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ABSTRACT

In order to perform quantitative 3D positron tomography, it is essential that an
accurate means of correcting for the effects of Compton scattered photons be developed.
The two main approaches to compensate for scattered radiation rely on energy
considerations or on filtering operations. Energy based scatter correction methods exploit
the reduced energy of scattered photons to differentiate them from unscattered photons.
Filtered scatter correction methods require the measurement of scatter point spread
functions to be used for convolution with the acquired emission data set. Neither
approach has demonstrated sufficient accuracy to be applied in a clinical environment.

In this thesis, I have developed the theoretical framework for generating the
scatter point spread functions for the general case of any source position within any non-
uniform attenuation object. This calculation is based on a first principles approach using
the Klein-Nishina differential cross section for Compton scattering to describe the angular
distribution of scatier annihilation photons. The attenuation correction factors from
transmission scans are included within the theory as inputs describing the distribution of
matter in the object being imaged.

The theory has been tested by comparison with experimental scatter proﬁlés of
point sources whicl: are either centered, or off-center in water-filled cylinders. Monte
Carlo simulations Fave been used to identify the detector energy threshold where the
single scatter assumption employed by the theory is most satisfied. The validity of a

mean scatter position assumption, used in the development of the theory, is tested using



analytic calculations of a non-uniform attenuation phantom. The physical effects most
responsible for determining the shape of the scatter profiles, as well as the assumptions
employed by several common scatter correction methods, are revealed using the analytic

scatter correction theory.
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INTRODUCTION

Positron Tomography

The measurement of metabolic processes in vivo is accomplished in positron
tomography by labelling trace amounts of biologically active molecules with positron
emitting isotopes before administering them to the body. Compounds are labelled by
attaching positron isotopes generated in a particle accelerating cyclotron to biological
compounds of intersst. Some of the important metabolic measurements in the body
include brain blood perfusion as well as glucose and dopamine utilization.

By measuring the regional distribution of cerebral blood flow using *O labelled
water, activation studies, which quantify differences in the distribution of brain blood
perfusion, may be undertaken to locate regions of the brain responsible for specific
mental or physical fasks. Fluoro-deoxy-glucose (FDG), "*F labelled deoxy-glucose, is
administered to meiasure regional cerebral metabolic rate and is useful for diagnosing
diseases such as Huntington’s Chorea. Studies involving the injection of fluoro-L-dopa,
8F labelled L-dopa, can reveal the presence of Parkinson’s disease. The diagnosis of
other conditions including Alzheimer’s disease and schizophrenia can also be investigated
using PET techniques. Accurate quantitative measurements of regional distributions are

essential to perform such disease diagnosis.



Quantitative Accuracy

Images of radiopharmaceutical distribution are formed by reconstruction of
projection data, typically through filtered backprojection techniques. Image resolution
for modern positron tomography systems employing Bismuth Germanate (BGO) block
detectors is approxitnately 5 mm in the axial and transaxial directions. The main factor
determining spatial resolution is the size of the crystal detectors (6.22 mm x 6.75 mm).
The positron’s range before annihilation and the slight non-collinearity of the two
annihilation photons have a lesser impact on spatial resolution.

Quantitative accuracy is also diminished when Compton scattering of one or both
of the annihilation photons occurs within the patient. Deviation of either photon from
the collinear path either causes a different detector to be struck than had the photon
remained unscattered or perhaps even causes the photon to be scattered completely out
of the detector array. Compton scattering of either photon in the patient to a direction
outside of the detector array produces a loss of detected annihilation events with the
greatest effect being in the center of the patient. Attenuation correction must be
performed to correct for such events lost to Compton scattering, as well as those lost to
photoelectric absorption, thus restoring count rates in the interior of objects. Scatter
correction is required to remove those counts involving a scattered photon striking a
different detector than had the photon remained unscattered. Such unwanted counts
which contribute false position information must be removed prior to attenuation

correction.
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At present, no scatter correction teéhnique of sufficient accuracy has been
developed to remove scattered from unscattered coincidences. In the past, the problem
of Compton scattersd events has been minimized by placing collimating interplane
tungsten septa between each of the detector rings. The septa, though, do not affect those
events caused by photons which scatter and remain within the same tomographic plane.
The interplane septz. limit the fraction of data contaminated by scatter to below 15%.
Recent interest in performing 3D acquisitions, which allow coincident events to be
recorded between detectors of any ring, has necessitated the removal of the septa thus
resulting in scatter fractions greater than 40%. The benefits of increased count rate
desired for 3D acquisitions cannot be realized until an accurate means of removing the

large component of scatter can be developed.

Project Scope

Removal of the scatter counts from 3D acquisitions in septa-free positron
tomographs is required before the benefits of newly developed 3D reconstruction
algorithms can be realized. One approach to solving this problem involves the functional
characterization of point source profiles in a variety of positions within different non-
uniform attenuatior: objects. A method of scatter estimation called convolution
subtraction may then be implemented if the scatter point spread functions (PSF’s) for the
object being scanned! could be deduced. In the past, much effort has been expended upon

measurements of PSF’s for various locations within water cylinders in the hope that such
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functions would be comparable to those encountered in realistic imaging situations
involving non-uniform attenuation conditions of the body. In this work, the theoretical
framework for estimating scatter point spread functions under non-uniform attenuation
conditions is developed using the Klein-Nishina (K-N) differential cross section as well
as the attenuation correction factors from a transmission scan. The K-N equation
evaluates scatter angle distributions while the attenuation correction factors act as input
describing the attenuating media within the object. The theory is tested for some simple
cylindrical water filled phantoms. The physics responsible for determining the shape of

scatter profiles is also discussed.



CHAPTER 1

Principles of Positron Tomography

Positron tomography relies on the fact that many chemical substances in the
human body can be labelled with positron emitting radioisotopes to trace their path so
that studies of chemical reactions can be made. To understand how radiopharmaceuticals
are traced and displayed as images, the physics of positron annihilation with atomic
electrons and the subsequent production and tracking of 511 keV photons must be
described. To record the annihilation photons, a detector array of Bismuth Germanate
(BGO) block detectors is used complete with coincidence electronics to record the pair
of 511 keV photons originating from the same annihilation event. The organization of
the data into projections stored in sinogram matrices is described along with the
technique usually employed to reconstruct the projection data into images. The data
correction techniques required to account for detector function, coincidence processing
and annihilation photon scatter are finally described so that the principles of positron

tomography may be understood.



Physics Processes of PET

The detection of photons originating from positron annihilation with atomic
electrons is essential to positron tomography. The production of two 511 keV photons
travelling in opposite directions is revealed through an examination of the physics
processes involved in positron annihilation. The possible interactions of 511 keV photons
are then described so that their detection by BGO detectors may be understood and the

corrections required for attenuation and scatter may become clear.

Positron Emission and Annihilation

Nuclei that are rich in protons or deficient in neutrons may become stable either
through positron emission or electron capture. In positron emission, a proton is
converted to a neutron by ejecting a positive electron through the nuclear reaction:

AX = LAY + B + (1.1)
where in addition to the positron, a neutrino is ejected (Sorenson and Phelps, 1980). The
minimum transition energy required for positron emission is 1.022 MeV (2m.?) to
account for the atom’s loss of a positron as well as an orbital electron, ejected to
preserve charge neutrality. Any excess energy of reaction becomes shared kinetic energy
between the positron (8%) and the neutrino (v). The ratio of kinetic energy shared by
each particle is difierent for each reaction so that the distribution of positron kinetic

energies is a continious beta spectrum with a maximum endpoint energy of:



Eg. = [M(x) -M(y) -2m,] c? (1.2)

The competing process for stabilizing proton rich nuclei is electron capture when
an orbital electron i "captured" by the nucleus and combines with a proton to form a

neutron according t¢ the equation:
pt+e - n+v (1.3)

The electrons closest to the nucleus, in the K shell, have the greatest chance of capture
as their wavefunctions exhibit the greatest overlap with the nucleus. Electron capture is
more prevalent for heavy nuclei whose large nuclear charge draws the inner electrons
closer to the nucleus. This effect can be seen in table 1 (deKemp, 1992) since the
proportion of positron decay diminishes for heavier isotopes such as ®Cu through
increcased incidence of electron capture. It is evident that positron emission is the

predominant process for the most frequently used PET radioisotopes.

TABLE 1

PROPERTIES OF COMMON POSITRON EMITTING ISOTOPES

Isotopes Percent Half-Life Max Energy Mean Energy Mean Range
B* Dacay [MeV] [MeV] [mm]

c 99.8 20.3 min 0.97 0.394 1.24

BN 100 10.0 min 1.2 0.488 1.67

50 100 124 sec 1.74 0.721 2.62

B 97 109 min 0.635 0.250 0.623

#Cu 19 12.8 hrs 0.656 0.258 0.656
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The fast positrons emitted in positron decay slow to thermal energies
predominantly through three processes: ionization, excitation and bremsstrahlung
radiation. Most of the energy loss is due to the collisional losses of ionization, where
electrons are scattered out of atoms, and excitation, where atomic electrons are excited
to higher energy levels. The specific energy loss due to electron collisions is described
by the Bethe equation (Knoll, 1989). Positrons may undergo radiative losses when
passing near atomic nuclei since accelerated charges emit electromagnetic radiation
according to classical theory. The amount of energy lost to this bremsstrahlung radiation

is a small fraction of the energy lost to collisional processes as the ratio is approximately:

(dE/dx), _ EZ

(de/dx), 700 i

where E is in MeV (Knoll, 1989).

When the positron energy has been reduced to below the ionization energy of the
atoms of the surrounding material, the ore gap region is entered. In the ore gap, any
inelastic collisions are likely to form positronium where a positron and electron orbit
each other (Stewart and Roellig, 1967). If positronium is not formed, the positrons will
undergo elastic collisions with atomic electrons until thermalized. At thermal energies
below 10eV, annihilation of the positron with an atomic electron becomes highly
probable and two 511 keV photons will be released at nearly 180° from each other.
Conservation of energy dictates that the photons have a total energy of 2m.c?> = 2 x 511
keV, while conservation of momentum forces the photons to have opposing direction.

The residual kinetic energy possessed by the positron while annihilating causes the
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photons energy to deviate slightly from 511 keV and the angle between photons to have

a deviation of 0.4° from the mean of 180° (Stewart and Roellig, 1967).

When entering the ore gap, positrons form positronium 36% of the time in water
(Ache, 1979). Positronium may form either triplet ortho-positronium, with parallel
spins, or singlet para-positronium, with anti-parallel spins, typically in a 3:1 ratio. Para-
positronium undergoes two photon self annihilation very quickly (r=1.25x10"%), while
ortho-positronium undergoes three photon annihilation much more slowly (r=1.4x107s)
(Stewart and Roellig, 1967). More often the ortho-positronium will either suffer pickoff
annihilation by two photon annihilating with an electron from another atom
(r=1.8x10%s), or be converted to para-positronium after colliding and exchanging
elecirons with a surrounding atom. The end result is that 2 photon annihilation is the
most likely product of a positron’s existence after travelling a short distance or range
from the initial emission position (Table 1).

Before thermalizing and annihilating, the positrons undergo many elastic and
inelastic collisions changing their direction so that the actual range travelled by a positron
is much less than the path length followed. Since positrons lose most of their energy in
inelastic collisions with atomic electrons, the positron range is proportional to the

medium’s electron density:
Range « pN,(Z/A) (1.5)

where N, is Avogacro’s constant and p is the medium density (Knoll, 1989). Since Z/A
is nearly constant for all elements, the range is roughly proportional to the medium’s

density and the positron range in different materials can be estimated from the measured
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range in water, as well as from the particular specific gravity of the material involved.

Gamma Ray Interactions

The main result of positron annihilation is to produce two 511 keV photons
travelling in opposite directions. Gamma rays may undergo three types of interactions
with matter: absorption; scattering or pair production, with the dominant process being
determined by both the energy of the photon, as well as the material in which interactions
may OCCur.

Pair production occurs when a photon is converted to a positron and electron after
striking either a nucleus or an electron. The spectator nucleus or electron is required for
conservation of moraentum and energy. Pair production is energetically impossible for
the 511 keV annihilation photons since a reaction energy threshold of 1.022 MeV is
required to produce the two particles of electron mass 2m.? = 1.022 MeV).

Gamma rays may be absorbed by the photoelectric effect when the incident photon
strikes an atomic electron causing it to be ejected with a kinetic energy equal to the
photon energy less the electron’s binding energy. The threshold energy of photoelectric
absorption is merely the binding energy of the electron interacting with the photon (E <
100 keV) so that the 511 keV photons are well above threshold (Lederer et al, 1968).
K shell electrons are: the most likely candidates for the photoelectric effect, with greater
than 80% of ionized electrons coming from this shell. Characteristic x-rays or Auger

electrons are emitted after the photoelectric effect occurs as the excited atom de-excites.
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From a quan'um mechanical calculation that assumes no nuclear screening and
non-relativistic energies (Bransden and Joachain, 1983), the cross-section for the
photoelectric effect is estimated to be:

2
- 16y2T a®z5 [ < 17/2a2 (1.6)
3 E,

Opg

where a, = 52.9 pM is the first Bohr radius of hydrogen, Z is the target molecule’s
nuclear charge and ;= 1/137 is the fine structure constant. The cross-section increases
rapidly by Z* as the nuclear charge of the interacting medium increases, while also
decreasing quite rapidly by E.* as the incident photon energy increases.

Unlike the photoelectric effect, which completely absorbs the incident photon
dissipating its energy by releasing a high energy short range electron, the scattering
process produces an equal or lower energy photon which may propagate a great distance
after scattering through some angle. The dominant scattering process for 511 keV
photons is Compton scattering, where the incident gamma ray strikes an atomic electron
producing atomic ionization. The incident photon will scatter through an angle 8
determined by the Klein-Nishina differential cross section equation:

€ gyl 1. 2 1+cos?p 1 a?(l-cosP)? 1.7
r (1+a(1--cosb)) ( > ) (1+ (150529 [L+a (1-0osB)] ) )

where r, = 2.818 fM is the classical electron radius, Z is the nuclear charge of the target
molecule and @ = E /m.? (Knoll, 1989). The energy of the resulting scattered photon
(E,’) is determined Dy the scattering angle and incident photon energy (E,) according to

the equation:
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/ E
E, = X (1.8)
1+E,/m,c?(1-cosp)

For 511 keV annihilation photons, =1 and the K-N equation and scattered photon

energy reduce to:

do, _ Zro2(3—3cosﬂ+3cos2B—cos3B)

dQ 2 (2-cosp)? (1.9)
E/ = ____El_
® 2-cosp

Compton scattered photons become more forward scattered as the incident energy
increases exhibiting some forward scattering for 511 keV photons (Knoll, 1989). The
angular distribution of the scattered photons is material independent being a function of
energy alone as the Z of the material serves only to indicate the probability of scatter
through any angle. The Compton cross-section increases linearly with Z, unlike the
photoelectric cross-section which increases as Z°, causing Compton scattering to be the
most likely process for low Z materials.

Rayleigh scattering occurs when a gamma ray strikes an atomic electron briefly
exciting it to a higher energy level before de-exciting back to the initial energy level.
A photon of the same energy as the incident photon is released through some angle in
this process. Rayleigh scattering occurs with a very low probability relative to Compton

scattering for 511 keV photons.
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Image Formation

In order to produce images of the positron isotope distribution, the collinear 511
keV annihilation photons must be detected efficiently. Images may then be reconstructed
since the coincident detection of two 511 keV photons travelling in opposing directions
will produce a line of response (LOR) between the two detectors along which the
positron annihilation event must have occurred (fig 1). The array of BGO detectors, the
processing of the output pulses from the photomultiplier tubes (PMT’s), the organization
of line of response data into projections and the image reconstruction from projection

data are described below to explain image formation for PET.

Detection of Gamma Rays

To obtain line of response data indicating the line along which the positron
annihilation event occurred, the positions, energies and times of arrival of the two
annihilation photons must be recorded. In the ECAT-953 scanner, photons are detected
using two adjacent 76 cm diameter rings of bismuth germanate detectors (Bi,Ge;0;,).
Each ring of BGO detectors consists of 48 blocks of bismuth germanate, each 5.0 cm x
5.4 cm across and 3 cm deep (fig 2a). The BGO block detectors are partially sliced with
variable depth grooves to produce an 8x8 matrix of crystal elements each 6.22 mm x
6.75 mm across (fig 2b). Four photomultiplier tubes arranged in a square formation are

coupled to the back of each BGO block to collect the 505 nm scintillation photons
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> anaihitation

8 x 8 BGO Crystals

Figure 2(a): Detector array with 2 rings Figure 2(b): A BGO blocksliced into
of 48 BGO blocks each. an 8 x 8 grid of crystal detectors with
4 PMT’s coupled to each block.



15

produced when the gamma rays deposit energy in the crystal through photoelectric or
Compton interactions. Since BGO exhibits a linear response in that the number of
scintillation photons produced is proportional to the energy deposited in the crystal, the
summed output signal from the four PMT’s will be a measure of the total energy
deposited in the crystal. The particular crystal element which absorbed the photon
energy can be determined from the relative pulse height for each of the four PMT’s since
the variable depth grooves sliced into the BGO blocks act as light pipes producing a
characteristic light pattern, and hence a different PMT output signal ratio for each of the
64 crystal elements.

BGO crystal detectors are the scintillator material of choice for performing
positron tomography because the relatively high energy 511 keV annihilation photons
require a high Z material to maximize photoelectric absorption and hence, detector
efficiency. The bismuth (Z=83) in BGO is largely responsible for causing BGO to have
the largest probability per unit volume for gamma ray photoelectric absorption of any
commonly available scintillation material. Although most 511 keV photons will still
undergo more than one interaction before absorption (56% in BGO based on Compton
to total interaction cross sections), this is still a significant improvement over BGO’s
main alternative scintillator, thallium doped sodium iodide [NaI(T1)], which experiences
multiple interactions 82% of the time (Thompson, 1993).

The main difficulties created by Compton scattering within the BGO block
detectors is to diminish the accuracy of gamma position determination and to record

inaccurately the gamma ray energy. The Compton interaction could result in energy
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being deposited in two distant portions of the BGO block, interfering with the selection

of the crystal element where the gamma initially interacted. Energy deposition is very
localized for the photoelectric effect due to the short range of the energetic electron,
unlike the much longer range exhibited by a Compton scattered photon. If this Compton
scattered photon were to escape the BGO block entirely before experiencing a terminating
photoelectric interaction, the photon’s energy deposition would be incomplete and the
summed output from the 4 PMT’s would indicate a lower energy than possessed by the
incident photon.

BGO is superior to NaI(T1) for its photoelectric effect interaction fraction as well
as for its higher stopping power improving detector efficiency, however BGO does suffer
some deficiencies. The conversion efficiency of BGO is only about 20% that of Nal(Tl),
resulting in fewer :cintillation photons being produced for the same photon energy
deposited (Knoll, 1989). The conversion efficiency is the major determinant of the
detector’s energy resolution since the number of photons produced follows Poisson
statistics, introducing a statistical variation in the recorded energy. Energy resolution is

defined as:

R = (1.10)

where H, is the mean pulse height for a given photon energy and FWHM is the observed
FWHM of the pulse height distribution. The energy resolution for BGO is approximately

25% while that of Nal(Tl) is better than 10%.
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Coincidence Counting

Since the result of positron annihilation is two 511 keV photons moving in
opposite directions, I’ET collects its line of response data by measuring those annihilation
photons arriving at two detectors within some timing coincidence window. To determine
the coincidently detected annihilation photons, the time of arrival of each photon must
be deduced from the pulse signal output from the PMT’s. The time of arrival is
determined by when the pulse rises above a threshold voltage called a trigger. Timing
information is most accurately determined by systems with large amplitude, low noise
signals having a fast and consistent rise time. Noisy signals create a statistical
uncertainty in the timing estimate called time jitter. If the signal amplitude varies for the
same shape pulse, as may happen for different amounts of energy deposited in the BGO
crystal, amplitude walk occurs and a shift to early triggering results for larger pulses.
Inconsistent rise times for same amplitude signals may cause shifts to early triggering for
fast rising pulses, cieating rise time walk.

Amplitude walk, rise time walk and time jitter have noticeable effects on a
coincident detection system. These effects can be observed when 2 photons
simultaneously strike separate detectors, as happens when a positron emitter is placed
equidistant between the two detectors. Instead of the time difference between each
detected photon being a delta function at t=0, a distribution of time differences about
t=0 is observed where the FWHM of this function is defined as the timing resolution (7)

of the detection system. The timing resolution of scintillator - PMT systems is largely
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determined by the properties of the scintillator being used. For instance, BGO has a

slower rise time and a poorer light yield than NaI(Tl) so that its smaller amplitude,
inconsistently rising ;pulses produce a timing resolution approximately twice as bad as that
of NaI(Tl) (Knoll, 1989).

Coincident events in the ECAT-953 are recorded when a second photon strikes
one of the 5 opposing buckets (160 crystal detectors) directly across the field of view
from a crystal detector initially struck by a photon with a time difference less than some
timing coincident window, 7, (fig 3). The two factors largely responsible for determining
the selection of 7, are the timing resolution of the detectors (7) and the expected time of
arrival difference for two photons emitted from a positron at the extreme edge of the
field of view. The rnaximum possible time of arrival difference for annihilation photons
of the 76 cm diametar ECAT-953 is 2.5 ns, taking into consideration the speed of light.
A coincident windcw of 12 ns is used by the ECAT-953, considering both timing
resolution and time of flight effects.

Although 7, must be large enough to accept all true coincidences resulting from
positron annihilatior photon detection, 7, must be kept as small as possible to avoid the
effect of multiple coincidences where more than two photons strike detectors within 7..
This occurs when having more than one positron decay within 7, obtains significant
probability. Multiple coincidences do not enter the line of response data set; however
théy do reduce sign:l by losing true coincidences which might have been recorded using
a smaller 7.

More troublecsome than multiple coincidences are random coincidences where a
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single photon from each of two separate positron annihilation events strike detectors
within 7., thus entering the line of response (LOR) data set (fig 4). Random coincidence
events incorrectly assume an annihilation event occurred along a particular LOR
producing additional noise in the data. The random count rate could be estimated by the

equation:
R, = .11, (1.11)

where 1, and r, are singles count rates for two detectors and 7, is the coincident timing
window (Knoll, 1989).

A second source of noise in the acquired LOR data set occurs when one or both
of the annihilation photons from an annihilated positron Compton scatters, thus changing
direction and striking a different detector than had the photons remained unscattered
(fig 4). This causes a "false” LOR to be recorded as the annihilation event becomes
mispositioned. Only unscattered photons arising from a single annihilation event are true
representatives of the positron isotopes spatial distribution. The problem of correcting
for random and scatier coincidences in the data set is described in more detail in the data

corrections section below.

Sinograms

When a pair of photons strike a pair of detectors in coincidence, it is assumed that
a positron annihilated somewhere along the line joining the two detectors. This line is

referred to as a line of response (LOR). In the ECAT-953, there are two adjacent rings
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of 48 BGO block detectors so that effectively 16 rings of crystal element detectors exist

with 384 crystal detectors per ring. Such a large array of detectors produces many
LOR’’s to be samplec: which must be organized in some fashion to collect the data. Since
| the number of counts along each LOR is a measure of the line integral through the
positron isotope distribution connecting the detectors, the LOR’s are in effect projections
through the isotope distribution. The LOR’s are thus organized into parallel projections
where all parallel LOR’s for detectors within a crystal plane form a projection along a
certain angle, 0.

PET’s coincidence processor allows each detector to be in coincidence with the
160 opposing detectors across the field of view. Such a coincidence processor allows
160 parallel LOR’s for each projection angle, 8, where 192 distinct projection angles are
possible. Each LOR can thus be described by its radial distance from the center of the
FOV, 1, and by the angle of the LOR, @ (fig 5a). The projection data, p(r,8), is stored
in a matrix 192 elements high by 160 elements wide where each element corresponds to
a particular detector pair. The LOR data is referred to as a sinogram because a point
source off-center in the FOV traces a sine curve in the data matrix (fig 5b). A centered
point source produces a horizontally centered thin vertical line in the sinogram.

Both 2D and 3D acquisition modes are available for PET. In 3D mode,
coincidences may occur between detectors of any of the 16 crystal detector rings, so that
16 x 16 = 256 coincidence planes exist, each requiring a separate sinogram to record
its projection data. [n 2D mode, coincidences are only recorded for detector pairs within

three crystal rings cf each other (Asl < 3) (fig 6). 16 direct planes are formed from
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coincidences within the same ring (Asl = 0) or two rings apart (Asl = 2), while 15 cross
planes are formed between the direct planes from coincidences with slice offsets of one
or three (Asl = 1 or Asl = 3). 31 coincident planes or sinograms are thus required to
record a 2D acquisition. 2D sinograms contain projection data approximately describing
the isotope distribution at a particular axial position, z, so that the 31 sinograms can be

reconstructed as images of an object in axial slices.
Image Reconstruction

Image reconstruction is achieved using projection data, p(r,6), which has been
measured and stored in the sinogram matrices. Projection data is equivalent to a line

integral through the isotope distribution given by:

p(z,0) = [a(x,y)ds (1.12)
where A(x,y) is the spatial distribution of the isotope density and s is the line of response
(LOR) between two coincident detectors (fig 5a). In PET, the coincident count rate for
each LOR is proportional to the line integral through the isotope distribution along that
line.

Two types of methods for reconstructing the image matrix A(x,y) from the
projection data p(r,6) exist; analytic and iterative reconstruction (Brooks and DiChiro,
1976). In simple, unfiltered, backprojection, the isotope distribution image A(Xx,y) is
calculated by summing the counts in a given projection to all pixels along the projection

line according to the: equation:
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A(x,y) a [p(z,8) do (1.13)

or for discrete projections in PET:

A(x,y) « Y p(xCcose + ySING,8) (1.14)
LoR's

where the summation occurs over all lines of response. Simple backprojection is
inaccurate however, since backprojection is not the inverse of projection (Webb, 1988).
That is, the counts :n a projection LOR do not originate from positron annihilations
occuring with equal probability from all points on the line but instead have a particular
distribution along the: line of response.

A filtered backprojection technique improves upon this by first convolving the
projections with a filter function before backprojecting. By relating projection and image
data using Fourier Transforms, a ramp convolution filter proves appropriate when
variables are changed from rectangular to polar coordinates within the Fourier Transform
(Herman, 1979). The rectangular window used to bound the ramp function may produce
ringing artifacts, however a variety of other windows have been employed to reduce this
effect.

The second means of reconstructing images is through an iterative reconstruction
technique. Iterative reconstruction functions by first making an initial estimate of the
image distribution. Projection data is then calculated by forward projecting (computing
line integrals) through the image and comparing the measured projection data with the
projection data obtained from forward projection. An iteration rule is then applied to the

calculated projections and a new image distribution created by backprojection of a
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correction factor. This process continues in a loop until the measured and calculated
projections agree within some tolerance level determined by the stopping rule. The
effectiveness of the iteration rule modifying the calculated projections and the choice of
stopping rule greatly determines the rate of convergence and the number of iteration
cycles required (Brooks and DiChiro, 1976).

Filtered backprojection is the most frequently employed reconstruction method
since it is fast and produces sufficiently accurate images when good projection data with
fine sampling is available. Additional computational resources needed to perform
iterative reconstruction have not improved image quality enough to popularize it.

Image reconstruction algorithms can be applied either in two or three dimensions.
3D image reconstruc:ion uses a cubic grid, A(x,y,z), rather than a square grid, A(x,Y),
and requires backprojection through the entire volume, greatly increasing computation
time. However, 3I) image reconstruction is an attractive method since projections
between crystal rings with slice offsets greater than three may contribute to the
reconstruction process, enhancing the quality of the images by reducing statistical noise.
With faster reconstriction algorithms and improved computer resources, 3D image

reconstruction has just recently approached feasibility.
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If not corrected for, projection data, which has been acquired and stored in
sinograms, would suffer from a variety of systematic errors that would produce
qualitative and quantitative inaccuracies in reconstructed images. Limitations in detector
performance require certain corrections such as dead time and normalization correction.
Finite recovery times: needed by detectors struck by a photon result in some counts being
lost if a second photon strikes the detector while it is still recovering. Dead time
correction rectifies this problem. The differing sensitivities of each BGO detector results
in a different sensitivity for each pair of detectors which must be accommodated for by
normalization.

The coincider ce detection method requires a separate correction to eliminate those
pairs of photons stiiking detectors which come from different annihilation events
occurring within the timing coincidence window, 7., of the tomograph. A real time
correction using a celayed coincidence window achieves this. The final source of
inaccuracy results from interactions of the annihilation photons within the object itself.
Photoelectric absorption and Compton scattering remove counts from LOR’s which
otherwise would have registered had the object not attenuated one or both of the
annihilation photons. Attenuation correction schemes restore LOR count rates to their
appropriate levels by measuring or calculating the amount of attenuation along each line
of response. Scatter correction schemes remove those counts in LOR’s which resulted

from one or both annihilation photons Compton scattering causing a mispositioned event
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in a false LOR.

Dead Time

A minimum amount of time called dead time must pass before an activated
detector is capable cf recording a second event. This limiting time for the detection
system to become active again, after an event, may be determined by the physical
processes within the BGO crystal itself or by the PMT’s and their associated electronics.
For PMT-scintillator systems, the time for the scintillation photons to completely flush
out of the crystal into the PMT’s is the major cause of dead time. BGO has a 300 ns
decay constant respoisible for much of the dead time in the tomograph.

Two models for estimating dead time are the non-paralyzable and paralyzable
models. Both models assume any events occurring within a dead time, 7, after an initial
detected event will be lost. However, the paralyzable model differs from the non-
paralyzable one in that the dead time of the detectors will be extended by a period 7 after
any subsequent event; strike the detector while dead. Events striking detectors which are
dead have no effect in the non-paralyzable model. The equations used to describe each

model are as follows:

m = ne™ PARALYZABLE
m (1.15)
n = T NON-PARALYZABLE

where m is the measured count rate, n is the true count rate and 7 is the dead time.

For high count rates, the non-paralyzable model predicts a maximum measured



28
count rate of 1/ while the paralyzable model actually has a reduced measured count rate

as the event rate increases beyond 7. The detector becomes "paralysed” by the high
count rate and never survives its dead period without subsequent events occurring, thus
preventing its becoming live again.

In reality, neither model perfectly describes a detection system as elements of both
models are observed. BGO-PMT systems exhibit predominantly paralyzable
characteristics as a rzsult of BGO’s 300 ns decay constant for flushing out scintillation
photons, extending the time before the pulse returns below the trigger voltage. Any
events occurring before the BGO flushes out its photons will result in more scintillation
photons being created, extending the deadtime by 7 from this moment. Pulse pile-up
may occur if two events strike a detector close together in time causing the pulse
amplitudes to sum and the energy to be falsely recorded as being large. Pulse pile-up

affects the observed spectrum of detectors.

Normalization

Each BGO crystal detector has a slightly different sensitivity for detecting 511
keV gamma rays that may be accounted for by using a normalization procedure. For the
ECAT-953 PET scanner, normalization is achieved by scanning a uniform activity,
cylindrical phantom (Siemens PET Hardware Manual, 1991). First the photomultiplier
tube gains for each 3GO block detector are adjusted until consistent amplification is

achieved. Plane efficiency scans are then acquired to compute the plane efficiency of the
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31 planes (2D mode) or 256 planes (3D mode). Normalization scans then measure the

sensitivity for each of the BGO crystal element detectors and finally, normalization
factors are calculated for each pair of detectors based on their individual sensitivities.
The normalization factors for each line of response are stored in normalization sinogram
matrices which pre-multiply all acquired emission sinograms during reconstruction to
perform the normalization correction. The measurements required to complete the

normalization proceclure may take 8-10 hours to perform.

Randoms

Random coincidences arise when a photon from two separate annihilation events
strike detectors within the timing coincidence window, 7., thus entering the LOR data
set. Such coincidences cause the false assumption that an annihilation event occurred
between the two activated detectors thus affecting the reconstructed image. One means
of estimating the rardom count rate could be from detector singles rates according to
equation 1.11, however the ECAT-953 scanner uses a delayed coincidence window
method instead.

The delayed coincidence method works by activating the coincidence circuit, after
some time delay, for the 5 opposing buckets of a triggered detector across the field of
view. This time delay must be larger than the maximum time difference of detection
possible for two photons released by an annihilation event. Any "delayed coincidences”

recorded must then be a result of separate annihilation events and hence, an estimate of
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the random coincidence rate. The randoms correction is implemented by subtracting

counts from the sinogram in those LOR’s which recorded delayed coincidences.
Attenuation

When one or both of the annihilation photons undergoes either a photoelectric or
a Compton interaction in the object, a coincidence count is lost from the line of response
which otherwise would have registered had the photons continued unimpeded along their
paths to detectors. Attenuation correction methods attempt to restore the LOR count
rates to their appropiiate levels by estimating the amount of attenuation along each line

of response. The equation describing attenuation of annihilation photons is given as:

M = T[e‘ll(x)xx .e'l‘(")"z] = T[e'l‘(") ("1*"2)] (1.16)

where M is the measured count rate for a particular LOR, T is the true number of
annihilation photons initially travelling along the LOR, u(x) is the position dependent
attenuation coefficient and x,, x, are the distances to the edge of the object from the
annihilation position for each photon. The attenuation correction factor for each LOR

is thus (deKemp, 1952):
ACF = I = et ixem) (1.17)
M

The annihilation position along the LOR is unimportant for attenuation correction
since the x;, X, terms sum in the exponent. This fact is utilized by measured attenuation

correction methods which employ a rotating rod source of positron emitter circling the
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object around the FOV. Blank and transmission coincidence sinograms are then acquired
without and with the object being scanned in place. The ratio of the blank to the
transmission sinogran estimates the ACF’s for each LOR so that attenuation correction
is applied by scaling the emission sinogram by the ACF values for each LOR. Measured
attenuation correction suffers from Poisson noise problems, since short transmission
scans are desirable to minimize patient scanning times.

Recent efforts: at measured attenuation correction using singles count rates greatly
reduce ACF noise by increasing LOR count rates (deKemp, 1992). Singles attenuation
works by creating a LOR from a singles count by projecting a line from the detector
recording the singles count back through the known position of the rotating rod source
to a detector which is assumed to be the detector which would have been in coincidence
with the singles detector.

Calculated attenuation correction may also be employed by estimating the shape
of an object from an =mission image and forward projecting along each LOR through the
fitted shape to obtain the ACF’s. It is assumed the object has uniform attenuation with
the same attenuation coefficient as water (u = 0.096 cm™). Although calculated ACF’s
have no Poisson noise, the assumption of uniform attenuation equivalent to water is
dubious, particularly for scans involving the chest. Even the selection of object
boundaries may be inaccurate since the isotope need not exist throughout the object to
define its edges.

Attempts to utilize the strengths of both measured and calculated attenuation

methods are called hybrid methods. Hybrid methods involve reconstructing a measured
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attenuation map which contains Poisson noise and computer fitting several attenuation
regions from this map to represent bone, soft tissue and air regions (Tomitani, 1987).
Forward projection through this fitted shape produces noise free ACF’s without the
assumption of uniform attenuation being as rigid. The procedure is laborious however,
leaving singles attenuation correction the most attractive method currently being

explored.

Scatter

Scatter coincidences are recorded when one or both 511 keV annihilation photons
are Compton scattered in the object and recorded in a different line of response than had
the photons travelled unimpeded towards the detectors. These mispositioned events result
in a loss of image contrast since the annihilations in high activity (hot) regions are
mispositioned to reg.ons of lower concentration (cold) making the observed levels in
these regions appear more alike. Quantitative accuracy in the images is thus also
compromised.

The two properties of Compton scattered photons are that they have changed
direction and are at a lower energy than when initially released. These properties are the
basis for scatter exclusion techniques, which prevent scatter coincidences from entering
sinograms during acquisition, as well as scatter correction techniques, which estimate the
amount of scatter in cach LOR that failed to be excluded and so must be subtracted.

Scatter exclusion by detector energy discrimination is done by only allowing
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coincidences to be recorded when both detectors record energies within some energy
range, typically 250 keV to 850 keV. This allows the unscattered 511 keV photons to
enter the data set while hopefully excluding some of the lower energy scattered photons
which fall below the lower level discriminator energy (250 keV). The 25% energy
resolution of BGO causes the observed spectrum for 511 keV photons to be half of the
peak value for energies as low as 380 keV. This prevents the use of a lower level
discriminator much greater than 380 keV without experiencing significant signal loss.
Unfortunately, 511 keV photons exhibit little energy loss for large angle scattering,
making their exclusion by energy discrimination ineffective. For example, using
equation 1.9, a photon scattered through 45° still has an energy of almost 400 keV. If
the location of such a scatter were the center of the tomograph’s field of view, the
coincidence would be mispositioned nearly 15 cm from the location of the annihilation
event. Energy discrimination only proves effective for excluding coincidences that have
multiply scattered photons which exhibit significant energy loss.

For 2D acquisitions (see page 21), scatter exclusion is performed by placing 15
annuli of tungsten, called septa, to collimate each of the 16 crystal detector rings of the
ECAT-953 (fig 6). The tungsten collimators are each 1 mm thick and extend 7.7 cm
from the surface of the detectors towards the center of the field of view. Septa help
exclude scatter coincidences whose scatter angles have a component along the axial
direction, z, since such photons must pass through the tungsten to reach a detector.
Scatter occurring through an angle within a trans-axial plane need not pass through the

septa to reach a detector and so such scattered photons are not excluded.
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2D acquisitions with septa and a lower level discrimination (LLD) setting of 250
keV often experience scatter fractions (percent of data containing scatter coincidences)
of 10-20%, depending on object size and source distribution. This scatter fraction .is
considered acceptable and so reconstructed images of 2D acquisitions experience limited
contrast loss and quantitative inaccuracy. 3D acquisitions, which include all possible
LOR’s between detectors of any of the 16 crystal rings, cannot use septa so the observed
scatter fraction may be as high as 50% with a LLD of 250 keV. Recent improvements
in 3D reconstruction techniques have made this mode of operation more attractive;
however in order to realize the benefits of 3D reconstruction (page 25), a means of
correcting for scatter coincidences must be developed. The scatter correction methods
explored to date involve either energy considerations, using the property that scattered
photons are at lower energies, or measurements of point spread functions (PSF’s), using
the property that scattered photons change direction. The main scatter correction

techniques derived from these two properties are further explored in Chapter II.



CHAPTER 11

Scatter Correction Techniques

Scatter correction techniques typically employed in PET are categorized either as
energy based scatter correction techniques or as filtered scatter correction techniques.
Energy based scatter correction techniques rely on the fact that Compton scattered
photons are at a lower energy than unscattered photons at 511 keV. Several methods
utilizing this principle are described. Filtered scatter correction techniques require the
evaluation of scatter point spread functions (PSF’s) at any location within any non-
uniform object being scanned. The mathematical convolutions required to evaluate
scatter profiles from PSF’s are described along with the means employed to obtain
realistic PSF’s. Other scatter correction schemes not representative of either correction

category are also described for completeness.

35
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Scatter correction techniques were first developed for single photon emission
computed tomography (SPECT) systems in the late 1970’s before PET systems became
widely available. Since SPECT systems were and are more numerous than PET systems,
much work was done in developing SPECT scatter correction techniques. PET scatter
correction techniques have, to a large extent, been developed by paralleling the
techniques derived for SPECT.

The danger o'’ developing a PET scatter correction method based on a previously
successful SPECT scatter correction scheme is that scatter possesses different properties
in the two imaging systems. A SPECT system is essentially a gamma camera which
rotates around the object being imaged to acquire multiple angle projections (Jaszczak
etal, 1980). Gammz cameras have lead collimators in front of their NaI(T1) scintillation
detectors so that only photons travelling normal to the face of the camera will be
detected. Scatter events are therefore entirely contained within the boundaries of the
object since no material exists outside of the object to scatter photons such that they are
normal to the gamma camera face. The two photon nature of PET coincidences allows
scatter events to exist in lines of response which do not pass through the object.

A second difference in scatter profiles occurs as a result of the lower energy
photons emitted by isotopes used for SPECT systems. SPECT isotopes typically emit
photons from 80-14() keV while PET photons are at 511 keV so that the PET photons

will be somewhat more forward scattered than those of SPECT (see eqn 1.7). For
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instance, the Klein-Nishina equation (eqn 1.7) predicts the probability of a 511 keV

photon scattered through a 45° angle to be 47% that of a photon scattered at a 0° angle.
The corresponding ratio for 80 keV photons is 69%. Any assumptions used for SPECT
scatter correction which involve an isotropic scatter distribution will thus be less
successful for PET. Finally, the 25% energy resolution of BGO detectors, often used
in PET, perhaps diminishes the effectiveness of energy spectrum based scatter correction
techniques developed for the 10% energy resolution NaI(T1) detectors which are common
in SPECT. Such differences between PET and SPECT scatter distributions must be
considered before attempting to modify a SPECT scatter correction technique for use in
PET.

The original and simplest means of correcting for scatter is called the reduced u
method of scatter correction (Yanch et al, 1990). The technique is applied during
attenuation correction by using a value for the linear attenuation coefficient, u, which is
lower than the true value. Using the full value of u predicts how many photons will be
removed from a narrow beam of radiation due to absorption and scatter; however it
ignores the number of photons scattered into the path from other directions. The broad
beam conditions of SPECT and PET systems cause the center of a uniform activity object
to appear hotter than the edges if the proper u is used. The justification for
undercorrecting atter.uation with a reduced value of u is that a portion of the attenuated
primary photons are replaced with the same number of scattered photons (Yanch et al,
1990). Although image quality is enhanced by the reduced u technique, improvements

in image quantification are only minimal since the method assumes all locations in the
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image are affected by scatter to the same extent. This is not the case for non-
homogeneous source distributions. More sophisticated means of performing scatter
correction should compare their improvements to images reconstructed using a reduced
u rather than images employing no scatter correction technique at all since the reduced
p method is fast and easy to implement.

Two dominarit types of scatter correction techniques emerged from the work on
SPECT systems: energy based correction methods and filtering correction methods
(Jaszczak, 1985). Energy based scatter correction uses the property that scattered
photons are lower in energy and so may be separated from unscattered photons in some
way. The superior energy resolution of NaI(TI) detectors (10%) relative to BGO
detectors (25%) have made exploration of these methods more common in SPECT
instruments using NaI(Tl) detectors, however some energy based methods have been
attempted for PET instruments equipped with BGO detectors. Deconvolution and
convolution subtraction methods attempt to estimate the scatter point spread function
(PSF) for a point source of activity in the object being scanned. The scatter PSF is the
scatter profile observed from a point source in all image planes from all projection
angles. Since a radioisotope distribution acts as a collection of point sources, filtering
methods such as deconvolution or convolution subtraction may estimate scatter profiles

for distributed sources if accurate PSF’s can be determined.
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Energy Based Scatter Correction

Energy based scatter correction uses the property that scattered photons are at
somewhat lower energies than unscattered photons facilitating their removal from the data
set. Five energy based methods for reducing scatter are described in the following
section. The first two methods are scatter suppression or exclusion techniques which
attempt to reduce th: amount of scatter counts entering the data set during acquisition
while the other threc: methods attempt true scatter correction by estimating the amount
of scatter which entered the data set and subtracting it after acquisition. All methods
were originally developed for SPECT, and only one of these correction techniques, the

dual energy window method, has been attempted for PET.

Asymmetric Windows Around Photopeak

Normally in SPECT, lower and upper energy discrimination levels are set to be
symmetric about the photopeak energy of the isotope being used, with a pulse width
typically of about 20%. The asymmetric windows method performs scatter suppression
by raising the 20% pulse width energy levels until the count rate is reduced to 80% for
a point source in air (Koral et al, 1986). The idea is that the Compton photons, being
of lower energy than the unscattered photons, will be removed with greater frequency
producing a reduced scatter fraction in the data.

The problem with this method is that it reduces signal count rates thus producing
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noisier images while failing to remove a large portion of Compton scattered photons, as
these may possess erergies as high as the photopeak energy. In fact the Klein-Nishina
equation (eqn 1.7) predicts that 0° angle scatter at the photopeak energy has the largest
cross section, particularly as photon energy increases. For PET, this method is
essentially equivalent to raising the lower level discriminator to remove greater amounts
of Compton scatter while sacrificing signal to a greater extent. However, the poorer
resolution detectors of PET cause the discrimination to be less effective than for SPECT.
The method has proven effective for SPECT only for quantification of very high activity
lesions in low background levels where Compton scatter fractions are low (Koral et al,

1986).

Energy Weighted Acquisition

Energy weighted acquisition (DeVito et al, 1989) attempts to account for the fact
that photons measured at a particular energy result from either unscattered photons
recorded at a lower energy due to energy resolution effects, or from scattered photons
which truly are at a lower energy. The probability of a photon being scattered rather
than unscattered increases in a continuous way as the detected energy of the event
decreases. For this reason, energy weighted acquisition assigns a weighted count to the
data set, with higher energy detected photons having a greater weight. This is a more
sophisticated means of acquisition than windowed acquisition, where all events recorded

above the lower level discriminator (LLD) are assumed to be unscattered photons and all
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detected events below the LLD are assumed to be scatter events.

A difficulty with energy weighted acquisition is selecting the appropriate
weighting functions to estimate the probability of a recorded count being from an
unscattered photon. Also, the technique is merely a scatter suppression technique and
not a correction technique since scattered photons still enter the data set but with a lower
probability than when using windowing. Cold spheres in hot backgrounds displayed a
drop in scatter levels from 40% to 27% (DeVito et al, 1989). This sizable remaining
scatter level requires further scatter correction by some other technique. Energy
weighted acquisition has not been attempted for PET. However, it is likely the poorer

energy resolution of BGO would further reduce the effectiveness of the technique.
Split Photopeak

The split photopeak scatter correction method functions by acquiring data in two
adjacent non-overlapping energy windows of equal size on either side of the photopeak
energy (King et al, 1992). The idea is that the proportion of Compton scattered photons
will be greater in the lower energy window than in the higher energy window. This is
unlike the unscattered counts which will be equally distributed in both windows. King

et al used a regression relation of the form:

SF = A‘RFP+cC (2.1)
to estimate the total scatter in the photopeak (SF @ total photopeak counts) where A, B

and C are calibraticn coefficients and R, is the ratio of scatter counts in the lower
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window over those in the higher window.
A similar type of approach using split photopeak acquisition windows was

attempted where the four governing equations were given as:

U +S, =T,

U, + Sy =Ty (2.2)
U /Uy = K

Sp/ Sy = K,

where U are unscattered count rates, S are scatter count rates and T are total count rates
in the lower (L) and upper (H) windows while K, and K, are measured coefficients
(Pretorius et al, 1997). K, is measured with a source in air and should be equal to one
if the detectors are correctly calibrated for energy. K, is assumed to be a constant for
all bins, independen: of source or object distribution, in the hope that scatter spectra
shape will remain reasonably constant in the 0° angle scatter region around the

photopeak. Solving the four equations gives the total photopeak count ratio of:

U, +U, = (K1+11)rc2(fC2Kfll'H—TL) (2.3)

The unscattered count rate can thus be derived from the total count rates in each window.

The problem with the method is the assumption of a constant ratio of scatter
counts in each window since such a ratio is object dependent. Bins located on the
periphery or exterior to the object experience a larger shift to lower energies because of
the larger angle scatter events which are mispositioned away from the object. Even
slight differences ar: greatly magnified by the presence of the (K,-K,) term in the

denominator. Difficulties in keeping the instrument precisely calibrated so that K; = 1
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are also a problem. The method has obtained some success for simple phantom studies
in SPECT (King et al, 1992) however extrapolation to PET would be more difficult as

a result of the poorer energy resolution of BGO.

Multiple Windows

Multiple window scatter correction techniques require the acquisition of data in
a number, usually 32, of contiguous energy windows extending over the energy spectrum
from the backscatter peak to above the photopeak (Koral et al, 1988). The observed
spectrum will be a combination of the unscattered and the scattered spectra according to

the equation:

T, » U8, (2.4)

1

where T; is the total observed spectrum, and S; and U; are the scattered and unscattered
components in energy bin i, for a particular line of response. Assuming that the
unscattered spectrum will be a scaler of a point source in air, and that the scattered

spectrum can be fit by a 3rd order polynomial, the following equations can be derived:

S, = a_ +a,i+a,i®+a,i’
i ° 1 2 3 (2.5)
U.i = Kf.i

where K is the scaler, and a,, a,, a, and a, are the fitting parameters with f; being the
spectrum of a point source in air. The measured spectrum for a line of response, M;,
is compared with the estimated total spectrum, T;, to fit the five parameters using matrix

fitting operations through the minimization of | M; - T; | .
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A more sophisticated solution to the above equations was later applied by Gagnon
using data matrices with co-variance statistics techniques (Gagnon et al, 1989). Only 10-
15 energy windows were used to preserve sufficient statistics in each of the windows.

The special hardware required to acquire the multiple projections at various
energies is a drawtack of the technique. The process of performing the matrix
minimization to fit the parameters is time consuming, even with the use of a coarse data
set, permitted because of the smooth nature of the scatter profiles. Although the
procedure is sound theoretically, the difficulties in implementing such a procedure have

no doubt inhibited its application to PET systems.

Dual Energy Windows

The dual energy window (DEW) scatter correction method acquires data in two
non-overlapping energy windows. In addition to the photopeak window containing the
isotope’s photon emiision energy, a second lower energy Compton window is acquired
to estimate the distribution of Compton scattered photons recorded at below photopeak
energies. The idea was first introduced for SPECT by Jaszczak and is governed by the

equation:

Ulx,y) = T(x,y) - K-C(x,y) (2.6)

where U(x,y) is the scatter corrected image, T(x,y) is the measured image, C(x,y) is the
Compton image reconstructed from the lower energy window data and K is a scaling

constant equal to the 1-atio of Compton events in the photopeak window over those in the
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scatter window (Jaszczak et al, 1984). The DEW technique can be applied either in

image space, as described above, or in projection space, by appropriately subtracting
sinogram data acquired in each window.

There are thrze assumptions of the DEW technique. The first is that all counts
in the Compton window originate from Compton scattered photons alone. Secondly, the
profile of Compton scattered events in the Compton window are similar to those in the
photopeak window, ¢xhibiting similar scatter line spread functions. Finally, the scaling
constant, K, obtained by measurements on simple phantoms, will be constant for all
object and source dis'ributions for given energy window settings. The above assumptions
were verified for SPECT by Monte Carlo simulations of simple phantoms (Floyd et al,
1985). DEW was demonstrated to have some success in cardiac imaging, particularly
for 'T1, whose low energy photons (72 keV) most closely approximated isotropic
scattering, hence satisfying the second DEW assumption (Galt et al, 1992).

The DEW technique was modified for use in PET, with an improvement to
eliminate the first assumption that all counts in the Compton window be from scattered
photons (Grootoonk 2t al, 1993). This was accomplished using the following governing

equations:

;U
[

Ps + Py
Cp, = Cg + C,
T s U (2.7)
Ry = Cg4/Pg
Ry = CU/ Py
where P is the photopeak window, C is the Compton window and T, S and U are the

total, scattered and uascattered count rates respectively. Rgand Ry, are ratios of scattered



46

and unscattered count rates of the Compton window over the photopeak window. These
are assumed to be constant for given energy settings for all objects and source
distributions. This modified DEW technique only requires that each window have
different ratios of scattered and unscattered events rather than scatter events exclusively
in the Compton wincdow. Solving these four equations (eqn 2.7) for unscattered events

in the photopeak yields:

Rg
Rg-Ry,

Py = ( ) Py - ( ) C; (2.8)

1
RS - RU
The energy windows were set at 200-380 keV for the Compton window and 380-850 keV
for the photopeak window, while the ratios were calculated at these energies for line
sources centered in v/ater phantoms (R,) and in air (Ry).

Although moderate success was reported for brains scans, the technique suffers
when imaging non-uniform attenuation objects as in cardiac imaging. Attempts to
generalize the DEW technique for spatially varying media in SPECT may alleviate this
problem, however the solution is so complex as to destroy the strength of DEW, which
is its simplicity of application (Smith and Jaszczak, 1994). The higher energy photons
of PET are inherently more forward scattered than low energy SPECT photons resulting
in a degradation of the second assumption (Thompson, 1993). This problem is further

discussed in Chapter IV with the assistance of some Monte Carlo simulations.
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Filtered Scatter Coirection

Post-acquisition scatter correction techniques are another predominant means of
correcting for scatter in PET and SPECT systems. Such techniques, applied to the
projection data before reconstruction, require the use of point spread functions (PSF’s)
to estimate the response of a point source of radioactivity at any position within the
object being scanned. Since images are equivalent to a superposition of many
independent point sources, performing either convolution subtraction or deconvolution
on the acquired projection data allows an estimate of the scatter profiles in each plane
and projection angle to be established.

To perform accurate scatter estimation, point spread functions which vary
according to the object mass distribution and source position within the object are
required. Attempts to develop such position and object dependent PSF’s are further
described in the section on PSF determination below (page 53) and are the subject of this

thesis.

Filtering Operations

Convolution techniques for performing scatter correction consider the measured
projections, T, to e the sum of an unscattered component, U, and a scattered
component, S. Two methods for modelling the scatter component exist: Deconvolution

and convolution subiraction.
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The deconvolution method was initially proposed for SPECT (Floyd et al, 1985)

but has more recently been applied to PET as well (McKee et al, 1992). In
deconvolution, the scatter component is modelled as a convolution of the unscattered
projections, U(r,z), with some scatter point spread function, K(r-r’,z-z"). The parameter
r refers to a particular bin in a projection at a particular angle, ¢, stored in a single
sinogram. The parameter z refers to the mean axial position of line of responses located
in different projection planes and stored in different sinograms. The equation describing

this convolution witt: unscattered projections is given as:

Sp(r,z) = Uy(r,2) * K(r-1’, z-2/)

2.9
EE U¢(r’,z’) - K(r-r!, z-2') ¢ )
r’ z!

where the summation is over all bins of all projections for a projection angle of ¢. The
above equation, modelling scatter, and the equation describing measured projections

(T=U+S) combine to give:

T¢(r,z) U¢(r,z) +S¢(r,z)

Uy(x,2) +U, (L, 2) *K(r-r'!, z-z') (2.10)

Uy(zr,2) * [8(r-1r/,2-2') +K(z-1!, z-2")]
where o(r-r',z-z’) is the Dirac delta function. Taking the Fourier transform of each side

of the equation:

FT(T) = FT(U) * FT(§ +K) (2.11)

where FT is the Fcurier transform operator. Re-arranging to solve for the desired

unscattered projections produces the equation:
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B = FT‘l[—F%] (2.12)

The weakness of the method is the need to use a position independent point spread
function, K(r-r’,z-z"), with no functional dependence on r or z alone. Taking the Fourier
transform of K is only possible if the function is position independent, contrary to the
observation that the PSF is object density and source position dependent (Jaszczak,
1985). The strength of the deconvolution method is its speed because using filtered
Fourier backprojection reconstruction (see page 24), as is most common, allows the
deconvolution to be done in Fourier space. The technique can then be implemented as
a simple modification of the filter used in Fourier backprojection.

Convolution subtraction was first proposed for PET (Bergstom et al, 1983) and
later for SPECT (Axelsson et al, 1984). It works by modelling the scatter component,
S, as a convolution of the measured projections, T, with a point spread function, K,

according to the equation:

Se(r,z) = Ty(r,z) * K(r-r!,z-z',r’, z')

EZ Tq,(r',z’) - K(r-r!,z-2', !, z')
r/ /

z

(2.13)

The unscattered projections could be estimated by performing the above convolution to
estimate the scatter profiles, then subtracting the scattered component from the measured

projections to give:

U‘,(I,Z) = T¢(rlz) -S¢(r,Z) (2.14)
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Reconstruction of the: unscattered projections can then be done to produce a scatter free
image.

The strength of convolution subtraction is its ability to use a flexible point spread
function, K(r-r’,z-z’,r',z"). It is mathematically permissible to use a position dependent
PSF since no Fourier transform is required. Such methods are referred to as spatially
varying convolution methods, as opposed to the spatially invariant methods of
deconvolution technigues, because the observed PSF variations due to object density or
source position differences can be incorporated into the technique. The problem with
convolution subtraction is speed since a convolution to estimate scatter profiles and their
subsequent subtracton from the observed projections must be done prior to
reconstruction. The use of the total observed profile, T, instead of only the unscattered
profiles, U, for convolution with the PSF’s is less accurate and leads to an overestimation
of scatter (Msaki et ial, 1993).

To account for the problem of convolving with T, an iterative equation to estimate
the scatter profiles using an estimate of the unscattered profile was suggested as follows

(Shao and Karp, 1991):

Se(r,z) = [T,(r,2) -k S§*(r,2)) *k(r-r',2-2',r!,2") (2.15)
where n is the iteration number and k is a relaxation parameter (0 < k < 1) used to
avoid oscillation towards convergence between iterations. The estimate for the
unscattered projections is shown within the square brackets in the above equation. The
initial estimate for thz unscattered projections is the total measured projections, T, scaled

down by some factor to crudely account for scatter. Iterative scatter estimation is the
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most accurate means of performing scatter correction since position dependent PSF’s are
permitted and convolution with unscattered distributions may be employed.

Iterative convolution subtraction allows the PSF to vary for each bin of each
projection at any angle in any image plane, however projection methods do not allow the
PSF to vary for different source positions along a particular line of response (bin). The
method available to permit this last PSF variability is called an image to projection
method (Barney et al, 1993). For this method, the iterative convolution is done in image
space using a reconstructed emission image, f(a,b,c), which is convolved with a real
space point spread function, Ky(r’,z’,a,b,c). K is the PSF in the ¢ projection direction
for a point source at (a,b,c). The iterative equation resembles the projection space

iterative equation above (eqn 2.15) and is given as:
Sy(r,z) = Y 3 ¥ f='(a,b,c) K lz',z',a,b,c) (2.16)
X y =z

where the summation is over all image pixels defined by (a,b,c). The line of response
represented by the variables ' and z’ passes through the source at the image point (a,b,¢)
parallel to the LOR where scatter is being estimated at r,z. The iteration procedure is
the same as for projection convolution subtraction except a new image, f*(a,b,c), must
be reconstructed after each iteration, n, using the scatter subtracted projections, U,",
from the last scatter estimation, S,". The initial estimate of f° is obtained by scaling
down the measured projections, T,, to crudely account for scatter.

Image to projection methods represent the most sophisticated and theoretically

accurate means of estimating scatter distributions since the point spread functions may
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vary with position along a LOR as well as from one LOR to another. However, the
added sophistication does not produce sufficiently superior scatter estimates relative to
iterative convolution subtraction of projections to warrant its routine use (Barney et al,
1993).

Iterative convolution subtraction of projections has become the technique of choice
offering the best compromise between accuracy and speed of computation. For the
ECAT-953 operated in 3D acquisition mode, double convolution to estimate scatter (eqn
2.15) over the 160 bins within a projection at angle, ¢, and over the 256 sinograms at
different axial positions and angles can be computationally demanding. To shorten the
time to perform this convolution, the 3D dataset containing 256 sinograms is re-formatted
into the 31 axial slices characteristic of a 2D dataset. The assumption is that scatter
distributions do not vary with the angle of the sinogram plane from the axis of the
tomograph and depend only on the bin, r, and the mean axial position of the sinogram
plane, z (Bailey and Meikle, 1994). Convolution, then, need only occur over 31
sinograms rather than 256, which greatly enhances computing efficiency. After
completion of the convolution, the scatter component in each of the 256 planes is
extracted from the 31 planes by selecting the 2D plane with the same axial position as
the 3D sinogram’s miean axial position.

Another means of decreasing convolution time is to compress the data set by re-
binning the sinograms into 96 angles with 80 bins rather than 192 angles with 160 bins
(Wienhard and Lercter, 1994). This is permissible because of the smooth broad scatter

distributions observed in PET, which vary little over adjacent bins. Using both data
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reduction methods contracts the size of the data set by a factor of 33.

Point Spread Function Determination

In order to have accurate scatter profile estimation using a convolution correction
technique, point spread functions which are accurate for all source positions within
objects of any material distribution are required. The first attempts to characterize the
PSF’s were by Bergstrom for PET (Bergstrom et al, 1983) and by Axelsson for SPECT
(Axelsson et al, 1994). In both cases, PSF’s were modelled by single exponentials

according to an equation of the form:

K(r) = Ae®r (2.17)

where r is the bin offset from the projection bin containing the point source and the
parameters A and B are assumed constants for all source positions in all objects. The
choice of a single exponential function to model the scatter profiles stems from the
observation of linear profiles for line sources in water filled cylindrical phantoms when
plotted on a semi-log graph (fig 7). Initially, line sources were used because only 1D
convolution within a single projection at a particular angle was done to produce 2D
reconstructed images. This corresponds to using equation 2.15 with convolution over r
alone and no axial scatter considered. Such a simplified convolution is most effective
only when little axial variation in isotope distribution exists. The actual values of A and
B were determined by averaging the parameters measured for several source positions

at a variety of radial offsets from the center of the water filled cylinder.
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Figure 7: Projections plotted for a line source in a 20 cm water filled ‘cylinder for three
radial offsets (0 cm, 4 cm and 8 cm). The solid lines extending under the peaks are an
exponential fit to the data points from PET experiments. Taken from Bergstrom et al,
1983,
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Advancement to 2D convolution over r and z was suggested by Msaki for SPECT
(Msaki et al, 1987) and later by Shao for PET (Shao and Karp, 1991). The use of such
a double convolution greatly increases calculation time; however the scatter estimation
will not suffer from axially varying isotope distributions as for 1D convolution. The
choice of equation to fit the point spread function is much like for 1D convolution (egn

2.17) however an axial exponential is included as in the following equation:

K(r,z) = AeBreBz (2.18)

Isotropic point sprea« functions were assumed so that the exponential constant, B, is the
same for axial as well. as transaxial variations. Measurement of the parameters was made
using point sources in water cylinders rather than line sources, as was done for 1D
convolution PSF’s. Shao observed that the 1D convolution using line sources predicts
the same scatter fraction in all planes, causing an overestimate of scatter in planes
containing radioactivity and an underestimate of scatter in activity free planes.

An accurate means of measuring 2D convolution PSF’s was implemented by
Bailey using measurements of line sources in air and within water cylinders (Bailey and
Meikle, 1994). The scatter profiles could then be measured by performing a calculated
attenuation on the source in air acquisition using the narrow beam attenuation correction
factors for the water cylinder. The difference between the source in water profiles from
the attenuated source: in air profiles would then produce an accurate estimate of the
scatter profiles. The scatter profiles were modelled using equation 2.18 where the PSF
was assumed to be isotropic with the measured exponential decay constant in the radial

direction assumed to be the same as the value for the axial direction.



56

The first attempt to characterize the variations of the point spread function on
position within the object was made by Hoverath (Hoverath et al, 1993). Hoverath
observed that point spread functions had different slopes on either side of the source
projection bin when the source position was off center in a water cylinder. These slopes
were parameterized using a number of measurements for several source positions. The
position dependent PSF’s were tested by estimating scatter profiles for water cylinders
with a variety of source distributions using 2D iterative convolution subtraction in
projection space. Projection space convolutions, according to equation 2.15, were
permissible because of Hoverath’s observation of little PSF variation as a source was
moved to different positions along a particular line of response. This is no doubt the
reason little improvement was observed by Barney when using image to projection
methods as per equation 2.16 (Barney et al, 1993).

The first attempts to characterize point spread functions as something other than
simple exponentials was made by Wienhard (Wienhard and Lercher, 1994). He observed

the PSF’s to have a (Jaussian shape that could be described by the equation:

_41”[(.&'1.2;!)24_51'1‘)3] (2.19)

K(r,z) = Ae

where the four parameters of amplitude, A, Gaussian full width at half maximum in the
radial and axial direction, FWHM, and FWHM,, as well as shift, s, were measured using
point sources at a variety of positions within a water cylinder. For off center sources,
the shift parameter accounts for the observed shift of the scatter peaks towards the

periphery of the obje:t, outside of the source peaks (see figure 7). The shift parameter
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increases as the radial position of the source from the center of the cylinder increases.
The Gaussian FWHM is observed to decrease as the lower energy discriminator setting
increases since small angle scattering at higher energies are the only scatter accepted.
Attempts to modify the amplitude of scatter point spread functions using the
attenuation correction factors of transmission scans has been attempted for SPECT
(Meikle et al, 1994). The method scales the calculated scatter profiles, obtained using
iterative convolution subtraction, by the scatter fraction for each LOR estimated using
the attenuation correction factor (ACF) for that LOR. This means of direct scaling from
the ACF’s is physiczlly sound only for SPECT systems where scatter is constrained to
the object and is proportional to the ACF for each LOR. Extension of this method to

PET where scatter is not constrained to the object must be done with care.
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Other Scatter Corrvction Methods

Two additional scatter correction techniques have been proposed for PET which
are neither of the convolution type nor the energy based type. The first method called
the extraction of trues method uses a mixture of the energy based correction as well as
the convolution correction assumptions. A second approach uses measurements with and

without septa in place for retractable septa tomographs.

Extraction of Trues

The extraction of trues method (Bendriem et al, 1994) requires the acquisition of
data in two energy windows to perform scatter correction. A low energy window (LEW)
extending from 250-350 keV measures both scatter and unscattered counts while a high
energy window (HEW) from 550-850 keV contains predominantly unscattered events
observed at energies above 511 keV because of the energy resolution of the BGO
detectors. The HEW contains a noisy estimate of the unscattered distribution having
about 6% scatter that is removed using either a convolution subtraction or a
deconvolution technique. To estimate the scatter distribution in the LEW, the scatter
corrected noisy distribution in the HEW is scaled up by a factor to account for efficiency
differences between the two windows. This estimate of the unscattered distribution in
the LLEW is first smoothed using some filter. The smoothing is considered permissible

because of the smooth nature of the scatter profiles. The estimate of scatter in the LEW
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is simply the difference between the LEW and the scaled, smoothed and scatter corrected

distribution in the HISW.

The two major problems with the technique are that Compton scatter at low
angles, which have the highest probability according to the Klein-Nishina equation, may
exist up to 511 keV and so have the same probability of being mis-registered by the BGO
detectors into the HEW. This explains the 6% scatter still observed in the HEW which
requires correction. The second problem is the large amount of noise in the HEW since
the count rate in this window can be nine times less than that for the LEW. Large
acquisition times are required to obtain sufficient statistics, but even so, smoothing of the
unscattered projections is still required. The method has produced some respectable

estimates for scatter when tested on flood phantoms with low activity regions enclosed.

Retractable Septa Scatter Correction

Another means of performing 3D scatter correction for PET systems with
retractable inter-plan: septa is to first acquire a short 2D acquisition before a longer 3D
acquisition (Cherry ¢t al, 1993). The idea is that the difference in counts registered in
sequential acquisitions of the LOR’s common to both data sets will be due to increased
efficiency (septa no longer block some unscattered events) and to increased detection of
scattered events. If one can correct for the efficiency differences then the remaining
difference will be cue solely to scattered events, producing an estimate of scatter

according to the equition:



60
S5(r,0) = T,,(r,0) - e(r,0) T,,(r,0) (2.20)

where €(r,0) is the LOR dependent efficiency factor obtained by taking the ratio of scatter
free blank scans which used a rotating rod source.

The 2D acquisition with septa still contains some scatter which were removed by
assumning the 2D sc:tter distribution has the same shape as for 3D. The estimate of
scatter (eqn 2.20) could then be scaled by an axial position dependent factor, obtained
from measurements on phantoms. The scatter for oblique LOR’s present in the 3D
dataset but absent for 2D acquisitions were estimated by using corresponding direct plane
LOR’s from the 2D data set whose axial position was the same as the 3D LOR’s mean
axial position. Such an approximation is reasonable considering the small axial
acceptance angle of ’ET.

The main difficulty for retractable septa scatter correction is the requirement that
the isotope distribution be time independent since the distribution must not differ greatly
from when the initial 2D acquisition was made. The need to retract septa for each study

is also rather inconvenient or impossible for many PET systems.



CHAPTER I

Analytic Scatter Correction Theory

The filtering scatter correction techniques described in Chapter II require the
expense of much effort to obtain measurements of scatter point spread functions for a
variety of imaging conditions. However, little effort has been made to utilize the well
established physics of Compton scattering to deduce these PSF’s. In this chapter, a
means of estimating the PSF’s for iterative 3D convolution subtraction is explored using
the Klein-Nishina differential cross section to describe the angular distribution of
scattered annihilation photons. The attenuation correction factors (ACF’s) from
transmission scans are included within the theory as inputs describing the distribution of
matter in the object tieing imaged. Such analytic PSF’s are hopefully more accurate for
realistic imaging conditions than the measured PSF’s of water cylinders. Some
knowledge of the important factors governing the shape of scatter point spread functions
may also be revealed to improve the choice of approximations used in various scatter

correction schemes.

61
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Scatter Analysis using the Klein-Nishina Equati

The Klein-Nishina differential cross section (eqn 1.9) describes the Compton
scattering of a 511 keV annihilation photon through an angle 8 into the solid angle d{2.
The total Compton cross section for scattering through any angle can be found by

numerically integrating the equation over all angles to give:

xx/
e 7 fz (3.23cos¢cosb +3cos?pcos?B-cosipcos®) ) g0 a0 dp (3-1)

2 (2-cosdcosh)?

°c=-

0-x/2

where cosf =cos¢cosd gives the scattering angle 8 as a result of 2 orthogonal angles ¢,0
with ¢ being the angle within a ring and 6 being the angle from the transaxial plane.
dQ=cosfdfd¢ is th: element of solid angle. Numerical integration gives o, =
7.220Zr Y2 = 2.87 x 10 cm? for water (Z=10). Since u,=o,n; with n; being the

density of target molecules, the Compton interaction coefficient is theoretically estimated

to be:
N,p
p’c = och = oc gw'
u. = (2:87x107¢cm?) (6.02x10* molecules/mole) (1g/cm?) (3.2)
[~

18.02g/mole
B, = 0.0957cm™

where N, is Avogadio’s number, p,, is the density of water and A, is the atomic weight
of water. This value for u, agrees very closely with the accepted narrow beam
attenuation coefficiert for 511 keV photons in water of 0.096cm™.

Based on this, the attenuation correction factors (ACF’s) calculated from the ratio
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of blank over transmission scans can be assumed to be completely a result of Compton
scattering of photons from the narrow beam. The ACF can be represented by the

equation:

1 1
ACF = .
e'[llc(ﬂ"O') +llp,]d e-llcd (3-3)

where u (87#0°) is the Compton cross-section for scattering outside of a broad beam
diverging at an angle: 8 and the approximation is for negligible photoelectric effect and
narrow beam ACF’s. The negligible contribution of the photoelectric effect in water
(human soft tissue ecjuivalent) is not surprising considering that oy is only comparable
to g, for detectors with large Z materials (see page 15). The photoelectric cross section’s
Z’ dependence (eqn 1..6) relative to the linear dependence of the Compton cross section
on Z (eqn 1.9) is responsible for gy being negligible for typical scanning conditions
involving low Z materials. Greater than 99% of the interactions experienced by 511 keV
photons in water will be Compton scattering.

The close agrzement of the theoretical Compton interaction coefficient with the
experimental narrow eam attenuation coefficient indicates the predominance of Compton
scatter in attenuation correction and suggests a strong link between the scatter correction
problem and the attenuation correction problem. In fact, attenuation correction with
narrow beam ACF’s :s really just scatter correction by accounting for the photons which
“out-scatter” from their initial path (fig 8). Unlike attenuation correction, scatter
correction should also consider "in-scatter" by accounting for the fact that scattered

photons sometimes scatter into a different projection bin instead of being removed as is
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Figure 8: Comparison of attenuation and scatter correction. LOR(A,B) experiences
attenuation as photon 2 fails to reach detector B. LOR(A,C) receives a scatter
coincidence as photon 2 is received by detector C.
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assurned by attenuation correction. These "in-scatters” must first be removed from the
projection data through an accurate scatter correction technique before the projections are
rescaled for "out-scatter” by the ACF’s. Narrow beam ACF’s are required for this
purpose so that the "in-scatters” must be removed from the transmission scan as well as

for the emission scar..

Scatter Amplitude

In order to predict the particular bins and projections (B,P) which scattered
photons initially along a particular line of response (B,,P,) will scatter into, a single
scatter approximation is adopted where only those scatter coincidences in which one of
the annihilation photons single scatters are considered for in-scatter to (B,P). This can

be visualized in the following figure:

x Annthilation Position
o Mean Scatter Position
KL Unscatter Detectors
J,M Scatter Detectors

Figure 9: Description of scatter event.
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where x indicates the annihilation position, o represents the location of scatter through
an angle 8 and A, A", A" are the indicated escape routes of the 2 photons as they travel
through the object for detection. A mean scatter position approximation is employed
where scattering is only permitted to occur from a calculated mean scatter position (o)
(see page 70). The probability of detecting a scattered photon at detector J from an
annihilation whose photons initially travelled along LOR(B,,P,) is given by the equation:
P(J) = e-PAg-sA/g-pa’(q_g-p(B)d) (3.4)

where the first three terms account for Compton scatter out of the indicated path
(attenuation) and the fourth term is the probability of a Compton interaction through an
angle B into the solid angle of detector J.

For 8=0°, the scatter which occurs within the same LOR, and hence the
amplitude of the scatter point spread function, can be determined. In this case the first
three: terms combine into the term e*A+A+A" which is simply the inverse ACF through

the LOR(B,,P,) or [ACF(B,,P)]". The fourth term can be rewritten:
1-eg-#B)d = 1 _g-ClBlud (3.5)

where C(8) = u(B)/x = o(B)/0 is the ratio of the Compton cross section into the solid
angle of detector K to the Compton cross section through all solid angles.

This function C(8) can be evaluated using the value previously calculated by
numerical integration for the K-N equation integrated over all solid angles to be 0 =
7.229Zr.%/2. The cross section for scatter through an angle 8 into the solid angle of a

detector at a distance: R from the scatter position (0) is given by:
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. do(p) - zrl 3- 3cosP+3 cos?p-cos’p (3.6)
o(B) dQ 0 2 ( (2-cosp)? )[ ]

where A, is the area of a detector = (0.622cm®0.675cm) = 0.4197cm?. This assumes
a constant K-N cross: section over the small solid angle of a detector. It also assumes
that the response of the detector is not greatly affected by the angles of the incident
photons (as for spherical detectors). F(g) is defined as the ratio of the K-N equation at

an angle 8 over an angle of 0° given by:

’ _ 1 ,3-3cosf +3coszﬂ cos3p
17 = —_— 3-7

so that the function (C(8) for a photon scattered through an angle B is:

. 2
C(B,R) = ZF(,,‘”;;D/R (3.8)

For 3=0" and R=33cm (center of tomograph), C(0°,38)=8.0544x10">,
To determine the probability of a scatter through 0° of either photon as the sum

of 2 separate cases, the probability P(0°) becomes:

P(0°) = P(K) +P(L) = ACF(B,, P,) " (1~ ¢ tdyy o cl0"-Rlma) (3.9

P(0°) = ACF(B,,P,) ™ [C(0°,Ry)pd+C(0°,R,)pAl

using the approximation e*=1+x for small x since CuA < 1 for all imaging conditions
considering the sample C above. If an effective C(0°) is defined, weighted by the

fractional mean free paths of A and d, we see:
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o = ) Ed ° EA "
c(0°) c(o ,RK) 7 o + C(0 ,RL) e (3.10)

So substituting this C(0°) into equation 3.9 and once again using the small exponent

approximation, the probability of 0° scatter becomes:

P(0°) = ACF(B,, P,) 1 [C(0°) (pA+pd)] = ACF(B,, P,) ! [1-eC(0°) (ha+pd)]
P(0°) = ACF(B,, P,) ™1 [1- (e (parpd))C(0)] (3.11)

P(0°) = ACF(B,,P,) '[1-ACF(B,, P,) €]
The number of photons initially travelling along LOR(B,,P,) is the number of true
coincidence counts, T(B,,P,), in LOR(B,,P,) scaled up by the narrow beam scatter
corrected ACF(B,,P,). The number of scatter counts in LOR(B,,P,) representing 0°

scatter is thus:

5(0°) = P(0°)ACF(B,, P,) T(B,,P,)
(3.12)
S(0°) = [1-ACF(B,,P,) €] T(B,, P,)

where S(0°) is the amplitude of the scatter point spread function.
Scatter Profile

The shape of the scatter profile relative to the 0° scatter bin (B,,P,) can be
determined using equation 3.4 which describes the probability of scatter into a detector

J as:

P(J) = e wlaraalh (1_e‘P(ﬁJ)d)

P(J) = ewr@aal (c(g_ R (B))pd

(3.13)
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using the small exponent approximation. The first term is no longer the inverse ACF of
LOR(B,,P,) since the scattered photon travelling along A” is no longer confined to the
source LOR(B,,P,), however for the moment this will be assumed so and ACF(B,,P,)"!
will be used to replace e*A+A'+AY A guitable correction for this assumption involving
the forward projection along A” through an attenuation image to a mean scattering
position (o) is discussed in greater detail in the analytic corrections section (page 78).

Using equation 3.12, the scatter coincidences in P(J) will be:

S(J) = [C(B,,R;(B))ndl T(B,, P,)
(3.14)

S(J) = [F(B,) R7(0)/R3(B,) C(0°,R;(0))pd]l T(B,,P,)

when one examines the definition of C(8,R) in equation 3.8. Using the definition of

C(0°) in equation 3.10 and the fact that equations 3.11 and 3.12 give S(0°) to be:
S5(0°) = [c(0°) (pA+pd)] T(B,,P,) (3.15)

The shape of the scatter profile into a detector J relative to 0° scatter is found to be:

S()  _ _ pud F(B,) R3(0) /RZ(B,)

S(0°) T WAwd ' pa . CU°.R(0)) pa 0 (3.16)
pA+pd C(0°,R;(0)) pA+pd

cancelling the (uA+ud) term and knowing that C(0°,Ry(0))/C(0°,R;0) =

R;%(0°)/R\2(0°), the scatter profile simplifies to:

S(J) - pd R2(0) /RZ(B,) ‘F(B,)
5(0°%) pd+[R}(0) /RG(0)]pA 7 ‘o . .

Similarly, scatter of the photon travelling initially towards detector L in the diagram

gives the scatter profile:
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sS(M  _ pA RZ(0) /RZ(B,) "F(B,)
5(0°) pA+[RZ(0) /R2(0)1pd (P *F (B (G

The above scatter profile equations reveal the predominant physics responsible for
determining the shape of the scatter profile. The most important term in the above
equations, which is largely responsible for determining the shape of the profiles, is the
Klein-Nishina term, F(8), whose tendency towards forward scattering governs the overall
shape. The other term, which slightly modifies the shape, is the R*(3) term since the
distance from the mean scatter position to the detector which accepts the scattered photon
affects the solid angle of the detector for the scattered photon and hence its chances of
being detected. The remaining terms are angle independent however the first ratio is
approximately ud/(ud+pA) so that the mean free path fraction is largely responsible for
determining which of the 2 photons will be single scattered. There are two other factors
affecting the shape of the analytic PSF’s which are described in more detail in the
analytic corrections section below. The first involves correcting for the different
attenuation along escape paths of scattered photons compared to along the escape paths
of unscattered photons. Secondly, not all single scattered photons are recorded above
the energy threshold setting of the tomograph and so correction for the discrimination of

large angle, low energy photons must be performed.

Mean Scatter Position

To use the scatter profiles described in equations 3.17 and 3.18, the detector to
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mean scatter position constants (R, and Ry) must first be evaluated, which implies the
need to calculate the mean scatter position. For simplicity, it is assumed that all scatter
for a photon travelling in a particular LOR occurs at the mean scatter position. The
method proposed for doing this requires the creation of an attenuation image as well as
an attenuation corrected emission image. The images need only be 2D reconstructed
images and since only ratios of forward projected lines through the images will be used,
the absolute pixel values are unimportant. Although the prospect of creating 2D images
and forward projectir,g through them sounds time consuming at first glance, this may not
be so when considering the typical 3D reconstruction times which are currently observed.

To obtain the mean scatter positions along the LOR(B,,P,) for both scatter into
J and into M (y, and y,,), forward projection along LOR(B,,P,) through the attenuation
image is performed to give a value of A,,. A similar line integral through the emission
image is also done to normalize the source strength to S,,. To obtain the mean free path
fractions, a line integral beginning at detector L through the attenuation image is
described as follows:

—BA (5;4y;) Aeoes (3.19)
pA+pA’ 1LORpix Stor Ator

where S; is the pixel value of pixel i and Ay, is the length of the LOR through i. A,;

is the summed attenuation along LOR(B,,P,) up to pixel i. Similarly:

pd - paA

- 3.20
pA+pd 1 pA+pd ( )

Since the scutter photon has an equal probability of scattering at any position
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along the escaping photons mean free path, the mean scatter position will be half of the
escape mean free path, or ud/2 for scatter into detector J and uA/2 for scatter into
detector M.

To obtain the actual position in cm for the mean scatter position, the following
technique might be used. For each pixel i representing the location of a point source,
integration back along the attenuation image LOR(B,,P,) from pixel i by an amount
[Ai /2] is done until a distance y=LAy; is found so that the mean position along the
LOR for scatter into detector M will be y,=y;-y. This position, y,, represents the mean
scatter position into ¢etector M for a point source located at pixel i. Such a mean scatter
position would be used for defining the point spread function for image to projection
techrniques described in Chapter II (see page 51). For projection space convolution
subtraction, the mean scatter position must be weighted by the source strength for all

pixels in the line of response according to the following equation:

Yu = Y (51870) Acorsy, s [_BA_, (3.21)

1LORpix Stot Aot RA+pd

The mean position of scatter into detector J is similarly:

(5;0y;) (Apoe=Biors) d
Yy, = y,/ [—£5_1 (3.22)
7 iw;pix Seor Aot ‘ pA+pd

except in this case, y,=y;+y, as may be understood from figure 9. In each case, y=0
is located in the center of the LOR. These values of yy and y; can be used to calculate

the cletector to mean scatter position distances Ry, and R;.
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Application of Technique to Sinograms

To apply the analytic scatter correction technique to sinogram data, a means of
re-evaluating the scatter profile equations (eqns 3.17 and 3.18) in terms of bins and
projection angles must be found. To achieve this, the distances R\2(8,,) and R,%(8;) must
first be calculated given a source bin, B,, and a scatter bin, B, where detector J or M

exists. This is attempted with the assistance of figure 10:

x Annhllation Position
o Mean Scatter Position (MSP)
R, Detector to MSP Distance

y, MSP Distance

Figure 10: Scatter bin calculation.

where B, is the source bin, B is the scatter bin, and x,, and x; are the perpendicular
distances from the center bin (bin 81). The distance, R;, from the scatter position (0) to

the scatter detector (J) is:

R: = (%3-%)2% + (¥5-¥,)? (3.23)
where y; is the position along LOR(B,,P,) calculated to be the mean scatter position for

detector J. Since there are 384 detectors per ring and the radius of the tomograph is
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38cm, xg, yp and xg, are calculated to be:

% (B-81+0.5(81-B,))

&g = 38SIN( 193 )
= (B-81+0.5(81-B,) )
= (3.24)
Vg 38 COS( 1535 )
= (B,-81)
Xp, 3BSIN(T)

where x/192 is the angle in radians between adjacent detectors in a ring when viewed
from the center of the FOV (bin 81). The equation for R, is similar to equation 3.23
except yy replaces y;, and y,, must be negated (likely to a positive value) since the cosine
term is positive for scatter by either photon. |

The values cf R*B) can now be calculated for any detector (J or M) for
substitution into equitions 3.17 and 3.18 to obtain the scatter profile shapes. For the
first term of these equations involving the fractional mean free path for the escape of
each photon from the object, unless the assumption is made that R,2(0) =R,%(0), these
fractions would have to be re-evaluated. This would be accomplished by using the newly
calculated values of R, and R;, and a further line integral through the attenuation image.
Such an assumption would require testing for non-symmetric source and object density
distributions before use and is desirable since the simplification would economize
computation time.

The last portion of the scatter profiles to be evaluated is the K-N function F(8)
for any source bin B, and scatter bin B. This can be evaluated with the aid of figure 10,
and the calculation cf R for any (B,,B) combination. The scatter angle 8; is computed

as:
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stv- (2222 (3.25)

Bs

where xg, X5, and R, are calculated in equations 3.23 and 3.24. B, is calculated in a
similar way with yy replacing y,. The scatter profiles S(J)/S(0°) and S(M)/S(0°) can
now be rewritten in the form S(B)/S(B,) for any source bin B, and scatter bin B.

The projection which the scattered photon will "in-scatter” to is determined from
knowledge of the sinogram construction (page 20). The source LOR(B,,P,) scatters into
LOR(B,P), where th: probability of scattering into bin B is calculated using equations
3.17, 3.18 and 3.25. The scatter projection is governed by the following mappings,
where case #1 exists when the top detector in the LOR of figure 10 has J € (1,192) while
case #2 occurs when J € (193,384). The results are:

CASE #1: Je(1,192)

B>B, : (B,P) => (B,P + (B-B)/2 + PARITY(B,)
B<B, : (B,P) => (B, P - (B,-B)/2 - PARITY(B,+1))

CASE #2: Je(193,334) (3.26)

B>B, : (B,P) => (B, P - (B-B)/2 - PARITY(B,+1))
B<B, : (B,P) => (B, P + (B-B)/2 + PARITY(B,)

where the PARITY function is defined as being 1 for odd B, and O for even B,. The
(B-B,)/2 terms truncate the decimal place. The scatter counts occurring in LOR(B,P) as
a result of the true unscattered count rate in the source LOR(B,,P,) can thus be evaluated

from the above equations.
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Inter-Plane Scatter

In the previous sections, discussion of scatter has been restricted to scatter within
the same plane (sinogram) for coincidences within the same ring. The analytic PSF
theory must be extended to include scatter into other sinograms in the 3D data set not
including the source. To scatter into non-source 3D projections, the photon must scatter
through an angle ¢5, into a bin B of a sinogram, as well as through an orthogonal angle
0,, indicating the angle between 2 sinogram planes (see fig 4 on page 19). This angle

0, is calculated to be:

TAN-1 {0.675ASL}

R(B, B,) (3.27)

esl (B' Bo) =

where 0.675cm is the: detector length in the axial direction, R(B,B,) is the distance from
the mean scatter position to the scatter detector in bin B (eqn 3.23), and ASL is the slice
offset between the sinogram containing the source LOR(B,,P,) and the sinogram which

the photon is scattercd into given by:

ASL = ABS{K(SRC) +L(SRC) -K(SCAT) -L(SCAT)} (3.28)

K(SRC) and L(SRC) are the ring numbers (1 through 16) of the source LOR(B,,P,),
while K(SCAT) and L(SCAT) are the ring numbers of the scatter LOR(B,P). Scatter
into any sinogram can thus be calculated by allowing COSg in the K-N term, F(B), given
by equation 3.7, to be replaced by COS¢zCOSOs, where ¢; is defined as §; which was

evaluated in equation 3.25. The K-N term can thus be re-written as:
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_ 1, 3-3coscos0,, +3cos?P,cos8?0, -cosdcos°0,,

(3.29)
2 (2-cosécos0,, )3

For the single scatter approximation, each photon can only produce scatter in 16
of the 256 3D sinograms since the unscattered photon remains in the source ring so that
for scatter to detectorr J, K(SCAT)=K(SRC) and scatter of the other photon to detector
M causes L(SCAT)=1L(SRC). Therefore, 32 sinograms must have their scatter profiles
calculated for each source line of response in the 3D dataset.

To obtain the total scatter profile resulting from all source lines of response, the
simplifying assumption introduced by Bailey for convolution subtraction proves useful
(page 52). The assurnption is that scatter distributions do not vary greatly with the angle
of the sinogram plan¢ from the axis of the tomograph and depend only on the mean axial
position of the sinogram plane, z. For this reason, the 256 3D sinograms may be re-
formatted into the 31 axial slices characteristic of a 2D dataset. The scatter distributions
need only be calculaied for 31 axial slices using these 31 source planes since the scatter
profiles in the 256 2D sinograms can be obtained by comparison with the slice at the
axial position equivalent to its mean axial position. Each photon in each line of response
produces scatter in &ll 31 axial scatter slices which are calculated as formulated in the
previous section. Ay scatter coincidences caused by radioactivity outside the axial field
of view fails to be considered by this method since such decays never produce true

unscattered counts within the dataset.
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Analytic Correction;

Two additionzl corrections to the scatter profiles indicated in equations 3.17 and
3.18 are required. A first correction to account for energy discrimination of single
scattered photons recorded below the tomograph’s discrimination energy threshold is
needed since the analytic theory assumes all single scattered photons striking detectors
are recorded. A second correction is required to account for the difference in attenuation
experienced by scattcred photons along their escape path relative to that of unscattered

photons.

Energy Discrimination Correction

Scattered photons exist at energies below the 511 keV photopeak energy as

described by the Compton equation (eqn 1.9) to be:

511
E = .
2 - COS$,COS0 (3.30)

Photons scattered at jarger angles will be shifted to lower energies and so will experience
a greater probability of being recorded below the energy discrimination setting, E,, of
the tomograph. The BGO detectors record energy spectra as a Gaussian shape for mono-
energetic photons where the FWHM of the Gaussian curve defines the energy resolution
of the detectors and is represented as a certain percentage, R, of the photopeak energy

(see page 16). The spread of a Gaussian function is normally described by its standard
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deviation, o, where the calculation of ¢ is given by the equation:

R E R'E
= - — 3.31
9 (To0’ ‘332 234 ( )

since a FWHM is 2.34 standard deviations wide.
To calculate the probability of a photon being recorded above the discrimination
energy, E,, the statistical t value of the photon energy relative to E, is required as

follows:

t = 2 (3.32)

The probability of this t value producing a recorded energy above E, is calculated with

the help of the error function, erf(x), whose series expansion is given as:

erf(sr) = -Jii(x—x3/3+?1|—x5/5—3—1'x"/7+...) (3.33)

where x = V2 t and the function gives the area under a normalized Gaussian curve from
the origin to t (Weast, 1989). The probability of detecting a photon of energy, E, for

a tomograph with an energy discrimination setting of E, thus becomes:

P(t) = 0.5 + erf(y2¢t) (3.34)

The series expansion used (equation 33) contained terms up to the 23rd power at which
point the function was observed to be sufficiently close to erf(x) over the range of
energies found in PET. The probability calculated in equation 3.34 modifies the scatter
profile equations (3.17 and 3.18) simply by pre-multiplying these equations as an extra

term.
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Escape Path Length Attenuation

Another correction is required to correct for the assumption used in equation 3.14
that scattered photons: experience the same attenuation along their escape paths as would
have occurred had the photons remained unscattered. A means of correcting for this
might be to forward project through the attenuation image from the scatter detector, J,
to the mean scatter position (o) for each scatter detector. The correction for attenuation

difference could then be calculated as:

-“J
ESC(9) = S = e Wrwm (3.35)
e

where uJ is the line integral from the mean scatter position (o) to J, and uK is the line
integral from (o) to K, the unscattered detector.

The above procedure is somewhat slow as line integrals for 160 detectors would
have to be calculated. The line integrals to out-of-plane detectors could safely be
assumed to be equivalent to those calculated for the source plane since the relatively
restricted axial field of view of the tomograph does not allow for significant variation
along paths with different axial components.

The approximation of a mean scatter position suffers most for the escape path
length attenuation correction since the assumption that all scatter events occur at the mean
scatter position might produce greatly different line integrals to the scatter detector than
had the photon been allowed to scatter at any position along the LOR. This assumption

could be improved by averaging a series of line integrals to each scatter detector at
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various positions along the LOR, weighted by the attenuation coefficient for each pixel

on the LOR. However, such an integral escape path length attenuation correction scheme
would likely be rather time consuming. The assumption of a mean scatter position is

tested in Chapter V in the section on non-uniform attenuation objects.



82

A recap of the protocol for performing analytic scatter correction is provided
below for the general case of a non-uniform source distribution within a non-uniform
attenuation medium. The technique’s function is illustrated through its application to two
simple test cases: a positron point source in the center of, and off-center in a uniform
water-filled cylinder. These test cases are used in Chapter V to verify the accuracy of

the technique when compared with experimental and Monte Carlo simulation data.

Protocol for Perforining Scatter Correction

To perform analytic scatter correction, a 3D emission scan must be acquired
within some suitable energy range and then normalized for detector efficiency differences
according to the method described on page 28. To minimize the size of the data set
required for scatter estimation, Bailey’s assumption, concerning the minimal variation of
scatter distributions with the angle of the sinogram plane from the axis of the tomograph
(page 52), is adopted (Bailey and Meikle, 1994). This is accomplished by summing all
sinogram planes with the same mean axial position, z, to produce the 31 axial slice
sinograms characteristic of a 2D data set. To preserve the correct number of counts per
sinogram, each of the 31 sinograms is divided by the number of 3D sinograms summed
to construct it.

An additional simplification to further reduce the size of the data set within each
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sinogram can be mad: by summing the 160 projection bins and the 192 projection angles
into a course grid sinogram of only 40 bins and 48 projection angles. The use of a
course grid sinograrn as employed by Wienhard (Wienhard and Lercher, 1994) is
permissible considering the broad profiles exhibited by scattered photons. Collapsing the
3D data set according to the assumptions of Bailey and Wienhard reduces the data set
size by a factor of 132, decreasing the convolution time required for scatter profile
computation by a ratio of 528.

Scatter estimztion proceeds by looping over all bins in the reduced data set and,
at each step in the loop, calculating the quantity of scatter in all other affected bins
resulting from this source bin. The scatter amplitude, S(0°), for the source bin is first
calculated according to equation 3.12. T(B,,P,) is the number of counts in the source
bin after random, dead time and detector efficiency corrections have been made.
ACF(B,,P,) is determined from the ratio of counts in a blank and a transmission scan for
the source bin. C(0°) is calculated using equation 3.10, where the parameters of this
equation are determined from the evaluation of the mean scatter position outlined on
pages 70-72. Consicleration of multiple scatter events may be made by scaling the single
scatter amplitude, S(0°), by some appropriate factor. This problem is further discussed
in Chapter V on page 110.

The scatter is computed for the 40 reduced data set bins in each of the 31 planes
which may receive scatter from photons initially travelling in the source bin LOR. The
magnitude of the scatter in bin B resulting from the source bin, B,, is computed using

the scatter profile equations, 3.17 and 3.18, which describe scatter for each photon.
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Corrections for energy discrimination and for differences in attenuation experienced by
scattered photons escaping the object are applied at this stage by pre-multiplying the
scatter profile equations according to the factors calculated in the respective sections
(page 78 and page 8()). The projection angle of each bin receiving the scattered photon
is calculated using equation 3.26. Either photon may scatter so that 40 different bins in
each of the 31 planes must have their scatter magnitude computed using a separate loop
for each photon of eich line of response.

After cycling through each bin in this way, an estimate of the scatter profile for
the reduced data set has been achieved. Since the value of the true unscattered counts,
T(B,,P,), used to calculate the scatter amplitude is unknown, iterative scatter subtraction
according to equation 2.15 may be employed. This is done by using the scatter profile
calculated from the first convolution loop to correct the measured data set for use in a
second convolution 1oop. If the theory used to derive scatter profiles is sound, only one
or two such iterations may be required.

Finally, the rzduced data set estimate of the scatter profiles must be re-expanded
to estimate scatter in the 3D data set having 256 sinograms. Each of 31 scatter
sinograms act as estimates of scatter for 3D sinograms having the same mean axial
position. Individual sinograms may be re-expanded using interpolation between the
course grid points of the reduced data set. Scatter correction is implemented simply by
subtracting these scater profiles from the measured data set. Attenuation correction and

image reconstruction may then be performed following scatter correction.
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Application of Technique to Two Test Cases

To test the va idity of analytic scatter correction, and to illustrate its function, the
techrique is applied to the case of a point source located in the middle of a water-filled
cylinder, centered in the field of view of the tomograph, as well as to the case of a point
source located off-center in the transaxial direction. For the centered point source, an
angular symmetry exists within each plane so that sinograms may be individually
summed over all 192 projection angles to produce a single profile of 160 bins for each
sinogram. This symmetry greatly simplifies the calculation of scatter profiles since one
need only calculate a single, 160 bin, scatter profile to represent all 192 projection
angles.

The scatter ainplitude given by equation 3.12 reduces to:

S(81) = {1-[e0:0%57d]-c) (3.36)

where d is the diameter, in centimeters, of the water filled cylinder, T is the number of

true counts in the sinogram and C(0°) is calculated according to the equation:

C(0°) = 8.0544x10°5 [—38 3.37
(0°) x107 28 (3.37)

when one considers equations 3.8 and 3.10, as well as the fact that the mean scatter
position is d/4, giving the distance from the mean scatter position to the unscattered
photon detector as (38 - d/4) cm.

The scatter profile (equations 3.17 and 3.18) are identical in this situation so that

their summation produces the scatter profile equation:
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SB)  _ (38-d/4)pppg s 18
s(81) 7i(g) | \B) ESC(B) P(B, E,) (3.38)

The detector to mean scatter position value, R(B), is calculated using equation 3.23 to

be:

= 2¢ " (B-81) x (B-81) , _ 2)1/2 .
R(B) 38{SIN (————-—192 )+[cos(————-192 ) -0.25d/38]3) (3.39)

The Klein-Nishina term, F(B), is calculated using equation 3.29, where the transaxial and
axial angles, ¢3 and J;, are calculated using equations 3.25 and 3.27 respectively. The
escape path length attenuation correction term, ESC(B), is determined using equation

3.35 to give:

e ~0-0957 Rpgc(B)

BSC(B) = S (3.40)

where the distance from the mean scatter position to the edge of the cylinder along the
path of the scattered photon, Rgsc(B), is computed through a numerical technique.
Finally, the energy discrimination term, P(B,E ), is calculated using equation 3.34
according to the technique described in the energy discrimination correction section on
pages 78-79. The above scatter profiles can be evaluated for cylinders of any diameter
and for any of the 31 axial sinograms, through the use of the slice offset parameter, Asl,
given by equation 3.28. Each profile may be evaluated through the use of a single loop
over all 160 bins.

For the case of the point source positioned off-center in the transaxial direction,
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calculation of the projection whose lines of response are perpendicular to the radial
displacement direction of the point source can be achieved in a similar manner but with
somewhat greater effort. The angular symmetry offered by the centered point source is
no longer available, necessitating the calculation of the mean scatter position for each
projection angle. The ACF used to estimate the scatter amplitude at each projection
angle is calculated using the object chord length for the line of response passing through
the point source position. Calculation of the energy discrimination term, the escaping
photon attenuation term, the Klein-Nishina term and the detector to mean scatter position
term of the scatter profile equations (eqns 3.17 and 3.18) is accomplished using methods
similar to those described for the centered point source. The scatter profiles can be
evaluated for any diameter cylinder for any source displacement distance with any energy
discrimination setting of interest. The accuracy of the profiles generated by the analytic
scatter correction theory is revealed through comparison with experimental and Monte

Carlo scatter profiles in Chapter V.



CHAPTER 1V

Monte Carlo Simulation

Since it is impossible to distinguish scattered coincidences from unscattered
coincidences in actual experiments, estimation of scatter profiles for testing scatter
correction techniques must be made using Monte Carlo simulation. In Monte Carlo
simulation, photon histories are traced from the annihilation event location, through the
object, to the detector array. The scatter history of each photon, as well as the energy
deposited in each detector, are recorded so that profiles of scattered events may be
separated from those of unscattered events. The principles of the Monte Carlo simulation
used in this work are described in the following section. To verify the accuracy of the
simulation, experimental measurements involving point sources of positron isotopes
centered in water filled cylinders are compared with results obtained from Monte Carlo

simulation.

88



89
Description of Monie Carlo Simulation

The development of the Geant Monte Carlo simulation program (Geant User’s
Guide, 1992), used in this work, was first begun in 1974 as a bare framework which
initially emphasized tracking of a few particles per event through relatively simple
detectors. Geant evolved over the years through the efforts of several hundred man-
years of development; however the responsibility for its upgrade now rests with members
of CERN laboratory. The program was initially developed to track the types of particles
found in high energy physics, however its modification for use in PET was accomplished
by C. Michel and others at CERN in the late 1980’s (Michel et al, 1991).

The Geant program modified for use in PET consists of three distinct stages:
geometry definition; photon tracking and data extraction. Each stage utilizes a different
fortran program to perform its function. An overview of each stage is provided in the

following sections.
Geometry Definition

The geomety definition stage requires the creation and positioning of
mathematical shapes representing BGO detectors, tungsten septa, lead shielding and the
object or phantom teing scanned (see fig 2 on page 14). A variety of mathematical
shapes are available to accomplish this including boxes, cones, cylinders, tubes, spheres

and several other polygonal shapes. Definition of the geometry is accomplished by
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positioning and orienting "daughter” shapes within larger "mother” shapes according to
the mother coordinat: system where each shape possesses a code identifying the type of
material within it. The material type may either be an element or compound where all
croSs-sections for all relevant physical processes are contained within the material code.
The material code for the daughter shape supersedes the material code for the larger
mother shape in the region within the mother shape where the daughter shape exists. As
many as 15 "generations” of "grand-daughter” shapes may be placed within "daughter”
shapes so that a "geometry tree” evolves where each subsequent generation of shapes
provides greater detail for the device being described.

In the case of describing the tomograph geometry, the mother shape is defined as
a large cylinder containing a vacuum inside of which a number of tubes, boxes and
cylinders with material types of BGO, tungsten, lead, water and plexiglass are placed to
describe the BGO defectors, septa, lead shield and object phantom. The "geometry tree"
style of defining th: tomograph structure is useful since the 96 BGO blocks, each
containing 64 crystal elements, need only be defined once, and the structure can be
positioned and oriented in the mother shape as many times as is needed.

The description of the geometry of the ECAT-953 PET scanner by the Geant
Monte Carlo geometry definition package is complete save one simplification (Michel et
al, 1991). In PET, the BGO blocks are sliced into an 8 x 8 crystal detector matrix with
variable length slots (see fig 2(b) on page 14) to enhance crystal identification through
a better light distribution scheme. However, in Monte Carlo simulation, the energy

deposited in each crystal is directly recorded without simulating the scintillation photon
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collection process so that the added complexity of describing variable depth grooves is

unnecessary. The BGO block slots in Monte Carlo simulation are considered to have the
full radial depth (3 cm) thus slicing completely through the block. The volume of these
slots does affect the detector packing fraction however, causing the theoretical packing
fraction to be slightly lower than the real one.

In practice, all that is required to create a PET geometry unique to a particular
experiment is to define the shape and material type of the object within the scanner.
Construction of the scanner geometry either with or without interplane tungsten septa is

performed automatically as requested.

Photon Tracking

The first stepp of the photon tracking stage is to define the positron isotope
distribution to be simnulated. This may be any distribution that can be described by a
mathematical equation. From this distribution, a positron emission position is randomly
selected and two back to back (180° apart), 511 keV photons are emitted in a random
direction constrained within some stratification angle of the in-plane, trans-axial
direction. This restricted solid angle of release eliminates simulation of photons initially
travelling along the axial direction beyond the scanner detector rings thus having little
chance of detection. A stratification angle of 30° has been reported to produce stable
results (Michel et al, 1991). This is reasonable considering the axial acceptance angle

of the ECAT-953 d:tector rings is +8.1° from the center of the field of view. The
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choice of a 30° stratification angle limits the solid angle possible for photon release to
50 % of 4= hence doubling the effective activity concentration. Two approximations
regarding annihilation photon release are used to simplify Monte Carlo simulation. First,
the positron range is neglected and second, the photons are assumed to be perfectly
collinear travelling at: 180° from each other. These assumptions are tested in the Monte
Carlo verification section on page 99.

Having released two annihilation photons, tracking of the photons through the
materials defined in the geometry definition program must be accomplished. The Geans
program does this using cross sections for the photoelectric effect, as well as for
Compton and Rayleigh scattering, determined from fits to experimental data measured
over a range of energies and Z values (material nuclear charges). The angle of Compton
scattering is determined by sampling the Klein-Nishina differential cross section (eqn
1.7), while the scattered photon energy is calculated using the scattering angle (eqn 1.8).
The electrons ejected during the photoelectric effect and Compton scattering are also
tracked to ensure an accurate measurement of energy deposition in the BGO detectors.
Charged particles passing through matter undergo countless collisions with atomic
electrons (page 8) so that electron transport is a continuous rather than a discrete process.
It is governed by the energy loss stopping power, dE/dx, determined from fits to
experimental data measured over a variety of energies and material nuclear charges.

Geant tracks photons by moving them in steps of size As. The probability of a
photon traversing this distance without undergoing a particular discrete interaction, the

photoelectric effect for instance, is given by the survival probability:
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P(As) = e tmhs (4.1)

where .,y is the photoelectric effect interaction coefficient given by the equation:

N,
Ber = gp)ops (4.2)

with N, being Avogadro’s number, p and A being the material’s density and atomic
mass, and opg being the photoelectric cross section for the material being traversed.
Photon tracking works by first selecting randomly the number of interaction lengths, N,,
that a particle is going to travel before undergoing each of the three interactions it may

be subject to. These three interaction lengths are selected according to the equation:

N, (PE) = -1nl[R,]
N, (Compton) = -1lnlR,] (4.3)
N, (Rayleigh) = -1nl[R,]

where R;, R; and R; are random numbers distributed equally between zero and one. The
corresponding step sizes for each interaction to occur are calculated using equation 4.1
to be:

As(PE) = R,/ppg

As (Compton) = R,/p. (4.4)
As(Rayleigh) = R,/pg

The minimum step size of the above three is selected, the photon is transported this
distance and the interaction selected is forced to occur. The photons position, energy and
direction is updated after each step according to the interaction occurring. If the photon

energy changes or a new material is entered, u is re-calculated using the o, p and A of
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the new material at the new photon energy. If a new material is entered before either
of the three interactions occurs, the photon is transported to the boundary and the
interaction lengths remaining, N,, are recalculated for the new material. The photon
tracking process continues until a terminating photoelectric effect interaction occurs, until
the photon energy drops below some cutoff energy, typically 50 keV, or until the photon
exits the "mother” geometry. A photon falling below the cutoff energy has its energy
deposited in the material at the position where this occurs.

After each annihilation photon has been tracked until termination, three types of
information are recorded in a "dump"” file. First, the detectors in which energy was
deposited are recorded using numbers between 1 - 6144 to represent each of the 384
detectors in each of the 16 detector rings. Next, the exact energy in keV that is
deposited in each of the indicated detectors is recorded and finally, a "Compton number"
indicating the scattering history of the two photons is recorded. The Compton number,

CN, is calculated using the equation:

CN = [Septa] *100 + [Object] *10 + [Detector] (4.5)

where the values in brackets indicate the number of Compton interactions by either
photon inside of the iepta, object and detectors respectively. For instance, a Compton
number of 123 indicites one scatter event in septa, two in the object and three in the
BGO detectors. The photon history is thus recorded for the pair of annihilation photons
rather than each individually. The simulation continues by tracking as many photon pairs
as are requested until sufficient statistics are achieved. Typically, as many as 10 million

annihilation events can be simulated in a 10 hour period (overnight) on a SPARC 10 Sun
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workstation.

Data Extraction

The data extraction program is the final, analysis stage of the Monte Carlo
simulation where the specific information sought can be calculated. The program
functions by first reading the "dump” file from the tracking program, which contains an
entry for each annihilation event where energy was deposited in at least one detector.
The data is then organized into sinogram format (page 20) which may be grouped for
coincidences between any of the 16 detector rings desired. Sinograms may be
constructed for detected events within any particular energy range requested. The exact
energy recorded for each detector in the dump file may be blurred using a Gaussian
distribution with a FWHM equal to some percentage of the recorded energy in order to
simulate the energy resolution of the BGO detectors. Typically a 25 % FWHM Gaussian
function is used to blur the recorded detector energies.

Using the recorded energies, Compton numbers and projection data formed into
sinograms, energy spectra information or projection data specific to photons having a
particular scattering history can be calculated. This allows for separation of scattered
from unscattered events. Dead time and random coincidence difficulties are not
demonstrated by Monte Carlo simulation since photons are tracked sequentially with no
chance of interference effects occurring between separate annihilation events. This

corresponds to the case of very low activity sources in the PET scanner.
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Before conclusions obtained from Monte Carlo simulation can be applied to PET,
the results from Monte Carlo simulations must match those from PET experiments. This
was done by comparing profiles of point sources and line sources in water cylinders
acquired for energy ranges of 250 - 850 keV and 380 - 850 keV. The Monte Carlo
simulation assumptions of negligible positron range, perfect y-ray collinearity and 25 %
detector energy resolution, as well as the use of a limiting, axial, stratification angle are

also directly tested.

Comparison with Experimental Data

The accuracy of Monte Carlo simulation was tested by comparison of profiles
obtained through Mcnte Carlo simulation with those obtained from PET experiments.
Figure 11(a) shows a profile of a line source of ®F, 5 mm in diameter, which was
located in the center of a 20 cm diameter water filled cylinder. The cylindrical phantom
was positioned at the: center of the tomograph’s field of view so that projection angle
symmetry existed. This permitted the summation of profiles over all 192 projection
angles in order to reduce Poisson count rate noise. The experiment and simulation were
performed with the tungsten septa in place and using 2D acquisition (see fig 6 on page
22) from 250 - 850 keV where summation over all 31 axial slices was employed to

improve statistics. This is permissible considering the axial symmetry of a rod source
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Figure 11(a): PET and MC profiles of a 5 mm diameter line source of *F centered in
a 20 cm diameter water-filled cylinder. 2D acquisition from 250 - 850 keV using septa

with summation over all 192 projection angles and all 31 axial slices.
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Figure 11(b): PET and MC profiles of a point source of *F centered in a 20 cm
diameter water-filled cylinder. Source plane shown with summation over all 192

projection angles. Acquisition from 380 - 850 keV without septa.
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centered in a cylinder of water.

Two predominant regions appear in the semi-log plot: the resolution peak and the
scatter tails. The resolution peak results from unscattered photon coincidences while the
scatter tails occur because of coincidences involving scattered photons. The experimental
(PET) resolution peak appears somewhat broader than the Monte Carlo (MC) resolution
peak predominantly because of the summation over all angles and planes which was
employed. Although precise positioning of activity is possible for MC simulation, slight
off-center mis-positioning of the !*F rod in the tomograph causes a precession of the
projected position of the rod about the central bin (Bin #81) for different projection
angles, creating a broadened peak after summation. The scatter tails show reasonable
agrecment within the statistical uncertainty observed. The two curves were normalized
to have the same totill number of counts so that the agreement of the amplitude of the
scatter tails indicates a comparable scatter fraction being measured in each case.

A similar profile is plotted in figure 11(b). However, in this case, a point source
was centered in the 20 cm diameter water filled cylinder and the acquisition was made
without septa and using an acquisition window of 380 - 850 keV. Axial summation could
not be employed to enhance count statistics since the point source only has a resolution
peak in the plane containing the source. Resolution peak broadening was again observed,
however the scatter tails once again showed reasonable agreement. The projection was
only displayed from bin 20 to bin 140 rather than using the full range from 1 - 160
because of the preser.ce of negative values in the experimental data set in the regions of

low count rate at the extreme edges of the projection. The negative values occurred
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because of an over-correction for random count rate in the low count rate regions. The
random correction wis overburdened by the high activity point source needed, since axial
summation to improve count rate statistics could no longer be employed.

The similarity of the PET and Monte Carlo derived scatter tails illustrated in
figures 11(a) and 11(0) are sufficient for this work since the Monte Carlo simulation was
primarily used for measurement of scatter profiles. The two figures examine scatter
profiles both with and without septa and using two different acquisition energy ranges.
The only tests possitle are those involving centered sources, which have symmetry to
permit angular sumraation of projections, since the simulation is too slow to obtain

sufficient count statistics to measure projections at specific angles.

Testing Assumptions

The assumption of negligible positron range and perfect y-ray collinearity was
tested by performing two separate simulations involving a line source in air centered in
the tomograph. The first simulation assumed negligible positron range and perfect y-ray
collinearity while th: second simulation accounted for the positron range and non-
collinearity of an 7 source. The positron range was simulated by using a range
distribution histogram calculated for '*F in water which is available within the Geans
program (Geant User’s Guide, 1992). The positron annihilation position was displaced
in a random directior: by a value selected from this histogram to simulate the effects of

positron range. <y-ray non-collinearity was simulated by allowing one of the annihilation
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photons to deviate from its initially calculated direction by an angle selected from a

Gaussian distribution with a standard deviation of 0.5° (page 9).

Figure 12 shows the resolution peaks from the MC simulations under each
condition where the j3eaks have been normalized to have equivalent counts. Very little
broadening of the resolution peak due to the effects of positron range and non-collinearity
is observed. This is perhaps not surprising considering the mean range for '*F positrons
in water is only 0.6 mm (Table 1), while the detector size is over 6 mm across. The 384
detectors in a ring are separated by just under 1° (360/384 deg) as viewed from the
center of the field of view, so the 0.5° difference in the photon’s initial direction is not
terribly significant.

The validity of using a limiting, axial, stratification angle to increase the effective
source activity is examined in figure 13. The plot shows a distribution of the axial angle
of emission for photon pairs striking detectors where at least one photon experienced
Compton scattering i1 the object. The plot was made for a rod source located in the
center of a 20 cm cylindrical water-filled phantom, with septa removed, using a 250 -
850 keV acquisition window. The distribution involving Compton scattered lines of
response was plotted since scattered photon coincidences have a broader distribution than
unscattered coincidences whose photons cannot be re-directed back into the scanner’s
field of view after exiting. The plot clearly shows that the choice of a 30° stratification
angle, as suggested by Michel et al (1991), is permissible. This is so because photon
pairs initially travelling in a direction with an angle from the trans-axis greater than 20°

(axial angle outside tte 70° - 110° range) have a negligible probability of producing a
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Figure 12: Resolution peak profiles for MC simulations of a line source of ®F in air
positioned at the center of the field of view. Simulations are with and without positron

range and y-ray non-collinearity effects included.

Figure 13: Distribution of initial axial angles of annihilation photon pairs which produce
scatter coincidence lines of response. Plot is for a line source of positrons centered in
a 20 cm water-filled cylinder.
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coincidence count.

The final assumption used in Monte Carlo simulation involves the blurring of
recorded detector energies by a Gaussian distribution with a FWHM equal to 25 % of
the recorded energy. This was done in an effort to model the energy resolution of the
BGO block detectors. The energy spectra of the BGO blocks were measured using a
point source in the transmission rod holder located 28 cm radially off-center. Block
detector count rates were then acquired for energy bands 40 keV wide, measured every
10 keV. No object was present in the scanner for this measurement. The spectra in
figure 14 shows a peak at 435 keV with a FWHM of 110 keV, indicating an energy
resolution of 110/435 = 25.3 %. A Gaussian fit with these parameters shows suitable
agreement with the measured spectra indicating support for the use of a 25 % FWHM
Gaussian blurring function on the recorded detector energies of Monte Carlo simulation.
The observation of the peak at 435 keV rather than at 511 keV for annihilation photons
reveals the poor energy calibration of the PET’s detectors. This point is further explored

in the next chapter.
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Figure 14: PET block energy spectra of a '*F point source with no object in the scanner.
Gaussian fit with listed parameters included. 1



CHAPTER V

Analytic Scatter Correction Results

To verify the accuracy of analytic scatter correction theory, scatter profiles from
PET experiments arc: compared with those predicted by the analytic technique. Point
sources of '*F are located in the center, as well as 5 cm transaxially off-center of 15 cm
and 20 cm diameter, water-filled cylinders to perform this comparison. Monte Carlo
simulation is employed to verify the fundamental assumptions of analytic correction
theory, as well as to determine the operating conditions most suited to accurate
implementation of the: technique. The choice of a detector energy discrimination setting
which produces the 1ost accurate scatter estimate while maximizing signal acceptance
is accomplished with the assistance of Monte Carlo simulation. The physical effects most
responsible for determining the shape of scatter point spread functions are examined
using the analytic scatter correction theory. The inclination of 511 keV photons to
exhibit forward scattering, as evident from examination of the Klein-Nishina differential
cross section equation (eqn 1.9), is the main factor governing the shape of the obsérved
scatter point spread finction. Finally, an evaluation of the assumptions for some of the
scatter correction proposals currently being explored is achieved using calculated profiles

of the analytic correction technique.

104
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Optimal Detector Energy Threshold Setting

Analytic scaiter correction employs a single scatter approximation as its
fundamental assumption. To operate the scanner under conditions most suited to this
assumption, analysis of unscattered, single scattered and multiple scattered spectra,
obtained through Monte Carlo simulation of a point source centered in a 20 cm diameter,
water-filled cylinder, is performed. The detector energy threshold setting, E,, which
would minimize acceptance of multiple scattered events while avoiding the loss of a
significant fraction c¢f unscattered events is determined. Monte Carlo derived scatter
profiles are compare« with the predictions of analytic theory at threshold settings of 250
keV and 380 keV. In all cases, the energy resolution of the detectors was simulated at

25%.

Spectral Analysis

A plot of the unscattered, scattered and total spectra calculated by Monte Carlo
simulation for a poin: source of a positron emitter centered in a 20 cm diameter, water-
filled cylinder is shown in figure 15(a). The spectrum plotted is a coincidence spectrum,
recording only the lower of the two energies measured by the detectors of a coincident
event. The unscattersd spectrum peaks at 485 keV rather than at the photopeak energy
of 511 keV for this reason. This is the appropriate spectrum for evaluating coincident

events since both photons must be above the detector energy threshold setting to be
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Figure 16: Monte Carlo derived signal acceptance fraction, multiple scatter fraction and
scatter fraction for a point source centered in a 20 cm diameter, water-filled cylinder.



107

recorded. The scattered spectrum is observed to extend well into the photopeak region
causing the exclusion of scattered events using only energy discrimination techniques to
be rather inadequate. This is not surprising considering that scattered photons may exist
at continuous energizs extending up to 511 keV. In fact, the Klein-Nishina equation
predicts the greatest probability for 0° scattered, 511 keV photons. It is evident that the
choice of 250 keV as an energy threshold setting, currently used in practice, is
considerably lower than appropriate.

Figure 15(b) separates the scattered spectrum into single scattered and multiple
scattered events. The multiple scattered spectrum is observed to peak at low energies,
as is expected since sach occurrence of scattering diminishes the photon energy. The
predominant type of scatter overlapping with the photopeak appears to be single scattered
events. This is convenient since analytic scatter correction is a single scatter correction
theory.

The choice of’ an energy threshold setting which maximizes the acceptance of
unscattered events while minimizing the acceptance of multiply scattered events is
desired. Figure 16 aids in this selection by plotting the signal acceptance fraction, the
scatter fraction and the multiple scatter fraction calculated by integration of each
spectrum over energizs above each energy threshold. The scatter fraction is defined as
the ratio of scatter counts over total counts, while the multiple scatter fraction is defined
as the ratio of multiple scattered photon counts over all scattered photon counts. The
plot shows a sharp decline in the signal acceptance fraction beginning near 380 keV.

The scatter fraction dzclines with an increasing energy threshold setting as the scattered
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photons having energies below 511 keV are excluded. The multiple scatter fraction
declines as well sinc: multiple scattered photons exhibit greater energy loss than single
scattered photons. At 380 keV, 86% of the signal is still accepted while the multiple
scatter fraction has been reduced to 23.7%. This would be the recommended choice of
energy threshold setting rather than the current setting of 250 keV where the multiple
scatter fraction jumps; to 37.1% with an increase to only 91% for the signal acceptance

fraction.
Monte Carlo Scatteir Profiles

To evaluate the accuracy of analytic scatter correction theory assumptions, Monte
Carlo simulation profiles of single, multiple and total scatter events are calculated for a
point source centered in a 20 cm diameter, water-filled cylinder. Figures 17(a) and 17(b)
illustrate the single, multiple and total scatter profiles for detector energy threshold
settings of 250 keV and 380 keV respectively. The 380 keV profiles are observed to be
much narrower than the 250 keV profiles since the large angle scattered photons furthest
from the peak have the lowest energy and hence the least chance of being recorded above
the detector energy liscrimination ‘threshold. The magnitude of the multiple scatter
profiles is greatest for the 250 keV setting as discussed in the previous section with
figure 16.

Figures 18(a) and 18(b) plot the single scatter profile with the multiple scatter

profile at energy discrimination settings of 250 keV and 380 keV respectively. In each
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Figure 19(a): MC profiles for E=250 keV.
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case, the multiple scatter profiles have been normalized to have the same number of
counts as the single scatter profiles to allow comparison of the profile shapes. The
multiple scatter profiles exhibit a shape much closer to the single scatter profiles at 380
keV than at 250 keV/ sin;:e the lower energy setting permits the acceptance of larger
angle multiple scattered events which are displaced further from the peak. The similarity
of the two profiles at 380 keV allows multiple scattered events to be accounted for within
the analytic theory simply by scaling the single scatter profiles by some appropriate
amount. For these Monte Carlo simulations, the appropriate scaling factor is calculated

using the multiple scatter fraction curve of figure 16 according to the equation:

1

M(E,) 1-MSF(E,)

(5.1)

where MSF is the rultiple scatter fraction and M is the scaling factor at a detector
energy threshold setting of E,.

Figures 19(a) and 19(b) plot the single and total scatter profiles for E, = 250 keV
and E, = 380 keV respectively. Predictions of the analytic scatter correction theory for
single scatter profiles as well as for total scatter profiles are also plotted for comparison.
The total scatter proﬁler estimates were made by scaling the single scatter estimate of
analytic theory by the factor shown in equation 5.1, where the multiple scatter fractions
have been extracted from figure 16 and are stated on page 108. The amplitude of the
single scatter point spread function was determined to be 297, using equation 3.36, where
the number of true ounts was measured to be 1.452 x 10°. In each case, the single

scatter profiles appesr to agree quite well with the predictions of analytic theory for both
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magnitude of the pesk and shape of the tails, thus lending support to the single scatter

theory’s accuracy. Scaling to account for multiple scattering was more successful for the
380 keV acquisition |fig 19(b)] than for 250 keV [fig 19(a)] due to the closer agreement
of multiple and single scatter profile shapes at higher energies, as observed in figure 18.
However, an over-estimate in the amplitude and an excessively narrow PSF shape is still
noticeable at 380 keV, indicating slight difficulties resulting from multiple scattering.
A still higher detectcr energy threshold setting may be desirable.

The multiple scatter fraction scaling term represents the only term which may not
be directly calculated from the single scatter theory. The results in figure 16 are only
valid for the center cf a 20 cm phantom. The multiple scatter fraction term is expected
to increase with object size and to decrease as the point source is displaced from the
center of the object. Although it is unfortunate that empirical measurements are still
required to scale the single scatter function amplitude, this is certainly a far better case
than having to determine the amplitude of the point spread function based entirely on

empirical measurements, as has been done in the past.
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Verificati f Analytic Tl

The accuracy of analytic scatter correction theory is best evaluated through a
comparison of experimental scatter profiles with analytically calculated scatter profiles.
This is done for detector energy threshold settings of 250 keV and 380 keV. Point
sources which are either centered or off-center in water-filled cylinders are used to
compare the profiles. For the centered point source, scatter profiles in all 31 planes are
examiined to ensure the accuracy of the theory for planes not containing the source. The
accuracy of the mean scatter position approximation is also tested Athrough comparison
of analytically determined plots which allow scattering either from the mean scatter

position alone, or from all points along the escaping photon path within the object.

Experimental Scatter Profiles

To verify analytic scatter correction theory, scatter profiles measured with the
tomograph must be compared with profiles predicted by the theory. Figure 20(a) shows
a scatter profile for a point source centered in a 15 cm diameter, water-filled cylinder for
the plane containing the point source (plane #7). The data was obtained with the
tomograph detector energy threshold, E,, set at 380 keV. Also plotted with the
tomograph scatter profile are analytic point spread functions (PSF’s) calculated for E, =
380 keV and for E, = 415 keV, where the amplitudes have been adjusted for multiple

scattering according to equation 5.1. The multiple scatter fractions (MSF’s) used in this
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calculation were extracted from the results of Monte Carlo simulation (figure 16) where
the MSF’s found at 380 keV and 415 keV are 0.2371 and 0.1945 respectively. The
single scatter amplitude was obtained using equation 3.36, where the number of true
counts, T, was measured to be 1.868 x 107 counts. The number of true counts was
obtained by performing a least squares fit to the scatter tails in each of the 31 planes so
that the true counts could be determined by subtracting these scatter counts from the data
set.

One can see from figure 20(a) that the analytic PSF calculated for E, = 380 keV
is inconsistent with the scatter profile measured using the tomograph with a detector
energy threshold of the same value. The analytic PSF for E, = 415 keV was chosen by
obtaining measurements of least square error to produce the best fit with the PET data.
It is perhaps not surprising that a higher energy than 380 keV produced the best fit,
considering the tomograph’s poor energy calibration observed from the spectra plotted
in figure 14. The 511 keV photopeak was measured at an energy of 435 keV indicating
the need for the tomograph to be re-calibrated to higher energies.

The choice of energy resolution producing the most accurate agreement with
experimental data was explored in figure 20(b). The analytic PSF’s for E, = 415 keV
were plotted with energy resolutions, E,, of 20% and 25%. The PSF with E, = 25%
showed the best agreement for amplitude and shape with the measured profile. This
result is in agreement with the 25.3% detector energy resolution obtained from direct
energy spectra measurements in figure 14.

The analytic scatter estimation theory was tested for off-center sources using a
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point source of ®F offset 5.6 cm from the center of a 20 cm diameter water-filled
cylinder. The acquisition was performed using a detector energy threshold of 380 keV,
where the profile in the direction perpendicular to the source offset direction was plotted
in figure 21. An analytic estimate, using the method described in Chapter III on page
87, was plotted with the experimental data for comparison. The analytic fit was for a
source located in bin 63 with an amplitude selected to be 1750 by a least squares fit.
Unfortunately, the amplitude had to be fitted rather than calculated because the extremely
high count rates required to obtain sufficient data for a profile at a particular angle
caused the bins near the source to be corrupted, as their values exceeded the 15 bit
maximum of 32768. The profile was somewhat noisier than would have been expected
from Poisson statistics (3% at 1000 counts) because of difficulties in normalizing the
profile. The blank scan required for normalizing the data was acquired several months
after the point source acquisition when problems associated with normalization were
identified. Some of the noise observed in the experimental data can be attributed to
changes in the calibration of the tomograph over this period. However, despite the

normalization difficulties, reasonable agreement between the two curves is demonstrated.

Non-Source Planes

To ensure the analytic scatter correction theory accurately predicts scatter profiles

in planes which do not contain the source, several profiles in off-source planes were

observed for the case of a point source of *F centered in the 15 cm diameter, water-
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Figure 22: Non-source planes for a point source centered in a 15 cm diameter, water-filled
cylinder as compared with ¢nalytic profiles. :
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filled cylinder. Figure 22 shows the scatter profiles measured by the tomograph for E,

= 380 keV in three different planes. The source plane (#7), with a slice offset of zero,
as well as off-source planes #21 and #28, with slice offsets of 14 and 21, are plotted
together with the corresponding estimates from analytic theory. Agreement between the
analytic estimates and the experimental profiles is suitable for each of the three planes
shown. The profiles are observed to have a lower amplitude for planes away from the
source because of the: scatter angle required to reach the off-source planes.

The value of the peak predicted by analytic correction theory, as well as that
observed by fitting the profile with a least squares fitting routine, is tabulated in Table
2 for each of the 31 planes. The experimental profiles in each plane were normalized
for plane sensitivity by measuring the number of counts in each plane which were
recorded when a 20 ¢m diameter cylinder filled with ®Ga positron emitter was placed in
the center of the field of view. The table shows a reasonable agreement for most of the
planes with many planes having a percentage difference between the observed and
estimated amplitudes of less than 2%. Two percent is the Poisson statistical error
expected for count totals of about 3000.

Several planes, particularly planes #1, #16 and #31, show greater deviations from
that estimated using analytic means. This is likely because these planes are located near
the edge of BGO bhlocks where the sensitivity is lowest and requires the greatest
correction. Plane #16 is the cross plane from the inner edges of the BGO blocks in each
of the two rings (sce figure 2(a) on page 14). The plane sensitivity scan was also

performed several months after the point source acquisition when the difficulties



TABLE 2

Non-Source Plane Scatter Amplitudes
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PL # Ring ASL Theoretical Observed Percent
Coin Amplitude Amplitude Difference
1 1-1 6 3047 3431 12.6
2 12 5 3070 3307 7.7
3 22 4 3090 3271 59
4 23 3 3105 3230 4.0
5 33 2 3116 3107 -0.3
6 34 1 3123 3094 -0.9
7 44 0 3125 3096 -0.9
8 45 1 3123 3133 0.3
9 55 2 3116 3088 -0.9
10 56 3 3105 3058 -1.9
11 66 4 3090 3042 -1.6
12 67 5 3070 3023 -1.5
13 7-7 6 3047 3018 -1.0
14 7-8 7 3019 2861 5.2
15 88 8 2987 2739 -8.3
16 89 9 2952 3560 20.6
17 99 10 2913 2850 2.2
18 9-10 11 2871 2915 1.5
19 10-10 12 2825 2903 2.8
20 10-11 13 27717 2751 -0.9
21 11-11 14 2725 2683 -1.5
22 11-12 15 2671 2630 -1.5
23 12-12 16 2615 2559 2.1
24 12-13 17 2556 2517 -1.5
25 13-13 18 2496 2334 -6.5
26 13-14 19 2433 2321 -4.6
27 14-14 20 2339 2260 3.4
28 14-15 21 2303 2324 0.9
29 15-15 22 2236 2298 2.8
30 15-16 23 2168 2401 10.7
31 16-16 24 2098 2583 23.1




119

associated with norrnalization became apparent. Variation in the measurements of
observed and expectzd amplitudes for these planes are therefore likely a reflection of
changes in the plane sensitivity over this time, for those planes which rely more heavily

on an accurate re-scaling for decreased sensitivity.

Non-Uniform Attenuation Objects

To test the performance of the mean scatter approximation, an analytic calculation
was performed for a point source centered in a 20 cm diameter, water-filled cylinder
which had a 5 cm dizmeter, cylindrical air pocket positioned 5 cm from the center of the
cylinder. The air pocket was positioned at the coordinates x = -2.5 cm, y = +4.33 cm
as viewed in figure 2!3(a).

The scatter profile occurring as a result of the scattering of photon 2 from the
mean scatter position is plotted in figure 23(b). The only analytic correction term
effected by this non-uniform attenuation situation, relative to the case of a uniform water-
filled cylinder, was the escaping photon attenuation correction térm. This is a sufficient
test since the term expected to be most affected by the approximation of a mean scatter
position is the escape path length attenuation correction term (see page 80). The effect
of this modification is noticed near bin 50 when photon 2 has scattered through an angle
large enough to allow its passage through the air pocket. The reduced attenuation along
this escape path causes a "kink" in the profile as the probability of a scattered photon

escaping attenuation increases. The right side of the profile exhibits no such "kink" since
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Figure 23(a): Non-uniform attenuation object having a 5 cm diameter, air-filled cylinder
located within a 20 cm diameter, water-filled cylinder at the position shown.
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Figure 23(b): Analytically ca culated scatter profile for scattering of photon 2 in the geometry
diagrammed in figure 23(a). ,
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the cylinder is uniform for photons scattered in that direction.

To test the validity of the mean scatter position assumption, the scatter profile was
also calculated at 100 scatter positions spaced 1 mm apart and extending from the center
of the large cylinder to its top edge as drawn in figure 23(a). The integrated scatter
profile was obtained by averaging the profiles calculated at each of the 100 scatter
positions. The right side of the profile in figure 23(b) shows a very good agreement
between the integrated and mean scatter position calculations, giving support to the mean
scatter position approximation under uniform attenuation conditions. However, the left
side of the profile, which is affected by the air pocket, shows a considerable difference
between the two curves. The integrated scatter position profile is much broader than the
mean scatter position profile owing to thé inability of any photons scattering from the
mean scatter position. to pass through the low attenuation air pocket for small scattering
angles. The mean scatter position appears to be inappropriate for some non-uniform

attenuation conditions.
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Predominant Factors R ible for PSF Determinati

The factors nost responsible for determining the shape of single scatter point
spread functions are explored through plots of analytic profiles for centered and off-
center point sources in 20 cm diameter, water-filled cylinders. To discover the dominant
corrections, the analytic profiles are plotted with and without the corrections for energy
discrimination, differences in escaping photon attenuation and variation of detector to
mean scatter position distance. The effects of detector energy threshold setting, E,, and
detector energy resolution, E,, are also explored through plots at a variety of values for

the centered point source.

Detector Effects

The effects or varying the detector energy threshold setting, E,, are displayed in
figure 24(a) for a ceatered point source in a 20 cm diameter, water-filled cylinder with
E, = 25%. There is very little difference in the single scatter profile observed for no
energy discrimination (E, = 0 keV) versus the energy discrimination setting most often
used (E, = 250 keV). The main benefit of employing a 250 keV discrimination setting
is to remove the multiple scatter peak observed at approximately 100 keV in figure 15(b)
[page 106]. As the energy discrimination setting increases from 250 keV to 400 keV,
very little discrimination is observed for the 511 keV scattered photons at the peak,

however the lower energy scattered photons in the tails are effectively excluded.
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Figure 24(a): Analytic profiles for a centered point source in a 20 cm diameter, water-filled
cylinder for E=25%.
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Figure 24(b): Analytic profiles for a centered point source in a 20 cm diameter, water-filled
cylinder for E =400 keV.
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The effects of varying the energy resolution setting used in the analytic calculation

are revealed in figure 24(b) for the same centered point source case with a detector
energy threshold setiing of 400 keV. E, = 0%, perfect energy resolution detectors,
would produce a distinct cutoff in the profiles below bin 38 and above bin 124
corresponding to scattered photons whose energy is below 400 keV. If high energy
resolution detectors which could efficiently detect 511 keV photons were available, the
detector energy threshold could be raised closer to 511 keV producing a cutoff in the
scatter profile very riear the resolution peak [see figure 11(a) on page 97]. The effect

of reduced energy resolution (higher E,) is to broaden the scatter profiles.

Significance of Various Analytic Corrections

The impact of the various terms correcting the Klein-Nishina term, F(B), in the
scatter profile equations (eqns 3.17 and 3.18) are explored through plots of scatter
profiles for centered and off-center point sources in 20 cm diameter, water-filled
cylinders. Profiles in each case are plotted with and without the correction for detector
to mean scatter position distance [R%(0)/R%(B) of equations 3.17 and 3.18], correction for
differences in the ¢scaping photon’s attenuation and finally correction for energy
discrimination. The detector energy threshold has been set to 380 keV in each case with
the detector energy resolution set at 25%.

In figure 25(1), plotting the single scatter profiles for the centered point source

reveals that the main factors responsible for determining the observed shape of scatter
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Figure 25(a): Analytic profiles for a centered point source in a 20 cm diameter, water-filled
cylinder with E =380 keV for various analytic corrections removed.

lm T AJ T T T
- All corrections to KN
90} -- No enrg discrim comr b
-. No esc photon corr
80 .. No detector dist corr b

70

60

50

40

Normalized Counts

30

20

10

1 i 1 i

40 60 80 100 120 140 160
Bin#

Figure 25(b): Analytic profiles for a point source offset 5 cm (source bin = 65) in a 20 cm
diameter, water-filled cylinder with E =380 keV for various analytic corrections removed.
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PSF’s are the Klein-Nishina term and the energy resolution term. The escaping photon
attenuation correction and the detector to mean scatter position distance correction are
observed to have a more subtle impact in determining profile shape.

A similar plo: for a point source offset 5 cm to the left of center of a calculated
projection is shown in figure 25(b). The source is located in bin 65 for a 5 cm offset,
however the peak of the scatter profile is observed to be in bin 55 exhibiting a shift
towards the periphery of the object. This effect has been discussed previously by
Wiernhard, however the reason for the shift was left unclear (Wienhard and Lercher,
1994). The Klein-Nishina term plotted alone has its profile peak in bin 62 indicating its
partial responsibility for causing a shift. Individual removal of both the escaping photon
attenuation correction and the detector to mean scatter position distance correction reveal
significant profile shifts to the right of the fully corrected PSF. The Klein-Nishina term,
the escaping photon attenuation term and the detector to mean scatter position distance
term are therefore all significant contributors to producing the observed shift in the
scatter peak. However, as for the centered point source case in figure 25(a), the Klein-
Nishina term and the energy discrimination term are still the dominant factors governing

the overall scatter profile shape.
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The assumptions employed by many common scatter correction methods currently
being explored are evaluated in this section with the aid of both Monte Carlo simulation
and analytically calculated scatter profiles. The assumptions used for energy based
scatter correction techniques, such as dual energy window subtraction (DEW) and the
extraction of trues method (ETM), are evaluated with the aid of Monte Carlo simulation.
The effectiveness of Gaussian fits to scatter profiles employed by Wienhard are also

evaluated with the assistance of the analytic scatter estimation procedure.

Dual Energy Windows

The dual energy window method of scatter correction, developed by Jaszczak for
SPECT (Jaszczak, 1985) and later by Grootoonk for PET (Grootoonk et al, 1993) [see
page 44], requires the acquisition of a low energy window (LEW) data set, representing
the scatter profile, which is then subtracted from a high energy window (HEW) data set
to remove scatter from the photopeak. The fundamental assumption for this technique
is the second assumption discussed on page 45 concerning the need for similar shape
profiles of scattered events in the low and high energy window.

Monte Carlo simulation was employed to test this assumption using a point source
centered in a 20 cm diameter, water-filled cylinder. Scatter profiles in a LEW, from

200-380 keV, as well as in a HEW, from 380-850 keV (suggested by Grootoonk), are
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MC calculation for a centered point source in a 20 cm diameter, water-filled cylinder.
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plotted in figure 26 where the number of counts for each profile have been normalized

for comparison of shape. It is evident that the low energy window profile, assembled
from broadly scattered photons, is much flatter than the high energy window profile,
which contains only forward scattered photons. Attempts to scale the low energy
window Compton scatter profile to represent the scatter in the high energy window are
evidently dubious. 'This result has been previously documented by Thompson, 1993.
The result is not surprising when one considers that single scattered annihilation photons
at 380 keV have been scattered through an angle of 49° according to equation 1.9. All
scattered photons in the LEW will thus be broadly distributed having little semblance to

the forward scattered photon events recorded in the HEW.

Extraction of Trues

The extraction of trues method, developed by Bendriem (Bendriem et al, 1994),
requires the acquisition of an additional high energy window from 550-850 keV to give
a noisy estimate of the scatter free distribution (see page 58). This estimate may be
smoothed and subtrzcted from a photopeak acquisition (250-850 keV) to produce an
estimate of the scatter distribution. The method relies on the assumption that the high
energy window is scatter free. Also, a sufficiently high count rate is required in this
window to reduce thz degree of noise observed in the scatter free profile estimate.

Monte Carlo simulation of a centered point source in a 20 cm diameter, water-

fillec cylinder again jprovides information to test these assumptions. The scatter fraction
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for the 550-850 keV window is calculated to be 11% for this case as extracted from

figure 16 (page 106). This scatter fraction is considerably lower than the 49% scatter
fraction observed for the 250-850 keV window, however it is still significant enough to
require correction by some means. The noise in the window is expected to be rather
large since the percentage of signal accepted for a detector threshold setting of 550 keV
is only 5% (figure 16). Based on the ratio of signal acceptance fractions at 250 keV
versus 550 keV, as extracted from figure 16, the acquisition time would have to be
extended by a facto- of 19 to produce an unscattered estimate with statistics similar to
those typically obseived for photopeak acquisition. Although smoothing applied to the
high energy window data set reduces the need to produce equivalent quality statistics, a

factor of 19 differerce would still require a considerably extended acquisition time.

Gaussian Fits to Point Spread Functions

Attempts have: been made to perform Gaussian fits (see page 56) to point sources
located in various positions throughout water-filled cylinders in the hope of using these
fits to perform convclution subtraction (Wienhard and Lercher, 1994). The validity of
this assumption was. tested using analytic calculation of centered and off-center point
sources in 20 cm diuneter, water-filled cylinders for a detector energy threshold of 380
keV.

The profile :alculated for the centered point source is plotted in figure 27(a)

together with a Gaussian curve fitted with the same amplitude and FWHM (62 bins).
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Figure 27(a): Gaussian fit to analytic scatter profile derived for a centered point source in a
20 cm diameter, water-filled cylinder with E.=380 keV.
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The curves agree very well for much of the profile near the peak but begin to degrade
in the extreme regions of the tails. Perhaps the choice of a lower detector threshold
setting other than 380 keV would elevate the scatter profile in the tails producing a better
fit [see figure 24(a) on page 123].

The profile for an off-center point source displaced 5 cm left of the center of the
projection, into bin 65, is shown in figure 27(b). The peak of the scatter distribution is
located in bin 55 demonstrating the scatter profile peak shift documented by Wienhard
and discussed on page 126. Included in the plot is a Gaussian fit with a matched
amplitude at the peak in bin 55, and using the same FWHM as observed (62 bins). In
this case, the Gaussian fit performs less admirably, failing to fit the analytic PSF which
is skewed rather than symmetric.

In reality, the main difficulty with employing Gaussian fits to PSF’s is that the
parameters required for the Gaussian fits are only known for point sources in uniform,
water-filled cylinders. Extrapolation of the technique for use in general imaging
situations involving non-uniform attenuation conditions may prove to be the greatest

difficulty.



CONCLUSIONS

The validity of the 3D analytic scatter estimation technique has been assessed
based on results comparing analytically calculated scatter point spread functions with
profiles measured using the tomograph. The analytic theory was only tested for uniform
attenuation conditions, however the mean scatter position assumption was evaluated for
non-uniform attenuation conditions as well. The difficulties exhibited by the theory, as
well as the steps which would be required for its ultimate application in clinical situations

are also discussed.

Validlity of the Analytic Method

The validity of the analytic method was evaluated through a comparison of
analytically generated profiles with those measured from experiments of centered and off-
center point sources in water-filled cylinders. Agreement was demonstrated for both the
source planes and non-source planes in both amplitude and shape for the centered point
source. The shape of the off-center point source was also shown to be in agreement with
the analytically derived profiles.

The effectiveness of the mean scatter position assumption was examined through
analytic calculations of a non-uniform attenuation object. The photons were allowed to

scatter at several positions along the escape route for the integrated scatter position
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calculation, while the mean scatter position technique only permitted scattering from one
location, the mean scatter position. Although the mean scatter position assumption was
accurate for uniform attenuation objects, the significant differences between the two cases
in the attenuation of the escaping scattered photon created difficulties for non-uniform
attenuation objects. Evidently, more than one representative scatter position is needed

for accurate scatter estimation in non-uniform attenuation objects.

Future Work

Having tested the analytic scatter estimation technique to ensure its validity,
application of the tecanique to emission data to create a scatter correction algorithm is
required. The most noticeable impediment to this effort stems from the considerable
computational resources which would be required to visit each source line of response
in the reduced data set to calculate the complete scatter profile in all 31 sinograms. The
difficulties experienccd by the mean scatter position approximation under non-uniform
attenuation conditions exacerbates this difficulty since the computation time is extended
by a factor dependent upon how many positions which photons will be permitted to
scatter from as they escape the object. The need to evaluate line integrals through 2D
emission and attenuation images is a considerable task, further increasing the
computational time required. The only aspect of the scatter correction problem which
enhances the ability to implement a practical analytic scatter correction technique is the

broad profiles exhibited by scattered photons. The compression of the data set, described
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on page 52, may be rurther extended to even smaller matrices if additional computation
time conservation is still required. The degree of compression required can only be
evaluated after the scatter correction algorithm has been developed and the mean time for

computation has been assessed.
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