
DNA BAPLOTYPES DETERMINATION

DNA HAPLOTYPES DETERMINATION

FOR MEMBERS OF FAMILIES WITH PHENYLKETONURIA (PKU)

By

AFZAL MOHAMMED QURESHI, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

(c) Copyright by Afzal Mohammed Qureshi, November 1990

MASTER OF SCIENCE {1990) McMASTER UNIVERSITY
{Computation) Hamilton, Ontario

TITLE: DNA Haplotypes Determination for Members of
Families with Phenylketonuria {PKU)

AUTHOR: Afzal Mohammed Qureshi, B.Sc. {McMaster
University)

SUPERVISORS: Professor R. Janicki
Professor P. Chang

NUMBER OF PAGES: vii, 147

ii

ABSTRACT

Phenylalanine hydroxylase deficiency causes

phenylketonuria (PKU) in humans. PKU is a recessive genetic

disease that affects 1 in 10000 births among the Caucasian

population. Its gene locus is highly polymorphic in its DNA

sequence among different individuals and patients with PKU. DNA

polymorphisms at the PAH gene locus are used to obtain haplotypes

through restriction enzyme analysis. So far forty-six distinct

RFLP haplotypes have been discovered in the human population. In

theory, 384 distinct RFLP haplotypes can exist.

This project is to develop a program to assist the

geneticists by obtaining haplotypes for each member of the PKU

family. It uses information obtained from digestion of the DNA

samples from the family members with the restriction enzymes.

The restriction enzymes employed for this purpose are Pvuii,

Bglii, EcoRI, Mspi, Xmni, Hindiii, and EcoRV.

The program "PKU" generates all possible haplotypes for

each member of the PKU family. The generated haplotypes may

include haplotypes from the forty-six defined haplotypes list or

from the 338 other haplotypes that may fit the description from

iii

the restriction enzyme analysis. The program then carries out an

elimination phase during which the "extra" haplotypes that had

been generated for the family members but whose presence was not

supported by the data from the other family members are

eliminated from the individuals' haplotype lists. The remaining

haplotypes are then used to determine a sibling's carrier status

of the PKU disease, i.e., whether or not a sibling is a carrier

of the PKU disease.

iv

ACKNOWLEDGEMENTS

I would like to thank Dr. P. Chang from the Pediatrics

Department, and Dr. R. Janicki from the Computer Science and

Systems Department for their guidance and invaluable feedbacks in

the completion of this project.

v

TABLE OF CONTENTS

Chapter 1: Introduction 1

Chapter 2: Project Development 12

Chapter 3: Algorithms 22

Chapter 4: Results 27

Chapter 5: Discussion 34

Chapter 6: Program Specification 69

Bibliography 80

Appendix I: Users' Manual 82

Appendix II: Sample Executions 86

Appendix III: Program Code 106

LIST OF TABLES AND FIGURES:

Table 1: 	 Defined Haplotypes Chart 10

Table 2: 	 The Relation Between The Symbols 11
And the DNA Fragment Sizes

Table 3: 	 Haplotype Lists Generated By The Program 32
"PKU" If Both Haplotypes Of An Individual
Were From Haplotypes 1-4

Table 4: 	 A Sample Analysis For A Family With No 33
Heterozygosity At Any of The Parents' Eight
Restriction Sites

vi

9

79

Figure 1: RFLP Sites At The PAH Locus

Figure 2: Function Dependency Graph

vii

CHAPTER 1

The Introduction

Each human being comprises of billions and billions of

cells. Among other organelles, sub-cellular structures, each

cell contains a controlling factory called the nucleus. The most

important thing about a nucleus is that it contains chromosomes,

of which there are twenty-three pairs in the human species -

different species have different number of chromosomes in their

nuclei. Chromosomes are made up of DNA (deoxyribosenucleic acid)

and some proteins. The DNA is a macromolecule made up of a long

chain of four smaller molecules called bases: Adenine, Cytosine,

Guanine, and Thymine. The precise sequence of these bases that

can occur in any number and in any order, makes up the genetic

material of a person, i.e., it determines a person's phenotype

(physical make-up) and when combined with the environment also

determines his/her personality.

Each parent contributes 23 chromosomes (one-half of each

chromosome pair) to each of his/her offspring. In other words,

each chromosome of a chromosome-pair comes from a different

parent. Both chromosomes of a chromosome-pair perform similar

1

2

functions. Because of that, if one chromosome is defective in

its coding of an enzyme, it normally would not affect a person

because the other normal chromosome is still coding for that same

enzyme. There will be a problem, however, if both chromosomes of

a chromosome-pair were defective for the same enzyme, i.e., they

both had mutations in the chromosomal region that encoded that

enzyme.

Classical phenylketonuria (PKU) is a recessive disease,

i.e., both chromosomes of the chromosome-pair would have to be

defective if a person is to suffer from this genetic disease.

This disease is characterized by an inability to metabolize L-

phenylalanine, an amino acid amino acids are the building

blocks for proteins. Although L-phenylalanine is an essential

amino acid, only a fraction of the amount consumed in a normal

diet is used for protein synthesis; most is converted to

tyrosine, another amino acid. PKU results from an absence or

severe deficiency of the liver enzyme phenylalanine hydroxylase

(PAH) . The enzyme normally catalyzes the oxidation of

phenylalanine to tyrosine. The chromosome in humans that

produces this enzyme is designated by the term 12q22-24.1 (Lidsky

et al. 1985). Clinical symptoms of the disorder are severe and

result in permanent mental retardation in untreated children

(Chakraborty et al. 1987). This disorder affects 1 in 10000

births among Caucasians and has a carrier frequency of 1 in 50

(Sullivan et al. 1989).

3

Phenylalanine excess is particularly dangerous during the

very early development of the brain. Special diets low in

phenylalanine must be given to the patients, especially in the

first few weeks of life. Most patients can relax their dietary

restriction of phenylalanine by the age of eight. Interestingly,

however, a carefully controlled low phenylalanine diet must be

reinstituted during pregnancy. Otherwise, the fetus is exposed

to excessive phenylalanine levels and the newborn infant,

necessarily a heterozygote, will probably develp mental

retardation. As is now commonly known, heterozygotes, clinically

normal carriers, i.e., one normal and one defective chromosome of

the mutant gene, demonstrate a reduction, usually about 40-50 per

cent, of the mutant (defective) enzyme. The same holds true for

phenylketonuria. This reduction, along with the high level of

serum phenylalanine in the mother, greatly increases the risk of

mental retardation.

There is no biochemical test for in utero detection of

PKU. To solve the problem of prenatal diagnosis, molecular

approach.es have been utilized. DNA polymorphisms (genetic

variations) at the PAH locus, the region of the DNA that codes

for the PAH enzyme, have proved extremely effective in

determining disease or carrier status in families with PKU

(Daiger et al. 1989). This is done by digesting the DNA samples

obtained from the family members with seven restriction enzymes

that yield RFLPs, Restriction Fragment Length Polymorphisms. The

http:approach.es

4

seven restriction enzymes are Bglii, Pvuii, EcoRI, Mspi, Xmni,

Hindiii, and EcoRV. Each of these restriction enzymes makes a

cut at its specific site (polymorphic sites) in the PAH gene

depending on the presence of a specific DNA base sequence at that

site. The restriction enzyme Pvuii has two restriction sites at

the PAH locus; i.e., it can make a maximum of two restrictions

(cuts) in the PAH gene, while the other six restriction enzymes

used for this purpose can only make one cut each at the PAH

locus. Overall then, there are eight polymorphic sites in the

PAH gene. Haplotypes, an RFLP pattern, or a term used to

describe variations of a chromosome, were assigned by determining

the presence or absence of the eight polymorphic sites in the PAH

gene (Sullivan et al. 1989).

27Theoretically, x 3 = 384 haplotypes can be generated

by digestion with the 7 restriction enzymes described above -

for Hindi II there are three possibilities: presence of the

restriction site (designated by a "+" sign), absence of the

restriction site (designated by a"-" sign), and the presence of

a 4.4 kb Hindiii allele (designated by a "=" sign). To date,

only 46 haplotypes have been observed in the human population.

These 46 haplotypes are listed in Table 1.

Most mutations that give rise to PKU do not generate any

changes in restriction sites. Therefore, the PKU mutations can

not be identified by alterations in RFLP patterns. However, some

haplotypes are closely, but not exclusively associated with PKU

5

chromosomes. Over all, haplotypes 1-4 represent 80% of the

normal chromosomes and 82% of the PKU chromosomes. Haplotypes 1

and 4 are common among both normal and mutant chromosomes.

Whereas, haplotypes 2 and 3 represent 40% of the PKU chromosomes

and only 8% of the normal chromosomes (Sullivan et al. 1989).

These figures refer to the Caucasian population only and do not

hold true for other populations. For example, more than 80% of

Oriental PKU chromosomes are associated with haplotype 4 only.

The next most common haplotype in association with PKU

chromosomes in the Oriental population is haplotype 7, which has

an occurrence in about 6% of Oriental PKU chromosomes (see review

by Chang et al. 1990).

What all this means is that a diagnosis of PKU and

carrier detection based on intragenic linkage between PKU and

RFLP is more likely to succeed in the Caucasian families than

in the Oriental families. The success of a diagnosis depends on

a family carrying sufficient RFLP heterozygosity (variety in its

haplotypes) in order to be informative in linkage analysis. 87%

of the Caucasian PKU families are informative for linkage

analysis, while only about 40% of Oriental families are likely to

be informative because of their lower heterozygosity (Daiger et

al. 1989).

Determining the carriers of the PKU disease can be a

tedious work. So far, the geneticists have been using "eye

6

balling" process to determine the haplotype candidates for the

PKU patients and their family members. The information obtained

from the restriction enzymes digestion is used to construct all

of the haplotypes that can possibly be generated from that

information. The list of these haplotypes which may be long or

short is then compared with the list of the 46 defined haplotypes

chart (Table 1) in order to obtain the haplotype numbers for the

generated haplotypes.

After the same procedure has been carried out for each

member of the family, a collective family analysis is done in

which the list of haplotypes for each family member is narrowed

down, to 2 each if possible. The "unwanted" haplotypes are

eliminated from each member of the family wherever possible.

This is easier to do with the children since everyone of their

haplotypes must also belong to their parents' haplotype lists as

well. It was their parents who passed their chromosomes on to

them to begin with. In other words, those haplotypes that do not

belong to either of the parents' haplotype lists are eliminated

from the children's haplotype lists. Haplotypes from this

shortened list are then compared with those of the patient's. If

any one of them gives a match then the sibling is a carrier of

the PKU disease.

With the parents the elimination of haplotypes is a

little more difficult to do. One would require data from a

minimum of two children in order to even consider eliminations

7

of haplotypes from the parents' haplotype lists. There is no

exact number for how many children might be required in order to

narrow down parents' haplotype lists. Using one's intuition, it

is usually not much of a problem to narrow the parents' haplotype

lists down to 2 haplotypes each using the data from their

children. However, there is no systematic approach to this.

Any approach would have to be a trial and error approach.

One has to keep in mind, though, that some haplotypes

generated for a family member may not belong to the defined

haplotypes chart since there are 384 haplotypes that can exist in

theory. These "undefined" haplotypes may get eliminated after a

full family analysis has been done. If an undefined RFLP

haplotype was to persist in the family then it would have to be

passed on to the "scientific community" so that it could be added

to the defined haplotypes chart in a later edition.

At any rate, the whole procedure of first determining the

possible haplotypes for each family member and then narrowing of

the haplotype lists for each family member after a collective

family analysis, down to 2 haplotypes each where possible, can be

a tedious and time consuming work. If a computer program could

do this entire work for them, it would save the geneticists

concerned with the PKU family analysis plenty of time. It would

be a lot quicker to begin with, and also the human error factor

would be eliminated. All the user would have to do would be to

enter data obtained from the chemical tests (restriction enzyme

8

digestions) for each family member, and the computer would do the

rest.

There are a few things that would have to be kept in mind

when designing such a program. One of them is that the chemical

analysis while very effective is not perfect. Sometimes,

digestion with an enzyme gives no results. This complicates the

analysis because now it could mean any one of three possibilities

for that particular restriction enzyme: positive for both

chromosomes (cuts were made on both chromosomes by that enzyme),

negative for both chromosomes (no cuts were made on either one of

the chromosomes), or positive for one chromosome and negative for

the other chromosome.

Another thing to consider is the difference in the

treatment of defined and undefined haplotypes. Should the

undefined haplotypes carry the same weight in determining the

status of carriers of PKU disease, or should that job be left to

the defined haplotypes alone. Most of the inputs for restriction

enzyme cuts for an individual will involve undefined haplotypes

as well as the defined haplotypes. In fact, logic dictates that

for most restriction enzyme cut inputs, there should be more

undefined haplotypes generated than the defined haplotypes.

There are 338 undefined haplotype possibilities to choose from

compared with the 46 defined haplotype possibilities. However,

this is true in theory only. In practice, only the defined

haplotypes, 46 of them, have been observed and dealt with in

9

humans. Therefore, while undefined haplotypes might be generated

along with the defined haplotypes for a family member, they

should get eliminated after a full family analysis has been done.

The question remains though what should be done if some of the

undefined haplotypes remained persistent even after a full family

analysis. Should their presence be pointed out to the users

(geneticists) and then ignored in the carrier status

determination or should they be treated just like the defined

haplotypes.

Last, but not least, the program would have to be very

user-friendly. It is a safe assumption to make that the majority

of the people in the health science profession do not possess

much knowledge in computers. The programmer would have to make

sure that under no circumstances should the program crash.

0
8 9 11

Exons-. 1 2 3 4 5 6 7 1 1 12 131

Hindi II
Xmni EcoRV

Bglii Pvuiia Pvuiib EcoRI Mspi

Figure 1: RFLP sites at the PAH locus. The molecular structure
of the human PAH gene is shown schematically with its 13 axons
(the portions of the gene that code for the PAH enzyme) . The
heavy arrows correspond to the polymorphic restriction sites in
and immediately flanking the gene. (Woo, S.L.C. 1988)

10

Table 1: Defined Haplotypes Chart

RFLP Haplotypes of PAH Locus
Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

Haplotypes:
1 + +

2 + + + +

3 + + +

4 + + + + +

5 + + + + +

6 + + + +

7 + + +

8 + + + +

9 + + + + +

10 + + +

11 + + + +

12 + + +

13 + + + = +

14 + +

15 + + +

16 + + + +

17 + +

18 + + + + + +

19 + + + +

20 + + +

21 + + + + = +

22 + + + +

23 + + + +

24 + + +

25 + +

26 + + +

27 + + +

28 + + + +

29 +

30 + + +

31 + + + +

32 + +

33 + + +

34 + + +

35 + + + + +

36 + + +I I I I I I I I

37 +

38 + + + =

39 + + + +

40 + +

11

41 + + + + +

42 + +

43 + + +

44 + + + + +

45 + + + +

46 + + + + +

RFLP haplotypes at the human PAH locus. The forty-six defined
RFLP haplotypes are distinguishable according to their response
to the seven restriction enzymes at the 8 restriction sites in
the PAH locus. A plus sign (+) indicates the presence of the
restriction site, a minus sign (-) indicates the absence of the
site, and an equal sign (=) represents the 4.4 kb Hindiii allele.

Table 2: The Relation Between The Symbols
And The DNA Fragment Sizes

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV
Symbol:

+ 6.0 1.7 9.1 11.0 6.5 19.0 4.0 25.0

....... 19.0 3.6 11.5 17.0 9.4 23.0 4.2 30.0

....... 4.4

The relation between the symbols and the DNA fragment sizes (in
kb) obtained after digestion with the restriction enzymes at the
8 restriction sites. A cut made at the site by the enzyme is
designated by a "+" sign, and a "-" sign indicates no cuts made
at the site. The presence of a 4.4 kb Hindiii allele is
represented by an "=" sign.

CHAPTER 2

Project Developmemt

The problem specification for the project implied that

the program, named "PKU", should store the defined haplotypes

chart in it in some form. An alternative would have been to

store the defined haplotype values in a separate data file -- a

text or a binary file -- and then read from it for comparisons

during the program execution. However, this option was less

appealing because of the security factor involved. It would have

been easy for some one to intentionally, or unintentionally, make

changes to the data file, or even delete it. Therefore, the

first option was chosen, and the values for the defined

haplotypes were stored within the main program.

For the generation of the undefined haplotypes, there

were again two options to select from: manually enter the 338

haplotypes values or make the program generate them. The

advantage of the first option would have been less memory space

and less compilation time; but, the vast number of haplotypes

would have made it extremely difficult to pick up all of the

mistakes that might have been made during their entry.

Therefore, the second option was chosen because of the guarantee

12

13

it offered in terms of the accuracy of the haplotypes. The draw

back of this option was that it generated all 384 haplotypes;

i.e., both defined and undefined haplotypes, instead of the

required 338 undefined haplotypes. The overlapping 46 defined

haplotypes were left to be dealt with in the further development

of the program.

To make the program user friendly so people with limited

knowledge in molecular diagnosis of PKU would also know what is

being asked of them for inputs, a chart is displayed onto the

computer terminal screen. This chart displays the names of the

seven restriction enzymes used in the chemical analysis of the

DNA samples obtained from each member of the PKU family. For

each enzyme a listing is given of the sizes of fragments that can

be obtained after digestion with that enzyme. One thing to keep

in mind is that the smaller of the two numbers for each

enzyme an exception is Hindiii for which there are three

numbers on the chart confirms that a cut was made by the

enzyme on the DNA sample -- see Table 2. In other words, it

confirms the presence of a polymorphic restriction site. This is

designated by a "+" under the symbol column. The larger number

for each enzyme refers to the fact that a cut was not made on the

DNA sample by the enzyme; i.e., absence of a polymorphic

restriction site. A "-" sign under the symbol column is used to

represent this case. For Hindiii, a third symbol, "="

designates the presence of a 4.4 kb Hindiii allele.

14

Such a chart is displayed for each member of the family

when prompting for inputs by the user. To avoid confusion and to

eliminate any chances of errors in inputs, entries for each

enzyme cuts are asked for separately, in separate lines: either

"+", "-" (or"=" in the case of Hindiii), and a null entry in the

case of no or uncertain results obtained from chemical analysis.

At the end of the entries for the eight restriction sites, the

input is displayed back to the user in a tabular form so the user

can tell whether or not mistakes were made in the input of the

data. The user is then asked if any changes are required to the

input data. If the answer is yes then the entries to each

restriction enzyme are displayed one be one, and at the end of

each display the user is asked if a change is required. If the

answer is yes, then new input data is requested, otherwise, the

input data for the next enzyme is displayed. Once this cycle has

been completed, the complete input data -- newer version -- is

displayed back to the user in a tabular form. The user is again

asked if any changes to the input data are desired. The cycle

will repeat itself until the user is satisfied with the input

data and answers no to the change option.

The program then generates all of the haplotype

candidates in a predefined sequence. After each haplotype has

been generated, it is first checked with the defined haplotypes

list. If a match is found then a flag is set for that particular

haplotype in the list. In case of no match with the defined

15

haplotypes list, a check is made with the list of the undefined

haplotypes. A flag is then set for the undefined haplotype that

gave a match. Once this process has been carried out for each

generated haplotype, these haplotypes are displayed on the

terminal screen. This display is carried out in two separate

categories: under the "Defined Haplotypes" header, and under

the "Other Haplotypes" header. In the first case, all of the

defined haplotypes with the flag set are displayed preceded by

their predefined numbers as described in Table 1. In the

latter case, all of the undefined haplotypes with the flag set

are displayed. These are preceded by their predefined numbers,

but they also carry the letter "T" as a prefix. This prefix,

chosen arbitrarily serves the purpose of distinguishing between

the defined and the undefined haplotypes. It should be pointed

out that this haplotype list for the individual is the list in

full and no eliminations of haplotypes have been made yet.

The user is then asked if there is another family member

that should be included in the family analysis for the RFLP

haplotypes determinations. If the answer is yes then the above

cycle is repeated in entirety for the next family member. This

would continue until data have been entered for the entire

family, in other words, until the user answers "no" to the

following prompt:

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

At this stage then, a full family analysis begins. Until

16

this stage all of the numbers of the defined and undefined

haplotypes for each family member had been stored in two lists;

one for the defined haplotypes and the other for the undefined

haplotypes. The eliminations of "unwanted" haplotypes begins

with the children. If a child produced some haplotypes from the

input values that did not belong to either of the parents'

haplotype lists, they would be considered redundant and,

therefore, eliminated from his/her haplotype list. This

procedure would be carried out even if it resulted in a child

producing a list with no candidates for possible RFLP haplotypes,

i.e., an empty list. This would be a highly unlikely outcome

since all of the chromosomes -- both of them -- for each child

come from the parents and, therefore, must be present in the

parents haplotype lists.

Next, eliminations of haplotypes from the parents' lists

begins provided at least two children were included in the data

inputs for the family. Those haplotypes that did not belong to

any of the children's haplotype lists are eliminated. However,

this elimination of haplotypes is not carried out if it would

result in the defined haplotype list for the parent being reduced

to carry less than 2 RFLP haplotypes. No such consideration is

made of the undefined haplotypes though since they carry less

weight in importance than the defined haplotypes.

After the eliminations have been carried out, thus,

narrowing down the lists of possible RFLP haplotypes for each

17

member of the PKU family, the display of haplotypes takes place

again. As before, the haplotype candidates for the parents are

displayed on the terminal screen first. Then the display for the

patient occurs, followed by the display of haplotype candidates

for the siblings. The display of haplotypes for the siblings

occurs in the same order as they were entered by the user. To

guard against a mix up with the siblings, which may happen

especially with large PKU families, the siblings are assigned

numbers in the same order as they were entered. The first

sibling entered, or given the input data for, is assigned the

number 1, the second sibling number 2, and so on.

Although at this stage the users (geneticists) can

themselves compare the haplotype lists for each sibling with that

for the patient and then determine whether or not the sibling was

a carrier of the PKU disease, the program would do it for them.

This would eliminate any chances of human errors, especially when

concerned with large lists of haplotypes for some members of the

family. The program first compares the defined haplotypes for

the sibling with those for the patient. If there is a match, a

diagnostic statement is displayed on the computer terminal

screen:

DIAGNOSIS: THE SIBLING IS A POTENTIAL CARRIER.

If there is no match then the undefined haplotypes for the

sibling and the patient are compared. In the case of a match the

above diagnostic statement is displayed followed by the statement

18

below:

NOTE: THIS CONCLUSION IS BASED ON THE ANALYSIS
OF THE UNDEFINED HAPLOTYPE$. BASED ON
THE ANALYSIS OF THE DEFINED HAPLOTYPE$
ALONE, THE SIBLING IS NOT A CARRIER.

The reason for this statement is self explanatory: To

distinguish between a carrier status based on the defined

haplotypes and the status based on the analysis of the undefined

haplotypes. In addition to being more informative, this also

gives the geneticists a chance to make up their own minds as to

whether the sibling in question truly is a carrier of the PKU

disease depending on how much confidence they have on the

undefined haplotypes.

Other things worth mentioning that were done solely for

the purpose of making things more convenient for the users

include addition of the function "get_string" in the program.

This function reads a string value from the terminal screen and

modifies it such that any blanks/spaces are excluded from the

input string. If the user was to accidently hit the "space bar"

during the input of data, he/she would not be asked to input the

data again; the spaces will be ignored. This function was used

every time the user was required to give an input. Other

facilities deemed useful include taking the "return" key to mean

"yes" by default whenever the user is asked whether he/she would

like to continue analysis with the next family member, or to

19

continue display of RFLP haplotype candidates for a family

member. Also, throughout the execution of the program, the users

are given the option of terminating the execution of the program,

or even taking "short cuts" in the displays. An example of a

"short cut" would be when display of the possible RFLP haplotypes

for a family member is taking place. After the display of the

defined haplotypes, the user is asked if he/she would like to

continue with the display of haplotypes. If the answer given by

the user was "no" then the display of the undefined haplotypes

for that person would be ignored, and the program would continue

with the next member of the PKU family.

The program "PKU" was designed such that it would be

easy to add more defined haplotypes to it as they become

available. This would be done by changing the constant

NUM DEFINED from 46 to whatever the number might increase to in

the future, and then storing the new haplotype values in the

function "haplo_assignments" in the same format as the other

haplotype values. For example, if the new haplotype value was

"++++++++" for the eight restriction sites in the PAH gene locus,

then it would be stored in the function "haplo_assignments" in

the following format:

strcpy (haplotypes[46] .chrom_cuts, "++++++++");

20

Also, in the main part of the program "PKU" the number 46 would

be updated to equal the same number as that assigned to the

constant NUM DEFINED. The only line that would need any changing

would be the one that does the declaration for the structure

"haplotypes"; i.e., the line:

struct haplos haplotypes[46], other_haplos[384];

would be changed to:

struct haplos haplotypes[X], other_haplos[384];

where the "X" refers to the new number for the total defined

haplotypes to date.

The result would be an updated version of the program

"PKU". To make cross referencing possible, if these newly

defined haplotypes were to be generated from the input values for

the restriction enzymes, the output would include these, and in

brackets also the previous undefined haplotype numbers that they

used to possess.

For example, if a new RFLP haplotype was added to the

program with the value "--------" and assigned the number 4 7 then

this would be done through the following sequence. First change

the constant NUM DEFINED to 47:

21

#define NUM DEFINED 47;

Then, copy the new haplotype value into the structure haplotype;

add the following line to the function "haplo_assignments":

strcpy (haplotypes[46] .chrom_cuts, "--------");

and then change the declaration line in the main function to:

struct haplos haplotypes[47], other_haplos[384];

The display of this RFLP haplotype if generated by the

input values for the restriction enzymes would look like this:

47 (T-382)

where the number 4 7 refers to the defined haplotype number

assigned to the value "--------", and T-382 refers to what this

RFLP value previously used to be refered to as in the "Other

Haplotypes" category.

CHAPTER 3

Algorithms

I. The Undefined Haplotypes List Generation:

The defined haplotypes were stored manually in the

structure "haplotypes". The undefined haplotypes, however, were

generated using an algorithm that resembles the "Bubble Sort

Algorithm". The 384 haplotypes generated using this algorithm

were stored in the structure "other_:_haplos".

This algorithm relies on a series of "for-loops" to do

the job. Since each haplotype consists of eight places of

symbols, eight "for-loops" are required to generate the 384

haplotypes. The algorithm looks like this:

i = 0 /* a counter to assign each generated haplotype
a number */

buffer "+-="

for q1 1 to 2
haplotype[1] = buffer[q1]
for q2 = 1 to 2

haplotype[2] = buffer[q2]
for q3 = 1 to 2

haplotype[3] = buffer[q3]
for q4 = 1 to 2

haplotype[4] = buffer[q4]
for q5 = 1 to 2

haplotype[5] = buffer[q5]
for q6 = 1 to 2

haplotype[6] = buffer[q6]

22

23

for q7 = 1 to 3
haplotype[?] = buffer[q7]
for q8 = 1 to 2

haplotype[8] = buffer[q8]
i = i+1
other_haplos[i] =haplotype

I* 	 storing the
generated haplotypes
in the other_haplo list */

end for

end for

end for

end for

end for

end for

end for

end for

II. Haplotype Candidates Generation:

After the user had provided the input values for each

of the eight restriction sites, these values were used to

generate the haplotype candidates for the individual. The

algorithm used was similar to the one for the undefined

haplotypes list generation. A series of "for-loops" were used

to 	generate the haplotype candidates. However, the upper limits

for the loops varied depending on the input values for the

restriction sites.

/* initial upper limits to the for-loops */

p1=p2=p3=p4=p5=p6=p7=p8=2;

for X = 1 to 8 /* to check for any blank inputs */
if RestrictionSite.X[1]=' ' OR RestrictionSite.X[2]=' '

then RestrictionSite.X[1]='+' AND
RestrictionSite.X[2]='-'

if X=7 /* Hindiii restriction enzyme site */
then RestrictionSite.X[3] '='
p7 = 3

24

end if
end if

end for

/* to check if both input values for a restriction site
are the same */

for N = 1 to 8
if RestrictionSite.N[l] = RestrictionSite.N[2]

then p.N = 1
end if

end for

for q1 = 1 to p1

haplotype[1] = RestrictionSite1[q1]

for q2 = 1 to p2

haplotype[2] = RestrictionSite2[q2]
for q3 = 1 to p3

haplotype[3] = RestrictionSite3[q3]
for q4 = 1 to p4

haplotype[4] = RestrictionSite4[q4]
for q5 = 1 to p5

haplotype[5] = RestrictionSite5[q5]
for q6 = 1 to p6

haplotype[6] = RestrictionSite6[q6]
for q7 = 1 to p7

haplotype[7] = RestrictionSite7[q7]
for q8 = 1 to p8

haplotype[8] = RestrictionSite8[q8]

COMPARE_AND_ASSIGN (haplotype,
Defined_Haplo_list,
Undefined_Haplo_List)

/* 	compare the generated haplotype
first with the Defined Haplotypes
list and if no match is found then
with the Undefined Haplotypes list
by calling this function */

end for

end for

end for

end for

end for

end for

end for

end for

25

III. Scheme For The Elimination Of Haplotypes

The haplotype lists that were generated for each member

of the PKU family were stored in two dynamic lists:

"defined_path" and "undefined_path". The defined_path list

contained the defined haplotype numbers for the entire PKU

family, while the undefined_path list contained all of the

undefined haplotype numbers that were generated for that family.

The entire process of eliminations of unwanted haplotypes

occured within these two lists. A zero (0) was used as a divider

to set a family member's haplotypes apart from those of the other

members of the family. The order in which these haplotypes were

stored in the list was the same as the order of the family

members in which the program had asked for their inputs:

defined_path (or undefined_path) -> parentl haplotypes

-> 0 -> parent2 haplotypes -> 0 -> patient haplotypes

-> 0 -> siblingl haplotypes -> 0 -> sibling2 haplotypes

-> 0 -> -> Nil

When the haplotypes for a family member were generated,

they were "tagged" in the Defined and the Undefined Haplotypes

lists. The "presence" field of the "haplos" structure was

assigned the number '1' for the haplotypes that gave a match.

These tags were then used to dynamically store the corresponding

haplotype numbers in the defined_path list and the undefined_path

list. The reason for using pointers (dynamic storage allocation)

26

rather than the static arrays was that theoretically there is no

limit to how many haplotypes can be generated for an entire

family.

CHAPTER 4

Results

Once the program had been fully developed, several

different combinations for restriction enzyme cuts were used to

test its accuracy. The combinations used were hypothetical cases

since the real life cases are only a subset of these hypothetical

ones. As expected, for most inputs there were more undefined

RFLP haplotypes generated than the defined RFLP haplotypes, the

reason being, there are approximately seven times as many

undefined haplotypes to choose from as there are defined

haplotypes. In fact, there were cases when for certain inputs

only the undefined haplotypes were generated; there were no

defined RFLP haplotypes generated for these input values for the

restriction enzymes.

There were a few inputs for which only the defined RFLP

haplotypes were generated and no undefined haplotypes were

produced. However, these instances were few compared with the

cases when the opposite was true.

As had been stated earlier, for each restriction site in

the PAH locus there are two possibilities: a positive (+) or a

negative (-) response to the restriction enzyme digestion. An

exception to this is the Hindiii restriction site for which a

27

28

third possibility also exists; the presence of a 4.4 kb Hindiii

allele (=) • For each person there are two chromosomes containing

the PAH locus. In other words, there are 2 PAH loci per person.

While one PAH gene locus might give a positive response to a

restriction enzyme, the other PAH gene locus might give a

negative response. Each time there is a heterozygosity at a

restriction site at the PAH locus; i.e., both "+" and "-" are

shown to be the case by the chemical analysis, the number of RFLP

haplotypes generated doubles. This number refers to the total

number of generated haplotypes; both defined and undefined

haplotypes combined. If "+" and "-"·were entered for each of the

eight restriction sites at the PAH locus, the total number of

generated haplotypes would be 256 (2 8
) •

Generally, when the diversity in the input values for

the restriction sites was increased in the test cases, the number

of the defined RFLP haplotypes for the individual under analysis

also increased. It should be noted, however, that there was no

real sequence to the increase in the generated defined

haplotypes. For example, if "+" and "-" were entered as the

input values for Pvuiia, and "-" was entered for all of the other

restriction sites, no defined haplotypes were generated.

Increasing the heterozygosity in the input values by entering "+"

and "-" for both Pvuiia and Pvuiib still generated no defined

haplotypes. However, if "+" and "-" were entered for Bglii, and

"-" for the rest of the restriction sites, defined haplotype

29

number 29 was obtained; and if "+" and "-" for EcoRI were entered

as well then numbers 17, 29, and 42 were generated from the

defined haplotypes chart. Entering "+" and "-" for Pvuiia,

Pvuiib, Bglii, and EcoRI, while the rest were all "-" again only

generated defined haplotypes numbered 17, 29, and 42.

As mentioned earlier, the haplotypes found most

frequently in the population are haplotypes 1-4, especially

haplotypes 1 and 4. Using appropriate inputs for the eight

restiction sites at the PAH gene locus, combinations of these

four haplotypes were generated, see Table 3. Surprisingly, when

the appropriate inputs were made to generate haplotypes 1 and

4 "+/+" for Pvuiia, "-/-" for Bglii and Pvuiib, and "+/-"

for EcoRI, Xmni, Mspi, Hindii, and EcoRV a rather large

number of other defined haplotypes were also generated. They

were haplotypes 2, 3, 8, 10, 16, 17, 19, 24, 27, 28, 31, 41, and

43. These defined haplotypes also match the description deduced

from the input values for the eight restriction sites. Also

interestingly, if we assumed that parent #1 had haplotypes

numbered 1 and 4, and parent #2 had haplotypes numbered 2 and 3,

then the corresponding input values for them would again generate

haplotypes 1, 2, 3, 4, 8, 10, 16, 17, 19, 24, 27, 28, 31, 41, and

43 for each of the two parents -- see Table 3. Depending on how

many children this couple had and what the haplotype composition

for these children was, it is safe to assume that the majority of

these haplotypes would be retained after a full family analysis.

30

For example, if the couple had 2 children, one with

haplotypes 1 and 2 -- the corresponding input data for the eight

restriction sites would generate haplotypes 1, 2, 24, and 27 -

and the other with haplotypes 3 and 4 -- the corresponding input

data for the eight restriction sites would generate haplotypes 3,

4, 19, and 31 -- the final defined haplotypes list for each

parent will include 1, 2, 3, 4, 19, 24, 27, and 31. While this

list is shorter than the original list it is still a rather large

one.

In such cases, the geneticists would have to use their

intuition and experience to guess what the two haplotypes are for

each parent and their children. For instance, they might assume

that since haplotypes 1-4 occur in over 80% of the population,

the other haplotypes may be ignored from each of the individual's

list. As a result, the haplotype lists for the children become

haplotypes 1 and 2 for one child and haplotpes 3 and 4 for the

other child. Consequently, the haplotypes lists for the parents

becomes either 1, 3 and 2, 4 or 1, 4 and 2, 3.

The thing that would make matters more complicated by

increasing the list of haplotypes for the individual under study

is when the chemical analysis gives no, or poor resolution,

results for a given restriction enzyme. The assumption made by

the program is that one chromosome was cut by the enzyme and the

other chromosome was not. If the actual values were "+" and "

" anyways then everything would be fine, but if not then the

31

number of generated haplotypes would be doubled. Especially in

the case of Hindiii, blank results from the chemical analysis

would be entered as blank inputs for Hindiii, in which case the

assumption made is that the input values were "+", "-" and"="

In the worst possible case, where the actual input should have

been +/+, -/-, or =/=, the end product is three times the size of

the actual haplotype list for that individual. Even in the best

possible case where the actual input values for Hindiii should

have been +/-, +/=, or -/=, the generated list of possible

haplotypes is still 1 1/2 times larger than it should have

been. There is no alternative to the above choice, however,

since the actual values could have been any of the three

possibilities.

In such a case though, the "unwanted" haplotypes from the

haplotype list should get eliminated after a full family analysis

since the "extra" haplotypes would not be supported by other

members of the family. These extra haplotypes may by retained by

the program "PKU", however, if some other members of the family

also produced blank results from the chemical analysis.

32

Table 3: Haplotype Lists Generated By The Program "PKU" If
Both Haplotypes Of An Individual Were From
Haplotypes 1-4

The Two Haplotypes The List Of Defined Haplotypes
Possessed By An Generated By The Program "PKU"
Individual

1/2 	 1, 2, 24, 27

1/3 	 1, 3, 10, 17, 43

1/4 	 1, 2, 3, 4, 8, 10, 16, 17, 19,
24, 27, 28, 31, 41, 43

2/3 	 1, 2, 3, 4, 8, 10, 16, 17, 19,
24, 27, 28, 31, 41, 43

2/4 	 2, 4, 16, 28, 41

3/4 	 3, 4, 19, 31

Haplotypes 1-4 are the most common haplotypes in the human
population. The left column represents the two haplotypes from
haplotypes 1-4 that an individual possesses. The right column
represents the list of defined haplotypes that would be displayed
by the program "PKU". As can be seen, extra haplotypes are also
obtained for the inputs that would generate the two haplotypes
on the left column. The longest list of haplotypes are generated
for haplotype combinations 1/4 and 2/3.

33

Table 4: 	 A Sample Analysis For A Family With No
Heterozygosity At Any Of The Parents' Eight
Restriction Sites

The Two Haplotypes
Possessed By An
Individual

Final Haplotype
Listings By The
Program "PKU"

Parent 1 1/1 1

Parent 2 2/2 2

Patient 1/2 1,2

Each sibling 1/2 1,2

Contrary to a rather complex scenario illustrated in Table 3,
this example illustrates the outcome by the program "PKU" for a
family with no heterozygosity in the parents restriction sites.
In this extreme case, no extra haplotypes are generated for any
of the family members. Since the siblings' haplotypes match
those of the patient's, each of the sibling will be declared a
carrier by the program .. In reality, however, there is no way of
telling whether a normal or a defective chromosome had been
passed on to a sibling. That is why heterozygosity should be
shown for at least one of the restriction sites for each parent
for this linkage analysis method to be informative.

CHAPTER 5

Discussion

Application of RFLPs to the investigation of the

molecular basis of the most common inhereted disease, PKU, has

been useful in providing means for prenatal diagnosis. The

program "PKU" was designed to assist the geneticists concerned

with the study of PKU-affected families. The program asks for

the information available from the chemical analysis, and from it

gives a list of possible RFLP haplotype candidates for the

individuals under study. After obtaining such information for

each member of the family, the program "PKU" does a collective

family analysis and eliminates as many of the "unwanted"

haplotypes from each family member's haplotypes list as

permissible within safe limits. This narrows down the lists

containing the haplotype candidates for each individual. The

final haplotype lists for each member of the family are then

displayed along with a diagnostic statement for the siblings

stating whether or not they are carriers of the PKU disease.

The program "PKU" provides two options to the users:

either determine haplotype candidates for the patient alone, or

do a full family analysis whereby haplotype candidates for each

34

35

member of the PKU family are determined. As stated earlier, for

a full family analysis, this program determines whether or not a

given sibling is a carrier of the PKU disease, which may leave

one wondering why the parents' data is required. After all, it

is the patient's haplotypes that are compared with those of the

sibling's, and if a match is detected the sibling is declared a

carrier of the PKU disease. There are two reasons for the

inclusion of the parents data into the family analysis option.

Number one, so that a separate analysis would not be required if

the geneticists wanted to know the parents' haplotypes; and the

second reason being that a combined data from the parents and

children would be used to shorten the lists of possible

haplotypes for each member of the family. This should make the

final analysis easier for the geneticists.

As one would have expected, generally more undefined

haplotypes were generated than the defined haplotypes for an

individual. Even after a full family analysis this held true in

the test cases. Another thing that generally held true in the

test cases was that the final number for the total number of RFLP

haplotypes for an individual was greater than two even after

elimination of the unwanted haplotypes.

The first case can easily be explained by the fact that

there are more than seven times as many undefined haplotypes as

there are defined haplotypes. Therefore, since there are more

36

undefined haplotypes to choose from than the defined haplotypes,

one would expect to find more undefined haplotypes in the final

outcome.

The second case is a little more complicated to explain.

One has to keep in mind that more heterozygosity (diversity) in

the inputs for the restriction sites +/- instead of +/+,

-/-; and in the case of Hindi!!, +/-, +/=, or -/= instead of +/+,

-1- or =/= would result in more haplotypes generated. In

fact, each time heterozygosity is increased, or a blank input is

made, the total number of generated haplotypes duplicates. The

reason behind using a lot of heterozygosity in the test cases was

to generate plenty of haplotypes so the accuracy of the program

"PKU" could be determined. The bigger the haplotype lists for

each individual of a family, the more overlap in the haplotypes

is likely to occur; i.e., more haplotypes should occur in common

within the family, or more importantly between the children and

their parents. As a result, more haplotypes would be retained

after a full family analysis. Only those haplotypes from the

children's haplotype lists are eliminated that do not belong to

either of the parents' lists. The same is true for the parents

as only those haplotypes are eliminated from their lists that do

not match any of the haplotypes of any of their children.

However, in the case of the parents, the elimination of the

defined haplotypes is witheld if it would result in their total

being less than two.

37

In real life, however, a person can only have two

haplotypes, and also, so far only the 46 defined haplotypes have

been observed and none of the 338 undefined haplotypes that were

observed in the test cases. These two occurrences are actually

related to each other and when examined closely might explain the

contradiction that seemingly appears between the test cases and

the real life cases.

It is true that the program "PKU" generates a good number

of undefined haplotypes for a given set of inputs for the eight

restriction sites at the PAH locus. The program "PKU" was

designed to generate "all" of the defined and undefined

haplotypes that fit into the description of the input data. If

more than two haplotypes remained for an individual under study

after a full family analysis, then it means that these haplotypes

satisfied all of the conditions that were set for a haplotype to

remain in the final listing. If the undefined haplotypes also

satisfied these conditions then they too would be retained.

Further conditions could have been set to narrow down the final

listing to two haplotypes for each member of the family, but they

could very well have eliminated some legitimate haplotypes.

While they might have worked some times, other times they might

not have. To be on the safe side and have the program "PKU"

useful to the geneticists at all times, it was deemed necessary

to keep the elimination conditions simple and leave the reduction

of the haplotypes down to two for each member of the family up to

38

the geneticists. Using their superior knowledge in genetics and

their intuition, once the geneticists have narrowed the final

number of haplotypes down to two for each member of the PKU

family, it seems likely that in most cases they will find the

undefined haplotypes unnecessary and redundant, and therefore,

eliminate them as well as some of the defined haplotypes. This

way both problems -- the presence of undefined haplotypes and the

total number of haplotypes being greater than two -- would be

solved.

This brings up the question of how important are the

undefined haplotypes relative to the defined haplotypes? The

addition of the undefined haplotypes list to this program gives

it an added dimension. It provides the geneticists with a

diversity in the haplotypes to choose from. While they may get

eliminated most of the times by the geneticists, there might be

the odd time when they actually might be retained in the final

listing. After all there was a time when all 46 defined

haplotypes would have been part of the undefined haplotypes list.

New RFLP haplotypes are being discovered every year. By 1988, 43

distinct PAH RFLP haplotypes had been reported in the European

populations (Woo 1988). By 1989, three additional PAH RFLP

haplotypes had been found in Hungary and Czechoslovakia to bring

the total to 46 defined haplotypes (Daiger et al. 1989). Once

more populations are screened, or more people from the

populations already screened are checked for their PAH RFLP

39

composition, more RFLP haplotypes are likely to be found and

added to the defined haplotypes chart. In such a case, those

newly found RFLP haplotypes would be removed from the existing

undefined haplotypes list. However, for now even though they

have not been found in the human population yet, the geneticists

are given the option of having a look at them nonetheless.

Once discovered, new haplotypes can easily be added to

the defined haplotypes list in the program "PKU". The program

was designed so that it could be updated easily. For the purpose

of cross referencing, if these newly added RFLP haplotypes were

to be generated by matching a set of inputs for the eight

restriction sites, the program would also display the haplotype

numbers they used to possess when they were under the "Other

(undefined) Haplotypes" category. The idea was to make the

program "PKU" as useful to the geneticists as possible, provided

the RFLPs within the PAH structural locus are still used for

tracing the inheritance of the PKU allele (chromosome) in an

affected family.

In order for this method to be informative for linkage

detection of affected or carrier children it is important that a

carrier parent be heterozygous at one or more of the eight RFLP

sites. The reason is, if there was no heterozygosity found at

any of the eight restriction sites in the PAH locus then it would

mean that both chromosomes of the chromosome-pair containing the

PAH gene have the same haplotype number. Both the PKU

40

(defective) chromosome and the non-PKU (normal) chromosome

possess the same haplotype number. Through this method of

analysis it would be impossible to determine which of the two

chromosomes, i.e., the normal or the defective chromosome, had

been passed on to the children. In Caucasian families the

chances of this happening are low, as 87% of them show

heterozygosity. In Oriental families though this method would

not have the same success, as only 40% of them are heterozygous

at the RFLP sites. Despite this, some successful cases of RFLP

linkage analysis in determining the fetuses' status in the

prenatal diagnosis of Oriental families have been reported (~

review by Chang et al. 1990) . For other populations, the

frequency of variability (heterozygosity) in the haplotype

composition of a parent lies between the two numbers mentioned

above.

These RFLP haplotypes are used only as markers to

determine which chromosomes are possesed by each member of the

family, and which of them are defective. From the information

obtained from the patient, it is determined which haplotypes

belong to the defective chromosomes. If a sibling was to possess

one of those chromosomes, i.e., the same haplotype number, the

sibling must be a carrier. If both of a sibling's chromosomes

were identical to those of the patient's, i.e., both RFLP

haplotypes matched, the sibling would be declared "affected" by

the PKU disease. In other words, these polymorphisms (haplotype

41

variations) are a natural variation in the population and are not

directly related to the PKU mutations.

However, of the 46 total haplotypes 10 of them have been

found to be uniquely associated with PKU-bearing chromosomes.

They are haplotypes 15, 17, 22, 25, 34, 36, 38, 39, 40, and 46.

Twelve haplotypes -- haplotypes 13, 19, 21, 23, 29, 31, 33, 35,

37, 43, 44 and 45 have been found unique to normal

chromosomes. The remainder are found in both cases (Daiger et

al. 1989). This is true in the Caucasian population only.

Different results have been obtained from the Asian populations.

Two of the haplotypes haplotypes 2 and 17 are unique

to PKU-bearing chromosomes. Three of the haplotypes

haplotypes 6, 10, and 23 -- are unique to non-PKU chromosomes.

The sample size from the Asian families was small, and because of

that their results may not be very significant (Daiger et al.

1989) . These assignments of certain haplotypes to either PKU

bearing chromosomes or to non-PKU chromosomes can easily change

over time when more people (families) have been screened.

Therefore, their significance, especially for the association of

haplotypes with non-PKU chromosomes might not carry much weight.

Although, for the haplotypes' association with PKU-bearing

chromosomes may turn out to be of much significance if the

changes in the base sequence of DNA that caused the production of

these particular haplotypes are also shown to be the cause of the

PKU disease. Until all mutations causing PKU have been

42

identified, such a relation of haplotypes with the PKU disease

does not mean much in determining a person's PKU status through

his/her haplotypes determination alone. In the meantime,

analysis of the entire family would have to be carried out in

order to determine a sibling's PKU status, i.e., whether or not

a sibling is a carrier or is affected by the PKU disease.

While the program "PKU" determines a sibling's carrier

status, it does not inform the users whether or not a sibling is

affected by the PKU disease. A sibling would be affected by the

PKU disease if both of his/her chromosomes (haplotypes) were

identical to those of the patient's. This could be determined if

the input data for the eight restriction sites in the PAH locus

produced exactly two haplotypes for each member of the PKU family

after a full family analysis. However, as the results showed,

obtaining two haplotypes for each member of the family from the

given data was an exception, rather than the norm. Usually, the

total number of haplotypes generated was more than two. Any

attempts made to determine whether a sibling was affected by the

PKU disease without first having narrowed the haplotypes number

down to two would be futile. The idea is to have a program that

is consistent and reliable in its diagnosis. Attempting to

determine a sibling's PKU status in terms of being "affected" by

the disease would make the program less reliable since the

conditions set would not work every time.

43

As an example, consider two options that might have been

chosen in such a case. First, the condition being if any two or

more of a sibling's haplotypes matched those of the patient's,

the sibling is to be declared "affected" by PKU. In setting this

condition one would be disregarding the fact that once the

geneticists narrow down the final haplotype listings to two for

each member of the family, only one or even none of those

haplotypes that the sibling had in common with the patient might

remain in the final listing. In other words, one, or even two,

of the haplotypes that did not match may be retained after the

final analysis. The sibling then is no longer affected by the

PKU disease. The sibling may only be a carrier or even a non

carrier if one or both chromosomes are normal, respectively. If

a second choice was made whereby all of the haplotypes of the

sibling must match those of the patient's before making the

diagnosis then another problem arises: what if the total number

of haplotypes for the sibling did not match that for the patient?

This can definitely happen if the sibling or the patient

gave a blank result for a chemical test, in which case the number

of haplotypes for that person may double the actual number. The

sibling would be declared "not affected" by the PKU disease since

not all of the haplotypes for the sibling and the patient gave a

match. For that matter, if such a stringent condition was set it

could back fire in a different way as well. Say, if the

44

majority, but not all, of the haplotypes for the sibling and the

patient matched, the sibling would not be declared "affected" by

the PKU disease because not all of their haplotypes matched.

However, such a diagnosis, or the lack of it, would be false if

the two haplotypes retained in the final analysis by the

geneticists for the patient and the sibling both matched. In

such a case, the sibling was actually affected by the PKU disease

but the geneticists would have been misled because they would

have expected the sibling to be declared "affected" by the

program if he/she really was affected.

That is why it was deemed best to let the geneticists

make the final decision on whether or not a sibling is affected

by the PKU disease. Once they have produced the final two

haplotypes for each member of the PKU family from the haplotype

listings given by the program "PKU", it would be extremely easy

for the geneticists, or any one else for that matter, to make the

final diagnosis on a sibling. If both haplotypes of a sibling

matched the two haplotypes for the patient then the sibling is

declared affected, otherwise, the sibling is not affected. Any

attempts made to determine such a status for a sibling before

coming up with final two haplotypes for each member of the PKU

family may prove futile in a lot of the cases. They may even

lead to a wrong diagnosis causing complications for the PKU

family and eventually rendering the program "useless" to the

geneticists.

45

One may argue then why a diagnosis on the "carrier"

status of a sibling is made by the program "PKU". It is possible

that after the geneticists narrow the haplotype lists down to two

haplotypes for each member of the family, a sibling who had been

declared a carrier previously may no longer be diagnosed as a

carrier. In such a case, the original diagnostic statement was

wrong. However, what sets diagnosis of a "carrier-status" apart

from that of the "affected-status" is that only a simple

condition is set for the determination of the carrier status of

a sibling. The condition being if any of the haplotypes of a

sibling matches any of the haplotypes of the patient, the sibling

is declared a carrier. When the program displays the statement:

DIAGNOSIS: THE SIBLING IS A POTENTIAL CARRIER

the idea is to warn the geneticists that at least one of the

haplotypes of the sibling matches those of the patient's in the

"current" haplotype listings. That is why the term "potential

carrier" is used because it is realized that after further

eliminations, the sibling may no longer be diagnosed as a

carrier. The diagnosis below is self-explanatory:

DIAGNOSIS: THE SIBLING IS A POTENTIAL CARRIER

NOTE: THIS CONCLUSION IS BASED ON THE ANALYSIS
OF THE UNDEFINED HAPLOTYPES. BASED ON
THE ANALYSIS OF THE DEFINED HAPLOTYPES
ALONE, THE SIBLING IS NOT A CARRIER.

The idea is to inform the geneticists that while there is a match

between the haplotypes of the sibling and the patient, the match

46

occurs only in the undefined haplotypes. In case the geneticists

put little, or no, weight in the results for the undefined

haplotypes they should be informed on how the diagnosis was

reached.

While the condition set for determining a sibling's

carrier status is simple, agreeable, and self-explanatory, the

same could not have been said for condition (s) set for the

determination of a sibling's "PKU-affected" status. The

condition(s) set would have been complicated, and agreed to by

some but disagreed with by others. The condition(s) would have

had to be stated in some form to the users so they could decide

for themselves if they had any faith in the condition(s) set, and

therefore, if they can trust the output of the program.

Another point worth mentioning is that while in the test

cases a variety of different inputs were used for each member of

the family, in real life the input values will not be vastly

different from each other for the children of the PKU family. In

the test cases, generally large numbers of haplotypes were

generated for each member of the family. Because of the

variation used in the inputs, the overlap in the haplotypes of

the children was little compared with the haplotypes that the

patient and the siblings did not have in common. In such

relatively extreme cases, once the haplotypes had been narrowed

down to two for each member of the family, the haplotypes that

47

the patient had in common with some of the siblings may had been

eliminated. As a result the diagnosis of a sibling being a

"potential carrier" may had been proven false. In real life,

however, if the program "PKU" declared a sibling a "carrier",

then the sibling may very well turn out to be a carrier of the

PKU disease. The reason is that the input values for the eight

restriction sites for each child are not random values the way

they were in the test cases. Since it was their parents who

passed the chromosomes on to their children in the first place,

the input values for the children will be dependent on the input

values for the parents. Because the values for each child are

coming from the same limited pool of data -- from their parents

who between them have only four chromosomes to pass on to their

children -- the generated haplotypes for the children should have

a good deal of overlap. While it is true that "extra" haplotypes

would also be generated for each member of the family, there

should be overlap in these extra haplotypes as well since they

were generated from the same pool of inputs. Therefore, if the

diagnosis reads that a sibling is a potential carrier then he/she

probably will end up being declared a carrier after the

haplotypes have been narrowed down to two for each member of the

family. But whether the sibling ended up being a carrier or not,

the program "PKU" had accomplished the job of "alarming" the

geneticists of the possibility that the sibling might be a

carrier of the PKU disease.

48

If the program "PKU" was to display the statement:

DIAGNOSIS: THE SIBLING IS NOT A CARRIER

then regardless of what the final haplotype listing of the

sibling ended up being, the sibling could not be declared a

carrier of the PKU disease. The reason is the final two

haplotypes for an individual will be chosen from the set of

haplotypes generated for him/her by the program "PKU".

Obviously, if the entire set of haplotypes generated for the

sibling had no overlap with the entire set of haplotypes

generated for the patient then it is safe to assume that a subset

of haplotypes for the sibling also would not have any haplotypes

in common with a subset of haplotypes for the patient.

Therefore, unlike the diagnostic statement declaring a sibling to

be a "potential carrier" of PKU which has a possiblity of being

false, the diagnostic statement declaring a sibling "not a

carrier" of PKU, i.e., no defective chromosomes, has no chance of

being proven false. In other words, the geneticists can agree

with the statement without first having to narrow down the

haplotype list to two haplothypes for that sibling.

The conditions set for eliminating "unwanted" haplotypes

for the children were relatively straight forward. The

haplotypes for each child were checked and compared with those of

the parents. Those haplotypes that belonged to either, or both,

of the parents were retained, while those that belonged to

49

neither of the parents were eliminated since all of the

chromosomes for each child were obtained from their parents.

Any haplotypes that suggested otherwise had to be the "extra"

haplotypes generated from heterozygosities at the restriction

sites at the PAH locus where homozygosity should have been the

case. In other words, the data input for a restriction site for

a child was +/- when it should have been either +/+ or -/-. An

error in a chemical test, or in its outcome's interpretation for

that restriction site, or a blank result for that test would lead

to the assumption by the program "PKU" that the entries for that

particular restriction site were heterozygous, +/-. A blank

entry for Hindiii would lead to the assumption that the input was

+/-/=. The program would then remove half of the haplotypes from

the child's haplotype list since each heterozygosity at a

restriction site doubles the generated haplotypes.

There would be a problem, however, if the input data for

a restriction site for at least one of the parents was +/-. If

the actual input data for a child should have been +/+ or -/-,

i.e., homozygous, but due to the possibilities mentioned above,

heterozygosity (+/-) was entered upon the prompt for that

particular restriction site, then some of the extra haplotypes

generated because of that error might be retained by the program.

The data entered for the parents might support the existence of

some of the extra haplotypes generated for the child because of

the error of entering heterozygosity for a restiction enzyme site

50

where homozygosity should have been the case. Later on, the

geneticists might be able to reduce those extra haplotypes with

the knowledge that "uncertain" results had been obtained from the

chemical tests for that particular restriction site. But the

program has no way of knowing or distinguishing between

suspicious chemical test results from those of feasible results.

Therefore, in the above mentioned extreme case, the "extra"

chromosomes for the children might be retained in the final

haplotype listings.

The conditions set for the eliminations of "unwanted"

haplotypes from the parents' lists were a little more

complicated. After the unwanted haplotypes from the chilren's

haplotypes lists had been eliminated, those lists were used as

guidelines for the eliminations of the "extra" haplotypes from

each of the parents' lists. Those haplotypes from the parents'

haplotype lists that did not belong to any of the childrens'

haplotype lists were to be eliminated, thus, narrowing down the

haplotype lists for the parents. However, the danger that lay

here was that there was a good possibility that even the

legitimate haplotype(s) might get eliminated from the parents'

haploytype lists. That danger did not lie with the children

during their haplotype eliminations because each child's

haplotype list is a subset of the parents' haplotype lists

combined. Therefore, with children there is no danger of

eliminating legitimate haplotypes.

51

The insecurity in carrying eliminations of "unwanted"

haplotypes from the parents' lists in the same fashion as with

the children's "unwanted" haplotypes stems from the probabilities

involved in a parent passing both of his/her chromosomes to

his/her children. For each child, both parents contribute

equally in the make up of his/her genetic material. One-half of

the child's chromosomes come from the male parent and the other

half from the female parent. In the final analysis of the

haplotypes, therefore, one of the haplotypes for each child

should be from the male parent and the other haplotype from the

female parent. The probability of a parent passing one

particular chromosome of the chormosome-pair to a child is one

half. The probability of that parent passing the same chromosome

of the chromosome-pair, later on, to the next child is still one

half. It is not necessarily the case that the second child will

get the other chromosome from the chromosome-pair. Therefore, if

only one chromosome of the parent's chromosome-pair had been

passed on to the offspring, then the other chromosome of the

chromosome-pair while present in the original list, would be

missing from the final haplotype list. None of the children

would support its existence. In a small family especially, the

chances of this happening are quite high.

One way to guard against the elimination of a legitimate

haplotype from the parents' haplotype lists is to choose a number

for how many children must first be included in the analysis

52

before eliminating any of their haplotypes. The number is

arbitrary but it must be greater than 2 because a family would

need at least two children for the parents to have a chance of

passing both of their chromosomes of the chromosome-pair to their

children. As the family size increases, the chances of this

happening also increase. However, if a rather large number was

chosen then unless a family had that many children, the parents

haplotype lists would not be reduced by the program. It would

make things a little more complicated for the geneticists, as

they will have relatively large sets of haplotypes for the

parents lists from which to eliminate all but two haplotypes for

each parent. Things could have been simplified by the computer,

but such was not done because the family did not have the

required number of children.

To avoid this a second option was chosen whereby

eliminations were to take place as long as the family had at

least two children included in the PKU analysis -- with only one

child in the family it would be nonsense to do any haplotype

eliminations for the parents, as only one chromosome from each

parent would have been passed on to the lone child. These

eliminations are only temporary, as the program "PKU" then checks

if the number of the remaining defined haplotypes equals or

exceeds 2. If the number of the defined haplotypes is less than

two, which can be the case for smaller families, the eliminations

are withheld and the original haplotype list for the parent is

53

displayed for the final listings. If the number of the remaining

defined haplotypes is greater than or equal to 2 for the

program's final analysis for the parent, then the eliminations

are withstood and a shorter haplotype list from the original one

is displayed on the terminal screen.

One may argue that the condition should have been for the

total number of haplotypes of a parent, i.e., defined and

undefined haplotypes combined rather than the defined haplotypes

alone, to be greater than two before the eliminations of

haplotypes for that parent should take place. The present scheme

ignores any importance that the undefined haplotypes may

represent. It is a fact that a person can only possess two

haplotypes, either both defined haplotypes, both undefined

haplotypes, or one defined and one undefined haplotype. Because

of that, the condition set for eliminations should have been for

the total number of haplotypes to be greater than or equal to

two.

That was not done in the program "PKU", however, and the

undefined haplotypes were ignored in the elimination conditions.

The logic behind this is that until now only 46 haplotypes, the

defined haplotypes, have been discovered in the human population.

There should be more importance given to them than the undefined

haplotypes, which have not been found in the human population

yet. New haplotypes are being discovered in the human population

every year, and because of that some of the currently undefined

54

haplotypes may become part of the defined haplotypes chart in the

future. But for now they should not carry the same weight in

importance as the defined haplotypes. For now the undefined

haplotypes are to be considered as haplotypes generated as "side

effects" of the input values that generate the defined

haplotypes. If the conditions set for eliminations included the

undefined haplotypes as well then there would have been the

danger of legitimate defined haplotype(s) being eliminated from

a parent's haplotype list. To guard against this, the undefined

haplotypes are ignored in the elimination conditions. Also, the

geneticists would probably feel more comfortable with the final

two haplotypes, that they come up with for each member of the PKU

family, to be from the defined haplotypes chart. Only if the

evidence was overwhelming would an undefined haplotype be a part

of the final two haplotypes for an individual, in which case that

haplotype would be added on to the defined haplotypes chart.

Therefore, to be on the safe side, an effort was made to save the

defined haplotypes from eliminations where possible, and let the

geneticists make the final decision on which two haplotypes

should be retained.

In the test cases, a large set of heterozygosity was

used, thus generating a large set of haplotypes for each member

of the family. Whether the same occurs in real life would remain

to be seen. To test the accuracy of the program, sometimes there

56

especially the defined haplotypes. Since the undefined

haplotypes were considered dispensible, that's where most of the

eliminations would be expected to occur, especially in the case

of the parents with smaller families.

It is a fact that most people in the Caucasian

population, about 80% of them, possess haplotypes 1-4.

Interesting results were obtained when combinations of these four

haplotypes were taken to be the two haplotypes for an individual,

see Table 3. For each of these combinations, extra defined

haplotypes were also generated. The combination of haplotypes

that generated the most haplotypes on the side were 1/4 and 2/3.

For each of these combinations the resulting haplotypes that

matched the input data were haplotypes 1, 2, 3, 4, 8, 10, 16, 17,

19, 24, 27, 28, 31, 41, and 43. Thirteen extra haplotypes were

generated for each of these combinations.

Before questioning the program "PKU's" capabilities, one

needs to be reminded that the purpose of the program was to help

out the geneticists in the PKU analysis of a family by generating

all of the haplotypes, defined and undefined, that satisfied the

input data values for the eight restriction sites at the PAH

locus. Some of these haplotypes may get eliminated if the

collective family data did not support their existence. But the

final saying will go to the geneticists. From the final

haplotype listings provided by the program "PKU" for each member

55

was large variation and difference in the input values for each

member of the family. The thing being tested was whether or not

the program eliminated those haplotypes from the children's lists

that did not belong in the parents' lists, and vice versa.

Because of the variability used in the children's inputs, some

children retained most or all of their haplotypes after the

eliminations, others however lost most or, in extreme cases, all

of their haplotypes from their original haplotype lists after the

elimination process. In real life and in theory, however, one

may expect most of the children's haplotypes to be retained.

This is because since the children's chromosomes are passed on

by the parents, the input values should carry less heterozygosity

at the 8 restriction sites for a child than for the parents'

combined heterozygosities at the eight restriction sites. Errors

in the chemical tests may have an effect on the number of

haplotypes being eliminated for each member of the family, as

described earlier, but these errors are a rarity and cannot be

considered a common event.

If the input values for a child were a subset of the

input values for the two parents combined, then this translates

to the generated haplotypes for the child also being a subset of

the haplotypes generated for the two parents. In real life, one

would expect such to occur. Because of this one would expect all

or most of the haplotypes for the children to be retained. The

parents would also probably retain most of their haplotypes,

57

of the PKU family, the geneticists will choose two haplotypes for

each family member from their respective haplotype lists. The

geneticists may have to use other means, such as their experience

and intuition in dealing with these cases, to come up with the

final two haplotypes for each member of the PKU family. However,

that is not the concern of the program "PKU", and is beyond its

capabilities for reasons mentioned earlier in this chapter.

It would be a safe assumption to make that the shorter

the haplotype list is for an individual, the easier it would be

to narrow it down to two haplotypes. It would be a lot easier to

come up with the actual combination of haplotypes 1 and 2 from

the list 1, 2, 24, and 27 then it would be to come up with the

haplotype combination of 1 and 4 from the generated list 1, 2, 3,

4, 8, 10, 16, 17, 19, 24, 27, 28, 31, 41, and 43. The data from

the fellow family members would be used to assist in coming up

with the final two haplotypes for an individual. Also, the

larger a family the more insight would be provided by the

collective family data. This should make the job easier in

making the final decision. For a family with relatively shorter

lists of haplotypes, the geneticists can show more confidence in

the diagnostic statement of the program declaring a sibling to

be a carrier; especially where the diagnosis is based on the

results of the generated defined haplotypes rather than the

undefined haplotypes. If the sibling was diagnosed to be not a

carrier of the PKU disease by the program -- no defective

58

chromosomes then the geneticists would not even need to

narrow down the haplotype list for the sibling to two first

before agreeing with the diagnostic statement. It would save the

geneticists some time if all they wanted to determine was whether

or not the given sibling was a carrier of the PKU disease.

Reliability is one requirement that every program needs

to fulfill in order to be of much use to its users. By this, it

is meant that a program should be correct in its output for all

inputs, and at all times. This is especially the case for a

program the magnitude of the program "PKU". Once the program is

made available to the geneticists, they would definitely want to

use the program where a family analysis for a PKU family is

required. Although the same thing can be done manually, one

would not expect the geneticists to do that in the presence of

the program "PKU". It is a rather tedious, time-consuming, and

error-prone method to generate the possible RFLP haplotypes by

hand. This would need to be done for each member of the PKU

family. Once the RFLP haplotypes for each member of the family

have been generated, the rest of the diagnosis is not very

difficult especially where the defined haplotypes are concerned.

The undefined haplotypes would be a little more difficult

to deal with since there is no known official numbering system

that would assign a number to a generated undefined haplotype.

The fact so many undefined haplotypes are generated for any

59

attempts made to generate any number of defined haplotypes, it

would be extremely difficult to deal with the undefined

haplotypes for a family analysis. It is a lot easier to work

with a number, or a symbol, or a combination of the two,

respresenting an RFLP haplotype than to work with the haplotype

pattern itself. The reason being, a haplotype is composed of

eight places of "+" and "-" symbols (and "=" in the case of the

Hindiii enzyme) which can occur in any sequence. It would be a

safe assumption to make that the undefined haplotypes may be

ignored for this reason, especially if the defined haplotypes

solve the problem by themselves.

The program "PKU" deals with both defined and undefined

haplotypes and lets the geneticists decide for themselves how

important the undefined haplotypes are to them in comparison with

the defined haplotypes. The program "PKU" employs the same

numbering system for the defined haplotypes as the scientific

community in order to maintain consistency. A different system

could have been employed, however, which would have used the

patterns generated by the values for the eight restriction sites

at the PAH locus as the guidline for the numerical designations

of the haplotypes. For the undefined haplotypes such a system

for numerical designations was employed since no other system

has been used by anyone else to deal with them. Even though the

program did not need any numbering system for the undefined

haplotypes in order to work with them, a numbering system was

60

employed nonetheless so the users would find it easier to deal

with them. Another reason was for efficiency's sake whereby the

numbers, that require very little memory space, were used for

comparison purposes instead of the entire string of symbols that

are the true identity of an RFLP haplotype but that also require

a lot more memory space.

The fact the program "PKU" deals with both defined and

undefined haplotypes should give the geneticists even more

incentive to let it do all the tedious and time-consuming work

for them. Because of the promise this program holds in its

usefulness to the geneticists and its potential widespread use

among geneticists concerned with the family analysis of the PKU

disease, every effort was made, especially in the early stages of

the program's development, to make sure that the program gives

accurate results. A systematic approach was taken in

establishing the accuracy of the program. For each set of inputs

for an individual, it was calculated how many haplotypes should

be generated. The formula used was the total number of

haplotypes equals 2\ where "n" represents the number of

heterozygosities used in the input values for the eight

restriction sites. A blank value was taken as a heterozygosity

as well. A blank value for Hindiii though changed the formula to

3 x 2"-1 since in this case the number of haplotypes generated

would triple instead of double. The generated haplotypes, both

defined and undefined haplotypes, should add up to this number.

61

This is done for a quick check only and does not necessarily

validate the program's accuracy.

The second step was to check if the string values of the

generated haplotypes matched the input values. The generated

defined haplotypes were then compared with the defined haplotypes

chart, Table 1. A check was then made for any errors, i.e., the

numbers and the actual string values for the generated haplotypes

should match those in the chart.

The last step for checking the accuracy of the program

involved waiting until the program had completed the process of

eliminations of the unwanted haplotypes after the inputs were

made for the entire PKU family. A check was made on whether all

of the "unwanted" haplotypes were eliminated from each member of

the family, and if all of the legitimate haplotypes still

remained in the final listings. When satisfied with that outcome

then a reference was made to the chart again, or with the

original listing (before the elimination process), for each

individual to check if the haplotype numbers and the string

values still corresponded with each other.

These checks were made repeatedly in the development of

the program to make sure the program was still accurate and,

thus, reliable. Other checks made throughout were whether the

function "make_changes", when utilized, made the required changes

after a wrong entry had been made for a member of the PKU family.

After the user has made inputs for each of the eight restriction

62

sites for an individual, these values are displayed back to the

user in a chart format, and then the user is asked if he/she

would like to make any changes. If the answer is a "yes" then the

function "make_changes" is employed and the desired changes are

made. After all the changes have been made by the user, the

input values are displayed back to the user again, and again the

user is prompted if any changes are required. Until the user

gives a "no" to this prompt, this cycle will repeat itself. This

is important because any errors made in the input will affect not

only the individual's haplotypes but may very well affect the

other members of the family as well during the elimination

process. After repeated checking, it can be concluded that the

program "PKU" gives accurate and reliable results for any set of

input values.

Besides accuracy, another way of judging a program is

efficiency. Although for practical purposes, it does not matter

how a program works as long as it works accurately, an effort

must be made to make the program efficient in terms of its use of

memory and time. The idea is to use as little of both as

possible and still have a functional program. Sometimes one has

to optimize between the two factors.

In this program, an effort was made to not use more

memory than was needed to make the program run accurately. For

this purpose pointers, i.e., dynamic memory allocations, were

used when it came to storing the haplotype numbers for each

63

member of the family because theoretically there is no limit to

how big a family can be. For all practical purposes, static

arrays for 10 or 20 people could have been used to get the same

results, since most Caucasian families consist of less than 10,

and definitely less than 20 people. Using static arrays takes

less time than the dynamic memory allocations. But arrays take

up unnecessary space in the memory. It was for the conservation

of memory space that pointers were utilized even though they take

a little more time than the static arrays, and are definitely

more complicated to work with.

Another means used to save memory space was to use as

few of variables as possible. For this purpose, same variables

were re-used for other purposes wherever possible instead of

generating new variables. By saving memory space, it was made

sure that the program "PKU" would not require a large amount of

memory to be functional, and therefore, can be run on personal

computers with rather small memories. Although a little time had

to be sacrificed in order to reach this goal, it was deemed worth

it.

There may be a desire among the geneticists to have this

project extended in the future, provided the indirect

polymorphism linkage analysis method has not been replaced by

some other PKU analysis method. The design of this program would

allow for an easy extension. Most likely the geneticists would

64

want the project to be extended so that it would narrow the final

haplotype listings to two haplotypes for each member of the

family. It is easy to think of cases where it would be

impossible to narrow down the listings to two haplotypes with

certainty for each member of the PKU family, especially if the

family was small and each member showed plenty of heterozygosity

for the eight restriction sites at the PAH locus. For other

cases though, it would be quite possible to come up with two

haplotypes for each member of the PKU family under analysis.

However, it would require a programmer with a superior knowledge

of the linkage analysis who has had some experience in RFLP

testing for genetic analysis of the PKU families.

The extension of the program would include another

function, or a set of functions, that would take the haplotypes

remaining from the current haplotype elimination process, and

then reduce the number all the way down to two haplotypes for

each member of the family. Once a way has been found to do that,

it would be a simple process to determine whether or not a

sibling is a carrier of, or is affected by the PKU disease in a

prenatal diagnosis. The two haplotypes for the sibling would be

compared with those for the patient. If both haplotypes match,

i.e., both haplotypes are the same for the patient and the

sibling, then the sibling is affected by the PKU disease. If

only one haplotype matches then the sibling is a carrier of the

PKU disease. Otherwise, the sibling is declared "not a carrier".

65

Documentation was added to the program code so that the

reader, or someone assigned with the task of extending the

program, would have no difficulty following it. An effort was

made to write the code of the program in a readable format.

Also, suitable names were assigned to each function so one could

guess the purpose of a function, i.e., what it does, from its

name alone. This not only helped during the implementation of

the program, but would also help someone else trying to extend it

or just trying to follow it.

Although the program "PKU" could have been implemented

in any higher level programming language that allowed dynamic

memory allocations, the programming language Turbo C was employed

for this purpose. Currently, C is in widespread use, and its

demand is still on the rise. The project provided an opportunity

to get acquainted with the language. As well, the choice of this

programming language would create little hindrance for someone

else wanting to extend the program. There might have been a

problem if a lesser known programming language were used for

implementing the program, as it may have forced the programmer to

learn a new programming language first before proceeding with

programming.

While major extensions of the program "PKU" in the future

were kept in mind during the design of the program, other smaller

foreseeable additions were also taken care of. To keep the

program useful and not let it become outdated, it would be

66

necessary to add the newly defined haplotypes to the defined

haplotypes chart in the program. The program was designed so

that it would easily incorporate the newly defined haplotypes.

The scheme for doing this has been described earlier in detail

see Chapter 2. Those new defined haplotypes of the future

would actually come from the undefined haplotypes list of the

present. The program was designed so that every time those new

haplotypes are generated, the older numbers from the "Other

Haplotypes" chart that used to represent them would also appear

right beside the new numbers assigned to them. The idea is to

make it easier for the geneticists to cross reference the newly

defined haplotypes with the older undefined haplotypes. This way

it would be easy to check if the newly defined haplotype(s) had

previously appeared in other PKU families under the "Other

Haplotypes" category.

An effort was made in the design of the program to make

it user-friendly. Only limited knowledge in the field of linkage

analysis using RFLP testing is required of the user to run this

program. Even though the users should know what the symbols "+",

"-" and "=" stand for in terms of the length of fragments

obtained after digestion with a given enzyme, a chart is provided

nonetheless which lists such a correspondence. That chart, Table

2, is displayed at the beginning each time input values are

required for a member of the PKU family. Two input values are

required for each of the eight restriction sites. For the

67

convenience of the users, and to avoid typing mistakes, each

entry is taken on a separate line. In case the user makes a

mistake in an input, the change option, which is provided at the

end of each set of inputs for an individual, can be used to

correct those errors.

Also, each time an input is required from the user for

either the input values for the eight restriction sites, or to

respond to an option, the function "get_string" is employed.

This function specializes in getting the input string value from

the user and then returning the string value to the calling

procedure after modifying it such that the extra and the

unnecessary spaces have been removed from it. It is not an

uncommon practice for people to press the space bar by accident

when typing. The employment of the function "get_string" is to

avoid delays for the users in case of minor, insignificant

errors. The user would not be asked to give the input value

again in case of these errors.

In summary, DNA polymorphisms at the PAH locus are used

to obtain haplotypes through restriction enzyme analysis. These

haplotypes are used to determine disease or carrier status in

families with PKU. The program "PKU" was designed to assist the

geneticists concerned with this task. It does this by generating

all of the haplotypes that fit into the description provided by

the chemical analysis. It then does a collective family analysis

68

to eliminate those haplotypes from each family member's haplotype

lists that are not supported by other members of the PKU family.

The idea is to narrow down the lists of haplotypes generated for

each member of the PKU family so the geneticists will have an

easier time coming up with the final 2 haplotypes for each

person. The program "PKU" also determines a sibling's carrier

status. If a sibling was diagnosed to be a carrier then it would

not be as alarming for the sibling as it would be for his, or

her, children if the mate was also a carrier of the PKU disease.

There would be no cause for concern, however, if the sibling was

diagnosed as "not a carrier" of the PKU disease, in which case

both of his/her chromosomes are normal.

CHAPTER 6

Program Specification

#define NUM DEFINED 46; the constant NUM DEFINED refers to the
total number-of defined haplotypes to date.

#define NUM UNDEFINED 384; the contstant NUM UNDEFINED refers
to the total number of haplotypes that can theoretically exist.

struct chrom {

char enz[10];

char status[3];

} ;

the structure "chrom" stores the name of the enzymes in the field
"enz", while the "status" is used to store the input values (+,
, or =) that were obtained from the chemical tests and entered in
by the user.

struct haplos

int chrom_num;

char chrom_cuts [10];

int presence;

} ;

the structure "haplos" stores the numbers of the haplotypes in
the field "chrom_num", the string values of the haplotypes in the
field "chrom_cuts", and the "presence" is used as a flag to
determine if the given haplotype exists for the individual under
analysis.

struct stack {

int haplo_num;

struct stack *next;

} ;

the list "stack" is used to store the numbers of the haplotypes
that are obtained for the members of the pku family.

struct chrom chromes;
"chromes'' is used to store the restriction enzyme information.

struct haplos haplotypes;

69

70

"haplotypes" is used to store the information for the defined
haplotypes.

struct haplos other_haplos;
"other_haplos" is used to store the information for all 384
haplotypes.

struct stack *defined_path;
"defined_path" contains a pointer to the beginnning of the list
containing the numbers of the defined haplotypes for the family.

struct stack *undefined_path;
"undefined_path" contains a pointer to the beginning of the list
containing the numbers of the undefined haplotypes for the
family.

struct stack *defined_list;
"defined list" is an extension of the "defined_path" and is used
to store the numbers of the defined haplotypes for the family
members.

struct stack *undefined_list;
"undefined_list" is an extension of the "undefined path" and is
used to store the numbers of the undefined haplotypes .for the
family members.

print_chart ()

print_chart displays a table showing names of the

restriction enzymes, the symbols used for the data inputs, and

the sizes of the fragments (in kbp) that these symbols represent

for the corresponding restriction enzymes digestion products.

71

name_assignments (chromes)

struct chrom *chromes;

name_assignments stores the names of the restriction

enzymes used for the analysis under the "chromes" structure.

haplo_assignments (haplotypes)

struct haplos *haplotypes;

haplo_assignments stores the defined haplotypes (their

configurations and their corresponding numbers) under the

"haplotypes" structure. It also assigns the haplotypes. presence,

which is to be used as a flag, to equal 0 for all of the

haplotypes. The 0 is to be replaced by a 1 later on by another

function for the corresponding haplotypes if they were determined

to be present in the individual being examined.

other_haplos_assignments (other_haplos)

struct haplos *other_haplos;

other_haplos_assignments generates all 384 possible

haplotypes that can theoretically exist. They are stored under

the "other_haplos" structure. This function assigns each of the

haplotypes (defined and undefined) a number from 1 to 384. The

"other_haplos.presence" for each of these haplos is set to equal

0 which will be changed later on to 1 by another function if the

corresponding haplotypes are determined to be present in the

individual being examined.

72

get_string (s)

char s[80];

get_string gets the input string from the user and then

removes all of the blanks (spaces) from it. It then returns the

resulting string value to the calling function.

get_values (chromes, i)

struct chrom *chromes;

int i;

get_values prompts the user to give the input values for

the enzymes. The enzymes are represented by "chromos[i]". The

acceptable input values are "+", "-", or a blank entry. For the

enzyme Hindi!!, represented by "chromes [6] ", an additional symbol

"=" is also accepted. In case of errors in the input, an error

message is displayed on the terminal and the user is prompted to

give the input values again.

display_data (chromes)

struct chorm *chromes;

display_data displays back the data entered in by the

user in a tabular form.

make_changes (chromos)

struct chrom *chromos;

73

make_changes displays the inputs made by the user for the

restriction enzyme cuts one by one, and after each display it

asks the user if he/she would like to make any changes to the

input. If the answer is a "yes" then it calls the "get_values"

function to replace the previous cut with the new cut.

get_nums_of_chroms (haplotypes, other_haplos)

struct haplos *haplotypes, *other_haplos;

get_nums_of_chroms checks for the presence of the defined

chromosomes in "haplotypes" for the individual being examined.

If any of the defined haplotypes are present (i.e.

haplotypes.presence = 1) then the corresponding numbers of these

haplotypes are stored in the structure "defined list". If any of

the undefined haplotypes are present (i.e. other_haplos.presence

= 1) then the corresponding numbers of these haplotypes are

stored in the structure "undefined list".

eliminate_children_haplos ()

eliminate_children_haplos eliminates those haplotypes for

the patient and the siblings from the structures "defined list"

and "undefined list" that do not belong to the parents'

haplotypes lists for their defined and undefined haplotypes. In

other words, only those haplotypes are retained for the patient

and the siblings that correspond with the parents' haplotypes.

74

eliminate_parents_haplos (family)

int family;

eliminate_parents_haplos eliminates those haplotypes for

the parents from the structures "defined list" and

"undefined list" that do not belong to any of their childrens'

haplotype lists. At least 2 children must be included in the

family analysis, i.e. family >= 4, in order to eliminate any of

the haplotypes from the parents' haplotypes lists. If the total

number of defined haplotypes for a parent would become less than

two after the eliminations then the elimination procedure is to

be withheld for that parent.

diagnosis (i)

int i;

diagnosis determines if the sibling is a carrier of the

pku disease or not. It first compares the haplotypes obtained

for the sibling with those obtained for the patient. If any of

the haplotypes that are present in the sibling (defined or

undefined haplotypes) are also present in the patient then the

sibling is a carrier of the pku disease. Other wise, the sibling

is not a carrier. This function then displays the diagnostic

statement onto the terminal screen. If only the undefined

haplotypes matched for the sibling and the patient then an

appropriate message lets the user know about it.

75

compare (haplo, haplotypes, other_haplos)

char haplo[8];

struct haplos *haplotypes, *other_haplos;

compare is called by the function "determine_haplotypes"

to check if the haplotype generated from the input by the user

belongs to the defined haplotype list ("haplotypes") or if it

belongs to one of the undefined haplotypes ("other_haplos"). The

presence of that haplotype is then marked by assigning

haplotypes.presence 1, or other_haplos.presence = 1, depending

on which haplotype it corresponds to.

determine_haplotypes (chromos, haplotypes, other_haplos)

struct chrom *chromos;

struct haplos *haplotypes, *other_haplos;

determine_haplotypes takes the values given by the user

and stored in the structure "chromos", and generates the possible

haplotypes from them. If a null value was given for any of the

restriction enzyme cuts, this function replaces that with a '+/

' for that restriction enzyme; and if that restriction enzyme was

Hindiii, then a '+/-/=' is assigned for that cut. It then calls

the function "compare" to assign these haplotypes to either the

defined haplotypes list ("haplotypes") by assigning

haplotypes.presence = 1, or the undefined haplotypes list

("other_haplos") by assigning other_haplos.presence = 1.

76

next_family_member ()

next_family_member asks the user if he/she would like to

continue the family analysis with another member of the family.

It returns '1' to the main program if the answer is yes; it

returns a '0' to the main program if the answer is no. A blank

entry is to be taken as a 'yes'.

print_more ()

print_more asks the user if he/she would like to continue

with the display of the haplotypes for the individual. It

returns '1' to the calling function if the answer is yes; it

returns a '0' to the m;ain program if the answer is no. A blank

entry is to be taken as a 'yes'.

print_haplotypes (haplotypes, other_haplos, chromes)

struct haplos *haplotypes, *other_haplos;

struct chrom *chromes;

print_haplotypes displays all the haplotypes generated

from the input by the user. The haploytpes are categorized

according to their presence in either the defined haplotypes list

("haplotypes") or the undefined haplotypes list ("other_haplos").

After every 20 lines, the user is asked whether he/she would like

to continue with display -- function "print_more" is employed for

this purpose. Also, in case of new haplotypes being added to the

defined list, the display will also contain, in brakets, the

77

number from the undefined haplotypes list that was used to

categorize that haplotype previously.

print_family_data (haplotypes,other_haplos,chromos,family)

struct haplos *haplotypes, *other_haplos;

struct chrom *chromes;

int family;

print_family_data displays the entire famiy's haplotypes

after the family analysis had been done. It calls the function

"print_haplotypes" for each family member in order to display

their respective haplotypes.

patient_analysis_only (chromes, haplotypes, other_haplos)

struct chrom *chromes;

struct haplos *haplotypes, *other_haplos;

patient_analysis_only does the job of the main program

if the user had selected the option of 'PATIENT ANALYSIS ONLY'

from the main menu. It does the entire analysis for the patient

in determining his/her haplotypes by calling up the appropriate

functions.

ini tial_menu ()

initial_menu displays the initial menu to the user and

prompts him/her to select from it. The options it offers are:

78

(1) a full family analysis, (2) patient analysis only,. and (3)

quit. It then returns the corresponding number to the main

program.

79

Figure 2.: Function Dependency Graph

Main I
I initial_menul

..1

[patient_analysis_onlyj
....

Iprint_chart I lname_assignmentsJ

1
!haplo_assignments lother haplo J

as si_g_nment s
1 I

1'

lget_valuesldisplay_data make_changesJ
1'

determine haplotype~ ~rint_ J
haplotypes

get_nums_of_ J
chroms

I
!compare! !print more

l J I
print_family_ eliminate children eliminate- -data haplos parents haplos

I
I 1 1

next_family_ !diagnosisI
member

l
I I I1

1get_stringJ

BIBLIOGRAPHY

Chakraborty, Ranajit, et al. (1987). "Polymorphic DNA
haplotypes at the human phenylalanine hydroxylase
locus and their relationship with phenylketonuria".
American Journal of Human Genetics, 76:40-46.

Chang, Patricia, et al. (1990). "Molecular Diagnosis of
Phenylketonuria". J. Int. Fed. Clin. Chern. in press.

Daiger, Stephen P., et al. (1989). "Polymorphic DNA
Haplotypes at the Phenylalanine Hydroxylase (PAH) Locus
in European Families with Phenylketonuria (PKU)".
American Journal of Human Genetics, 45:310-318.

Daiger, Stepehn P., et al. (1989). "Polymorphic DNA
Haplotypes at the Phenylalanine Hydroxylase (PAH) Locus
in Asian Families with Phenylketonuria (PKU)".
American Journal of Human Genetics, 45:319-324.

DiLella AG, et al. (1986a). "Molecular structure and
polymorphic map of the human phenylalanine hydroxylase
gene". Biochemistry, 25:743-749.

DiLella AG, et al. (1984). "An amino acid substitution
involved in phenylketonuria is in linkage disequilib
rium with DNA haplotype 2". Nature, 327:333-336.

Fairley, Richard E. Software Engineering Concepts.
McGraw-Hill, Inc., 1985, New York, USA.

Horspool, R. Nigel. C Programming in the Berkely Unix
Environment, Prentice-Hall Canada Inc., 1986,
Scarborough, Ontario.

Kidd KK (1987). "Phenylketonuria: population genetics of
a disease". Nature, 327:282-283.

Lidsky, A.S., et al. (1985). "Extensive restriction site
polymorphism at the human phenylalanine hydroxylase
locus and application in prenatal diagnosis of
phenylketonuria". American Journal of Human Genetics,
37:619-634.

80

81

Old, 	 R.W., & Primrose, S.B. Principles of Gene Manipulation,
Blackwell Scientific Publications, 1980, University
Press, Cambridge, Great Britain.

Stryer, Lubert. Biochemistry, W.H. Freeman & Company, 1975,
New York, U.S.A.

Sullivan, S.E., et al. (1989). "Haplotype Distribution of
the Human Phenylalanine Hydroxylase Locus in Scotland
and Switzerland". American Journal of Human Genetics,
44:652-659.

Woo, 	 S.L.C. (1988). "Collation of RFLP haplotypes at the
human phenylalanine hydroxylase (PAH) locus". American
Journal of Human Genetics, 43:781-783.

Woo, 	 S.L.C., et al. (1983). "Cloned human phenylalanine
hydroxylase gene allows prenatal diagnosis and carrier
detection of classical phenylketonuria". Nature,
306:151-155.

APPENDIX I

USERS I MANUAL

To get started, insert the floppy disk containing the

executable file of the program "PKU" in a computer drive and type

"pku". The following menu will be displayed on the computer

terminal screen:

**
**
**** *****
**** *****
**** OPTIONS: *****
**** *****
**** 1. FAMILY ANALYSIS *****
**** 2. PATIENT ANALYSIS ONLY *****
**** 3. QUIT *****
**** *****
**** *****
**
**

Select from above please:

Typing "3" will terminate the program. If one only wanted to

determine haplotypes for one person then the second option would

be chosen -- type "2". For a full family analysis, the first

option would be chosen-- type "1".

If the first option was selected then the program "PKU"

82

83

would ask for input data to PARENT #1, PARENT #2, the PATIENT,

and the SIBLINGS in that order.

At the beginning of each, the following chart would be

displayed.

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV
Symbol:
+ 6.0 1.7 9.1 11.0 6.5 19.0 4.0 25.0

19.0 3.6 11.5 17.0 9.4 23.0 4.2 30.0
4.4

The program then asks for the input values for the restriction

enzymes. Only "+" or "-" is accepted by the program for these

input values -- for Hindiii "=" is also accepted.

For example, if both positive and negative values were

obtained for Pvuiia then a "+" should be entered for the prompt:

(i) Pvuiia (+/-)

and a "-" should be entered for the prompt:

(ii) Pvuiia (+/-)

It would make no difference if "-" was entered first, and "+"

entered second. In case of no result being obtained from the

chemical analysis for a restriction site, a blank entry should be

made by hitting the "return" key without typing anything else.

The data entered is then displayed back to the user and

the user is asked if any changes are desired. Either "y" or "Y"

should be entered for changes, or "n" or "N" if the user is

satisfied with the input.

84

The program would then display the generated defined

haplotypes for the individual and then ask the user whether to

continue with the display of haplotypes:

CONTINUE DISPLAY?(y/n) :

A blank entry would be taken to mean "yes" by default. If the

entry was a "yes" then the generated undefined haplotypes would

also be displayed.

The program then asks the user if more individuals are

to be involved in the family analysis:

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

A blank entry would be taken to mean "yes" by default. The above

cycle would continue until the user enters "n" or "N" for "no" to

the above prompt. In that case the program would do a collective

family analysis to eliminate those haplotypes from the

individuals' lists that are not supported by the other family

members. The program then displays the resulting lists for the

members of the PKU family in the same order as they were prompted

for: PARENT #1, PARENT #2, the PATIENT, SIBLING #1, SIBLING #2,

and so on in that order. After display of the defined

haplotypes, the program asks:

CONTINUE DISPLAY?(y/n)

If the answer was "yes" then the undefined haplotypes would also

be displayed. Otherwise, the program would ask if the display

should continue with the next family member:

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

85

Again, a blank entry is taken to mean "yes" by default and the

haplotypes for the next family member would be displayed. To

terminate the execution of the program, an "n" or "N" should be

typed, and the remaining members of the family will be skipped.

Otherwise, the program will terminate itself once all of the

family members have been accounted for.

APPENDIX II

Sample Executions

maccs[25] pku

**** ****
**** ****
**** OPTIONS: ****
**** ****
**** 1. FAMILY ANALYSIS ****
**** 2. PATIENT ANALYSIS ONLY ****
**** 3. QUIT ****
**** ****
**** ****

Select from above please: 1

ENTER DATA FOR PARENT #1 PLEASE

Pvuiia Bglii Pvuiib EcoRI Xrnni Mspi Hindiii EcoRV
Symbol:

+ 6.0 1.7 9.1 11.0 6.5 19.0 4.0 25.0
19.0 3.6 11.5 17.0 9.4 23.0 4.2 30.0

4.4

GIVE THE INPUT VALUES FOR THE RESTRICTION ENZYMES PLEASE

(i) Pvuiia (+/-)

86

87

(ii) Pvuiia (+1->

(i)
(ii)

Bglii
Bglii

(+I-)
(+1->

(i)
(ii)

Pvuiib
Pvuiib

(+I->
(+1-)

(i)

(ii)
EcoRI
EcoRI

(+I-)
(+I-)

(i)
(ii)

Xmni
Xmni

(+1->
(+I-)

(i)
(ii)

Mspi
Mspi

(+I-)
(+I-)

(i)
(ii)

Hindi II
Hindi II

(+1-1=>:
(+1-1=>:

(i)
(ii)

EcoRV
EcoRV

(+I-)
(+I-)

DJI_T A ENTERED :

Fvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

-I I I -I I -I -I -1-1

ANY CHANGES?(yln) y

Pvuiia -I
change? (yin) n

Bglii I
change? (yin) y

(i)
(ii)

Bglii
Bglii

(+I-)
(+I-)

+

Pvuiib I
change?(yln) n

EcoRI -I
change? (yIn) n

Xmni I
change?(yln) N

8e

Mspi -I
change? (yIn) n

Hindi II -I
change? (yIn) n

EcoRV -I
change? (yin) n

DATA ENTERED:

Pvuiia Bglii Pvuiib EcoRI Xrnni Mspi Hindiii EcoRV

-I- +I- I -I- I -I- -I- -1-1

JI.NY CHANGES? (yIn) n

Defined Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

29 +

40 + +

CONTINUE DISPLAY?(yln)

A[[;HA[[2J

Other Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

T-226 + + +

T-238 + +

T-322 + +

T-334 +

T-370 +

T-382

CONTINUE WITH NEXT FAMILY MEMBER?(yln)

89

FOR PARENT #2 PLEASE
ENTER DATA

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

Symbol:

+ 6.0 1.7 9.1 11.0 6.5 19.0 4.0 25.0

.......... 19.0 3.6 11.5 17.0 9.4 23.0 4.2 30.0

.......... 4.4

GIVE THE INPUT VALUES FOR THE RESTRICTION ENZYMES PLEASE

(i) Pvuiia (+ /-) +
(ii) Pvuiia (+ /-)

(i) Bglii (+/-) +
(ii) Bglii (+/-)

(i) Pvuiib (+/-)
(ii) Pvuiib (+ /-)

(i) EcoRI (+/-)
(ii) EcoRI (+/-)

(i) Xmni (+/-)
(ii) Xmni (+ /-)

(i) Mspi (+ /-)

{ii) Mspi (+ /-)

(i) Hindi II (+/-/=):
(ii) Hindi II (+/-/=):

(i) EcoRV (+/-)
(ii) EcoRV (+/-)

DATA ENTERED:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

+I- +I I -I- -I- I -I- -1-1

90

ANY CHANGES?(y/n) n

Defined Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

1 + +
26 + + +

29 +

32 + +

36 + + +

37 +

CONTINUE DISPLAY?(y/n)

Other Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

T-40 + + + +

T-46 + + +

T-94 + +

T-136 + + +

T-142 + +

T-190 +

T-238 + +

T-328 + +

T-334 +

T-382

CONTINUE WITH NEXT FAMILY MEMBER?(y/n) Y

ENTER DATA FOR THE PATIENT PLEASE

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

Symbol:

9i

+ 6.0 1.7 9.1 11.0 6.5 19.0 4.0 25.0

19.0 3.6 11.5 17.0 9.4 23.0 4. 2 30.0

4.4

GIVE THE INPUT VALUES FOR THE RESTRICTION ENZYMES PLEASE

(i) Pvuiia (+/-)
(ii) Pvuiia (+/-)

(i) Bglii (+/-) +
(ii) Bglii (+/ -)

(i) Pvuiib (+I-) +
(ii) Pvuiib (+I-)

(i) EcoRI (+I-)
(ii) EcoRI (+/-)

(i) Xmni (+ 1-)
(ii) Xmni (+I-)

(i) Mspi (+1-) +
(ii) Mspi (+ 1-)

(i) Hindi II (+1-1=):
(ii) Hindi II (+1-1=):

(i) EcoRV (+I-)
(ii) EcoRV (+I-)

DATA ENTERED:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

-I- +I- +I- -I- -I- +I- -I

ANY CHANGES?(yln) n

Defined Haplotypes:

I

92

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

29 +
32 + +
33 + + +
36 + + +
37 +

CONTINUE DISPLAY?(y/n)

Other Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

T-231 + + + +

T-237 + + +

T-238 + +

T-285 + +

T-327 + + +

T-328 + +

T-333 + +

T-334 +

T-375 + +

T-381 +

T-382

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

ENTER DATA FOR A SIBLING PLEASE

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

Symbol:

+ 6.0 1.7 9.1 11.0 6.5 19.0 4.0 25.0

.......... 19.0 3.6 11.5 17.0 9.4 23.0 4.2 30.0

.......... 4.4

GIVE THE INPUT VALUES FOR THE RESTRICTION ENZYMES PLEASE

93

(i)
(ii)

Pvuiia
Pvuiia

(+1-)
(+1-)

(i) Bglii
(ii) Bglii

(+I-)
(+I-)

+

(i)
(ii)

Pvuiib
Pvuiib

(+1-)
(+1-)

(i)
(ii)

EcoRI
EcoRI

(+I-)
(+I-)

(i)
(ii)

Xmni
Xmni

(+I-)
(+ 1-)

(i)
(ii)

Mspi
Mspi

<+I-)
(+I-)

(i)
(ii)

Hindi II
Hindi II

(+1-1=):
(+1-1=):

(i)

(ii)
EcoRV
EcoRV

(+I-)
(+I-)

DATA ENTERED:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

-I +I -I I -I I -I -/-1

ANY CHANGES?(yln) n

Defined Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

14
29
32
34
37
42

+
+
+

+

+

+

+

+

+
+
+

CONTINUE DISPLAY?(yln) y

94

Other Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

T-358 +
T-382

CONTINUE WITH NEXT FAMILY MEMBER?(yln)

ENTER DATA FOR A SIBLING PLEASE

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

Symbol:

+ 6.0 1.7 9.1 11.0 6.5 19.0 4.0 25.0

.......... 19.0 3.6 11.5 17.0 9.4 23.0 4.2 30.0

= 4.4

GIVE THE INPUT VALUES FOR THE RESTRICTION ENZYMES PLEASE

(i) Pvuiia (+ 1-) +
(ii) Pvuiia (+I-)

(i) Bglii (+I-)
(ii) Bglii (+I-)

(i) Pvuiib (+1-)
(ii) Pvuiib (+I-)

(i) EcoRI (+I-)
(ii) EcoRI (+I-)

(i) Xmni (+I-)
(ii) Xmni (+I-)

(i) Mspi (+I-) +

(ii) Mspi (+1-)

(i) Hindiii (+1-1=) :
(ii) Hindiii (+1-1=):

(i) EcoRV (+1-)
(ii) EcoRV (+1-)

DATA ENTERED:

Pvuiia Bglii Pvuiib EcoRI

+I- -I- I I

ANY CHANGES?(yln) n

Defined Haplotypes:

Pvuiia Bglii Pvuiib

1 +
3 +

10 +

14

17 +

20 +

37

39 + +

43 +

CONTINUE DISPLAY?(yln)

Other Haplotypes:

Pvuiia Bglii Pvuiib

T-100 + +
T-106 + +
T-118 + +
T-124 + +
T-130 + +
T-136 + +
T-142 + +
T-148 +

Xmni Mspi Hindiii EcoRV

I +I- -I- -1-1

EcoRI Xmni Mspi Hindi II EcoRV

+

+ +

+ +

+ +

+

+ +

+

+ +

+ +

EcoRI Xmni Mspi Hindi II EcoRV

+ + +

+ +

+

+ +
+

+

+ + +

96

T-178 + +

T-190 +

T-292 + + +

T-298 + + +

T-310 + +

T-316 + +

T-322 + +

T-328 +

T-334 +

T-340 + +

T-346 + +

T-358 +

CONTINUE DISPLAY?(y/n)

T-364 +
T-370 +
T-382

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

ENTER DATA FOR A SIBLING PLEASE

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II
Symbol:

+ 6.0 1.7 9.1 11.0 6.5 19.0 4.0

.......... 19.0 3.6 11.5 17.0 9.4 23.0 4.2

.......... 4.4

GIVE THE INPUT VALUES FOR THE RESTRICTION ENZYMES PLEASE

(i) Pvuiia (+/-)
(ii) Pvuiia (+/-)

+

+

+

+

+

EcoRV

25.0
30.0

97

(i) Bg1 I I (+I-)
(i i) Bg1 I I (+I-)

(i) Pvuiib (+1-)
(ii) Pvuiib (+1-)

(i) EcoRI (+1-)
(ii) EcoRI (+1-)

(i) Xmni (+1-)
(ii) Xmni (+1-)

(i) Mspi (+1-)
(ii) Mspi (+1-)

(i) Hindiii (+1-1=) :
(ii) Hindiii (+1-1=):

(i) EcoRV (+1-)
(ii) EcoRV (+1-)

DATA ENTERED:

Pvuiia Bg1II Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

-I- I -I- I -I- 1- -I- -1-1

ANY CHANGES?(yln) y

Pvuiia -I
change? (yIn) n

Bg1II I

change? (yIn) n

Pvuiib -I
change? (yIn) n

EcoRI I

change? (yIn) y

(i) EcoRI (+1-)
(ii) 	EcoRI (+I-) +

Xmni -I
change?(yln) n

9B

Mspi 1

(i) Mspi (+/-)
(ii) 	Mspi (+/-)

Hindi II

EcoRV -I

DATA ENTERED:

Pvuiia Bglii

-I- I

ANY CHANGES?(y/n)

Defined Haplotypes:

Pvuiia
29
42

change? (y /n) y

-I
change? (y /n)

change?(y/n)

n

n

Pvuiib

-I

n"H "Hn

EcoRI

-I+

Xmni

-I-

Mspi

-I-

Hindiii

-I-

EcoRV

-/-1

Bglii
+
+

Pvuiib EcoRI

+

Xmni Mspi Hindiii EcoRV

CONTINUE DISPLAY?(y/n) y

Other Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

T-358 +
T-382

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

99

ENTER DATA FOR A SIBLING PLEASE

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

Symbol:

+ 6.0 1.7 9.1 11.0 6.5 19.0 4.0 25.0

.......... 19.0 3.6 11.5 17.0 9.4 23.0 4.2 30.0

.......... 4.4

GIVE THE INPUT VALUES FOR THE RESTRICTION ENZYMES PLEASE

(i) Pvuiia (+1-)
(ii) Pvuiia (+I-)

(i) Bglii (+I-)
(ii) Bglii (+I-)

(i) Pvuiib (+1-)
(ii) Pvuiib (+I-)

(i) EcoRI (+I-)
(ii) EcoRI (+I-)

(i) Xmni (+1-)
(ii) Xmni (+I-)

(i) Mspi (+I-)
(ii) Mspi (+ 1-)

(i) Hindi II (+1-1=):
(ii) Hindi II (+1-1=):

(i) EcoRV (+I-) +
(ii) EcoRV (+I-)

DATA ENTERED:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

-I- -I- I -I- I -I- -I- +I-I

ANY CHANGES?(yln)

ANY CHANGES?(yln) n

100

Defined Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi II EcoRV

NONE EXIST!!!

CONTINUE DISPLAY?(y/n)

Other

T-321
T-322
T-333
T-334
T-369
T-370
T-381
T-382

Haplotypes:

Pvuiia Bglii Pvuiib

+
+
+
+

EcoRI Xmni Mspi

+
+

+
+

Hindiii EcoRV

+

+

+

+

CONTINUE WITH NEXT FAMILY MEMBER?(y/n) n

POSSIBLE HAPLOTYPES FOR PARENT #1 AFTER FAMILY ANALYSIS

Defined Haplotypes:

29
40

Pvuiia Bglii

+
+

Pvuiib EcoRI Xmni Mspi

+

Hindi I I EcoRV

CONTINUE DISPLAY?(y/n)

101

Other Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi

T-238 + +

T-322 + +

T-334 +

T-370 +

T-382

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

POSSIBLE HAPLOTYPES FOR PARENT #2 AFTER FAMILY ANALYSIS

Defined Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi

1 + +
29 +
32 + +
36 + + +
37 +

CONTINUE DISPLAY?(y/n)

Other Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi

T-136 + + +

T-142 + +

T-190 +

T-238 + +

T-328 + +

T-334 +

T-382

Hindi I I EcoRV

Hindiii EcoRV

Hindi II EcoRV

102

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

POSSIBLE HAPLOTYPE$ FOR THE PATIENT AFTER FAMILY ANALYSIS

Defined Haplotypes:

29
32
36
37

Pvuiia Bglii

+
+
+

Pvuiib

+

EcoRI Xmni Mspi

+
+
+

Hindiii EcoRV

CONTINUE DISPLAY?(y/n)

Other

T-238
T-328
T-334
T-382

Haplotypes:

Pvuiia Bglii

+

Pvuiib

+
+
+

EcoRI Xmni Mspi

+

Hindiii EcoRV

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

POSSIBLE HAPLOTYPE$ FOR SIBLING #1 AFTER FAMILY ANALYSIS

Defined Haplotypes:

29
32
37

Pvuiia Bglii

+
+

Pvuiib EcoRI Xmni Mspi

+
+

Hindiii EcoRV

CONTINUE DISPLAY?(y/n)

103

Other Haplotypes:

Pvuiia

T-382

Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

DIAGNOSIS THE SIBLING IS A POTENTIAL CARRIER

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

POSSIBLE HAPLOTYPES FOR SIBLING #2 AFTER FAMILY ANALYSIS

Defined Haplotypes:

1
37

Pvuiia

+

Bglii Pvuiib

CONTINUE DISPLAY?(y/n)

EcoRI Xmni Mspi

+
+

Hindi I I EcoRV

Other Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

T-136
T-142
T-190
T-322
T-328
T-334
T-370
T-382

+
+
+

+
+

+
+
+

+

+

+

+

104

DIAGNOSIS THE SIBLING IS A POTENTIAL CARRIER

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

POSSIBLE HAPLOTYPES FOR SIBLING #3 AFTER FAMILY ANALYSIS

Defined Haplotypes:

Pvuiia Bglii

+

Pvuiib

29

CONTINUE DISPLAY?(y/n)

EcoRI Xmni Mspi Hindiii Rd

Other

T-382

Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindiii EcoRV

DIAGNOSIS THE SIBLING IS A POTENTIAL CARRIER

CONTINUE WITH NEXT FAMILY MEMBER?(y/n)

POSSIBLE HAPLOTYPES FOR SIBLING #4 AFTER FAMILY ANALYSIS

Defined Haplotypes:

Pvuiia Bglii Pvuiib

NONE EXIST!! !

EcoRI Xmni Mspi Hindiii EcoRV

lOS

CONTINUE DISPLAY?(y/n)

Other Haplotypes:

Pvuiia Bglii Pvuiib EcoRI Xmni Mspi Hindi I I EcoRV

T-322 + +

T-334 +

T-370 +

T-382

DIAGNOSIS 	 THE SIBLING IS A POTENTIAL CARRIER

NOTE : 	 THIS CONCLUSION IS BASED ON THE ANALYSIS
OF THE UNDEFINED HAPLOTYPES. BASED ON
THE ANALYSIS OF THE DEFINED HAPLOTYPES
ALONE, THE SIBLING IS NOT A CARRIER.

APPENDIX III

Program Code

/***
**
**
********** **********

M.Sc. IN COMPUTATION
=====================

PROJECT
========

********** **********

Title
Name
ID
Supervisors

PKU ANALYSIS
Afzal M. Qureshi
8405259
Dr. R. Janicki
Dr. P. Chang

**
**
**/

#include <stdio.h>
#include <string.h>
#include <ctype.h>

#define NUM_DEFINED 46;
#define NUM UNDEFINED 384;

struct chrorn {
char enz[lO];
char status[3];
} ;

struct haplos
int chrorn nurn;
char chrorn_cuts[lO];
int presence;
} ;

106

107

struct stack {
int haplo_num;

struct stack *next;
} ;

struct stack *defined path, /*contains the entire family's
-defined haplotypes' numbers *I

undefined_path, / contains the entire family's
undefined haplotypes' numbers */

*undefined_list,
*defined_list;

/***
** clrscr() clears the screen on the computer terminal and starts the**
** display on a new page. **
**/

clrscr ()

int 1;

system ("clear", 1);

return;

/**

** print_chart displays a table showing names of the restriction **
** enzymes, the symbols used for the data inputs, and the sizes of the **
** fragments (in kbp) that these symbols represent for the corresponding**
** restriction enzymes digestion products. **
***/

print_chart ()

108

printf ("\n\n\t\tPvuiia\tBglii\tPvuiib\tEcoRI\tXrnni\tMspi\tHindiii\tEcoRV\n"}
printf(" Symbol:\n + \t 6.0\t 1.7\t 9.1\t 11.0\t 6.5\t19.0\

4.0\t 25.0\n"};
printf(" - \t 19.0\t 3.6\t 11.5\t 17.0\t 9.4\t23.0\t 4.2\t 30.0\n"}
printf(" = \t\t\t\t\t\t\t 4.4\n"};

printf ("\n\nGIVE THE INPUT VALUES FOR THE RESTRICTION ENZYMES PLEASE\n\n"};

return;

/**
** name_assignments stores the names of the restriction enzymes, used **
** for the analysis, under the 'chromos' structure. **
***/

name_assignments (chromos

struct chrom *chromes;

strcpy chromos[O] .enz, "Pvuiia");

strcpy chromos[l] .enz, "Bglii" };

strcpy chromos[2] .enz, "Pvuiib");

strcpy chromos[3] .enz, "EcoRI");

strcpy chromos[4] .enz, "Xmni");

strcpy chromos[5] .enz, "Mspi");

strcpy chromos[6) .enz, "Hindiii");

strcpy chromos[7) .enz, "EcoRV");

return;

/**
** haplo_assignments stores the defined haplotypes (their configura- **

109

** tions and their corresponding numbers) under the 'haplotypes' **
** structure. It also assigns the haplotypes.presence to equal 0 **
** for all of the haplotypes. The 0 will be replaced by a 1 later **
** on by another function for the corresponding haplotypes if they **
** were determined to be present in the individual being examined. **
***/

haplo_assignments (haplotypes)

struct haplos *haplotypes;

int i,num;

strcpy (haplotypes[O] .chrom_cuts, "+----+--") ;

strcpy (haplotypes[1] .chrom_cuts, "+----+++") ;

strcpy (haplotypes[2] .chrom_cuts, "+--++---") ;

strcpy (haplotypes[3] .chrom_cuts, "+--++-++") ;

strcpy (haplotypes[4] .chrom_cuts, "-+++-+-+") ;

strcpy (haplotypes[5] .chrom_cuts, "-+++-+--") ;

strcpy (haplotypes[6] .chrom_cuts, "-+-++---") ;

strcpy (haplotypes[7] .chrom_cuts, "+--+-+-+") ;

strcpy (haplotypes[8] .chrom_cuts, "++-+-+-+") ;

strcpy (haplotypes(9] .chrom_cuts, "+--+-+--") ;

strcpy (haplotypes[10] .chrom cuts, "-+-+-+-+") ;

strcpy (haplotypes[ll] .chrom=cuts, "+----+=+") ;

strcpy (haplotypes[12] .chrom_cuts, "+-+--+=+") ;

strcpy (haplotypes[13] .chrom_cuts, "---+-+--") ;

strcpy (haplotypes[14] .chrom_cuts, "---+-+-+") ;

strcpy (haplotypes[15] .chrom_cuts, "+--+--++") ;

strcpy (haplotypes[16] .chrom_cuts, "+--+----") ;

strcpy (haplotypes[17) .chrom_cuts, "-++++-++") ;

strcpy (haplotypes[18] .chrom_cuts, "+--++--+") ;

strcpy (haplotypes[19] .chrom_cuts, "--++-+--") ;

strcpy (haplotypes[20] .chrom_cuts, "-+++-+=+") ;

strcpy (haplotypes[21] .chrom_cuts, "+--+-+=+') ;

strcpy (haplotypes[22] .chrom_cuts, "-++++---) ;

strcpy (haplotypes[23] .chrom_cuts, "+----++-) ;

strcpy (haplotypes[24] .chrom_cuts, "+----+=-) ;

strcpy (haplotypes[25] .chrom_cuts, "++---+--) ;

strcpy (haplotypes[26] .chrom_cuts, "+----+-+) ;

strcpy (haplotypes[27] .chrom_cuts, "+---+-++) ;

strcpy (haplotypes[28] .chrom_cuts, "-+------") ;

strcpy (haplotypes[29] .chrom_cuts, "++--+---") ;

strcpy (haplotypes[30] .chrom_cuts, "+--++-+-") ;

strcpy (haplotypes[31] .chrom_cuts, "-+---+--") ;

strcpy (haplotypes[32] .chrom_cuts, "-+---+-+") ;

strcpy (haplotypes[33] .chrom_cuts, "-+-+-+--") ;

110

strcpy (haplotypes[34] .chrom_cuts, "-+-+++-+") ;
strcpy (haplotypes[35] .chrom_cuts, "-++--+--") ;
strcpy (haplotypes[36] .chrom_cuts, "-----+--") ;
strcpy (haplotypes[37] .chrom_cuts, "-++--+=-") ;
strcpy (haplotypes[38] .chrom_cuts, "+-++-+--") ;
strcpy (haplotypes[39] .chrom_cuts, "-+--+---") ;
strcpy (haplotypes[40] .chrom_cuts, "+--+-+++") ;
strcpy (haplotypes[41] .chrom_cuts, "-+-+----") ;
strcpy (haplotypes[42] .chrom_cuts, "+---++--") ;
strcpy (haplotypes[43] .chrom_cuts, "-+-++-++") ;
strcpy (haplotypes[44] .chrom_cuts, "-+-++-+-") ;
strcpy (haplotypes[45] .chrom_cuts, "++--+-++") ;

num = NUM_DEFINED;

for i=O; i<num; ++i
{

haplotypes[i] .chrom_num = i+1; /* assign the number of haplotype */
haplotypes[i] .presence= 0; I* assign the presence to equal 0

for each haplotype */
}

return;

/***
** other haplos assignments generates all 384 possibilities for **
** haplotypes that can be generated during the analysis. They are **
** stored under the 'other_haplos' structure. These possibilities **
** also include the defined haplotypes as well. This function **
** assigns each of the haplotypes (defined and undefined) a number **
** from 1 to 384. The 'other_haplos.presence' for each of these **
** haplos is set to equal 0 which may by changed later on to 1 **
** by another function if the corresponding haplotypes are **
** determined to be present in the individual being examined. **
**/

other_haplos_assignments (other_haplos)

struct haplos *other_haplos;

111

int i;

int p1,p2,p3,p4,p5,p6,p7,p8;

int q1,q2,q3,q4,q5,q6,q7,q8;

char haplo[8],buffer[3);

strcpy (buffer, "+-=");

p1=2;

p2=2;

p3=2;

p4=2;

p5=2;

p6=2;

p7=3;

p8=2;

i = 0;

/*this series of 'for-loops' generates the total 384 possibilities
for haplotypes */

for (q1=0; q1<p1; ++q1)

{

haplo[OJ = buffer[ql];

for (q2=0; q2<p2; ++q2

{

haplo[l] = buffer[q2];

for (q3=0; q3<p3; ++q3)

{

haplo[2] = buffer[q3];

for (q4=0; q4<p4; ++q4
{

haplo[3) = buffer[q4];

for (q5=0; q5<p5; ++q5)
{

haplo[4] = buffer[q5];

for (q6=0; q6<p6; ++q6
{

haplo[S] = buffer[q6];

for (q7=0; q7<p7; ++q7
{

haplo[6]=buffer[q7];

for (q8=0; q8<p8; ++q8

112

{

haplo[7] = buffer[q8];

strcpy (other_haplos[i] .chrom_cuts,
haplo);

++i;

}

for (i=O; i<384; ++i)
{

other_haplos[i] .chrom_num = i+l; /* assign numbers to these
haplotypes */

other_haplos[i] .presence= 0; /* set presence to eqaul 0 for
each of these haplotypes */

printf ("\n\n");

return;

/**

** get string gets the input value from the user and then eliminates **
** the unnecessary blanks (spaces) from the input. It then returns the **
** resulting string value to the calling procedure. **
**/

113

get string (s)

char s[80];

char temp[80], c;

int i, j;

gets (temp);

i=O;

j=O;

while (1)
{

c = temp[i];

++i;

if (c==' \0')
{

s[j] = '\0';

break;

}

if (isspace (c)) continue;

s[j) = c;

++j;

}

return;

/***
** get values prompts the user to give the input values (+/-/=) for **
** the-enzyme represented by 'chromos[i]'. In case of error in the **
** input, an error message is displayed on the terminal and the user is **
** prompted to give the input values again. **
**/

get_values (chromos, i)

int i;

struct chrom *chromos;

char cut[80];

114

int flag;

flag = 0; /* to check presence of error in the input string */

printf("\n");

while (1)
{

if (flag==1
{
printf("ERROR IN INPUT!!!\n");
flag = 0;

if (i==6)

printf(" (i) %s (+/-/=)\t: ",chrornos[i] .enz);

else

printf (" (i) %s (+/-)\t: ", chrornos [i J . enz) ;

get_string(cut);

if (cut[0]=='\0'
{

chrornos[i) .status[OJ=' ';
break;

/* store the input values under 'chrornos.status' */

if (i==6)
{

if (strcrnp(cut,"+")==O I I strcrnp(cut,"-")==0 I I strcrnp(cut,"=")==O)
{

chrornos[i] .status[O) = cut[O];
}

else
flag 1;

else

{

if (strcrnp(cut,"+")==O I I strcrnp(cut,"-")==0

{

chrornos[i] .status[O) cut[O];

}

else

flag 1;

if (flag==O) break;

while (1)
{

if (flag==1
{
printf ("ERROR IN INPUT! ! ! \n");
flag = 0;

if (i==6)

printf (" (ii) %s (+/-/=)\t: ",chrornos[i] .enz);

else

printf (" (ii) %s (+/-)\t: ",chrornos[i] .enz);

get_string(cut);

if (cut[0]=='\0'
{

chrornos[i] .status[1]=' ';
break;

/* store the input values under 'chrornos.status' */

if (i==6)
{

if (strcrnp(cut,"+")==O I I strcrnp(cut,"-")==0 I I strcmp(cut,"=")==O)
{

chrornos[i] .status[1] = cut[O);
}

else
flag = 1;

else

{

if (strcrnp(cut,"+")==O I I strcrnp(cut,"-")==0

{

chrornos[i] .status[1] = cut[O];

}

else

flag = 1;

if flag==O) break;

116

return;

/**
** display_data displays back the data entered in by the user. **
***/

display_data (chromos)

struct chrom *chromos;

int j;

print£ ("\n\nDATA ENTERED:\n");

print£ ("\n\t Pvuiia\t Bglii\t Pvuiib\t EcoRI\t Xmni\t Mspi\t Hindii

EcoRV\n");

printf("\t---\n")

for (j=O; j<8; ++j)
{

printf("\tl %c/%c", chromos[j] .status[O], chromos[j] .status[l]);

print£ ("\ti\n\n\n");

return;

117

/**
** make changes displays the inputs by the user for the restriction **
** enzyme cuts one by one, and after each display it asks the user if **
** he/she would like to make any changes to the input. If the answer is **
** a 'yes' then it calls the 'get_values' function to replace the **
** previous cut with the new cut. **
***/

make_changes (chromes)

struct chrom *chromes;

char s[80];

int i;

clrscr();

for (i=O; i<8; ++i)
{

printf (" \n %s \t: %c/%c\n", chromos[i] .enz, chromos[i] .status[O],
chromos[i] .status[l));

while (1)
{

printf("\t\t\t\tchange?(y/n) ");

get_string(s);

if (strcmp(s,"y")==O 1 I strcmp(s,"Y")==O
{

get_values (chromos,i);

break;

if (strcmp(s,"n")==O I I strcmp(s,"N")==O) break;

display_data (chromes);

return;

118

/**
** get_nums_of_chroms checks for the presence of the defined chromo- **
** somes (in 'haplotypes') for the individual being examined. If **
** any of the defined haplotypes are present (i.e. haplotypes.presence **
** = 1) then the corresponding numbers of these haplotypes are stored **
** in 'f def'. The function then checks for the undefined chromosomes **
** (in 'other_haplos') for the individual being examined. If any of **
** undefined haplotypes are present (i.e. other_haplos.presence = 1) **
** then the corresponding numbers of these haplotypes are stored in **
** 'f undef'. **
***/

get_nums_of_chroms (haplotypes,other_haplos)

struct haplos *haplotypes, *other_haplos;

int i, num;

struct stack *temp;

num = NUM_DEFINED;

/* checking for the presence of defined haplotypes */

for (i=O; i<num; ++i)

{

if (haplotypes[i] .presence==1)

{

temp=(struct stack*) malloc(sizeof(struct stack));

temp->haplo_num = haplotypes[i] .chrom_num;

temp->next = NULL;

defined_list->next=temp;

defined_list=temp;

temp=(struct stack*) malloc(sizeof(struct stack));

temp->haplo_num = 0;

ternp->next=NULL;

defined_list->next=temp;

defined_list=temp;

/* checking for the presence of undefined haplotypes */

for (i=O; i<384; ++i)

119

{
if (other_haplos[i] .presence==l)

{
temp=(struct stack*) malloc(sizeof(struct stack));
temp->haplo_num = other_haplos[i] .chrom_num;
temp->next = NULL;
undefined list->next = temp;
undefined-list = temp;

}

temp=(struct stack*) malloc(sizeof(struct stack));

temp->haplo_num = 0;

temp->next=NULL;

undefined_list->next=temp;

undefined_list=temp;

return;

/**
** eliminate children haplos eliminates those haplotypes from the **
** defined and undefined lists of patient/siblings that do not belong **
** to the parents haplotypes' lists for their defined and undefined **
** haplotypes. In other words, only those haplotypes are retained **
** for the patient and the siblings that correspond with the parents' **
** haplotypes. **
***/

eliminate_children_haplos ()

struct stack *temp, *parentl, *parent2, *prev, *tempPl, *tempP2;
int flag;

/* eliminating those haplotypes from the defined haplotypes list of the
patient/siblings that do not belong to the parents' defined haplotypes
list */

temp = defined_path;

parentl = temp;

tempPl = parentl;

120

while (temp->haplo_num != 0)
{

temp = temp->next;

}

temp = temp->next;
parent2 = temp;
tempP2 = parent2;

while (temp->haplo_num != 0)
{

temp = temp->next;

}

while (temp->next != NULL)
{

flag = 0;

tempP1 = parentl;

tempP2 = parent2;

prev = temp;

temp temp->next;

if (temp->haplo_num -- 0)

{

continue;

while tempP1->haplo_num != 0)
{

if (temp->haplo num tempP1->haplo_num
{

flag = 1;

break;

tempP1 = tempP1->next;

while tempP2->haplo_num != 0)
{

if (temp->haplo_num -- tempP2->haplo_num
{

flag = 1;

break;

tempP2 = tempP2->next;

121

if (flag==O)
{

prev->next temp->next;

temp = prev;

}

/* eliminating those haplotypes from the undefined haplotypes list of the
patient/siblings that do not belong to the parents' undefined haplotypes
list */

temp = undefined_path;

parentl = temp;

tempPl = parentl;

while (temp->haplo_num != 0)

{

temp = temp->next;

}

temp = temp->next;

parent2 = temp;

tempP2 = parent2;

while (temp->haplo_num != 0)

{

temp = temp->next;

}

while (temp->next != NULL)

{

flag = 0;

tempPl = parentl;

tempP2 = parent2;

prev temp;

temp temp->next;

if (temp->haplo_num 0)

{

continue;

}

while (tempPl->haplo_num != 0)

{

122

if (temp->haplo_num == tempP1->haplo_num)
{

flag = 1;

break;

tempP1 = tempPl->next;

while tempP2->haplo_num != 0)
{

if (temp->haplo num == tempP2->haplo_num
{

flag = 1;

break;

}

tempP2 = tempP2->next;

if (flag==O)
{

prev->next temp->next;

temp = prev;

}

return;

/***
** eliminate_parents_haplos eliminates those haplotypes (defined and **
** undefined) from the parents' lists that do not belong to any of **
** their children's haplotypes list. At least 2 children must be **
** included in the family analysis in order to eliminate any of the **
** haplotypes from the parents' haplotypes lists. **
**/

eliminate_parents_haplos (family)

int family;

struct stack *temp, *prev, *parent1, *tempP1, *parent2, *tempP2, *children;

123

struct stack *buffer;

int flag, flagPl, flagP2;

if (family == 3) return;

/* 	 removing those haplotypes from the defined haplotypes lists of the
parents that do not belong in any of their children's defined
haplotypes list */

temp = defined_path;

parentl = (struct stack*) malloc(sizeof(struct stack));

parentl->haplo_num = 0;

parentl->next = NULL;

tempPl = parentl;

while (temp->haplo_num != 0)
{

buffer= (struct stack*) malloc(sizeof(struct stack));

buffer->haplo_num = temp->haplo_num;

buffer->next = NULL;

tempPl->next = buffer;

tempPl = buffer;

temp = temp->next;

}

buffer= (struct stack*) malloc(sizeof(struct stack));

buffer->haplo_num = 0;

buffer->next NULL;

tempPl->next = buffer;

temp = temp->next;

parent2 = (struct stack*) malloc(sizeof(struct stack));

parent2->haplo num = 0;

parent2->next ~ NULL;

tempP2 = parent2;

while (temp->haplo_num != 0)
{

buffer= (struct stack*) malloc(sizeof(struct stack));

buffer->haplo_num = temp->haplo_num;

buffer->next = NULL;

tempP2->next = buffer;

tempP2 = buffer;

temp = temp->next;

}

buffer= (struct stack*) malloc(sizeof(struct stack));

buffer->haplo_num = 0;

124

buffer->next NULL;
tempP2->next = buffer;

temp = temp->next;
tempPl = parentl;
tempP2 = parent2;

while (tempPl->next != NULL)
{

flag = 0;

prev = tempPl;

tempPl = tempPl->next;

children = temp;

while (children
{

if (tempPl->haplo_num -- children->haplo_num
{

flag = 1;

break;

}

children = children->next;

if (flag==O)
{

prev->next = tempPl->next;

tempPl = prev;

parentl = parentl->next;
tempPl parentl;
flagPl = 0;

while (tempPl->haplo_num != 0)
{

++flagPl;

tempPl = tempPl->next;

}

while (tempP2->next != NULL)
{

flag = 0;

prev = tempP2;

tempP2 tempP2->next;

children = temp;

while (children

125

if (tempP2->haplo_num children->haplo_num
{

flag = 1;
break;

}
children children->next;

if (flag==O)
{

prev->next = tempP2->next;
tempP2 = prev;

}

tempP2->next = temp;
parent2 = parent2->next;
tempP2 = parent2;
flagP2 = 0;

while (tempP2->haplo_num != 0)
{

++flagP2;
tempP2 = tempP2->next;

}

if (flagPl >= 2)
{

temp = defined_path;
while (temp->haplo_num != 0)

{

temp = temp->next;

temp = temp->next;
defined_path parentl;
tempPl->next = temp;
}

if (flagP2 >=2)
{

temp = defined_path;
while (temp->haplo_num != 0)

{
temp = temp->next;

temp->next = parent2;

126

/* 	 removing those haplotypes from the undefined haplotypes lists of the
parents that do not belong in any of their children's undefined
haplotypes list */

temp = undefined_path;

parentl = (struct stack*) malloc(sizeof(struct stack));

parentl->haplo_num = 0;

parentl->next = NULL;

tempPl = parentl;

while (temp->haplo_num != 0)
{

buffer= (struct stack*) malloc(sizeof(struct stack));

buffer->haplo_num = temp->haplo_num;

buffer->next = NULL;

tempPl->next = buffer;

tempPl = buffer;

temp = temp->next;

}

buffer= (struct stack*) malloc(sizeof(struct stack));

buffer->haplo_num = 0;

buffer->next NULL;

tempPl->next = buffer;

temp = temp->next;

parent2 = (struct stack*) malloc(sizeof(struct stack));

parent2->haplo_num = 0;

parent2->next = NULL;

tempP2 = parent2;

while (temp->haplo_num != 0)
{

buffer= (struct stack*) malloc(sizeof(struct stack));

buffer->haplo_num = temp->haplo_num;

buffer->next = NULL;

tempP2->next = buffer;

tempP2 = buffer;

temp = temp->next;

}

buffer= (struct stack*) malloc(sizeof(struct stack));

buffer->haplo_num = 0;

buffer->next NULL;

tempP2->next = buffer;

12 7

temp = temp->next;
tempPl = parentl;
tempP2 = parent2;

while (tempPl->next != NULL)
{

flag = 0;

prev = tempPl;

tempPl = tempPl->next;

children = temp;

while (children
{

if (tempPl->haplo_num children->haplo_num
{

flag = 1;

break;

}

children children->next;

if (flag==O)
{

prev->next = tempPl->next;

tempPl = prev;

}

}

parentl = parentl->next;
tempPl parentl;
flagPl = 0;

while (tempPl->haplo_num != 0)
{

++flagPl;

tempPl = tempPl->next;

}

while (tempP2->next != NULL)
{

flag = 0;

prev = tempP2;

tempP2 = tempP2->next;

children = temp;

while (children
{

if (tempP2->haplo_num children->haplo_num

12B

{

flag 1;

break;

}
children = children->next;

if (flag==O)
{

prev->next = tempP2->next;
tempP2 = prev;

}

}

tempP2->next = temp;
parent2 = parent2->next;
tempP2 = parent2;
flagP2 = 0;

while (tempP2->haplo_num != 0)
{

++flagP2;

tempP2 = tempP2->next;

}

temp = undefined_path;
while (temp->haplo_num != 0)

{

temp = temp->next;
}

temp = temp->next;

undefined_path = parentl;

tempPl->next = temp;

temp = undefined_path;

while temp->haplo_num != 0)
{

temp = temp->next;

}

temp->next = parent2;

return;

129

/**
** diagnosis determines if the sibling is a carrier of the pku disease **
** or not. It first compares the haplotypes obtained for the sibling **
** with those obtained for the patient. if any of the haplotypes that **
** are present in the sibling (defined or undefined haplotypes) **
** are also present in the patient then the sibling is a crrier of the **
** pku disease. Other wise, the sibling is not a carrier. This **
** function then displays the diagnostic statement onto the terminal **
** screen. **
***/

diagnosis i

int i;

int flag, count;

struct stack *temp, *patient, *tempP;

temp = defined_path;

while (temp->haplo_num != 0)

{

temp = temp->next;

}

temp = temp->next;

while (temp->haplo_num != 0)

{

temp = temp->next;

}

temp = temp->next;

patient = temp;

while (temp->haplo_num != 0)

{

temp = temp->next;

}

count = i-2; /* to get the number of the sibling */

130

while (count != 1)
{

temp = temp->next;
if (temp->haplo_num -- 0) --count;

}

temp = temp->next;

flag = 0;
while (temp->haplo_num != 0)

{

tempP = patient;

while tempP->haplo_num != 0)
{

if (tempP->haplo_num temp->haplo_num
{

flag = 1;

break;

}

tempP = tempP->next;
}

if (f 1a g == 1)

{

printf ("\n\nDIAGNOSIS THE SIBLING IS A POTENTIAL CARRIER \n\n");

return;

break;

}

temp temp->next;

}

temp = undefined_path;

while (temp->haplo_num != 0)
{

temp = temp->next;
}

temp = temp->next;

while (temp->haplo_num != 0)
{

temp = temp->next;
}

temp = temp->next;

patient = temp;

131

while (temp->haplo_num != 0)
{

temp = temp->next;
}

count i-2; /* to get the number of the sibling */

while count != 1
{

temp = temp->next;

if (temp->haplo_num -- 0) --count;

}

temp = temp->next;

flag = 0;
while (temp->haplo_num != 0)

{

tempP = patient;

while tempP->haplo_num != 0)

{

if (tempP->haplo_num temp->haplo_num

{

flag = 1;

break;

}

tempP = tempP->next;

}

if (f 1 ag == 1)

{

printf ("\n\nDIAGNOSIS THE SIBLING IS A POTENTIAL CARRIER \n\n'');

printf ("NOTE THIS CONCLUSION IS BASED ON THE ANALYSIS\n");

printf (" OF THE UNDEFINED HAPLOTYPES. BASED ON \n");

printf (" THE ANALYSIS OF THE DEFINED HAPLOTYPES \n");

printf (" ALONE, THE SIBLING IS NOT A CARRIER.\n\n");

return;

break;

}

temp temp->next;

printf ("\n\nDIAGNOSIS THE SIBLING IS NOT A CARRIER \n\n");

return;

13 '2..

/***
** compare is called by the function 'determine_haplotypes' to check if **
** the haplotype generated from the input by the user belongs to the **
** 'defined haplotype list' (hapotypes) or if it belongs to one of **
** the undefined haplotypes (other_haplos). The presence of that **
** haplotype is then marked by assigning haplotypes.presence = 1, or **
** other_haplos.presence = 1, depending on which haplotype it **
** corresponds to. **
**/

compare (haplo, haplotypes, other_haplos

char haplo[8);
struct haplos *haplotypes, *other_haplos;

int i,j,k,num,tag;

tag 0;
num = NUM_DEFINED;

for i=O; i<num; ++i

{

k=O;

for (j=O; j<8; ++j)

if (haplo[j]==haplotypes[i) .chrom_cuts[j)) ++k;

if (k==8)
{

haplotypes[i] .presence= 1;
tag = 1;
break;

if (tag == 0)
{

for (i=O; i<384; ++i)

133

{

k=O;

{

}

for

if

(j=O; j<8; ++j)

(haplo[j]==other_haplos[i] .chrom_cuts[j]) ++k;

if (k==8)

other_haplos[i] .presence
break;

1;

return;

/***
** determine_haplotypes takes the values given by the user and stored **
** in 'chromos', and generates the possible haplotypes from them. If**
** a null value was given for any of restriction enzyme cuts, this **
** function replaced that with a '+/-' for that restriction enzyme; **
** and if that restriction enzyme was 'Hindiii', then a'+/-/=' is **
** assigned for that cut. **
** It then calls the function 'compare' to assign these haplotypes to **
** either the defined haplotypes list (haplotypes) by assigning **
** haplotypes.presence = 1, or the undefined haplotypes list (other_ **
** haplos) by assigning other haplos.presence = 1. **
**/

determine_haplotypes (chromos, haplotypes, other_haplos

struct chrom *chromos;
struct haplos *haplotypes, *other_haplos;

int q1,q2,q3,q4,q5,q6,q7,q8,i,n;
int p1,p2,p3,p4,p5,p6,p7,p8;
char haplo[8];

n = 0;

134

pl 2;
p2 2;
p3 2;
p4 2;
p5 2;
p6 2;
p7 = 2;
p8 = 2;

for (i=O; i<8; ++i)
{

if (chromos[i] .status[O]==' ' II chromos[i] .status[l]==' ')
{

, +, ;chromos[i] .status[O] =
, -, .chromos[i] .status[l] = ,

if (i==6)
{

chromos[i] .status[2] '=';
p7=3;
}

if
if
if
if
if
if
if
if

chromos[O] .status[O]
chromos[l] .status[O]
chromos[2] .status[O]
chromos[3] .status[O]
chromos[4] .status[O]
chromos[5] .status[O]
chromos[6] .status[O]
chromos[7] .status[O]

-

chromos[O] .status[l]
chromos[l] .status[l]
chromos[2] .status[l]
chromos[3] .status[l]
chromos[4] .status[l]
chromos[S] .status[l]
chromos[6] .status[l]
chromos[7] .status[l]

pl=l;
p2=1;
p3=1;
p4=1;
p5=1;
p6=1;
p7=1;
p8=1;

for
{

ql=O; ql<pl; ++ql)

haplo[O] = chromos[O] .status[ql];

for (q2=0; q2<p2; ++q2)
{

haplo[l] = chromos[l] .status[q2];

for (q3=0; q3<p3; ++q3)
{
haplo[2] = chromos[2] .status[q3];

for (q4=0; q4<p4; ++q4)

135

haplo[3] = chromos[3] .status[q4];

for (qS=O; q5<p5; ++q5)
{

haplo[4] = chromos[4] .status[q5];

for (q6=0; q6<p6; ++q6)
{

haplo[5] chromos[S] .status[q6];

for (q7=0; q7<p7; ++q7)
{

haplo[6] = chromos[6] .status[q7];

for (q8=0; q8<p8; ++q8)
{
haplo[7] = chromos[7] .status[q8];
++n;

compare (haplo, haplotypes,
other_haplos);

printf("\n");

return;

136

/**
** next_family_member asks the user if he/she would like to continue **
** the family analysis with another member of the family. **
** It returns '1' to the main program if the answer is yes; it returns**
** '0' to the main program if the answer is no. **
***/

int next_family_member ()

char reply[80];

printf("\n\n");

while (1)
{

printf("\t CONTINUE WITH NEXT FAMILY MEMBER?(y/n) ");

get_string(reply);

if (strcmp(reply,"y")==O I I strcmp(reply,"Y")==O I

reply[0]=='\0' II strcmp(reply,"n")==O II
strcmp(reply,"N")==O) break;

printf("\n");

if ((strcmp(reply,"y")==O) II (strcmp(reply,"Y")==O) II

reply[0]=='\0') return(1);

else

return (0);

/***
** print more asks the user whether he/she would like to continue and **
** returns 1 if the answer is 'yes', and returns 0 if the answer is **

137

** 'no'. **
**/
int print_more ()

char reply[80];

printf("\n\n");

while (1)
{

printf("\t\t\tCONTINUE DISPLAY?(y/n) ");

get_string(reply);

if (strcmp(reply,"y")==O I I strcmp(reply,"Y")==O I I

reply[0]=='\0' II strcmp(reply,"n")==O II

strcmp(reply,"N")==O) break;

printf("\n");

if ((strcmp(reply,"y")==O) II (strcmp(reply,"Y")==O) II

reply[0]=='\0') return(l);

else

return (0);

/***
** print_haplotypes displays all the haplotypes generated from the **
** input by the user. The haplotypes are categorized according to **
** their presence in either the defined haplotypes list (haplotypes) **
** or the undefined haplotypes list (other haplos) . After every 20 **
** lines, the user is asked whether he/she-would like to continue with **
** display. Also, in case of new haplotypes being added to the **
** defined list, the printout will also contain, in brakets, the **
** number from the undefined haplotypes list that was used to **
** categorize that haplotype previously. **
**/

print_haplotypes (haplotypes, other_haplos, chromes)

struct haplos *haplotypes,*other_haplos;
struct chrom *chromes;

138

int i,j,k,m,n,p,tag,num,reply;

I* displaying the defined haplotypes in the individual */

printf ("\n\nDefined Haplotypes:\n\n\t");

for (i=O; i<8; ++i)

{

printf("\t%s", chromos[i] .enz);

printf ("\n");

tag = 0;
k = 0;
num NUM_DEFINED;

for i=O; i<num; ++i
{
if (haplotypes[i] .presence 1)

{
tag = 1;

if (i>45
{

for (m=O; m<384; ++m)
{

p 0;
for (n=O; n<8; ++n)

{
if (haplotypes[i] .chrom cuts[n]

other_haplos[m]~chrom_cuts[n]) ++p;
}

if (p==8) break;
}
printf("\n%3d (T-%d) ", haplotypes[i] .chrom_num,

other_haplos[m] .chrom_num);

else
printf ("\n%3d ", haplotypes[i] .chrom_num);

for (j=O; j<8; ++j)
{

printf ("\t %c", haplotypes[i] .chrom_cuts[j]);

++k;
if (! (k%20)) /* after every 20 lines the user is asked

if he/she would like to continue */

139

reply= print_rnore();

clrscr();

if (reply==O) return;

}

if (tag== 0) print£ ("\n\n\t\t\t\tNONE EXIST! !!\n\n");

reply= print_rnore();

clrscr();

if (reply==O) return;

I* displaying the undefined haplotypes in the individual */

print£ ("\n\nOther Haplotypes:\n\n\t");

k=O;

tag 0;

for i=O; i<8; ++i)
{

printf("\t%s", chrornos[i] .enz);
}

print£ ("\n\t");

for i=O; i<384; ++i)

{

if (other_haplos[i] .presence 1)

{

tag = 1;
printf("\nT-%d \t ", other_haplos[i] .chrorn_nurn);

for (j=O; j<8; ++j)
{

print£ ("\t %c", other_haplos[i] .chrorn_cuts[j]);

++k;
if (! (k%20)) /* after every 20 lines the user is asked

if he/she would like to continue */
{

reply= print_rnore();

clrscr();

if (reply==O) return;

140

}

}

if (tag== 0) printf ("\n\n\t\t\t\tNONE EXIST! !!\n\n");

printf ("\n\n");

return;

/**
** print_family_data prints out the entire family's haplotypes after**
** the family analysis had been done. It calls the function **
** 'print_haplotypes' for each family member in order to display **
** their respective haplotypes. **
***/

print_family_data (haplotypes, other_haplos, chromes, family)

struct haplos *haplotypes,*other_haplos;

struct chrom *chromes;

int family;

struct stack *temp_def, *temp_undef;

int i, j, reply, nurn;

num NUM_DEFINED;

temp_def = defined_path;

temp_undef = undefined_path;

for (i=O; i<family; ++i)

{

clrscr();

for (j=O; j<num; ++j) haplotypes[j) .presence= 0;

for (j=O; j<384; ++j) other_haplos[j] .presence= 0;

if (i==O)
printf ("\n \nPOSSIBLE HAPLOTYPES FOR PARENT #1 AFTER FAMILY ANALYSI

:\n\n");

14.1

if

:\n\n");

(i==1)
printf ("\n\nPOSSIBLE HAPLOTYPES FOR PARENT #2 AFTER FAMILY ANALYSI

if

:\n\n");

(i==2)
printf ("\n\nPOSSIBLE HAPLOTYPES FOR THE PATIENT AFTER FAMILY ANALYSI

if (i>2)
{

printf (" \n \nPOSSIBLE
:\n\n", i-2);

}

HAPLOTYPES FOR SIBLING #%d AFTER FAMILY ANALYST

while (temp_def->haplo_num != 0)
{

haplotypes[temp_def->haplo_num- 1] .presence
temp_def= temp_def->next;
}

1;

temp_def temp_def->next;

while (temp_undef->haplo_num != 0)
{

other_haplos[temp_undef->haplo_num- 1] .presence
temp_undef = temp_undef->next;
}

1;

temp_undef = temp_undef->next;

print_haplotypes (haplotypes, other_haplos, chromes);

if i>2) diagnosis (i);

if i == (family-1)) break;

reply= next_family_member();
if (reply==O) break;

return;

14

/***
** patient analysis only does the job of the main program if the user **
** had selected the-option of 'PATIENT ANALYSIS ONLY' from the main **
** menu. It does the entire analysis for the patient in determining **
** his/her haplotypes by calling up the apropriate funtions. **
**/

patient_analysis_only (chromes, haplotypes, other_haplos)

struct chrom *chromes;

struct haplos *haplotypes, *other_haplos;

int i;

char s[80];

clrscr();

printf("\n\nENTER DATA FOR THE PATIENT PLEASE :\n\n");

print_chart(); /*display the table showing the names of the
restrction enzymes and the symbols to be used
for the input */

name_assignments (chromes); /*assign the names of the restrction
enzymes to 'chromes' */

haplo_assignments (haplotypes); /*assign the defined haplotypes
to 'haplotypes' */

other_haplos_assignments (other_haplos); /*generate all the
undefined as well as the

defined haplotypes and
assign them to
other_haplos */

for (i=O; i<8; ++i) /* get input values (+/-/=) for each R.E. */
{

get_values (chromos,i);

display_data (chromes); /*display the data entered back to the user*/

while (1)
{

printf ("ANY CHANGES? (y/n) ");
get string(s);
if (strcmp(s,"y")==O I I strcmp(s,"Y")==O make_changes(chromos);

14

if (strcmp(s,"n")==O I I strcmp(s,"N")==O) break;

clrscr ();

/* generate the haplotypes from the input by the user and assign them
to 'haplotypes' if they belong to the defined haplotypes list, and
to 'other_haplos' if they belong to the undefined haplotypes list */

determine_haplotypes (chromos, haplotypes, other_haplos);

/* display all the generated haplotypes for the individual onto the
terminal screen */

print_haplotypes (haplotypes,other_haplos,chromos);

return;

/**
** initial_menu displays the initial menu to the user and prompts **
** him/her to select from it. It then returns the corresponding number **
** to the main program. **
***/

int initial menu ()

char s[80];

clrscr();

printf("\n\n\n\t**'');

printf("********");

printf(''\n\t**");

printf("********\n\t****\t\t\t\t\t\t\t****\n");

printf("\t****\t\t\t\t\t\t\t****\n");

printf("\t****\t OPTIONS:\t\t\t\t\t****\n\t****\t\t\t\t\t\t\t****\n");

printf("\t****\t\t 1. FAMILY ANALYSIS\t\t\t****\n");

printf("\t****\t\t 2. PATIENT ANALYSIS ONLY\t\t****\n");

printf("\t****\t\t 3. QUIT\t\t\t\t****\n\t****\t\t\t\t\t\t\t****\n'');

printf("\t****\t\t\t\t\t\t\t****\n");

14

printf("\t**");
printf("********\n"); ·
printf("\t**");
printf("********\n\n\n");

while (1)
{

printf("\tSelect from above please: ");

get string(s);

if (strcmp(s,"1")==0

{

return (1);

break;

if (strcmp(s,"2")==0
{

return (2);

break;

}

if (strcmp(s,"3")==0

{

clrscr();

return (3);

break;

}

return (0);

/**
********************************** MAIN ********************************
***/

main ()

char s[80];
int i, reply, family;
struct chrom chromos[8];
struct haplos haplotypes[46], other_haplos[384];

defined_list = (struct stack*) malloc(sizeof(struct stack));
defined_list->next = NULL;
defined_path = defined_list;

14

undefined_list = (struct stack*) malloc(sizeof(struct stack));

undefined list->next = NULL;

undefined=path = undefined_list;

family = 0;

while (1)
{

if (family==O) /* in the very first case display the menu to

the user and ask if he/she would like to

analyse the whole family or the patient alone */

reply= initial_menu(); /*display the initial menu and prompt
the user to select from it */

if (reply==3) break; /* if the user chose the quit option */

if (reply==2) /* if the user chose the 'PATIENT ANALYSIS ONLY'
option */

patient_analysis_only (chromos,haplotypes,other_haplos);

break;

}

++family;

clrscr();

if (family==1) printf("\n\nENTER DATA FOR PARENT #1 PLEASE : \n\n");
if (family==2) printf("\n\nENTER DATA FOR PARENT #2 PLEASE : \n\n");
if (family==3) printf("\n\nENTER DATA FOR THE PATIENT PLEASE : \n\n");
if (family>3) printf("\n\nENTER DATA FOR A SIBLING PLEASE : \n\n");

print_chart(); /*display the table showing the names of the

restrction enzymes and the symbols to be used

for the input */

name_assignments (chromes); /*assign the names of the restrction
enzymes to 'chromes' */

haplo_assignments (haplotypes); /*assign the defined haplotypes
to 'haplotypes' */

other_haplos_assignments (other_haplos); /*generate all the
undefined as well as the

defined haplotypes and
assign them to
other_haplos */

14

for (i=O; i<8; ++i) /* get input values (+/-/=) for each R.E. */
{

get_values (chromos,i);

display_data (chromes); /*display the data entered back to the user*/

while (1)
{

printf ("ANY CHANGES? (y/n) : ");

get_string(s);

if (strcmp(s,"y")==O 1 I strcmp(s,"Y")==O make_changes(chromos);

if (strcmp(s,"n")==O 1 I strcmp(s,"N")==O break;

clrscr();

I* generate the haplotypes from the input by the user and assign them
to 'haplotypes' if they belong to the defined haplotypes list, and
to 'other_haplos' if they belong to the undefined haplotypes list */

determine_haplotypes (chromes, haplotypes, other_haplos);

/* display all the generated haplotypes for the individual onto the
terminal screen */

print_haplotypes (haplotypes,other_haplos,chromos);

get_nums_of_chroms (haplotypes,other_haplos);

reply= next_family_member(); /*ask the user if he/she would like to
continue with the next family member */

if (reply==O) break;

defined_path = defined_path->next;
undefined_path = undefined_path->next;

if (family==1 I I family==2)

{

print_family_data (haplotypes, other_haplos, chromes, family);

}

if (family > 2)

{

eliminate children_haplos (}; /* to remove unwanted haplotypes

147

from the patient/siblings
defined and undefined
haplotypes lists. */

eliminate_parents_haplos (family); /*to remove unwanted haplotypes
from the parents' defined and
undefined haplotypes lists */

print_family_data (haplotypes, other_haplos, chromes, family);

}

free(defined_path);
free(defined list);
free(undefined_path);
free(undefined_list);

/****************************** END OF PKU.C ********************************/

