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Abstract

Video super-resolution becomes significant desire recently to provide high-resolution

contents for ultra high definition displays. Recent advances in video super-resolution

have shown that convolutional neural networks combining with motion compensation,

which can merge information from multiple low-resolution frames, to generate high-

quality frames. But it has been demonstrated that most deep learning based video

super-resolution methods heavily dependent on the accuracy of motion estimation and

compensation. Other than before, here proposed a different end-to-end deep neural

network that inexplicit compensates motion through the generates dynamic filters.

The dynamic filters are computed depending on the local spatio-temporal neighbor-

hood of each pixel. With this approach, a high-resolution frame has reconstructed

directly from the low-resolution input frames by using a series networks combining

with a dynamic local filter network. The proposed network can generate much sharper

high-resolution videos with temporal consistency, compared to the previous methods.
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Chapter 1

Introduction and Problem

Statement

There are millions of images and videos shared on the Internet every day, and people

could use these multimedia stream to study what they are interested in or share

the unforgettable pictures with their friends and family. High-resolution seems to

be getting more and more desired, mostly because people are seeking reality and

vivid visual experience. That is also one of a reason that TV manufactory companies

successively produce Ultra High Definition TV in today’s market. But the resource

that you are usually watching are not high-resolution, because they either have been

compressed due to the size of limitation during the uploading or restricted by the

capability of devices. The high-resolution display has widely been used on the home

and mobile devices now. Thus, the way transfer the low-resolution images and videos

into the high-definition version has become a considerable demand.

Image or multi-frame super-resolution is the process that given the low-resolution

version to reconstruct the corresponded high-resolution version. A video is a series
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of images played in sequence at a specified frame rate. Other than single-image

super-resolution where the details have to be generated base on only one figure, video

super-resolution suppose to have more flexibility to choose various useful information

to achieve a better result. The multiple frames of data will provide more information

which should be used for higher quality of up-sampling. But the large motion between

several consecutive frames will increase the difficulty in allocating the corresponding

objects, the tasks of correctly and simultaneously extracting and fusing the details in

multiple frames to assemble a new image are hard.

Thanks to parallelization of using GPU-accelerated computing, the calculating

amount of convolutional neural network can efficiently be achieved. Since the deep

learning method has led to a successful improvement in performance on the task

of image super-resolution [4], Kappeler et al. [1] proposed the convolutional neural

network for video super-resolution. To compensate for the ill-posed problem, they use

the precomputed optical flow to calculate the interframe prediction, then using that

prediction information to align all input frames to the reference one through backward

warping to do the compensation. The super-resolved result has been outperformed

the previous non-deep learning method, but people found the precomputed optical

flow method seemed not an optimal choice for video super-resolution, Tao et al.

[16] showed the higher quality video super-resolution results had been obtained by

improving motion compensation.

In this work, the proposed video super-resolution network has inspired by Dy-

namic Filter Network [3] that the motion compensation method is neither through

the optical flow nor a motion estimation network. Instead of explicitly calculating

and compensating the motion of adjacent input frames, the motion information in

2
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the proposed method is implicitly utilized by generating the dynamic filters as shown

in Figure 1.1. The motion compensated feature maps that used to reconstruct high-

resolution output are directly constructed by the dynamically filtered input frames

(Figure 4.3). This method can generate much shaper and temporally consistent high-

resolution videos. It is end-to-end trainable and does not require any pre-training

stages, and achieve the state-of-the-art performance compared to the previous deep

learning based video super-resolution algorithms.

Figure 1.1: The motion information in the generated kernel.

1.0.1 Thesis Structure

In the second chapter, illustrated five video super-resolution methods based on deep

learning method in detail. Some of the basic concepts of neural network and some

super-resolution related components that relate to the proposed method have intro-

duced in the third chapter. In the fourth chapter, the proposed video super-resolution

3
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methods have explained in detail, and experimental results have demonstrated in pic-

tures. The conclusion of this thesis is present in the fifth chapter.

4



Chapter 2

Previous Work

2.0.1 Real-Time Video Super-Resolution with Spatio-Temporal

Networks and Motion Compensation

Caballero et al. [9] presented a real-time approach for video super-resolution based on

sub-pixel convolution and spatio-temporal networks that effectively exploit temporal

redundancies and improve reconstruction accuracy while maintaining fast processing

speed.

The network uses three consecutive frames to combine a compensated module as

inputs for super-resolution network as shown in Figure2.1. Since optical flow has been

effectively encoding to describe motion for spatial transformer techniques, therefore,

it is suitable for motion compensation. Optical flow represents a relationship be-

tween a new frame It+1 and a reference current frame It. It contain two feature maps

4t+1 = (4t+1x,4t+1y; θ4,t+1) relied on parameters θ4,t+1 corresponding to the dis-

placement for the x and y dimensions. Motion compensation is optical flow combine

with a interpolation F that arrange resulting pixel back onto a regular grid, thus a

5
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ItLR 

It+1LR

Warp

Warp

Motion Estimation

Motion Estimation

I't-1LR

I't+1LR

Spatio-temporal 
ESPCN ItSR

Figure 2.1: Designed video super-resolution architecture.

compensated image can be expressed as I ′t+1(x, y) = F {It+1(x+4t+1x, y +4t+1y)}.

A schematic of the design for motion compensation is shown in Figure 2.2. By op-

timizing the parameters θ4,t+1 to minimize the MSE between the transformed frame

and the reference frame to train the spatial transformer to perform motion compensa-

tion. The same parameters can be used to model the motion of the outer two frames

relative to the central frame.

The input of spatio-temporal networks is a block of spatio-temporal information,

which is also a sequence of consecutive frames but motion compensated of original

inputs. Supposed the output is a single frame, there are three types of fusion meth-

ods could be used for spatio-temporal networks. One of the most straightforward

approaches is collapsed all temporal information in the first layer through matching

the temporal depth of the input layer to the number of frames, and the remaining op-

erations are identical to those in a single image super-resolution network, they called

it early fusion. Another option is to merge temporal information in a hierarchical

6
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Figure 2.2: Spatial transformer motion compensation.

structure partially, so the temporal information is slowly fused through each layer of

the network until the temporal depth of the last layer of the network become 1, they

called it slow fusion. And the third method is using 3D convolution that force layer

weights be share across the temporal dimension.

Other than the methods preprocess inputs from low-resolution to high-resolution

through bicubic upsampling and do the mapping in high-resolution space, the sub-

pixel convolution allows the network to process low-resolution inputs ILR at low-

resolution space directly. The sub-pixel convolution implies that the system could

learn a better upscaling way than bicubic upsampling if well-trained network. The

sub-pixel convolution will be explained in the next section. The spatial transformer

and super-resolution modules are both differentiable and therefore end-to-end train-

able.
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Figure 2.3: Spatio-temporal models
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2.0.2 Detail-revealing Deep Video Super-resolution

Tao et al. [16] proposed a sub-pixel motion compensation layer in a convolutional

neural network and achieved a high-quality result shown that proper frame alignment

and motion compensation is crucial for video super-resolution. The network comprises

motion estimation, motion compensation, and detail fusion; it takes a sequence of

NF = (2n + 1) low-resolution images as input to produce a high-resolution image

corresponds to center reference frame of inputs.

I0L 

IiL ME SPMCFi-0 H 

Conv 
LSTM 

I0H

Motion Estimation SPMC Layer

32    W    H 64    W/2    H/2 128    W/4    H/4 128    W/4    H/4 128    W/4    H/4 64    W/2    H/2 32    W    H

Figure 2.4: Convolutional neural network for video super-resolution with sub-pixel
motion compensation layer.

The network using motion compensation transformer module to perform motion

estimation, then using a proposed layer called sub-pixel motion compensation(SPMC)

layer simultaneously achieve sub-pixel motion compensation and resolution enhance-

ment through utilized sub-pixel information from motion. It is defined as:

IH = LayerSPMC(IL, F ;α) (2.1)

9



M.A.Sc. Thesis - Lingshi Kong McMaster - Electrical Engineering

where IL and IH denote input in low demension and output in high dimension respec-

tively, F denotes optical flow used for transposed warping and α denotes the scaling

factor. And the layer contains two submodules, which are sampling grid generator

and differentiable image sampler.

In sampling grid generator, transformed coordinates are first calculated according

to estimated flow as:

 xsp

ysp

 = WF ;α

 xp

yp

 = α

 xp + up

yp + vp

 (2.2)

where p denotes pixels’ indexes in low-resolution image space. xp and yp denote the

two coordinates of p. WF ;α denotes the operator of coordinates transformer. up and vp

denote estimated flow vector from flow field F = (u, v). xsp and ysp denote transformed

coordinates in high-resolution image space.

In differentiable image sampler, the output image IHq is constructed in high-

resolution image space according to xsp and ysp as:

IHq =
∑
p=1

ILpM(xsp − xq)M(ysp − yq) (2.3)

where q denotes pixels’ indexes in high-resolution image space. xq and yq denote the

two coordinates of q. M(·) denotes the sampling kernel, which defines the image

interpolation methods such as bicubic interpolation or bilinear interpolation etc.

Due to the property of forwarding warping and zero-upsampling, IH is sparse, and

the majority of the pixels are zero-valued. It requires the network to have large re-

ceptive fields to capture image patterns in IH . Using simple interpolation to fill these

10
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FT
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Figure 2.5: Sub-pixel motion compensation layer.

holes is not a good solution because interpolated values would dominate during train-

ing. A detail fusion net base on encoder-decoder architecture and skip-connections

was designed to overcome the issue.

In the detail fusion net, the encoder part reduces the size of the constructed high-

resolution image makes the feature maps less sparse leading to minimizing computa-

tion cost, which means it doesn’t need a very deep network. A ConvLSTM module

[17] is inserted in the middle stage as a natural choice for sequential input because

of the property of selectively remembering patterns for long durations of time. The

skip-connection are used for training acceleration.

The convolutional neural network framework effectively incorporates the sub-pixel

motion compensation layer, and the fusion net is an end-to-end trainable network.

It can generate visually, and quantitatively high-quality results compare to previous

works.

11
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2.0.3 End-to-End Learning of Video Super-Resolution with

Motion Compensation

Compared to the previous convolutional neural network for video super-resolution

methods, the main difference is Makansi et al. [14] proposed an operation that com-

bined warping and upsampling operations, which named Joint Upsampling and Back-

ward Warping(JUBW ) further proved the benefit from optical flow. The procedure

is strongly related to Tao et al. [16] proposed the sub-pixel motion compensation

layer that performs forward warping and upsampling jointly. Other than sub-pixel

motion compensation layer has sub-pixel interpolation for the target position in the

high-resolution grid and insertion between values. In Joint Upsampling and Backward

Warping, if multiple flow vectors point to the same target location, the JUBW only

outputs sub-pixel distances, which means it doesn’t perform any simple interpolation

at all. JUBW let the network itself finding a meaningful insertion.

Let xsp and ysp denote the coordinates in high-resolution space relate to a pixel

p, while xp and yp denote the source coordinates in low-resolution space. First,

using high-resolution flow estimations (up, vp), which used to warp all frames to the

center frame, to compute mapping from high to low-resolution space according to the

following equation as:

 xp

yp

 =
1

α

 xsp + up + 0.5

ysp + vp + 0.5

−
 0.5

0.5

 (2.4)

where α denotes the scaling factor. Subtraction and addition of 0.5 place the origin

at the top left corner of the first pixel. Then computing the warped images as:

12
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Iw(p) =


I(bxpe , bype) if bxpe , bype is inside I,

0 otherwise,

(2.5)

where b·e denotes the round to nearest operation. But it is no interpolation between

pixels. The operation then additionally outputs the following distances per pixel as:

 dxp

dyp

 =

 bxpe − xp
bype − yp

 if bxpe , bype is inside I and

 0

0

 otherwise (2.6)

The whole idea about the network is upsampling the low-resolution inputs through

bicubic interpolation in the beginning, then feed into flow estimation module FlowNet2-

SD [7], which can be learned end-to-end with a convolutional neural network, to get

the flow information in high-resolution space. Using flow information and original

low-resolution inputs as the inputs for joining upsampling and backward warping op-

eration to get dense images. Stacking all frames feed into the convolutional neural

network to perform the fusion interpolation. Here used the fusion module proposed by

Tao et al. [16] for comparison. The architecture of the network is shown in Figure 2.7.

Compared to the sub-pixel motion compensation layer, joint upsampling and back-

ward warping layer achieved a better result. Makansi et al. concluded from that video

super-resolution should generally avoid any interpolation and leave it to the network.

Besides, including sub-pixel distances has gained a small additional improvement.

13
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High resolution flow

Low resolution image

Warped image and distance(red)

Figure 2.6: Illustration of the Joint Upsampling and Backward Warping operation.
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Joint 
Upsampling 
and Warping 

Joint 
Upsampling 
and Warping

Joint 
Upsampling 
and Warping

0-Flow FlowNet2-SD

Upsampling

Upsampling

Upsampling

SPMC-ED

Stack 

FlowNet2-SD

Encode-Decode Operation 

Figure 2.7: Network architecture.

2.0.4 Robust Video Super-Resolution with Learned Tempo-

ral Dynamics

Liu et al. [6] proposed a model combined with a spatial alignment network and a

temporal adaptive neural network to deal with complex motion and effectively and

efficiently utilize temporal information. The spatial alignment design reduced the

complexity of motion between consecutive frames thus increased robustness of image

alignment with complex movement. The temporal adaptive design demonstrated a

clear advantage in handling complex motion over other methods using fixed length

temporal filters.

In the primary flow, the network takes consecutive low-resolution inputs as input

into a spatial alignment network to do the motion estimation, through takes spa-

tial transform of the adjacent frames to produce low-resolution aligned frames with

15
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the reference frame. After that, many aligned low-resolution frames as inputs are

brought into a temporal adaptive neural network to apply several filters of different

temporal sizes to generate multiple high-resolution frame estimates. The resultant

high-resolution forecast is adaptively aggregated according to motion information.

In spatial alignment network, two low-resolution frames stacked together feed

into a localization network to predict the spatial transform parameter θ̂ST . The

localization network only needs to infer two translation parameters, which are the

estimation of the integer translation along the horizontal direction by rounding the

average horizontal displacement of all pixels in a patch, and the vertical direction

respectively. This scheme termed rectified optical flow alignment, which simplifies

the motion in patch level to integer translations for avoiding interpolation which

may cause blur or aliasing. After that, applying the spatial transform parameter

θ̂ST to the source frame in the spatial transform layer, to produce the low-resolution

aligned frame through minimizing the mean squared error between θ̂ST and the ground

truth θST . Finally, the low-resolution reference frame and all the resultant aligned

neighboring frames from this network are used together as input to the temporal

adaptive network. The architecture of the spatial alignment network cascade with

the temporal adaptive network is shown in Figure 2.8.

In temporal adaptive neural network, the network has multiple super-resolution

inference branches {Bi}Ni=1 with different temporal scale i. The branch Bi is the

branch works on a 2i−1 aligned frames from the output of spatial alignment network

as input and uses its temporal dependency on its scale through a convolutional neural

network to predict a high-resolution estimation. And an extra-temporal modulation

branch T is to determine the pixel-wise aggregation weights and adaptively combine

16
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Localization network

MSE 
loss 

Spatial 
transform 

layer 

Temporal 
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network 

Spatial alignment network

Low resolution 
source frame 

Low resolution 
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High resolution 
aggregeted estimate 

θ ̂ 

ST

θST

Low resolution  
aligned frame

Figure 2.8: The architecture of spatial alignment network cascade with temporal
adaptive network.
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all the high-resolution estimates based on motion information. For a model of N

super-resolution inference branches, the temporal modulation branch takes 2N − 1

consecutive frames as input to outputs the pixel-level weight maps on all N possi-

ble temporal scales. The final estimated high-resolution frame is aggregated from

the estimates from all super-resolution inference branches and multiplied with its

corresponding weight maps from temporal modulation branch. All super-resolution

inference branches and the temporal modulation branch can be trained in the same

neural network. The architecture of the temporal adaptive network is shown in Fig-

ure 2.9.

1st High resolution inference branch

2st High resolution inference branch

3st High resolution inference branch

Temporal modulation branch

Low resolution sequence 

1st  
High resolution 
estimate Ht 

2st  
High resolution 
estimate Ht 

3st  
High resolution 
estimate Ht 

Temporal 
aggregation 

Aggregated 
High resolution 
estimate Ht 

Weighed maps of  
each inference branch

Lt

Lt-1 , Lt , Lt+1

Lt-2 , Lt-1 , Lt ,  
Lt+1 , Lt+2

Lt-n ... Lt+n

Figure 2.9: Network architecture.

Spatial alignment network and temporal adaptive neural network are joint training

through minimize the weighted sum of the mean square loss of them, thus the whole

18
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network is end-to-end fashion.

2.0.5 Frame-Recurrent Video Super-Resolution

Previously, video super-resolution methods generate a single high-resolution frame

through processing a batch of low-resolution inputs, repeat this processing until

made every frame of entire video. The computational cost is relatively high because

each input frame is processed and warped multiple times. And each output frame

is estimated independently conditioned on the input frames that limited temporal

consistency of results. To minimize the computational cost and efficiently enhance

temporal consistency results, Sajjadi et al.[13] proposed a frame recurrent video super-

resolution network.

The framework of frame recurrent video super-resolution network is using low-

resolution of the current input frame ILRt , the previous low-resolution input frame

ILRt−1 and high-resolution of the previous estimate Iestt−1 to produce the current high-

resolution estimate Iestt . There are two trainable components included in the network,

which are the optical flow estimation network FNet and the super-resolution network

SRNet. The architecture of frame recurrent video super-resolution network is shown

in Figure 2.10.

Firstly, taking the low-resolution previous input ILRt−1 and current input ILRt into

the optical flow estimation network FNet to estimate the low-resolution flow map

FLR, which assigns a position in ILRt−1 to each pixel location in ILRt and normalize it

as:

FLR = FNet
(
ILRt−1, I

LR
t

)
∈ [−1, 1]H×W×2 (2.7)

19
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Figure 2.10: The architecture of frame recurrent video super-resolution network.

Then using bilinear interpolation to upscale the low-resolution flow map FLR ti

high-resolution flow map FHR with scale s and using the flow map FHR, which is the

optical flow from the previous frame onto the current frame, to warp the previously

estimated image IHRt−1 as:

FHR = UP
(
FLR

)
∈ [−1, 1]sH×sW×2 (2.8)

Îestt−1 = WPbilinear
(
Iestt−1, F

HR
)

(2.9)

Next, using a space-to-depth transformation operator to map warped previous

estimated image Îestt−1 to low-resolution space as:
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S : [0, 1]sH×sW×C → [0, 1]H×W×s
2C (2.10)

The space-to-depth transformation operator is the inverse of Shi et al[15] pixel shuffle

convolution layer, and I will explain it in the next chapter.

Finally, concatenating the low-resolution mapping of the warped previous esti-

mated image with the current low-resolution input frame ILRt ⊕ Ss(Îestt−1) in channel

dimension, and take it into the super-resolution network SRNet.

There are two loss terms used for training, and using mean square error to mini-

mize them. The loss of motion compensation is calculating the error between warped

low-resolution input WPbilinear(I
LR
t−1, F

LR) and low-resolution input ILRt due to there

is no ground truth optical flow. The loss of super-resolution network is calculating the

estimated output with the ground truth then backpropagated through both SRNet

and FNet.
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Chapter 3

Related Work

3.0.1 Activate Function

The convolutional neural network has achieved great success to outperform traditional

methods in various computer vision tasks, such as image classification, object detect

and super-resolution. Despite increased the depth of networks, one of the critical

characteristics of the modern deep learning system is to use non-saturated activation

function (e.g., ReLU) to replace saturated activation function (e.g., sigmoid, tanh).

There is two main advantage of using a non-saturated activation function. The

first advantage is to solve the so-called exploding/vanishing gradient. The second

advantage is the convergence speed. In all of these non-saturated activation functions,

the most notable one is rectified linear unit (ReLU). Briefly speaking, it is a piecewise

linear function which let the negative part to be zero and retains the positive part.

ReLU(x) =


a if x ≥ 0,

0 if x < 0,

(3.1)

22



M.A.Sc. Thesis - Lingshi Kong McMaster - Electrical Engineering

ReLU is the reduced likelihood of the gradient to vanish. When x ≥ 0. In this

regime, the gradient has a constant value. Even there is a way for saturated activation

function like Sigmoid to compensate vanishing gradient by proportionally increasing

learning rate; the computational cost is too high. Normally, in training of neural

networks, the data are normalized to have mean 0 and variance 1. In a sigmoid

function the bigger absolute value of the input the smaller the gradient has been

received, then the network refuses to learn further or is drastically slow. If there have

many layers, the output need multiplication of these gradients, and the product of

many smaller than one values goes to zero very quickly. The constant gradient of

ReLU results in faster learning.

It has a desirable property that the activations are sparse after passing ReLU.

Sparsity arises when x < 0. The more such units that exist in a layer, the more

dispersed the resulting representation. Sigmoid, on the other hand, is always likely

to generate some non-zero value resulting in dense representations. Sparse represen-

tations seem to be more beneficial than dense representations.

Unfortunately, ReLU units can be fragile during training and can die (output

zero). For example, the gradients will be zero after one negative value or negative

weight has been inputted to the ReLU function or a large negative bias term is learned.

The ReLU will hence output the zero value for almost all of the activation functions

flowing through the unit in the model.

In contrast to ReLU, in which the negative part is dropped, Leaky Rectified Linear

Units (Leaky ReLU) are ones that have a very small gradient instead of a zero gradient

when the input is negative, giving a chance for the net to continue its learning. Leaky

ReLU assigns a non-zero slope to it. The leak helps to increase the range of the ReLU

23



M.A.Sc. Thesis - Lingshi Kong McMaster - Electrical Engineering

function. Some people report success with this form of activation function, but the

results are not always consistent.

x

f(x)

f(x) = x

f(x) = 0

f(x)

x

f(x) = x

f(x) = ax

Figure 3.1: ReLU vs Leaky ReLU.

3.0.2 Convolutional Neural Network For Super-Resolution

Since the success of Dong et al. [4] proposed image super-resolution method basing on

a convolutional neural network, nowadays, almost all image and video super-resolution

methods using the convolutional neural network.

The framework of their method is considering a single low-resolution image, first,

upscale it before getting into the convolutional neural network. Then denoting the

interpolated image as X and still calling it the low-resolution image, even X is already

upsampled. The goal is to learn the mapping F to map an image F (X) that recovered

from X to the ground truth high-resolution image Y as similar as possible. The

mapping conceptually consists of three operations.
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Patch extraction and representation this operation extracts patches from the

low-resolution imageX and represents each patch as a high-dimensional vector through

convolving the image by a set of filters as:

F1(X) = max(0,W1 ∗X +B1) (3.2)

where W1 is the filters, W1 applies n1 convolutions on the image, and each convolution

has a kernel size c× f1× f1, where c is the number of channels in the input image, f1

is the spatial size of a filter. The output is composed of n1 feature maps. B1 is the

biases, an n1-dimensional vector, which each element is associated with a filter. and

∗ is convolution operation. And apply the Rectified Linear Unit ReLU,max(0;x) on

the filter responses.

Non-linear mapping this operation nonlinearly maps each high-dimensional vec-

tor onto another high-dimensional vector, which is mapping each of n1-dimensional

feature into an n2-dimensional feature space as:

F2(X) = max(0,W2 ∗ F1(X) +B2) (3.3)

where W2 contains n2 filters of size n1×f2×f2 and applies n2 convolution on the out-

puts of first layer. The output is composed of n2 feature maps. B2 is n2-dimensional

bias. Each of the output n2-dimensional vectors is conceptually a representation of a

high-resolution patch that will be used to reconstruct super-resolved result. And it

is possible to add more convolutional layers to increase the non-linearity.
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Reconstruction this operation aggregates the previous generated high-resolution

patch-wise features to construct the final high-resolution image as:

F3(X) = max(0,W3 ∗ F2(X) +B3) (3.4)

where W3 contains c filters of size n2 × f2 × f2. B2 is c-dimensional bias. This

image is expected to be similar to the ground truth Y and all these operations form

a convolutional neural network.

×f1 f1

×f2 f2 ×f3 f3

Patch extraction  
and representation Non-linear mapping Reconstruction 

Low resolution  
image input

feature maps 
of low resolution 
image 

feature maps 
of high resolution 
image 

n1 n2 High resolution  
image output

Figure 3.2: An illustration of the super-resolution using convolutional neural network.

3.0.3 Upsampling

Dong et al.[4] found there are no efficient implementations of a convolution layer whose

output size is larger than the input size. Before Shi et al.[15] proposed the sub-pixel

convolution layer to learn the upsampling operation, most of existing image or video

super-resolution methods using bicubic interpolation to upscale the low-resolution
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input before it applies a convolutional neural network. Shi et al. call the type of

network using bicubic interpolation as high-resolution networks because the size of

data before getting into the convolutional neural network are already upsampled to

the desired output size.

Other than bicubic interpolation, transposed convolution is also an ordinary up-

sampling operation, which adds zero value in between non-zero pixels followed by

convolution with kernel rotated 180 degrees. But these zero values are meaningless

because they have no gradient information that can be backpropagated through.

In sub-pixel convolution layer, no meaningless zeros are necessary. Each input

image is directly fed into the network and do the feature extraction through nonlinear

convolution in low-resolution space, and super-resolve the high-resolution data from

low-resolution feature maps at the end of the network through a specific type of

image reshaping called a phase shift. Shi et al.[15] proposed a network with sub-

pixel convolution layers to solve super-resolution problems and called it an efficient

sub-pixel convolutional neural network (ESPCN) as shown in Figure 3.3.

For a network with L layers, the system learns nL−1 upscaling filters for the

nL−1 feature maps. Compared to a single fixed filter upscaling at the first layer and

transposed convolution put zeros in between pixels, the network is capable of learning

a better and more complex low-resolution to high-resolution mapping.

In the sub-pixel convolutional neural network, the output number of feature maps

at the second before the last layer is C ·r2 instead of one high-resolution image. Then

at the final layer of the network, using periodic shuffling to recreate the high-resolution

image. Let r denote the upscaling ratio, for example, if the input low-resolution image

of sub-pixel convolution layer is H×W ×C ·r2 then the high-resolution output image
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Hidden convolutional layers

Pixel-shuffle convolutional layers

Low resolution image

n1 Feature maps

High resolution imager2 channels

nl-1 Feature maps

Figure 3.3: An illustration of the ESCPN framework where r denotes the upscaling
ratio.
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will be H · r ×W · r × C.

ISR = fL(ILR) = PS(WL ∗ fL−1(ILR) + bL) (3.5)

PS(T )x,y,c = Tbx/rc,by/rc,c·r·mod(y,r)+c·mod(x,r) (3.6)

The convolution operator WL has shape nL−1 × r2C × kL × kL, where r2C is the

number of feature maps and kL is the filter size at layer L before the periodic shuffle.

PS is periodic shuffling operator, where x, y are the output pixel coordinates in

high-resolution space and c is the output channels in high-resolution space.

Convolution

Figure 3.4: An demonstration of the pixel shuffle convolution layer operation.
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3.0.4 Residual Learning

Since initialization and intermediate normalization layers mostly addressed the prob-

lem of vanishing gradients, the evidence reveals an achievement that increases the

depth of convolution neural network lead the results of both ImageNet challenging

task and many other non-trivial visual recognition tasks, ie. VGG nets. But He et

al. [10] exposed the degradation problem happened when the networks start converg-

ing especially for the deep network, which means with the network depth increasing,

accuracy gets saturated and then degrades rapidly. Adding more layers to a suitable

model will get higher training error, i.e., the result of 56-layers architecture is worse

than 20-layers architecture on the CIFAR-10 dataset, which proved degradation prob-

lem is not causing by overfitting. The degradation indicates that not all network is

similarly easy to optimize. Solvers might have difficulties in approximating identity

mapping by multiple nonlinear layers. They figured out that add more identity map-

ping layers onto a pre-trained shallow architecture to construct deep model are not

produce higher training error. Motivated by counterintuitive phenomena about the

degradation problem, they proposed deep residual network to address the degradation

problem. The weights of multiple nonlinear layers will approach zero if the identity

mapping is optimal.

Considering x denote the inputs and H(x) as an underlying mapping to be fit by

a few stacked convolutional layers. Assume x and H(x) have same dimension, rather

than expect the stacked layers to approximate H(x), they let them to approximate a

residual function F (x,Wi) = H(x)−x thus the original function become F (x,Wi)+x.

F (x,Wi) represent the residual mapping to be learned and x is a shortcut connection

directly from input, then do the element-wise addition to get the output of layers.
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The residual network has achieved an excellent performance in both low-level and

high-level computer vision tasks, Lim et al. [2] analyzed previously published image

super-resolution network and figure out a better residual network architecture than

SRResNet proposed by Ledig et al. [5] to further improve the performance. SRResNet

removed rectified linear unit at the end of each residual block, a small improvement in

test performance compared to the original residual block that place Rectified Linear

Unit after the addition. Since batch normalization layers normalize the features that

limited flexibility of the network, Lim et al. [2] removed batch normalization layers

from their work as shown in Figure 3.5 and successfully reconstruct the higher detailed

textures and sharper edges in results.

Conv

BN

ReLU

Conv

BN

Addition

ReLU

Xl+1

Xl

Conv

BN

ReLU

Conv

BN

Addition

Xl+1

Xl

Conv

ReLU

Conv

Addition

Xl+1

Xl

(a) Original (b) SRResNet (c) Proposed

Figure 3.5: Comparision of the different residual block architectures.
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3.0.5 Dynamic Filter Networks

In the traditional convolutional layer, the learned filters stay fixed after training.

In video super-resolution, one of the vital parts is motion compensation due to an

ill-posed problem. Different video clips contain different motion patterns, how to

accurately locate the corresponding image region between consecutive frames will

benefit to restore the detail information of the current frame from future frames and

previous frames. The same set of filtering operations apply on every input seems

suboptimal for the tasks such as video super-resolution; thus Brabandere et al. [3]

proposed a dynamic filter module as shown in Figure 3.6. And the experiment results

proved dynamic filter networks worked well on video prediction and able to correctly

learn the individual motions of digits.

Input A

Input B

Filter-generating network

Input

Filters

Output

Dynamic filtering layer

Figure 3.6: A general architecture of dynamic filter network.

The dynamic filter module consists of two parts: a filter generating network that

generates sample-specified filter parameters conditioned on input, and a dynamic

filtering layer that applies the generated filters to another input. Both components
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of dynamic filter module are differentiable that gradients can be backpropagated

throughout the network. The two inputs of the module can be either identical or

different, depending on the task.

There have different between model parameters and dynamically generated pa-

rameters, model parameters are same for all samples that are initialized in advance

and only updated during training, but dynamically generated parameters are sample-

specific. The filter-generating network outputs dynamically generated parameters,

while the parameters of the filter-generating network itself are part of the model

parameters.

Filter-Generating Network

Supposed filter-generating network has an input IA ∈ Rh×w×cA , where h,w and cA are

height, width and number of channels of input A respectively. It outputs filters Fθ

parameterized by parameters θ ∈ Rs×s×cB×n×d, where s is the filter size, which used

to determine the respective field and is chosen depending on the designed network.

cB is the number of channels in input B, n is the number of filters, and d is equal to 1

for dynamic convolution and h×w for dynamic local filtering. The filters are applied

to input IB ∈ Rh×w×cB to generate an output. They declared a convolutional network

using for the filter-generating network is particularly suitable when using images as

inputs.

Dynamic Filtering Layer

The dynamic filtering layer takes IB as input and outputs the filtered result G =

Fθ(IB), with G ∈ Rh×w×n. And there are two type of architectures of dynamic
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filtering layer were proposed, the dynamic convolutional layer and dynamic local

filtering layer.

Dynamic convolutional layer Same as a traditional convolutional layer, a dy-

namic convolutional layer also apply same filter at every position of input IB. But

the filter weights of traditional convolutional layer are model parameters, the filter

parameters θ in a dynamic convolutional layer are dynamically generated by a filter-

generating network:

G(i, j) = Fθ(IB(i, j)) (3.7)

Thus the filters are sample-specific and conditional on the input of the filter-generating

network as shown in Figure 3.7.

Dynamic local filtering layer Other than dynamic convoltuional layer use same

dynamically generated filter parameters on every position of input IB, depending on

position of input IB, dynamic local filtering layer use different filters generated by

filter-generating network to apply different position of input. For each position (i, j)

of the input IB, a specific local filter F
(i,j)
θ is applied to the region centered around

IB(i, j):

G(i, j) = F
(i,j)
θ (IB(i, j)) (3.8)

The dynamic local filtering layer is both sample-specific and position-specific, the

filter varies from position to position and from sample to sample allowing more so-

phisticated operations on inputs as shown in Figure 3.8. The dynamic local filtering

layer can perform both a single transformation like dynamic convolutional layer and

position-specific transformations like local deformation.
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Input
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Figure 3.7: Dynamic convolition: the filter-generating network produces a single filter.

Input A

Input B

Filter-generating network

Input

Output

Dynamic filtering layer

Figure 3.8: Dynamic local filtering: each location is filtered with a location-specific
dynamically generated filter.
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Chapter 4

Method

4.0.1 Introduction

The goal of video super-resolution is to estimate high-resolution frames from given

low-resolution frames. There are different methods to reconstruct high-resolution

frame base on different input frames [6] [13] [14]. In my method, the high-resolution

result Ŷt is reconstructed from corresponded low-resolution frame Xt and its low-

resolution neighboring frames. The low-resolution frame Xt and its low-resolution

neighboring frames are downsampled version from the corresponding ground truth

frames Yt and its neighboring frames, where t denotes the time step. With the

proposed video super-resolution network V SR and the network parameters θ, the

video super-resolution problem is defined as:

Ŷt = V SRθ(Xt−N :t+N) (4.1)

where N is the temporal radius. An input tensor shape is T ×H ×W × C and the

upscaling factor r, the corresponding output tensor shape will become 1×rH×rW×C,
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where T = 2N+1, H and W are the height and the width of the input low-resolution

frames, and C is the number of color channels.

4.0.2 Proposed Method

There are three subnetworks contained in my super-resolution network F , which are

used to reconstruct high-resolution frame Ŷt from input Xt. The F consists of three

subnetworks are:

1. Dynamic Local Filter Network.

• Dynamically capturing the motion information.

• Applying motion compensation.

2. Pixel-Shuffle Network.

• Capturing the detail information about the generated feature maps.

• Upsampling the generated feature maps to reconstruct the high-resolution

result.

3. Refinement Network

• Refining the textures.

In most of the super-resolution methods, the input images or video frames are

segmented into the patches due to the limit ability of the device. It has been shown

that for PSNR scores there is a little improvement in image-based training than patch-

based training [14], and there is some artificial effect between patches alignment as

shown in Figure 4.1. But the memory of GPU will be run out if the input images

37



M.A.Sc. Thesis - Lingshi Kong McMaster - Electrical Engineering

are too large. In my method, to maximize the capability of my device and reduced

artifacts, the size of the input frames is cropped to one-quarter of validation frames

size.

Figure 4.1: Left: smaller patches combined output Right: larger patches combined
output. From PSNR scores perspective the left side even slightly larger than the right
side, but there is the artificial effect on windows of the building. The upscaling factor
is set to 4.

Specifically, for the input Xt−N :t+N , first downsampled the segmented frames

through bicubic interpolation by the desired scale then transform the color frames

into the Y CbCr space. The super-resolution algorithms are only applied to the Y

channel, while bicubic interpolation upsamples the Cb, Cr channels.

First, putting low-resolution inputs Xt−N :t+N into a dynamic local filter network

to get motion compensated feature maps that related to center frame Xt. Then

upsampling the feature maps to high-resolution frame Ŷ est
t by a pixel-shuffle network.

Finally, using a refinement network to obtain the final result Ŷt. The architecture of

video super-resolution network is shown in Figure 4.2. Here, I’m making a specific

explanation of upscaling ratio of four (r=4) with input frames of three (N=1).
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16 ×H ×W3 ×H ×W

Figure 4.2: The architecture of proposed video super-resolution network.

Motion compensation

The filter kernels for the traditional convolutional layer are basically fixed, the learned

filters stay fixed after training. But there different motion patterns within different

video frames. Contrary to this, we propose to use the dynamic local filter network

inspired by the Dynamic filter network [3]. The filters before upsampling are gen-

erated locally and dynamically depending on the spatial-temporal neighborhood of

each pixel in low-resolution frames.

In the dynamic local filter(DLF) network, as a first step, filter-generating net-

work generates both inputs specified and location specified filters F parameterized

by parameter θDLF of shape W ×H × c× n× f × f , where W and H are the width

and height sizes of input frames, n is the number of output channels, c is the input

channels and f in the filter size of filter-generating network. Here, each position (i, j)

in inputs has a location specified filter of shape c× n× f × f apply on it, the width
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size W and height size H are the sum of positions in the horizontal i and vertical j

direction respectively. Because each frame is applied only on the luminance channel

for my method, the input channels c is equal to the number of inputs frames. The

number of output channels is equal to the square of upscale ratio n = r2 for the up-

sampling purpose in next step. Then the filters FθDLF
are applied to inputs Xt−N :t+N

of shape W ×H×c to generate outputs Gt of shape W ×H×r2. The generated filters

are estimates the optical flow between the low-resolution inputs Xt−1, Xt+1 and Xt

yielding the normalized low-resolution flow map

Gt = FθDLF
(Xt−1:t+1) (4.2)

Inputs:
3 concecutive 
low resolution

frames

Dynamic filtering layer

Filter-generating network

Outputs:
depth of 16

feature maps

2D Convolution Residual Block

3 ×H ×W

256 ×H ×W16 ×H ×W 64 ×H ×W 432 ×H ×W

16 ×H ×W

H ×W × 3 × 16 × 3 × 3

Figure 4.3: The architecture of the dynamic local filter network.
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Upscaling

Other than before, Shi et al. [15] proposed a novel network architecture, which

upsampling is handled by the last layer of the network, to perform single image

super-resolution. It means each low-resolution image can directly feed to the system

and feature extraction occurs through nonlinear convolutions in low-resolution image

space. Thus, the network is capable of learning a better and more complex low-

resolution to high-resolution mapping compared to a single fixed filter such as bicubic

interpolation upsampling at the first layer [1] [4] [14]. It efficiently restored sharp and

textured regions than traditional interpolation.

Network depth is of crucial importance in neural network architectures, but deeper

networks are more difficult to train. The residual learning framework eases the train-

ing of these networks and enables them to be substantially deeper. Here using residual

block proposed by He et al.[10] to deepen the network but removed all batch nor-

malization layer and activation function at the end of the residual block, based on

successful of Lim et al.[2].

In the pixel-shuffle(PS) network, the output feature maps that generated from the

dynamic local filter network as the input are first though eight residual block layers

to capturing the detail information about the generated feature maps to improve

performance. Then using a pixel-shuffle layer to upsample low-resolution feature

maps Gt of shape W ×H × r2 to high-resolution output Ŷ est
t

Ŷ est
t = PS(Gt) (4.3)

where Ŷ est
t has shape rW × rH × 1
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feature maps

Outputs:
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16 ×H ×W 16 ×H ×W

1 × 4H × 4W 1 × 4H × 4W

Figure 4.4: The architecture of the pixel-shuffle network.

Refinement

Even the first two subnetworks already can generate satisfactory results, but after

experimentation, an additional refinement network is still has a benefit for the results.

The architecture of the refinement network is designed as an encoder-decoder style

with skip connections, which is inspired by the tailored detail fusion network [16]. I

have replaced the ConvLSTM module [17] with several residual blocks in the middle

stage. As the experiment results, the addition refinement network not only achieved

better PSNR score but also fasten the convergent speed during the training.

In the refinement(Ref) network, the high-resolution output Ŷ est
t of shape rW ×

rH× 1 as the input are shrank using convolution layers with stride of 2 (The amount

by which the filter shifts is the stride) to size W ×H×1, then upsampled twice using

transposed convolution layers to get refined high-resolution result Ŷt
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Ŷt = Ref(Ŷ est
t ) (4.4)

where Ŷt has shape rW × rH × 1.

Outputs:
Refined

high resolution
center frame

Inputs:
High resolution
center frame

Shortcut

2D Convolution Residual Block 2D Transposed Convolution

1 × 4H × 4W
32 × 4H × 4W

64 × 2H × 2W

128 ×H ×W

64 × 2H × 2W

32 × 4H × 4W
1 × 4H × 4W

Figure 4.5: The architecture of the refinement network.

4.0.3 Implementation

Dataset

One of the essential elements of deep learning is the quantity and the quality of

training data. To achieve good generalization results, videos in the training dataset

must contain various and complex real-world motions. Therefore, the collected videos

must include various textures and motions. But for the video super-resolution task, a

dataset like ImageNet[8] does not exist. There is a total of 59 videos downloaded from

the Internet with various contents including wildlife, activity, and landscape. Then
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cutting downloaded videos to 10789 video clips, each video clips has 3-5 seconds with

the spatial resolution of 1280× 720 by selecting the scenes with sufficient amount of

motion. For every clip choose only the first 30 frames as the training dataset. For the

comparison purpose, the validation set using standard Vid4 benchmark dataset[12]

to compare with state-of-the-art methods.

Training

Easily for training, the mini-batch size is set to 4, and the number of consecutive

frames set to 3. The filter size set to 3 × 3 for every convolution layers in all three

subnetworks. To obtain low-resolution inputs, in the first, the ground truth data are

randomly cut to the fixed patch size of spatial resolution 384 × 384 in training and

divided evenly into four pieces for validation. This leverage both device capability

and reducing artificial effects. Then downsampled using bicubic interpolation for the

upscaling factor r.

The majority of super-resolution algorithms focus on gray-scale or single-channel

image or video super-resolution [10] [1] [14]. For color images or video frames,

first transform the problem to a different color space (YCbCr or YUV), and super-

resolution is applied only on the luminance channel. He et al. [10] proved that the

Cb, Cr channels could decrease the performance of the Y channel when training per-

formed in a unified network. There are also works attempting to super-resolve all

channels simultaneously [13]. Appling each RGB channel into the model and com-

bined them to produce the final results. However, none of them has analyzed the

super-resolution performance of different channels, and the necessity of recovering

all three channels. Thus, the super-resolution algorithms are only applied to the Y
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channel, while bicubic interpolation upsamples the Cb, Cr channels.

Following Sajjadi et al.[13], the computing of video PSNR score is on the lumi-

nance channel Y (ITU − R BT.601 Y CbCr standard). Using the mean square loss

to measure the loss between final output Ŷt and ground truth Yt as the cost function.

Using Adam optimizer [11] to train the network with a fixed learning rate 1× 10−5.

And replacing every activation function from rectified linear units (ReLU) to leaky

rectified linear units (Leaky ReLU).

4.0.4 Experimental Results

Quantitative Evaluation

Quantitative comparison with other state-of-the-art video super-resolution methods

on Vid4 for scale factor r = 3 is shown in Table 4.1 and for scale factor r = 4 is

shown in Table 4.2. The proposed method outperforms all other methods by a large

margin in terms of PSNR and SSIM for both upscale factors. And the size comparison

between downsampled by a factor of 4 with actual size is shown in Figure 4.6.

Metric Bicubic Bayesian VSRnet [1] B1,2,3+T [6] VESPCN [9] SPMC [16] proposed

PSNR 25.28 25.82 26.79 27.25 27.49 29.03

SSIM 0.7329 0.8323 0.8098 0.8447 0.84

Table 4.1: ×3 upsampling : Compared proposed method with state-of-the-art.

Metric Bicubic Bayesian VSRnet [1] B1,2,3+T [6] VESPCN [9] SPMC [16] proposed

PSNR 23.79 25.06 24.84 25.35 25.35 25.52 26.72

SSIM 0.6332 0.7466 0.7049 0.738 0.7557 0.76 0.803

Table 4.2: 4× upsampling: Compared proposed method with state-of-the-art.
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(a) Downsampled (b) Ground truth

Figure 4.6: Comparing downsampled 4× figure with ground truth figure side by side

Qualitative Comparisons

Some qualitative examples are shown in Figure 4.7. The proposed models are able

to recover fine details and produce visually pleasing results In Fig. 10, we also com-

pare a result from [34] with the results using our network with different depth. We

outperform the previous work and can also observe the increase in the performance

with more depth. More qualitative comparisons with other state-of-the-art video

super-resolution methods on Vid4 is shown in Figure 4.8, Figure 4.9, Figure 4.10

and Figure 4.11. The results of proposed network show sharper outputs with more

smooth temporal transition compared to other works.
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Figure 4.7: Calendar in Vid4 for 4× upscaling. From top to bottom: Bicubic,
B1,2,3+T, Proposed, Ground truth.
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Figure 4.8: Calendar in Vid4 for 4× upscaling. From top to bottom: Bicubic,
B1,2,3+T, Proposed, Ground truth.
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Figure 4.9: City in Vid4 for 4× upscaling. From top to bottom: Bicubic, B1,2,3+T,
Proposed, Ground truth.
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Figure 4.10: Foliage in Vid4 for 4× upscaling. From top to bottom: Bicubic,
B1,2,3+T, Proposed, Ground truth.
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Figure 4.11: Walk in Vid4 for 4× upscaling. From top to bottom: Bicubic, B1,2,3+T,
Proposed, Ground truth.
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Chapter 5

Conclusion and Future Works

The proposed flexible end-to-end trainable framework for video super-resolution can

recover sharp higher quality results. And the network can implicitly handle the motion

via dynamic local filter network without explicit motion estimation and compensation.

The proposed model significantly outperforms state-of-the-art video super-resolution

approaches both quantitatively and qualitatively on a standard benchmark dataset.

A further extension of the framework would be the increasing size of the dataset

and the inclusion of more advanced loss terms which have recently been shown to pro-

duce more visually pleasing results [5]. Adding a convolutional encoder-decoder as

the filter-generate network module in the dynamic local filter network where the en-

coder consists of several strided convolutional layers, and the decoder includes several

convolutional layers and upsampling layers. The convolutional encoder-decoder may

able to exploit the spatial correlation within a frame and temporal relation between

frames.
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