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Abstract
The study of ischemic brain stroke detection by Electroencephalography (EEG) signal

is the area of binary signal classification. In general, this involves extracting features

from EEG signal on which the classification is performed. In this thesis, we investi-

gate the employment of Power Spectral Density (PSD) matrix, which contains not only

power spectrum contents of each signal which complies with what clinical experts use in

their visual judgement of EEG signals, but also cross-correlation between multi-channel

(electrodes) signals to be studied, as a feature in signal classification. Since the PSD

matrices are structurally constrained, they form a manifold in the signal space. Thus,

the commonly used Euclidean distance to measure the similarity/dissimilarity between

two PSD matrices are not informative or accurate. Riemannian Distance (RD), which

measures distance along the surface of the manifold, should be employed to give more

meaningful measurements. Furthermore, two classification methods, binary hypothesis

testing and K-Nearest Neighbors (KNN ), are applied. In order to enhance the detec-

tion performance, algorithms to find optimum weighting matrix for each classifier are

also applied. Experimental results show that the performance by the kNN method us-

ing PSD matrix as features with RD as similarity/dissimilarity measurements are very

encouraging.
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Chapter 1

Introduction

1.1 Introduction

Stroke is the second leading cause of death worldwide [Moza�arian 2015, (WHO) et

al. n.d.]. One out of twenty deaths in America are due to stroke and 62,000 strokes

that occur each year in Canada a�ect all age groups and lead to a lifetime impact on

health [Moza�arian 2015]. According to centers of disease control and prevention, in the

United States, someone su�ers from brain stroke in every 40 seconds.

Figure 1.1: Types of Strokes: Ischemic and Hemorrhagic. In Ischemic
Brain Stroke (left), a blood clot has blocked the flow of blood to a specific
area of the brain.
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There are two main types of stroke: ischemic and hemorrhagic. Ischemic stroke occurs

when a blockage (obstruction) of small blood vessels occurs around the brain (Fig.1.1).

Magnet Resonance Imaging (MRI) gives accurate results for stroke detection, yet it is

expensive, requires several hours to generate an examination report and is applicable for

a limited time. MRI is used only in situations where there is no time pressure to o�er

diagnosis, typically as follow-up imaging. MRI is an expensive and is not available at all

healthcare locations. In comparison, Electroencephalography (EEG) o�ers a continuous,

real-time, non-invasive measure of brain function [Foreman and Claassen 2012] and is

capable of detecting ischemic stroke due to variation in cerebral blood flow in the blood

vessels. It has proven to be e�ective in detecting various other brain-related activities

like Rapid Eye Movement (REM), sleep and awake stage and other seizure [Röschke and

Aldenho� 1992].

1.1.1 Background knowledge of EEG signals for brain stroke detection

EEG signals serve as a vital source of information when it comes to brain function. It is

possible to recognize abnormal activities of the brain functionality using EEG signals.

Most of the cerebral signal observed in scalp falls in the range of 1–20 Hz. The majority

of the EEG used in clinical practice subdivides the waveforms into bandwidths known

as alpha, beta, theta, and delta (Fig.1.2) [Foreman and Claassen 2012].

Figure 1.2: EEG Channel Sub bands Frequency range.

An ischemic stroke is primarily due to changes in Cerebral Blood Flow (CBF), and

it can be detected through changes in EEG signal patterns [Kantelhardt et al. 2002].

Prominent changes in CBF include the reduction of delta (lowest frequency band) or

2



Master of Applied Science– Canxiu Zhang ; McMaster University– Department of
Electrical and Computer Engineering

the presence of high-frequency bands (beta and alpha) [Foreman and Claassen 2012].

Furthermore, the power density ratio between bands of the di�erent hemisphere changes

as stroke a�ects one hemisphere [Kantelhardt et al. 2002]. The best results for Ischemic

stroke detection so far, are obtained using MRI scans in conjunction with meta-data like

patients’ history, medical prescriptions and most importantly MRI scan [(Tang et al.

2017)].

[Omar et al. 2014a] has implemented Power Spectral Density (PSD) ratio between

di�erent EEG bands and channels, as features for ischemic stroke detection. In his re-

search, he has used PSD to train K-Nearest Neighbors (KNN ), Artificial Neuron Network

(ANN ) [(Tang et al. 2017)] and Extreme Learning Machine (ELM ).

In EEG signal analysis process, feature extraction is done by utilizing series of trans-

formations so that the required information can be studied or observed easily in the

transform domain to provide the best input to the classifier [Motomura et al. 2015].

1.1.2 Contributions

In this thesis, we investigate the problem of detection of ischemic stroke using EEG

signals of the patients. Due to the rich correlation (second-order) information contained

in the PSD matrix of the EEG signal, we also employ it as the signal feature to facilitate

the stroke detection.

However, to directly employ the PSD matrices in signal processing, we often have to

measure the distance between these features. Being positive semi-definite and Hermitian

symmetric, the PSD matrices are structurally constrained and thus form a manifold M

in the real linear vector space H of all M ◊ M matrices [Li and Wong 2013]. Therefore,

the commonly used Euclidean distance (ED) may not be appropriate for measuring the

distance between two PSD matrices; rather, we should measure the distance along the

surface of the manifold. This concept is akin to finding the distance between two cities

on earth: The ED between two cities is neither informative nor accurate. By the same

reasoning, we realize that the distance between two of these matrices is more accurately

3
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measured along the surface of the PSD manifold, i.e., by the Riemannian distance (RD).

In particular, we employ a RD dR2 , together with its weighted version dWR2 , which are

suitable for signal processing. Furthermore, we employ the e�cient algorithms [Wong

et al. 2017] to locate the means of random PSD matrices on the manifold and apply these

concepts to the problem of EEG ischemic stroke detection. Thus the major contributions

of this thesis can be summarized as follows:

• Feature extraction: we evaluate the cross PSD matrices of di�erent EEG signal

epochs in di�erent sub-bands.

• Mean of PSD matrices: we obtain the means of the random PSD matrices of two

di�erent classes of EEG signals: C0 – those of healthy patients, and C1 – those of

stroked patients.

• Optimum weighting: we use the collected patient EEG signals as training sets to

obtain optimized weighting matrices for the RD.

• RD and weighted RD: we use the RD and the weighted RD to measure the distance

and apply this concept to di�erent classifiers to determine stroke condition.

4



Chapter 2

Signal Features for Classification

2.1 Pre-processing of Electroencephalography (EEG) sig-

nals

The measurement of electroencephalogram (EEG) is carried out by placing electrodes

on di�erent parts of the scalp, recording the electrical potentials generated by synaptic

fields in the cerebral cortex. Although the electrodes would pick up the superposition of

many di�erent waves emitted from various regions of the brain, rendering the data more

di�cult to interpret, EEG is still a unique and valuable measure of the brain’s electrical

function.

For our purpose of detecting ischemic stroke, we collect from the patient EEG signal

which is sampled at 256 Hz. The collected signal then goes through data preprocessing

which consists of several steps: data referencing, segmentation, artifact removal, noise

filtering, normalization and data collection.

2.1.1 Data Referencing

The EEG data are collected by placing electrodes at six locations, also called six channels:

C3, C4, O1, O2, and two reference channels behind two ears as illustrated in (Fig.2.1).

5
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Figure 2.1: EEG Channels with blue arrows are C3, C4, O1, O2 in front
and back hemisphere.

Mean of reference channels is first subtracted from data C3, C4, O1, O2,

xc(n) = rc(n) ≠
rref1(n) + rref2(n)

2 (2.1)

where xc(n) representing the referenced EEG signals of channel c œ {C3, C4, O1, O2},

and rc(n) representing the raw EEG signals in channel c œ {C3, C4, O1, O2}, rref1(n)

and rref2(n) refer to raw EEG signals in the two reference channels.

2.1.2 Segmentation

The EEG data in the 4 channels collected from a healthy participant or a stroke patient

may last for hours in duration. In general, the signals are non-stationary. However, it is

widely accepted that if we divide them into 30-second epochs, each epoch of the measured

EEG data represents a wide-sense stationary signal. Hence, after data referencing, the

signal in each channel is segmented into 30-second epochs having 7680 samples each.

6
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2.1.3 Artifact Rejection

Artifact recognition and elimination is one of the most challenging part of monitoring

EEG. Artifacts are caused by two factors: a) patient related artifacts (e.g. movement,

sweating, ECG, eye movements) and b) technical artifacts (50/60 Hz artifact, cable

movements, electrode paste-related) [mcgill 2018].

The presence of artifacts in EEG signals can distort the features which represent

information of brain stroke and therefore leads to false detection results.

A common and e�ective clinical practice for artifact rejection for EEG signal is to

identify artifacts by visual inference and then to manually remove the artifact signals.

Other methods have been proposed to remove artifacts from EEG recordings including

regression in time/frequency, and linear decomposition and reconstruction, etc. [Gratton

et al. 1983, Woestenburg et al. 1983, Yoo et al. 2007, Shao et al. 2009, Anderson et al.

2006, Guerrero-Mosquera and Vazquez 2009].

There are existing tools for finding the artifacts. For example, FEMG and impedance

measurements can be used for indicating contaminated signal. By looking at di�erent

parameters on a monitor, other interference may be found [mcgill 2018].

Since artifact rejection is not the main focus of this thesis, we adopt the visual

inspection and manual artifact rejection method. The procedure is given in the following:

The magnitude of artifact usually is very large in a short duration compared to a

normal brain wave signal. An artifact example shown in Fig.2.2 in which an artifact

occurs during timestampe 100-200.

Therefore, for each epoch and for each single channel signal, we calculate the mean

magnitude µ and standard derivation ”. Treating the distribution of the magnitude

of EEG signal as Gaussian distribution, any sample which has magnitude larger than

|µ + 3”| [Barnett and Lewis 1974], we remove it and replace by a random sample within

the range of ±|µ+3”|. An example of EEG signal with artifact removed shown in Fig.2.3
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Figure 2.2: EEG signal with artifact.

Figure 2.3: EEG signal with artifact removed.

2.1.4 Noise Filtering

Since for our application, all the EEG signals concentrate in the frequency range of 0≠13

Hz, therefore, we apply low pass filtering to the signal epochs after artifact have been

removed to reduce the noise in the recorded EEG signals. The Butterworth filter design

has a maximally flat amplitude response and relatively linear phase response in the

pass-band [Bianchi and Sorrentino 2007]. Therefore, we choose a tenth order low-pass

Butterworth filter with cut-o� frequency of 58 Hz to ensure a relatively low distortion

to signals.
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2.1.5 EEG signal normalization and data collection

The EEG signal is recorded by electrodes placed at di�erent locations of scalp. For the

detection of ischemic brain stroke, M = 4 electrodes located at C3, C4, O1, O2 are used

to collect multichannel time series signal.

Let the nth epoch of the mth channel measured signal be {sÕ
nm(t), m = 1, · · · , M}

at the time instant t, we can represent the nth epoch of these multi-channel data at t as

a vector: sÕ
n(t) = [sÕ

n1(t), · · · , sÕ
nM (t)]T , t = 1, · · · , T . Thus, the nth epoch measured

data matrix (representing M channels of measured data for a duration of T seconds) for

the patient is given by

SÕ
n = [sÕ

n(1), · · · , sÕ
n(T )], n = 1, · · · , N (2.2)

where n = 1, ..., N and N is the number of number of epochs for a person.

The normalized EEG signal by using Frobenius norm is

Sn = SÕ

n

||SÕ

n||F
= SÕ

n

(
qM

i=1

qT
j=1

|[SÕ

n]i,j |2) 1
2

. (2.3)

For each patient, the labeled sample EEG signal is

L =

Y

_

]

_

[

S

W

U

S1

l

T

X

V

, ...,

S

W

U

Sn

l

T

X

V

, ...,

S

W

U

SN

l

T

X

V

Z

_

^

_

\

, (2.4)

where l œ (0, 1). 0 represents that the epoch is belonged to a healthy person, and 1

represents that the epoch is belonged to a stroke patient.

2.2 Di�erent Features Commonly Used for Classification

Here, we briefly present some of the commonly used signal features for stroke detection

by EEG.
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2.2.1 Frequency Domain Features

According to related medical literature, occurrences of ischemic strokes a�ect the sig-

nals in low frequency range (for example delta, theta and alpha bands) [Finnigan et al.

2016, Omar et al. 2014b]. An ischemic stroke usually occurs in a specific area (hemi-

sphere) of the brain. Thus, there will be di�erences in relative power among di�erent

channels [Finnigan et al. 2016]. Therefore, changes in the power of each sub-band of

channels and the relative power ratio between channels provide good indicators for the

occurence of ischemic brain stroke and thus are suitable signal features for the process

of detection.

Sub-band Power Estimation

For each epoch of single channel EEG signal x(n), n = 0, ..., N ≠ 1, we used the Welch’s

weighted overlapped segment averaging method [Welch 1967] to estimate power spectral

density. This involves splitting the recorded signal into overlapping windows of length

L, calculating modified periodograms of these windows, and averaging these modified

periodograms.

The resulting modified periodogram for the ith window is

p̄i(f) = 1
LU

-

-

-

-

-

L≠1
ÿ

n=0

xi(n)w(n)e≠j2fifn

-

-

-

-

-

2

, (2.5)

where U is the normalization factor for the power in the window function such that

U = 1
L

L≠1
ÿ

n=0

w2(n) (2.6)

and w(n) is the window function. The Welch power spectrum is the average of these

modified periodograms:

p̄(f) = 1
K

K≠1
ÿ

i=0

p̄i(f) (2.7)

10



Master of Applied Science– Canxiu Zhang ; McMaster University– Department of
Electrical and Computer Engineering

In this paper, we used a 50% overlapped sliding window with 2 second window length,

i.e., L = 2 ◊ fs = 512 samples, to estimate the Power Spectral Density. The number of

windows in an epoch is thus T ≠ 1 = 29 and the average power of sub-band b œ {”, –, ◊}

for channel c œ {C3, C4, O1, O2} is given by:

P c
b =

q

fminÆf<fmax
p̄(f)

nb
, (2.8)

where fmin and fmax are respectively the lower and upper of frequency range of each

sub-band shown in (Fig. 1.2) , nb = (fmax ≠fmin)/fr is the number of frequency samples

for each sub-band range. i.e. fr = fs/L.

Relative Band Power

From PSD, frequency bands and their relative strengths are known. Now for each chan-

nel, the relative power for each sub-band is given by:

P̄ c
b = P c

b

O

ÿ

cœC

P c
b , (2.9)

where c œ {C3, C4, O1, O2}, b œ {”, ◊, –}, and P c
b is the average power of sub-band

b recorded by channel c. Since we have three sub-bands and four channels for each

observation, the total number of relative band power features is twelve.

Relative (Left and Right) Hemisphere Power

It shows the di�erence between the left hemisphere and the right hemisphere of person

(fig. 2.1). In our EEG recording device, C3 and C4 channels located at the front left

and the front right hemisphere respectively, O1 and O2 channels located at the back

left and the back right hemisphere respectively. We calculate relative front hemisphere

power RPR(b)fh the di�erence between C3 and C4 for each sub-band in (2.10):

(|P̄ C3

b ≠ P̄ C4

b |)
O

(P̄ C3

b + P̄ C4

b ), (2.10)
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where P̄ C3

b and P̄ C4

b are average power of sub-band b œ {”, ◊, –} in channel C3 and C4

respectively.

Similarly, we calculate relative back hemisphere power RPR(b)bh the di�erence be-

tween O1 and O2 for each sub band in (2.11):

(|P̄ O1

b ≠ P̄ O2

b |)
O

(P̄ O1

b + P̄ O2

b ), (2.11)

where P̄ O1

b and P̄ O2

b are average power of sub-band b œ {”, ◊, –} in channel O1 and O2

respectively.

Combining (2.9), (2.10) and (2.11), there are 18 possible frequency-domain features

in each epoch that can be used for stroke detection. The frequency-domain features

described above are the most commonly used EEG signal features used for detection of

stroke.

2.2.2 Other Commonly Used Features

There are other suggestions such as:

• Time-Domian Features which mainly examine the scale-invariant fluctuations (show-

ing specific brain activities) [Liu et al. 2016], thereby evaluating the Hurst exponent

(h) which defines the particular kind of scale-invariant structure and fluctuation

level in the EEG epochs of patient data; and

• Time-Frequency Domain Features which uses time-frequency domain spectrograms

as features to train the Convolutional Neural Network (CNN) for mapping the

changes in the EEG signal during the ischemic stroke detection [Matic et al. 2015].

The spectrogram is a visual representation of a relationship between frequency

strength at specific time step. Spectrogram of each time window is used as an

input for the training of Convolutional Neural Network.

12
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2.3 Power Spectral Density (PSD) matrix for multi-channel

signals

For a Wide Sense Stationary (WSS) stochastic signal s(t), we have

E[s(t)] = µ = constant (2.12)

E[s(t + ·)s(t)] = rss(·) (2.13)

rss(·) is called the autocorrelation of the signal s(t). The power spectral density (also

called the power spectrum) of s(t) is the Fourier transform of the autocorrelation so that

pss(Ê) =
⁄

Œ

≠Œ

rss(·)e≠jÊ· d· (2.14)

For two real WSS signals s1(t) and s2(t), the cross-correlation function is defined as

rs1s2(·) = E[s1(t + ·)s2(t)] (2.15)

We note that

rs1s2(·) = rs2s1(≠·) (2.16)

The cross-correlation and the cross-power spectral density are also related by the Fourier

transform pair such that

ps1s2(Ê) =
⁄

Œ

≠Œ

rs1s2(·)e≠jÊ· d· (2.17)

(2.18)

Due to the anti-symmetry relationship of rs1s2 and rs2s1(≠·), their power spectra are

conjugate pairs, i.e.,

ps1s2(Ê) = pú

s2s1(Ê) (2.19)
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Our work in this thesis employs a multi-channel EEG system such that for the nth epoch

the EEG signals are in discrete-time forming a signal matrix Sn given by Eq. (2.3), where

the column vector sn(t) = [sn1(t), . . . , snM (t)]T , t = 1, . . . , T , is the measurement of the

M channels at t, and can be considered as a WSS vector. Therefore, we can obtain its

covariance matrix as follows:

We now vectorize this matrix so that s̃ = vec(Sn) is a MT ◊ 1 vector. The expected

value of this vector can be found by the time average. This yields a vector consisting of

T subvectors of M dimensions each:

E[vec(Sn)] = E

S

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

U

s1n(0)
...

sMn(0)

s1n(1)
...

sMn(1)
...

s1n(T ≠ 1)
...

sMn(T ≠ 1)

T

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V

¥ µ̃n =

S

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W

U

µ̃1n

...

µ̃Mn

µ̃1n

...

µ̃Mn

...

µ̃1n

...

µ̃Mn

T

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

V

(2.20)

E[smn(t)] ¥ µ̃mn = 1
T

T ≠1
ÿ

t=0

smn(t) = smn(t) (2.21)

Its covariance matrix is K̃n = E[(s̃n ≠ µ̃n)(s̃n ≠ µ̃n)T ] ¥ [(s̃n ≠ µ̃n)(s̃n ≠ µ̃n)T ] which is

MT ◊ MT and contains the M ◊ M matrices Rn(·), · = 0, · · · , T ≠ 1, i.e.,

K̃n =

S

W

W

W

W

W

W

W

U

Kn(0) Kn(1) · · · Kn(T ≠ 1)

Kn(≠1) Kn(0) · · · Kn(T ≠ 2)
...

...
...

...

Kn(1 ≠ T ) Kn(2 ≠ T ) · · · Kn(0)

T

X

X

X

X

X

X

X

V
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where Kn(·) = [Ÿij(·)] with

Kn(·) = Kn(t1 ≠ t2) =

S

W

W

W

W

W

W

W

U

Ÿ11(·) Ÿ12(·) · · · Ÿ1M (·)

Ÿ21(·) Ÿ22(·) · · · Ÿ2M (·)
...

...
...

...

ŸM1(·) ŸM2(·) · · · ŸMM (·)

T

X

X

X

X

X

X

X

V

where Ÿij(·) = E[(si(t) ≠ µi)(sj(t + ·) ≠ µj)]. For real signals, Ÿij(·) = Ÿji(≠·). At any

frequency Ê, the power spectral density (PSD) matrix Pn(Ê), of the nth epoch signal is

then the DFT

Pn(Ê) =
ÿ

·

e≠jÊ· Kn(·) (2.22)

Theoretically, the range of time-shift · in the sum of 2.22 is (≠Œ, Œ). In practice,

· œ [≠(T ≠ 1), T ≠ 1] since the number of samples is finite. Due to the anti-symmetry

property of Eq. (2.19), Ÿij = Ÿji(≠·), and therefore, from Eq. (2.19), Pn(Ê) is a

Hermitian matrix, i.e.,

Pn(Ê) = PH
n (Ê) (2.23)

It can be shown [Larsen 2015] that both Kn and Pn are positive semi-definite.

In our application, the PSD matrix of Eq. (2.22) is obtained using the Nuttall-

Strand algorithm [Nuttall 1976, Strand 1977a], which is an accurate positive semi-definite

estimation of the PSD matrix with high frequency resolution (see Section 2.5).

2.4 The PSD matrix and Its Manifold

The PSD matrix of Eq. (2.22) is, ingeneral, an M ◊ M positive semi-definite Hermitian

matrix. Some of its important properties which are used often in this thesis are listed

below [Graybill 1983]:

1. The eigenvalues of an M ◊ M Hermitian matrix P = PH are real and positive

semi-definite. Furthermore, the eigenvectors belonging to the distinct eigenvalues
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are orthogonal.

2. An M ◊M Hermitian matrix P can always be reduced to a diagonal matrix by uni-

tary transformation, i.e., U≠1PU = � where U≠1 = UH and � = diag[⁄1, . . . , ⁄M ].

3. For P being positive semi-definite Hermitan, there exists a unique positive semi-

definite Hermitian matrix P1/2 such that P1/2P1/2 = P. P1/2 is called the square-

root of P.

The PSD Manifold

Consider the feature PSD matrices P in the signal space. These M ◊ M matrices are

Hermitian and positive definite, thus, they form a subset of M ◊ M complex matrices.

Suppose we denote the set of all the M ◊ M complex matrices by H. Also, we denote

the set of all Hermitian matrices and the set of positive definite Hermitian matrices by

HH and M, respectively. Thus, we have M œ HH. Then, the following is an important

property of HH and M:

Property 1. M is a manifold1 in the real linear vector space HH. ⇤

The proof of the above proposition is given in [Li and Wong 2013]

Property 1 is important in the development of distance measures in the manifold of

complex PSD matrices. This is because we only have to consider real analysis of the

geometry.

2.5 How are PSD matrices obtained from EEG signals

There are several ways to estimate PSD matrix for a multi-channel signal including Non-

parametric methods and parametric methods. Non-parametric methods are simple, but

are in general, not consistent in the estimation of the power spectrum. Parametric
1For now, a manifold can be looked upon as Flanders “An n-dimensional manifold is a space which is

not necessarily a Euclidean space nor is it a domain in a Euclidean space, but which, from the viewpoint
of a short-sighted observer living in the space, looks just like such a domain of Euclidean space."
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methods are able to estimate PSD with higher accuracy if the model is chosen appro-

priately. There are many choices for non-parametric modeling like the Welch’s method

discussed in section 2.2.1, and parametric modeling including Vector Auto-Regression

(VAR) model which will be discussed in the following.

2.5.1 VAR Model

In this thesis, we use the VAR model for the estimation of multi-channel EEG signal

PSD, the outline shown in the following: The autocorrelation function (ACF) of a

spectrally white multichannel noise sequence n(t) satisfies

Rnn(·) = E[nH(t)n(t ≠ ·)] = Pnn”(·) (2.24)

where Pnn is a constant M ◊ M matrix. Thus its PSD matrix is a constant, i.e.,

Pnn(Ê) = Pnn. (2.25)

Now, the output signal of a q-th order VAR model can be described as

s(t) = ≠

q
ÿ

·=1

A(·)s(t ≠ ·) + n(t) (2.26)

where A(·) are the M ◊M coe�cient matrices and n(t) is the M ◊1 vector of a spectrally

white noise. Let A(0) = I. Then, the Autocorrelation Function (ACF) of n(t) is

Rnn(·) = E[nH(t)n(t ≠ ·)]

= E[
q

ÿ

k=0

q
ÿ

l=0

A(k)s(t ≠ k)sT (t + k ≠ l)AT (l)]

=
q

ÿ

k=0

q
ÿ

l=0

A(k)Rss(· + k ≠ l)AT (l) (2.27)
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Taking the z-transform of (2.27), we have

Z[Rnn(·)] =
Œ

ÿ

·=≠Œ

Rnn(·)z≠·

= (
q

ÿ

k=0

A(k)zk)(
ÿ

·=≠ŒŒ
Rss(· + k ≠ l)z·+k≠lz≠(· + k ≠ l))(

q
ÿ

l=0

AT (l)z≠l).

(2.28)

Let z = ejÊ and use (2.22), we have

Pnn(Ê) = (
q

ÿ

k=0

A(k)ejÊk)Pss(Ê)(
q

ÿ

l=0

AT (l)e≠jÊl). (2.29)

Therefore, we have

Pss(Ê) = (
q

ÿ

k=0

A(k)ejÊk)≠1Pnn(Ê)(
q

ÿ

l=0

AT (l)e≠jÊl)≠1

= (
q

ÿ

k=0

A(k)ejÊk)≠1Pnn(
q

ÿ

l=0

AT (l)e≠jÊl)≠1 (2.30)

by (2.25). Let

A(Ê) =
q

ÿ

·=0

A(·)e≠jÊ· (2.31)

Then

AH(Ê) = (
q

ÿ

·=0

A(·)e≠jÊ· )H

=
q

ÿ

·=0

AH(·)(e≠jÊ· )H

=
q

ÿ

·=0

AT (·)ejÊ· (2.32)

Thus, the (2.30) can be rewritten as

Pss(Ê) = A≠1(≠Ê)PnnA≠H(Ê). (2.33)
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From (2.33) we see that to find the power spectral density matrices Pss(Ê) of the

signal s(t) one needs to estimate the coe�cient matrices A(·) in the VAR model of (2.26).

We can use Nuttall-Strand algorithm, which is well-known to estimate the coe�cient

matrices A(Ê) and PSD Pnn of the spectrally white noise by observed signal sequence.

2.5.2 The Nuttall-Strand Algorithm

We consider the forward and backward filters which are multichannel AR models [Haykin

2008] of order q, i.e.,

eq(t) = s(t) +
q

ÿ

k=1

A(k)s(t ≠ k) (2.34)

and

bq(t) = s(t) +
q

ÿ

k=1

B(k)s(t + k) (2.35)

respectively. The optimum forward and backward filters can be obtained by minimizing

the expected mean-square values of eq(t) and bq(t). The minimum of E[eT
q (t)eq(t)] leads

to the equations:

RfwF(q) = Vfw (2.36)

where

F(q) = [I, AT (1), . . . , AT (q)]T (2.37)

Rfw = [Rfw
ik ], where Rfw

ik = Rfw
k≠i, i, k = 1, 2, ..., q, and Vfw = [Pfw, 0, . . . , 0]T with

Pfw = E[eT
q (t)eq(t)]. Similarly, the minimum of E[bT

q (t)bq(t)] leads to the equation:

RbwB(q) = Vbw (2.38)

where

B(q) = [I, BT (1), . . . , BT (q)]T (2.39)

Rbw = [Rbw
ik ], where Rbw

ik = Rbw
k≠i, i, k = 1, 2, ..., q, and Vbw = [Pbw, 0, . . . , 0]T with

Pbw = E[eT
q (t)eq(t)]. To solve (2.36) and (2.38), the forward and backward filters may
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be postulated as

F(q) =

S

W

U

F(q ≠ 1)

0

T

X

V

+

S

W

U

0

Bbw(q ≠ 1)

T

X

V

Cfw(q) (2.40)

and

B(q) =

S

W

U

B(q ≠ 1)

0

T

X

V

Cbw(q) +

S

W

U

0

Bbw(q ≠ 1)

T

X

V

(2.41)

where Bbw(q ≠ 1) = [BT (q ≠ 1), . . . , Bbw(1), I]T .

Let {st : t = 1, . . . , T} be a sample of T consecutive observations of the EEG signal.

Let

sk(q) = [sT
k+q, sT

k+q≠1, . . . , sT
k ]T (2.42)

for k = 1, 2, . . . , N ≠ q, q = 0, 1, . . . , T ≠ 1. Let

ek(q) = [(F(q ≠ 1))T , 0]sk(q) (2.43)

and

bk(q) = [0, (Bbw(q ≠ 1))T ]sk(q). (2.44)

Then, the algorithm is as follows:

Algorithm (Nuttall-Strand)

1. Initialize the residual power matrices Pfw(0) and Pbw(0):

Pfw(0) = Pbw(0) = 1
T

T
ÿ

t=1

stsT
t (2.45)

2. Calculate the forward and backward residuals for k = 1, . . . , T ≠ q:

(a) q = 1: ek(q) = sk+1, bk(q) = sk

(b) q > 1: ek(q) = ek+1(q ≠ 1) + (Cfw(q ≠ 1))T bk+1(q ≠ 1), bk(q) = bk(q ≠ 1) +

(Cbw(q ≠ 1))T ek(q ≠ 1)
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3. Calculate

E = 1
T ≠ q

T ≠q
ÿ

k=1

ek(q)eT
k (q) (2.46)

G = 1
T ≠ q

T ≠q
ÿ

k=1

bk(q)eT
k (q) (2.47)

B = 1
T ≠ q

T ≠q
ÿ

k=1

ek(q)bT
k (q) (2.48)

4. Solve cfw(q) from

BCfw(q) + Pbw(q ≠ 1)Cfw(q)(Pfw(q ≠ 1))≠1E = ≠2G (2.49)

5. Compute cbw(q) by

cbw(q) = (Pfw(q ≠ 1))≠1CT (q)Pfw(q ≠ 1) (2.50)

6. Computer power matrices Pfw(q) and Pbw(q) by

Pfw(q) = Pfw(q ≠ 1) ≠ (Cfw(q))T Pfw(q ≠ 1)Cfw(1) (2.51)

and

Pbw(q) = Pbw(q ≠ 1) ≠ (Cbw(q))T Pfw(q ≠ 1)Cbw(1) (2.52)

7. Update the filters coe�cients using (2.40) and (2.41).

8. If ||Pfw(q) ≠ Pbw(q)|| < ‘, then go to 2.

9. Calculate the power spectral density matrix

P(Ê) = A≠1(≠Ê)Pfw(q)A≠T (Ê) (2.53)

where A(Ê) = I + A(1)e≠jÊ + · · · + A(q)e≠jÊ.
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For detailed derivation of the algorithm and the implementation, see [Strand 1977b,

Nuttall 1976].
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Chapter 3

The concept of distance in signal

classification

In Chapter 2, we discussed how the pre-processing of Electroencephalography (EEG)

signals can be carried out, including the cleaning up of artifacts and noise. We also dis-

cussed the process of feature extraction, and in particular, we discussed how the feature

of the Power Spectral Density (PSD) matrix can be obtained. The major properties

of these PSD matrices including how they form a manifold in the signal space are also

reviewed. We will use these features for the purpose of signal classification (brain stroke

detection) in the ensuing chapters.

In this chapter, we discuss the concept of similarity/dissimilarity between features

of signals. The requirement of the measurement of similarity/dissimilarity is that the

quantified similarity between features of signals should be small if the signals come from

the same class and be large if the signals come from di�erent classes.

Since PSD matrices can be represented as points in a linear signal space, the simi-

larity between these features can then be intuitively measured by some kind of distance

function, or distance for short. In this chapter, we will discuss di�erent metrics to mea-

sure distance between points in these spaces: First, the definition of distance; second,

di�erent types of distance; third, how to establish distance between two PSD matrices.
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3.1 Definition Of Distances

A general approach for characterizing the di�erence between two signals is to assign a

"distance", a positive, real number, to each pair of elements of a signal. The function to

evaluate distance between two elements of a signal set is called a metric which satisfies

the following three properties:

d(x, y) Ø 0 and d(x, y) = 0 i� x = y (positivity) (3.1)

d(x, y) = d(y, x) (symmetry) (3.2)

d(x, z) Æ d(x, y) + d(y, z) (triangle inequality) (3.3)

3.2 Distances Induced By Inner Product

In signal processing, the Euclidean (inner product) distance (ED) is the most commonly

used distance measure [Franks 1969, Papoulis 1977] because it coincides with the usual

concept of distance in a 3-dimensional space and also represents many important physical

quantities. For two n-dimensional complex vectors x and y, the ED is defined as [Franks

1969]

dE(x, y) = Îx ≠ yÎ =
A

n
ÿ

i=1

|xi ≠ yi|
2

B

1/2

(3.4)

From the Cauchy-Schwarz inequality, we have
-

-Èx, yÍ
-

- Æ ÎxÎ ÎyÎ, so that a real

angle ◊ between x and y can be defined as cos ◊ = |Èx,yÍ|

ÎxÎ ÎyÎ
. Thus, another distance

measure between two n-dimensional normalized vectors can be established based on

their correlation such that the smaller the angle, the shorter is the distance1, i.e.,

dC(x, y) =
Û

1 ≠
|
qn

i=1
xiyú

i |

ÎxÎÎyÎ
(3.5)

1The angle, ◊ = cos≠1 ((|Èx, yÍ|)/(ÎxÎ ÎyÎ)), can also be used as distance measures. If the normalized
inner product is replaced by the product of two probability distributions (real and normalized), then ◊
defines the Fisher-Rao distance [Bengtsson and Øyczkowski 2017]. If x, y are complex quantities whose
modulus are probability distributions, 2◊ defines the Fubini-Study distance [Kendall et al. 1946].
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We may also look upon an M ◊ M complex matrix as a point in the M2 complex
signal space so that the same idea of distance [Golub and Van Loan 2012] between two
such matrices A = [aij ] and B = [bij ] can also be applied:

dF(A, B)=

Q

a

M
ÿ

i=1

M
ÿ

j=1
|aij ≠ bij |

2

R

b

1/2

=
Ò

tr[(A ≠ B)(A ≠ B)H ] (3.6)

Eq. (3.6) is often called the Frobenius distance which is in fact induced by the inner

product norm and can be considered as the ED between A and B since, if we form the

vectors vecA and vecB using the vec-functions [Horn et al. 1990], it is easy to see that

d2

F
(A, B) = d2

E
(vecA, vecB).

3.3 Distance Between Two PSD Matrices

3.3.1 Euclidean distance

We can apply Eq. (3.6) to two M by M complex PSD matrices Pm, Pn giving

dE(Pm, Pn) =

Q

a

M
ÿ

i=1

M
ÿ

j=1

|pmi,j
≠ pni,j

|
2

R

b

1/2

=
Ò

tr[(Pm ≠ Pn)(Pm ≠ Pn)H ], (3.7)

where pmi,j
and pni,j

are the ij-th wlwmwnts of Pm and Pn respectively. Eq. (3.7) gives

the Euclidean between two PSD matrices Pm, Pn. We note that the Euclidean distance

between two PSD matrices measeures the straight line distance between the two points

in the signal space.
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3.3.2 Riemannian distance for measurement of distance between two

PSD matrices

Since the PSD matrices form a manifold in the signal space, therefore, measuring the

distance between two PSD matrices should be carried out along the surface of the

manifold. Thus, the Euclidean distance is not an appropriate measure for the simi-

larity/dissimiliarity between two PSD matrices.

To find the distance between two points on the surface of the manifold, we have

to employ knowledge from di�erential geometry. We gather that the length of a path

between the two points on the manifold M is given by [Jost and Jost 2008]:

¸(P) =
⁄ ◊n

◊m

g1/2

P (Ṗ, Ṗ) d◊ (3.8)

where ◊ parameterizes the path joining Pm and Pn, ◊m and ◊n being the values of the

parameter at Pm and Pn respectively, Ṗ = dP
d◊ , and gP(Ṗ, Ṗ) is an inner product metric,

called a Riemannian metric, at P on M, which can be defined in a variety of ways. A

di�erentiable manifold M in which each tangent space is endowed with a Riemannian

metric is called a Riemannian manifold. The curve on the manifold linking two PSD

matrices Pm and Pn having the minimum length is called a geodesic, and the length of

the geodesic is called the Riemannian distance (RD) between the two points, i.e.,

dR(Pm, Pn) , min
P(◊):[◊m,◊n]æM

{¸(P(◊))} (3.9)

Di�erently defined Riemannian metrics give rise to di�erent RD. The direct evaluation

of the RD in Eq. (3.9) is di�cult. The following concept developed in [Li and Wong

2013] helps to solve the problem:

Let H denotes the Euclidean space of all M ◊M complex matrices. We can establish

a mapping fi : M æ H associating each point P œ M with P̃ , fi(P). Then, P̃ is still

an M ◊ M complex matrix but may no longer be positive semi-definite or Hermitian,

i.e., P̃ œ H.
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By choosing a particular mapping fi, together with an appropriate Riemannian met-

ric, we can find a Euclidean subspace UH at P̃ of H which is isometric with TM(P),

the tangent space at P on the manifold M, i.e., the geodesic between Pm, Pn œ M can

be lifted to P̃m, P̃n œ UH. Thus, the RD on the manifold can be expressed directly in

the Euclidean subspace UH in which ED is the measure distance. Three di�erent closed-

form expressions of RD for the PSD matrix manifold have been obtained following this

method [Li and Wong 2013].

1. RD dR1 : We use the mapping fi such that P = P̃P̃H , i.e., P̃ = P1/2U where

P̃ œ H, P œ M, U is a unitary matrix, and choose the Riemannian metric on M as

gP(A, B) = 1

2
trAK with A, B œ TM(P), and KP + PK = B. Then, Pm and Pn

can be lifted to P̃m, P̃n œ UH by letting P̃m = P1/2

m Urm and P̃n = P1/2

n U¸m, such

that P1/2

n P1/2

m = U¸m�UH
rm with � being the singular value matrix, and U¸m and Urm

being the left and right singular vector matrices of P1/2

n P1/2

m respectively. The RD can

be found to be

dR1(Pm, Pn)=
Ú

trPm + trPn ≠ 2tr
Ë

(P1/2

m PnP1/2

m )1/2

È

(3.10)

2. RD dR2 : Use the mapping fi such that P = P̃2, and choose the Riemannian metric

gP (A, B) = ÈA, KÍ where PK + KP + 2P̃KP̃ = B, with A, B œ TM(P), then the RD

between Pm and Pn on M is:

dR2(Pm, Pn) =
Ò

trPm + trPn ≠ 2tr[P1/2

m P1/2

n ] (3.11)

3. RD dR3 : Use the mapping fi: P = exp(P̃), and choose the Riemannian metric

gP (A, B) = tr(P≠1AP≠1B) where A, B œ TM(P), then the RD between Pm and Pn in

M is

dR3(Pm,Pn)=
Ò

tr[(log P≠1/2

m PnP≠1/2

m )2]=

ˆ

ı

ı

Ù

M
ÿ

i=1

log2⁄i (3.12)

where ⁄i are the eigenvalues of P≠1
m Pn.
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Remarks:

a) All three RD satisfy the axioms of distance, i.e., (i) positivity, (ii) symmetry, (iii)

triangle inequality.

b) RD dR1 and dR2 are expressions newly developed [Li and Wong 2013]. On the

other hand, dR3 which can be arrived at in several di�erent ways, has been in

use for a long time in physics and mathematics (especially in General Relativity

Theory) [Bhatia 2009, Besse 2007, Moakher 2005].

c) In signal processing, dR3 has been studied for statistical operations and applied

to interpolation, filtering, and restoration of PSD matrices [Arsigny et al. 2006,

Arsigny et al. 2006]. As well, based on dR3 , di�erent classification algorithms

have been developed and have been applied to the detection of pedestrians, MRI

and EEG classifications [Tuzel et al. 2008, Barachant et al. 2012]. However, dR3

is not sensitive to weighting and thus may not be appropriate for use when a

priori information is available (see Section 3.3.3. On the other hand, dR1 and

dR2 are not quite widely used yet, however, due to it being more mathematically

manipulatable, dR2 has recently been applied in robust beamforming and signal

detection with rather attractive results [Ciochina et al. 2013, Xu et al. 2013, Wong

et al. 2017]. Here in this thesis, we also employ the RD dR2 for classification of

stroke EEG signals.

3.3.3 Weighting of Riemannian Distances

Applying weighting matrix is a general way to enhance the similarity and dissimilarity

between the features of PSD matrices. In order to do so, a positive definite Hermitian

weighting matrix W can be applied to the PSD feature matrices such that W = ��H ,

where � is an M ◊ K, K Æ M matrix. Then the weighted version of Pm and Pn

can be defined as PmW = �HPm� and PnW = �HPn�, respectively. It is easy

to see that PmW and PnW are also positive semi-definite Hermitian matrices on the

manifold. The distance between two weighted PSD matrices then results in a weighted
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Riemannian Distance (RD). For the three RD dR1 , dR2 , and dR3 , their corresponding

weighted distances between Pm and Pn œ M are respectively given by [Li and Wong

2013]

dWR1(Pm, Pn) =
Ò

trWPm + trWPn ≠ 2tr(P1/2

m WPnWP1/2

m )1/2 (3.13)

dWR2(Pm, Pn) =
Ò

trWPm+ trWPn≠ trWP1/2

m P1/2

n ≠ trWP1/2

n P1/2

m (3.14)

dWR3(Pm, Pn) = dR3(PmW, PnW). (3.15)

We note from the above equation, that dR3 is weight-invariant, meaning that the distance

measure does not change with weighting. Thus, the use of dR3 cannot benefit from the a

priori knowledge and improve the similarity/dissimilarity in the process of classification.

Thus, in this thesis, we will not include the study of using dR3 .

3.4 Dissimilarity Measures of Two Epochs of EEG Signals

Now we are ready to define the similarity/dissimilarity between the PSD matrices of two

epochs of EEG signals:

PSD is a function of the frequency Ê. With the variation of Ê, the PSD describes a

curve of on the Riemannian manifold M. Therefore, similarity/dissimilarity between two

sequences of PSD matrices corresponding to two multi-channel epochs of EEG signals

must be established.

For two curves on the manifold described by two PSD matrices Pm(Ê) and Pn(Ê),

the distance, d(Pm(Ê), Pn(Ê)), ED or RD alike, is a non-negative real valued function of

Ê, measuring the distance between the two curves at frequency Ê. As Ê varies, we define

the average distance between the curves Pm(Ê) and Pn(Ê) in the range of [Êmin, Êmax]
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as

d̄(Pm(Ê), Pn(Ê)) = 1
(Êmax ≠ Êmin)

⁄ Êmax

Êmin
d(Pm(Ê), Pn(Ê))dÊ

¥
1
N

N
ÿ

i=1

d(Pm(Êi), Pn(Êi))�Êi. (3.16)

where d(Pm(Êi), Pn(Êi)) can stand for either ED or RD. It is easy to show this Riemann

integral satisfies the axioms of a distance function. If equal frequency increment is

used, i.e., �Êi
is a constant, then we can define the overall Euclidean and Riemannian

dissimilarity between the two given PSD curves as

d̂E(Pm(Ê), Pn(Ê)) =
q

i dE(Pm(Êi), Pn(Êi)) (3.17a)

d̂R(Pm(Ê), Pn(Ê)) =
q

i dR(Pm(Êi), Pn(Êi)) (3.17b)

Therefore, we can evaluate the similarity/dissimilarity by (3.17) in the observed fre-

quency range for the purpose of classification in either the Euclidean sense or the Rie-

mannian sense.

3.5 Mean of Normalized Random PSD Matrices

The mean is a fundamental statistic used in signal processing to represent centrality of

data points. For real scalars, the mean minimizes the sum of the squared distances from

the points to this central point [Kendall et al. 1946].

We can generalize these properties to define the mean of M ◊ M PSD matrices,

{Pn, n = 1, · · · , N}, by using the geometric distance d measured between two matrices.

Thus, we have,

C = arg min
C

N
ÿ

n=1

d2 (C, Pn) (3.18)
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where d, the distance measured between two matrices, is a general metric. If d represents

the various RD dR, then the central points are respectively called the Riemannian mean

(RMn), denoted by CR. Likewise, for d being ED, the central points are Euclidean mean

(EMn), denoted by CE.

3.5.1 Euclidean mean

For Eiclidean mean of a group of N random normalized PSD matrices {Pn}; n =

1, · · · , N , the mean is simply the arithmatic average [Kendall et al. 1946] such that

CE = 1
N

N
ÿ

i=1

Pn (3.19)

That CE indeed minimizes the sum squared distance from all points can be shown by

simply di�erentiating the the sum squared distances from all the points to C with respect

to C, and equate the result to zero for minimum. Eq. (3.19) then follows.

3.5.2 Riemannian mean

The RMn of PSD matrices have been studied by various researchers recently [Ning et al.

2013, Arnaudon et al. 2013, Moakher 2005, Wong et al. 2017]. In this section, we gives

an exposition to the algorithm developed by [Wong et al. 2017] based on the concept

of alternating mapping between base and total-spaces to find the RMn according to the

specific distance measure of dR2 for a group of identically distributed PSD matrices lying

in a convex set C µ M, i.e., between any two point in C, there is a unique geodesic lying

entirely in C.

The algorithm for finding the RMn of a group of PSD matrices {Pn}; n = 1, · · · , N

is based on the concept that each pair of the points Pm and Pn can be systematically

lifted to a Euclidean subspace UH isometric to the tangent space of the manifold M,

yielding the points P̃m and P̃n. Then adjusting the Euclidean subspaces by finding

the EMn of these lifted points {P̃n}; n = 1, · · · , N results in a C̃ whose image on the
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manifold C should be close to the RMn of the PSD matrices on the manifold. Iteration

and re-iteration of the lifting and projection will result in an estimate very close to the

true RMn. In fact, for the measure of dR2 , this is a one-step process as stated in the

following [Wong et al. 2017]:

Theorem 1. For PSD matrices {Pn, n = 1, · · · , N}, the RMn according to dR2 and the

weighted RMn according to dWR2 are respectively given by

CR2 = C̃R2 · C̃H
R2 (3.20a)

CWR2 = C̃WR2C̃H
WR2 (3.20b)

where C̃R2 = 1

N

qN
n=1

P1/2

n ,

and C̃WR2 = 1

N

qN
n=1

(�HPn�)1/2 ⇤

Proof of Theorem 1 can be shown readily by substituting dR2 and dWR2 correspondingly

into Eq. (3.18) and equating the di�erentials of the objective functions w.r.t. C̃ to zero.

Both the EMn and the RMn of PSD matrices have important applications in signal

processing. We will employ both in the study of EEG signal classification in the ensuing

chapters of the thesis.
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Chapter 4

Classification of EEG Signal

Features

After features have been selected and extracted from EEG signals, classification begins.

Classification algorithms can be divided into di�erent categories based on di�erent per-

spectives such as linear classifiers, nonlinear classifiers, and combinations of classifiers

[Lotte et al. 2007].

The popular linear classifiers used in EEG signal classifications are linear discrimi-

nate analysis (LDA) and linear support vector machines (SVM). LDA [Duda et al. n.d.]

assumes that the data in each class has normal (Gaussian) distribution all having the

same covariance matrix. The separating hyperplane is constructed by seeking the pro-

jection that maximizes the distance between the means of two classes and minimizes the

variance of interclass. LDA classifier has a very low computational requirement which

makes it suitable in online applications [Garrett et al. 2003]. The main drawback of LDA

is that it gives poor performance on complex nonlinear EEG data [Garcia et al. 2003].

Linear SVM [Duda et al. n.d.] aims to find a hyperlane that maximizes the margins,

i.e., the distance from the nearest training points. Linear SVM has been successfully

applied to synchronous brain computer interface (BCI) problems [Garrett et al. 2003].

By using "kernel trick" the linearity restriction can be relaxed so that nonlinear decision

boundaries can be created, with only a low increase of the classifier’s complexity. The
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radial basis function (RBF) SVM also have successful applications in EEG signal classi-

fication [Garrett et al. 2003]. SVM has good generalization properties due to the margin

maximization and the regularization. It is insensitive to overtraining. It overcomes the

problem of "curse-of-dimensionality". The drawback is the low speed of execution.

The nonlinear classifiers mostly used in EEG signal classification are the Nonlinear

Bayesian classifiers [Keirn and Aunon 1990]. Another choice is the Hidden Markov model

(HMM) classifiers because it is not necessary to extract feature vectors from EEG signals

for the classification. HMM has been used successfully in BCI [Obermaier et al. 2001a,

Obermaier et al. 2001b] and sleep staging [Doroshenkov et al. 2007].

A neural network can be viewed as universal approximator of continuous functions.

Thus, it can produce nonlinear decision boundaries when used in classification [Bishop,

Bishop, et al. 1995]. However, the universality makes the classifiers sensitive to over-

training, especially with noisy and non-stationary data. Therefore, one must be careful

to select the architecture and regularization [Duin and Tax 2005]. Multilayer percep-

tron (MLP), together with linear classifiers, are the neural networks mostly used in

EEG signal classifications [Hiraiwa et al. 1990, Wang et al. 2004, Balakrishnan and

Puthusserypady 2005]. Other neural network architectures have also been applied to

EEG signal classifications [Millan et al. 2000].

Our problem of EEG signal classification is a binary hypothesis decision problem:

either H0 or H1. Thus, we are able to use the simplest binary classifiers. In the following,

describe these two methods for our purpose of classification of stroke signals.
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4.1 Binary Decision Classifier

4.1.1 Binary hypothesis testing

Binary hypothesis testing involves the decision of the occurrence of one or the other

hypothesized events (either H0 or H1) from an observable z. The observable z is gen-

erated from a source through some probability laws. (Thus, in our project, the source

is the patient’s brain which generates EEG signals yielding the observable feature Pn.)

The observable z falls in to the observation space Z which is demarcated into two non-

ovelapping regions Z0 and Z1. If z falls into Z0, we decide that H0 is true. On the other

hand, if z falls into Z1, we decide that H1 is true. The binary hypothesis testing rules

show us how to optimally demarcate the decision regions under di�erent circumstances.

Now, binary hypothesis testing generally may have four possible outcomes:

(i) H0 true — decide D0 correct decision

(ii) H1 true — decide D1 correct decision

(iii) H0 true — decide D1 error (false alarm)

(iv) H1 true — decide D0 error (miss)

We assign a cost to each of the possibilities: c00, c11, c10 and c01 and,

we assume: c10 > c00, c01 > c11. The most complete decision criterion is the Bayes’

decision criterion which minimizes the average cost of the decision making [Wong 2004].

This can be expressed as:

�(z) , p(z|H1)
p(z|H0)

H1
?
H0

P (H0)(c10 ≠ c00)
P (H1)(c01 ≠ c11) , ÷ (4.1)

On the left side of Eq. (4.1), �(z) is called the likelihood ratio which is defined as the

ratio of two conditional probability density functions, under the hypotheses of H1 and

H0. On the right side, we have the known quantities P (H0) and P (H1) which are the

a priori probabilities of the two hypotheses, and the given values of the costs of the

decision outcomes. If these values are all known, then the right side is a constant called

the threshold denoted by ÷.
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In particular:

(i) if c10 ≠ c00 = c01 ≠ c11, the Bayes’ criterion reduces to the maximum a posterior

(MAP) criterion.

(ii) if c00 = c11 = 0 and c10 = c01 = 1, then we have

�(z)
H1
?
H0

P (H0)
P (H1) (min. error © MAP)

for which the minimization of the average cost becomes the minimization of the average

error (minimum error criterion) which is also MAP.

To apply the Bayes’ binary decision criterion to our probelm of EEG signal feature

classification, we have to formulate the following likelihood ratio test:

p(P|H1)
p(P|H0)

H1
?
H0

÷ (4.2)

On the left side, p(P|H1) and p(P|H0) are respectively the probability density distribu-

tions of the PSD matrices of stroked patients and of the healthy participants respectively.

On the right side is the threshold which is chosen to minimize the average cost if all the

conditions are known.

4.1.2 Distance-from-mean (DFM) binary decision

Unfortunately, we do not have any knowledge of either of the distributions on the left

side of Eq. (4.2), therefore, we substitute the probability density distributions with the

measures of dissimilarity to the two (healthy and unhealthy) groups of PSD matrices.

Distance, as we mentioned in Chapter 3 is a masure of dissimilarity and to measure the

distance from a point to a group of PSD matrices, we must choose a group representative.

In this case, a suitable representative is the mean of the group. On the right side of

Eq. (4.2), we do not have any knowledge of the costs of decision outcomes, neither do

we have any knowledge of the a priori probabilities of being healthy and having stroke.

We then assume that c00 = c11 = 0 and c10 = c01 = 1 and that P (H0) = P (H1), which
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yields us the decision rule:

d(P, C0)
d(P, C1)

H1
?
H0

1 (4.3)

where d is a distance measure (either Euclidean or Riemannian), and C0 and C1 are

respectively the means of the PSD Matrices of the healthy and unhealthy participants.

Again, we can use either the Euclidean mean or the Riemannian mean for the purpose.

We call the testing rule of Eq. (4.3) the Distance-from-mean (DFM) binary decision

rule. Eq. (4.3) uses C0 and C1 as references for deciding if a testing PSD matrix PT is

from a healthy person or a stroked patient. On the other hand, we may also translate

our decision reference to the origin. In that case, on average, we expect the PSD matrix

PT to have the form,

PT =
Ó C0 healthy person

C1 stroked patient

Hence, our hypothesis testing rule in this case is:

d((P ≠ C0), 0)
d((P ≠ C1), 0)

H1
?
H0

1 (4.4)

Eq. (4.4) translates the reference from the means to 0. In general, we can use either

Eq. (4.3) or Eq. (4.4) for the binary decision test. If Euclidean distance is used, the two

equations will yield identical results since there is no distortion in distance if we move

the reference. However, if Riemannian distance is used, the distances may have been

distorted, and resulting in greater or less accuracies, depending on the distortion.

By choosing di�erent distance measures of d together with the corresponding mean

points C0 and C1 in the decision rule of Eqs. (4.3) and (4.4), we have di�erent EEG stroke

classifiers. Varying the value of the threshold on the right side, the receiver operation

characteristic (ROC) [Van Trees 2004] of the di�erent classifiers can be obtained and a

comparison of the performance can be made.
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Clearly, without the knowledge of the density distributions p(P|H1) and p(P|H0),

as well, without the knowledge of P (H0) and P (H1), the decision using Eq. (4.3) can

only be sub-optimum. However, we can use the a priori knowledge of the library of the

collected PSD matrices to improve ourresults. This is the method of weighting.

4.1.3 Optimum weighting for binary decision

We have seen in Chapter 3 how the di�erent distance measures can be weighted. The

purpose of weighting a distance is to use prior information to highlight certain parts,

and deemphasize others, of the feature matrices so as to increase the e�ciency of signal

processing. For binary signal classification, which is to distinguish one kind of signal

feature from another, the optimum weighting matrix should enhance their dissimilarity.

We may define similarity between two feature PSD matrices Pm and Pn as the amount

of correlation such that ‡(Pm, Pn) = tr (PH
mPn). Suppose for our prior knowledge,

we divide our library of collected PSD matrices into two classes: S0 and S1, indicating

respectively, the group of healthy people and the group of stroked patients, and each

having respectively N0 and N1 number of epochs. Then, for the purpose of classification,

we seek for a weighting matrix which maximizes the correlation between matrices of

similar classes and minimizes the correlation between dissimilar classes. In particular,

if C0W and C1W are respectively the weighted Riemannian means of the healthy and

stroked PSD matrices, we seek for an optimum M ◊ M weighting matrix W = ��H

minimizing the following objective function

Fo(�) = tr
Ë

C≠1

1W
C0W

È

(4.5)

Since tr[A≠1B] Ø (trB)/(trA) [Wong et al. 2017], we can interpret from the identity

Fo(�) = tr[(C1WC1W)≠1C1WC0W] that the objective function of Eq.(4.5) is an upper

bound of [tr(C1WC0W)]/[tr(C1WC1W)], so that minimizing Fo(�) is indeed minimizing

the upper bound of the ratio of the correlation between the two means of dissimilar

classes to that of similar class.
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Since the means for both weighted RD dWR1 and dWR2 are determined by methods

which assume the weighting to be fixed, to find the optimum weighting in terms of these

means as in Eq. (4.5) necessitates an iterative procedure. In any case, we need the

solution of the optimum weighting for fixed means. For that we quote the following

theorem [Wong et al. 2017]

Theorem 2. Suppose we have the following objective function

Fo(�) = tr
Ë

(�H�1�)≠1(�H�0�)
È

(4.6)

where �1 and �0 are respectively some chosen means among the stroke patients and

healthy people PSD matrices. Let {⁄1 Ø · · · Ø ⁄M } and {u1, · · · , uM } be respectively the

eigenvalues and eigenvectors of �≠1

1
�0, then the maximum and minimum values of Fo

are attained when �op is comprised respectively of the first K and the last K eigenvectors

of {u1, · · · , uM }. ⇤

The proof of Theorem 2 is shown in [Wong et al. 2017]. ⌅

Remarks on Theorem 2

1. If we choose K = M , then, the resulting weighting matrix W = I, which does

not have any e�ect. To have the largest possible e�ect of weighting, we choose

K = M ≠ 1.

2. For K = M ≠ 1, the optimum weighting matrix can yield a minimum
qM

i=2
⁄i or

a maximum
qM≠1

i=1
⁄i for Fo. For our purpose, we want to minimize Fo. Thus, we

choose the eigenvectors corresponding to the K smallest eigenvalues to construct

�op.

3. Theorem 2 provides us with the way to find the optimum weighting matrix for

given healthy and stroked means. However, we have to combine this theorem with

the algorithms to locate the di�erent means according to weighted dWR1 and dWR2 .

This is illustrated in the following.
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General algorithm to find optimum weighting matrix for RD:

1. Set accuracy indicators ‘0 and ‘1.

2. For i = 0, set

�(i)
1

= 1
N1

ÿ

PmœS1

Pm; �(i)
0

= 1
N0

ÿ

PnœS0

Pn

3. For K = M , use Theorem 2 together with �(i)
1

and �(i)
0

to obtain �(i).

4. Form the weighted healthy PSD group and the weighted stroked PSD group such

that

S
(i)
0W

=
Ó

(�(i))HPm�(i)
Ô

PmœS0

S
(i)
1W

=
Ó

(�(i))HPm�(i)
Ô

PmœS1

5. Use the mapping P = P̃2 to lift these weighted PSD matrices to the corresponding

isometric Euclidean subspace and, use Theorem 1 to locate the means (C̃(i)
1W

and

C̃(i)
0W

). Project back to the manifold and obtain the new central points, C(i)
1W

and

C(i)
0W

.

6. Calculate the unweighted healthy and stroked means

C(i)
0Rw = (�(i))≠HC(i)

0W
(�(i))≠1

C(i)
1Rw = (�(i))≠HC(i)

1W
(�(i))≠1

7. If dR2(C(i)
0Rw ,C(i≠1)

0Rw ) < ‘0 and dR2(C(i)
1Rw , C(i≠1)

1Rw ) < ‘1, then let �0 = �(i). Since

we want to minimize Fo, we form �op using the last, M ≠ 1 columns of �0 in the

way as decribed in Theorem 2. Then exit.
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Otherwise, let �(i+1)

0
= C(i)

0Rw and �(i+1)

1
= C(i)

sRw . Let i æ (i + 1) and go to

Step 3. ⌅

4.2 k-Nearest Neighbor (k-NN) Classification

k-nearest neighbor classifiers are the simplest and among the most e�ective nonlinear

classifiers. The idea is to assign a feature vector to a class according to its nearest

neighbors. The neighbors can be feature vectors from the training set if a distance

measure is defined between feature vectors [Boriso� et al. 2004], or class prototypes if

Mahalanobis distance is used [Cincotti et al. 2003]. The performance of a k-nearest

neighbor classifier can be equal to that of a neural network classifier in the automatic

scoring of human sleep recordings [Becq et al. 2005].

In this chapter, we introduce classification by k-NN and classification by binary hy-

pothesis testing.

4.2.1 Nearest neighbor classification methods

For our case of EEG signal classification, we take the feature PSD matrix of a test signal

epoch not being part of the library, and compare the distance (both Euclidean and

Riemannian) of this test feature Power Spectral Density (PSD) matrix to its k nearest

neighbors. Then we assign it to a class according to majority decision among these k

neighbor matrices. Fig. 4.1 shows an example of 3-NN and an example of 5-NN in a

two-class case. (In our case, the neighbors are the feature PSD matrices from the library

signal sets.)

We can see that the assignment of the object x may vary with the choice of di�erent

values of k, regardless of whether the distributions of the objects are similar or di�erent.

However, there is no general rule to choose the best value of k in the k-nearest neighbor

algorithm. If the sample size is infinite, the larger k the better is the performance of the

k-nearest neighbor classifier. In fact, for infinitely large sample-size, the performance
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Figure 4.1: k-Nearest Neighbor Decision (a). k = 3 (b). k = 5

of the k-nearest neighbor algorithm has been shown to approach the optimum Bayesian

classifier with k æ Œ and k/N æ 0 (N being the sample size) [Devroye et al. 2013].

In our tests, we first set up a library of epochs of Electroencephalography (EEG)

signals and categorize them into L = 2 classes, representing the healthy and the stroked

groups. Each epoch of EEG signals has been taken from participants examined by clinical

experts and classification agreements have been obtained. Using the procedure described

in Section 2.5, the PSD matrices of these signal epochs in each of the categories are

evaluated at each frequency point within the range Ê œ [0Hz, 13Hz] forming frequency

curves (sequences of points), {Pn(Ê), n = 1, . . . , N}, of the N epochs. These are the

PSD matrix curves to which we apply the k-nearest neighbor algorithm incorporating

the Euclidean or Riemannian distances for classification of the EEG signals. Since our

sample size is finite, we found that, by choosing a small value of k, the results are very

satisfactory.

4.2.2 Optimum Riemannian distance weighting for k-NN classification

In the previous chapters, we introduced Riemannian Distance (RD) for the measure of

similarity between two PSD matrices and RD for weighted PSD matrices. In this section,

we will obtain the optimum weighting matrix W in order to enhance the application of

this distance for EEG classification.
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Since the distance measure characterizes the property of the class in which similar

data are clustered, the mean-square distance between members of the class is a measure

of the size of the cluster so formed. The aim of metric learning is therefore to find

the optimum weighting matrix which minimizes the size of the cluster and extract the

property of the set in which they are most similar while keeping the dissimilar members

at a prescribed distance [Sebestyen 1962]. Conceptually, we can apply this idea to obtain

an optimum weighting matrix for the RD dRW between two weighted PSD matrices [Li

and Wong 2013] as follows:

Let Pi(Ê) and Pj(Ê), Ê œ [Êmin, Êmax], be two separate samples curves of PSD

matrices as the frequency Ê varies. We say that Pi(Ê) and Pj(Ê) are similar if they

belong to the same class, and are dissimilar if they belong to di�erent classes. Let

Pik = Pi(Êk) and Pjk = Pj(Êk) represent two separate PSD matrices from the two

sample curves measured at Ê = Êk. We denote the sets of similar and dissimilar PSD

matrices by S and D respectively such that the set of pairs of similar PSD matrices

is S = {(Pik, Pjk); Pi(Ê), Pj(Ê) œ Cl}, whereas the set of pairs of dissimilar PSD

matrices is D = {(Pik, Pjk); Pi(Ê) œ Cli , Pj(Ê) œ Clj , li ”= lj}. The optimum M ◊ M

weighting matrix W may be found by maximizing the ratio of the sum of squared

interclass distances and the sum of squared of intraclass distances, i.e.,

max
W

ÿ

(Pmi
,Pni

)œAd

d2

WR(Pmi
, Pni

)
O

ÿ

(Pmi
,Pni

)œAs

d2

WR(Pmi
, Pni

)

s.t. W = WH
º 0 (4.7)

For our case, the total number of pairs of similar and dissimilar PSD matrices are

respectively given by

Ns =

Q

c

a

Nlp

2

R

d

b

+

Q

c

a

Nlh

2

R

d

b

, and Nd = Nlp · Nlh . (4.8)

Optimizing of the quantity in (4.7) directly on manifold M is di�cult. However, the
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optimization could be performed using inner product metric in an Euclidean space [Li

and Wong 2013]. Since we only employ dR2 in this thesis, we will focus on finding the

optimum weighting for dWR2 :

Optimum weighting for dW R2

Let S2 = {P1/2

ik , P1/2

jk ; Pi(Ê), Pi(Ê) œ Cl} and D2 = {(Pik, Pjk); Pi(Ê) œ C(li), Pj(Ê) œ

Clj , li ”= lj}. Then, writing

M̃S2 =
ÿ

(P1/2
ik

,P1/2
jk

)œS2

(P1/2

ik ≠ P1/2

jk )(P1/2

ik ≠ P1/2

jk )H (4.9)

and

M̃D2 =
ÿ

(P1/2
ik

,P1/2
jk

)œD2

(P1/2

ik ≠ P1/2

jk )(P1/2

ik ≠ P1/2

jk )H (4.10)

The optimization problem in Eq. (4.7) becomes

max
�

tr
1

�HM̃D1�
2O

tr
1

�HM̃S1�
2

, s.t. ��H
º0 (4.11)

A globally optimum solution of the above may still be di�cult to find due to the non-

convexity of the problem. Thus, we seek to solve an approximation to the problem, such

that

max
�

tr
Ë

(�HM̃S1�)≠1�HM̃D1�
È

, s.t. ��H
º 0 (4.12)

The solution of Eq. (4.12) is presented in [Li and Wong 2013], such that the optimum

weight is given by

�op2 = [ṽ1, . . . , ṽk]T (4.13)
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where ṽ1, . . . , ṽk are the orthonormal eigenvectors corresponding to the eigenvalues ⁄̃1 Æ

· · · Æ ⁄̃K of M̃≠1

S2 M̃D2 . Thus, the optimum weighting matrix Wop2 is given by

Wop2 = �op2�H
op2 (4.14)

4.2.3 Summary of k-NN classification procedure

In the following, we summarize the classification of EEG signals using the k-nearest

neighbor algorithm incorporating the unweighted Riemannian distance dR2 and weighted

Riemannian distance dW R2 . (For classification using the k-nearest neighbor with other

weighted or unweighted distances, the procedure will be identical):

1. With all the PSD matrices of EEG signal epochs of the L label in the data set, the

optimum weighing matrix W of the similarity/dissimilarity is evaluated for dR2W
.

2. For the PSD matrix curve P0(Ê) of a test EEG signal, we calculate the dissim-

ilarity measures {dni = dW R2(P0(Êi), Pn(Êi)), n = 1, . . . , N} at each frequency

Êi according to (3.13), and then calculate the total distance dn between the two

curves according to (3.17). For a chosen value of k, the k nearest neighbors of the

test signal P0(Ê) (k PSD matrices at same Ê having shortest weighted distances

from P0(Ê)) are then identified.

3. P0(Ê) is then assigned to class Cl0 if l0 = maj{lp, lh} where {lp, lh} are the class

labels of the k-nearest neighbors of P0(Ê) among the members of the data set,

and maj(·) denotes the majority vote function, i.e., its value is the element which

occurs most in {lp, lh}.

4.3 Q-fold cross-validation method

In this section, we will discuss the method for examine the performance of our classifi-

cation methods. Ideally, the performance accuracy of our EEG classification algorithm
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should be measured in terms of its probability of error which necessitates the knowledge

of the ground truth of if patient has stroke or not. However, since the ground truth of

health state of a patient measured from the signal epoch is not really known, we will

therefore treat the library of signal epochs classified by clinical experts as the ground

truth. From the library of collected signal epochs, we will randomly select some as train-

ing signals and some as test signals so that the validation of our classification methods

is carried out as follows:

1. For each of the classes Cl, l = {0, 1}, containing Nl feature PSD matrix curves

(being functions of Ê) of the patients or healthy person, we randomly choose NlT

matrix curves as the test set and the rest (Nl ≠ NlT ) as the training (library) set.

2. As described in the previous sections, for all the two classes of EEG signal, the

weighting matrix W is first evaluated using the training sets, each containing (Nl ≠

NlT ) selected feature matrix curves. The evaluation of the weighting matrix and

the weighted mean follows the procedure of Section 4.1.3 if DFM binary decision is

used, wheresas if k-NN classification is employed, the weighting matrix is evaluated

as described in Section 4.2.2. For each member matrix curve of the test sets, the

dissimilarity measures from the library sets are calculated and its classification is

carried out according to either the DFM decision rule or the k-NN classification

rule.

3. The above steps are repeated Q times (Q-fold cross-validation), each time choosing

di�erent sets of training and test feature matrix curves in Cl. The probability of

correct classification for each class can then be estimated by P̂cl = 1

Q

qQ
q=1

P̂clq

where P̂clq denotes the estimated probability of correct classification of class l at

the qth trial, q = 1, . . . , Q, i.e., P̂clq = Nlc

NlT

with Nlc and NlT being the number of

correct classification and total number of members in class Cl at the qth trial.
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Chapter 5

Experimental Verifications

To evaluate the performance of the di�erent classification methods using di�erent signal

features, we first introduce some terminology borrowed from radar technology.

• False alarm – This is an error made by classifying a healthy person as a stroked

patient,

• Miss – This is an error made by classifying a stroked patient as a healthy person.

• Detection – A classification is called detection when a stroked patient is correctly

classified.

• Receiver Operating Characteristic (ROC) – This is a curve which shows the prob-

ability of false alarm against the probability of detection of the classifier.

In this chapter, we evaluate the performance of di�erent feature extraction methods

together with di�erent classifiers using the following values:

1. Overall accuracy – This is calculated by the total correct classification number

divided by total test number.

2. Individual class accuracy – These two indicate the accuracies for healthy person

and stroked patient classification.

3. Confusion matrix – This is a 2◊2 matrix containing the numbers N00, N01, N10, N11,

where N00 denotes the number of correctly classified healthy persons, N01 denotes
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the number of flase alarms, N10 denotes the number of misses, and N11 denotes

the number of correct detections.

4. Receiver Operating Charateristic (ROC) – We plot the ROC curves of the

di�erent classification methods in which their probabilities of false alarm and miss

are approximated by their experimental rates of false alarm and miss. The Area

Under the Receiver Operating Characteristic Curve (AUC ) is an indiocator of the

the godness of performance. Specifically, the closer is AUC to 1, the better perfor-

mance of a classification method.

We now perform some tests using the collected Electroencephalography (EEG) signal

to validate our classification algorithm employing the Riemannian distance developed

in Chapter 3 and Chapter 4. The test results are based on the data collected from 45

person in which 23 are healthy persons and 22 are stroke patients. For each person,

we collect the multichannel signals recorded from channels C3, C4, O1, O2 illustrated in

Fig. 2.1. As described in the previous chapters, for our validation tests, the raw EEG

recordings were first pre-processed by removing the DC values (referencing), and the

frequency components of the signals were kept to within the range of 0.5 ≠ 13Hz by

using a bandpass filter. We splitted the recording length to 30s epochs. Each epoch

was examined and labelled as either patient(p) or healthy(h) according to his/her health

record. Thus, we establish a library of two categories of EEG records. The Power

Spectral Density (PSD) matrices of each epoch were then evaluated by the Nuttall-

Strand algorithm [Strand 1977b, Nuttall 1976]. In each trial, we randomly choose 125

PSD matrices from each category as test signals while the remaining (2494 ≠ 125) PSD

matrices form the training data set so that the total number of the training signal feature

in each trial is 2369.

The following are examples of the tests of the e�ectiveness of various dissimilarity

measures in the classification of EEG signals we carried out under di�erent environments.

48



Master of Applied Science– Canxiu Zhang ; McMaster University– Department of
Electrical and Computer Engineering

5.1 Distance comparison binary hypothesis testing result

Now we examine the performance of the hypothesis testing rule for di�erent distance

measures by computer simulations:

• First, from our library of collected PSD matrices from patient’s and healthy per-

son’s EEG signal, we calculate an optimum weighting matrix for the Riemannian

Distance (RD).

• Second, we substitute one by one the various distance measures dE , dR2 and the

weighted version dW R2 , together with the corresponding means into (4.3) and

(4.4) respectively for binary decision according to the distance from the mean, and

according to the distance from the origin.

• Finally, for a range of thresholds we calculate the false alarm rate, the missing

rate, the rate of detection and record the overall accuracy, AUC , accuracy for each

class, and the confusion matrices.
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Table 5.1: Confusion matrix for Euclidean metric

All-bands Delta band Theta band Alpha band
Predict

H P H P H P H P

True H 1242 126 1238 130 1313 55 223 1145
P 771 355 767 359 889 237 105 1021

Table 5.2: Accuracy of Euclidean distance

AUC Accuracy Accuracy (H) Accuracy (P)
All-band 0.555 0.64 0.908 0.315

Delta band 0.561 0.64 0.905 0.319
Theta band 0.533 0.621 0.96 0.21
Alpha band 0.612 0.499 0.163 0.907

5.1.1 Example 5.1.1

First, we exam our classification method with PSD matrices by Euclidean metric. The

confusion matrix of Euclidean metric shown in Table 5.1, and accuracy shown in Table

5.2. The accuracy of all-band test as same as the accuracy of delta band test outperform

2% to 14% the accuracy of theta and alpha band test. According to the confusion matrix,

the number of error from missing is triple of the number of error from false alarm. Similar

result also shown in the Table 5.2 where accuracy of healthy person class outperforms

around 60% accuracy of patient class except alpha band test. In the alpha band test, the

performance has opposite result of other three tests where accuracy of healthy person

class only achieved 0.163% accuracy.
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Table 5.3: Confusion matrix for RD

All-bands Delta band Theta band Alpha band
Predict

H P H P H P H P

True H 1138 230 1141 227 1154 214 1023 345
P 582 544 572 554 646 480 624 504

Table 5.4: Accuracy for RD

AUC Accuracy Accuracy (H) Accuracy (P)
All-band 0.688 0.674 0.832 0.483

Delta band 0.684 0.68 0.834 0.492
Theta band 0.64 0.66 0.844 0.426
Alpha band 0.607 0.611 0.748 0.446

5.1.2 Example 5.1.2

Second, we exam our classification method with PSD matrices by RD. The confusion

matrix of RD shown in Table 5.3. The accuracy shown in Table 5.4. Similar to example

5.1.1, the accuracy and AUC for all-band test and delta test outperform 2% to 8% theta

test and alpha test. Comparing Table 5.4 to Table 5.2, clearly, the RD outperforms 3% to

11% Euclidean distance in overall accuracy of classification. The imbalance performance

between healthy person class and patient class is still obvious, but the di�erence between

accuracy of healthy person class and patient class reduced from 0.58 ≠ 0.74 (Table 5.2)

to 0.3 ≠ 0.41 (Table 5.4).
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Table 5.5: Confusion matrix for RD with zero shift

All-bands Delta band Theta band Alpha band
Predict

H P H P H P H P

True H 1137 231 1130 238 1175 193 995 373
P 582 544 562 564 657 469 625 501

Table 5.6: Accuracy for RD with zero shift

AUC Accuracy Accuracy (H) Accuracy (P)
All-band 0.643 0.674 0.831 0.483

Delta band 0.647 0.679 0.826 0.501
Theta band 0.595 0.659 0.859 0.417
Alpha band 0.543 0.6 0.727 0.445

5.1.3 Example 5.1.3

Third, we exam our classification method with PSD matrices by RD with zero shift.

The confusion matrix of RD with zero shift shown in Table 5.5. Accuracy shown in

Table 5.6. Comparing Table 5.6 and Table 5.4, the e�ect of zero shift in accuracy of

classification is marginal while reduce AUC 4% to 6% compared to example 5.1.2. The

e�ect of zero shift for classifier in Receiver Operating Characteristic (ROC ) curve will

be shown in section 5.1.6.
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Table 5.7: Confusion matrix for weighted RD

All-bands Delta band Theta band Alpha band
Predict

H P H P H P H P

True H 1133 235 1134 234 1155 213 1019 349
P 576 550 564 562 645 481 627 499

Table 5.8: Accuracy for weighted RD

AUC Accuracy Accuracy (H) Accuracy (P)
All-band 0.674 0.675 0.828 0.488

Delta band 0.669 0.68 0.829 0.499
Theta band 0.628 0.656 0.844 0.427
Alpha band 0.582 0.609 0.745 0.443

5.1.4 Example 5.1.4

Then, we exam our classification method with PSD matrices by weighted RD. The

confusion matrix of weighted RD shown in Table 5.7. Accuracy shown in Table 5.8.

Comparing Table 5.7 with Table 5.4, the weighting e�ect in accuracy is marginal. The

e�ect of weighting in ROC curve will be shown in section 5.1.6.
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Table 5.9: Confusion matrix for weighted RD with zero shift

All-bands Delta band Theta band Alpha band
Predict

H P H P H P H P

True H 1144 224 1140 228 1183 185 1004 364
P 585 541 567 559 661 465 621 505

Table 5.10: Accuracy for weighted RD with zero shift

AUC Accuracy Accuracy (H) Accuracy (P)
All-band 0.647 0.676 0.836 0.48

Delta band 0.651 0.681 0.833 0.496
Theta band 0.599 0.661 0.865 0.413
Alpha band 0.54 0.605 0.734 0.448

5.1.5 Example 5.1.5

Then, we exam our classification method with PSD matrices by weighted RD with zero

shift. The confusion matrix of weighted RD with zero shift shown in Table 5.9. Accuracy

shown in Table 5.10. Similar to unweighted RD shown in example 5.1.4, the e�ect of

zero shift in accuracy of classification for weighted RD is marginal while reduce AUC

1% ≠ 4% from weighted RD without zero shift. Comparing example 5.1.5 with example

5.1.4, the weighting e�ect is marginal in accuracy and AUC .
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Figure 5.1: The e�ect of zero shift on ROC curve

5.1.6 ROC comparison for binary hypothesis analysis

In order to compare the performance of di�erent distance metrics for binary hypothesis

testing, the ROC curves for di�erent pairs of distance metrics are plotted in this section.

The e�ect of zero shift

The e�ect of zero shift on ROC curves shown in Fig.5.1. The left figure shown the zero

shift e�ect on unweighted RD. Clearly, the ROC of RD is above the ROC of RD with

zero shift. The right figure shown the zero shift e�ect on weighted RD. The ROC of

weighted RD is above the ROC of unweighted RD but with less di�erence compared to

unweighted RD.
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Figure 5.2: The e�ect of optimum weighting on ROC curve

The e�ect of optimum weighting

The e�ect of optimum weighting on ROC curve shown in Fig.5.2. Similar to the conclu-

sion of section 5.1.4 and 5.1.5, the e�ect of weighting is marginal for both RD and zero

shift RD.
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The comparison of di�erent metrics for ROC curve

The comparison of di�erent metrics for ROC curve shown in Fig.5.3. Clearly, the ROC

curves of RD and weighted RD are above the ROC curve of Euclidean distance. There

is cross point at Pfp = 0.1 where Pfp is the false positive rate for the ROC of RD and

weighted RD with zero shift. Before the cross point, the ROC of Euclidean distance is

above the other two while lower after the cross point.
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Figure 5.3: The comparison of di�erent metrics for ROC curve
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5.2 K-Nearest Neighbors (KNN ) validation test result

Similar to the section 5.1, we examine the performance of our classification algorithm

using the Euclidean distance, the Riemannian distance, and the weighted Riemannian

distance and applied on all delta, theta, alpha bands and each sub-band separately by

KNN classifier. Our experiments are carried out in the same way as in Examples 5.2,

that NlT = 125 and we employ the parameter k = 5 for the nearest neighbor tests. Each

test is repeated Q = 20 times. Riemannian distances, weighted Riemannian distance

and and applied on all delta, theta, alpha bands and each sub-band separately by KNN

classifier. Our experiments are carried out in the same way that NlT = 125 and we

employ the parameter k = 5 for the nearest neighbor tests. Each test is repeated Q = 20

times.
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Table 5.11: Accuracy of KNN for Euclidean Distance

AUC Accuracy Accuracy (H) Accuracy (P)
All-band 0.9647 0.9102 0.9181 0.9005

Delta band 0.9282 0.8597 0.9028 0.8073
Theta band 0.9433 0.8797 0.9152 0.8366
Alpha band 0.9193 0.8549 0.8735 0.8321

Table 5.12: Confusion Matrix of KNN for Euclidean Distance

All-band Delta Theta Alpha
Predict

H P H P H P H P
True H 1256 112 1235 133 1252 116 1195 173

P 110 1016 217 909 184 942 189 937

5.2.1 Example 5.2.1

In this example, we examine the performance of KNN classifier with Euclidean metric.

Table 5.11 shows the accuracy of KNN with Euclidean metric. We can observe that

all-band test obtained 4% to 6% higher accuracy than other sub-band. Similar to binary

hypothesis testing, accuracy of healthy person is higher than the accuracy of patient.

Confusion matrix in Table 5.12 shows that the number of error from all-band test is less

than sub-band test. However, compared to binary hypothesis test, k-NN method yields

dramatically higher accuracy. We also observe that here, theta band test outperforms

other two sub-bands.
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Table 5.13: Accuracy of KNN for RD

AUC Accuracy Accuracy (H) Accuracy (P)
All-band 0.9745 0.9254 0.931 0.9192

Delta band 0.9467 0.8865 0.9269 0.8375
Theta band 0.9541 0.8994 0.9364 0.8544
Alpha band 0.9313 0.8677 0.8823 0.8499

Table 5.14: Confusion Matrix of KNN for RD

All-band Delta Theta Alpha
Predict

H P H P H P H P
True H 1273 95 1268 100 1281 87 1207 161

P 91 1035 183 943 164 962 169 957

5.2.2 Example 5.2.2

Example 5.2.2 examines the performance of KNN classifier with RD. Similar to example

5.2.1, all-band test outperforms 3% to 6% sub-band test in accuracy of classification and

theta band test achieved the best performance among all sub-band test. The imbalance

of accuracy and number of error between healthy person and patient is still obvious.

Comparing example 5.2.1 and example 5.2.2, clearly, RD outperforms Euclidean dis-

tance by 1% to 3% in accuracy of classification for either all-band test or sub-band test.

In comparison to binary decision testing, k-NN also o�ers dramatically improved results.
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Table 5.15: Accuracy of KNN for weighted RD

AUC Accuracy Accuracy (H) Accuracy (P)
All-band 0.9718 0.9226 0.9247 0.92

Delta band 0.9351 0.8693 0.8947 0.8384
Theta band 0.9397 0.8797 0.9086 0.8446
Alpha band 0.9123 0.8444 0.8545 0.8321

Table 5.16: Confusion Matrix of KNN for weighted RD

All-band Delta Theta Alpha
Predict

H P H P H P H P
True H 1265 103 1224 144 1243 125 1169 199

P 90 1036 182 944 175 951 189 937

5.2.3 Example 5.2.3

In this example, we applied the optimum weighting to RD. We have simiar observations

for all-band and sub-band tests to those in Example 5.2.1 and Example 5.2.2. While

the k-NN method with weighted RD improves dramatically in performance from the

corresponding test of binary decision, it does not improve on the k-NN method with

unweighted RD. This is a little surprising, and we have not been able to find out the

reason yet. However, the imbalance performance between two classes in accuracy and

number of error has been reduced.
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Figure 5.4: ROC curves for KNN classifier

5.2.4 ROC result for KNN

In order to compare the performance of three distance metric, the ROC curves of Eu-

clidean distance, RD and weighted RD shown in figure 5.4. Clearly, weighted RD and

RD outperform Euclidean distance. The ROC curves for RD and weighted RD almost

completely overlap, showing very similar performance.
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5.3 Discussion on the Performance of the Di�erent Classi-

fication Methods

From our simulations of detection performance, we can observe that di�erent classifica-

tion methods with di�erent processing result in di�erent performance in the classification

of EEG signals. In this section, we try to look into the e�ectiveness of these di�erent

methods and perhaps give some reasons for such results.

We start by reviewing the optimum binary decision method given by Eq. (4.2) in

Chapter 4, and is re-written below for reference here.

p(P|H1)
p(P|H0)

H1
?
H0

÷ (5.1)

On the left side of this equation of optimum binary hypothesis testing, we have the

likelihood ratio which is the ratio of the probability density fucntions of the obvservable

P for H1 and H0. This is the ratio that we should compare to the threshold to achieve

optimum bianry decision. The threshold ÷ on the right is a constant chosen to be

best suited to the background knowledge (such as cost of individual decisions, a priori

probabilities events) of the environment. If we vary the value of the threshold, and

evaluate the probabilities of false alarm and detection, we can examine the performance

of this optimum binary decion rule in the form of the ROC. To carry out this optimum

binary decision rule, we must therefore have the knowledge of the probability density

functions of the observable under both H1 and H0.

Now, in our EEG classification experiments, we do not have the knowledge of the

probability density functions. Let us see how we try to approach the problem in di�erent

ways:

1. Distance Comparison Binary Decision Methods: All the distance comparison meth-

ods formulate the decision rule using Eq. (4.3), which is re-written below for
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convenience of reference

d(P, C0)
d(P, C1)

H1
?
H0

1 (5.2)

On the left side of Eq. (5.2), we have a ratio of two distances of the observable

measured from the two reference points. The distances can be measured in di�erent

metrics, ED, RD, or weighted RD. However, such a distance ratio does not take

into account of the distribution of the features, or rather, such a ratio assumes the

distribution of both the healthy features and the stroked features are uniformly

distributed over the region. On the right of Eq. (5.2) is the threshold, which is

set to unity for equal weight, but can be varied to observe the performance of

the paricular classifier. Since the distance comparison rule does not account for

the local likelihood of the observable being tested, hence all of these methods do

not give satisfactory results (see ROC curves Figs. 5.1, 5.2, and 5.3) in the EEG

classification experiments. For such distance comparison tests, we also note the

following:

• Theoretically, all continuous Likelihood Ratio Test have ROC that are con-

cave downwards and are above the line PD = PF where PD is the probability

of detection (True Positive Rate) and PF is the probability of False Alarm

(False Positive Rate). However, the ROC curves we obtained in distance

comparison tests are not strictly concave (see Figs. 5.1 to 5.3). This may be

due to the fact that we used distance ratio dH

dH+dP

to represent the probability

of stoke detection (Pp) which may not represent accurately the true distri-

butions. Also, if the distributions of the feature matrices are multi-modal or

discontinuous, the ROC curves for binary hypothesis are not always concave.

• The RD is a more accurate measure of the distance on the PSD manifold than

the ED, therefore, for the distance comparison classification, better results can

be expected (see Figs. 5.3).

• In an attempt to yield better results from the use of RD, we tried to weight the
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feature PSD matrices by contracting the distance betweem similar features

and expand the distance between dissimilar features. This, in many cases

would help to yield improved classifications [Li et al. 2012, Wong et al. 2017].

In our case the improvement is insignificant (see Figs. 5.2). We suspect

that the two distributions of healthy features and stroked features have very

significant overlaps and thus contracting distance of like groups and expanding

distance of unlike groups cannot be e�ectively carried out.

• We also attempt to shift the distance to the origin reference. For ED this

generally have no e�ect because the measure of distance is everywhere the

same. However, RD have di�erent values measure at di�erent locations. In

some cases such as in sonar and MIMO communications [Wong et al. 2017,

Han et al. 2017], such a shift of reference warps the distance measure for

RD and may yield better results. Unfortunately, in our experiments, we find

that the shifting of reference yields lower accuracies (see Figs.5.1). This, we

attribute to the nature of the warping of the distance. Depending on the

distributions of the feature PSD matrices, the warping of the distances may

also turn out to be unfavourable to the classification.

2. k-NN Classification Method: The k-NN method measures the distances between

the feature P0 under test to all the features in the library set and selects the k

nearest neighbours of P0 for examination. If the majority of the k neighbours are

healthy features, then P0 is decided to be healthy. Otherwise, P0 is classified as

stroked. The decision according to the majority of the neighbours is in fact an

estimation of the probabilty distributions of the two groups in the neighbourhood

of P0. This majority decision rule can be interpreted as:

P (P0 œ P)
H1
?
H0

P (P0 œ H) (5.3)

where P and H respectively denote the stroke patient and the healthy persons

groups. Thus, the k-NN classification is an estimation of the likelihood ratio local
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to P0 and compare it to the set threshold. This is certainly a vast improvement

from the Distance Comparison methods which assume the distributions of the two

groups to be uniform. Hence the classification results of the k-NN methods are

all far superior to the Distance Comparison methods (see Table 5.11 to 5.16). In

applying the k-NN classification methods, we observe the following:

• All the ROC curves are concave (see Fig. 5.4). This shows that the statement

above that k-NN is estimating the local likelihood ratio is correct.

• The use of RD and weighted RD improves on the performance of classification

than the use of ED (see Fig. 5.4).

• In all our trials, we use k = 5 since this is a convenient and small number to

use. The k-NN algorithm have been shown to approach the optimum Bayesian

classifier with k æ Œ and k/N æ 0 where N is the sample size [Sebestyen

1962]. We have not attempted to find an optimum k since kop is not well

defined.

3. In all tests, we observe that the features generated from the data in the all-band

test yield the highest accuracies and theta-band yield the highest accuracy among

sub-band test.

4. In this thesis, the weighting e�ect didn’t improve the performance in accuracy of

classification or number of error, which is di�erent to the theoretical proof. How-

ever, based on the observation (see Table 5.13 to 5.16), the weighting e�ect reduced

the imbalance performance in accuracy of classification and error of number.
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Chapter 6

Conclusion

6.1 Summary of the thesis

In this thesis, we examined the use of the Power Spectral Density (PSD) matrix as the

feature of Electroencephalography (EEG) signal classification and demonstrated the ad-

vantage of applying PSD matrix in the ischemic brain stroke detection by EEG signals.

We began by introducing EEG signal, background knowledge of ischemic brain stroke

and commonly used stroke detection methods. Reasoning that the wPSD marices are

structurally constrined forming a manifold in the signal space, we suggested the use of

RD for the measurement of similarity/dissimilarity between di�erent class of EEG sig-

nals. We employed the closed-form expressions of the RD and weighted RD developed

by Li and Wong. After feature extraction, two classification methods, binary hypothesis

testing and K-Nearest Neighbors (KNN ), were applied to detect ischemic brain stroke by

extracted PSD matrices. In binary hypothesis testing, an iterative algorithm developed

by [Wong et al. 2016] was used to locate Riemannian Mean. In order to maximize the

correlation between stroke patients’ feature and minimize the correlation between stroke

patients’ and healthy person’s feature, the concept of the optimum weighting matrix

for Riemannian Distance (RD) was applied. However, since we use distance instead

of distribution of EEG signals to represent likelihood ratio, the performance of binary

hypothesis is not satisfatory. In the KNN test, we evaluate similarity/dissimilarity by
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di�erent distance metrics including the commonly used Euclidean metric and Rieman-

nian distance. Furthermore, a pair-wise optimum weighting algorithm is applied to

minimize the similarity among the intraclass signals and maximize the similarity among

the interclass signals. The simulation results show that using the PSD matrices as fea-

ture combined with KNN classifier for stroke detection provides superior performance

compared to using classical power spectrum. Furthermore, the use Reimannian metric

as a similarity measure yields hugher accuracies than using Euclidean metric. The use of

optimum weighting reduced the di�erence of the accuracy for each class due to imbalance

dataset. In summary, although the stroke detection on PSD manifold requires special

considerations in distance measures and various algorithms to facilitate the processing,

the performance of detection has been significantly improved.

6.2 Future work

There are issuessrising from the research which are worth pursuing. These may be

proposed for future work:

1. Considering the performance of two classifiers, the accuracy of sub-band are dif-

ferent and are consistent for each classifier. Therefore, we can raise the following

question: “how to apply weighting of frequency band to enhance the accuracy of

the classification?"

2. The aim of this research is to detect ischemic brain stroke by EEG signal and

prevent late diagnosis. However, we have not distinguished the location of the

the stroke. Since the PSD matrix mesures the cross-power of the EEG signal

emitted from the two hemispheres of the brain, it seems reasonable to assume that

it contains su�cient information for locating on which side of the brain the damage

occurs. If our library consists of EEG samples which have this information of stroke

location, Therefore, we can attempt to use k-NN methods with RD measures to
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sub-classify the stroke features into right and left brain hemisphere damages and

see how e�ective it might be.
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