several attempts with strong

penalty over View 1 (e.g. using 0.05, 0.025 and 0.0125) and relaxed penalty over

View 2 (e.g 0.2 and 0.4) were made, in hope of obtaining a higher level of sparsity in

the genetic domain while still including more SIF variables in the CCA model. Such

ideal result was not attained as the correlation greatly suffered from these penalty

values. The result of these experiments are presented in supplementary Table A.2.
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The sparse CCA model identified a set of 193 genes that were correlated to the

SIF #7. Further investigation of these 193 genes using simple linear regression re-

vealed that only two of them, ENSG00000100281.9 and ENSG00000112787.8, are

significantly associated to the trait SIF#7. Interestingly, the NAT2 (ensemble ID

ENSG00000156006), the only gene found to be in association with the SIFs Eny et

al. (2014), did not show up in the resulted CCA model, because in fact it was not

included in the imputed expression predicted by the DGN training set.

I notice that the performance of the correlation clustering algorithm could be unstable

through the earlier evaluation studies, however another possibility in this study is that

the expression-SIF multi-view dataset has no intrinsic correlation sub-structure. The

latter explanation is a more likely based on our observation, as among all local models

under different clustering settings, No single local model significantly outperformed

the output of the stand alone sparse CCA model (e.g. To achieve a higher level of

correlation with the same/comparable level of sparsity.) Therefore in this study, we

cannot claim to have found any plausible correlation sub-structure in the relationship

between the imputed gene expression and the SIF measurements.
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Chapter 5

Discussion

5.1 Conclusion

Multi-view datasets arise naturally in many disciplines of scientific research including

genetic statistics, such as the motivating problem presented in Chapter 1, where the

subject of study is portrayed by two sets of feature vectors. A widely used statistical

method for investigating the correlation structure of multi-view datasets is the canon-

ical correlation analysis, which seeks the projection coefficients to the features such

that the resulted canonical variates are maximally correlated across two domains.

However conventional CCA cannot be directly applied to the high dimensional data

as the correlation matrix will be ill-conditioned in such case. To adapt the method

to the high dimensional case, a regularization step is required before the conventional

CCA can be performed. Two methods of regularization, Cross Validation and Shrink-

age, were examined in this thesis. A combination of regularization and CCA creates

the regularized CCA for high dimensional applications. Furthermore in most genetic

studies, only a very small subset of genes across the genome are truly associated with

the phenotype of interest. Therefore a sparse version of CCA may be useful. Multi-

ple approaches for introducing sparsity to the CCA model have been developed and

introduced in the literature. In this thesis, the sparse CCA developed by Witten et

al (2009), was examined and presented.

An evaluation study was carried out to evaluate the performance of the regularized

CCA and sparse CCA using artificially created high dimensional data with sparse

truly associated variables intended to imitate real world genetic data. In this study

sparse CCA demonstrated its suitability for the analysis of these datasets by success-

fully isolating most of the truly associated variables from the unassociated ones with

high degree of sparsity and recovering the original correlation structure by design.

For the rCCA, Cross validation outperforms the shrinkage method in terms of the
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resulted model output, however such advantage came at much greater computational

cost.

An important limitation to the canonical correlation analysis is that it is only designed

to detect the global linear correlation structure between two domains and it does not

perform well if some type of correlation sub-structure exists in the multi-view data.

Fern et al (2005), developed a K-mean style correlation clustering algorithm to tackle

this problem by incorporating a mixture of local linear CCA models each capturing

the correlation sub-structure of a local cluster. The correlation clustering algorithm

relies on recursively applying CCA to the local clusters and re-assigning subjects

according to a correlation distance metric based on the local CCA model outputs. The

original algorithm was developed based on the conventional CCA therefore unsuited

for the high dimensional genetic data. To adapt the correlation clustering algorithm

to the multi-view dataset of our interest, the conventional CCA steps in the original

algorithm was replaced with the sparse or regularized CCA.

A second evaluation study was conducted to evaluate the efficacy and performance

of the modified correlation clustering algorithm, where in the artificial two cluster

test dataset, View 1 consisted a high dimensional matrix representing the genetic

domain and View 2 consisted a regular matrix representing the trait domain. Our

experiment showed that the rCCA based correlation clustering was completely inef-

fective in the high dimensional setting, as at each iteration, the lack of sparsity in

the local CCA model output impaired the subsequent re-assignment and ultimately

caused the clustering algorithm to fail. One the other hand, sCCA based cluster-

ing performed extremely well in our experiment, the clustering algorithm perfectly

recovered the original clusters, and over each cluster, most of the truly associated

variables in View 1 were identified with high degree of sparsity over the entire high

degree domain, however we do noticed this came at the the sacrifice of losing most

of the truly associated components in View 2 - only 1 out of 5 true trait variables

were identified with all others assigned zero coefficient along with the unassociated

variables. Through repeated trials using different seeds, I noticed that there appears

to be a trade-off between the degree of penalty adopted by the local sCCA model

and the effectiveness of clustering algorithm that - successful clustering scheme result

were usually obtained under strong penalty, at cost of losing some true variables in

the local models; and weak penalty tends to cause the clustering process to fail. I also

noticed that the good performance of the sCCA clustering is not guaranteed, there

are times sCCA clustering failed to generate desirable experiment result. However, to

fully understand the capability and limitation of the correlation clustering algorithm

50



in the high dimensional setting require a massive scale of simulation study, which

is beyond the scope of this thesis. This suggests the sCCA clustering needs to be

applied with caution.

Both sCCA and sCCA based correlation clustering were applied to the expression-SIF

multi-view dataset. Among 11538 candidate genes, 193 were originally identified to

be in correlation with SIF#7 with canonical correlation 0.6585. Further examination

of these identified genes using simple linear regression model suggests that only two

genes, ENSG00000100281.9 and ENSG00000112787.8, are significantly associated to

the trait SIF#7. Interestingly, NAT2, the only gene found to be in association with

the SIFs by GWAS was not included in the result, as it was not included in the

imputed expression predicted by the PrediXcan DGN whole blood training set. No

plausible correlation sub-structure were discovered within the dataset using the cor-

relation clustering method, as no single local cluster outperforms the application of

a stand alone sCCA to the entire multi-view dataset.

5.2 Limitations of this Research and Future Re-

search Directions

To fully explore the capability and limitation of the sCCA and the related correla-

tion clustering algorithm, simulation study of a much larger scale, which incorporates

greater variability, is required. Given the time and computational resource it de-

mands, this was not possible for the scope of this thesis, however as a potentially

powerful tool in statistical genetics, sCCA and the correlation clustering deserve a

much more rigorous and comprehensive examination. For example, sCCA demon-

strated its effectiveness on a multi-view dataset with intra-domain correlation in the

way as it was introduced in our evaluation study, however such conclusion can not be

well generalized as in reality the correlation pattern can be highly variable. The sCCA

based correlation clustering demonstrated its capability of correctly partitioning the

subjects and recover the true correlation sub-structure in our evaluation study. How-

ever, through repeated trials of the same experiments under different seeds, I noticed

that in some few cases, the clustering did not return desirable clustering scheme. The

underlying reason of this instability of performance was still unknown, investigating

the global stability of the correlation clustering algorithm in the high dimensional

setting requires tremendous amount of computing power, which unfortunately was

not available to this study.
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Our evaluation study assumed normality in the values of gene expression and SIF

measurements, however a preliminary examination to the SIF data revealed significant

positive skewness in the data, suggesting that the normality assumption was violated

in the reality. For future study, one may consider repeat this evaluation study with

some other distribution featuring fat-tail and positive skewness.

The PrediXcan imputed gene expression based on the DGN whole blood training set

was used for this study for the purpose of demonstrating the application of sCCA

and correlation clustering, as well as a brief exploratory study. It would be very

interesting to extend the exploratory study to the imputed expression datasets based

on other GTEx tissues training sets. Also, there is a distinction between PrediXcan

imputed expression and the true gene expression - the imputed expression portrays

the predicted variation of the expression level from the baseline level, therefore the

imputed expression value can be positive or negative, where the true gene expression

values are strictly positive. I used the PrediXcan imputed expression data in this

study, because the actual transcriptome data is often unavailable as acquiring such

data usually require invasive procedure. However in the case where the actual gene

expression data is available, it would be very interesting to carry out the same study

using the actual transcriptome data as the View 1 matrix and compare the result to

that under PrediXcan imputed expression, this allows us to back test the effectiveness

of the PrediXcan method. If sufficient computational resources and are available, one

may even consider directly using the SNPs data as the View 1 matrix to investigate

the correlation structure between genetic variation and trait of interests.

I modified the correlation clustering algorithm for the high dimensional setting based

on the sCCA developed by Witten et al. (2009), however there are a few other ap-

proaches of sparse CCA in the existing literature (Parkhomenko et al., 2009; Waai-

jenborg et al., 2008). The performance of the correlation clustering algorithm based

on these different sparse CCA methods deserves further examination. The correla-

tion clustering algorithm examined in this thesis is a unsupervised method, that is,

it does not make use of the trait measurements each observation. Appropriate use of

the existing measurements allows us to potentially extend this clustering algorithm

into a classification model, that is, a supervised learning method enable us to make

prediction of trait measurement based on values of input variables. Given the time

and resource it requires, this type of project is more suitable to a Ph.D level of study.
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Appendix A

Supplementary Tables

A.1 Experiment of different Penalty parameters

for sCCA method

Table A.1: sCCA model output under various penalty schemes

V1 Penalty V2 Penalty Correlation Identified V1 variables Identified V2 variables

0.4 0.1 0.8872 3163 1
0.2 0.1 0.797 828 1
0.1 0.1 0.6585 193 1
0.05 0.1 0.4326 56 1
0.025 0.1 0.2399 13 1
0.0125 0.1 0.1283 2 1

0.1 0.4 0.6603 206 4
0.1 0.2 0.6585 193 1
0.1 0.05 0.6585 193 1
0.1 0.025 0.6585 193 1
0.1 0.0125 0.6585 193 1
0.05 0.2 0.4326 56 1
0.025 0.2 0.2399 13 1
0.025 0.4 0.2409 13 5
0.0125 0.4 0.1304 2 4
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Appendix B

Script

B.1 Simulated Data Generator

The following user-written function SimGen() produces the simulated multi-view

dataset that reflect the core design. The inputs and outputs of this function are

presented by Table C.2.

Function Inputs
n Sample size n
p Dimension of View 1 Feature p
q Dimension of View 1 Feature q
ng Number of truly associated genes
nt Number of truly associated traits
Function Ouputs
total view The multi-view dataset in Matrix form
view 1 The Stand-alone View 1 matrix
view 2 The Stand-alone View 2 matrix
Betas The artificial gene-trait mapping coefficients

Table B.1: Description of Inputs and Outputs of SimGen Function

#---------------The ‘‘Simgen()’’ function ---------------

# clear memory

rm(list = ls())

# MASS package
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require(MASS)

#set seed

set.seed(2018)

# Specifications of input parameters

# n: number of observations

# p: number of features for view 1

# q: number of features for view 2

# ng: number of genes that influences the interested traits

# nt: number of traits influenced the truly associated genes

SimGen = function(n, p, q) {

# view 1 feature means

mu_1 = rep(3, p)

# view 1 feature std dev

vars_1 = rep(0.1,p)

sig_1 = diag(vars_1)

# view 1 data matrix

v1 = mvrnorm(n, mu_1, sig_1, tol = 1e-6,

empirical = FALSE,

EISPACK = FALSE)

# indexing the genes that influences the traits
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s1 = c(1:ng) # first ng variables as target

# indexing the traits actually under influence

s2 = c(1:nt) # first nt variables as influenced

# artificial effect size matrix, each row represents the

# coefficient vector for one of the influenced traits

eff = matrix(c(0,-1,1,-1,1,

0,-1,-1,-1,1,

1,0,1,-1,1,

1,0,-1,1,-1,

1,1,0,1,-1,

1,1,0,1,-1,

-1,-1,1,0,1,

-1,-1,-1,0,-1,

-1,1,1,-1,0,

-1,1,-1,1,0

), nrow = nt, ncol = ng)

# background noise of traits domain

# view 2 feature means

mu_2 = rep(5, q)

# view 1 feature std dev

vars_2 = rep(0.1, q)
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sig_2 = diag(vars_2)

# view 2 data matrix

v2 = mvrnorm(n, mu_2, sig_2, tol = 1e-6,

empirical = FALSE,

EISPACK = FALSE)

# replace influenced traits under mapping

for (j in s2){

v2[,j] = v1[,s1] %*% eff[match(j,s2),]

+ rnorm(n, 0, 0.1)

}

# combining view 1 and view 2 for the multi-view dataset

total_view = as.data.frame(cbind(view1, view2))

# adding row ID

total_view$ID = seq.int(nrow(total_view))

# Renaming variables

s1 -> index_v1

s2 -> index_v2

eff -> betas

v1 -> view_1

v2 -> view_2

# Function Output
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return(out = lsit(total_view, n, p, q

index_v1, index_v2, v1, v2, betas))

}
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B.2 Data Preparation For Evaluation of Stand-

Alone CCA

# -----Generating simulated multi-view data -----

# -----using ‘‘SimGen’’ function-----

# Specifications

# n_1 = 100 <- sample size

# m_1 = 1000 <- dimension of feature vector for view 1

# m_2 = 10 <- dimension of feature vector for view 2

# ng_1 = 3 <- number of target genes for view 1

# nt_1 = 2 <- number of influenced traits for view 2

set.seed(2018)

# generating simulated data with pre-specified parameters

# inserted random values for cluster 2 parameters

# as we only capture the cluster 1 for stand-alone CCA

sim = simgen(100, 1000 , 10)

# capture cluster 1 output for view 1 and view 2 data

v1 = as.data.frame(sim[7])

v2 = as.data.frame(sim[8])

# index of target genes and influenced traits

s1 = c(1:10)

s2 = c(1:5)

# the mapping cofficients matrix
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betas = sim[[9]]

# View 1 matrix

v1

# View 2 matrix

v2

# dimension check

dim(v1)

dim(v2)
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B.3 Evaluation of Regularized CCA - Shrinkage

Regularization

#---- rCCA with shrinkage regularization-----

# This evaluation requires R- package ‘‘mixOmics’’

# and installation of XQuartz app in Mac OS

# or X11 in Windows

require(mixOmics)

start.time = Sys.time()

# Output of Regularized CCA

rcca_out = rcc(v1, v2, method = "shrinkage")

rcca_out

# Obtained canonical correlations

rcca_cor = rcca_out$cor

rcca_cor

# Obtained first degree projection vectors (loadings)

x_load = rcca_out$loadings$X[,1]

y_load = rcca_out$loadings$Y[,1]

# recall target genes and influenced traits

s1
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s2

# plot layout specification

par(mfrow=c(1,2))

# Plot of view 1 loading with target genes

# marked in red

x = seq(1,1000,1)

plot(x, x_load, pch = ifelse(x%in%c(1:10), 17, 1),col =

ifelse(x%in%c(1:10), "red", "black"),

cex = 0.8, xlab = "View 1 variables",

ylab = "Canonical Loadings",

main = "Canonical loadings of View 1 Variables")

abline(h = 0, col = "green")

# Plot of absolute value of view 1 loading, target genes

# marked in blue

y = seq(1,10,1)

plot(y, y_load,pch = ifelse(x%in%c(1:5), 17, 1) ,col =

ifelse(y%in%c(1:5), "blue", "black"),

cex = 0.8, xlab = "View 2 variables",

ylab = "Canonical Loadings",

main = "Canonical loadings of View 2 Variables")

abline(h = 0, col = "green")

end.time = Sys.time()
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# -----Assessment of performance ------------

# view 1

# mean level of effect size of noise variable in view 1

mean_noise_1 = mean(abs(x_load[-s1]))

# return Distinctiveness of interactive variables

abs(x_load[s1])>mean_noise_1

# mean level of effect size of target variables in view 1

mean_int_1 = mean(abs(x_load[s1]))

# Degree of separation in View 1

dos_1 = mean_noise_1/mean_int_1

dos_1

any(x_load == 0)

# mean and standard deviation of noise variable in view 1

mean(x_load[-s1])

sd(x_load[-s1])

# view 2

# mean level of effect size of noise variable in view 2
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mean_noise_2 = mean(abs(y_load[-s2]))

# return Distinctiveness of interactive variables

abs(y_load[s2])>mean_noise_2

# mean level of effect size of target variables in view 2

mean_int_2 = mean(abs(y_load[s2]))

# degree of separation in view 2

dos_2 = mean_noise_2/mean_int_2

any(y_load == 0)

# mean and standard deviation of noise variables in view 2

mean(y_load[-s2])

sd(y_load[-s2])

# running time

run.time = end.time-start.time
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B.4 Evaluation of Regularized CCA - via Cross-

Validation Regularization

#---- Regularized Canonical Correlation Analysis--------

#---- via Cross-Validation Regularization -----

require(CCA)

start.time = Sys.time()

# Cross-Validation Regularization via

# estim.regul() required for high dimensional data

# format - estim.regul(X, Y, grid1 = NULL,

# grid2 = NULL, plt = TRUE)

# grid: if NULL - grid1, grid2 vector use

# seq(0.001, 1, length = 5) as default otherwise specify

# grid values ie. c(0.01,0.5)

# plt: logic, whether the CV heatmap should be plotted

# Regularization parameters

# reg_par = estim.regul(v1, v2)

lam1 = reg_par$lambda1

lam2 = reg_par$lambda2

# Implement rCCA with previously obtained

# regularization parameters

rcca_out = rcc(v1, v2, lam1, lam2)
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rcca_out

# Obtained canonical correlations

rcca_cor = rcca_out$cor

rcca_cor

# Obtained first degree projection vectors (loadings)

x_load = rcca_out$xcoef[,1]

y_load = rcca_out$ycoef[,1]

# recall target genes and influenced traits

s1

s2

# plot layout specification for visual inspection

par(mfrow=c(1,2))

# Plot of absolute value of view 1 loading, target genes

# marked in red

x = seq(1,1000,1)

plot(x, x_load, pch = ifelse(x%in%c(1:10), 17, 1),col =

ifelse(x%in%c(1:10), "red", "black"),

cex = 0.8, xlab = "View 1 variables",

ylab = "Canonical Loadings",

main = "Canonical loadings of View 1 Variables")

abline(h = 0, col = "green")

66



# Plot of absolute value of view 1 loading, target genes

# marked in blue

y = seq(1,10,1)

plot(y, y_load,pch = ifelse(x%in%c(1:5), 17, 1) ,col =

ifelse(y%in%c(1:5), "blue", "black"),

cex = 0.8, xlab = "View 2 variables",

ylab = "Canonical Loadings",

main = "Canonical loadings of View 2 Variables")

abline(h = 0, col = "green")

end.time = Sys.time()

# -----Assessment of performance ------------

# view 1

# mean level of effect size of noise variable in view 1

mean_noise_1 = mean(abs(x_load[-s1]))

# return Distinctiveness of interactive variables

abs(x_load[s1])>mean_noise_1

# mean level of effect size of target variables in view 1

mean_int_1 = mean(abs(x_load[s1]))

# Degree of separation in View 1

dos_1 = mean_noise_1/mean_int_1
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dos_1

any(x_load == 0)

# mean and standard deviation of noise variable in view 1

mean(x_load[-s1])

sd(x_load[-s1])

# view 2

# mean level of effect size of noise variable in view 2

mean_noise_2 = mean(abs(y_load[-s2]))

# return Distinctiveness of interactive variables

abs(y_load[s2])>mean_noise_2

# mean level of effect size of target variables in view 2

mean_int_2 = mean(abs(y_load[s2]))

# degree of separation in view 2

dos_2 = mean_noise_2/mean_int_2

any(y_load == 0)

# mean and standard deviation of noise variables in view 2

mean(y_load[-s2])
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sd(y_load[-s2])

# running time

run.time = end.time-start.time
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B.5 Evaluation of Sparse CCA

require(PMA)

# timing starts

start.time = Sys.time()

# Sparse CCA output

sparse_out = CCA(v1,v2,"standard","ordered",

standardize = TRUE)

#Obtained canonical correaltions

sparse_cor = sparse_out$cors

sparse_cor

# Obtained first degree view 1 and view 2 loadings

x_load = sparse_out$u

y_load = sparse_out$v

# graph layout specification

par(mfrow=c(1,2))

# plot of absolute value of view 1 loading, target

# genes marked in red

x = seq(1,1000,1)
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plot(x, x_load, col = ifelse(x %in% c(1:10), "red", "black"),

cex = 0.8, xlab = "Genes",

ylab = "Canonical loadings",

main = "Canonical loadings of View 1")

abline(h = 0, col = "green")

# plot of absolute value of view 2 loading, target

# genes marked in blue

y = seq(1,10,1)

plot(y, y_load, col = ifelse(y %in% c(1:5), "blue", "black"),

cex = 0.8, xlab = "Traits",

ylab = "Canonical loadings",

main = "Canonical loadings of view 2")

# horizontal reference

abline(h = 0, col = "green")

#timing ends

end.time = Sys.time()

# -----Assessment of performance ------------

# view 1

# mean level of effect size of noise variable in view 1

mean_noise_1 = mean(abs(x_load[-s1]))
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# return Distinctiveness of interactive variables

abs(x_load[s1])>mean_noise_1

# mean level of effect size of target variables in view 1

mean_int_1 = mean(abs(x_load[s1]))

# Degree of separation in View 1

dos_1 = mean_noise_1/mean_int_1

dos_1

any(x_load == 0)

# mean and standard deviation of noise variable in view 1

mean(x_load[-s1])

sd(x_load[-s1])

# view 2

# mean level of effect size of noise variable in view 2

mean_noise_2 = mean(abs(y_load[-s2]))

# return Distinctiveness of interactive variables

abs(y_load[s2])>mean_noise_2

# mean level of effect size of target variables in view 2

mean_int_2 = mean(abs(y_load[s2]))
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# degree of separation in view 2

dos_2 = mean_noise_2/mean_int_2

any(y_load == 0)

# mean and standard deviation of noise variables in view 2

mean(y_load[-s2])

sd(y_load[-s2])

# running time

run.time = end.time-start.time
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B.6 Data Preparation for Evaluation of Correla-

tion Clustering

#----------Simulated data generation using SimGen() ---------------

# Simulated data generation engine for Cluster 1

# A Multi-view data matrix generator

# using MVN(mu, sig)

# MASS package

require(MASS)

# Specifications of input parameters

# n <- number of observations

# p <- number of features for view 1

# q<- number of features for view 2

# n_gene <- number of genes that influences

# the traits been studied

# n_trait number of traits actually influenced

# the selected genes

simgen = function(n, p, q) {

# renaming variables

ng1 = 10
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nt1 = 5

# view 1 feature means

mu_1 = rep(3, p) # fix mu

# view 1 feature std dev

vars_1 = rep(0.1,p)

sig_1 = diag(vars_1)

# view 1 matrix

v1 = mvrnorm(n, mu_1, sig_1, tol = 1e-6,

empirical = FALSE,

EISPACK = FALSE)

# indexing the genes that influences the traits

s1 = c(1:ng1) # first ng1 variables as target

# indexing the traits actually under influence

s2 = c(1:nt1) # first nt1 variables as influenced

# artificial effect size matrix,

# each row represents the coefficient vector for one of

# the influenced traits

eff = matrix(c(0,-1,1,-1,1,
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0,-1,-1,-1,1,

1,0,1,-1,1,

1,0,-1,1,-1,

1,1,0,1,-1,

1,1,0,1,-1,

-1,-1,1,0,1,

-1,-1,-1,0,-1,

-1,1,1,-1,0,

-1,1,-1,1,0

), nrow = nt1, ncol = ng1)

# background noise of traits domiain

# view 2 feature means

mu_2 = rep(5, q)

# view 1 feature std dev

vars_2 = rep(0.1, q)

sig_2 = diag(vars_2)

# view 1 matrix

v2 = mvrnorm(n, mu_2, sig_2, tol = 1e-6,

empirical = FALSE,

EISPACK = FALSE)

# replace influenced traits under mapping

for (j in s2){

v2[,j] = v1[,s1] %*% eff[match(j,s2),]
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+ rnorm(n, 0, 0.1)

}

# capturing output

view1 = v1

view2 = v2

total_view = as.data.frame(cbind(view1, view2))

# adding ID column to each row

total_view$ID = seq.int(nrow(total_view))

# renaming variables

s1 -> index_v1

s2 -> index_v2

eff -> betas

# Function Output

return(out = list(total_view, n, p, q,

index_v1, index_v2, view1, view2, betas))

}

# Data generation engine for Cluster 2

simgen_2 = function(n, p, q) {

# renaming variables

ng1 = 10
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nt1 = 5

# view 1 feature means

mu_1 = rep(3, p) # fix mu

# view 1 feature std dev

vars_1 = rep(0.1,p)

sig_1 = diag(vars_1)

# view 1 matrix

v1 = mvrnorm(n, mu_1, sig_1, tol = 1e-6,

empirical = FALSE,

EISPACK = FALSE)

# indexing the genes that influences the traits

s1 = c((p-ng1+1):p) # last ng1 variables as target

# indexing the traits actually under influence

s2 = c((q-nt1+1):q) # last nt1 variables as influenced

# artificial effect size matrix,

# each row represents the coefficient vector for one of

# the influenced traits
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eff = matrix(c(1,-1,1,-1,0,

-1,1,1,-1,0,

1,-1,1,0,1,

-1,1,1,0,-1,

1,-1,0,-1,1,

-1,1,0,-1,-1,

1,0,-1,1,1,

-1,0,-1,1,-1,

0,-1,-1,1,1,

0,1,-1,1,-1

), nrow = nt1, ncol = ng1)

# background noise of traits domiain

# view 2 feature means

mu_2 = rep(5, q)

# view 1 feature std dev

vars_2 = rep(0.1, q)

sig_2 = diag(vars_2)

# view 1 matrix

v2 = mvrnorm(n, mu_2, sig_2, tol = 1e-6,

empirical = FALSE,

EISPACK = FALSE)

# replace influenced traits under mapping

for (j in s2){
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v2[,j] = v1[,s1] %*% eff[match(j,s2),]

+ rnorm(n, 0, 0.1)

}

# capturing output

view1 = v1

view2 = v2

total_view = as.data.frame(cbind(view1, view2))

# adding ID column to each row

total_view$ID = seq.int(nrow(total_view))

# renaming variables

s1 -> index_v1

s2 -> index_v2

eff -> betas

# Function Output

return(out = list(total_view, n, p, q

index_v1, index_v2, view1, view2, betas))

}

# Data generation for a two cluster multi-view dataset

set.seed(2018)

80



# Specifying multi-view dataset dimensions

n = 100

p = 1000

q = 10

ng = 10

nt = 5

# intrinsic cluster 1

sim_1 = simgen(n, p , q)

# capturing output view_1, view_2 matrices for cluster 1

v1_1 = as.data.frame(sim_1[7])

v2_1 = as.data.frame(sim_1[8])

mv_1 = cbind(v1_1, v2_1)

# capture the indices of target genes and influenced traits

s1_1 = c(1:ng)

s2_1 = c(1:nt)

# intrinsic cluster 2

sim_2 = simgen_2(n, p , q)

# capture output view_1, view_2 matrices for cluster 2

v1_2 = as.data.frame(sim_2[7])

v2_2 = as.data.frame(sim_2[8])
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mv_2 = cbind(v1_2, v2_2)

# capture the indices of target genes and influenced traits

s1_2 = c((p-ng+1):q) # last ng1 variables as target

s2_2 = c((q-nt+1):q) # last nt1 variables as influenced

# combining two clusters to obtain simulated multi-view data

mvdata = as.data.frame(rbind(mv_1, mv_2))

# add tag for the intrinsic cluster of each row

mvdata[, "ID"] = c(1:nrow(mvdata))

# dimension check

dim(mvdata)
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B.7 Evaluation of rCCA correlation clustering

#------ Evaluation of rCCA correlation clustering ---------

require(CCA)

# regularization via cross validation

# Extracting View 1 and View 2 matrices

v1 = mvdata[, 1:1000]

v2 = mvdata[, 1001:1010]

# Cross validation function

reg_par = estim.regul(v1, v2)

# Regularization parameters

lam1 = reg_par$lambda1

lam2 = reg_par$lambda2

# rCCA correlation clustering engine

reg_clust = function(mvdata, p, q, k, iter){

# The true clustering scheme

truth = c(rep(1,100), rep(2,100))

# creating array for error_rate

error_rate = rep(0, iter)
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mvdata$tg = sample(1:k, nrow(mvdata), replace = TRUE )

group = vector("list",length = k)

cca_out = vector("list",length = k)

U = vector(list, length = k)

V = vector(list, length = k)

slr_out = vector("list", length = k)

# the slope of V~U fit

a = vector("list", length = k)

# the intercept of V~U fit

b = vector("list", length = k)

for (i in c(1:iter)){

for (j in c(1:k)){

group[[j]] = mvdata[which(mvdata$tag ==j), ]

cca_out[[j]] = rcc(group[[j]][,1:p], group[[j]][

(p+1):(p+q)], lam1, lam2)

U[[j]] = as.matrix(group[[j]][, 1:p]) %*%

cca_out[[j]]$xcoef[,1]

V[[j]] = as.matrix(group[[j]][,(p+1):(p+q)]) %*%

cca_out[[j]]$ycoef[,1]

slr_out[[j]] = lm(V[[j]] ~ U[[j]])
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b[[j]] = as.numeric(cef(slr_out[[j]])[1]) # intercept

a[[j]] = as.numeric(cef(slr_out[[j]])[2]) # slope

}

for (id in c(1:nrow(mvdata))){

item_v1 = mvdata[id,1:p]

item_v2 = mvdata[id, (p+1):(p+q)]

item_U = vector("list", length = k)

item_V = vector("list", length = k)

V_hat = vector("list", length = k)

dist = vector("list", length = k)

for (cl in c(1:k)){

item_U[[cl]] = as.matrix(item_v1) %*%

as.matrix( cca_out[[cl]]$xcoef[,1] )

item_V[[cl]] = as.matrix(item_v2) %*%

as.matrix( cca_out[[cl]]$ycef[,1] )

V_hat[[cl]] = a[[cl]]%*%item_U[[cl]] + b[[cl]]

dist[[cl]] = (V_hat[[cl]]- item_V[[cl]] )^2
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}

new_tag_id = match( min(unlist(dist)), dist)

mvdata[id, ncol(mvdata)] = new_tag_id

} # reassign end

label_out = table(mvdata$tag == truth)

error_rate[i] = as.vector(label_out)[1]/nrow(mvdata)

} # iteration end

return(list(mvdata, cca_out, mvdata$tag, error_rate))

}

# Specifications of function output

# mvdata - the original multi-view dataset

# cca_out - the local cca models on each cluster

# mvdata$tag - the resulted clustering scheme

# error_rate - the error rate of clustering scheme
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B.8 Evaluation of sCCA correlation clustering

# Spase CCA clustering with optimized penalties

require(PMA)

sparse_clust_calipena = function(mvdata, p, q, k, iter){

# the Truth clustering scheme

truth = c(rep(1,100), rep(2,100))

# creating array for error_rate

error_rate = rep(0, iter)

#1 randomly assign instances into k clusters

mvdata$tag = sample(1:k, nrow(mvdata), replace = TRUE)

group = vector("list",length = k)

cca_out = vector("list",length = k)

U = vector("list", length = k) # canonical covariates

V = vector("list", length = k)

slr_out = vector("list", length = k)

a = vector(list, length = k) # the slope of V~U fit

b = vector(list, length = k) # the intercept of V~U fit
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for (i in c(1:iter)){

for(j in c(1:k)){

group[[j]] = mvdata[which(mvdata$tag ==j), ]

par = CCA.permute( group[[j]][,1:p], group[[j]][ ,(p+1):(p+q)] )

cca_out[[j]] = CCA(group[[j]][,1:p],group[[j]][,(p+1):(p+q)]

penaltyx = par$bestpenaltyx,

penaltyz = par$bestpenaltyz,

standardize = TRUE )

U[[j]] = as.matrix(group[[j]][ , 1:p]) %*% cca_out[[j]]$u

V[[j]] = as.matrix(group[[j][[ (p+1):(p+q)]) %*% cca_out[[j]]$v

slr_out[[j]] = lm(V[[j]] ~ U[[j]])

b[[j]] = as.numeric(coef(slr_out[[j]])[1]) # intercept

a[[j]] = as.numeric(coef(slr_out[[j]])[2]) # slope

}

# reassignment

for (id in c(1:nrow(mvdata))){

item_v1 = mvdata[id, 1:p]

item_v2 = mvdata[id, (p+1):(p+q)]
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V_hat = vector("list", length = k)

item_U = vector("list", length = k)

item_V = vector("list", length = k)

dist = vector("list", length = k)

for (cl in c(1:k)){

item_U[[cl]] = as.matrix(item_v1) %*% cca_out[[cl]]$u

item_V[[cl]] = as.matrix(item_v2) %*% cca_out[[cl]]$v

V_hat[[cl]] = a[[cl]]%*%item_U[[cl]] + b[[cl]]

dist[[cl]] = (V_hat[[cl]]- item_V[[cl]] )^2

}

new_tag_id = match( min(unlist(dist)), dist)

mvdata[id, ncol(mvdata)] = new_tag_id

} # reassignment end

label_out = table(mvdata$tag = truth)

error_rate[i] = as.vector(label_out)[1]/nrow(mvdata)

} # iteration end
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return(list(mvdata, cca_out, mvdata$tag, error_rate))

} # function end

# Specifications of function output

# mvdata - the original multi-view dataset

# cca_out - the local cca models on each cluster

# mvdata$tag - the resulted clustering scheme

# error_rate - the error rate of clustering scheme
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Appendix C

Supplementary Figures

C.1 Histograms of SIF variables
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Figure C.1: The histograms of SIF variables
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