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Abstract

In this project we used structural equation method to analyze the data collected
during the period o’ re-engineering in hospitals in Ontario 1995 to 1997. We want to
understand how organizational change affect the well being of the staff of large teaching
hospital. Two main models were considered in this project: cross-sectional models and
longitudinal models for the data collected in 1995 and 1997. We tested six models for
each year’s data in cross-sectional model, effect-indicator, cause-indicator and mixed-
indicator were used in both standard and non-standard models. We explored standard
model with effect-indicators in our longitudinal case. The study was carried by SAS
software program.

We demonstrated an important association of job stressors with psychological
outcomes of hospital staff directly and indirectly via interference. Decision-making
capacity was associated with psychological outcomes in the opposite direction. Similar

results were concluded from longitudinal model. The limitation was discussed.
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Introduction to SEM

1 Introduction to SEM

Structural equation models (SEMs) represent a comprehensive, flexible approach
to research design and data analysis. They are sets of linear equations used to specify
phenomena in terms of their presumed cause-and-effect variables. SEMs with latent
variables include simultaneous equations with numerous exogenous and endogenous
variables, along with measurement error models. Thus, Structural equation models are
particularly helpful in the social and behavioral sciences and have been used to study the
relationship betweer social status and achievement, the determinants of firm profitability,
discrimination in employment, the efficacy of social action programs and other interesting
mechanisms ([3], [4], [5], [6], [7D).

In this project, we apply structural equation modeling methods to analyze the
impact of re-engineering on staff at Chedoke-McMaster Hospitals. SAS program software
will be employed to perform the analysis here ([8] and [9]).

We give a brief description of the structural equation modeling method; further

detail can be found in standard books of the subject, for example, in [5], [7] and [10].

1.1  Building blocks For SEMs

SEMs are also referred to as covariance structure models, latent variable models,
linear structural relations models, and causal models with unmeasured variables. They are
most frequently refsrred to as “LISREL-type” models, as many people associate them
with the LISREL program (for Linear Structural Relations). LISREL was the first widely

available software that made possible the analysis of causal models with latent
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variables [7].

The structural equation models generalize some earlier statistical approaches.
SEMs build on multiple regression, factor analysis and path analysis methods by
incorporating a confirmatory factor analysis approach into theoretical relationships among
the latent variables. Thus, structural equation modeling can be used to test hypotheses that
are difficult or important to address with multiple regression, factor analysis and other
techniques.

The procedures emphasize covariances rather than cases. The fundamental
hypothesis for these structural equation procedures is that the covariance matrix of the
observed variables :s a function of a set of parameters. If we assume that the model is
correct and the parameters are known, then the population covariance matrix would be
exactly reproduced by SEM (except for sampling vanation).

Multiple regression is used to identify and estimate the amount of variance in a
single dependent Qa.riable attributed to one or more independent variables. This method
basically determines the overall contribution of a set of observed variables to prediction,
tests full and restric:ed models for the significant contribution of a vanable in a model, or
delineates the best subset of multiple independent predictors. However, it is not robust to

measurement error and model misspecification. Therefore, we need path analysis.
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Path analysis can identify relationships among a set of variables. It has distinct
advantages over multiple regression. It can be used to test theoretical models that spectfy
causal relationships among a set of variables. It determines whether the theoretical model
successfully accounts for the actual relationships observed in the sample data. And path
analysis does more. It allows for more complex relationships, e.g., A—>B—>C rather
than A—>B and A——>C. Path models are analyzed by simultaneously conducting several
multiple regression analyses. For illustration, we include Figure 1 path model types [7]:
(a) Correlated path model (b) Mediated path model and (c) Independent path model,
which indicate three different ways a path model could be depicted, depending on
whether there is a correlated causal effect, an indirect (mediate) causal effect, or a direct

effect respectively.

TN N T s

Y
Y
Pl X2
X2 ?
B (a) (b)
X1
\ . 4__@

- -

()

Figure 1 Path model tvpes. (a) Correlated path model (b) Mediated path model (¢) Independent path

model
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Path analysis also has certain limitations. For example, many path models do not
include interaction effects, and the observed variables are assumed to be perfectly
measured [7].

Factor analysis methods generally attempt to determine which sets of observed
variables sharing common variance—covariance characteristics define constructs. In
practice, we use factor analytic techniques to either explore how variables relate to factors
(exploratory factor analysis) or confirm that a set of variables defines a construct
(confirmatory factor analysis). In SEMs, confirmatory factor analysis is used to test
specific hypotheses regarding which variables correlate with which constructs (in a
measurement model). Covariances between indicators are explained by postulated factors.
Because of the imperfect measurement of a construct by indicators, there are errors in

indicator variables. Figure 2 shows an example of a single-factor model.

Co)— o=
(D=

(D=
(DL

Figure 2 Single-Factor analysis model

Path diagram permits representation of the relationships among factors, while also

displaying that observed (measured) variables define which factors. The variance of each
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observed vanable 1s made up of the proportion of variance determined by the common

factor (F) and the proportion determined by the unique factor (E,), which together equal

the total variance of each observed variable. The factor loadings (variable weights) can be
interpreted as standardized partial regression weights in standard-score form. In our single
unidimensional factor, the weights indicate the correlation between the observed variables
and the single factor. If the variables’ factor loadings are squared, summed, and divided
by the number of variables, they indicate the total factor variance defined. This is
traditionally known as an eigenvalue, or communality in factor analysis.

The general structural equation model typically consists of two parts: the
measurement model, and the structural equation model. The measurement model
specifies how latert variables or hypothetical constructs are measured in terms of
observed variables and describe the measurement properties (reliability and validity). The
structural equation model specifies structural relations among the latent hypothetical
constructs. The measurement model does not specify any causal relationships between the
latent constructs, while the structural equation model does. In establishing latent variable
relationships, structural equation models differ from path models, which use only
observed variables.

Therefore SEM methods incorporate the strengths of multiple regression analysis,
factor analysis, and path analysis simultaneously. Moreover, they permit directional

predictions among a set of independent or a set of dependent variables, and permit
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modeling of indirect effects. The SEM methods constitute a comprehensive, flexible
approach to modeling relations among varnables.
1.2 General characteristics for SEMs

We list some important terms in SEMs here:
Manifest (Observecl) versus latent variables

A manifest variable (indicator) is one that is directly measured or observed in the
course of an investization, while a latent variable is a hypothetical construct that is not
directly measured or observed. For example, in Figure 8 (in Appendix 1) ANX (see
Appendix 1 for description of variables) is treated as a manifest variable; it is possible to
directly determine excactly where each subject stands on this variable. On the other hand,
Psyout is as a latent variable; it is a construct that is presumed to exist, although it cannot
be directly observed. By convention, observed variables are enclosed by rectangles or
squares, latent variables are enclosed by ovals or circles.
Composite versus latent variable

In conventional representations of covariance structure models, latent variables
influence measured variables. In an alternative representation, constructs can be defined
as linear functions of their indicators, i.e. constructs are influenced by measured variables.
Such constructs are not latent variables but composite variabies.
Cause versus effect indicator

Cause indicators [14] are observed variables that are assumed to “cause” a latent
variable. Indicators depend on the latent varnable, i.c. the latent variable determines its

indicators. Most researchers in the social sciences assume that indicators are effect
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indicators, since it’s not easy to distinguish them sometimes. In Figure 10 (Appendix 1)
SAD, ANX, EXH are effect indicators influenced by latent variable Psyout. While
TEAM, COWORE, and SUPWK are cause indicators, which determine the latent
variable Workrelation in Figure 10.
Endogenous versus exogenous variable

An endogenous variable is one whose variability is predicted to be causally
affected by other vanables in the model. Any variable that has a straight, single- headed
arrow pointing at it is thus an endogenous variable (straight lines, i.e., with an arrow at
only one end, show causal relationships, while curved lines with arrows at both ends
show correlations). [n Figure 9, PSYOUT is an endogenous variable, as it is directly
influenced by FAMINT and JOBINT and others. Exogenous (independent) variables are
constructs that are irfluenced only by variables that lie outside of the causal model. Thus,
they do not have any straight, single-headed arrows pointing at them. For example,
decision-making capacity and work relationships are exogenous variables in Figure 9.
These two variables are connected by curved arrows (indicating that they may covary).
Recursive versus nonrecursive model

A recursive model is one in which causation flows in only one direction. This
means that none of the variables that constitute the structural portion of the models will
be involved in feedtack loops or reciprocal causation. In a nonrecursive model, causation
may flow in more than one direction, and a variable may have a direct or indirect effect

on another variable rhat preceded it in the causal chain.



Introduction to SEM

Standard versus Non-standard model
With standard models, all constructs that constitute the structural portion of the
model are presented as latent variables with multiple manifest indicators. With a
nonstandard model, at least one of the constructs that constitute the structural portion of
the model is represented as a single manifest variable.
General characteristics of SEMs include the following:
« In a standard model, all substantive variables of interest are latent. While in
nonstandard model, at least one of the constructs is a manifest variable.
» In a measurement model, observed variables can be effect or cause indicators.
= In SEMs, the amount of influence is determined by direct, indirect and total
“effects” among variables.
» Measurement equations specify how observed variables depend on latent
variables.
« There are errors in equations and errors in effect indicators.
The structural model is written in the following matrix equation:
n=Bn+l'&+g (1)
Here,
& 1s n-vector of latent exogenous variables.
£ is m-vector of latent residual variables.
n 1s m-vectcr of latent endogenous variables.

® = Cov (§), a nxn-covariance matrix of &-variables.
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y = Cov (£), a mxm-covariance matrix of C-variables.

B is a mxm-matrix of path coefficients between n-vanables.

I is a mxn-matrix of path coefficients between &- and - variables.

Cov (£,£)=0.

B has zeros on diagonal, and I-B is nonsingular.

As described in Joreskog and Sorbom (1993), the measurement models can be
written in the following set of matrix equations, for exogenous variables:

X=AxE+3d (2)

Here,

X 1s g-vector of manifest indicator variables for &-variables.

d 1s g-vector of latent error variables.

A  1s a gxn matrix of factor loadings of X on &.
©®, is a qx g covariance matrix of measurement errors for X.

For endogenous variables, the equation is of the following form,

Y=Ay n+E€ (3)
Here,
Y is p-vecto - of manifest indicator variables for n-variables.

€ 1s p-vector of latent error variables.

A, 1s a pxm matrix of factor loading of Y on n.

- ©, 1s a pxp covariance matrix of the measurement errors for Y.
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According to Bollen’s statement (in [5]), the basic hypothesis of the general

structural equation model is:

z=2(0)

Where X is the population covartance matrix of y and x and Z(0) is the
covariance matrix written as a function of the free model parameters in . As population
covariance X matrix is not known, in practice, it is replaced by sample covariance matrix

S. On average, the sample covariance matrix S equals the population covariance
matrix £ . Thus our t ypothesis becomes: S = X.

The matrix X can be determined by the eight different matrices, B,

LA LA,,D,W,0,,0 defined above. It is composed of four submatrices as follows:

§:=|izyy ZYX:I.
Zy Zx

The submatrices are defined mathematically by the eight matrices we mentioned

above. For example, in our model Z,, deals with the covariances among Y variables:
RN AJUI-B) ' (TOT +¥)I-B) A, +0O,
Z . deals with the covariances among X variables:
Lo =AOAN, +0O,
And Z ,, deals with the covariances between X variables and Y variables:

Ly =AOT (U-B)'A,.

Finally, the rnatrix X,, is the transpose of Z ,, .
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The relation of S to ﬁ‘, is basic to an understanding of identification, estimation,
and assessments of model fit. In summary, once model is specified, the variances and
covariances are functions of the model parameters. Attempts to establish that unique
values can be found for these parameters introduces the issue of identification.

Note: All manifest variables are endogenous, and €, 8, £ and & are mutually
uncorrelated. In measurement model, only effect indicator is discussed here.

The SEMs discussed in this project will demonstrate only unidirectional causal
flow, i.e., recursive rnodel.

1.3 Identification and parameter estimation

In SEMs, it 1s very important that we resolve the identification problem prior to
the estimation of parameters. They depend on the amount of information in the sample
covariance matrix, 5, necessary for uniquely estimating the parameters in the model.
Identification is demonstrated by showing that the unknown parameters are functions only
of the identified parameters and these functions lead to unique solutions. If this can be
done, the unknown parameters are identified; otherwise, one or more parameters are
unidentified. Thus “he goal is to solve for the unknown parameters in terms of the
unknown-to-be-identified parameters. A model is said to be under-identified if one or
more parameters rnay not be uniquely determined because there is not enough
information in the matrix S. On the other hand, a model is said to be overidentified when

there is more than one way of estimating a parameter.
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The known-to-be-identified parameters are the elements of S. The parameters
whose 1dentificatior: status is unknown are in 6, where 0 contains the t free and

constrained parameters of B, I', @, and W . The equation relating S to 6 is the

covariance structure hypothesis, S =§. Bollen presented the general principal [5]: “If an
unknown parameter in 6 can be written as a function of one or more elements of S, that
parameter is identified. If all unknown parameters in 6 are identified, then the model is
identified.”

A necessary, but msufficient condition for identification is the order condition (i.e.
t-rule). The t-rule fo: identification is that the number of free parameters (a free estimator
is a parameter that i3 unknown and thus is one that we wish to estimate) to be estimated
must be less than or equal to the number of distinct values in the matrix S {5}, i.e.

t=(2)p+ @ P+a+h)

where p + ¢ is the number of observed variables and t is the number of free
parameters in matrix. S. However, this is only a necessary condition, it does not mean that
the model is identifizd.

We want to obtain estimates for each of parameters specified in the model that

produce the covariaice matrix £ such that the parameter values are as close as possible

to those in sample covariance S. This estimation process involves the use of a particular

fitting function to rainimize the difference between the produced covariance matrix X
and sample covariaice S. There are several methods including unweighted or ordinary

least squares (ULS or OLS), generalized least squares (GLS), and maximum likelihood
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(ML) procedures that are currently available. In this project, all analyses were conducted
using the SAS system’s CALIS procedure. These analyses used the maximum likelihood
method of parameter estimation. ML estimation methods need assumptions of large
sample size and multivariate normality of the observed variables. Running the sample
covariance matrix vs/ith the specified model, we will obtain parameter estimates and fit
statistics. We then determine from the parameter estimate and fit information whether the
model needed to be modified as it did in our data set. We further discuss several indices
of model fit in Chapter 4.

We will corapare the relative size of standardized path coefficient estimates to
determine which independent variable has the largest effect on the dependent variable,
since unstandardized path coefficients depend on the units in which the variables are
scaled. Often observed variables have different scales. This makes the assessment of
relative direct influences difficult. The standardized path coefficients is the expected shift
in standard deviation units of the dependent variable that is due to a one standard
deviation shift in the dependent variable when the other variables are held constant. Thus
we can compare the shift in standard deviation units of the dependent variable that
accompanies shifts of one standard deviation in the observed variables as a means to
assess relative effecs.

Standardized coefficients can be useful in assessing relative effects of different
explanatory variablss. For example, the standardized path coefficient from exogenous

latent vanable to endogenous latent vanable was defined as in [5]:



Introduction to SEM

14

and the standardizec factor loading in measurement model was defined as [5}]:

A 172
AS A

o,
Aij = Aij "/A

g

where the superscript s represent a standardized coefficient, i is the dependent variable, j

is the independent variable, and o and o j are the model-predicted variances of the ith

and jth vanables, and y; (4, ) represents the path from j to i.
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2 Background to this study
2.1 Re-engineering was introduced in hospitals

Now we describe the historical background of the hospital re-engineering
program, which was introduced in 1995 by the hospital in response to funding cuts. Re-
engineering was first used in industry, now is getting widely used in hospitals.

“In 1995, the Ontario government announced an 18% (1.3 billion) reduction in
hospital operating budgets over the next three years” [13]. Due to fiscal constraints,
hospitals in the province were forced by the government to make organizational changes.
To meet the challenges, hospitals took action to downsize, re-engineering and restructure
service delivery. During the period, hospital workers were faced with job changes, losses
and increased competition for limited numbers of positions. Workers confronted repeated
threats to job control, loss of job security, fear of job obsolescence, and early retirement
which were hypoth:sized to contribute to stress, burnout, depression, and poor physical
health (see [1] for further references). A research initiative was undertaken by a research
team led by Dr. C.A. Woodward of McMaster University. They have contributed valuable
informatic;n about the impact of the changes occurring in CMH.

Study quesrions:

This projec: explores the impact on the staff of Chedoke-McMaster hospitals

(CMH) of their re-cngineering efforts. Our study will model the interplay between work

life quality, psychological adjustment and family relationship. The data gathered

15
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longitudinally at the three points will be examined via structural equation modeling to
determine the patis via which changes in decision making capacity, work
relationships, and job stressors contribute to psychological outcomes mediated by
family and job interference. The approach to this research design and data analysis will
help us to find out how these factors lead to positive or negative health outcomes.
2.2  Hospital setting and scales in the analysis

This study took place in a large teaching hospital with 2 separate campuses --
Chedoke-McMaster hospitals (CMH). Three surveys have been completed on three
occasions (1995-1997) separately at CMH. A sample of 900 staff was randomly selected
from the personnel files at CMH, which represented about 21 percent of the employees
and was drawn from all segments and job categories. All staff members who were
employed by the hospital at the time of the study were eligible. Questionnaires were
mailed to the random sample of hospital employees in May of each year at their hospital
address. Thank you reminder cards were sent one week later, and two subsequent mails
were sent to non-respondents. However, not everyone replied. Six hundred and fifty-four,
five hundred and twenty-eight, and four hundred usable responses were obtained in 1995,
1996, and 1997, respectively. Three hundred and forty-six staff replied in all 3 years.

The survey used scales taken from the literature to measure key constructs of
interest. Scale reliability was assessed by calculating coefficient alpha. We have
administered a multiple-item to a group of subjects and want to determine the internal

consistency (reliability) of the scale. The internal consistency of scales was checked using
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Cronbach’s coefficient [15]. Coefficient alphas for key constructs are very good as

indicated in [1]. The scales used in the analysis are described as follows:

(1).

).

(3)-

4)-

(5).

(6).

(D).

(8).

).

Self-Efficacy: ¢ 5-item measure (alpha = 0.71) of confidence in the competitiveness
and transferability of one’s skills, job prospects and ability to cope with job change.
Readiness for change: a 6-item (alpha = 0.63) adaptation of the readiness-for-change
scales developed by Prochaska and colleagues.

Active coping style: a S-item measure (alpha = 0.75) of an active problem solving
style.

Job influence: 0-items (alpha = 0.84) reflecting the amount of influence employees
feel they have over a wide range of job-related dimensions.

Skill discretior: a 6-item scale (alpha = 0.82) reflects the breadth of skills workers
could use.

Decision authority: a 3-item scale (alpha = 0.82) reflects the decision-making
authority on their jobs.

Teamwork: a €-item factor (alpha = 0.86) reflecting the extent to which one’s work
unit co-ordinatzs, solves problems and works effectively together.

Co-worker support: a 7-item measure (alpha = 0.86) of the extent to which co-
workers are competent, understanding and supportive of an individual employee.
Supervisor support: a 3-item factor (alpha = 0.88) reflecting the extent to which
supervisors arz helpful, concemed with the welfare of employees and able to

facilitate effective interaction among employees.



Background to this study

18

(10). Lack of role clarity: this 4-item scale (alpha = 0.65) with responses categories was
developed by Brosnan and Johnston to examine the extent to which job
responsibilities and expectations are unclear and there is difficulty with conflicting
priorities and job demands.

(11). Psychological job demands: a 6-item scale (alpha = 0.69) reflects the psychological
and physical demands of one’s work.

(12). Family interference: the 4-item scale (alpha = 0.77) reflects the potentially adverse
effects of family demands on work performance.

(13). Job interference: the 4-item scale (alpha = 0.64) measures the adverse effects of job
on family life.

(14). Anxiety: a 10-item scale (alpha = 0.89) version of the State Anxiety Scale, which
asks how much anxiety (as reflected in feeling jittery, nervous, rattled, etc.) the
person experiences now.

(15). Emotional exhaustion: the 7-item (alpha = 0.91) emotional exhaustion scale of the
Maslach Burnout Inventory measured using 7 response categories.

(16). Depression: a 10-item version of the centre for the Epidemiological Study of
Depression Scale (alpha = 0.78) which is used to measure depression in the general

population using 4 response categories.
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3 Data Exploration
3.1 The initial examination of data

There are 7C1 subjects and 328 variables from the raw data in SPSS file. After
converting the file into SAS file, the questionnaire data is input in the form of raw data in
SAS program. We cetermine the sample size will be 346, which comes from those who
replied to the questionnaires in all three years. We will study 1995 and 1997 data. As for
the variables, we use: scores on the 32 scales (actually 2 groups of them, 16 scales in 1995
and 1997 each) to assess constructs constituting our hypothesized model. (The terms
scale, indicator and variable will be used interchangeably, on the basis of reviewing the
relevant research literature and theoretical beliefs and ideas.)

Sample Size:

In structural equation modeling, the researchers often require a much larger
sample size (than multiple regression) to maintain the accuracy of estimates and to ensure
representativeness. The need for larger sample sizes is due in part to the program
requirements and the multiple observed indicator variables used to define latent variables
(degrees (;f freedom in a measurement model). One rule-of-thumb suggests reasonable
results can be attained when the number of subjects (responses) is at least five times the
number of parameter [9]. The total number of parameters is the sum of the path
coefficients, variances, and covariances to be estimated. Large samples are always
preferable. For our project, we have different hypothesized models. The number of

parameters to be estimated is different in various models. We have 327 observations
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(there are missing values on 19 subjects) for data95, 323 observations (there are 23
missing values) for data97, and 308 observations (there are 38 missing values) for the
longitudinal model in Figure 5 (see Appendix 1). The largest number of parameters is
the longitudinal model (80 parameters), so the sample size is strictly speaking not big
enough. The parameters in other models are 40 or 38, which means the sample size is big
enough. Overall, the sample size (except for the longitudinal model) 1s moderately good.

Data were fi-st analyzed descriptively using SPSS and SAS software. The means,
variances, standard deviations, the ranges, missing values and more information on the
variables are shown 1n the table in Appendix 2. We also found that not all the variables
fit normal distributions. From the histograms (see Appendix 2) we could see that most of
the variables fit wel . There also exist some outliers for the data in our tests. Even so we
can still make the assumption that our data are distributed as normal distributions
approximately. With this assumption, we now move to correlation analysis. The
correlation matrix ts also presented in the table in Appendix 2.

In it, the correlations above the diagonal are for 1995 data, below diagonal for
1997 data. Sample sizes range between 327 and 346. We also note that correlations range
(in absolute value) from 0.00 — 0.64. None of them are very high, which indicates that
there are likely no redundant variables to remove, and that they measure different things.
3.2 Reports of previous analysis

We will integrate the results of our analysis with those that werc previously

obtained by other methods. Reports of the impact of the changes in Ontario hospitals to
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date are limited. There are research studies of re-engineering effects on hospital staff
examining different aspects of the same data set we will use [11,12].

J. A. Brown et al [12] reported that workers at different supervisory levels in the
hospital experience job stresses and job satisfaction differently. Increased job demands
were related to increased stress for all levels of workers. For those with supervisory
positions, the limited ability to make decisions was related to increased stress. Co-worker
support and teamwork were important for job satisfaction for all levels of workers.

A longitudinal study of the impact on the hospital staff of the re-engineering [11]
concluded along with the rapid change there was increased emotional distress among staff
and deterioration in their relationship with their employer. Significant increases in
depression, anxiety, emotional exhaustion, and job insecurity were seen among
employees, particularly during the first year of the change process. By the end of the
second year, deterioration appeared in teamwork, increased unclarity of role, and
increased use of distraction to cope. Job demands increased throughout the period
whereas little change occurred in the employee’s job influence or decision latitude.
Meanwhile a significant decline in perceptions of patient care, attention to quality

improvement, and overall quality of care was seen after the first year.



Method of analysis

4 Method of analysis
4.1 Exploratory factor analysis

We first perform an exploratory factor analysis to identify the factor structure
underlying the data. We need to discover the number of relevant factors assessed, how the
factors intercorrelate, and how the variables load on the factors. From reviewing a
previous study on the same data set and the research literature in SEM and other area, we
divided our 16 scales into three levels (or groups) of constructs, which are:

(1) Job related scales: AUTH, PSY, EFF, READY, TEAM, ROLE, COPACT,

JOBINF, DISC, COWORK, SUPWK (Please refer these notations to
Appendix 1).

(2) Interference scales: JOBINT, FAMINT.

(3) Psychological outcome: ANX, SAD, and EXH.

We hypothesize that job related scales cause the psychological outcomes through
interference (job-family). The problem is that we don’t know how this group (job related
scales) might be separated into different factors. Thus, exploratory factor analysis is used
to find outi the underlying pattern in this group.

Responses to the 11 scales in group 1 were included in an exploratory factor

analysis. The principal factor method was used to extract the factors, and this was

followed by rotations. We provide some explanation of the method.

22
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In exploratory factor analysis we do not begin with a specific model, only rather
general specifications about what kind of a model we are looking for. We must then find
the model as well as estimate the values of its paths and correlations. In general there are
many possible path models that can reproduce any given set of intercorrelations. We are
looking for the simplest factor model that will do a reasonable job of explaining the
observed intercorrelations. What does a simple model mean? Loehlin described two-step
definition [10]: (1) a model that requires the smallest number of latent variables (factors);
(2) given this number of factors, the model with the smallest number of non-zero paths in
its pattern matrix. Application of these two steps corresponds to the two main divisions of
an exploratory factor analysis, factor extraction and rotation. The factor extraction
method is employed to yield models having the smallest number of factors that will do a
reasonable job of explaining the correlations. In the factor extraction step, the SAS
program “Proc Factor” can carry out a simple principal factor analysis of a correlation
matrix.

Then, in the rotation step, models are transformed to retain the same number of
factors, but improve them with respect to the second criterion of non-zero paths. After
factor extraction, if more than one factor has been retained, an unrotated factor pattern is
usually difficult to interpret. To make interpretation easier, the next is to transform such
solutions to simplify them in another way: to minimize the number of paths appearing in
the path diagram. This rotation process consists of transformations as rotations of
coordinate axes. Uncorrelated factors arc called orthogonal, the correlated factors are

called oblique. The orthogonal transformation is to achieve the goal that after the
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transformation the factors remain independent, but they are simpler in the sense of having
more zeros or near-zero paths. The SAS program Varimax is a procedure for this purpose.
After orthogonal transformations, the second step is oblique transformation, which deals
with correlated factors. Promax in SAS program is a procedure, which retains the general
robustness of the orthogonal methods while arriving at an oblique factor solution [16].

[n interpreting the rotated factor pattern, we identify the variables that
demonstrate high loadings for a given component, and determine what these variables
have in common. A scale was said to load on a given factor if the factor loading was 0.35
or greater for that factor, and was less than 0.35 for the other. The result of the SAS
output for 1995 data suggests that 10 scales measure three factors. EFF95, READY95,
COPACTYS, JOBINF9S5 and AUTHYS were found to load on the first factor, which was
labelled decision-making capacity. TEAM9S5, COWORKY9S5, SUPWKO9S5 loaded on the
second factor, which was labeled work relationships. ROLE9S and PSY95 loaded on
the third factor, which was labeled job stressors. The scale DISC95 was omitted since
this scale loads on all of the three factors (the loadings for three factors were between
0.30-0.39, thus we omit this variable). Corresponding factor loadings from the rotated
factor pattern matrix and factor structure matrix are presented in Appendix 2. We also
list the correlations between JOBINT9S, FAMINT9S and the estimated factor scores:
Factor |, Factor 2 and Factor3 in Appendix 2. We find that JOBINT95 correlated with
Factor 1 and Factor 2 negatively, but positively with Factor 3. That makes sense for our

hyvpothesized model.
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A similar method was used for the 1997 data. A different set of scales ends up in
the factors. We found that the 10 variables located on the three factors. EFF97 and
COPACT97 loaded on factor 1. JOBINF97, AUTH97, TEAM97, COWORKY97 and
SUPWKO97 loaded on factor 2. ROLE97 and PSY97 still loaded on factor 3.
Corresponding factor loadings from rotated factor pattern matrix and factor structure
matrix are presented in Appendix.

This gives us a problem. Since we want to use data95 and data97 to perform
longitudinal analysis, we need the same measurement models. There was only a fairly
small difference between the constructs (factor 1) for data95 and data97. Thus we choose
to keep the same constructs in data97 as in data95 for our analysis.

Although re-engineering affected hospital staff as shown in previous analyses by
researchers, there were no SEM studies examining the relationships among decision-

making capacity, work relationships, job stressors and psychological outcomes.

4.2 Descriptive criteria of model fits

The determination of model fit in SEMs is not as straightforward as it is in the
other statistical approaches in multivariable procedures such as multiple regression. There
is no single statistical test of significance that identifies the correct model given the
sample data. None of the goodness of fit criteria, except x°, have an associated statistical
test of significance.

Model fit criteria in SEMs commonly used are chi-square (x°), goodness-fit-
index (GFI), adjusted goodness-of-fit index (AGFI), the comparative fit index (CFI) and

the normed fit index (NFI), non-normed fit index (NNFI), parsimonious fit index (PFI).
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and Akaike information criterion (AIC) (We only discuss the indices produced by the
CALIS procedure). What complicates the matter is that several GOF criteria will be used
to assess and interpret SEMs under differing model-building assumptions. Schumacker
and Lomax [7] suggested that the various GOF criteria should be used in combination to
assess model fit, model comparison, and model parsimony. Overall, the fit indices fall
into the category of either model fit, model comparison, or model parsimony fit indices.
No one index serves as a definite criterion for testing a hypothesized SEM. Each index
provides somewhat different information. A single “ideal” does not exist, since an
“ideal” fit index should be one that is independent of sample size, accurately reflects
differences in fit, inposes a penalty for inclusion of additional parameters, and supports
the choice of a true¢ model when it is known. We briefly describe different criteria for
model fit, model comparison, and model parsimony.

(1) Model fit

Model fit criteria commonly used are chi-square (Xz), goodness-of-fit index (GFI),
adjusted goodness-of-fit index (AGFI). These criteria are based on differences between
the observed (original, S) and model-implied (reproduced, ) correlation or covariance
matrix.

A significant ¢* value relative to the degrees of freedom indicates that the
observed and estimated matrices differ. Thus the p-value associated wifh the model chi-
square test should exceed 0.05, the closer to 1.00, the better. The level of statistical

significance indicates the probability that this difference 1s due to sampling variation. A
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nonsignificant x* value indicates that two matrices are not statistically significantly
different. Although “he x2 GOF criterion 1s a statistical test procedure, it has limitations as
a descriptive index of model fit. For example, ¥? is sensitive to sample size and also
sensitive to departures from the normality assumption.

Three approaches are commonly used to calculate *: maximum likelihood (ML)
generalized least sjuares (GLS), and ordinary least squares (OLS). Each approach
estimates a best-fitting solution and evaluates the model fit. The most widely used fitting
function is the ML function. The y statistic is x2 = (n-1) F (in Appendix 3, we will show

that under null hypothesis, (n-1) F is asymptotically distributed as a Chi-square variate

[5]), where:
Fy =tr(SZ™) = (p+¢) + In|Z| - In|S]| 4
Foe =05tr (S-%)8'17 (5)
Fo =0.5tr (S ~X)°] (6)

df=0.5 (ptq) (ptq+1) -t

t= total numr ber of independent parameters estimated

n = number of observations

(p+q) = number of observed variables analyzed and where #r indicate the trace.

The GFI is based on a ratio of the sum of the squared differences between the
observed and reproduced matrices to the observed variances, thus allowing for scale. The

GFI index can be computed for ML, GLS, or ULS estimates too. The AGFI adjusts GFI

by a ratio of the degrees of frecdom of the restricted to the null matrix. For example, the
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goodness-of-fit index (GFI) using the unweighted least squares approach (ULS) cited by
Schumacker and Lomnax in [7] is:

GFI =1-0.5(5-%)° (7)

The AGFI index is computed as 1 — [(k/df)(1 — GFI)], where k = the number of unique
values in S, or (p+q)(p+q+1)/2, and df = the number of degrees of freedom in the model.
(2) Model comparison

The NFI is a measure that rescales chi-square into a 0 (no fit) to 1.0 (perfect fit)
range [7]. It is used to compare a restricted model with a full model using a baseline null
model as follows

O natt = % medet )/ X mat ()

This index rnay be viewed “as the percentage of observed-measure covariation
explained by a given measurement or structural model”. Although the NFI has the
advantage of beirg easily interpreted, it has the disadvantage of sometimes
underestimating goodness of fit in small samples. A variation on the NFI is the non-
normed fit index (NNFI). The NNFI [10] has been shown to better reflect model fit at all
sample sizes. The comparative fit index developed by Bentler (1995), like the NNFI,
overcomes the deficiencies in NFI for nested models. It provides an accurate assessment
of fit regardless of sample size. In addition, the CFI tends to be more precise than the
NNFI in describing comparative model fit. The rationale for assessment of comparative
fit in the nested model approach involved a series of models that ranged from least

restrictive to saturatzd. Corresponding to the sequence of nested models is a sequence of



Method of analysis

29
GOF test statistics with associated degrees of freedom. The CFI measures the
improvement in non:entrality in going from a restrictive model to a saturated model and
uses the noncentral % distribution with noncentrality parameter to define comparative fit.
(3) Model parsimony

Parsimony refers to the number of estimated coefficients required to achieve a
specific level of fit. The AGFI measure also provides an index of model parsimonious
goodness of fit. Othzr indices are parsimonious fit index (PFI), and Akaike information
criterion (AIC) etc 7]. The AIC measure will always be positive. A minimum value
(close to zero) represents an optimum fit.

Many of the goodness of fit (GOF) criteria (e.g. GFI, AGFI, CFI, NFI, and NNFI)
range in value from 0 (no fit) to 1 (perfect fit) and are assessed as to what is an acceptable
model fit. There is no unambiguous answer to how large the GOF must be to indicate an
“adequate” fit. Bentler and Bonett (1980) suggest that for NFI and TLI: “In our
experience models with overall fit indices of less than 0.9 can usually be improved
substantially’’[5]. A structural equation model with a GOF value of close to 0.90 or higher
is acceptable [7]. Although this provides a rough guideline, several factors (e.g., sample
size, the choice of baseline) can affect the GOF criteria that may lead to other cutoffs. We
discuss some GOF criteria outputted by the SAS program (see Table 28 in Appendix 3).
We note that a model does not necessarily have to display all these characteristics to be
considered acceptable. So we will use GFI, AGFI, CFI, NFI, and NNFI for our overall fit
indices in our project. Hatcher suggested that values over 0.9 on the NNFI and CFI

indicate an acceptable fit. In particular, he mentioned that “a nonsignificant chi-square
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value is normally not essential, as long as the value of chi-square is not very large in
relation to the degrecs of freedom” [8].

Assessing the adequacy of a path model is not a simple thing. Besides considering
goodness of fit indices, individual parameter estimates in a model must be consulted. We
should examine wtether parameter estimates have the expected sign (either plus or
minus) and are within an expected reasonable range of values. If the absolute t value of
the statistics for a path coefficient exceed 1.96, then the path coefficient is significant at
the p<0.05 level. [n other words, this path coefficient may be viewed as being
significantly different from zero. And the standardized path coefficient should be
nontrivial in magnitade (i.e., absolute values should exceed 0.05). Moreover, the “ideal”
fit model requires the absolute values of entries in the normalized residual matrix to be
small (preferably less than 2.00), the R-square value (the squared multiple correlation
coefficient indicates the amount of variance in the dependent variable explained,
predicted, dr accounted for by the set of independent variables) for each endogenous
variable should be relatively large.

Since it is rare that an initial theoretical model demonstrates a good fit, we need to
modify the model 1o get a better fit. The MODIFICATION option included in the
PROC CALIS statement requests that two modification indices be computed. The first
index 1s the WALD test, which identifies parameters that might be dropped from the
model. The second modification index 1s the Lagrange multiplier, which identifies

parameters that could be added.
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4.3 How programs estimate parameters

The PROC CALIS program that analyzes a structural equation model is longer
than most SAS programs, but it is not especially complicated. The CALIS procedurc can
perform a variety of structural equation analyses. The basic program input consists of
CALIS, LINEQS, STD, and VAR statements. There are some options followed by
CALIS, such as COVARIANCE, CORR, RESIDUAL, MODIFICATION etc.

The CALIS procedure estimates four different types of parameters:

- Factor loadings, which represent the relationships between observed variables

and latent vanables.

« Path coefficient, which represents the amount of change in a dependent
variable that is associated with a one-unit change in the relevant independent
variable, while holding constant the remaining independent variables.

» Variances, which represent the variability in exogenous variables.

» Covariances, which represent the covariation between pairs of exogenous
variables.

All four types of parameters may be either estimated, fixed, or constrained.

For hnear equations input, the LINEQS statement (analysis-model-in-equations-
notation) is used to identify the variables that have direct effects on the endogenous
variables. It serves tvo functions in a path analysis: it indicates which factor loading is to
be estimated or fixed, and it specifies the causal relations between variables in the

structural model.
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For example, with Y=VI1, A =LVIFl, £ = Fl and € = El, the LINEQS

statement for formula (3) Y = Ay € + € (in chapterl.2) is:

V1=LVIFIl F1 +EIl,

Accordingly, if F1 = 1) is a scalar vector variable (so B = 0 in this case), (F2, F3) =
&, (PF1F2,PF1F3) =1, DI =¢, the LINEQS statement for formula (1) n = Bn+I'€+{
(in chapterl.2) is:

F1 =PF1F2 F2+ PFIF3 F3 + D1,
Where V = manifest endogenous variable

F1 = latent ¢ndogenous variable

(F2, F3) = latent exogenous variable

L = factor loadings

P = path coefficients

E =residual (or disturbance) term for corresponding manifest variables

D1 =residual term for corresponding latent variables

The factor loadings are represented with coefficient names that begin with the “L”
prefix, and the path coefficients are represented with coefficient names that begin with
the “P” prefix.

The STD stztement (variances) is to identify the variables whose variances are to
be estimated in the enalysis. The COV statement (covariances) is used to identify pairs of
variables that are expected to covary (to be correlated). The VAR statement (variables)

identifies the manifest variables to be analyzed in the path analysis.
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4.4 Different models proposed

We illustrate the analysis with two possible types of models: cross-sectional
model and longitudinal model.
4.4.1 First, we propose the cross-sectional models in 1995 and 1997.
We show the hypothesized model in Figure 8 — 13. There are six different
diagrams (see Appendix 1) that are:
Figure 8: Model 1 — Standard model with effect manifest indicators.
Figure 9: Model 2 - Non-standard model with effect indicators.

Figure 10: Model 3 — Standard model with cause indicators.

Figure 11: Model 4 — Non-standard model with cause indicators.

Figure 12: Model 5 - Standard model with both effect and cause indicators located on a
latent vanable.

Figure 13: Model 6 — Non-standard model with mixed indicators.

We opt for non-standard models in Figure 9, 11, and 13 in which two of the
constructs that constitute the structural portion of the model are each represented as a
single manifest variable (i.e., family interference construct is measured by just one
manifest variable, as is job interference, they are both scales actually).

In our hypothesized model 2 in Figure 9, there are four latent variables. Among
them, there are three latent independent variables: Decmakcap (Please refer to the
descriptions of notations in Appendix 1), Workrelation, and Jobstress, one latent
dependent variable Psyout. And there are two constructs, directly measured by manifest

variables FAMINT. and JOBINT.
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For our standard model in Figure 8, 10, and 12, none of the constructs of interest

are observed variables. There are five constructs. Among them, there are three latent

independent variables, as in the non-standard model. But there are two latent dependent

variables, which are INT and Psyout. We should note that INT is also an independent
variable in predicting Psyout.

In both model 1 and model 2, indicators are defined as linear functions of latent
variables, plus error. An indicator under this representation can be thought of as an effect
of a latent variable, and is called effect indicator. For example, Decmakcap is
hypothesized to be a latent variable that influences the performance of the eftect
indicators: EFF, READY, COPACT, JOBINF and AUTH in model 1 and model 2. In
an alternative representation, indicators could be viewed as causing rather than being
caused by the latent variable measured by the indicators. Constructs can be defined as
linear functions of their indicators, called cause indicators, plus an error term. Such
constructs are not latent variables but composite variables, and they have no indicators in
the conventional sense. In our model 3 and model 4, decmakcap, workrelation and
jobstress were hypcthesized to be composite variables, which were influenced by their
indicators respectively. In some cases, it may be reasonable to define a set of indicators
for a latent variable as including both effect indicators and cause indicators. In model 5,
decmakcap was hypothesized both to be influenced by cause indicators - JOBINF, and
AUTH - and to influence effect indicators — EFF, READY and COPACT. We will

analyze and compare those different models in order to get a reasonable model for our
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data set. Now we discuss the two models that make up structural equation modeling: the
measurement model and the structural model.

As previously mentioned, the measurement model allows for certain relationships
between the latent (or composite) variables and the observed variables. Therefore, an
example of the equations for the measurement model is illustrated by the equations for

model 1 (please see Figure 8 in appendix 1):

SAD = function of Psyout (*) + error
ANX = function of Psyout + error
EXH = function of Psyout + error
FAMINT = function of INT (*) + error
JOBINT = function of INT + error

EFF = function of Decmakcap (*)  + error

READY = function of Decmakcap + error
CAPACT = function of Decmakcap + error
JOBINF = function of Decmakcap + error
AUTH = function of Decmakcap + error

TEAM = function of Workrelation (*) + error
COWORK = function of Workrelation + error
SUPWK = function of Workrelation + error
ROLE = function of Jobstress (*) + error
PSY = function of Jobstress + error

The structural models allow for certain relationships among the latent variables

depicted by direct liries or arrows. One of the examples of the equations for our structural
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models is tllustrated by the equations for model 1 (please see Figure 8 in appendix 1
also):

Psyout = INT + Decmakcap + Workrelation + Jobstress ~ + error
INT = Decmakcap + Workrelation + Jobstress + error

The asterisk signifies that a factor loading was fixed to 1.Thus, for each latent or
composite variable, one factor loading has been fixed to 1 to identify the model, and the
program uses that variable’s scale for the latent or composite variables.

It seems reasonable to consider both effect and cause indicators embedded in our
models. For each latent variable, we could consider whether the indicators would most
reasonably be defined as cause or effect indicators. Then the model would be constructed
accordingly and fitted to the data. But the presence of composite variables in a model can,
in some situations, result in an iteration problem, which lead to nonconvergence. We will

further discuss this topic.

4.4.2 We describe our hypothesized longitudinal model in Figure 14.

Latent variable casual models are often used to analyze situations in which
variables are measured over a period of time. We can test the hypothesis that Psyout in
1995 wou_ld have effect on Psyout in 1997.

This design will help us to check the effect of pre-re-engineering (95) to post-re-
engineering (97) over time. That is, we want to examine if Psyout in 1997 was affected
by Psyout in 1995 and other vanables (see Figure in Appendix 1). Psyout in 1997 is

partly predictable by Decmakcap’s, Workrelation’s, Jobstress’s, and INT’s in 1995

and 1997. The gene-al degree of Psyout in any year is reflected in SAD, ANX and EXH.
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It is assumed that the measurement models are the same on both occasions of

measurements.
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S Interpreting the Results of the analysis
When the SAS program for estimating the theoretical model has been executed,

we review the SAS log file and output file to verify that the program ran correctly. For
example, we verify that the LINEQS statements were written correctly, and that the
model is overidentified. The output reveals the number of data points associated with the
analysis (the amount of independent information in the data matrix). We verify that the
number of data points in the analysis is larger than the number of parameters to be
estimated, which 1s the t-rule in Chapter 1 (1.3). When this is not the case, the model is
not identified. We also check that the estimation algorithm converges.

Then, reviewing the substantive results of our analysis (e.g., the goodness of fit
indices, the factor loadings, etc.), we begin our assessment of the fit between model and
data as follows according to Hatcher’s suggestion [7]:

Step 1. Reviewing the chi-square test. When the proper assumptions are met, the chi-
square test provides a statistical test of the null hypothesis that the model fits the
data. However, with large samples and real-world data, the chi-square statistic
wﬁl very frequently be significant even if the model provides a good fit. So it has
been recommended that it be treated as a general goodness of fit index, but not as
a statistical “est in the strictest sense. That is to say, these indices may reveal a
relatively good fit even when the chi-square test suggests rejection of the model.

Some of the additional fit indices are list in step 2

38
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Step 3.

Step 4.
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Reviewing tie goodness of fit index (GFI), GFI adjusted for degrees of freedom
(AGFI), comparative fit index (CFI), normed index (NFI), and non-normed index
(NNFI). As noted earlier these indices have been proposed as alternatives to the
chi-square test. Values on these indices may range from 0 to 1, with values over
0.9 (especially for CFI and NNFI) indicative of an acceptable fit of the model to
the data.

Reviewing significance tests for factor loadings and path coefficients. Before
interpreting the t tests, the corresponding standard error should be reviewed to
determine 17 any of them are excessively small (i.e., close to zero). This
sometimes reflects an estimation problem that results when one parameter is
linearly dependent on other parameters, and can result in invalid tests. We should
check whether all of the factor loadings and path coefficients are of the expected
magnitude and direction. Then we check the t tests; if the t values are greater than
1.96 the coefficients are significantly different from zero at the 5% level.
Reviewing R-square values for latent endogenous variables. These R-square
values indicate the percent of variance in the endogenous variables that is
accounted by their direct antecedents. As in multiple regression, R-square values
range from O to 1 with larger values indicating a great percent of variance
accounted for.

Reviewing the residual matrix and normalized residual matrix. When the original
covariance matrix 1s analyzed, it is possible to use the resulting path coefficients

to crecate a reproduced covariance matrix. If the theoretical model successfully
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accounts for the actual causal relationships between the variables, this reproduced

covariance matrix should be identical to the original covariance matrix. When the

path analysis is performed on a covariance matrix, the elements of the residual
matrix are 1ot standardized in any meaningful way, making it difficult to
determine hcw large a residual should be to be considered too large.

Schumacker and Lomax recommend that a model does not necessarily have to
display all of these characteristics to be considered acceptable [7]; in fact, the literature
contains studies reporting acceptable models that fail to demonstrate one or more of the
preceding traits. Therefore we will examine our hypothesized models and analyze them
cautiously according to above procedures.

For our hypothesized models, we will discuss the output for each respectively.

5.1 Outline of models

First, we describe the hypothesized models we want to analyze in Table 1. We
explain some models in detail, and for completeness show others in Appendix 4.

The cross-sectional models were analyzed first. Lomax recommends that each
latent varable be assessed with at least three indicators to avoid problems with
identification and convergence [7]. Thus we applied both standard and non-standard
models to our data. [n our non-standard models, there were two constructs FAMINT and
JOBINT 1n the structural portion of the model that are represented as a single manifest
variable each.

For some of the latent variables. we consider whether the indicators would most

reasonably be definzd as cause or effect indicators. In 4.4.1 (Chapter 4), model 3 and
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model 4 are respecified on the basis of the argument that certain indicators should be
considered as cause :ndicators, thus requiring a reversal of paths between those indicators
and their corresponding latent variables. In the standard model with cause indicators"
(model 3), cause indicators seemed relevant to three of the latent variables.
Decmakcap95 could be thought of as a composite variable determined by EFF95,
READY95, COPACT95, JOBINT95, and AUTH95. Also, Workrelation95 could be
viewed as a composite variable determined by TEAM95, COWORKY5, and
SUPWKO9S5. Jobstr2ss95 could be viewed as a composite variable determined by
ROLED9YS and PSY95.

Sometimes, 't may be reasonable to define a set of indicators for a latent variable
as including both effect indicators and cause indicators. The latent variable
Decmakcap95, which is, influenced by indicator variables JOBINF95 and AUTH9S,
meanwhile it influeace EFF95, READY95, and COPACT95, which are thus effect
indicators. So five indicators both influence and are influenced by one latent variable at
the same time. The other latent variable Psyout95 is considered as before, and
Workrelation95 and Jobstress95 were still treated as composite variables (for the above
descriptions, see Figure 8 -13 in appendix 1).

We only dezl with the standard model with effect indicators for longitudinal
models. The other cases may be considered as a future topic. As well, the main text shows
only some of the models examined. The results for the others are described in the

Appendices.
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Table 1 cross-sectional models and longitudinal models

Year Standard/Nonstandard Type of Indicators Tables
1995 standard effect 5.2:1

1995 standard cause Appendix 4(a)
1995 standard mixed Appendix 4(b)
1995 nonstandard effect 522

1995 nonstandard cause Appendix 4(c)
1995 nonstandard mixed 3.2.2

1997 standard effect 5.3.1

1997 standard cause Appendix 4(d)
1997 standard mixed 5.3.1

1997 nonstandard effect Appendix 4(e)
1997 nonstandard cause Appendix 4(f)
1997 nonstandard mixed Appendix 4(g)
95-97 | Standard (model 7) effect (30 variables) | 5.4
95-97 Standard (model 8) Effect (28 variables) | 5.4

5.2 1995 cross-sectional models

5.2.1 Standard models (data95)
(1) Standard model with effect indicators (Model 1)

The program was executed as expected. The output shows that the analysis was
based on 327 observations and 15 variables. The data points were 120 and the parameters
were 40.The necessary (but not sufficient) condition for model identification has been
met. The iteration history indicated that the convergence criterion was satisfied.

The goodness-of fit index showed that model 1 chi-square was 266.4 with 80

degree of freedom. Although a nonsignificant chi-square would have shown support for
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our model, this significant chi-square does not necessarily indicate a bad fit. Other fit
indices showed that the GFI was to 0.9, AGFI was 0.85, CFI was 0.87, NFI was 0.82, and
NNFI was 0.83 (Please see Table 2 GOF indices). These indices provide mixed signals
concerning our modz21’s fit. Only GFI reached 0.90, the others were close to 0.90. Though
most of these indices cannot reach 0.90 higher for data95, we still can say these indices
didn’t show of poor fit

We look for the factor loadings and path coefficients, first checking the signs. All
of these coefficients look reasonable based on our prior expectations. All of the estimated
factor loadings shovsed positive values. And there were no near-zero standard errors for
the factor loadings and path coefficients, which could have indicated estimation
problems. Also all of the estimated t values for factor loadings were significantly different
from zero. Of great interest in this analysis, are the path coefficients for the causal paths
that constitute the structural portion of the model. The path coefficients for the path
Decmakcap95 to Psyout95, Jobstress95 to Psyout95, and Jobstress95 to INT95 were
significant. The path from INT95 to Psyout95, Workrelation95 to Psyout95,
Decmakcap95 to INT95, and Workrelation95 to INT95 were nonsignificant. But, the path
for INT95 to Psyout?5 is 1.70 (t-value), which is nonsignificant at the 5% level, but very
close to 1.96 (Figur: 3 displa}yed unstandardized and standardized path coefficients for
initial model 1). We will keep this path in the model when we decide to modify our
model. And the t value for Workrelation95 to Psyout95 was 1.28, which was not
signtficant, but we want to keep this for the moment, since we don’t want to make many

modifications at this stage.
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The R-square value for the endogenous variables shows that the independent F
variables accounted for 71% of the variance in Psyout9S and 41% of the variance in
INT9S.

Reviewing the residual matrix and normalized residual matrix: unfortunately, the
table of normalized residuals from the output did not show strict symmetry and centering
around zero for both data sets.

Although some overall fit indices are in the acceptable range, our imtial
theoretical model cloes not provide a fully acceptable fit to the data. So we try to modify
the model to producze a better fit.

Models mzy be modified in several ways: they are most frequently modified by
either fixing causal paths at zero (e.g., eliminating a nonsignificant path from the model),
or freeing causal paths to be estimated (i.e., adding new paths to the model). In our case,
eliminating a nonsignificant path is necessary. The first parameter listed is the one that
would result in the least change in chi-square if deleted; the second parameter listed
would result in the second-least change, and so forth. From the result of the Wald test, the
first parameter listed in the result is VarES, and the last entry is CF3F5 (covariance
between Decmakeap95 and Jobstress95), the covariance between F3 (Decmakcap95)
and FS (Jobstress95). The error terms and covariances are generally estimated in an
analysis. So we will disregard the Wald test results for VarES and CF3FS5 for the moment.
The others are F2F4 (the path from Workrelation9S to INT9S), F2F3 (the path from
Decmakcap95 to INT9S), and F1F4 (the path from Workrelation95 to Psyout95). We

should be cautious 10 make only a few modifications initially, and the safest approach to
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modifying models is to change just one parameter at a time. We choose F2F4 to be

eliminated, which v/ould result in the least change in chi-square compare to F2F3 and

F1F4.The Wald test suggests that model chi-square will only change 0.12 (a

nonsignificant amount) if this path was deleted, i.e., it was possible to delete the path

from Workrelation95 to INT95 without a significant increase in model chi-square.

We therefore re-estimate our model with PF2F4 fixed at zero, and then review the

results to see if this gets a better fit. Once again, overall goodness of fit indices for the

modified model was acceptable. Tables 2, 3, 4, 5, and 6 show the goodness of fit indices,

estimates of path co:zfficients and factor loading coefficients, respectively.

Table 2 Goodness of Fit Indices for Standard model (data 95) with effect indicators

Chi-Square (DF) GF1 AGFI CF1 NFI NNFI
Initial model 1(95) 266.4(80) 0.899 0.849 0.868 0.82 1 0.826
Modified model 266.6(81) 0.896 0.85 0.868 0.82 | 0.829
1(95)
Table 3 Sums of Standardized Path coefficients to “Psyout”
Initial model 1 (data95)
TO INT95 | INT95 TO PSYOUT | INDIRECT | DIRECT | TOTAL
0.20
Decmakcap95 0.05 0.01 -0.22 -0.21
Workrelation95 0.035 0.007 0.13 0.137
Jobstress95 0.66 0.132 0.70 0.832
Table 4 Sums of Standardized Path coefficients to “Psyout”
Modified model 1 (data95)
TOINT95 | INT95 TO PSYOUT | INDIRECT | DIRECT | TOTAL
0.21
Decmakcap95 0.07 0.014 -0.21 -0.196
Workrelation95 NA NA 0.12 0.12
Jobstress95 0.64 0.134 0.68 0.814

Table 5 Unstandardized and Standardized loadings for effect indicators (initial model 1)
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From Decmakcap95 to From Workrelation95 to From Jobstress95 to
EFF95 ] 5.35 0.42 TEAM9S 1.00* 0.79 | ROLE9S 1.00* { 0.70
READY9S5 | 1.00* 0.44 COWORKS9S5 9.39 0.66 PSY95 7.82 1 0.54
COPACT95 | 6.1¢ 0.55 SUPWK95 8.61 0.58
AUTH9S | 7.00 | 0.77
JOBINF95 | 6.81 0.69

Table 6 Unstandardized and Standardized loadings for effect indicators (initial model 1)

From Psyout95 to From INT9S to
SAD9S 9.87 0.64 | FAMINT9S 4.85 0.40
ANX95 1.00* 0.65 JOBINT9S 1.00* 1.02
EXH95 11.93 0.89

Note: NA show: path is deleted; Set to 1.00* for one variable in each of latent variables in order to
obtain identification in the model.

In table 3, tte total effect on psyout95 was calculated as the sum of direct and
indirect effect. For example, the total effect from Decmakcap95 on Psyout95 was
calculated as:

Total effect = Direct effect + Indirect effect = (-0.22) + 0.05x0.20 =-0.21

We list stanclardized path coefficients in table 3 and 4 in order to compare the
effects in our models, since unstandardized path coefficients depend on the units which
the variables are scaled. For example, the total of standardized path coefficients for
Decmakecap95 to Psyout9S was —0.21 and for Workrelation95 to Psyout95 was 0.137
in the initial model. The total of standardized path coefficients for Jobstress95 to
Psyout95 was 0.832. This indicated a larger average change in standard deviation units of
Psyout95 for a one standard deviation difference in Jobstress95 than for a one standard
deviation difference in Workrelation95 (or Decmakcap95) net of the other vanables.

The greater relative influence of Jobstress9S is evident.
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Figure 3 standard model with effect indicators (95) (initial model): Unstandardized
(bracketed value) and standardized path coefficients appeared on Single-headed Arrows;

correlations appeared on Curved Double-Headed Arrows; Arrows for Error terms.
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From above tables, we noted that the goodness-of-fit indices did not improve
much. We then conclude that there are not big difference between our initial model and
modified model. This we suggest keeping initial model as our desired model. We have
diagrams for initial riodel and modified model as above.

(2) Standard models with cause indicators (model 3)

In the fitting of this standard model with cause indicators (data95), convergence
problems arose. Ind:ed, the convergence criterion was not satisfied; that is, the fitting
algorithm did not converge. The fitting functions generally require iterative numerical
procedures to obtain solutions. When the values for the unknown parameters in two
consecutive steps differ by less than some preset criterion, the iterative process stops.
Nonconvergence occurs if the values are insufficiently close after repeated iterations.
Bollen noted that whether estimates converge or not depends on several factors [5]. We
will discuss this topi: in next chapter. Thus estimates from nonconvergent runs should be
considered very czutiously, since they might not be used to give substantive
interpretations.

There were near-zero standard errors for some of our factor loadings (e.g., the
estimated factor loading for cause indicator EFF95 to Decmakcap95 was 0.000147). This
indicated that an estimation problem occurred in this model.

Overall, we reject the stahdard model with cause indicators. We put some tables
that were relative to the outputs for model 3 (data95) in appendix 4 (a).

(3) Standard model with mixed indicators (model 5).

We explored this mixture case here and situation becomes more complicated.
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The first troublesome issue was the iteration problem, as in model 3. And the
second was that there existed near-zero standard errors for some of the estimated factor
loadings. Therefore this model was not reliable either. Similarly we have some tables

presented for this model in appendix 4 (b).

5.2.2 Nonstandard model (data95)
(1) Nonstandard model with effect indicators (model 2)

Before we looked at the model fitness, both SAS log file and output files were
checked, and there were no errors in both files. The information from the output showed
that the analysis was based on 327 observations and 15 variables. The number of data
points associated with the analysis was 120, which 1s much greater than the number of
parameters to be estimated, since there were 42 parameters to be estimated. We also
noted that the conve-gence criterion is satisfied.

Then we assess the fit between the model and data. The chi-square test for the
present analysis was 280.8 with 78 degrees of frgedom, which was highly significant.
Since the chi-square test is sensitive to sample size, normality distribution, etc, we do not
rely on this test only. Some of the other fit indices will be considered. The overall fit

indices did not show a very bad fit. The table lists these indices as follows:

Table 7 Goodness-of-fit indices for model 2 (data95)

Chi-Square (DF) GFI AGFI CFI NF1 NNFI
model 2 (95) 280.8 (78) 0.896 0.840 { 0.856 0.814 0.806

We look at the factor loadings and path coefficients. All factor loadings that were

tested have t value greater than 1.96, significantly different from zero. Of great interest in
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our analysis, are thz path coefficients for the causal path that constitute the structural
portion of the model. We noticed that the both causal paths from FAMINT9S to
Psyout95 and from JOBINTY5 to Psyout95 showed negative values and the t-tests were
nonsignificant. But we expect these two paths to have positive signs, and show
FAMINT95S and JOBINT95 affect Psyout95 significantly. This is very important
finding because the model we want to test should at least make sense. Basically we tend
to reject this non-standard model with effect indicators.

We list the sandardized path coefficients for Model 2 in Table 8.

Table 8 Standardized Path coefficients to “Psyout”

TO TO FAMINT | JOBINT | INDIRECT | DIRECT
FAMINT | JOBINT TO TO
PSYOUT | PSYOUT
-0.15 -0.26
Decmakcap95 -0.08 -0.10 0.038 -0.63
Workrelation95 0.31 0.43 0.158 1.69
Jobstress95 0.51 1.07 -0.355 4.10

(2) Non-standard models with cause indicators (model 4)

We explored the non-standard model with effect indicators, and we found that the
model did not fit well. To determine the causes of the poor fit, we considered the
possibility that the definition of all indicators as effect indicators might be mappropriate.
Just like standard models, for some of the latent variables, we consider whether cause
indicators are relevent to three of the latent variables. Decmakcap95 could be thought of
as a composite variable determined by EFF95, READY9S5, COPACTIS, JOBINF9S,

and AUTHO9S. Also, Workrelation95 could be viewed as a composite vartable
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determined by TEAM9S5, COWORKHY95, and SUPWKO9S. Jobstress95 could be a
composite variable determined by ROLE9S and PSY9S.

However, we again had an iteration problem. The goodness-of-fit indices, and
path and factor loading coefficient estimates are presented in tables in appendix 4 (c).

(3) Nonstandard model with mixed indicators (model 6)

Model 6 include one latent variable (Decmakcap95) with both cause and effect
indicators loaded on it, as happened for the standard model with mixed indicators case
(model 5). See figur: 4(f) in appendix 1 for more information. But unlike model 5, there
was no iteration problem and other errors involved in this model. The program’s
convergence criterio1 was satisfied.

The goodness-of-fit indices are discussed first. Overall, the indices did not show
very good fit. The GFI was close to 0.89, and the CFI was almost 0.84, but NNFI was
near 0.72, which is rather poor (see Table 9 Goodness-of-fit indices for model 6 for these

relative indices).

Table 9 Goodness-of-fit indices for Model 6

Chi-Square (DF) GFI AGFI CFI NFI NNFI
model 6 (95) 302.8 (63) 0.888 0.786 0.829 0.800 | 0.716

Looking at the estimated factor loadings, we found that not all of them were
significant different from zero. The t values of factor loading estimates for SAD9S,
ANX95, and EXH95 (they are effect indicators) were all significant. Meanwhile the t
values of factor lozding estimates for ROLE9S and PSY95 (both of them are cause

indicators) were significant also. As for the indicators loaded on Decmakcap95, only one
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showed a significant t value, though all values were positive. The same problem occurred
in the composite variable Workrelation95. Even worse, there were negative values for
two of them, which was incompatible with the measurement model.

The estimates of path coefficient showed the expected sign and had fairly high
magnitude as we hypothesized. Decmakcap95 showed negative significant effect on
Psyout95, while JOBINT and Jobstress95 showed positive significant effects on
Psyout95. The factor loading and path coefficient estimates were presented in Table 10,
Table 11, and Table 12 respectively.

Overall, this nonstandard mode! performs fairly well, although the results (some
estimates of factor loading) did not seem very reasonable. Thus there was not strong,

consistent support for this model fit to the data. We can mark this model as a questionable

model.
Table 10 Unstandardized and Standardized factor loadings for cause indicator
To Decmakcap9s To Workrelation95 To Jobstress95
JOBINF95 2.49 0.80 TEAM95 -1.10 -0.36 ROLE9S 4.36 0.70
AUTH95 | 1.00* 0.30 COWORKS95 1.00* 0.84 PSY95 | 1.00* 0.50
SUPWKG93 -1.91 -0.83

Table 11 Unstandardized and Standardized loadings for effect indicators

EFF93 281 0.31

FROM DECMAKCAPO9S TO | READY95 29| 034
COPACT95 3.0 041

SAD97 9.78 { 0.64

From Psyout9s to | ANX97 1.00* { 0.65

EXH97 11.8 | 0.89
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Table 12 Sums of Standardized Path coefficients to “Psyout”
TO TO FAMINT { JOBINT | INDIRECT | DIRECT
FAMINT | JOBINT TO TO TOTAL
PSYOUT | PSYOUT
0.08 0.43
Decmakcap95 0.04 0.05 0.023 -0.16 -0.135
Workrelation95 0.10 0.14 0.068 -0.05 0.013
Jobstress9s 0.12 0.50 0.225 0.38 0.605
5.3 1997 cross-sectional models

5.3.1 Standard models (data97)

(1) Standard model with effect indicators (Model 1)

Now we discuss model 1 for the 1997 data. We got very similar results in model 1

for both 1995 and 1997 data. The program executed well. There were 323 observations

and 15 variables, with 40 parameters to be estimated in this analysis.

The goodness-of-fit indices (in table 13) indicated a relatively good overall fit as

well. Significance tests for path coefficients appeared in table 14. The signs of these

coefficients were as expected, i.e., interference, job stressors were positively related to

psychology outcomes, and decision-making capacity was negatively related. We found

that work relationships did not show a significant effect on interference and

psychological outcomes. The very small positive values indicated a small effect on

interference and psychological outcomes. The estimated factor loadings were all

significant (see table 15 for details).

Table 13 Goodness-of-fit indices for Model 6

Chi-Square (DF)

GFI

AGF1

CF1

NF1

NNFI

mode} 1 (97)

288.5 (80)

0.891

0.837

0.876

0.838

0.837
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Table 14 Sums of Standardized Path coefficients to “Psyout”

TO INT97 | INT97 TO PSYOUT | INDIRECT | DIRECT | TOTAL

0.30
Decmakcap97 -0.09 -0.027 -0.21 -0.237
Workrelation97 0.07 0.021 0.10 0.121
Jobstress97 0.65 0.195 0.68 0.875

Table 15 Unstandardized and Standardized loadings for effect indicators

From Decmakcap97 to From Workrelation97 to From Jobstress97 to
EFF97 4.43 0.47 TEAMO97 1.00* | 0.83 | ROLES97 | 1.00* | 0.69
READY97 | 1.00* 0.31 | COWORKS97 11.43 0.83 PSY97 896 | 0.62
COPACT97 4.52 0.50 SUPWK97 9.02 1 073

AUTH97 4.92 0.71
JOBINF97 4.98 0.80

From Psyout97 to From INT97 to
SAD97 11.98 0.73 | FAMINT97 6.22 045
ANX97 1.00* 0.70 JOBINTS7 1.00* 1.02
EXH97 13.83 0.87

Note: Set to 1.00* for one variable in each of latent variables in order to obtain identification in the model.

(2) Standard model with cause indicators (model 3)

There was thz same iteration problem with 1997 data, as for the equivalent model
for data95. The relevant tables were attached in appendix 4(d).

(3) Standard model with mixed case (model 5)

Unlike model 5 for data95, the program for this model with 1997 data runs well.
There was no error in either log or output files. The convergence criterion was satisfied.
That was an interesting finding: with the same hypothesized models, different data may

lead to two different results. We present some results of our analysis in tables 16-19:

Table 16 Goodness-of-fit indices for Model 5

Chi-Square (DF) | GFI | AGFI | CFI | NFI | NNFI
model 5 (97) 2899(65) | 089 o080] 0871 084 0.78
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Table 17 Unstandardized and Standardized factor loadings for cause indicators

To Decmakcap97 To Workrelation97 To Jobstress97
EFF97 1.15] 0.35 TEAM97 { 0.80 042 | ROLE97 | 433 [ 0.62
READY97 1.13] 0.24 | COWORK97 | 1.00* 0.80 PSY97 | 1.00* | 0.57
COPACT97 1.15 | 0.34 SUPWK97 | -1.33 -0.53
JOBINF97 1.05{ 0.91
AUTH97 1.00* | 0:14

Table 18 Unstandardized and Standardized loadings for effect indicators

From Psyout97 to From INT97 to
SAD97 11.88 0.73 | FAMINT97 | 6.29 0.45
ANX97 1.00* 0.70 JOBINT97 { 1.00* 1.01
EXH97 13.71 0.88

Table 19 Sums of Standardized Path coefficients to “Psyout”

TO INT95S | INT95 TO PSYOUT | INDIRECT | DIRECT | TOTAL

0.522
Decmakcap95 -0.085 -0.044 -0.075 -0.119
Workrelation95 -0.034 -0.018 -0.130 -0.148
Jobstress95 0.480 0.251 0.377 0.628

From the table 16, we found that those fit indices looked not bad, most of them
were close to 0.90, although NNFI was only 0.78. However, the estimates of factor
loadings for some cause indicators had negative values, e.g., the t value SUPWK97 to
Workrelation97 was —1.33. That contradicted our prediction that the coefficients of

SUPWKO97 should be positive. Therefore, we question this hypothesized model.

5.3.2 Nonstandard models (data97)
(1) Nonstandard models with effect indicators. (Model 2)

This model had similar flaws as did model 2 for data95. Though the program ran

well, some path coefficients didn’t have the expected sign, e.g., the path from


http:SUPWK.97
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FAMINT97 and JOBINT97 to Psyout97 showed negative sign, which indicated that
FAMINT and JOBINT negatively associated with Psyout97. That did not make sense and
contradicted our hypothesis and previous study. So we tend to reject this model for
data97. See tables ir appendix 4 (e) for details.

(2) Nonstandard model with cause indicators (model 4)

The program: for this model did not perform well: the iteration problem arose. We
reject this model as well. The relevant tables are in appendix 4 (f).

(3) Nonstanclard model with mixed indicators (model 6)

The prograrn for nonstandard model with mixture indicators did not produce an
iteration problem or other errors. However, some estimated loadings were not significant
and did not show the expected signs. We might not reject this model, but say this model

is questionable. See tables in appendix 4 (g) for model 6 (data97).

5.3.3 Comparison of 1995, 1997 results

Combined, we discuss our results for cross-sectional data. In summary, we have
explored six different models for each year (1995 and 1997). In order to get a clear
picture for all of the models tested, we present a table summarizing the results of these

model fits.
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Table 20 Summary table of the results of our model fits

MODEL CONVERGENCE | ODODNESS- | PREDICE B0 RsASpa
Model 1(95) | Yes not bad make sense ‘acceptable
Model 2(95) | Yes not bad conflict(path coeff.) | unacceptable
Model 3(95) | Nc¢ good conflict(loadings) unacceptable
Model 4(95) | Nc good conflict(loadings) unacceptable
Model 5(95) | Nc poor conflict(loadings) unacceptable
Model 6(95) | Yes poor conflict(loadings) questionable
Model 1(97) | Yes not bad make sense acceptable
Model 2(97) | Yes not bad conflict(path coeff.) | unacceptable
Model 3(97) | No good conflict(loadings) unacceptable
Model 4(97) | No good conflict(loadings) unacceptable
Model 5(97) | Yes poor conflict(loadings) questionable
Model 6(97) | Yes poor conflict(loadings) questionable
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The nonstandard models with effect indicators for both dat95 and data97 were not
reliable, since the magnitudes of effects did not conform to previous research, and the
estimated path coefficients showed signs in the “wrong’” direction. There existed iteration
problems -among soine of the rest of the models, which are standard and non-standard
models with cause ndicators (data95 and data97), standard model with mixture case
(data95). Thus we reject those models. The models with cause indicators and mixed
indicators also had some nonsignificant factor loadings, and some of them showed
negative signs, opposite to those expected. These problematic issues prevent us choosing
them as our reliable nodels. Somehow, unstandard model with mixed indicators (data95)

and both unstandard and standard models with mixed indicators (data97) did not involve
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in the iteration problems. They had some negative value factor loadings. We tend to leave
them as questionable models.

Therefore, the suitable model we will take i1s the standard model with effect
indicators for data9: and data97. We concluded that data95 and data97 have very similar
results (see diagrams on the following pages).

The goodness of fit indices showed they all in acceptable ranges, though the -
square values for both models were statistically significant. Technically, when the proper
assumptions are met, the chi-square statistic may be used to test the null hypothesis that
the model fits the data. In practice, however, the statistic is very sensitive to sample size
and departures from multivariate normality, and will very often result in the rejection of a
well-fitting model. For this reason, it has been recommended that the model chi-square
statistic be used as a goodness of fit index, with smaller chi-square values (relative to the
degrees of freedom) indicative of a better model fit [9]. In our standard models for data95
and data97, the chi-cquare values relative to degrees of freedom were 266.4/80 (i.e., 3.3),
and 288.5/80 (i.e., 3.5) respectively. Those values were not very big.

It was seen that all coefficients for both models were in predicted directions. R-
square values also substantial. However, a review of the model’s residuals showed
asymmetry for both models. Some of the normalized residuals were relatively large. We
can remedy them By either modifying our initial theoretical models or our measuremeﬁt

models.
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5.4 Longitudinal Model (95—97)

Now we discuss the result for our longitudinal model. Figure 14 (see Appendix 1)
shows all the paths that were tested. We used effect indicators for all the latent variables.
Only the standard model was employed. Unfortunately there was an iteration error again,
so the results of the output were not reliable. We still show the goodness-of-fit table for

this longitudinal model (model 7). The overall fit indices showed poor fit to the data:

none of them reached 0.72.

Table 21 Goodness of fit indices for Model 7

Chi-square(DF) | GFI [ AGFI [ CFI_| NFI | NNFI
Model 7 |2567.6 (383) 071 | 065] 047] 043] 040

Since the analysis was based on 308 observations and 30 variables, and the
number of parameters to be estimated was 80, the sample size was not big compared to
the number of pararaeters to be estimated. On the other hand, in the exploratory factor
analysis stage, we noticed that there was a minor difference between the factor constructs.
READY95 was loeded on Decmakcap95 (the standardized factor loading was 0.58,
which is highly sigrificant). But READY97 loaded on two of the factors; this variable
should therefore nor be used in interpreting the factors. Thus in order to respecify our
longitudinal model, we analyze another hypothesized model (model 8) including all the
variables for 95 and 97 except for READY95 and READY97.

This time, the convergence criterion was satisfied. There were no errors in the

SAS log file and output file. Attached are some tables for Model 8.
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Table 22 Goodness of fit indices for Model 8

Chi-Square(DF) GFI | AGFI | CFI NFI | NNFI
Model 8 1292.5(328) | 0.757 | 0.700 | 0.750 | 0.695 | 0.712

Table 23 Standardized estimates for path coefficients (model 8)

To F2 To F1 To F7 ToF8 | ToF9 To F10 To F6
F3 0.056 | -0.227 0.812
F4 -0.0032 0.103 0.659
F5 0.652 0.550 0.732
F8 -0.086 -0.087
F9 -0.064 -0.062
F10 0.347 0.409
F2 0.300 0.447
F1 0.278
F7 0.346

Note: F1 (Psyout95), F2 (INT95), F3 (Decmakcap95), F4 (Workrelation95), F5 (Jobstress95), F6
(Psyout97), F7 (INT97), F8 (Deacmakcap97), F9 (Workrelation97), F10 (Jobstress97).

In our longitudinal model from data95 to data97 (model 8), we noted that the
estimation of this model, as presented in Figure 14, revealed a significant model chi-
square value (chi-square is 1292.5 with 328 degrees of freedom), and values of GFI,
AGFI, CFI, NFI, and NNFI were 0.76, 0.70, and 0.75, 0.69, and 0.71 respectively,
indicating that the fit between model and data is still not good. The overall fit indices
didn’t show a good fit. But compared with model 7, this model is much better.

T};e factor loadings were reviewed first. The t-values for all factor loadings
proved to be significant. Most of the path coefficients were significant also, and all of
them were of reasonable magnitude. The results were consistent with our cross-sectional
models, which is i1mportant for this longitudinal model. The t-values for F3

(Decmakcap95) to F2 (INT9S), F4 (Workrelation95) to F2 (INT95), F4 (Workrelation95)

to F1 (Psyout95), F8 (Decmakcap97) to F7 (INT97), F9 (Workrelation97) to F7 (INT97),
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and F9 (Workrelation97) to F6 (Psyout97) were nonsignificant. The others were all
significant. The diagram (Figure 7) of this longitudinal model is presented as follows.

It was very clear that job stressors contributed the greatest eftects on
psychological outcomes. Higher decision-making capacity and better work relationships
are related to better psychological outcomes. Decision-making capacity, work
relationships, and job stressors in 1995 affect their values in 1997. Interference in 1995
and psychological outcomes in 1995 also predict their values in 1997. The results for

longitudinal model were thus consistent with those of cross-sectional models.
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6 Discussion
6.1 Review of results

Data were analyzed using the SAS System’s CALIS procedure. These analyses
used the maximum likelihood method of parameter estimation, and all analyses were
performed on the vartance-covariance matrix.

We construc: cross-sectional and longitudinal studies for our analysis. For cross-
sectional models, we choose model 1 (standard model with effect indicators) as our final
model. The following conclusions are valid both for 1995 data and 1997 data:

¢ Job stressors are a very important predictor of interference (which measured the
effect of family li®e on work performance and effect of job on family life) and
psychological outcomes (a latent construct mapping onto measures of anxiety, depression
and emotional extaustion). And they also predict interference and psychological
outcomes. The total effect to Psyout95 and Psyout97 are 0.832 and 0.875, respectively. In
comparison with decision-making capacity and work relationships, the stronger relative
influence of job stresssors to psychological outcomes is evident.

0_ The total effect of work relationships on psychological outcomes are 0.137
(1995) and 0.121 (1997). The unstandardized path coefficients showed that work
relationships did not affect interference and psychological outcomes significantly in both
years (for example, there were non-significant t-values 0.35 and 0.57, respectively, in the

1995 model). This indicated work relationships didn’t play an important role.
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¢ Decision-aking capacity is associated in with psychological outcomes in the

opposite direction. The total effects from decision-making capacity to psychological

outcomes are --0.21 (1995) and —0.237 (1997). The need for decision-making capacity
becomes important for hospital staff to face the big challenges of their jobs.

¢ For our logitudinal model, we have similar results in direct and indirect effect
on psychological outcomes with the cross-sectional models. As expected, the
psychological outcomnes in 1997 were not only influenced by decision-making capacity,
work relationships and job stressors directly or indirectly via interference in 1997, but
also influenced by these factors in 1995. For example, psychological outcomes in1995
have effect on psychological outcomes in1997 (the standard path coefficient is 0.278).
And interference in 1995 predicts interference in 1997 (the standard coefficient is 0.44).
6.2 What SEM has added to previous analyses?

In our standard models for data95, and data97, we found that decision-making
capacity and job stressesors, impact on psychological outcomes both directly and
indirectly via interference. Higher levels of decision-making capacity are associated with
decreased- psycholozical outcomes. Job stressors such as lack of role clarity and job
demands are closely related to increased psychological outcomes. All those conclusions
are consistent with previoué analyses.

In our cross-sectional study, we find that there is some minor difference between
model 95 and model 97 regarding the role of decision-making capacity. In the first year
when re-engineering started, decision making capacity did not show a significant effect

on interference. But we notice that in 1995 the t-values are both positive for the path
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from decision-making capacity to interference and from work relationships to
interference, while in 1997 the corresponding t-values for decision-making capacity are
negative (but quite small). This may indicate some subtle changes in their effect over
time. We remark that the higher levels of decision-making capacity are associated lower
interference in 1997

We have the similar conclusions from the longitudinal model (95-97). Decision-
making capacity in 1995 showed a positive direct effect on interference in 1995, but
decision-making capacity in 1997 appeared to have a negative effect on interference in
1997. We emphasiz: that the longitudinal study has the advantage of analyzing the cross-
sectional and longitudinal relationships among our model constructs.

In our models, work relationships does not display a significant effect on
psychological outcomes. This is a contrast to some previous studies, although power in
our study may be liraited.

6.3 Limitation

SEM requires a sound theoretical perspective. A good design guided by a
substantive theory and prior research is required to get a better-fit model. Thus a
comprehensive effort to identify relevant variables and their relationships is highly
recommended. This will help to determine valid and reliable indicator variables of latent
variables, provide a theoretical perspective for our model, and help us to establish latent
variable relationships grounded in prior research studies. A well-fitting model is not
necessarily unique, there are probably other reasonable models for the same data. We may

have different model designs and therefore get different explanations.
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Convergence failures involved in some of our models. Nonconvergence occurs if
the values are insufficiently close after repeated iteration [S]. Whether estimates converge
or not depends on several factors. First, the criterion itself affects convergence. It defines
what 1s “insufficiently close”. This value can be altered. But we should be aware that the
smaller the number, the more iterations are typically required. Second, convergence is
affected by the number of iterations allowed. A third factor making nonconvergent
solutions more or less likely are the starting values for the unknown parameters. The
closer these values are to the final estimates, the fewer steps are needed to converge.
Other causes of nonconvergence include poorly specified models and sampling
fluctuations in the variance and covariances of the observed variables. These occurred
quite frequently with small samples and few choices (only two variables) per factor. We
have two latent variables (four for the longitudinal model) that have only two indicators:
job stressors and interference. That might be the reason for nonconvergence.

We now discuss issue of the names of latent variables. This may depend on
whether the measured variables (scales) are considered to be effect or cause indicators.
We may not correctly describe which latent variables are related to the indicators. Is the
named and defined latent variable truly related to the indicator, or is it some other latent
variable linked to tke measure? Often the concept that the latent variable represents is not
clearly defined and not enough attention 1s given to tests of measurement validity. For
example, the laten: variable “‘decision-making capacity” may be better considered a

composite variable, which is. influenced by “EFF, READY, COPACT, JOBINF and
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AUTH?” as indicators. In fact, “decision-making capacity” in our final model is treated as
a latent variable. A cifferent naming might be possible here.

Goodness of fit measures are sensitive to sample size, method of estimation, and
model misspecification. It should be noted that the chi-square criterion for model fit has a
number of weaknesses, and should be used only with caution. Our data are not strictly
normal distributed, and outliers might exist. This might be one reason that make our
cross-sectional models not fit very well. The sample size for the longitudinal model is not
big enough, so the longitudinal model didn’t fit data well.

In order to improve our models, we might first consider measurement. Some of
the results of the factor analysis solution fnay not be accurate. For example, some of the
constructs are less than satisfactory in the sense that their factors displayed meaningful
loadings for less than three variables. The more variables that are used to assess the
construct, the more reliable the model will be. Adding new items or new scales to the
questionnaire would be a suitable way to get a better measurement model. But this may
need a new large sample. If we have very large sample size, it will be possible to
generalize to other samples.

Another way to improve our model for a better fit is to respecify the model. In our
study, we have tried different models embedding cause indicators. Although some
problems arise (for example, problems of non-convergence), we emphasize that we are
not taking the position that one should not use cause indicators in models. On the
contrary, one should evaluate whatever model is most appropriate and useful in practice.

The theory of the cause indicator model is currently not as complete as the theory of the
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effect indicator moclel. This is one of the main reasons behind some of the problems

associated with causz indicators’ models. We leave this for future research.
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Appendix 1
We explain some notations we use. The ovals are for latent variables, and the

rectangles are for otserved variables in the diagrams (in Figures).

Decision-making capacity (Decmakcap),

Work relationships (Workrelation),

Job stressor (Jobstress),

Psycholcgical Outcomes (Psyout),

Readiness for change (READY),

Active coping style (COPACT),

Job self-zfficacy (EFF),

Skill discretion (DISC),

Decision authority (AUTH),

Psychologically, job demands (PSY),

Role un-clarity (ROLE),

Job influence (JOBINF),

Team work (TEAM),

Co-workers’ support (COWORK),

Supervisor support (SUPWT),

Depression (SAD),

Anxiety (ANX),

Emotional exhaustion (EXH),

72
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Family I[nterference (FAMINT),

Job Interference (JOBINT).
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Variable Mean | StdDev | Miss Range | Variance | Skewness | Kurtosis
EFF95 3.58 0.76 0 3.60 0.58 -0.18 -0.49
READY95 3.50 0.60 0 3.67 0.36 -0.15 -0.05
TEAMOS 3.79 0.74 3 3.83 0.55 -0.50 0.18
ROLE95 2.36 0.76 1 4.00 0.58 0.40 0.39
COPACTY9S | 3.52 0.65 2 3.80 0.42 -0.39 0.21
ANX95 1.46 0.52 1 3.00 0.27 1.92 4.75
FAMINT9S5 | 1.42 0.45 8 2.00 0.21 1.22 1.11
JOBINT9S 1.80 0.53 4 2.00 0.28 0.33 -0.49
DISC95 3.73 0.69 0 4.00 0.47 -0.76 0.60
AUTH9S 3.53 0.81 0 4.00 0.66 -0.32 -0.21
PSY95 3.52 0.66 0 4.00 0.44 -0.32 0.50
COWORKDS9S5 | 3.86 0.63 1 3.29 0.40 -0.46 0.15
SUPWKO95 3.35 1.02 3 4.00 1.04 -0.37 -0.44
EFF97 3.57 0.73 0 3.80 0.54 -0.18 -0.20
READY97 3.52 0.58 1 2.83 0.33 0.10 -0.59
TEAM97 3.61 0.81 0 4.00 0.65 -0.43 -0.12
ROLE97 2.53 0.81 0 4.00 0.66 0.20 -0.20
COPACT97 |3.48 0.61 2 3.20 0.37 -0.32 0.24
ANX97 1.68 0.60 5 3.00 0.36 1.20 1.34
FAMINT97 | 1.50 0.47 7 2.00 0.22 0.71 -0.28
JOBINT97 1.94 0.54 5 2.00 0.29 0.06 -0.65
SAD97 1.72 0.52 5 2.40 0.27 0.92 0.49
EXH97 2.57 1.53 1 6.00 2.34 0.24 -1.02
JOBINF97 2.78 0.73 0 3.80 0.54 0.24 0.05
DISC97 3.77 0.62 1 3.67 0.39 -0.67 0.68
AUTH97 _ 3.51 0.80 1 4.00 0.63 -0.43 0.08
PSY97 3.75 0.65 2 3.80 0.42 -0.21 0.33
COWORK97 | 3.69 0.64 0 3.57 0.41 -0.55 0.54
SUPWK97 3.00 1.08 6 4.00 1.17 -0.08 -0.73

Table 24 Descriptive statistics
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Figure 15 Histograms of some of the variables
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Figure 16 Histograms of some of the variables
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Appendix 2 (b)

| 2 : 4 5 6 7 8 9 10 Il 12 13 14 15 16
1. EFF 0.58| 0.25| 0.16]-0.18} 0.28]-0.23} -0.10| -0.08 (-0.251-0.17| 0.28; 0.22| 0.25{ 0.08; 0.15} 0.18
2. READY 0.1910.56| 0.08| 0.08! 0.33]-0.02{ 0.06( 0.14[-0.07| 0.06{ 0.32{ 0.34| 0.264 0.25( 0.12} 0.14
3. TEAM 0.26] 0.08| 0.49]-0.33} 0.33}-0.17} -0.03| -0.18-0.13]-0.21} 0.3t| 0.28} 0.36}-0.02} 0.53| 047
4. ROLE -0.16} 0.22] -0.30| 0.53| -0.22| 0.34; 0.12| 0.43] 0.32} 0.53| -0.13| 0.09| -0.07} 0.38} -0.22| -0.15
5. COPAC 0371042 034|-0.17] 0.53|-0.21} -0.04| -0.15{-0.25]-0.23; 0.41] 0.25| 0.31-0.05{ 0.24| 0.29
6. ANX -0.311006|-0.241 037} -0.18} 0.42} 0.18( 0.32} 0.64| 0.53| -0.16|-0.04| -0.09| 0.19} -0.17] -0.11
7. FAMINT -0.1010.111-0.08| 0.11} -0.0/] 0.28] 0.62| 0.40{ 0.30| 0.21( -0.02} 0.02| 0.07| 0.07| 0.05] -0.07
3. JOBINY -0.16]0.211-0.22| 043} -0.06| 0.50| 0.46| 0.59| 0.34{ 0.62} -0.01| 0.06f 0.01| 0.40; -0.07] -0.18
9. SAD -0.341 0.031-0.20) 0.36| -0.24| 0.65{ 033{ 0.5/] 0.48} 0.57| -0.15{-0.04} -0.07{ 0.18] -0.14| -0.14
10. EXH -0.251 0.181 -0.30| 0.54} -0.14| 0.59} 0.28| 0.67| 0.58] 0.59| -0.15] 0.02}{ -0.06| 0.43] -0.19] -0.15
11. JOBINF 0.331 0.26| 041]-0.14} 0.35|-0.20{ -0.07| -0.15{-0.22}-0.18| 0.60} 0.38| 0.58] 0.00{ 0.28| 0.29
12. DISC 0.2710.37] 025| 017} 0.26| 0.0/{ 0.11]| 0.13{ 0.00{ 0.09} 036] 0.63{ 0.55| 0.24| 0.36| 0.19
13. AUTH 0.2710.14| 038|-009) 0.26|-0.13{ 0.0/} -0.10]-0.17}-0.12} 0.62]| 0.48| 0.53] 0.06] 0.32} 0.29
14. PSY -0.061 0.301 -0.151 0.43} 0.00} 0.34] 0:/13} 04/} 032} 0.51] -0.08} 0.22}-0.02} 0.51} -0.07} -0.03
1SCOWORK | 0.2010.10| 0.621-0.23] 0.28}-0.25]| -0.02} -0.19]-0.20{-0.28] 0.34| 0.23{ 0.37]|-0.14] 0.43| 0.35
16. SUPWK 0.2010.09) 0.45]-0.13) 0.25)-0.07] -0.02) -0.191-0.141-0.17) 0.36) 0.13] 0.29|-0.17) 0.39] 036

Table 25 Pearson Correlations among Variables in 1995 and 1997

Note: CorreAIations above the diagonal are for 1995 data, below diagonal for 1997 data, on diagonal are
between 1995 and 1997 values; Sample sizes range from 327 to 346.
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Rotat>d Factor Pattern (Standardized Regression Cofficients)

Fac:or 1 Factor 2 Factor 3
EFF95 0.5] -0.06 -0.09
| READY95 0.58 -0.12 0.19 B -
TEAMO9S -0.05 0.74 -0.11
ROLE95 -0.15 -0.16 0.58
COPACTY9S | 0.58 0.03 -0.20
JOBINF95 0.62 0.11 -0.07
DISC95 0.29 0.33 0.39
AUTH9S 0.46 0.28 0.12
PSY95 0.04 -0.02 0.55
COWORKS9S | -0.06 0.69 0.003
SUPWK95 0.08 0.48 -0.08
Factor Structure (Correlations)
Facor 1 Factor 2 Factor3
EFF95 0.46 0.27 0.004
READY95 0.5 0.23 0.30
TEAMO9S 0.40 0.72 -0.17
ROLE95 -0.15 -0.30 0.56
COPACT95 | 0.56 0.41 -0.10
JOBINF95 0.68 0.50 0.03
DISC95 0.57 0.48 0.41
AUTH95 0.66 0.56 0.18
PSY95 0.12 -0.04 0.56
COWORKO9S | 0.38 0.66 -0.06
SUPWKO95 0.37 0.54 -0.10
Pearson correlation coefficients
JOBINT95 FAMINT95 Factor 1 Factor 2 Factor 3
JOBINT95 1.00 0.40 -0.03 -0.16 0.46
FAMINT9S5 0.40 1.00 0.002 -0.004 0.13
Factor 1 -0.03 0.002 1.00 0.78 0.21
Factor 2 -0.16 -0.004 0.78 1.00 -0.09
Factor 3 0.46 0.13 0.21 -0.09 1.00

Table 26 Exploratory Factor analysis of data9s



Appendix 2 (b)

Rotated Factor Pattern (Standardized Regression Coefficients)

Facor 1 Factor 2 Factor 3
EFF97 0.16 -0.05 0.37
READY97 -0.009 0.43 ~ 10.55 o o
TEAM97 0.4¢& -0.32 0.20
ROLE97 -0.02 0.60 -0.11
COPACT97 | 0.0« -0.02 0.65
JOBINF97 0.66 0.03 0.09
DISC97 0.52 0.41 0.11
AUTH97 0.8¢< 0.10 -0.14
PSY97 -0.04 0.58 0.09
COWORK97 | 0.4& -0.25 0.13
SUPWK97 0.3& -0.23 0.13
Factor Structure (Correlations)
Factor 1 Factor 2 Factor 3
EFF97 0.39 -0.09 0.47
READY97 0.2¢ 0.41 0.53
TEAM97 0.6< -0.39 0.50
ROLE97 -0.17 0.61 -0.14
COPACT97 | 0.4z -0.04 0.67
JOBINF97 | 0.71 -0.06 0.48
DISC97 0.5% 0.33 0.40
AUTHYS7 0.7¢ -0.004 0.35
PSY97 -0.06 0.58 0.05
COWORK97 | 0.6(: -0.32 0.43
SUPWK97 0.4¢ -0.28 0.36
Pearson Correlation Coefficients
JOEINT97 FAMINT97 Factor 1 Factor 2 Factor 3
JOBINTY97 1.00 0.46 -0.18 0.50 -0.09
FAMINT97 | 0.4¢ 1.00 -0.02 0.16 -0.01
Factor 1 -0.18 -0.02 1.00 -0.18 0.76
Factor 2 0.50 0.16 -0.18 1.00 -0.04
Factor 3 -0.09 -0.01 0.76 -0.04 1.00

Table 27 Exploratory Factor analysis of data97
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Appendix 3 (a)

In the following, we will show that the asymptotic distribution of (N-1) F is

x distribution under the null hypothesis, H,: S ==. Where @ is the unknown vector

contains the model parameters to be estimated, X is the covariance matrix written as a

function of 6. Here we will only deal with F,, ; the other two can be proved in a similar
way. Selecting /, so that X =S provides a standard of perfect fit against which to

compare H,. The H, could be any exact identified model since £ equals § in this case.

Based on H, the best we can hope is that Z=Ay ® Ay+0®;s exactly reproduces .

Since H, sets % to S, comparing logL, to logL, evaluates H, vs. H,. The natural
loganithm of the likelihood ratio, log (L,/L,), when multiplied by -2 is distributed as
chi-square variate when H | is true and (N-1) is large. In this case,

2log(L,/L,)=2logL,-2logL,

>

= (N =D{loglS|+ (=™ 8)]— (N - T)(loglS|+9)

= (N -1 )(logi +tr(ZA" S)—log|S| - q)

The quantity within parentheses in the last line of the above formula is exactly the

fitting function F,, evaluated at S and X. Thus, it shows that (N —1)F,, evaluated at &
1s approximately distributed as a chi-square variate.
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GFO Criterion Acceptable Level Interpretation
Chi-square Tabled Chi-square value Compare obtained chi-

Goodness-of —fit (GFI)
Adjusted GFI (AGFI)

Root mean Square
Residual (RMR)
Comparative Fit Index
(CFI)

Normed fit index (NFI)

Non-normed fit index
(NNFI)

Akaike information
criterion

0 (no fit) to 1 (perfect fit)
0 (no fit) t 1 (perfect fit)
Researcher defines level
0 (no fit) to 1 (perfect fit)
0 (no fit) to 1 (perfect fit)
0 (no fit) to 1 (perfect fit)

0 (perfect fit) to positive
value (poor fit)

square value for given df
Values close to 0.90 reflects
a good fit

Values adjusted for df, with
0.90 a good model! fit
Indicates the closeness of
to S matrix

Very close to 0.90 reflects a
good model fit

Very close to 0.90 reflects a
good model fit

Very close to 0.90 reflects a
good model fit

Compares values in
alternative models

T'able 28 GOF Criteria and Acceptable Fit Interpretation
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Appendix 4 (a)

(a) Standard model with cause indicators (data95)

Table 29 Goodness of Fit Indices for Standard model with cause indicators

Chi-Square (DF) GFI AGFI CFI NFI | NNFI
model 3 (95) 133.6 (41) 0945 | 0.838 0934 | 0912} 0.832
Table 30 Sums of Standardized Path coefficients to “Psyout”
TO INT95 | INT95 TO PSYOUT | INDIRECT | DIRECT | TOTAL
0.432
Decmakcap95 -0.032 -0.014 -0.232 -0.246
Workrelation95 -0.127 -0.054 0.064 0.010
Jobstress95 0.485 0.210 0.362 0.572
Table 31 Unstandardized and Standardized loadings for cause indicators
To Decmakcap95 To Workrelation95 To Jobstress95
U S U S U S
EFF95 | 1565522 0.57 TEAM95 0.69 0.33 | ROLE95 4.23 0.65
READY95 -83523 | -0.002 | COWORKS95 -1.68 -0.89 PSY95 1.00% | 0.55
COPACT95 | 1115793 | 0.423 SUPWK95 1.00* 0.81
AUTH95 701512 0.377
JOBINF95 1.00* 0.003

Table 32 Unstandardized and Standardized loadings for effect indicator

From Psyout95 to From INT9S to
U N U S
SAD9S 9.99 0.64 | FAMINTO9S 4.92 0.40
ANX95 1.00* 0.66 JOBINT9S 1.00* 1.02
EXHO95 12.10 0.89

Note: U represents for unstandardized loading

S represents for standardized loading ‘
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Appendix 4 (b)
(b) Standard model with mixed indicators (data95)

Table 33 GGoodness of Fit Indices for Standard model with mixed indicators

Chi-Square (DF) GFI | AGFI [ CF1 | NFI | NNFI
model 5 (95) 257.6(65) | 0.898| 0811 0863 0.830] 0.779

Table 34 Sums of Standardized Path coefficients to “Psyout™

TO INT95 | INT95 TO PSYOUT | INDIRECT | DIRECT | TOTAL

0.432
Decmakcap95 0.078 -0.145 -0.111
Workrelation95 -0.132 -0.011 -0.068
Jobstress95 0474 0.390 0.595

Table 35 Unstandardized and Standardized loadings for cause indicators

To Decmakcap¥s To Workrelation95 To Jobstress95
U S 8) S U S
JOBINF95 2.42 0.804 TEAM95 3354808 0.169 | ROLE95 4.23 0.65

AUTH9S | 1.00* [ 0292 COWORKS95 1.00* 0.0009 PSY95 1.00* 0.55

SUPWK9S | 49231949 0.910

- Table 36 Unstandardized and Standardized loadings for effect indicators

From Psyout95 to From Decmakcap95 to
U S U S
SAD9S 9.99 0.64 EFF95 2.75 0.31
ANX95 1.00* 0.66 READY95 2.80 0.34
EXH95 12.10 0.89 | COPACTI9S 2.90 041
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Appendix 4 (c)

(c) Nonstandard model with cause indicators (data95)

Table 37 Goodness of Fit Indices for nonstandard model with cause indicators

Chi-Square (DF) GFI AGFI CFI NFI | NNFI
Model 4 (95) 178.70 (39) 0.935 0.799 { 0.901 | 0.882 | 0.733
Table 38 Standardized Path coefficient estimates
TO TO FAMINT95 TO | JOBINT95 TO TO
FAMINT95 | JOBINT95 PSYOUT95 PSYOUT95 PSYOUT95
0.067 0413

Decmakcap95 0.133 0.07 0.209
Workrelation95 -0.10 -0.12 0.084
Jobstress95 0.10 0.49 0.358

Table 39 Unstandardized and Standardized loadings for cause indicators

To Decmakcap95 To Workrelation95 To Jobstress95
9] S U S U S
EFF95 -1.19 -0.70 TEAMO95 0.55 0.23 | ROLE95 4.22 0.66
READY95 0.639 0.18 | COWORKS95 -1.74 -1.07 PSY95 | 1.00* 0.54
COPACT95 -1.11 -0.46 SUPWKO95 1.00* 0.63
JOBINF95 -1.34 -0.38
AUTH95 1.00* 0.28

Table 40 Unstandardized and Standardized loadings for effect indicators

From Psyout9S to From Decmakcap9s to
U S U S
bAD9S 10.01 0.65 EFF95 2.75 0.31
ANX95 1.00* 0.66 READY95 2.80 0.34
EXH9S 12.01 0.88 1 COPACT9S 290 0.41
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Appendix 4 (d)

(d) Standard model with cause indicators (data97)

Tabl2 41 Goodness of Fit Indices for Standard model with cause indicators

Chi-Square (DF)

GFI

AGFI CFI NFI NNFI

model 4 (95) 96.3 (41)

0.959

0.880 0.967 0946 | 0916

Table 42 Sums of Standardized Path coefficients to “Psyout”

TO INT97 | INT97 TO PSYOUT

INDIRECT | DIRECT | TOTAL

0.507
Decmakcap97 -0.119 -0.060 -0.232 -0.292
Workrelation97 0.010 0.005 0.116 0.121
Jobstress97 0.476 0.024 0.357 0.381

Table 43 Unstandardized and Standardized loadings for cause indicators

To Decmakeap97 To Workrelation97 To Jobstress97
U S U S U S
EFF97 0.018 0.85 TEAM97 | -0.463 -0.204 ROLE97 | 4.248 | 0.600
READY97 -0.018 -0.12 | COWORK97 | -1.579 -0.875 PSY97 | 1.00* | 0.584
COPACT97 0.018 0.19 SUPWK97 1.00* 0.809
AUTH97 1.00* | 0.004
JOBINF97 0.018 0.18

Table 44 Unstandardized and Standardized loadings for effect indicators

B From Psyout97 to From INT97 to
U S U S
SAD97 1242 ] 074 FAMINT97 | 633] 045
ANX97 1.00* 0.71 | JOBINT97 | 1.00* 1.01
EXH97 1409 | 086
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Appendix 4 (e)

(e) Nonstandard model with effect indicators

Table 45 Goodness of Fit Indices for nonstandard model with effect indicators

Chi-Square (DF) GFI AGFI CF1 NFI NNFI
model 3 (97) 305.5 (78) 0.886 0.825 0.865 0.829 | 0.818
Te:ble 46 Sums of Standardized Path coefficients to “Psyout”
TO TO FAMINT | JOBINT | INDIRECT | DIRECT
FAMINT | JOBINT TO TO

PSYOUT | PSYQUT

-0.22 -3.62
Decmakcap97 -0.36 -0.45 -2.34
Workrelation97 0.62 0.76 3.80
Jobstress97 0.66 1.21 6.02
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Appendix 4 (f)

(f) Nonstandard model with cause indicators (data97)

Table 47 Goodness of Fit Indices for nonstandard model with cause indicators

Chi-Square (DF) GFI AGFI CFI NFI1 NNFI
Model 4 (97) 160.9 (39) 0.941 0.819 0.927 0.910 | 0.804
Table 48 Standardized Path coefficient estimates
TO TO FAMINT97 TO JOBINT97 TO
FAMINTY97 | JOBINT97 PSYOUT TO PSYOUT | PSYOUT97
0.06 0.489
Decmakcap97 0.106 0.128 0.22
Workrelation97 -0.02 0.02 0.12
Jobstress97 0.114 0.473 0.35
Table 49 Unstandardized and Standardized loadings for cause indicators
To Decmakcap97 To Workrelation97 To Jobstress97
U S U S U S
EFF97 -0.16 -0.86 TEAM97 -0.37 -0.16 ROLE97 4.25 0.60
READY97 0.16 0.22 | COWORKY97 -1.52 -0.97 PSY97 1.00* 0.58
COPACT97 -0.16 -0.17 SUPWK97 1.00* 0.65
JOBINF97 -0.17 -0.22
AUTH97 1.00* 0.03

Table 50 Unstandardized and Standardized loadings for effect indicators

From Psyout97 to

SAD97 12.3 0.74
ANX97 1.00* 0.71
EXH97 13.9 0.85
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Appendix 4 (g)
(g) Nonstandard model with mixed indicators (data97)

Table 51 Goodness of Fit Indices for nonstandard model with cause indicators

Chi-Square (DF) GFI | AGFI | CFI | NFI [ NNFI
Model 6 (97) 356.8(63) 087 076] 083] 080] 0.71

Table 52 Unstandardized and Standardized factor loadings for cause indicators

To Decmakcap97 To Workrelation97 To Jobstress97
U S U S U S
JOBINF97 0.97 0.92 TEAM97 0.71 0.33 | ROLE97 4.41 0.62

AUTH97 | 1.00* 0.13 COWORKY97 1.00* 0.87 PSY97 | 1.00* 0.57
SUPWK957 -1.18 -0.42

Table 53 Unstandardized and Standardized loadings for effect indicator

U S

EFF97 1.05 0.35
READY97 1.04 0.24
COPACTY97 1.05 0.34

From Decmakcap97 to

SAD97 11.83 0.73
From Psyout97 to | ANX97 1.00* 0.70
EXH97 13.59 | 0.87

= Table 54 Sums of Standardized Path coefficients to “Psyout”

TO TO FAMINT | JOBINT | INDIRECT | DIRECT | TOTAL
FAMINT | JOBINT TO TO
PSYOUT | PSYOUT
0.066 0.507
Decmakcap97 -0.06 -0.08 -0.071 -0.116
Workrelation97 0.026 -0.042 -0.134 -0.136
Jobstress97 0.13 048 | - 0.377 0.629
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