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Lay Abstract 

Lane changing and car following are the two most frequently encountered driving 

behaviours for intelligent vehicles. Substantial research has been carried out and several 

prototypes have been developed by universities as well as companies. However, the low 

accuracy and high computational cost prevent the existing lane changing models from 

providing safer and more reliable decisions for intelligent vehicles. In the existing car-

following models, there are also few models that consider the effects of cut-ins from 

adjacent lanes which may result in their poor accuracy and efficiency. To address these 

obstacles, advanced artificial intelligence algorithms combined with sufficient driving 

environmental factors are proposed due to their promise of providing accurate, efficient, 

and robust lane changing and car-following models. The main part of this thesis is 

composed of three journal papers. Paper 1 proposed a gated branch neural network for 

a mandatory lane changing suggestion system at the on-ramps of highways; paper 2 

developed a recurrent neural network time-series algorithm to predict the surrounding 

vehicles’ discretionary lane changing intention in advance; paper 3 researched the 

strategic car-following gap model considering the effect of cut-ins from adjacent lanes. 
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Abstract 

To improve the safety and comfort of intelligent vehicles, advanced driver models offer 

promising solutions which can successfully capture and reflect the driver behaviours, 

accurately alert the driver of potential risks, and fully assist the driver to avoid obstacles. 

However, several shortcomings of these models, including lack of comprehensive 

driving environmental factors, low accuracy and high computational cost, prevent them 

from being widely applied in reality. This is especially true for lane changing and car 

following, which are two of the most frequently encountered driving behaviours for 

intelligent vehicles. To address these shortcomings, advanced artificial intelligence 

algorithms in conjunction with the sufficient driving environmental factors are proposed 

based on real-life driving data. More specifically, three typical problems will be 

addressed in this thesis: Mandatory Lane Changing (MLC) suggestion at the highway 

entrance; Discretionary Lane Changing (DLC) intention prediction; Car-Following gap 

model considering the effect of cuts-in from the adjacent lanes. 

For the MLC suggestion system, in which the main challenges are efficient decision 

making and high prediction accuracy of both non-merge and merge events, an additional 

gated branch neural network (GBNN) is proposed. The proposed GBNN algorithm 

employs a compact gated branch in addition to a feedforward neural network, and uses 

the scaled exponential linear units (SeLU) activation function and Adam optimizer. It 

not only achieves the highest accuracy among conventional binary classifiers in terms 

of great performance on the non-merge accuracy, the merge accuracy, and receiver 

operating characteristic score but also takes less time. 

For the DLC, we propose a recurrent neural network (RNN)-based time series classifier 

with a gated recurrent units (GRU) architecture to predict the surrounding vehicles’ 

intention. It can predict the surrounding vehicles’ lane changing maneuver 0.8 s in 
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advance at a recall and precision of 99.5% and 98.7%, respectively, which outperforms 

conventional algorithms such as the Hidden Markov Model (HMM). 

Finally, drivers are typically faced with two competing challenges when following a 

preceding vehicle: they need to leave sufficient space in front to ensure safety, while 

doing so the probability of cut-ins by other vehicles increases as the car-following gap 

becomes large. A method is proposed to address the problem through an overall 

objective function of car-following gap and velocity considering the safety hazard and 

the probability of cut-ins by other vehicles. Based on this, seeking the strategic car-

following gap translates to finding the optimal solution that minimizes the overall 

objective function. With the support of field data, the method along with concrete 

models are instantiated and the application of the method is elaborated. 
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Chapter 1 

Introduction 

1.1 Background 

With the rapid increase in the numbers of fatalities caused by traffic accidents, the 

factors which contribute to the vast casualties have been extensively investigated and 

discussed in greater detail both in academia and industry. According to an American 

study [1], a large majority of all traffic accidents (96.2%) are due to human errors. In 

recent years, intelligent vehicles have already raised a considerable amount of concerns 

due to their higher security, better road utilization, and greatly lower mobility costs. 

Several prototypes have been developed by universities as well as companies [2-5] and 

parallel studies and opinions on the impact of these vehicles on society started to be 

released [6, 7]. 

 

Figure 1.1 Intelligent vehicles’ system architecture. 
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With the rapid growth in the deployment of sensor technology in automobiles [3-5, 8, 

9], advanced driver assistance systems (ADAS), one of the fundamental technologies 

for intelligent vehicles, has become a reality to reduce road fatalities by minimizing 

human errors in recent years. Among ADAS, such as adaptive cruise control, collision 

avoidance systems, blind-spot warning systems, lane departure warning systems, and 

lane keeping assist system, they are all well developed to provide sufficient warning 

information and help drivers with safe decisions about driving maneuvers. The system 

architecture of an intelligent vehicle is demonstrated in Figure 1.1.  

In order to ultimately reach the maturity level required by mass production [6, 7, 10], 

intelligent vehicles must be capable of real-time detection and have the ability to adapt 

to multiple driving conditions, such as all kinds of weather conditions, various types of 

roads, different sizes of surrounding vehicles, pedestrians, and traffic lights and road 

signs. In all of the corresponding traffic situations, intelligent vehicles should have the 

ability of making real-time decisions for improving safety and driving comforts, while 

maintaining an optimal route towards their destination. In order to meet this need, 

constructing the advanced driver models using real-time decision-making algorithms 

based on multi-sensor information fusion, drivers’ perception, and recognition of the 

surrounding driving environment, have become an emerging research topic aiming at 

offering safer and more reliable solutions for intelligent vehicles.  

From a safety standpoint, according to the research on the driver’s action model from 

accidents, the cognition and judgment errors accounted for 84.1% as shown in Figure 

1.2, which entails a large part in the total amount of casualties [11]. This also motivates 

the study on the cognitive mechanism of the driver’s perception, high-level decision-

making model based on human-vehicle-road, which in return, lays a solid foundation 

for developing safe and reliable driver models for intelligent vehicles.  
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Figure 1.2 The proportion of accidents led by four errors ways. 

 

According to the National Highway Transportation Safety Administration (NHTSA), 

500,000 crashes per year in the United States [12, 13] are due to lane changing mistakes 

of the drivers. Of particular concern, even more crashes per mile happen during the 

merge maneuvers at highway ramps than at other segments [14]. It has also been noticed 

that 25% of all police-reported collisions in the US [15] and over 13% of all casualties 

from road accidents in Europe [16] are related to rear-end collisions. Additionally, as 

stated in the statistics from the NHTSA in the United States, unsuccessful car-following 

accidents accounts for 9.2% of the accidents [17]. Thanks to the potential of a lane 

keeping assist system (LKAS) [18], one of the ADAS, the passenger injury and fatality 

rate have decreased by about 9% and 15%, respectively. From a safety perspective, it is 

very crucial to construct safe and reliable driver models for the intelligent vehicles.  

Many previous research achievements have been made on the driver models. However, 

several obstacles, including the unsatisfied accuracy and heavy computational load, still 

prevent the driver models from being widely adopted in practice. The aforementioned 

challenges and the ever-increasing demand for the driver behaviour models, such as 

lane changing and car-following models, necessitate the need for the development of 
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AI models that offer the possibility of better performance for safety, efficiency, and 

driving reliability.  

As lane changing and car following are the two most frequently encountered driving 

behaviours for intelligent vehicles, this thesis will mainly focus on the following driver 

models: lane changing and car-following models. 

1.2 Literature review of driver behaviour model 

1.2.1 Review of lane changing model  

 

Figure 1.3 Classification of available approaches in lane changing studies [20]. 

 

Lane changing models have been developed to capture and model drivers’ lane 

changing behaviours under various traffic conditions, which can be used in macroscopic 

and microscopic traffic flow research [19-22]. Recognizing drivers’ lane changing 

behaviour and developing models to predict their decisions, both play a crucial role in 

the development of traffic management strategies. In recent years, numerous studies 
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have been conducted on the lane changing models to enhance road capacity and safety 

[19, 20]. Different approaches have been categorized, as shown in Figure 1.3.  

 

In exploring the definition range of the lane changing models, it can be classified as 

driving assistance models and driving decision models. Driving assistance models 

consist of collision prevention models and automation models, which consider the 

steering angle and lateral motions of the vehicles in the lane changing behaviours. This 

kind of model is mainly developed to reduce the danger of the lane changing maneuvers 

[23-25]. The other kind of lane changing models are driving decision models, which 

evaluates the intentions, desires, and needs of the driver to make and predict safe 

decisions in lane changing under different traffic conditions, different situational and 

environmental characteristics. With regard to the surrounding environment, driving 

decisions models can be categorized as either tactical or operational [26]. This 

classification is based on the required time for executing the decisions. The tactical 

decision models require 5 to 30 seconds while the operational decision models need less 

than 5 seconds, such as whether or not to accept a gap [27]. An example of operational 

decision model of lane changing is whether or not to merge into the highway from the 

on-ramp of the highway entrance, as shown in Figure 1.4. 

 

 
 

Figure 1.4 Schematic of an example of operational decision lane changing model. 
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Many studies have focused on the scope for lane changing and associated the lane 

changing decision of drivers to the surrounding traffic characteristics. They have 

generated models which can fall into one of two broad categories: rigid mechanistic 

models and artificial intelligence models [20]. Figure 1.5 demonstrates different models 

according to these two categories. 

 

Figure 1.5 Classification of lane changing decision models based on traffic 

characteristics [20]. 

The rigid mechanistic models are composed of stimulus response models [28], discrete 

choice models [29], and psychological models [30, 31]. Rigid mechanistic models have 

the advantage of generating a clear relationship between the explanatory independent 

variables and the target dependant variable. Therefore, the magnitude of these models 

depends on the exact values of the independent variables. However, they do not usually 

incorporate the uncertainties and inconsistencies related to drivers’ perceptions and 

decisions [32]. It prevents them from being widely applied in practice since drivers 

make their decisions based on their imprecise perceptions of the surrounding traffic [33, 

34].  

In recent years, as AI rolls out, AI based approaches on lane changing, as shown in 

Table 1.1, have emerged as a new direction and have been widely applied in this field 

[35- 41]. 
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Table 1.1 AI based lane changing models 

Category Research Model or 
Method 

Test 
Platform 

Objectives 

Lane changing 
intent 
analysis  

McCall 
[35] 

Sparse 
Bayesian 
learning 

A modular 
intelligent 
vehicle test 
bed 

A driver intent 
inference system 

Lane change 
intent 
prediction 

Hwan  
[36] 

ANN and SVM Instrumente
d vehicle; 
Driving 
simulator 

Driver lane changing 
intention model by 
SVM and ANN  

Predictive 
lane change 
and merge 

Sivaraman  
[37]  

Dynamic 
program over 
probabilistic 
driving map 

Instrumente
d 
automotive 
testbed 

A general predictive 
system for lane 
changing and merge  

Lane changing 
prediction 

Dou 
[38] 

SVM and ANN NGSIM 
dataset 

A lane changing 
intent classifiers 

Lane changing 
prediction 

Gao 
[39] 

Deep neural 
network 
Physiological 
signals 

Instrumente
d vehicle 

A lane changing 
intent prediction 
model 

Mandatory 
Lane 
Changing 

Hou 
[40] 

Bayes Classifier 
and Decision 
Trees 

NGSIM 
dataset 

Merge prediction 
model at highway 
entrance 

 

A sparse Bayesian classifier for lane changing intent analysis was proposed in [35] 

based on lane positional information, vehicle parameters, and driver head motions. A 

novel algorithm was developed using an artificial neural network (ANN) model to 

augment the basic measurements, and the augmented information was fed to a support 

vector machine (SVM) algorithm to detect the driver’s intention with an accuracy of 

92% [36]. A general predictive system for lane changing on the highways and urban 

areas was presented using dynamic programming over the probabilistic driving map 

[37]. A combined model of SVM and ANN was introduced for a mandatory lane 
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changing (MLC) prediction [38]. A group-wise convolutional neural network 

framework was proposed to predict the lane changing [39]. The feature data came from 

electrocardiogram (ECG), galvanic skin response (GSR), and respiration rate (RR) to 

best reflect a driver’s response to the driving environment. A model was developed for 

MLC using Bayes classifier and decision trees with an accuracy of 94.3% [40].  

In summary, AI based lane changing models have emerged as the new direction of the 

lane changing model in literature for the safety improvement, most of which have 

proved to be effective to some degree. However, MLC suggestion at the highway 

entrance, discretionary lane changing (DLC) intention prediction at the highway are still 

the main challenges for accurate lane changing models owing to the insufficient 

understanding of the driving context and situation, incomplete evaluation of drivers’ 

intentions, desires, need for preemptive actions, and high computational cost for 

complex algorithms.  

1.2.2 Review of car-following model 

For over half a century, the modeling of longitudinal car-following behaviour of drivers 

has been the center of focus of many researchers in literature due to its crucial effects 

on safety. Several car-following models for reflecting a correlation between the ego 

vehicle (EV) and the preceding vehicle (PV), were proposed to address the challenges, 

as summarized in Table 1.2. 

Table 1.2 Car-following models 

Category Research Model or 
Method 

Test Platform Objectives 

Pioneering  
Car-following 
model 

Crooks 
[41] 

Using 
perceptual 
field 

Simulation A car perceptual 
field 

Car following Gipps Mathematical Simulation The effect of driver 
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Model and 
traffic flow 

[42] 
Bando 
[43] 

Models Model to traffic flow 

Mathematical 
model 

Yousif 
[44] 
Li 
[45] 

Mathematical 
models 
verified by 
experiment 

Inductive loop 
detectors on 
these 
motorways 

A mathematical 
model verified by 
experiment 

Mathematical 
model 

Schober 
[46] 

Calibration 
model by 
operation test 
data 

Measurements 
on German 
freeways and 
arterials. 

A microscopic Car-
Following Models 

Collision 
warning 

Lee 
[47] 

Identification 
Gipps model 
by experiment 

Experiment 
data; 

Traffic 
simulator 

Driving model for 
collision warning 
and avoidance 

Fuzzy 
inference 
system 

Ma 
[48] 

Genetic 
algorithm and 
neural-fuzzy 
system 

Advanced 
instrumented 
vehicle 

A neural-fuzzy 
framework for car-
following model 

AI based  
Car-following 
model 

Wang 
[49] 

Deep neural 
network 

Experiment 
data 

Consider effect of 
human drivers 

AI-fuzzy logic 
based model 

Hao 
[50] 

Fuzzy logic 
artificial 
intelligence 
model 

NGSIM dataset Considering the 
psychological effects 

Fuzzy logic 
based model 

Vicente 
[51] 

A fuzzy logic-
based 
controller 

Instrumented  
prototype 
vehicle 

Consider gap error 
and control signal 

 

Since the pioneering research work on driver behaviour in [41], many researchers have 

started to study car-following behaviour. Nevertheless, those early models mainly 

adopted pure mathematical approaches to express the time-variation of motion 

parameters for car-following behaviour [42 - 47]. There exist several drawbacks in the 

aforementioned models. First of all, most of these models are based on kinematic 
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variables such as distance and speed, ignoring other important factors like traffic 

conditions and thus they cannot fully capture the car-following driving behaviours. The 

second drawback lies in the fact that too many assumptions and simplifications were 

made in those studies to model this complex behaviour. Therefore, more efforts are 

required to improve car-following models for better performance like precise model 

construction, while avoiding the aforementioned drawbacks.  

A general framework expressed by a neural-fuzzy system was introduced to model the 

driver behaviour from real car-following data by regarding complex driver behaviour 

as non-linear problems [48]. In [49], a deep neural network-based car-following model 

was presented with higher accuracy by capturing human drivers’ behaviours into the 

model in a natural and efficient way. A car-following model, composed of a classic 

stimulus-response framework, an extensive five-layer structure, a fuzzy logic-based 

inference mechanism, and perception anticipation inference strategy action, was 

developed to accurately imitate a human driver in [50]. A fuzzy logic-based car-

following controller was proposed in [51], which has been tuned to minimize a cost 

function in order to get a trade-off between a proper car-following gap error and the 

smoothness of the control signal. 

It is worth noting that, regardless of all kinds of model structures and expression forms, 

the existing car-following models have only taken the driving states of host-lane 

preceding vehicles into consideration. Nevertheless, the driving states of vehicles in 

adjacent-lanes also play a critical role in successfully modeling car following. Centering 

on this concept, preliminary studies have verified that a driver’s perception of risk is 

affected by multiple PVs in his sight on multilane roads [52]. The headways of multi-

lanes were researched and the results showed that there existed small headways in multi-

lanes compared to bigger headways with single lanes [53]. The research implied the car 

following will be affected by vehicles from adjacent lanes. With the help of the Grey 
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System Theory, a method on how to extend the intelligent driver model (IDM) was 

presented to support multiple lanes and model driver imperfections [54]. However, the 

model was only based on a behaviour map with a distance of 400 meters, which can be 

too short for practical applications. In [55], a method was established to describe the 

car-following behaviour in multi-lanes and the result was not entirely consistent with 

that of single-lane analysis, which indicates that it is necessary to explore the drivers’ 

behaviour in multi-lanes.  

In summary, the shortcomings of existing car-following models in the aforementioned 

studies would fall into one of two drawbacks: insufficient parameters calibration based 

on single-lane behaviour and incomprehensive microscopic analytical formulation to 

fully reflect the relationship between multiple PVs and the subject vehicle.  

1.2.3 Problems statement 

The research is divided into two categories: lane changing, which is further 

subcategorized by Mandatory Lane Changing (MLC) and Discretionary Lane Changing 

(DLC), and Car Following. 

For lane changing behaviours, as shown in Figure 1.6, the goal of the research is to 

provide accurate and efficient models for assisting the driver to eliminate unsafe lane 

changing maneuvers which account for the vast majority of driving accidents.  

For car-following behaviours, the purpose of the research is to develop an accurate and 

robust car-following model that targets to fill the research gap, by taking the effects of 

vehicles in adjacent lanes into consideration. 
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Figure 1.6 Mandatory and Discretionary lane changing [56, 57]. 

More specifically, the problems addressed in the thesis for lane changing and car-

following behaviours are as follows: 

Problem 1: Mandatory lane changing suggestion (discussed in Chapter 3) 

 

Figure 1.7 Mandatory lane changing scenario.  

Vehicle “A” entering the highway from the on-ramp is a typical mandatory lane 

changing scenario. As shown in Figure 1.7, vehicle “A” will merge from the on-ramp 

into the highway mainline. The objective of this part is to construct an accurate and 

efficient mandatory lane changing model for assisting the driver with safe decisions of 

whether to merge or not. 

Problem 2: Discretionary lane changing intention prediction (discussed in Chapter 4) 
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The discretionary lane changing scenario is shown in Figure 1.8. For vehicle “C”, the 

intentions, desires, and needs of lane changing of vehicle “A” can help it to avoid 

dangerous situations. It is obvious that the earlier vehicle “C” can predict the lane 

changing intent of vehicle “A”, the much safer vehicle “C” can be. The purpose of this 

part is to develop a discretionary lane changing model that aims at high accuracy and 

efficiency improvements, by adopting effective feature learning from the lane changing 

behaviour in conjunction with advanced AI algorithms, which are presented in detail in 

Chapter 4. 

 

Figure 1.8 The typical multi-car scenario. 

 

Problem 3: Car-following model considering the effect of the vehicle in the adjacent 

lane (discussed in Chapter 5) 

After lane changing execution, the strategies of how vehicle “A” follows the preceding 

vehicle “B” is worth investigating by considering both effects from the longitudinal 

direction and the lateral direction, as shown in Figure 1.9. As a matter of fact, the 

existence of cut-in vehicle “C” has a great influence on the car-following strategy of 

vehicle “A”, which has been mentioned in part 1.2.2. 
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Figure 1.9 Car following with cut-in from the adjacent lane. 

This thesis is mainly devoted to seeking solutions to these problems. The proposed 

models, with both safety and efficiency gains, are anticipated to be a promising solution 

for providing better prediction performance, thus generating greater road security and a 

better driving experience in a complex driving environment. 

1.3 Contributions and research objectives 

1.3.1 Mandatory Lane Changing Suggestion at the On-ramps of 

Highway 

1) An additional gated branch neural network (GBNN) algorithm based on the 

correlation analysis is proposed. The gated branch provides effective feature 

learning and explicitly captures the relationship between the surrounding driving 

environment and the lane changing decision. 

2） The proposed GBNN algorithm is used to model the MLC behaviour at the on-

ramps of highways with high accuracy of both non-merge and merge events. The 

accuracy can be as high as 97.7% for non-merge and 96.3% for merge behaviours, 

respectively. The results are much more accurate than that of other AI algorithms, 

like CNN (AlexNet), SVM, ANN and so on. Furthermore, the proposed method is 
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lightweight in computation, compared with the existing deep learning algorithms, 

and can be applied in ADAS for an efficient MLC suggestion system. 

1.3.2 Prediction of Surrounding Vehicles’ Discretionary Lane 

Changing Intention at freeway 

1) A recurrent neural network (RNN)-based time series classifier with a gated 

recurrent unit (GRU) is developed to predict and classify the surrounding vehicles’ 

discretionary lane changing intention in advance and thus it can provide an early 

notification to the ego-vehicle for driving assistance.  

2)  The proposed algorithm can predict the surrounding vehicles’ lane changing 

maneuver 0.8 s in advance at a recall and precision of 99.5% and 98.7%, 

respectively. The model can also predict the lane changing intention 1.6 s in 

advance with a recall of 92.2%. Furthermore, the proposed method is 

computationally inexpensive and can be applied in ADAS or autonomous vehicles 

in real-time applications.  

1.3.3 Car-Following Gap Model Considering the Effect of Cut-ins 

from the Adjacent Lanes 

1) A strategic car-following gap is devised by incorporating the probability of cut-ins 

into the formulation to reveal the practical effect of lateral motions. This model can 

successfully seek a driver model that operates the vehicle in a way to achieve both 

safety and efficiency.  

2) An overall objective function consisting of the car-following gap and velocity is 

formulated by considering the safety hazard and the probability of cut-ins by other 

vehicles. Based on this, seeking the strategic car-following gap translates to finding 
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the optimal solution that minimizes the overall objective function. With the support 

of field data, most collected data points are bounded between the 5-th and 95-th 

percentile curves of the proposed model, which demonstrates the effectiveness of 

the constructed model. Thus, this model can be a vitally important input to advance 

the design of driver assistance systems, promoting smooth traffic flow with 

increased safety. 

1.4 Outline 

In Chapter 2, data processing is conducted and illustrated. Two kinds of datasets are 

processed and prepared for further research. What’s more, the feature vector to 

represent the driving environment is constructed for the training and validation of AI 

algorithms. 

In Chapter 3, based on the datasets of Highway 101 and I-80 from NGSIM, the proposed 

GBNN algorithm has the advantage over other artificial intelligence algorithms 

(AlexNet, SVM, ANN) in terms of high accuracy and efficiency, to model the MLC 

behaviours at the on-ramps of highways. The effective feature learning is adopted to 

explicitly capture the relationship between the surrounding driving environment and the 

lane changing decision. Furthermore, the proposed method is lightweight in 

computation, and can be applied in ADAS for an efficient MLC suggestion.  

In Chapter 4, a recurrent neural network (RNN)-based time series classifier with a gated 

recurrent unit (GRU) is proposed to predict and classify surrounding vehicles’ 

discretionary lane changing intention in advance and thus it can provide an early 

notification to the ego-vehicle for driving assistance. Results reveal that the proposed 

algorithm can predict the surrounding vehicles’ lane changing intention in advance with 
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high accuracy. The method presented in this chapter can be used for ADAS and 

autonomous driving that promises high traffic safety and effective traffic management. 

In Chapter 5, in order to consider both effects from the longitudinal and lateral direction, 

we propose a strategic car-following gap model to fill this research gap by taking the 

safety hazard and the probability of cut-ins as a function of the car-following gap and 

velocity, respectively. Subsequently, an objective function is constructed as the 

weighted sum of both functions and then the optimal gap is obtained by finding the 

solution to that overall objective function. The model can give the car-following gap as 

a function of velocity of the subject vehicle.  

In Chapter 6, we summarize the concluding remarks of this thesis and provide a brief 

introduction on the prospective research directions as future work.  
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Chapter 2 

Data Processing and Feature Extraction 

2.1 Data source 

2.1.1 NGSIM I-80 and U.S. 101 Datasets 

To evaluate the model for highway lane changing prediction, the dataset from the 

Federal Highway Administration’s Next Generation Simulation (NGSIM) program was 

employed [1]. Specifically, the Interstate 80 Freeway and U.S. Highway 101 datasets 

were used in this thesis, which were collected on eastbound I-80 in the San Francisco 

Bay area in Emeryville, CA, on April 13th, 2005 and southbound US 101, also known 

as the Hollywood Freeway, in Los Angeles, CA, on June 15th, 2005, respectively. Both 

datasets are freely accessible on the NGSIM website [1]. 

Figure 2.1 displays a schematic illustration of the vehicles’ available trajectory on the 

Interstate 80 Freeway. The data represents travel on the northbound direction of 

Interstate 80 in Emeryville, California. The data was collected using video cameras 

mounted on a 30-story building, Pacific Park Plaza, which is located in 6363 Christie 

Avenue and is adjacent to the interstate freeway I-80. The study area is approximately 

500 meters (1,640 feet) in length, with an on-ramp at Powell Street, as marked by the 

rhombus solid line in Figure 2.1. The on-ramp at Ashby Avenue is just downstream of 

the study area. Lane numbering from 1 to 6 is incremented from the left-most (the high-

occupancy vehicle, HOV) lane to the right lane. The Interstate 80 dataset consists of six 

freeway lanes. This vehicle trajectory dataset provides the precise location of each 

vehicle on different lanes within the study area every one-tenth of a second. The data 
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was collected within the peak traffic period, in order to represent the buildup of 

congestion, or the transition between uncongested and congested conditions, and full 

congestion during the peak period. The dataset contains a total of 45 minutes that is 

segmented into three 15-minute periods: 4:00 p.m. to 4:15 p.m.; 5:00 p.m. to 5:15 p.m.; 

and 5:15 p.m. to 5:30 p.m. on April 13th, 2005.    

 

 
 

Figure 2.1 Study area schematic and camera coverage of NGSIM I-80 [1].        
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Figure 2.2 Study area schematic and camera coverage of U.S. 101 [1].  

 

Figure 2.2 shows the schematic and the optical image of the study area of Highway 101, 

which is approximately 640 meters (2100 feet) in length with five mainline lanes. An 

auxiliary lane is located through a portion of the corridor between the on-ramp at 

Ventura Boulevard and the off-ramp at Cahuenga Boulevard. Lane numbering is 

incremented from the left-most lane in the driving direction. The video dataset was 

collected using eight video cameras with camera 1 recording the southernmost and 
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camera 8 recording the northernmost section of the study area and the others recording 

the rest of the areas as marked in Figure 2.2. A total of 45 minutes of data is segmented 

into three 15 minute periods: 7:50 a.m. to 8:05 a.m.; 8:05 a.m. to 8:20 a.m.; and 8:20 

a.m. to 8:35 a.m. on June 15, 2005 for better representation of the buildup of congestion, 

or the transition between uncongested and congested conditions, and full congestion 

during the peak period. 

The data structure of the NGSIM dataset is shown in Table 2.1. The vehicle information 

and trajectory data were obtained with a camera recording 10 frames every second, 

which include vehicle ID, lateral coordinate, longitudinal coordinate, vehicle length, 

vehicle velocity, vehicle acceleration, spacing, and so on. Detailed information of this 

data structure can be found from NGSIM [1]. Through analysis of the vehicles’ 

trajectory, we are able to identify the behaviours such as merge or not, lane changing, 

and car following. 

Table 2.1 Data structure of NGSIM dataset 

1 2 3 4 5 6 
Vehicle ID Frame ID Total 

Frames 
Global 
Time 

Local X Local Y 

7 8 9 10 11 12 
Global X Global Y Vehicle 

Length 
Vehicle 
Width 

Vehicle 
Class 

Vehicle 
Velocity 

13 14 15 16 17 18 
Vehicle 

Acceleration 
Lane 

Identification 
Preceding 
Vehicle 

Following 
Vehicle 

Space 
Headway 

Time 
Headway 

 

Figure 2.3 shows the vehicle detection and tracking process of the NGSIM dataset [1]. 

Vehicle trajectory data was transcribed from the video data using a customized software 

developed by NGSIM. The program can automatically detect and track most vehicles 

on the lanes with the assist of video recording and transcribe the vehicles’ trajectory 

into a database.  
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Figure 2.3 Vehicle detection and tracking process [1]. The software identified vehicles 

in a user-defined detection zone that was tracked by eight cameras. 

2.1.2 Experiment data 

Another data source comes from Tsinghua University. The experimental vehicle 

platform is shown in Figure 2.4, which is equipped with a driver recorder (DR), 

industrial personal computer (IPC), frontal view camera and vehicle millimeter wave 

radar. The sampling frequencies of the DR, camera, and wave radar are 10 Hz, 30 Hz, 

and 15 Hz, respectively. Given that the sampling frequency of the DR, cameras, and 

millimeter-wave radar are not the same, we developed a synchronization program to 

synchronize collective information into 10 Hz. Besides the equipment shown in Figure 

2.4, the test vehicle was also equipped with radars and sensors to collect information 

about vehicle speed, acceleration, accelerator pedal depression, and brake pressure. 

These signals were recorded at a frequency of 10 Hz. 
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Figure 2.4 Experimental platform and devices. 

 

The Fourth Ring traffic lane of Beijing, China was selected as the experimental section 

as shown in Figure 2.5. It is a highway that contains a minimum of 4 lanes in each 

driving direction. The vehicle started from Tsinghua University (point 0) and entered 

Fourth Ring Road (section 1) from Wanquanhe (point 1) to the Xiaocun (point 2), then 

went back along section 2 and returned to Zhongguancun (point 3). Finally, the vehicle 

arrived at Tsinghua University (point 0). The tested distance is approximately 130 km. 

The driving speed limit is 80km/h for the test road. 

 

The experiments were performed to avoid peak traffic congestion time and no trucks 

were involved during our experiments. Experimental subjects are 12 non-professional 

drivers including 10 men and 2 women. Their average age is 37 years old with the 

standard deviation of 13 years. Their average driving experience is 15 years with a 

standard deviation of 11 years to promise the effectiveness of our experimental database.  

. 
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Figure 2.5 The experiment route. The arrow and close number from 1 to 3 indicate the 

moving direction and the route of the tested vehicles.  

2.2 Data analysis 

2.2.1 Data filtering 

Earlier research has shown that the trajectory data from NGSIM is unfiltered and has 

some noise [2-4]. A moving average filter was used to smooth the data. In this paper, 

the speed and acceleration rate are smoothed by the moving average filter. We designed 

and applied a moving average filter to all trajectories before any further data analysis. 

The moving average filter as shown in equation (2.1) plays a vital role as a low pass 

filter. Figure 2.6 and Figure 2.7 show the unfiltered and filtered velocity and 

acceleration from the I-80 database, respectively. It can be found that after filtering the 

data becomes smoother. All the data was filtered before being used for our studies. 

𝑥[𝑖] =
ଵ

ெ
∑ 𝑦[𝑖 + 𝑗]

(ெିଵ)/ଶ
௝ୀି(୑ିଵ)/ଶ                    (2.1) 
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Where 𝑀 represents the window size of the filter and is an odd number. 𝑦 represents 

the variable that needs to be filtered, 𝑥 represents the filtered value; 𝑖 represents the 

center time frame when the vehicle was pictured, 𝑗 represents the surrounding time 

frames around the center time frame 𝑖 in the window size of 𝑀. 

 

Figure 2.6 Comparison of unfiltered and filtered velocity data. The black curve is the 

data before filtering, while the red curve is the data after filtering. 

 

Figure 2.7 Comparison of unfiltered and filtered acceleration data. 
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2.2.2 Data pre-treatment 

In each radar signal cycle, the information of relative lateral positions is the basis to 

judge which lane the target is in. Among the vehicles ahead of the ego vehicle (EV), the 

preceding vehicle (PV) is the one with the smallest longitudinal distance captured by 

the vehicular radar. The relative lateral position of the left-lane preceding vehicle (LPV) 

should satisfy: dx-l∈[-pl -wr , -pl ]; the host-lane preceding vehicle (HPV) should satisfy: 

dx-h∈[-pl , pr ]; and the right-lane preceding vehicle (RPV) should satisfy: dx-r∈ [pr, pr 

+ wr]; wr is the width of the lane, pl and pr are the left and right lane line positions. 

Although the distance can be accurately measured using standard vehicular radar, the 

measurements produce signal errors due to noise and digital effects. For the cut-in 

vehicle, estimating its lateral velocity is the key information to judge its intention to cut 

in or not. Figure 2.8 shows that LPV switches to the lane of EV, and the measured value 

of the lateral distance fluctuates. This motion exhibited by the LPV in the lateral 

direction may be confused with the minor lateral changes due to noise. 

0  

Figure 2.8 Position of original radar target information for a cut-in vehicle from the 

left lane. 
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Considering the difficulties in tracking the vehicles in adjacent lanes, two requirements 

should be satisfied to make data applicable and accurate for our studies: 

(1)  Accumulated errors should not be generated. The estimated result of the current 

moment should not be affected by the estimated result of the previous moment but 

only affected by previous observations. 

(2)  Both accuracy and effectiveness can be obtained. To estimate the target position 

and identify the driving risk in real-time, the target tracking algorithm should rely 

on a small amount of real-time data rather than a large amount of data.  

To solve these problems, an adjacent lane vehicle tracking method based on the idea of 

total least squares is implemented. The detailed algorithm can be found in Ref.[5]. The 

parameters used in the car-following model is shown in Table 2.2. 

Table 2.2 Collected Parameters 

Symbol Name Unit Meaning 
T Time s Time 
k Number of sampling points  Number of sampling points 
B Brake signal  0=non-braking, 1=braking 

vego EV speed m/s Speed of EV 

vrel-l , vrel-h , vrel-r Relative speed of PV m/s 
Relative speed of 

LPV/HPV/RPV, positive value 
means approaching 

dy-l , dy-h , dy-r Relative distance of PV m LPV/HPV/RPV 

dx-l , dx-h , dx-r Lateral position of PV m 
LPV/HPV/RPV, positive value 

in the right side of EV 

pl, pr Lane line position m 
Distance of EV longitudinal 
centerline from the left and 

right lane lines 

Nd 
Number of the tested 

driver 
 1-12 
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(a) EV speed 

 

(b) LPV speed 

Figure 2.9 Estimated speed after Kalman Filtering: (a) EV speed; (b) LPV speed. 

 

Noise and glitches are inevitable in the speed information from a Controller Area 

Network (CAN), thus the velocity should be filtered in order to ensure the reliability of 

the data analysis results. 

In order to exclude the impact of noise in the speed of EV, LPV, HPV, and RPV, we used 

the Kalman filter to process the data collected from EV and the three PVs. The Kalman 

filter is widely used in vehicular radars and the machine vision for object state 

estimation. It can quantitatively estimate the position and motion of the target via a 

sequence of sensor readings. The Kalman filter is capable of tracking targets in real-
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time, and the basic idea is as follows. Based on the estimated value of the previous 

moment and the observed value of the current moment, it updates the state variables of 

the current moment based on the state space model of the signal and noise [6]. Figure 

2.9(a) is an example of filtering EV speed in a series. Figure 2.9(b) is an example of 

filtering LPV speed in a series. It is clearly shown that after filtering, data jitter and 

glitches in the relative speed from the signal have been removed and the signal quality 

is improved. 

2.3 Driving environment and feature vector 

construction 

To construct driver models, the feature vector, which can represent different driving 

conditions, must be obtained firstly. According to the information provided by the 

NGSIM dataset, a feature vector was extracted to represent the driving environment, as 

shown in Table 2.3. We take the left lane changing behaviours shown in Figure 2.10 as 

an example. The right lane changing behaviour has the same feature vector as shown in 

Table 2.3. Since THW is a dependent variable and can be expressed by d_lead and v_ego, 

in order to avoid the redundancy of the input vector, it is not suitable to be used as a 

separate feature variable. Therefore, the total number of the variables in the feature 

vector is 23. 

 

Table 2.3 Feature vector represents the driving environment 

Number 1 2 3 4 5 6 

Subject 
vehicle 

time y_ego Δx_ego v_ego a_ego THW 

Number 7 8 9 10 11 12 
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Subject 
vehicle 

d_lead Δv_lead Δa_lead d_lag Δv_lag Δa_lag 

Number 13 14 15 16 17 18 

Left lane 
vehicle 

d_lead_l Δv_lead_l Δa_lead_l d_lag_l Δv_lag_l Δa_lag_l 

Number 19 20 21 22 23 24 

Right lane 
vehicle 

d_lead_r Δv_lead_r Δa_lead_r d_lag_r Δv_lag_r Δa_lag_r 

 

 

Figure 2.10 The feature variables represent the driving environment. 

 

The meanings of the feature variables are as follows: 

1. time: the duration of the frame ascending from the start point in units of 100 ms. 

2. y_ego: the longitudinal coordinate Y of the subject vehicle. 

3. Δx_ego: the lateral distance of the subject vehicle with respect to the centre line of 

the lane, shown in Figure 2.11. 

4. v_ego: velocity of the subject vehicle. 

5. a_ego: acceleration of the subject vehicle. 

6. Time Headway (THW): headway provides the time to travel from the front-center 
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of a vehicle (at the speed of the vehicle) to the front-center of the preceding vehicle. 

 

Figure 2.11 Lateral distance (Δx_ego). 

 

7. d_lead: spacing provides the distance between the front-center of a vehicle to the 

front-center of the preceding vehicle. 

8. Δv_lead: speed difference between the lead vehicle in the current lane and the 

subject vehicle. 

9. Δa_lead: acceleration difference between the lead vehicle in the current lane and the 

subject vehicle. 

10. d_lag: longitudinal coordinate Y difference between the lag vehicle in the current 

lane and the subject vehicle. 

11. Δv_lag: speed difference between the lag vehicle in the current lane and the subject 

vehicle. 

12. Δa_lag: acceleration difference between the lag vehicle in the current lane and the 

subject vehicle.  

13. d_lead_l: longitudinal coordinate Y difference between the lead vehicle in the left 

lane and the subject vehicle. 

14. Δv_lead_l: speed difference between the lead vehicle in the left lane and the subject 

vehicle. 
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15. Δa_lead_l: acceleration difference between the lead vehicle in the left lane and the 

subject vehicle. 

16. d_lag_l: longitudinal coordinate Y difference between the lag vehicle in the left lane 

and the subject vehicle. 

17. Δv_lag_l: speed difference between the lag vehicle in the left lane and the subject 

vehicle. 

18. Δa_lag_l: acceleration difference between the lag vehicle in the left lane and the 

subject vehicle.  

19. d_lead_r, 20.Δv_lead_r, 21.Δa_lead_r, 22.d_lag_r, 23.Δv_lag_r, 24.Δa_lag_r have 

nearly the same meaning as variables 13-18, but is relative to the right lane. 

 

The feature vector (FV) can be represented by these variables in equation (2.2).There 

are 23 variables in the feature vector to characterize the driving environment. It must be 

noted that during different driver model construction, the size of the feature vector will 

change according to the specific problems that tend to be solved. Some variables may 

contain duplicate information, which may be omitted during different research. What’s 

more, with more sensors, the size of the feature vector can be expanded.  

 

FV = { time, y_ego, Δx_ego, v_ego, a_ego, d_lead, 

 Δv_lead, Δa_lead, d_lag, Δv_lag, Δa_lag,  

d_lead_l, Δv_lead_l, Δa_lead_l, d_lag_l, Δv_lag_l, Δa_lag_l, 

  d_lead_r, Δv_lead_r,Δa_lead_r, d_lag_r, Δv_lag_r, Δa_lag_r}   (2.2) 

 

According to the lane changing label method, the distribution of some variables under 

different behaviours (lane changing or lane keeping) will be illustrated in the following.  
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Figure 2.12 and Figure 2.13 show some typical variables used in the feature vector. 

From the figures, it can be found that the y_ego, Δx_ego, a_ego, Δv_lead, d_lead, 

d_lead_l, and Δv_lead_l of lane changing behaviours are different from those of lane 

keeping behaviours.  

For example, Figure 2.12(b) shows the distribution of Δx_ego. The left figure represents 

the cases of lane keeping behaviours while the right figure represents the lane changing 

behaviours. It is obvious that the Δx_ego of lane keeping behaviour and that of lane 

changing behaviour are much different from each other. For this reason, the variable 

can be used as the feature variable.  

 

Figure 2.12 The distribution of y_ego (a), Δx_ego (b), v_ego (c), a_ego (d)  

for lane keeping (left) and lane changing (right). 
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Figure 2.13 The distribution of d_lead (a), Δv_lead (b), d_lead_l (c), Δv_lead_l (d) for 

lane keeping (left) and lane changing (right). 

 

It is noteworthy that the variable of LK and LC with different distributions may indicate 

that this variable can be used for distinguishing two behaviours, but if the variable of 

LK and LC has nearly the similar distribution, like the a_ego as shown in Figure 2.12, 

it may also be an important variable in the feature vector. The reason is that the 

distribution of the feature variable can not reflect the time information. In other words, 

a similar distribution can be obtained by the same value at different times.   
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2.4 Conclusions 

In this chapter, the data sources are discussed in detail. The data in the thesis comes 

from two datasets: NGSIM, the Highway 101 and I-80 data, and experiment data from 

Tsinghua University. The data was filtered by the moving average filter, Kalman filter, 

and the total least squares method. Furthermore, the distributions of the variables are 

given in detail for lane keeping and lane changing behaviours, which will be used for 

the research in the following chapters. After processing the data, the feature vector 

constructed by 23 variables will be extracted to characterize the driving environment.
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Chapter 3 

A Gated Branch Neural Network for 
Mandatory Lane Changing Suggestion 
at the On-ramps of Highway 

3.1 Citation and Main Contributor 

Yangliu Dou, Yihao Fang, Chuan Hu, Rong Zheng, Fengjun Yan, “A Gated Branch 

Neural Network for Mandatory Lane Changing Suggestion at the On-ramps of 

Highway.” IET Intelligent Transport Systems.2019, 13(1):48-54. 

The main contributor to this paper is the first author - Yangliu Dou (contributes more 

than 80%). 

3.2 Copyright 

Published with permission from IET Intelligent Transport Systems. 

3.3 Abstract 

A gated branch neural network (GBNN) is proposed for modeling mandatory lane 

changing (MLC) behaviour at the on-ramps of highways. It provides a core algorithm 

for an MLC suggestion system for advanced driver assistance systems (ADAS), in 

which the main challenges are efficient decision and high prediction accuracy of both 

non-merge and merge events. The GBNN algorithm employs a gated branch based on 

correlation analysis, scaled exponential linear units (SeLU) activation function, and 

Adam optimizer. The algorithm has been evaluated using the real-world datasets of U.S. 
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Highway 101 and Interstate 80 from the Federal Highway Administration’s Next 

Generation Simulation (NGSIM). Input features are extracted from NGSIM and pre-

processed by standardization and principal component analysis. TensorFlow framework 

and Python are used as the development platform. Results show that the proposed 

GBNN algorithm with the Pearson correlation method has values of 97.7%, 96.3%, and 

0.990 for non-merge accuracy, merge accuracy, and receiver operating characteristic 

score, respectively. It outperforms conventional binary classifiers for MLC applications 

in accuracy and is more efficient computationally than a convolutional neural network 

(AlexNet) of deep learning algorithm. Owing to its compact architecture, the GBNN 

provides high accuracy and efficiency, demonstrating promising usage as an MLC 

suggestion system in ADAS. 

3.4 Introduction 

Advanced driver assistance systems (ADAS), such as adaptive cruise control [1], 

collision avoidance [2], and lane changing prediction systems [3], have attracted much 

attention in recent years owing to their improvements for driving safety and efficiency 

[4, 5]. Among these, lane changing is an important driver behaviour, which is prone to 

accidents. According to Ref. [6], most traffic accidents are caused by drivers’ mistakes 

and nearly 1.6% of fatal crashes happen during lane changing maneuvers. 

 

Lane changing maneuvers can be classified as mandatory lane changing (MLC) and 

discretionary lane changing (DLC) [7]. An MLC occurs when a driver is forced to leave 

the current lane, for instance merging to the main lane of the highway from an on-ramp 

or taking an exit to an off-ramp. DLC is not mandatory and happens mostly when the 

driver is not satisfied with the situation of the current lane and wishes to change to an 

adjacent lane. 
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Figure 3.1 Schematic illustrating mandatory lane changing at an on-ramp of a 

highway. Red car is the subject vehicle; A and B denote different positions and 

moments for the same vehicle. 

Figure 3.1 illustrates a scenario of an MLC at an on-ramp of a highway. The red car is 

the subject vehicle, and the forbidden symbol at position A indicates that it is not safe 

to merge lanes at that position and moment because it is too close to the white car behind 

it. The red car should move forward to position B and assure that the distance between 

itself to the front car (d_lead_t) and to the back car (d_lag_t) in the target lane are 

sufficiently large. An MLC is more vital than a DLC due to its mandatory nature and 

the potential of leading to traffic jams. On a highway, on-ramps are often the most 

congested places, as this is where drivers need to merge to the main lane in a limited 

distance and time. It’s urgent, but safety is the most important concern, and drivers 

always need to slow down to ascertain that the MLC behaviour is safe. 

In this work, we propose an MLC suggestion system, which can be integrated in an 

ADAS, to help drivers to complete MLC maneuvers in a more efficient and safer way. 

The MLC suggestion system works as follows: 1) it obtains the information of 

surrounding vehicles using Radar, Lidar, or camera sensors; 2) it analyses the data and 

gives a suggestion of “merge” or “non-merge”; 3) drivers execute an MLC maneuver 

according to the “merge” suggestion, or keep in the same lane according to the “non-
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merge” suggestion. The suggestion system can eliminate the time of hesitation in 

manual MLC maneuvers and therefore reduce traffic congestion. The core of this 

system is an algorithm that takes sensor inputs and makes suggestions efficiently. We 

focused on the development of such an algorithm suitable for the application of an MLC 

suggestion system. 

Research on lane changing mainly focuses on constructing a microscopic behaviour 

model [8, 9], and many machine learning algorithms are utilized. Kumar et al. [10] 

proposed a model for lane changing intention prediction based on a combination of a 

multiclass support vector machine (SVM) classifier and a Bayesian filter (BF). Li et al. 

[11] applied a hidden Markov model (HMM) to recognize lane changing intention. Tang 

et al. [12] reported an adaptive fuzzy neural network to predict the intention of lane 

changing. However, these work aim to predict the surrounding vehicles’ lane changing 

behaviour to assure the safety of the subject vehicle. Hou et al. [13] focused on an MLC, 

and proposed a lane changing model combining a Bayes classifier with a decision tree 

for an MLC at lane drops. However, for a decision tree algorithm, there are no consistent 

standards to choose the threshold values. They combined two algorithms to achieve 

good prediction accuracy of non-merge (no lane changing) events at the cost of 

prediction accuracy for merge (lane changing) events. Our previous work for an MLC 

combined SVM and artificial neural network (ANN) achieves good accuracy of non-

merge events but also at the cost of accuracy of merge events [14]. The inaccuracy of 

non-merge predictions, i.e., misclassifying a non-merge event as a merge event, will 

result in an accident; meanwhile, the inaccuracy of merge predictions, i.e., 

misclassifying a merge event as a non-merge event, will delay the merge operation from 

an on-ramp to the main lane, potentially increasing the occurrence of traffic jams. 

Therefore, an algorithm that can achieve high accuracy of both non-merge and merge 

events is desired for an MLC at on-ramps of highways. Recently, deep learning 
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algorithms such as convolutional neural networks (CNNs) [15] and long short-term 

memory (LSTM) networks [16], a type of recurrent neural network (RNN), have been 

investigated for their applications in intelligent transport systems. The results are 

promising, but deep learning algorithms generally require much computational resource 

to obtain highly accurate results.  

To achieve high accuracy of both non-merge and merge events with a computationally 

inexpensive algorithm, we proposed a compact architecture composed of a feedforward 

neural network and an additional gated branch for performance improvement, called 

Gated Branch Neural Network (GBNN).  

The main contributions are three-fold: (1) a novel GBNN algorithm is proposed, which 

enables more efficient modeling for an MLC behaviour at the on-ramps of highways 

with high accuracy of both non-merge and merge events; (2) an additional gated branch 

based on the correlation analysis is proposed, which provides effective feature learning 

and explicitly capture the relationship between the surrounding driving environment 

and the lane changing decision; (3) the proposed method is lightweight, compared with 

existing deep learning algorithms, in computation and can be applied in ADAS for 

efficient MLC suggestions. 

The rest of the paper is organized as follows. Section 3.5 provides the data source and 

the detailed methodology. Section 3.6 shows the results and discussion. Section 3.7 

concludes the paper and discusses the limitation of the proposed approach and future 

work. 

3.5 Methodology  

The real-world datasets of U.S. Highway 101 (US 101) and Interstate 80 (I-80) are 

utilized from the Federal Highway Administration’s Next Generation Simulation 
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(NGSIM) program [17]. The NGSIM datasets are open-source and have been widely 

used in academic and industry research [18-20]. Therefore, they are used to model the 

MLC behaviour in this work. A total of 45 minutes of vehicles’ trajectory data are 

collected either on US 101 in Los Angeles or on I-80 in the San Francisco Bay area, 

using synchronized digital video cameras and customized software. The US 101 dataset 

is segmented into three 15-minute periods: 7:50 a.m. to 8:05 a.m.; 8:05 a.m. to 8:20 

a.m.; and 8:20 a.m. to 8:35 a.m. on June 15, 2005. The I-80 dataset is also segmented 

into three 15-minute periods: 4:00 p.m. to 4:15 p.m.; 5:00 p.m. to 5:15 p.m.; and 5:15 

p.m. to 5:30 p.m. on April 13, 2005. The total dataset is around 1230.6 MB, and the 

vehicle trajectory data provide the precise location of each vehicle within the study area 

at every one-tenth of a second, resulting in detailed lane positions and locations relative 

to other vehicles. The data is of two-dimensional structure, with rows organized by the 

vehicles’ identification (ID) number and columns for information of each vehicle (such 

as locations, velocity, acceleration, lane number, size and type of vehicle, and ID 

numbers of preceding and following vehicles). In order to obtain the information of the 

surrounding vehicles, including the information of vehicles in the adjacent lanes, a 

customized program is developed to extract suitable features for modeling MLC 

behaviours. 

 

(a) 
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(b) 

Figure 3.2(a) Study area for modeling of an MLC (from lane 6 to lane 5) from NGSIM 

US-101 and I-80 Dataset. (b) Definition of an MLC scenario, centre blue - subject 

(merging) vehicle; right green (lead) - front vehicle in merging lane; left green (lag) - 

rear vehicle in merging lane; right red (lead_t) - front vehicle in target lane; left red 

(lag_t) - rear vehicle in target lane. 

 

The schematic of the study area for modeling MLC behaviours is shown in Figure 3.2(a), 

where vehicles at the on-ramp are forced to merge from lane 6 to lane 5. Lane 6 and 

lane 5 are defined as the merging lane and the target lane, respectively. Figure 3.2(b) 

shows the detail of the MLC surrounding environment. Generally, when a subject 

vehicle (the centre blue vehicle) tries to change lanes from the merging lane to the target 

lane, it needs to assess its surrounding driving environment, such as the status of front 

and rear vehicles both in the merging lane and target lane as well as its own information. 

Four symbols, lead, lag, lead_t, and lag_t, are introduced to represent four categories 

of surrounding vehicles (the front vehicle in the merging lane, the rear vehicle in the 

merging lane, the front vehicle in target lane, and the rear vehicle in the target lane). 

Every category of vehicle is characterized by distance, velocity, and acceleration 

relative to the subject vehicle, respectively. 

The GBNN algorithm is proposed to model the MLC behaviour and suggest drivers to 

perform an MLC maneuver at the on-ramps of highways. The architecture of GBNN is 

shown in Figure 3.3. 
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Figure 3.3 Data flow and architecture of the proposed GBNN. 

 

It is composed of two stages. Stage I is for data pre-processing and stage II includes a 

compact neural network. The trajectory data provided by NGSIM includes total 

information for all the vehicles that appeared in lane 1 through lane 6, but only data 

relevant to an MLC from lane 6 to lane 5 is needed. Therefore, in the first stage, 16 

features are extracted as inputs to our algorithm as listed in Table 3.1. The input data 

have 20002 instances (rows) and each instance has 16 features and 1 label (columns). 

Label with value of 0 and 1 represents non-merging and merging events, respectively. 

Of the same number of non-merge and merge instances in all the data, 80% is taken 

randomly as the training dataset, and the remaining 20% of instances as the test dataset. 

In the training dataset, the 10-fold cross validation method is used to train and optimize 

the model. Once the model parameters are optimized, the test dataset is used to predict 

the non-merge events and the merge events. Before feeding data into the neural network, 

data pre-processing, including standardization and principle component analysis (PCA), 

has to be carried out.  
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Standardization is an essential data pre-processing step and is always used before PCA. 

In standardization, the input data is normalized to be of unit variance and zero mean 

[21]. PCA is able to derive low-dimensional features from a large set of features, while 

keeping as much variation as possible [22]. After standardization and PCA, the number 

of features is reduced to 13. After conducting standardization and PCA for the training 

dataset, the mean, standard deviation, and eigen vectors are derived. These derived 

values are then used for processing the standardization and PCA for the test dataset [23]. 

Afterwards, data flow is divided into two streams: one goes to the input of the main 

neural network, and the other is used to calculate the correlation coefficients between 

the label and each feature. A typical method (Pearson) to calculate the correlation 

coefficients between two random variables X and Y is: 

𝜌௑,௒ =
cov(௑,௒)

ఙ೉ఙೊ
                              (3.1) 

Where cov is the covariance operator, and 𝜎 the standard deviation. The calculated 

correlation coefficients are used to set the weight of the gate in the branch shown in 

Figure 3.3. Generally, in machine learning, the upper bound of the weight is often 

chosen to be 1 and the lower bound is a small value greater than 0, so we scaled and 

shifted the correlation coefficients by equation (3.2) and their values are in the range 

[0.1, 1]:  

𝑓(𝑥) =
|௫|

|௫|ౣ౗౮
× 0.9 + 0.1                       (3.2) 

Where |𝑥| is the absolute value of the calculated correlation coefficient between each 

feature and the label, and |𝑥|୫ୟ୶ is the maximum one. In statistics, there are three 

common methods to calculate correlation coefficients: Pearson, Kendall Tau, and 

Spearman. We evaluated all these three methods and compared their effects on the 

prediction accuracy. 
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Table 3.1 Features extracted from NGSIM for modeling an MLC at on-ramps of 

highways 

No Features Unit Meaning 

1 Δx_ego feet deviation of the lateral coordinate, x in Figure 3.2(b), of the 

merging vehicle with respect to the centre line of the 

merging lane; 

2 y_ego feet longitudinal coordinate, y in Figure 3.2(b), of the merging 

vehicle with respect to the left-most entry edge, where the 

vehicle enters into the study area; 

3 v_ego feet/s velocity of the merging vehicle; 

4 a_ego feet/s2 acceleration of the merging vehicle; 

5 d_lead feet longitudinal gap between the front vehicle in merging lane 

and the merging vehicle; 

6 Δv_lead feet/s velocity difference between the front vehicle in the 

merging lane and the merging vehicle; 

7 Δa_lead feet/s2 acceleration difference between the front vehicle the in 

merging lane and the merging vehicle; 

8 d_lag feet longitudinal gap between the rear vehicle in the merging 

lane and the merging vehicle; 

9 Δv_lag feet/s velocity difference between the rear vehicle in the merging 

lane and the merging vehicle; 

10 Δa_lag feet/s2 acceleration difference between the rear vehicle in the 

merging lane and the merging vehicle; 

11 d_lead_t feet longitudinal gap between the front vehicle in the target lane 

and the merging vehicle; 

12 Δv_lead_t feet/s velocity difference between the front vehicle in the target 

lane and the merging vehicle; 
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13 Δa_lead_t feet/s2 acceleration difference between the front vehicle in the 

target lane and the merging vehicle; 

14 d_lag_t feet longitudinal gap between the rear vehicle in the target lane 

and the merging vehicle; 

15 Δv_lag_t feet/s velocity difference between the rear vehicle in the target 

lane and the merging vehicle; 

16 Δa_lag_t feet/s2 acceleration difference between the rear vehicle in the 

target lane and the merging vehicle. 

 

Stage II is composed of a main neural network with three hidden layers and an 

additional branch. The branch is gated, and the weight of the gate is set by the 

aforementioned values derived from the correlation coefficients. The main neural 

network consists of three hidden layers, and each hidden layer has the same number of 

neurons. The branch consists of a weighted gate and one hidden layer, whose number 

of neurons is set to the same as the main neural network. The main neural network and 

the branch are used together to generate a two-bit binary label, with label [1 0] 

representing a non-merge event and label [0 1] representing a merge event. The gate 

provides a soft approach to incorporate correlation between label and input features into 

the branch network.  

The activation function used in each hidden layer is scaled exponential linear units 

(SeLU) [24]. Compared with the traditional Sigmoid and the popular rectified linear 

unit (ReLU), SeLU automatically converges towards zero mean and unit variance. Thus 

it has the same effect as batch normalization and can avoid exploding and vanishing 

gradients. The SeLU activation function is given by equation (3.3): 

selu(𝑥) =  𝜆 ቄ
𝑥                                         if 𝑥 > 0
𝛼 ∙ 𝑒௫ − 𝛼                         if 𝑥 ≤ 0

                   (3.3) 
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Where 𝜆 and 𝛼 are two parameters with typical values of around 1.0507 and around 

1.6733, respectively. 

Softmax with the cross-entropy function is used to compute the training loss as equation 

(3.4) that quantifies the agreement between the predicted scores and the ground truth 

labels. The smaller the loss, the more consistent the predicted class scores with the 

ground truth labels are in the training data [25]: 

𝐿 =  −
ଵ

ே
∑ log ൬

௘
ೞ೤೔

∑ ௘
ೞೕ

ೕ
൰ேିଵ

௜ୀ଴ +
ଵ

ଶ
𝜆ᇱ ∑ ∑ 𝑊௞,௟

ଶ  ௟  ௞             (3.4) 

Where N is the number of instances during training, 𝑠 the predicted score function that 

maps the input data to class scores, 𝑠௝ for j-th class, 𝑠௬೔
 for the class of ground truth 

label corresponding to the i-th input instance, 𝜆ᇱ the regularization penalty, and 𝑊 the 

weight matrix. ∑ ∑ 𝑊௞,௟
ଶ

௟௞  denotes the summation of all the squared elements of 𝑊. 

The first term at the right-hand side of the equation represents the data loss, and the 

second term represents the regularization loss.  

Adaptive moment estimation (Adam) [26] is used as the optimizer to minimize the 

training loss, and its effect on this algorithm is investigated and compared with the 

traditional Mini-batch gradient descent (GD) optimizer. For the Adam optimizer, the 

same stochastic batch fetch method for Mini-batch GD is used.  

The algorithm is implemented with Python and TensorFlow framework. Pandas, 

Numpy, and Matplotlib are used for file and data manipulation, array operation, and 

visualization. 

It is worth noting that the accuracy of non-merge events has higher priority than merge 

events, because misclassifying a non-merge event as a merge event could result in a 

traffic crash. However, for an MLC at on-ramps of highways, the accuracy of merge 
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events is also vital because inaccurate merge prediction could potentially lead to the 

increase of traffic jams. Therefore, the optimization strategy in our research is to weight 

more on the accuracy of non-merge event prediction at limited cost of the accuracy of 

predicting merge events. 

 

Table 3.2 Confusion matrix for an MLC 

  Predicted non-merge (N) Predicted merge (P) 

Actual  
non-merge (N) 

TN FP 

Actual merge (P) FN TP 

 

It is common to evaluate the performance of a binary classifier using the confusion 

matrix and plot the receiver operating characteristic (ROC) curve [21]. For MLC 

applications, the confusion matrix is given in Table 3.2. Each row in the confusion 

matrix represents an actual class, and each column represents a predicted class. TN (true 

negatives) and FP (false positives) are the numbers of actual non-merge events correctly 

and wrongly classified as non-merge events and merge events, respectively. FN (false 

negatives) and TP (true positives) are the numbers of actual merge events wrongly and 

correctly classified as non-merge events and merge events, respectively. The accuracy 

of non-merge and merge are also called specificity and recall (sensitivity), respectively. 

They can be calculated by equation (3.5) and (3.6). 

Accuracy of non-merge (specificity) =  
்ே

்ேାி
     (3.5) 

Accuracy of merge (recall) =  
்௉

்௉ାி
                   (3.6) 
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ROC curve plots the true positive rate (recall) against the false positive rate (1 −

specificity). The area under the curve, also called ROC score, is used to compare the 

performance of different algorithms. A perfect binary classifier will have a ROC score 

equal to 1. In this work, some traditional binary classifiers - SVM, random forest, 

stochastic gradient descent (SGD) - are compared against the GBNN algorithm. The 

ROC curve for SVM, random forest, and SGD are implemented by the Scikit-Learn 

package, and for GBNN the method in Ref. [27] is used.  

3.6 Results and Discussion  

Input features contribute differently to the output prediction. They are controlled by the 

neural network’s weights updated by backpropagation. Backpropagation in general 

does not guarantee to reach the global optimum. In our research, it is observed that 

through the proposed gated branch, correlation statistics can help neural networks 

converge to a better optimum. The gate coefficients are the normalized correlation 

statistics. Input features after data pre-processing are multiplied by gate coefficients so 

that they are weighted explicitly by the correlation statistics. Correlation statistics with 

the gated branch influence the network’s output through the fusion of the gated branch 

and the main neural network at the output. 

 

After data standardization and PCA, three commonly used correlation analysis methods, 

Pearson, Kendall Tau, and Spearman, are compared. Figure 3.4 shows the Pearson 

correlation coefficient between each principal component (pc_i, i = 1, 2, …, 13) and the 

label. It can be seen that some components contribute more than others, and those with 

higher correlation coefficients have higher weights in the gate of branch. 
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Figure 3.4 Pearson correlation coefficients between label and each principal 

component of training data (after standardization and PCA). 

 

Table 3.3 shows the correlation coefficients, which is calculated by the pandas. 

DataFrame.corr( ) function provided in the Pandas package, as well as the calculated 

weights for the gate in GBNN. Pandas is an open source, BSD-licensed library 

providing high-performance, easy-to-use data structures and data analysis tools for the 

Python programming language. The pandas.DataFrame.corr( ) function computes the 

pairwise correlation of columns, excluding null values. The weights are calculated by 

equation (3.2), which limits the values between 0.1 and 1. It eliminates the difference 

of correlation coefficients between the Kendall Tau and Spearman methods leading to 

outputs with the same weights. In the following discussion, we will reduce these two 

methods to one and refer to as Kendall/Spearman. 
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Table 3.3 Correlation coefficients (corr.) between input features (feat.) and label; 

calculated weights (wei.) for gates. 

input  

feat. 

Pearson Kendall Tau Spearman 

corr. wei. corr. wei. corr. wei. 

1 0.040 0.182 0.024 0.158 0.029 0.158 

2 0.119 0.346 0.113 0.373 0.139 0.373 

3 0.013 0.126 0.018 0.144 0.022 0.144 

4 0.089 0.284 0.077 0.285 0.094 0.285 

5 0.437 1 0.373 1 0.457 1 

6 0.040 0.183 0.040 0.196 0.049 0.196 

7 0.194 0.499 0.162 0.490 0.198 0.490 

8 0.009 0.118 0.012 0.128 0.014 0.128 

9 0.054 0.210 0.059 0.243 0.073 0.243 

10 0.013 0.127 0.026 0.162 0.032 0.162 

11 0.032 0.167 0.029 0.169 0.035 0.169 

12 0.020 0.140 0.019 0.146 0.023 0.146 

13 0.017 0.135 0.017 0.140 0.02 0.140 

 

Figure 3.5 shows the effects of different correlation methods on the non-merge accuracy 

and merge accuracy. We set the weight of the gate by the Pearson and 

Kendall/Spearman correlation method as well as the random method. Since we aim to 

maximize the accuracy of non-merge events, the Pearson method is the preferred one 

with the highest non-merge accuracy and good merge accuracy. In this comparison, the 
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number of neurons in each hidden layer is fixed at 384, and 500 epochs are run to train 

the model.  

 

 

Figure 3.5 Comparison of different correlation methods (Pearson, Kendall/Spearman, 

and random), which are used for setting the weights of gate, on the effects of the  

prediction accuracy of non-merge and merge events. 

 

Adam computes adaptive learning rates for each parameter in algorithms. In addition to 

storing an exponentially decaying average of past squared gradients, it also keeps an 

exponentially decaying average of past gradients, which makes it more efficient and 

stable than the traditional GD method and its variances [26]. Figure 3.6 investigates the 

training loss vs. the epochs running for Adam and Mini-batch GD. Mini-batch is the 

most efficient method in GD variances, and the common batch size ranges between 50 

and 256. In Figure 3.6, we use a batch size of 200 for both Mini-batch GD and Adam. 

It can be seen that Adam achieves minimum loss around 100 epochs, while Mini-batch 

GD requires around 2000 epochs. Adam also has smaller variation at the stable stage. 

For model training, the computational time is proportional to the number of epochs. We 

found through experiments that beyond 500 epochs, the training loss of Adam does not 
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change much. Therefore, 500 epochs are sufficient for training. This value is also used 

for the subsequent experiments. 

 

Figure 3.6 Training loss vs. the number of epochs for different optimizers. 

 

The numbers of hidden layers and neurons of each hidden layer are two basic 

parameters of neural networks. In theory, one hidden layer with enough neurons can 

handle all binary classification problems, but two or three hidden layers can help to 

reduce the number of required neurons drastically. If the total number of neurons is not 

large enough, the model is prone to underfit, which means the model is not able to obtain 

a sufficiently low loss value on the training set, but if the neurons are too many, the 

model may be overfitting, namely, the model can achieve an extremely low error for 

the training set but gives a large error when used to predict the test set. The main cause 

of overfitting is the unsuitably large capacity of the model [28]. The neurons number in 

each hidden layer plays an important role for its performance. Traditionally, these 

numbers are decreased from input layer to output layer. Recently, especially for deep 

learning, researchers have found that keeping the same number of neurons in each 

hidden layer is a simple and efficient way to improve the performance [21]. In the 
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proposed method, three hidden layers were selected in the main neural network and one 

in the gated branch, as shown in Figure 3.3. We vary the same number of neurons at 

each hidden layer among 64, 96, 128, 192, 256, 384, and 512. Both the accuracy of 

predictions for merge events and non-merge events are investigated and the results are 

shown in Figure 3.7. The Pearson method and Adam optimizer are used, and the epochs 

are chosen to be 500 as stated in the aforementioned discussion. 

 

Figure 3.7 Accuracy of prediction for merge events and non-merge events with 

different number of neurons in each hidden layer (x-axis in log2 scale). 

 

With a small number of neurons, the accuracy of merge events turns out to be better 

than the accuracy of non-merge events. As the number of neurons increases, the 

accuracy of non-merge events increases and achieves the highest value of 97.7% at 384 

neurons. The accuracy of merge events is not the highest at that point, but still has a 

good value of 96.3%. Since the accuracy of non-merge events has priority over merge 

events due to its relation to driving safety, 384 neurons are chosen. 

Training the GBNN model takes around 230 s, but the prediction (of merge or non-

merge) only needs around 30 ms. The running time information is obtained from a 
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regular laptop, Macbook Pro mid-2014 (2.5 GHz Intel i7, 16 GB 1600 MHz DDR3), 

and TensorFlow is the CPU-only 1.4 version. It is expected that hardware used for 

assisted driving will be more powerful. For instance, Tesla’s Autopilot uses Nvidia’s 

Drive PX2 platform with 2 SoCs and 2 GPUs, which brings the capacity closer to the 

power needed to enable level 5 full autonomy [29]. Therefore, GBNN can be executed 

in real-time on such platforms. 

To see the computation efficiency, we compare the training and inference time of 

GBNN with a baseline CNN (AlexNet [30]) algorithm. AlexNet is implemented in the 

same computational platform. Hyperparameters, such as receptive field, stride, and 

zero-padding, are adapted and tuned for one-dimensional inputs. Results show that 

AlexNet will need 8798 s to train and 482 ms to predict, with a prediction accuracy of 

96.6% and 97.5% for non-merge and merge events, respectively. In other words, GBNN 

is more than 38 times faster in training time and 16 times faster in inference times when 

compared to CNN (AlexNet). Other popular deep learning models, such as GoogLeNet 

[31] and VGGNet [32] are more complicated than AlexNet in architecture and thus 

likely require even more time to train and predict.  

An MLC is a typical binary classification application. Therefore, many traditional 

binary classifiers can be adopted. We implement the stochastic gradient descent (SGD), 

random forest, SVM with radial basis function (RBF) kernel (gamma and c were set to 

be 0.2 and 5), and SVM with linear kernel (c was set to 5) by Scikit-Learn package.  

The decision tree, Bayes classifier, and combined algorithm from Hou et al. [13] are 

compared. Our previous work of combining SVM and ANN for an MLC, implemented 

by MATLAB, is also used for comparison [14].  

The results are shown in Table 3.4. The proposed GBNN algorithm and AlexNet 

outperform all other algorithms in accuracy of both non-merge and merge events. 
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However, as previously described, the accuracy of the non-merge event is more 

important than that of the merge. GBNN not only achieves the highest accuracy among 

all classifiers for non-merge events but also uses much shorter time. The combined 

methods, which combined two binary classifiers as a new classifier, achieve good 

accuracy of non-merge events at the cost of the accuracy of merge events.  

Table 3.4 Comparison of different binary classifiers for MLC applications 

Algorithms 
Accuracy of 

non-merge 

Accuracy of 

merge 

SGD 64.7% 73.2% 

Random Forest 89.4% 94.6% 

SVM with RBF Kernel 93.9% 95.9% 

SVM with Linear Kernel 75.6% 71.3% 

Decision Tree [13] 84.3% 80.8% 

Bayes Classifier [13] 79.5% 92.3% 

Combined Decision Tree 

and Bayes Classifier [13] 
94.3% 79.3% 

Combined SVM and 

ANN [14] 
94% 78% 

Proposed GBNN 97.7% 96.3% 

CNN (AlexNet) 96.6% 97.5% 

 

Although the accuracy of the non-merge is the more important one, the low accuracy of 

the merge will delay merging from on-ramps to the main lane, leading to an increase of 

potential traffic jams at the on-ramps of highways. Therefore, achieving high accuracy 
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for both non-merge and merge events is important for on-ramps MLC applications. The 

proposed GBNN algorithm achieves this goal due to the introduction of an additional 

gated branch to the main neural network, the SeLU activation function, and the Adam 

optimizer. 

Figure 3.8 shows the comparison of ROC curves among GBNN, SVM with RBF kernel, 

random forest, and SGD. As mentioned before, ROC curve plots the true positive rate 

(recall) against the false positive rate (1 − specificity). The area under the curve, also 

called ROC score, is used to compare the performance of different classifiers. The 

diagonal dash line represents a ROC curve of a pure random classifier, and a good 

classifier stays as far away from this line as possible (the closer to the top left, the better).  

ROC scores for GBNN, SVM with RBF kernel, random forest, and SGD are 0.990, 

0.980, 0.972, and 0.754, respectively.  

 

 
 

Figure 3.8 Comparison of ROC curves among GBNN, SVM (with RBF kernel), 

Random Forest, and SGD. The black dash line represents a ROC curve of a pure 

random classifier. 
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This clearly demonstrates the advantages of the proposed GBNN algorithm over 

traditional binary classifiers. The main contributor is the additional gated branch based 

on correlation analysis, which explicitly captures the relationship between the 

surrounding driving environment and the lane changing decision. 

3.7 Conclusions 

In this paper, we proposed GBNN, a lightweight feedforward neural network and an 

additional gated branch to predict vehicles’ lane changing behaviours. The proposed 

GBNN algorithm achieved a high accuracy in predicting both non-merge events (97.7%) 

and merge events (96.3%) as well as a satisfactory ROC score (0.990) using the NGSIM 

dataset. It outperformed state-of-the-art binary classifiers reported in MLC applications. 

With inference time at 30 ms with high accuracy on a regular laptop, GBNN is 

promising for real-time on-vehicle applications. We compared GBNN with AlexNet, a 

deep algorithm, to demonstrate its lightweight characteristics. The evaluation is limited 

as only one dataset is utilized. As future work, we planned to collect more data with a 

real vehicle equipped with radar, LIDAR, and camera sensors to evaluate the 

performance of GBNN and realize a real-time MLC suggestion system.    
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Chapter 4 

Prediction of the Surrounding Vehicles’ 
Discretionary Lane Changing Intention 
at Freeway: A Gated Recurrent Units 
Approach 

4.1 Citation and Main Contributor 

Yangliu Dou, Yihao Fang, Chuan Hu, Rong Zheng, Fengjun Yan, “Prediction of 

Surrounding Vehicle’s Discretionary Lane Changing Intention at freeway: A Gated 

Recurrent Units Approach.” IET Intelligent Transport Systems. (Submitted) 

The main contributor to this paper is the first author - Yangliu Dou (contributes more 

than 70%). 

4.2 Abstract 

Predicting a surrounding vehicle’s intention early and accurately can help avoid 

potential congestions and accidents and improve driving safety and efficiency in 

advanced driver assistance systems (ADAS) and autonomous driving. We propose a 

recurrent neural network (RNN)-based time series classifier with a gated recurrent unit 

(GRU) to predict and classify the surrounding vehicles’ discretionary lane changing 

intention in advance and provide an early notification to the ego-vehicle for driving 

assistance. The algorithm has been evaluated using the real-world datasets of U.S. 

Highway 101 and Interstate 80 from the Federal Highway Administration’s Next 

Generation Simulation (NGSIM). The proposed algorithm outperforms classical 
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algorithms such as the long short-term memory (LSTM) and hidden Markov model 

(HMM). Results reveal that the proposed algorithm can predict the surrounding vehicles’ 

lane changing maneuver 0.8 s in advance at a recall and precision of 99.5% and 98.7%, 

respectively. Furthermore, the model can predict the lane changing intention 1.6 s in 

advance with a recall of 92.2%. The method presented in this study can be used for 

ADAS and autonomous driving that promises high traffic safety and effective traffic 

management. 

4.3 Introduction 

Prediction of the surrounding vehicles’ intention is an essential building block for 

advanced driver assistance systems (ADAS) [1-3] and autonomous vehicles [4-6] due 

to its importance in driving safety. There are three fundamental maneuvers in traffic 

control [7]: Mandatory lane changing (MLC), Discretionary lane changing (DLC) and 

Car following. Car following is relatively simpler than lane changing since it involves 

only one-dimensional motion. To predict the surrounding vehicle’s intention, DLC 

plays a more important role because MLC always happens at the on-ramp or exit-ramp 

of a freeway where vehicles have a high possibility of lane changing. Therefore, drivers 

near the ramp have more awareness to the MLC behaviour of vehicles in the 

surrounding lanes. In contrast, DLC is more random, unexpected, and prone to accidents. 

For example, if a preceding car in the adjacent lane cuts in suddenly, this unpredictable 

behaviour may cause the subject vehicle to adjust itself accordingly in an abrupt manner, 

resulting in an unexpected deceleration or acceleration that contributes to a high 

possibility of accidents. Therefore, it is valuable to predict the surrounding vehicle’s 

lane changing behaviour in advance. 
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DLC is a binary classification problem, and its performance can be evaluated by a 

confusion matrix [8]. We define lane changing and lane keeping events as positive and 

negative events, respectively. FN (false negatives) and TP (true positives) are the 

numbers of actual lane changing events wrongly and correctly classified as lane keeping 

events and lane changing events, respectively. TN (true negatives) and FP (false 

positives) are the numbers of actual lane keeping events correctly and wrongly 

classified as lane keeping events and lane changing events, respectively. Recall, 

accuracy of lane changing, is defined as equation (4.1); specificity, accuracy of lane 

keeping, is defined as equation (4.2); precision is defined as equation (4.3): 

recall =  
்௉

ிேା
                              (4.1) 

specificity =  
்ே

்ேାி௉
                           (4.2) 

precision =  
்௉

ி௉ା்
                            (4.3) 

 

Recall and precision are trade-offs, and a perfect binary classifier will achieve three 

performance metrics all with a value of 1. For lane changing intention, prediction time 

in advance at a specific recall threshold is another important performance metric. 

Due to the rapid development of artificial intelligent (AI), especially machine learning, 

several recent studies for DLC modeling have been conducted using AI. Aoude et al. 

[8] used a support vector machine (SVM) and a Bayesian filter (BF) to classify agent 

intentions at road intersections, and achieved a recall of 100%, but only has a precision 

at 77%. Kumar et al. [9] also worked with an SVM and BF algorithm. They developed 

a modified model for lane changing intention prediction and achieved a 1.3 s in advance 

prediction for lane changing events at a recall and precision of 100% and 72%, 

respectively. Park et al. [10] constructed a joint probability distribution of DLC in speed 
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difference and density difference domains and applied logistic regression to quantify 

the relations and modelled DLC behaviours under congested traffic. Balal et al. [7] 

proposed a binary DCL model based on fuzzy inferences and reported an 82.2% 

accuracy in predicting lane changes. Tang et al. [11] also presented an adaptive fuzzy 

neural network and predicted the intention of lane changing successfully. DLC 

behaviour is a time series problem in nature rather than an instantaneous event. So, it is 

better to use a pure time series algorithm to handle the DLC problem [9]. 

To handle time series, the hidden Markov model (HMM) and recurrent neural network 

(RNN), two typical machine learning algorithms, have been applied. Li et al. [10] 

combined HMM and BF to recognize lane changing intention, and achieved a high 

recognition recall of 93.5% and 90.3% for right and left lane changing, respectively 

[11]. Although HMMs can capture strong discriminative features, RNN has displayed 

a slightly better overall performance for making earlier decisions [12]. RNNs were 

increasingly being used due to its advantages for successfully handling time series data, 

but a basic RNN suffered from the vanishing/exploding gradient problem [13]. To 

overcome this problem, the long short-term memory (LSTM) variant has been 

developed and widely adopted. Zhao et. al.[14] used LSTM to forecast the short-term 

traffic flow successfully. Zyner et. al. [15] applied LSTM to predict a driver’s intention 

as the vehicle entered an intersection with the position and velocity obtained from the 

sensor of the ego-vehicle. Olabiyi et al.[16] reported a deep RNN algorithm based on 

camera data and predicted the lane changing maneuvers, acceleration, braking, and 

other essential behaviours. All these works have achieved good results and 

demonstrated RNN’s promising applications in driver’s behaviour modeling.  

Recently, a simplified but effective modification of LSTM, named gated recurrent units 

(GRU), has been proposed [17]. As it decreases the computational cost, GRU is more 

suitable for in-vehicle applications. To accurately, computationally, and efficiently 
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model the DLC maneuver of surrounding vehicles in advance, we proposed a GRU-

based time series classifier and investigated the performance of the optimization, aiming 

at an early prediction to assist driving maneuvers.  

Our envisioned system uses camera and radar to obtain the information of surrounding 

vehicles in real time. It will provide in-advance warnings for predicting the dangerous 

behaviours of the surrounding vehicles. This in-advance warning is dependent on the 

value of recall that a driver or autonomous vehicle wants. The driver or autonomous 

vehicle specifies a recall value (threshold) for different scenarios, and a corresponding 

in-advance warning will be calculated and presented by the proposed algorithm. This 

algorithm is suitable to simultaneously meet different drivers’ demands and 

autonomous driving’s criteria.  

The main contributions are three-fold: (1) a novel GRU-based time series classifier for 

modeling DLC maneuver is proposed; (2) an early and reliable prediction of 

surrounding vehicles’ DLC behaviour is provided, which helps improve the driving 

safety and efficiency of ADAS; (3) the proposed method is lightweight in prediction 

and can be applied in ADAS or autonomous vehicles in real-time applications. 

The remainder of this paper is organized as follows. Section 4.4 describes the datasets 

and the detailed methodology. Section 4.5 provides the results and discussion. Section 

4.6 draws conclusions and discusses future applications. 

4.4 Datasets and Methodology  

The real-world datasets of U.S. Highway 101 (US 101) and Interstate 80 (I-80) are 

obtained from the Federal Highway Administration’s Next Generation Simulation 

(NGSIM) program [18]. The NGSIM datasets are open-source and have been widely 

used in academic and industry research [19-21]. Therefore, they are used to model the 
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DLC behaviour in this work. A total of 45 minutes of trajectory data for vehicles is 

collected on US 101 in Los Angeles and on I-80 in the San Francisco Bay area, 

respectively, using synchronized digital video cameras at 10 Hz. The US 101 dataset is 

segmented into three 15-minute periods: 7:50 a.m. to 8:05 a.m.; 8:05 a.m. to 8:20 a.m.; 

and 8:20 a.m. to 8:35 a.m. on June 15th, 2005.The I-80 dataset is also segmented into 

three 15-minute periods: 4:00 p.m. to 4:15 p.m.; 5:00 p.m. to 5:15 p.m.; and 5:15 p.m. 

to 5:30 p.m. on April 13th, 2005. 

The schematic of study areas and a scenario of DLC behaviours are shown in Figure 

4.1(a). Generally, when a subject vehicle (the center blue vehicle) tries to change lanes 

from the original lane to the target lane (left or right lane), assessment of its surrounding 

driving environment, such as the status of the preceding and following vehicles both in 

the original lane and target lane as well as its own information, is a necessity.  

 

Figure 4.1 Schematic of study area for (a) US-101 and (b) I-80. 

In Figure 4.1(a), a DLC scenario is defined: centre blue - subject vehicle; right green - 

preceding vehicle in original lane; left green - following vehicle in original lane; right 

red - preceding vehicle in left lane; left red - following vehicle in left lane; right dark 

blue - preceding vehicle in right lane; left dark blue - following vehicle in right lane. 
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Six symbols, lead, lag, lead_l, lag_l, lead_r, and lag_r are introduced to represent six 

categories for the surrounding vehicles (the preceding vehicle in the original lane, the 

following vehicle in the original lane, the preceding vehicle in the left lane, the 

following vehicle in the left lane, the preceding vehicle in the right lane, and the 

following vehicle in the right lane). Each category of vehicle is characterized by the gap, 

relative velocity, and relative acceleration from the surrounding vehicles with regards 

to the subject vehicle. The gap is defined as the distance of two successive vehicles.  

The vehicles’ trajectory data are processed based on the following rules [7, 22]. The 

statistical data from the US-101 0750 dataset (07:50 a.m. to 08:05 a.m.) are shown 

below as an example: 

1) Only passenger cars are selected for study. The reason is two-fold: the numbers of 

motorcycles and trucks are much less than that of passenger cars; the lane changing 

characteristics of motorcycles and trucks are very different than that of passenger 

cars. There are 30 motorcycles, 53 trucks, and 2086 passenger cars, respectively. 

2) Only the subject cars that originally travelled in lane 1, 2, 3, and 4 are selected. This 

is because the lane changing behaviours of cars in lane 5 and 6 have a large 

possibility of MLC. Therefore, the number of researched cars is reduced to 1553. 

3) Those making multiple lane changes or those changing back to the original lane are 

dropped. To be consistent with traffic simulation models, a lane change is defined 

as the act of changing from one lane to the lane immediately next to it. The 

behaviour of multiple lane changing is different from a normal DLC. After this 

procedure, the number of remaining cars is 1461. 

4) The cars are classified into two categories: lane changing and lane keeping. The 

corresponding numbers are 204 and 1257, respectively. 

5) The data from the lateral and longitudinal position is smoothed with the moving 

average filter, and the velocity and acceleration data are recalculated by the 
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differential method. The original position data provided by NGSIM has noise due 

to the extracting algorithm from the camera video [21]. The moving average filter 

operates by averaging a number of points from the input signal to produce each 

point in the output signal, and is implemented by: 

 

𝑌[𝑖] =
ଵ

ெ
∑ 𝑋[𝑖 + 𝑗]

(ெିଵ)/ଶ
௝ୀି(ெିଵ)/ଶ                   (4.4) 

Where 𝑋[ ] is the input signal,  𝑌[ ] the output signal, and M is required to be an 

odd number, representing the average number of points. We vary the M value to 

investigate the different smoothing effects. 

6) The information of surrounding vehicles is collected, and the input features for the 

DLC algorithm are generated. The original trajectory data provided by NGSIM 

only includes the identity numbers of the preceding and following vehicles. Python 

with the Pandas data analysis library is used to collect the information of the 

surrounding vehicles (gap, velocity, and acceleration relative to the subject vehicle). 

The data required for the DLC algorithm includes one label (0 and 1 denotes lane 

keeping and lane changing, respectively), car identity number, and 23 input features, 

which are shown in Table 4.1.  

7) The trajectories are truncated to a uniform segment of six seconds ending at the 

time when the vehicle crosses the lane boundary (the data point at this time is 

defined as the ground truth point). This is because those six seconds are sufficient 

to include normal DLC behaviour according to our analysis in section 4.5. A total 

of 1443 effective vehicles are identified. Of the researched vehicles, 186 are 

classified as lane changing and 1257 as lane keeping. Table 4.2 lists the statistical 

information of all six datasets in this work. 
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Table 4.1 Input features extracted from NGSIM for modeling DLC behaviour 

No. Description 

1 time in unit of 100 ms 

2 Longitudinal position of subject vehicle 

3 
deviation of lateral position respect to the center line 

of the lane 

4 velocity of subject vehicle 

5 acceleration of subject vehicle 

6-8 
gap, velocity, and acceleration of preceding vehicle 

relative to the subject vehicle 

9-11 
gap, velocity, and acceleration of following vehicle 

relative to the subject vehicle 

12-17 
gap, velocity, and acceleration of preceding / 

following vehicle in left lane relative to the subject 
vehicle 

18-23 
gap, velocity, and acceleration of preceding / 

following vehicle in right lane relative to the subject 
vehicle 

 

 

Table 4.2 Statistics of effective trajectories of passenger cars according to the 

processing rules for US-101 and I-80 datasets. keep - lane keeping (no lane change);  

left- left lane changing; right - right lane changing 

  US-101 I-80 
total 

  0750 0805 0820 0400 0500 0515 

keep 1257 1245 1166 963 899 869 6399 

left 109 94 103 93 84 67 550 

right 77 66 39 31 15 18 246 

total 1443 1405 1308 1087 998 954 7195 
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(a) 

  

 (b) 

Figure 4.2 Time series classifier based on GRU cell: (a) structure of classifier; (b) 

structure of GRU cell. 

 

A GRU-based time series classifier is trained to predict the intention of the surrounding 

vehicles’ maneuvers. The structure of the classifier is shown in Figure 4.2(a), where xi 

(i=0, 1, 2, … t) is the input vector, and hi (i=0, 1, 2, … t) is the hidden state of a cell, 

which is a function of the input at that time and its state at the previous time step: ℎ௧ =

𝑓(ℎ௧ିଵ, 𝑥௧). The hidden state of the last time step is connected to a fully-connected (FC) 

layer, followed by a softmax layer. o1 and o2 are final output class labels, indicating lane 

keeping and lane changing behaviours, respectively. Subsequently, we merge left lane 

changing and right lane changing to a lane changing class, since their features are 

similar in our dataset [22]. GRU is a variant of LSTM [17]. It retains the LSTM's 
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advantages, such as its resistance to the vanishing/exploding gradient problem, but its 

internal structure is simpler than LSTM. Therefore, GRU is faster to train and validate 

than LSTM. Researchers also found that the simplification of GRU’s architecture 

provides better performance over LSTM [23]. A GRU cell contains an update gate (𝑧௧) 

and a reset gate (𝑟௧) as illustrated in Figure 4.2(b), and their rules are shown in equation 

(4.5) - (4.7): 

𝑧௧ = sigmoid(𝑊௭[ℎ௧ିଵ, 𝑥௧] + 𝑏௭)                     (4.5) 

𝑟௧ = sigmoid(𝑊௥[ℎ௧ିଵ, 𝑥௧] + 𝑏௥)                     (4.6) 

ℎ௧ = (1 − 𝑧௧)⨂ℎ௧ିଵ+𝑧௧⨂tanh(𝑊௛[ℎ௧ିଵ⨂𝑟௧, 𝑥௧] + 𝑏௛)         (4.7) 

Where 𝑊௭, 𝑊௥, and 𝑊௛  are the weight matrices for the update gate, reset gate and 

hidden state, respectively; 𝑏௭, 𝑏௥, and 𝑏௛ are the bias vectors of the update gate, reset 

gate and hidden state, respectively; ⨂ is the element-wise multiplication operator; 

sigmoid and tanh are activation functions. 

The main purpose of our proposed algorithm is to predict the surrounding vehicles’ lane 

changing intention in advance. We merged all the lane changing cars in US-101 and I-

80 to generate an entire lane changing dataset, and then chose the same number of cars 

from lane keeping category to form a complete lane keeping dataset. The datasets are 

set to have the same number for balance. Each car instance includes 60-time steps at an 

interval of 0.1 s, and each time step includes 23 features as shown in Table 4.1. 80% of 

the data is randomly chosen as the training set and the remaining 20% as the test set. 

The distribution of lane changing cars and lane keeping cars is kept at a 1:1 ratio for 

both the training set and test set. At the training stage, six-second trajectories are used. 

At the test stage, the characteristics of early prediction are investigated by the following 

procedures: 
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a) Within a six-second trajectory, a three-second segment is chosen for testing, and the 

corresponding prediction accuracy of the lane changing event is evaluated. 

b) First, we choose the segment of the last three seconds as the input sequence for the 

proposed model and evaluated the recall (accuracy of lane changing). Because this 

segment includes the ground truth point, the recall can be equal to or close to 100%. 

c) Then, we keep the three second duration and shift this segment backwards tback 

seconds before the ground truth point and recalculate the recall. Different tback have 

different recall values. 

d) Repeat step c), and vary the tback among (0.2, 0.4, … 2). Figures of recall vs. tback are 

plotted. A threshold of the recall is specified, and then a prediction time in advance 

can be determined. For example, the first decreasing point where the recall drops 

below 100% can be regarded as the threshold point, and then the corresponding tback 

is denoted as the prediction time in advance. 

 

The algorithm is implemented with Python and the TensorFlow framework. Pandas, 

Numpy, and Matplotlib are used for file and data manipulation, array operation, and 

visualization. 

4.5 Results and Discussion 

The visualization and effect of the moving average filter are investigated. After applying 

the data processing rules mentioned in the previous section, there are a total of 7195 

effective trajectories left for algorithm development. To visualize the details of these 

trajectories and investigate the effect of the moving average filter, results from the US-

101 0750 dataset are shown in Figure 4.3. All the trajectories of the passenger cars for 

left lane changing and right lane changing are illustrated in Figure 4.3(a), and the 

numbers are 109 and 77, respectively. For clear visualization of the whole process, the 
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observation window is extended from 6 s to 20 s, including two 10 s segments before 

and after the ground truth point. The positions of the crossed lane boundaries are shifted 

to 0 for all trajectories.  

 

As shown in Figure 4.3(a), six seconds before the ground truth point is sufficient for 

capturing the DLC behaviour, and most DLC cars cross the line boundary within three 

seconds. As literature mentioned [7, 21, 22], the original trajectory data provided by the 

NGSIM have noise due to the difficulties of extracting accurate data from high-mounted 

video cameras. We analyzed the NGSIM data and found that an upper limit for the 

absolute value of acceleration was set at 11.2 feet/s2 to ensure the practical acceleration 

of the vehicle is within the physical constraint. Acceleration is the differential of velocity 

which can be recalculated from the velocity data provided by the original NGSIM data.  

 

The recovered acceleration for trajectory no. 64 is shown in Figure 4.3(b). There are four 

truncations between the 0 to 10 s segments. This acceleration difference indicates that 

the noise of position and velocity data in the original NGSIM remain even when the 

acceleration truncations are carried out. To eliminate this noise, a moving average filter 

is used to filter x and y position data until the derived acceleration data are within ±11.2 

feet/s2. Through varying the M parameter, the velocity and acceleration from y are 

calculated based on the filtered position data.  

 

Figure 4.3(c) shows three typical trajectories before and after smoothing. The x-axis is 

the longitudinal position (y) and the y-axis is the lateral position (x), illustrating the real 

scenarios on US-101 highway. These three trajectories are obtained from vehicle no. 64 

(left changing from lane 3 to lane 2), no. 125 (right changing from lane 3 to lane 4), and 

no. 5 (lane keeping and staying in lane 4). Figure 4.3(d) compares the lateral position of 

the no. 64 trajectory under different M values. The trajectory becomes smoother with the 
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increase of the M value. Figure 4.3(e) and (f) show the velocity and acceleration curves 

according to different M values, respectively. The original velocity data provided by 

NGSIM has sharp changes, which leads to high peaks or valleys in acceleration. From 

Figure 4.3(f), we can see that the filter with the M value of 11 still exceeds the physical 

constraints of 11.2 feet/s2 and the one with the M value of 19 is the best when only 

considering the smoothing effect, but it filters out too much information.  

  
 

Figure 4.3 Typical trajectories of passenger cars in the NGSIM US-101 dataset (07:50 

a.m. to 08:05 a.m.). (a) trajectories of left lane changing and right lane changing, and the 

positions of the crossed lane boundaries are shifted to 0 for all trajectories. (b) 

comparison of acceleration data provided in NGSIM, which are truncated at ±11.2 feet/s2, 

and those calculated from the differential of velocity data provided in NGSIM (trajectory 

no. 64). (c) three trajectories before and after moving average filter for left lane changing 

(trajectory no. 64), right lane changing (trajectory no. 125), and lane keeping (trajectory 
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no. 5). (d) comparison of lateral positions (trajectory no. 64) for different values of filter 

parameter M. (e) comparison of velocity (trajectory no. 64) for different values of filter 

parameter M. (f) comparison of acceleration (trajectory no. 64) for different values of 

filter parameter M. 

 

Therefore, the M parameter of the moving average filter is chosen at 15 to reach the 

optimal smoothness. Because no. 64 trajectory is a representative noise case in the 

NGSIM dataset, the M value of 15 is used for all the dataset in this work.  

 

Figure 4.4 Comparison of training loss vs. the number of epochs between GRU and 

LSTM classifier. (The smaller loss, the better performance). 

 

We train the GRU-based time series classifier with the training set, and then evaluate 

the prediction recall using the test set. During training, the training loss is calculated by 

the cross-entropy function and minimized by an optimizer named adaptive moment 

estimation (Adam) [24]. Both the GRU and LSTM algorithms are developed by 

Tensorflow. Figure 4.4 shows the comparison of training loss vs. the number of epochs 

between GRU and LSTM. The numbers of neurons are the same and are set at 128. The 
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loss decreases quickly due to the advantage of Adam, and after 20 epochs, it becomes 

stable and stays near zero. As shown in Figure 4.4, both GRU and LSTM show good 

convergence, but GRU turns out to be slightly better than LSTM. 

 

 
Figure 4.5 Comparison of recall vs. tback among GRU, LSTM, and HMM algorithms. 

 

We investigate the recall vs. tback, and the results for GRU, LSTM, and HMM are 

compared in Figure 4.5. HMM is implemented with MATLAB. The number of neurons 

for both GRU and LSTM are set at 128. When the tback equals zero, which denotes that 

the segment used for test includes the ground truth point, the prediction accuracy can 

reach 100% if the model captures the fact that the car actually crosses the lane boundary. 

For the GRU classifier, the recall of the first four points are 100%. Subsequently, the 

recall begins to decrease with the value of 99.5% and 98.2% for the 5th and 6th points, 

respectively. If we choose 99.5% as the threshold of recall, the proposed algorithm can 

predict the surrounding vehicles’ lane changing behaviour 0.8 s in advance at the recall 

of 99.5%.  
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The LSTM and HMM classifiers present with lower recall at a maximum value of 95.4 % 

and 95.0 %, respectively. The GRU outperforms LSTM at all tback, but HMM turns out 

to have a good performance at a large tback. By taking both larger tback and higher recall 

into consideration, GRU provides the best performance among these three algorithms. 

 

 

Figure 4.6 Determination of prediction time in advance by different threshold of 

recall. 

 

Figure 4.6 provides a lookup graph for the determination of prediction time in advance 

from different threshold selections. For example, if we choose a threshold recall value 

of 92.2%, the proposed system can provide a prediction 1.6 s in advance of the 

surrounding vehicles’ lane changing behaviour. In ADAS or autonomous vehicle 

applications, the corresponding prediction time in advance can be determined and 

adjusted by the specified threshold values of recall. Therefore, this model is able to suit 

the need of different drivers with their individual preferences or in various driving 

situations of autonomous vehicles and offers an early notification and assistance. 
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In order to optimize the performance of the GRU-based classifier, the neurons of each 

FC network within a GRU cell, refer to Figure 4.2, is adjusted among 32, 64, 128, 256, 

and 512 to investigate its effects. The prediction recall vs. tback is shown in Figure 4.7. 

 

Figure 4.7 Prediction recall vs. tback, varying the number of neurons as 32, 64, 128, 

256 and 512. 

 

The GRU classifier with 128 neurons demonstrates the best performance. As can be 

seen from the graph, both neurons with fewer and larger numbers have lower recall 

values. Having too few neurons cannot effectively represent the nonlinear relationship 

between input features and output labels; while too many neurons would easily lead to 

overfitting due to more model variables and a larger model size. Therefore, 128 is 

chosen as the optimal value of our proposed algorithm. 

Besides recall, precision is another performance metric which always needs to be given 

for binary classifiers. Recall and precision are often combined into a single metric called 

F1 score, which is the harmonic mean of recall and precision to provide a simple way to 

compare two classifiers. Table 4.3 compares the recall, precision, and F1 score of GRU, 

LSTM, and HMM based classifiers.  
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Both the GRU and LSTM use 128 neurons in gates and the values are calculated at tback 

of 0.8 s. According to the Table 4.3, the proposed GRU-based classifier offers the best 

performance. 

 

 Table 4.3 Recall, precision, and F1 score for GRU, LSTM, and HMM based 

classifiers 

  Recall Precision F1 Score 

GRU 99.50% 98.70% 99.10% 

LSTM 91.70% 98.00% 94.80% 

HMM 83.80% 82.70% 83.20% 

 
 

 
Figure 4.8 Model size vs. number of neurons. 

 

Figure 4.8 compares the model size of GRU and LSTM for different numbers of neurons. 

As can be seen in the graph, the model size of the GRU is smaller than that of LSTM at 

all the different neuron numbers. To be specific, the numerical model sizes at the 

neurons of 32, 64, 128, 256, and 512 for GRU and LSTM are 57.2, 188.2, 671.3, 2463, 

and 9534 kB and 76.1, 250.4, 894, 3282, and 12708 kB, respectively. The former is 
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about 3/4 of the latter. The reason GRU has smaller model sizes is that its structure is 

simpler than LSTM. GRU has three weight matrices as shown in Figure 4.2, while 

LSTM has four. The rate of the number of weight matrices is exactly the same as the 

rate of their model sizes. The rate of their model sizes is in proportion to the rate of the 

number of weight matrices. This means that the model size is mainly dominated by the 

number of weight matrices, whose size is affected by the number of neurons. 

Additionally, the curves in Figure 4.8 show an excellent linearity. We use a log2, and 

log10 scale for the x-axis and y-axis, respectively. Linear regression method is used to 

evaluate the linearity. Both GRU and LSTM turn out a R-square value of 0.99945.The 

intercepts of GRU and LSTM are -1.04649 and -0.92371, respectively; while the slope 

for GRU and LSTM are 0.55606 and 0.55629, respectively. The linearity means that 

the model size has exponential growth with the number of neurons. This relation can be 

described by 𝑦 = 𝑎 ∙ 𝑥௕, where lna is the intercept at when the x value is 1, and 0.3b is 

the slope of the curve. Model size is an important characteristic of algorithms, especially 

for embedded systems or mobile platforms. From this viewpoint, GRU is more suitable 

for in-vehicle applications than LSTM. 

4.6 Conclusions 

In this paper, a GRU-based time series classifier is proposed to predict the surrounding 

vehicles’ behaviour and provides the prediction time in advance if lane changing is 

about to occur. The number of neurons is investigated for optimizing the algorithm. 

LSTM and HMM are also studied for comparison. Results indicate that the proposed 

algorithm can predict the subject vehicle’s lane changing maneuver 0.8 s in advance 

with a prediction recall of 99.5%, or 1.6 s at a recall of 92.2%, before it actually crosses 

the lane boundary. The threshold of recall can be specified by the driver assistance 

systems or autonomous vehicles as a vital input parameter. This early notification of the 



Ph.D. Thesis – Yangliu Dou;            McMaster University – Mechanical Engineering 

91 

 

surrounding vehicles’ DLC behaviour is beneficial for drivers to take actions 

beforehand and will improve the safety and efficiency of driving on freeways. The 

envisioned driving assistant system based on the proposed algorithm shows promising 

applications for ADAS and autonomous vehicles.  
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Chapter 5 

Strategic Car-Following Gap Model 
Considering the Effect of Cut-ins from 
Adjacent Lanes 
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5.3 Abstract 

Drivers are typically faced with two competing challenges when following a preceding 

vehicle: they need to leave sufficient space in front to ensure safety, while doing so,  

the probability of cut-ins by other vehicles increases as the car-following gap becomes 

large. Therefore, a strategic car-following gap that addresses both challenges becomes 

critical. This paper proposes a method to address the problem through an overall 

objective function of the car-following gap and velocity considering the safety hazard 

and the probability of cut-ins by other vehicles. Based on this, seeking the strategic car-
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following gap translates to finding the optimal solution that minimizes the overall 

objective function. With the support of field data, the method along with concrete 

models are instantiated and application of the method is elaborated. The method 

presented in this paper can be used to enhance traffic safety and improve traffic 

management in a connected vehicle environment that promises cooperative adaptive 

cruise control and cooperative crash avoidance systems. 

5.4 Introduction 

Recent developments of connected vehicle technologies such as vehicle-to-vehicle 

communication, in-vehicle computing, and on-board sensors, cooperative adaptive 

cruise control systems, cooperative collision avoidance systems, and lane-departure 

warning systems have led to extensive exploration of driver assistance systems. 

Adaptive cruise control (ACC), an important component of driver assistance systems, 

has been widely implemented in modern vehicles [1-3]. ACC adjusts vehicle speed to 

maintain a safe gap from vehicles ahead, and such control is imposed based on 

sensor information from on-board sensors only. Taking a step further, Cooperative 

Adaptive Cruise Control (CACC) extends the concept of ACC by means of cooperation 

between the vehicles in car following. As connected vehicle technology rolls out and 

vehicles are enabled to communicate with each other, CACC has emerged as a new 

direction [4-7]. In addition, the technology can further be used on automated vehicles 

in the longitudinal direction by using information gathered from infrastructure such as 

satellites, roadside equipment (RSE), and on-board equipment (OBE).  

While ACC and CACC seem to have addressed safety gaps in car following, their 

smooth and reliable performance can frequently be interrupted by cut-in vehicles from 

adjacent lanes. Consequently, the subject vehicle has to adjust itself accordingly in an 

abrupt manner, resulting in unnecessary deceleration and acceleration that contribute to 
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not only wasted fuel and emissions but also traffic waves [8-11] which further worsen 

the situation. As such, the control in the longitudinal direction has to be considered in 

conjunction with cut-ins from the lateral direction. Therefore, the objective of this 

research is to understand and model strategic car-following gaps that ensure safety 

distances in the longitudinal direction and, meanwhile, minimize the probability of cut-

ins from the lateral direction. If successful, the research can be a vitally important input 

to advance the design of driver assistance systems, promoting smooth traffic flow with 

increased safety and reduced fuel consumption and emissions.  

This paper is organized as follows. Section 5.5 reviews the state-of-the-art of car-

following models, by which research gap is identified in its context. In Section 5.6, an 

overall objective function is set up which incorporates the safety hazard faced by a 

driver and the probability of cut-ins by adjacent vehicles. In this way, the formulation 

not only considers the effect of a preceding vehicle, but also incorporates the impact of 

potential cut-ins. Hence, optimizing the objective function translates to seeking a 

strategic gap that addresses both challenges in the longitudinal and the lateral directions. 

In Section 5.7, based on a set of empirical car-following data, the parameters in the car-

following model are obtained though minimizing the overall objective function. Section 

5.8 offers further discussion on model verification and application. In the last section, 

conclusions are drawn and contributions are clarified. 

5.5 Review of Car-Following Models 

Typically, underlying ACC and CACC systems are car-following models. Over more 

than half a century, there has been rich literature on this subject [12-18]. The goal of a 

car-following model is to use mathematical language to capture a driver’s longitudinal 

control behaviour for a variety of purposes such as automatic control and traffic 

simulation. Modeling of this nature is difficult because driver’s control strategies are 
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not only complicated but also unobservable. Hence, many approaches have been 

explored to externalize driver’s implicit strategies complemented by observable 

phenomena. 

Car-following models are usually described by differential equations considering the 

vehicles’ dynamic variables, such as position, velocity and acceleration in response to 

inputs such as external stimuli and driver properties. The goal is to adapt the subject 

vehicle’s speed and acceleration to maintain a safe distance behind the preceding 

vehicles [19]. For example, Reuschel [20] and Pipes [21] developed car-following 

models to describe a specific safety rule coded in the California Drivers’ Manual. 

Subsequently, mathematical methods were gradually adopted all over the world for the 

development of driver models. Li proposed a car-following model based on the effect 

of the visual angle under the non-lane-discipline environment, which captures the 

impacts from the visual angle of the driver between the following vehicle and the 

preceding vehicle as well as its change rate on a road without lane discipline [22]. The 

systematic effort on car-following models was carried out at the General Motors 

Research Laboratory, known as the Gazis-Herman-Rohery (GHR) model [1, 23]. 

According to Brackstone and McDonald [20], the car-following model can be 

distinguished as follows: Gazis-Herman-Rothery (GHR) model, safety-distance or 

collision avoidance models, Linear (Helly) models, Psychophysical or action point 

models, and Fuzzy logic-based models. The GHR model is based on an intuitive 

hypothesis that a driver’s acceleration is proportional to velocity difference. It is a 

stimulus-response type car-following model and intends to find a proper acceleration 

according to different driving characteristics between two vehicles. Different from the 

GHR model, the safety-distance model seeks to specify a safe following distance, which 

is the minimum distance such that a collision would be avoidable if the driver of the 

vehicle ahead were to act “unpredictably” [24]. The Linear model, proposed by Helly, 
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includes additional terms for the adaptation of the acceleration according to whether or 

not the vehicles in front are braking [2]. The psycho-spacing models are based on 

theories of perceptual psychology and they describe the vehicles in a relative speed 

versus a relative distance plane. These thresholds delineate a relative speed-spacing 

plane in which the driver of a following vehicle does not respond to any change in 

dynamic conditions [5, 25, 26]. Fuzzy logic modeling represents the next logical step 

in attempting to accurately describe driver behaviour. Such models typically divide their 

inputs into a number of overlapping “fuzzy sets” and each one describes how adequate 

a variable is [27].  

With the above understanding, research gaps were identified in two ways. First, the 

above models were proposed mainly for the purpose of traffic simulation. In traffic 

simulation, the primary goal is to mimic the behaviour of real world drivers who are 

typically not perfect. As such, the model somehow needs to reflect such imperfection 

to be realistic. Therefore, it is unfit to use in advanced driving assistance systems that 

seek a “perfect” driver model that operates the vehicle in an “ideal” way to achieve both 

safety and efficiency gains. This research fills this gap by proposing the strategic car-

following gap model that is specifically formulated with application in advanced driving 

assistance systems in mind. Second, existing models mainly focus on keeping safety 

distance in the longitudinal direction, while in reality longitudinal operation is 

frequently affected by lateral motions such as lane changing and cut-ins [28, 29]. As a 

matter of fact, some studies have verified that a driver’s perception of risk is affected 

by multiple vehicles in front [30-32], so it is significant to consider the effect of vehicles 

cutting-in from adjacent lanes. More specifically, the subject driver is typically faced 

with a dilemma when following a preceding vehicle on a highway: leaving a sufficient 

car-following gap poses an opportunity for other vehicles to cut in, while shortening the 

gap increases the likelihood of running into a crash. Therefore, it is critical for the same 
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car-following gap, henceforth called the strategic car-following gap, to serve two 

competing goals: ensuring safety in the longitudinal direction and avoiding cut-ins from 

the lateral direction.  

In order to consider both of the effects from the longitudinal direction and lateral 

direction, the proposed strategic car-following gap model fills this research gap as well 

by taking the safety hazard and the probability of cut-ins as a function of the car-

following gap and velocity, respectively. Subsequently, an objective function is 

constructed as the weighted sum of both functions and the optimal gap is obtained by 

finding the solution to that overall objective function. 

5.6 The Strategic Car-Following Gap Model 

We shall now direct our attention to the formulation of the strategic car-following gap 

model. Such a model should be functional under different speeds and be sensitive to 

cut-ins by vehicles from adjacent lanes. 

5.6.1 Problem Formulation 

To help weigh the two competing goals (ensuring safety and avoiding cut-ins), the 

proposed methodology translates each goal into a function of the car-following gap. 

One function, named the hazard index (HI), represents the safety hazard faced by a 

subject driver, which is the probability of rear end collision without cut-ins. The other 

function, called the cut-in probability (CIP), reflects the likelihood of cut-ins by 

surrounding vehicles. Then, an overall objective function is constructed as the weighted 

sum of both functions. Therefore, seeking the strategic car-following gap is equivalent 

to finding the optimal solution of the overall objective function. 
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Figure 5.1 Steady-state car-following with potential cut-in vehicle. 

 

To facilitate model formulation, Figure 5.1 illustrates a scene of car following where 

the subject vehicle 𝑖 is following another vehicle 𝑗 in the inner lane, while a third 

vehicle 𝑘 in the adjacent lane is seeking opportunity to cut in. Based on this scene, all 

the variables used in the paper are defined in Table 5.1. 

 

Table 5.1  Nomenclature 

𝑥̈௜(km/h2) longitudinal acceleration of vehicle i 

𝑥̈௝(km/h2) longitudinal acceleration of vehicle j 

𝑥̇௜(km/h) velocity of vehicle i 

𝑥̇௝(km/h) velocity of vehicle j 

𝑑௜௝(m) car-following gap between vehicles i and j 

𝑎(m) scale parameter in Weibull distribution 
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𝑏(m) shape parameter in Weibull distribution 

THW(s) time headway between vehicles 𝑖 and 𝑗   

𝑎ே஼ூ(m) scale parameter of the model without cut-ins 

𝑎஼ூ(m) scale parameter of the model with cut-ins 

𝑏ே஼ூ(m) shape parameter of the model without cut-ins 

𝑏஼ூ(m) shape parameter of the model with cut-ins 

𝑤(unit) weight of the HI function 

 

To avoid overly complicating the problem, the following analysis is made under steady-

state car-following conditions: 

(1) Vehicles in the target lane are at constant velocities, i.e., 

𝑥̇௜  & 𝑥̇௝ = 𝐶 and 𝑥̈௜ = 𝑥̈௝ = 0 

Where 𝑥̇௜  and 𝑥̇௝  are the velocity of vehicles 𝑖  and 𝑗  respectively. 𝐶  is a 

constant. 𝑥̈௜  and 𝑥̈௝  are longitudinal accelerations of vehicles 𝑖  and 𝑗 , 

respectively. The relative velocity between vehicles 𝑖 and 𝑗 is zero, i.e. 

𝑥̇௜ −  𝑥̇௝ = 0 

(2) All vehicles are at substantial velocities to avoid stop-and-go and crawling 

conditions, i.e., 

𝑥̇௜ & 𝑥̇௝ ≥ 𝐶௠௜௡ 

Where 𝐶௠௜௡  is an arbitrary velocity that represents minimum velocity of 

vehicle in the highway. 
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Under this assumption, the car-following gap 𝑑௜௝ and the velocity of the subject vehicle 

𝑥̇௜  are the only two variables that affect the CIP and HI faced by driver 𝑖. Therefore, 

the HI and CIP can be represented by the functions of both 𝑑௜௝ and 𝑥̇௜, respectively. 

𝐻𝐼 = ℎ൫𝑑௜௝ , 𝑥̇௜൯                              (5.1) 

𝐶𝐼𝑃 = 𝑔(𝑑௜௝, 𝑥̇௜)                             (5.2) 

An overall objective function describing the strategic car-following gap model is 

constructed as shown in equation (5.3): 

ቊ
min   𝑂൫𝑑௜௝ , 𝑥̇௜൯ = (1 − 𝑤) × 𝑔൫𝑑௜௝ , 𝑥̇௜൯ + 𝑤 × ℎ൫𝑑௜௝ , 𝑥̇௜൯ 

𝑠. 𝑡.  0 ≤ d୧୨ ≤ ∞，0 ≤ 𝑥̇௜ ≤ V       
        (5.3) 

Where w is the weight of HI and a larger value of w means heavier weight is given to 

HI. The weight can be adjustable under different scenarios so that this model is able to 

suit the need of different drivers with their individual preferences. As such, seeking the 

strategic car-following gap translates to finding the optimal solution of the overall 

objective function subject to constraints of the car-following gap ( 0 ≤ d୧୨ ≤ ∞ ) and 

vehicle velocity 0 ≤ 𝑥̇௜ ≤ V , where V is the maximum speed. 

 

As illustrated in Figure 5.2, 𝑥̇௜
∗ and 𝑥̇௜

∗∗ are two different velocities of the subject 

vehicle. With a known 𝑥̇௜, the optimal solution is to minimize the objective function. 

Common sense suggests that a long car-following gap translates to a large CIP, while a 

short car-following gap implies a large HI. Therefore, the weighted sum of the two 

terms, i.e., the objective function, is expected to reach its minimum at some point in the 

range of the car-following gap, i.e., at the strategic car-following gap. 
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Figure 5.2 Illustration of the objective function varying with velocity and the car-

following gap. 

 

5.6.2 Model Instantiation 

While the objective function in equation (5.3) and its component functions in equations 

(5.1) and (5.2) are given in generic terms, practical applications call for a strategic car-

following model with specific form. As such, it is necessary to instantiate the above 

model with concrete functions that satisfy the velocity and car-following gap constraints. 

To formulate the specific model and identify its parameters, we base our development 

on examining field data. To avoid interrupting model formulation, the bulk of the field 

data analysis is deferred to the next section with only critical findings being brought 

forth here. In short, Weibull, Gamma, Normal, and Exponential distributions were 

adopted to represent statistical distributions fitted to the data. It turned out that Weibull 

distribution, which is fitted using the Kolmogorov-Smirnov test and the mean square 

error (MSE) methods, achieved the best result and thus was used in model formulation. 

With this, the empirical car-following data was divided into two groups. One group 

contained the car-following gap without cut-ins, while the other with successful cut-ins.  
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A probability density function (PDF) of the car-following gap was fitted for each group, 

from which a cumulative distribution function (CDF) was constructed. The HI faced by 

driver 𝑖 was represented by the opposite probability of the CDF of the car-following 

gap without cut-ins. In addition, the CIP was represented by the CDF of the car-

following gap with successful cut-ins. The empirical car-following data was two-

dimensional (car-following gap 𝑑௜௝  and 𝑥̇௜ ), and the parameters of the model were 

described as functions of 𝑥̇௜.  

The Weibull distribution is mathematically defined by its PDF equation, and its general 

expression has three parameters: 

𝑓൫𝑑௜௝൯ =
௕

௔
(

ௗ೔ೕିఊ

௔
)௕ିଵ𝑒

ି൬
೏೔ೕషം

ೌ
൰

್

                  (5.4) 

               𝑓(𝑥) ≥ 0; 𝑑௜௝ ≥ 𝛾; 𝑏 ≥ 0; 𝑎 ≥ 0; −∞ < 𝛾 < ∞         

Where 𝑏 is the shape parameter, and it is dimensionless. For specific values of 𝑏, 

Weibull distribution converts to other distributions. For example, Weibull distribution 

converts to the exponential distribution when 𝑏 equates 1. Parameter 𝑎 is the scale 

parameter, and has the same unit as 𝑑௜௝. By holding 𝑏 constant, the increase of  𝑎 will 

stretch the PDF curve out. Parameter 𝛾 is the location parameter with the same unit as 

𝑑௜௝. Usually 𝛾 is set to zero. A non-zero 𝛾 shifts the PDF curve horizontally. In the 

car-following case, 𝛾 being zero is expected.  

Therefore, the PDF can be simplified to a two-parameter form. 

𝑓൫𝑑௜௝൯ =
௕

௔
(

ௗ೔ೕ

௔
)௕ିଵ𝑒

ି൬
೏೔ೕ

ೌ
൰

್

                      (5.5) 

 𝑓(𝑥) ≥ 0; 𝑥 ≥ 0; 𝑏 ≥ 0; 𝑎 ≥ 0           

The CDF is obtained by integrating the Weibull PDF as follows: 
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𝐹൫𝑑௜௝൯ = ∫ 𝑓൫𝑑௜௝൯
ௗ೔ೕ

଴
𝑑௜௝ = 1 − 𝑒

ି൬
೏೔ೕ

ೌ
൰

್

                  (5.6) 

Based on our data fitting results, the shape parameter 𝑏 is set to be constant, and the 

scale parameter 𝑎 is a second order function of velocity which is shown in equation 

(5.7). 

𝑎 = 𝛿𝑥̇௜
ଶ + 𝜗𝑥̇௜ + 𝜑                           (5.7) 

Where 𝛿, 𝜗, and 𝜑 are constants. With these results, the CDF of the car-following gap 

without cut-ins, 𝐹ே஼ ൫𝑑௜௝൯ can be formulated as: 

𝐹ே஼ூ൫𝑑௜௝൯ = 1 − 𝑒
ି൬

ௗ೔ೕ

௔ಿ಴಺
൰

್ಿ಴಺

 

Based on which the specific form of HI is formulated as: 

𝐻𝐼 = ℎ൫𝑑௜௝൯ = 1 − 𝐹ே஼ூ൫𝑑௜௝൯ = 𝑒
ି൬

೏೔ೕ

ೌಿ಴಺
൰

್ಿ಴಺

              (5.8) 

In addition, the CDF of the car-following gap with successful cut-ins 𝐹஼ூ൫𝑑௜௝൯ can take 

the form of: 

𝐹஼ூ൫𝑑௜௝൯ = 1 − 𝑒
ି൬

ௗ೔ೕ

௔಴಺
൰

್಴಺

 

Hence, the specific form of CIP is specified as: 

𝐶𝐼𝑃 = 𝑔൫𝑑௜௝൯ = 𝐹஼ூ൫𝑑௜௝൯ = 1 − 𝑒
ି൬

೏೔ೕ

ೌ಴಺
൰

್಴಺

                (5.9) 

Substituting the above formulation of HI and CIP into the objective function in equation 

(5.3), the specific form of the strategic car-following model is obtained: 
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൞
min   𝑂൫𝑑௜௝ , 𝑥̇௜൯ = (1 − 𝑤) ൥1 − 𝑒

ି൬
೏೔ೕ

ೌ಴಺
൰

್಴಺

൩ + 𝑤 ൥𝑒
ି൬

೏೔ೕ

ೌಿ಴಺
൰

್ಿ಴಺

൩  

 𝑠. 𝑡.  0 ≤ d୧୨ ≤ ∞; 0 ≤ 𝑥̇௜ ≤ V        

  (5.10)      

         

5.7 Experiment and Parameters Identification 

A set of car-following data collected in the field are used to support the model 

formulation above and this section presents the data analysis result.  

 

(a) 

 

(b) 

Figure 5.3  (a) Installation of data collection system. (b) Map of experimental route. 
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5.7.1 Data Extraction and Analysis 

This set of naturalistic driving data was recorded during field experiments. The data 

collection system and field experiment setup are shown in Figure 5.3(a). The test vehicle 

was equipped with radars and sensors to collect information including vehicle speed, 

acceleration, accelerator pedal depression, brake pressure. These signals were recorded 

at a frequency of 10 Hz. As shown in Figure 5.3(a), Fourth Ring Road in Beijing is 

selected as a valid experimental road. It is a highway that maintains a minimum of 4 

lanes in each driving direction. The drivers drove from Tsinghua University (point 0) 

and entered Fourth Ring Road (section 1) from Wanquanhe (point 1) to the Xiaocun 

(point 2). Then went back along section 2 and returned to Zhongguancun (point 3). 

Subsequently they arrived at Tsinghua University (point 0).  

This finished the driving route which provided approximately 130 km of valid road data. 

The speed limit of the test road was 80km/h. The experiments in this paper avoid peak 

traffic congestion time and no trucks are involved during our experiment. Experimental 

subjects are 12 non-professional drivers (10 men and 2 women). Their average age is 

37 years old, and the standard deviation is 13 years. Their average driving experience 

is 15 years, with a standard deviation of 11 years. Additional data collection efforts 

were documented in our earlier work as reference in [33]. Then, the recorded 

experimental data were manually transcribed and grouped into two different cases: one 

containing car-following gaps without cut-ins, while the other with successful cut-ins.  

 

Figure 5.4 and Figure 5.5 plot the subject vehicle’s velocity versus car-following gap 

d୧୨ and THW = d୧୨/ẋ୧ , respectively according to the car-following process from the 

experiment data. 
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Figure 5.4 Plots of car-following gap versus subject vehicle’s velocity:  

(a) Without Cut-ins; (b) Successful Cut-ins. 
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Figure 5.5 Plots of THW versus subject vehicle’s velocity:  

(a) Without Cut-ins; (b) Successful Cut-ins. 
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5.7.2 Data Fitting 

The Weibull PDF of the car-following gap was fitted for each group in three steps. First, 

the data were divided into several segments according to 𝑥̇௜. Figure 5.6 illustrates the 

segmentation. Second, the distribution model was fitted to the data in every segment to 

identify the scale and shape parameters. Finally, the scale parameters and the shape 

parameters were fitted by results from all the segments respectively. 

 

 

 

Figure 5.6 The data divided into several segments according to 𝒙̇𝒊. 
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The data fitted results in every segment of both groups are shown in Figure 5.7. In both 

cases, it can be found that lower velocities in general lead to shorter car-following gaps 

for most segments. This matches the actual driving situation since vehicles don’t travel 

far at low velocities during the same reaction time.  

 

 

 

 

Figure 5.7 Plots of PDF curves of fitted distribution model:  

(a) Without Cut-ins; (b) Successful Cut-ins. 



Ph.D. Thesis – Yangliu Dou;            McMaster University – Mechanical Engineering 

113 

 

However, the difference in the two cases is that, at similar velocities, the car-following 

gap is larger in data with successful cut-ins than that without cut-ins. This result can be 

interpreted as, drivers tend to leave relatively large car-following gaps if there is a 

vehicle intending to cut-in, or vehicles successfully cut in because the opportunity to 

cut in exists due to the large gap. Bottom line, a cut-in is an important factor in 

formulating the strategic car-following gap model. 

 

 

 

Figure 5.8 The plots of scale and shape parameters in different segments:  

(a) Without Cut-ins; (b) Successful Cut-ins. 
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The plots of scale and shape parameters in different segments of both groups are shown 

in Figure 5.8. Every parameter was plotted as a function of its segments’ median 

velocity. The variances of shape parameters in the two groups are both small, so they 

can be regarded as constants. The scale parameters of the fitted model are shown in 

equations (5.11) and (5.12).  

Where, 𝑎ே஼ூ is the scale parameter of the model without cut-ins, and 𝑎஼ூ is the scale 

parameter of the model with cut-ins. 𝑏ே஼ூ and 𝑏஼ூ are shape parameters of the models 

without and with cut-ins, respectively, and their values are 3.44709 and 3.027836. 

𝑎ே஼ூ = −0.0033 𝑥̇௜
ଶ + 0.6515 𝑥̇௜ − 0.3184                (5.11) 

𝑎஼ூ = −0.0031 𝑥̇௜
ଶ + 0.6676 𝑥̇௜ + 7.4344                 (5.12) 

5.8 Model Verification and Application 

5.8.1 Model Verification 

To verify our fitted parameters, Figure 5.9 shows how the car-following gap (CFG) 

varies with vehicle velocity. In particular, the figure shows two special CDF curves:  

the bottom one is the 5-th percentile car-following gap and the top is the 95-th percentile. 

It can be seen that, when holding velocity constant, the 95-th percentile car-following 

gap is greater than that of the 5-th percentile and both become larger as the velocity 

increases. In addition, since the CDF is a monotonically increasing function with the 

car-following gap, most data points are bounded between the 5-th and 95-th percentile 

curves, which demonstrates that the constructed mathematical model is able to represent 

the field data well. Additionally, Figure 5.10 provides the PDF curves of the model 

overlaid on top of the field data, allowing direct comparison of the fitted model against 
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the field data. The comparison of PDF in Figure 5.11 reveals that it is of significance to 

construct a car-following gap model considering the effect of a vehicle cutting in from 

adjacent lanes since longer gaps are needed for cut-in vehicles to execute the intended 

maneuverer. Therefore, the strategic car-following gap model can be used as a tool to 

capture the effect of cut-ins and represent features of the field data. 

 

 

Figure 5.9 90% intervals of fitted distribution models and the empirical data:  

(a) Without Cut-ins; (b) Successful Cut-ins. 
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Figure 5.10 Plots of model PDF curves and the empirical data:  

(a) Without Cut-ins; (b) Successful Cut-ins. 
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Figure 5.11 Comparison of the two fitted models:  

(a) Comparison of field distribution models; (b) PDF of velocity at 50 km/h. 

5.8.2 Model Application  

As elaborated in Sections 5.6 and 5.7, the strategic car-following gap model formulated 

above can be used in advanced driver assistance systems to ensure safety in car 

following and minimize cut-ins from adjacent lanes, and thus smoothens traffic and 

reduces traffic waves which in turn saves fuel and lowers emissions.  
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The analysis below provides further details to facilitate the application of the proposed 

model that was formulated in general form in equation (5.3) and in specific form in 

equation  (5.10). Searching for the strategic car-following gap translates to finding the 

optimal solution in equation (5.13), i.e. minimizing the overall objective function with 

a known 𝑥̇௜.  

ቊ
𝑂൫𝑑௜௝

∗൯ = min 𝑂൫𝑑௜௝൯          

𝑠. 𝑡. 0 ≤ 𝑑௜௝ ≤ ∞, 𝑥̇௜ known      
              (5.13) 

Since the objective function is continuous within the constraint of the car-following gap, 

it can be differentiated with respect to 𝑑௜௝:   

డை

డௗ೔ೕ
= (1 − 𝑤) ቀ

௕಴಺

௔಴಺
ቁ ቀ

ௗ೔ೕ

௔಴಺
ቁ

௕಴಺ିଵ

𝑒
ି൬

೏೔ೕ

ೌ಴಺
൰

್಴಺

− 𝑤 ቀ
௕ಿ಴಺

௔ಿ಴಺
ቁ ቀ

ௗ೔ೕ

௔ಿ಴಺
ቁ

௕ಿ಴಺ିଵ

𝑒
ି൬

೏೔ೕ

ೌಿ಴಺
൰

್ಿ಴಺

     

(5.14) 

The strategic car-following gap is found when setting the first derivate of the objective 

function to zero, as in  (5.15): 

(1 − 𝑤) ቀ
௕಴಺

௔಴಺
ቁ ቀ

ௗ೔ೕ

௔಴಺
ቁ

௕಴಺ିଵ

𝑒
ି൬

೏೔ೕ

ೌ಴಺
൰

್಴಺

− 𝑤 ቀ
௕ಿ಴಺

௔ಿ಴಺
ቁ ቀ

ௗ೔ೕ

௔ಿ಴಺
ቁ

௕ಿ಴಺ିଵ

𝑒
ି൬

೏೔ೕ

ೌಿ಴಺
൰

್ಿ಴಺

= 0          

 (5.15) 

Figure 5.12 shows the strategic car-following gap at different velocities with different 

𝑤, and it can be seen that the car-following gap is longer at a higher velocity and, if 

velocity is held constant, with a larger 𝑤 value (i.e., more consideration is given to 

reducing the safety hazard).  
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Therefore, the strategic car-following gap calculated based on the subject vehicle’s 

current velocity can be used to adjust the vehicle’s position in the traffic to achieve safe 

car following while reducing the chance of cut-ins. 

 

Figure 5.12 Plot of the strategic car-following gap at different velocities with different 

𝒘, which is 1/3,7/17,1/2,3/5 and 2/3. 

5.9 Conclusions and Discussions 

In this paper, a strategic car-following gap model is proposed. It consists of the weighted 

effects of safety hazard and the probability of cut-ins by other vehicles. The weight can 

be adjusted under different scenarios so that this model is able to suit the needs of 

different drivers with their individual preferences and various driving situations. Field 

experiments were conducted, and the data was used to facilitate the specific formulation 

of the strategic car-following gap model along with its parameters. The results proved 

that the parameters of the car-following gaps without cut-ins are much different from 

those with successful cut-ins. More specifically, data with successful cut-ins are 

typically associated with longer gaps when compared with data without cut-ins, which 
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is valid since drivers necessitate longer gaps to cut in. The good quality of the specific 

model is presented in comparison with the field data and plotted in cumulative form 

using the 5-th and 95-th percentile car-following gap curves as well as in PDF form 

overlaying on top of the field data. This verifies the feasibility and reliability of the 

proposed model. 

This research contributes to the state-of-the-art of traffic flow modeling and advanced 

driving assistance systems in two ways. First, this research presents a strategic car-

following gap model which can help seek a “perfect” driver model that operates the 

vehicle in an “ideal” way to achieve both safety and efficiency gains in advanced 

driving assistance systems. Second, the proposed model successfully incorporates the 

probability of cut-ins into the formulation of the car-following gaps to reveal the 

practical effect of lateral motions such as lane changing and cut-ins to the longitudinal 

operations. With the above advantages, this research can be a vitally important input to 

the design of advanced driver assistance systems, promoting smooth traffic flow with 

increased safety and reduced fuel consumption and emissions.  

A future study will focus on making a more quantitative analysis and compare this with 

the existing models. Furthermore, we will collect more sufficient and representative 

data based on individual drivers’ driving behaviours from actual driving conditions and 

further improve the performance by combining this current model with new theoretical 

approaches. 
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Chapter 6 

Conclusions and Future Work 

This chapter demonstrates the main conclusions and contributions derived from the 

research shown in the aforementioned chapters, followed by displaying our perspective 

on future work inspired by our findings. 

6.1 Contributions 

In this thesis, three challenging problems in intelligent vehicles (mandatory lane 

changing (MLC), discretionary lane changing (DLC), and car-following) are 

investigated and developed by AI algorithms and statistical modeling. A compact gated 

branch neural network for MLC, a deep learning recurrent neural network for DLC, and 

a statistical model for the car-following gap are established for these three scenarios, 

respectively. The contributions of research work on these three problems are 

summarized as follows: 

1. Mandatory Lane Changing Suggestion at the On-ramps of Highways 

1) Based on correlation analysis, an additional gated branch neural network (GBNN) 

algorithm is proposed. The gated branch offers effective feature learning and the 

ability to explicitly incorporate the interplay between the surrounding driving 

environment and the lane changing decision.  

2)  Featuring high accuracy in both events of merge and non-merge, the proposed 

GBNN algorithm is used to model the MLC behaviour at the on-ramps of highways. 

The accuracy could be as high as 97.7% for non-merge and 96.3% for merge 

behaviour. In comparison with other AI algorithms like CNN (AlexNet), SVM, and 
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ANN, the proposed algorithm yields much more accurate results. Furthermore, the 

proposed method is computationally cost-effective, compared with the existing 

deep learning algorithms, and thus can be applied in ADAS for an efficient MLC 

suggestion system. 

2. Prediction of the Surrounding Vehicle’s Discretionary Lane Changing Intention at    

Freeway 

1) A recurrent neural network (RNN)-based time series classifier with a gated 

recurrent unit (GRU) is developed to classify and predict the surrounding vehicles’ 

discretionary lane changing intention beforehand, and thus provides an early 

notification to the ego-vehicle for driving assistance.  

2)  The proposed algorithm is capable of predicting the surrounding vehicles’ lane 

changing maneuver 0.8 s ahead of time at a recall and precision of 99.5% and 98.7%, 

respectively. The model can predict the lane changing intention 1.6 s in advance 

with a recall of 92.2%. Furthermore, the proposed method is lightweight in 

computation, being a suitable candidate to be applied in ADAS or autonomous 

vehicles in real-time applications. 

3. Car-Following Gap Model Considering the Effect of Cut-ins from the Adjacent Lanes 

1) A strategic car-following gap is devised by incorporating the probability of cut-ins 

into the formulation to reveal the practical effect of lateral motions. This model can 

successfully seek a driver model that operates the vehicle in a way to achieve both 

safety and efficiency. 

2) An overall objective function consisting of the car-following gap and velocity is 

formulated by considering the safety hazard and the probability of cut-ins by other 

vehicles. Based on this, seeking the strategic car-following gap translates to finding 
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the optimal solution that minimizes the overall objective function. With the support 

of field data, most collected data points are bounded between the 5-th and 95-th 

percentile curves of the proposed model, which demonstrates the effectiveness of 

the constructed model. Thus, this model can be a vitally important input to advance 

the design of driver assistance systems, promoting smooth traffic flow with 

increased safety. 

6.2 Conclusions 

Lane changing and car following, the two most frequently encountered driving 

behaviours for intelligent vehicles, have become the focus in research because their 

errors are accountable for a large amount of traffic casualties. As security and driving 

comfort have been elevated as top priorities for the development of intelligent vehicles, 

this thesis aims for providing better solutions to these two challenging scenarios, and 

advances driver models by introducing novel algorithms for safer and more efficient 

driving assistance system development.  

This thesis is organized by following the natural behaviour sequences of a driver 

entering from the on-ramp of the highway, staying in the mainline with awareness of 

the surrounding vehicles’ lane changing intention, and keeping a reasonable gap to the 

preceding vehicle at the end. More specifically, the corresponding three typical 

scenarios have been addressed in the thesis, including Mandatory Lane Changing (MLC) 

suggestion at the highway entrance, Discretionary Lane Changing (DLC) intention 

prediction, and the car-following gap model considering the effects of cut-ins from 

adjacent lanes. 

A mandatory lane changing suggestion model at highway entrance was introduced in 

Chapter 3. This mandatory lane changing suggestion model is based on a newly 

proposed lightweight GBNN algorithm and is validated using the real-world datasets of 
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U.S. Highway 101 and Interstate 80 from Federal Highway Administration’s Next 

Generation Simulation (NGSIM). This model is capable of not only accurately 

modeling MLC behaviours at the on-ramps of highways but also temporally and 

spatially featuring the driving environment to correlate it with the lane changing 

decision. The non-merge accuracy, merge accuracy, and receiver operating 

characteristic score of the prediction model using the newly proposed GBNN algorithm 

are 97.7%, 96.3%, and 0.990, respectively. The results are more accurate than other 

artificial intelligence algorithms such as CNN (AlexNet), SVM, and ANN and faster 

than the AlexNet based on deep learning algorithms. The proposed GBNN algorithm 

achieves this goal due to the introduction of an additional gated branch to the main 

neural network and the adoption of SeLU activation function and the Adam optimizer. 

A mandatory lane changing suggestion model, Such as this, is anticipated to be 

applicable in ADAS allowing efficient MLC suggestions. 

After entering the highway from the on-ramp, the driver will put more attention to the 

driving environment and be aware of the surrounding vehicles’ lane changing intention. 

For Discretionary Lane Changing (DLC) intention prediction at the highway derived in 

Chapter 4, a recurrent neural network (RNN)-based time series classifier with a gated 

recurrent unit (GRU) is proposed and evaluated by using the real-world datasets of U.S. 

Highway 101 and Interstate 80 from Federal Highway Administration’s Next 

Generation Simulation (NGSIM). The newly developed prediction model enables us to 

predict the surrounding vehicles’ lane changing intention of 0.8 s in advance at a recall 

and precision of 99.5% and 98.7%, respectively, and as early as 1.6 s in advance with a 

recall of 92.2%, outperforming other classical rival algorithms such as LSTM and 

HMM. This early notification of the surrounding vehicles’ DLC behaviour is beneficial 

for drivers to take actions beforehand and will improve the safety and efficiency of 

driving on freeways. 
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Once the driver finishes lane changing, car-following behaviour, the next scenario, is 

worth investigating by considering both effects from the longitudinal direction and 

lateral direction. In Chapter 5, a strategic car-following gap model is proposed. It 

consists of the weighted effects of safety hazard and the probability of cut-ins by other 

vehicles. The weight can be adjusted according to different scenarios so that this model 

is able to meet the needs of different drivers with their individual preferences and 

various driving situations. Field experiments have been conducted, and the data is used 

to facilitate the specific formulation of the strategic car-following gap model along with 

its parameters. The results prove that the parameters of the car-following gaps without 

cut-ins are much different from those with successful cut-ins. More specifically, the 

data with successful cut-ins is typically associated with longer gaps when compared 

with data without cut-ins, which is valid since drivers necessitate longer gaps to cut in. 

The good performance of the specific model is presented in comparison with the field 

data and plotted in cumulative form using the 5-th and 95-th percentile car-following 

gap curves as well as in probability density function (PDF) form overlaying on top of 

the field data. This verifies the feasibility and reliability of the proposed model. 

6.3 Future Work 

Based on the aforementioned work in the thesis, future work can be anticipated and 

carried out in the following topics. 

6.3.1 Enhancing the applicability of AI-based prediction models 

to complex real-life conditions 

To further put our models into real-life use in the future, the models based on our newly 

proposed algorithms should be applicable and accurate in different weather and various 
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road conditions or scenes. Although our models of lane changing have been evaluated 

by the Federal NGSIM datasets from U.S. Highway 101 and Interstate 80, the data only 

comes from one sensor, a CCD camera. Limited by the datasets in this thesis, the 

robustness of the models needs to be fully validated in future work. Targeting more 

secure, intelligent and efficient vehicles to be suitable for very complicated driving 

conditions, more sensors such as LIDAR, millimeter wave radar and ultrasonic sensors 

have to be installed to collect comprehensive data of both the subject vehicle and the 

surrounding driving vehicles. In the near future, fully vehicle-to-vehicle communication 

may become accessible, allowing mutual sharing of driving conditions with each other 

to be integrated into our models. More data input may decrease the computational speed 

while increasing the accuracy of the proposed models. This means models optimized 

for parallel computation should be developed to suit complex conditions. Hence, 

consideration of novel algorithms in combination with our algorithms and other 

algorithms that can take into account more feature variables are greatly demanded and 

will be well-performed in the future. 

6.3.2 Defining, choosing and enriching variables for accurate lane 

changing in complex conditions 

Since there is a trade-off between accuracy and prediction time for lane changing, 

defining and choosing effective feature variables are of great importance for our 

prediction model. In the future, more databases will be integrated into our model to 

classify variables into groups to fit normally uniform-speed driving conditions and 

extreme speed-up conditions. In the future, more effective variables related to road 

conditions will also be included in our model to make it suitable for different highways 

and weather conditions.   



Ph.D. Thesis – Yangliu Dou;            McMaster University – Mechanical Engineering 

132 

 

6.3.3 Optimization of the strategic car-following model 

As mentioned in Chapter 5, the strategic car-following gap model is effective to adjust 

the vehicle’s position in traffic flow to keep safe distance while reducing the chance of 

cut-ins. It is noteworthy that the key of the model is the PDF of the car-following gap 

under different driving scenes. In other words, the more data we have, the more accurate 

the PDF will be. Hence, in the future, more real-life experimental data will be used for 

optimization of our model. Also, whether the Weibull distribution is the most suitable 

distribution in our model will need to be verified by big data input. 

Although the strategic car-following gap model can help vehicles adjust their positions 

in time to prevent cut-in behaviour, it will add complexity to the following cars and may 

induce a “butterfly” effect on traffic. Hence, developing an advanced algorithm to avoid 

chain effects of large-scale movements of vehicles and in some conditions that can  

allow deliberate cut-ins will be conceived in the future. 

In summary, we will improve our algorithms by incorporating more real-life data and 

develop them as a subsystem of ADAS for intelligent vehicles. The efforts on intelligent 

vehicles are worthwhile due to the promising safety, intelligence, and comfortable 

driving experiences that they offer.  

 


