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LAY ABSTRACT 

Prenatal hydronephrosis is a serious condition that affects the kidneys of fetal 

infants and is graded using renal ultrasound. The severity of hydronephrosis impacts 

treatment and follow-up times. However, all grading systems suffer from reliability 

issues. Improving diagnostic reliability is important for patient well-being. We believe 

that developing a computer-based diagnostic aid is a promising option to do so.  

We conducted two studies to investigate how ultrasound images should be 

processed, and how the algorithm that produces the functionality of the aid should be 

designed. We found that two common recommendations for ultrasound processing did not 

improve model performance and therefore need not be applied. Our best performing 

algorithm had a classification accuracy of 49%. However, we found that several images 

in our database were mislabelled, which impacted accuracy metrics. Once our images and 

their labels have been verified, we can further optimize our algorithm’s design to improve 

its accuracy.   
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ABSTRACT 

 Prenatal hydronephrosis is a common condition that involves accumulation of 

urine with consequent dilatation of the collecting system in fetal infants. There are several 

hydronephrosis classifications, however all grading systems suffer from reliability issues 

as they contain subjective criteria. The severity of hydronephrosis impacts treatment and 

follow up times and can therefore directly influence a patient’s well-being and quality of 

care. Considering the importance of accurate diagnosis, it is concerning that no accurate, 

reliable or objective grading system exists. We believe that developing a convolutional 

neural network (CNN) based diagnostic aid for hydronephrosis will improve physicians’ 

objectivity, inter-rater reliability and accuracy. 

Developing CNN based diagnostic aid for ultrasound images has not been done 

before. Therefore, the current thesis conducted two studies using a database of 4670 renal 

ultrasound images to investigate two important methodological considerations: ultrasound 

image preprocessing and model architecture. We first investigated whether image 

segmentation and textural extraction are beneficial and improve performance when they 

are applied to CNN input images. Our results showed that neither preprocessing 

technique improved performance, and therefore might not be required when using CNN 

for ultrasound image classification. Our search for an optimal architecture resulted in a 

model with 49% 5-way classification accuracy. Further investigation revealed that images 

in our database had been mislabelled, and thus impacted model training and testing. 

Although our current best model is not ready for use as diagnostic aid, it can be used to 

verify the accuracy of our labels.  
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Overall, these studies have provided insight into developing a diagnostic aid for 

hydronephrosis. Once our images and their respective labels have been verified, we can 

further optimize our model architecture by conducting an exhaustive search. We 

hypothesize that these two changes will significantly improve model performance and 

bring our diagnostic aid closer to clinical application.  
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Chapter 1: Introduction to the Clinical Problem 

Prenatal Hydronephrosis 

Prenatal hydronephrosis (HN) is a condition that involves the accumulation of 

urine with consequent dilatation of the collecting system in fetal infants. It is the most 

frequent neonatal urinary tract abnormality – occurring in 1-5% of all newborn babies 

(Woodward & Frank, 2002). HN is detected by prenatal ultrasound (US) and can be 

caused by several underlying conditions. Although many cases eventually resolve on their 

own, in severe forms, afflicted infants can require surgery to address the obstruction, and 

failure to alleviate this blockage can result in permanent kidney damage or scarring.  

There are currently several HN classifications, however all of these grading 

systems have suffered from reliability issues since they contain somewhat subjective 

criteria (Rickard et al., 2017). The severity of HN impacts treatment and follow up times 

and can therefore directly influence a patient’s well-being and quality of care. 

Misclassification of any patient into the inappropriate HN category can be detrimental to 

their health, as well as to the healthcare system itself by incurring costs for procedures 

that would otherwise be unnecessary. It is apparent that a more accurate and reliable 

classification system for HN is still needed, and therefore the purpose of this thesis was to 

investigate and possibly create of a new objective diagnostic aid to help improve HN 

grading accuracy. 
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Current Methods of Diagnosis 

All patients are normally evaluated after birth by postnatal renal ultrasonography 

to determine HN severity and the best course of treatment. The two most widely adopted 

classification systems for HN are the Society for Fetal Urology (SFU) and the Urinary 

Tract Dilation (UTD) grading systems (Nguyen et al., 2014, 2010).  

Society for Fetal Urology classification system. The SFU system was created to 

standardize the grading of HN (Fernbach, Maizels, & Conway, 1993). Previously, the 

categorization of HN, as well as its management, was poorly defined, and many 

physicians would subjectively classify HN cases into mild, moderate and severe forms. 

The subjective nature of adopting such a grading system resulted in poor inter-rater 

reliability (Nguyen et al., 2010). Conversely, the SFU system was developed to allow for 

more objectivity in segregating the different HN grades and, at the same time, create 

quantitative measures to facilitate an appropriate diagnostic decision.  

The SFU proposed a 5-point classification system that grades the upper urinary 

tract dilation by ultrasound, and focuses on the appearances of the calices, renal pelvis, 

and renal parenchyma. The severity of HN increases with each SFU grade with SFU 

grade 0 meaning the patient has no HN, while the highest grade, SFU grade IV, means the 

patient has severe HN, with parenchyma thinning and some degree of renal function 

deterioration. See Table 1 for a complete summary of the SFU grades, and their 

respective diagnostic features.  
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Table 1: Summary of the Society for Fetal Urology (SFU) grading system. 

SFU Grade Diagnostic Features  

SFU Grade 0 Normal kidney 

SFU Grade I Splitting of the renal pelvis 

SFU Grade II Few but not all calices are dilated, in addition to the splitting of the 

renal pelvis 

SFU Grade III Wide splitting of the renal pelvis, plus all calices dilated; normal 

parenchymal thickness 

SFU Grade IV Further splitting of the renal pelvis, plus all calices dilated; 

parenchymal thinning 

 

Evaluation of the SFU grading system. Although the purpose of the SFU system 

was to standardize and unify the way physicians graded HN, the system fell short of these 

goals, as lack of agreement regarding the definition of physiologic HN and its clinical 

management has persisted since the SFU creation (Nguyen et al., 2010). Many different 

grading systems (e.g. Anterior-Posterior Renal Pelvic Diameter (APRPD), European 

Society of Pediatric Urology, Uroradiology Task Force, and Onen Grading System) were 

still being utilized in place of the SFU system well after its release (Nguyen et al., 2014). 

Furthermore, the times that these different grading systems were being used varied, with 

some being used preferentially in prenatal evaluation, and others for postnatal evaluation 

of HN. The preferential split also depended on the physician’s specialty, with pediatric 

radiologists preferring more descriptive grading systems, and urologists preferring more 

quantitative systems (Zanetta et al., 2012). Finally, there are no correlations between the 

various HN grading systems (Swenson, Darge, Ziniel, & Chow, 2015). Considering that 

the SFU classification was developed to remedy these types of issues, the persistence of 

these problems suggests that an improved HN grading system is still required. 
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While the SFU classification in general has been shown to have good intra-rater 

reliability, it has poor inter-rater reliability when distinguishing between “moderate” HN 

grades (SFU II/III); however, it is fairly successful in differentiating between “mild” 

(SFU I/II) and “severe” (SFU IV) HN cases (Keays et al., 2008; Nguyen et al., 2010; 

Rickard et al., 2017). It is interesting to note that in the original SFU classification study, 

Fernbach et al. (1993) reported similar findings. They showed that physicians could 

reliably differentiate between mild and severe cases of HN, however, for intermediate 

cases their ability to correctly identify the HN grade on US was low. This is rather 

curious considering the goal at inception was to produce a more objective grading system 

for HN that would result in consistent diagnoses across physicians. These findings can 

likely be explained by the fact that subjective interpretation is still required for physicians 

to assign specific SFU grades to HN renal US images (Keays et al., 2008; Rickard et al., 

2017).  

Urinary Tract Dilation classification system. The UTD grading system was 

developed to provide a unified classification with an accepted terminology for the 

management of prenatal and postnatal HN, and is based on detailed assessment of the 

current literature and expert opinion considering common clinical practice (Nguyen et al., 

2014). It is stratified based on gestational age and is based on: 1) APRPD; 2) calyceal 

dilation; 3) renal parenchymal thickness; 4) renal parenchymal appearance; 5) bladder 

abnormalities; and 6) ureteral abnormalities (see Figure 1). The stratification is based on 

the most concerning ultrasound finding. For example, if a patient was found to have 

abnormal parenchymal thickness with peripheral calyceal dilation, they would be 
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considered UTD P3 (high risk) regardless of the severity of any of the other sonographic 

parameters; however, if the patient only has peripheral calyceal dilations they would only 

be considered UTD P2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Summary of the Urinary Tract Dilation Risk Stratification system. Coloured 

boxes represent the abnormal feature(s) characteristic of each UTD grade. The patient is 

diagnosed based on the most concerning ultrasound feature(s) that result in each 

respective UTD grade. For example, a patient with only abnormal ureters would be 

classified as UTD P2, however if the parenchymal appearance was also abnormal the 

patient’s diagnosis would change to UTD P3. Adapted from Nguyen et al. (2014) Figure 

3.  

 

Evaluation of the UTD classification system. The UTD system appears to have 

lower inter-rater reliability than the SFU classification, and just as poor reliability for 

intermediate grades as the SFU system (Rickard et al., 2017). Therefore, the nuances of 
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the intermediate grades are still difficult to objectively quantify, and the inability to 

appropriately classify intermediate grades is still concerning.  

Purpose Statement 

 Considering the importance of accurate diagnosis in the treatment of HN, a very 

common congenital renal condition, it is concerning that no highly accurate, reliable or 

objective grading system currently exists. We believe that developing a diagnostic aid for 

HN so that all residents/physicians are trained to search for the same features will 

improve inter-rater reliability. Furthermore, we believe that developing a machine 

learning (ML) based diagnostic aid will improve the objectivity of physicians’ diagnoses. 

Chapter 2 will introduce the concept of ML, some algorithms/models of interest, and how 

these can be applied to HN to begin to develop a diagnostic aid. It is important to note 

that poor diagnostic accuracy is an issue in many other disease states and image 

modalities as well. Therefore, although we will be using HN as our model in this thesis, 

the long-term goal is to generalize findings and concepts from these studies to other types 

diseases and image modalities.  
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Chapter 2: Overview of Machine Learning and Diagnostic Aids 

 

A Brief History and Introduction to Machine Learning  

ML, in the broadest sense, is a field of computer science and statistics that is focused 

on developing computer programs that can learn without explicitly being programmed. 

To do this, computers employ statistical techniques that allow them to find meaningful 

patterns in large datasets (Michalski, Carbonell, & Mitchell, 1983). Often ML algorithms 

hone in on combinations of variables that interact in complex ways – sometimes 

uncovering relationships that we didn’t realize existed before. 

ML algorithms date back to the mid 1900’s, however, early discoveries of various 

learning principles such as Bayes or Least Squares error minimization, which are both 

still used in many ML algorithms today, date back to the mid 1700’s (Legendre, 1805; 

Bayes & Price, 1763; Laplace, 1814). Some of the very first ML algorithms, such as the 

Stochastic Neural Analog Reinforcement Calculator (SNARC) developed by Minsky 

(1954), and the perceptron began to lay the groundwork for ML and built excitement 

among researchers and the general population.  

The “perceptron” was developed by Rosenblatt (1958), and is a supervised learning 

algorithm, meaning it requires labelled data to learn to classify data. The perceptron takes 

a vector of inputs (x), along with the bias which is always 1 (b), and connects them to a 

computational unit called a “neuron”. The neuron takes the inputs and outputs the sum of 

the weighted activations. The perceptron learns to find a set of weights to linearly 

separate the data in question into two classes. If the sum of the weighted activations is 
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greater than the threshold, the perceptron will predict class 1, but if not, it will predict 

class 0 (see Figure 2). After making an incorrect prediction, the perceptron will update its 

weights using Equation 1, where t is the current iteration, �	is the learning rate, z is the 

actual output, �	is the desired output, x is the mislabelled training example  

��� � 1	 
 ��
� 		���	 � �����	 � ���	�	���							�1	 

 

 

 

 

After the development of the perceptron, a very simple form of a neural network, 

neural network research began to increase and once again the excitement surrounding ML 

and artificial intelligence did as well. However, other researchers questioned whether 

continued progress could be made with neural networks, given that the perceptron 

Figure 2. An example of a single layer perceptron with three inputs and a threshold of 0.  
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learning procedure was only capable of learning linearly separable boundaries, and 

believed that the approach should be abandoned (Minsky & Papert, 1969). Following the 

theoretical proof of Minsky and Papert (1969), neural network research almost 

completely stopped except for work conducted by some psychologists. Most researchers 

returned to symbolic (or classical) artificial intelligence (AI), a form of AI which 

explicitly represents human knowledge in a declarative form (Olazaran, 1996). During 

this time other algorithms like k nearest neighbours, a pattern recognition algorithm that 

classifies data points based on the group membership of its neighbors, was developed 

(Cover & Hart, 1967).   

Neural networks experienced a resurgence in the 1980’s primarily due to the 

development of the backpropagation algorithm (Le Cun, 1986; Rumelhart, Hinton, & 

Williams, 1986). Much of the initial concern surrounding perceptrons was that they could 

not be extended to multilayered architectures, and therefore only simple, linearly 

separable problems could be addressed (Minsky & Papert, 1969). However, 

backpropagation allows for hidden units (called “hidden” because they lie between input 

and output layers, and their outputs are not typically observed during training) present in 

multilayered architectures to learn under what circumstances they should be active to 

achieve the correct output. To update the parameters of a network, the gradients of the 

cost function with respect to both the derivative of the weights and biases needs to be 

calculated for each neuron. The goal is to minimize the error/cost function in weight 

space using gradient decent. See Appendix A for a detailed description of the 

backpropagation algorithm.  
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Following the development of backpropagation, neural network research steadily 

increased to approximately the same level as ‘classic’ ML methods. However, neural 

network researchers were still hindered by the amount of computational power and data 

required to train larger networks, as well as backpropagation getting stuck in local 

minima during gradient descent (Tesi & Gori, 1992). Other “classic” methods like 

random decision forests, which are based on stochastic modelling, and support vector 

machines (SVM) were developed during this time (Cortes & Vapnik, 1995; Ho, 1995). 

SVM divide data into categories by attempting to find an optimal hyperplane that creates 

a large margin between the classes.  

Machine Learning and Medical Imaging  

ML has been applied to medical images since 1966 for computer aided detection 

(CADe), but using ML for computer aided diagnosis (CADx) only began to rise in 

popularity in the early 2000s (Giger, 2018). Some CADx systems, such as one for 

detecting exudates in colored retinal images for diagnosing diabetic retinopathy, are 

experiencing great success with accuracies well above 90% (Akram, Tariq, Anjum, & 

Javed, 2012). Although some groups have found that ML algorithms can achieve higher 

diagnostic accuracy than physicians (e.g. to detect melanoma (Haenssle et al., 2018; Mar 

& Soyer, 2018)), most ML algorithms are nowhere near the point where they can be 

relied upon to independently and accurately diagnose a patient, despite some claims in the 

popular press (Ng, 2016). These high performing ML algorithms have been able to 

achieve these results mainly because they have access to hundreds of thousands of quality 

images to train their models on, whereas most studies/groups do not have access to this 
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much data. Therefore, although it is possible to achieve high results with ML algorithms, 

most algorithms do not have enough training data to reach these levels of accuracy and 

therefore cannot yet be relied upon to make diagnostic decisions in clinical practice. 

Perhaps in the future if the sharing of medical data is adopted to increase the size of 

medical databases we could expect more groups to achieve these levels of results.  

CADx systems usually involve assessing the structure of interest, and then providing 

its estimate of disease probability. The physician is then free to use this estimate how they 

want. To our knowledge, patient management is always left up to the physician, and the 

CADx systems act more as second opinions. Studies have also shown that the combined 

synergistic effects of the diagnostic aid and physician knowledge (experience) greatly 

improved the diagnostic accuracy (Chan et al., 1990; Doi, 2007; Li et al., 2004).  

A few groups have successfully implemented ML algorithms as CADx systems, with 

many of them employing “classic” ML algorithms such as SVM, naïve Bayes classifiers 

and k nearest neighbours (Akram et al., 2012; Irem Turkmen, Elif Karsligil, & Kocak, 

2015; Mudali, Teune, Renken, Leenders, & Roerdink, 2015). Some CADx studies have 

begun to use deep learning-based ML methods which have shown great promise (Cicero 

et al., 2017; Song, Zhao, Luo, & Dou, 2017; D. Wang, Khosla, Gargeya, Irshad, & Beck, 

2016). 

Deep Learning  

Deep learning is a general term for an algorithm that trains a many layered 

(usually greater than 4) network. Deep neural networks are composed of many layers of 
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artificial ‘neurons’ which are the elementary units of a neural network. Artificial neurons 

mimic biological neurons, however, not all aspects of neural firing/propagation are 

preserved. The dendrite can be thought of as acting as input to a neuron (input value x 

weight), the soma as the summation function/computation performed by the artificial 

neuron, and the axon as receiving the output from the soma/summation to propagate 

along to other layers of artificial neurons.  

Deep neural networks learn hierarchical feature representations from raw-data – a 

type of learning rightfully called ‘representation learning’ – due to their layered structure. 

In comparison, conventional or ‘classic’ ML algorithms, like SVM, often require feature 

engineering and extraction to transform data into a suitable representation for the 

algorithm to use. This requirement limits the types of problems that classic ML can be 

applied to, whereas deep learning models are able to extract useful patterns from raw data 

on their own (Le Cun, Bengio, & Hinton, 2015). Due to the hierarchical nature of deep 

learning models, very complex functions can be learned to solve difficult classification 

problems that were previously unable to be solved by classic machine learning algorithms 

(e.g. Hinton et al., 2012; Krizhevsky, Sutskever, & Hinton, 2012; Sainath, Mohamed, 

Kingsbury, & Ramabhadran, 2013).  

 One example of a deep learning algorithm is the backpropagation algorithm, 

described above, to update the weights of hidden nodes (see Appendix A). Due to the 

many layers and nodes in deep networks, high computational power is required to update 

weights during training, and backpropagation was prone to getting stuck in local minima 

(Sontag & Hector, 1989; Tesi & Gori, 1992). Therefore, although deep learning models 
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have been present for quite awhile, training them has only recently become feasible and 

widespread in part due to the advent of graphics processing units and the availability of 

larger datasets, but also due to the addition of constraints during training to prevent 

gradient descent from converging to a local minimum (Krizhevsky et al., 2012; Ruder, 

2016). 

 Deep neural network is a broad term as there are many different ‘deep’ 

architectures. Some examples of deep architectures include recurrent neural networks, 

autoencoders and convolutional neural networks (CNN). CNN are currently the leading 

architecture for image recognition, classification and detection, and are therefore a very 

promising option for medical image classification (Le Cun et al., 2015; Le Cun, Bottou, 

Bengio, & Haffner, 1998).  

 Convolutional neural networks. CNN are loosely inspired by the visual cortex, 

specifically the fact that the visual system is a hierarchy where early layers have smaller 

receptive fields, and the size of receptive fields grows as we introduce more layers (Hubel 

& Wiesel, 1962, 1968). The general architecture of a CNN is comprised of an input, 

convolutional layers, pooling, activations and fully connected layers. These architectures 

can be repeated to create very deep networks (see Figure 3). 

 

Figure 3. An example of a deep convolutional neural network and its different 

architectural components.  
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 In convolutional layers filters move across the input image and perform element-

wise multiplication. Each layer in a CNN can have many filters, and each separate filter 

learns and searches for a different image feature. As the filter moves across the image it 

multiplies the values in the filter with the pixel values of the image. These multiplications 

are summed producing one number which represents a single location in the image. This 

process is repeated for every unique location in the input. The resulting array of values 

that each represent a single location in the image is called a feature map, and each 

separate filter produces its own feature map. Large values in the feature map represent 

regions in the image where the feature that the filter was searching for was detected. 

Typically filters in earlier convolutional layers search for simple features (e.g. edges or 

curves), whereas filters in later layers search for more complex features in the image.  

 CNN typically apply activations and pooling to the output of convolutional layers. 

Some of the most common activation and pooling functions are Rectified Linear Units 

(ReLU), and max pooling respectively. ReLU changes all negative activations (output 

from a neuron) to 0 which introduces nonlinearity into the system (see Figure 4). This 

makes the gradients large and consistent. The second derivative of the rectifying 

operation is 0 almost everywhere, and the derivative of the rectifying operation is 1 

everywhere the unit is active making gradient direction very useful for learning 

(Goodfellow, Bengio, & Courville, 2016). ReLU has been shown to speed up training 

without negatively impacting accuracy (Glorot, Bordes, & Bengio, 2011). Max pooling 

reduces the size of the spatial representation and the number of parameters in the network 

by taking the maximum value of a set sized window and replacing the whole patch by that 
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value. This helps to reduce overfitting, reduce the size of the representation, and provides 

a form of translation invariance (Nagi et al., 2011). Max pooling is impacted by the size 

of the window, and by the stride (i.e. how many pixels the window shifts each time).  

 

Figure 4. The rectified linear unit (ReLU). Image taken from Eckroth (2017). 

 After convolutional layers, activation and pooling, the feature maps get flattened 

to produce a single feature vector to be used by dense layers for classification. Global 

average pooling can be used in place of flattening to reduce the number of parameters in 

the network to reduce overfitting. With global average pooling, each feature map is 

reduced to one number by taking the average of all the values in the feature map which 

makes it more robust to spatial translations (Lin, Chen, & Yan, 2013). The output of the 

global average pooling layer can feed directly into the output layer for classification, or 

into more dense layers. Dense layers are often referred to as fully connected layers 

because each node in the feature vector connects to each node in the dense layer. Dense 
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layers perform the actual classification on the features that were extracted by the 

convolutional layers.  

Current Studies  

As reviewed in the previous chapter, studies have shown that classifying HN US 

images is highly subjective, and therefore diagnosis is not consistent across physicians 

(Rickard et al., 2017). This unfortunate reality means that the standard of care varies 

according to who interprets a patient’s renal US image. The various HN grading schemes 

do not correlate, and unfortunately there is still no objective grading system.  

Diagnostic aids are becoming increasingly popular in medical imaging, and the 

second opinion that these systems provide has been shown to improve physicians’ 

diagnostic accuracy (Chan et al., 1990; Doi, 2007; Li et al., 2004). Although CNN are 

very well suited to image classification tasks and tend to perform well, many diagnostic 

aids employ ‘classic’ ML models (Le Cun et al., 1998). We hypothesize that HN 

diagnosis could benefit from a diagnostic aid to provide a reliable second opinion to 

physicians to help improve diagnostic accuracy, and we specifically believe that a CNN 

based diagnostic aid is the most promising option. 

To our knowledge, developing a CNN based diagnostic aid that can be applied to 

US images has not been done before, and therefore the current thesis conducted two 

exploratory studies to assess methodological considerations, namely US image 

preprocessing and model architecture. Most of the recommendations for US 

preprocessing are for classic ML algorithms that require feature extraction (e.g. SVM). 
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Therefore, we investigated whether image segmentation (partitioning and finding regions 

of interest in the image) and textural extraction, two commonly recommended 

preprocessing techniques, are beneficial for CNN performance. The second study 

investigated CNN architectures to understand what components benefited model 

performance and attempted to find the most optimal CNN architecture for HN 

classification.   
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Chapter 3: Database 

All data used in this current thesis were from a large database of US images and 

clinical variables collected by researchers at McMaster Children’s Hospital. All data were 

housed on REDCapTM and were exported and stored on a secure server at McMaster 

University. The collection of US images and clinical variables, and our subsequent usage 

of them, was cleared by the Hamilton Integrated Research Ethics Board before the study 

commenced. 

Images 

We received a total of 2484 sagittal, 2186 transverse renal US images, 208 

bladder US images, and 126 ureter US images from 773 different HN patients from the 

McMaster University Children’s Hospital. Each patient had their US images taken across 

a variable number of regularly scheduled follow up visits to monitor their HN. The 

patients ranged in age from 0 to 116.29 months old (Mage = 16.53, SD = 17.80). Each 

image was graded using the SFU and UTD classification system by at least 3 pediatric 

urologists to maximize the accuracy of the image labels. 

Clinical Variables  

Along with the images themselves, a total of 22 independent clinical variables were 

recorded during the patients’ visits. Variables marked with (*) were collected during each 

follow up visit, and included: age at baseline, gender, gestational age, birth weight, 

circumcision status, laterality, etiology, anteroposterior diameter, SFU grade*, UTD 

grade*, age*, voiding cystourethrogram (VCUG), age VCUG, vesicoureteral reflux 
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(VUR) VCUG, age VUR VCUG, surgical status, age at surgery, urinary tract infection 

status*, continuous antibiotic prophylaxis (CAP)*, CAP type*, breastfeeding status*, 

percentage of diet breastfed*.  

Data Usage 

 The database is rich with information. However, for our study we only utilized the 

sagittal and transverse renal US images, and the SFU grades. We decided not to use the 

UTD grading system, and therefore the US images of the bladders and ureters, because 

the UTD classification system required images of the kidney, ureters and bladder for each 

patient. Only a small proportion of patients had all three image types compared to the 

number of patients who had both types of renal US images. Therefore, by using the SFU 

grading system we maximized the amount of usable data, which is beneficial for CNN 

performance.     
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Chapter 4: Assessing Model Input 

Overview   

 The following study investigated CNN input, with a specific focus on image 

preprocessing techniques. The purpose was to evaluate whether segmentation and textural 

extraction, two common preprocessing techniques used for ML and medical imaging, are 

of any benefit to overall CNN performance.  

Methodology 

Data 

 The following study utilized all 4670 renal US images (both sagittal and 

transverse) and their corresponding SFU grades from the REDCapTM database. 

General Preprocessing  

 The following preprocessing steps were applied sequentially unless otherwise 

specified. 

Cropping. No original renal US images without annotations were available, 

therefore all images were manually cropped to remove the annotations that were overlaid 

by radiologists and made grayscale to standardize the colouring of the US images using 

MATLAB. All general markings (e.g. measurement markers, or the US logo) were 

always removed, however, some images had annotations overtop of the kidneys 

themselves, and thus not all annotations could be removed by cropping. See Figures 5 and 

6 for an example of the cropping.  
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Figure 5. Example of an original renal US with annotations overlaid on top of the kidney 

itself. 

Figure 6. The same renal ultrasound as Figure 5 after the image had been cropped and 

changed to grayscale. The annotation over top of the kidney itself remains. 
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Despeckling. Despeckling is a process that removes ‘speckle noise’, which occurs 

due to the interference of the returning ultrasound waves at the ultrasound probe. Speckle 

noise results in white and black ‘specks’ in regions of the image where they would not be 

expected, which gives images a granular texture. Despeckling removes the speckle noise 

which smooths the appearance of the images, however, if too much smoothing occurs, 

edges are not preserved.  

In order to preserve the edges of the kidneys in the US images, a bi-directional 

FIR-median hybrid despeckling filter first proposed by Nieminen, Heinonen, and Neuvo 

(1987) was implemented using the “Image Despeckle Filtering Software Toolbox” 

developed by Loizou et al. (2014).  This filter uses a 5 x 5 pixel moving window, and two 

different sub-filters. The first sub-filter finds the median pixel value along the x-shape of 

the window, and the second sub-filter finds the median of the pixel values along a cross 

shape of the window (see Figure 7). The algorithm then takes the median of the first sub-

filter value, the second sub-filter value and the centre pixel in the sub-window and finds 

the median of those three values. It then replaces the value of the centre pixel of the sub-

window with the final median value.  Combining both of these sub-filters helps to 

preserve both vertical and horizontal edges (Nieminen et al., 1987). All sagittal US 

images were despeckled using this method, with two iterations applied over each image. 

See Figures 8 and 9 for an example of this despeckling method.  
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Figure 7. Visualization of the two sub-filters used in the bi-directional FIR-median hybrid 

despeckling filter. A) The ‘x’ shaped 5 x 5 sub-filter. The red circles represent the pixels 

that are included in the calculation of the first sub-filter median. B) The cross shaped 5 x 

5 sub-filter. The red stars represent the pixels that are included in the calculation of the 

second sub-filter median. The black X’s represent the centre pixel value in the 5 x 5 

window. This centre pixel value will either remain or be replaced.  

 

Figure 8. An example of a raw renal US image prior to despeckling.  
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Figure 9. The same renal ultrasound image as Figure 8 after it has been despeckled using 

the bi-directional FIR-median hybrid filter.  

 

Resizing the images. Both before and after cropping, all renal US images were 

variable in size. Although it is possible to have varying image sizes as input to a neural 

network, for simplicity, we chose to resize all images to 256 x 256 pixels to standardize 

the size without losing too much resolution.  

Image segmentation. We explored semi-automatic and manual image 

segmentation methods. We initially attempted to apply active shape models (ASM) to 

segment the kidneys from their backgrounds. ASM is typically used for facial recognition 

or detection, however, there have been some successful applications of ASM in medical 

imaging (Edwards, Cootes, & Taylor, 1998; Spiegel, Hahn, Daum, Wasza, & Hornegger, 

2009; Sun, Bauer, & Beichel, 2012; Wan, Lam, & Ng, 2005; W. Wang, Shan, Gao, Cao, 
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& Yin, 2002). ASM learns patterns of variability from a subset of annotated images, and 

deforms from the average shape in ways that are characteristic of the class of objects it 

represents (Cootes, Taylor, Cooper, & Graham, 1995). Therefore, the model would not 

deform in ways that are not plausible for a kidney, which we believed would improve the 

model’s ability to correctly segment our kidney US images See Appendix B for a detailed 

description of the ASM algorithm.   

We randomly selected 50 sagittal images (10 from each SFU grade) to test 

whether ASM could successfully segment the kidney US from our database. After 

adapting code from Miller (2018) to suit our sample of kidney US, we found that the 

ASM was not capable of accurately segmenting the kidneys. Due to the high level of 

variability in the placement, size, and sections of the kidneys from our database, the 

average shape did not resemble a kidney and therefore was not able to deform in a way 

that suited all the images in our sample. Since this mode of segmentation was 

unsuccessful, we instead moved onto manually segmenting the kidneys to assess whether 

segmentation improved model performance.  

We randomly selected 500 sagittal images (100 from each SFU grade) to be 

manually segmented by a urology resident from McMaster University. Nine of the 

selected images were poor quality (e.g. the kidney was not visible, or the image was 

improperly labelled) and were removed, leaving a total of 491 segmented images. All 

segmented images had an outline drawn overtop indicating where the edges of the kidney 

were located. We chose 16 points along the outlines and used them to blackout the area 

surrounding the kidney to remove excess noise. We chose to use 16 points because after 
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some trial and error, we found that 16 points adequately captured the contour of the 

kidneys. 

Wavelet transformation. Wavelet transformations are widely used in image 

processing to extract textural information (Baaziz, Abahmane, & Missaoui, 2010; Livens, 

Scheunders, Wouwer, & Dyck, 1997). They combine frequency filtering with a 

windowing function and respond to oriented edges at a region in the image. A set of 

wavelets for different orientations and scales forms a set of basis functions for describing 

an image. All 491 images that were manually segmented and had their backgrounds 

blacked out, along with the same set 491 “original” images without any segmentation, 

underwent a discrete 2-dimensional Daubechies wavelet transform of order 2 using the 

PyWavelets Toolbox (Lee et al., 2006). The Daubechies wavelets are a family of 

orthogonal wavelets which defines a discrete wavelet transform, and are characterized by 

a maximal number of vanishing moments for a given support (Daubechies, 1992). A 

discrete 2-dimentinal Daubechies wavelet transform is computed by iteratively 

convolving high and low pass filters with our image (�), followed by down sampling. The 

low pass filter corresponds to coefficient ℎ� from the Daubechies scaling function, and the 

high pass filter corresponds to the coefficient �� from the Daubechies wavelet function 

(Natarajan, Casida, Genovese, & Deutsch, 2011):  

���	 
 √2	 � ℎ���2� � �		
�

�����
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The first step of the algorithm performs filtering and down sampling in the 

horizontal direction:  

"# 
 �� ∗% ℎ	 ↓',% 			 �4	 
*+ 
 �� ∗% �	 ↓',% 					 �5	 

The second step computes the filtering and down sampling in the vertical direction 

which produces four separate coefficients:  
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The transformation resulted in four 129 x 129 matrices of the diagonal detail, 

horizontal detail, vertical detail and approximation coefficients respectively. The 

approximation coefficients are typically noisy, and therefore they were discarded and not 

used any further (Mistry, 2013). The horizontal, vertical and diagonal detail coefficients 

were normalized between -1 and 1 using least absolute deviations method due to its 

resistance to outliers (Thanoon, 2015). The three coefficient matrices were concatenated 

for input into the CNN, which resulted in each of the 491 US images being represented by 

a single 3 x 129 x 129 wavelet coefficient tensor. 

Convolutional Neural Networks  

 We developed a CNN using the Keras neural network API with TensorFlow 

which contained 4 convolutional layers, a fully connected layer of 512 units, and a final 
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output layer of 5 units. The architecture was chosen based on models from previous 

research where CNN were applied to HN US images (Dhindsa et al., 2018). Each layer 

used rectified linear activation functions (ReLU), except for the last layer which used the 

softmax activation function for classification. The model was trained to minimize the 

categorical cross-entropy across classes using stochastic gradient descent with a learning 

rate of 0.01 and a momentum rate of 0.9 which is applied to speed up learning. 

 The first convolutional layer contained 16 filters with an input patch of 3 x 3 

pixels, and the following three convolutional layers contained 32 filters each with an 

input patch of 3 x 3 pixels. A stride length of 1 pixel was used in all convolutional layers. 

Each convolutional layer was followed by max pooling with 3 x 3 pixel input and a stride 

length of 2 x 2 pixels.  

Batch normalization, a technique whereby the output of the previous layer is 

normalized by subtracting the batch mean and dividing by the batch standard deviation, 

was performed after each convolutional layer to make training more robust and efficient. 

Finally, dropout, a technique where randomly selected neurons are ignored (set to zero) 

during training, was used for the fully connected layer to reduce overfitting and promote 

the learning of independent features (Dahl, Sainath, & Hinton, 2013; G. E. Hinton, 

Srivastava, Krizhevsky, Sutskever, & Salakhutdinov, 2012; Ioffe & Szegedy, 2015; 

Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). 
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 We inputted 4 different image types into the CNN, resulting in a total of 4 

different models (see Table 2). Images that were not wavelet transformed had their pixel 

values resized between 0 and 1.  

Table 2.  

The image input types for the four different models. 

Input Types 

Wavelet transformed (WT) and segmented (S) 

Wavelet transformed (WT) and not segmented (NS) 

Not wavelet transformed (NWT) and segmented (S) 

Not wavelet transformed (NWT) and not segmented (NS) 

 

Results 

Each model was evaluated using a 5-fold cross validation loop, which means that 

we shuffled and split our data into 5 different sections each containing 1/5 of the data. 

During each of the 5 loops, a different section was used as a test set, while the rest of the 

data is used to train the network. We used the testing portion of the dataset to test the 

accuracy of our models by comparing the number of correct responses to the number of 

incorrect responses. This process was repeated 5 times. All images belonging to a patient 

always remained in the same set to ensure that within-patient similarities would not cause 

the model to overfit. We evaluated model performance using the average accuracy across 

the 5 folds and the average F1 score across the five different test sets. F1 is the weighted 

average of precision and sensitivity (see Formulas 8, 9 and 10), which provides a better 
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assessment of the model’s performance than a receiver operator characteristic curve when 

there is an imbalance in the number of samples in each class (Davis & Goadrich, 2006).  

<417-=-./ 
 	 >41	<.=-�-61>41	<.=-�-61 � ?"0=1	<.=-�-61					 �10	 
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 >41	<.=-�-61>41	<.=-�-61 � ?"0=1	B1�"�-61						 �11	 
 

?� 
 2 ∙ 	 9417-=-./ ∙ =1/=-�-6-��9417-=-./ � =1/=-�-6-��							�12	 
All input types were evaluated on their ability to classify all SFU grades, since the 

goal is to eventually develop a diagnostic aid for HN that can help guide physicians 

towards the correct diagnosis. Therefore the, ML algorithm must be evaluated on its 

ability to correctly classify all 5 SFU grades. The CNN performance is summarized for all 

input types below (See Table 3). All four models performed similarly in terms of average 

accuracy and F1 score, and all models significantly overfit. See Figures 10, 11, and 12 

respectively for an example confusion matrix, accuracy per epoch and loss per epoch for 

a typical cross validation run.    
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Table 3.  

5-way SFU classification results. Average accuracy is reported as a percentage with the 

standard deviation of the accuracy scores across the 5 folds. S represents segmented, NS 

represents non-segmented, WT represents wavelet transformed and NWT represent non-

wavelet transformed.  

Input Type Accuracy F1 

WT & S 39 + 6 0.39 

WT & NS 46 + 4 0.45 

NWT & S 44 + 4 0.44 

NWT & NS 43 + 2 0.42 

 

 

Figure 10. Example confusion matrix from a typical cross-validation run when 

performing 5-way classification using the non-segmented and non-wavelet transformed 

images. 
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Figure 11. The categorical cross entropy loss from a typical cross-validation run when 

performing 5-way classification using the non-segmented, non-wavelet transformed 

images. 

 

 

Figure 12. Accuracy from a typical cross-validation run when performing 5-way 

classification using the non-segmented, non-wavelet transformed images 

  

Discussion 

The purpose of the current study was to assess whether segmentation and the 

extraction of textural information would improve the performance of a CNN. Our results 

show that these extra preprocessing steps do not improve model performance in terms of 

average accuracy, or F1 scores. Instead, we found that all four different input types 

performed similarly. It had been previously thought that segmentation, along with 

extracting textural information, are vital steps towards developing any sort of diagnostic 
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aid since the shape of the tissue of interest often provides important clinical information 

to the physician (Jalalian et al., 2013). However, our results suggest that we may be able 

to bypass segmentation when using a CNN to classify medical images.  

Within the literature, the recommendations for medical image preprocessing (e.g. 

segmentation and texture extraction) have been dominantly geared towards ‘classic’ 

machine learning methods such as SVM, or imaging techniques other than ultrasound 

(Huynh, Li, & Giger, 2016; Jalalian et al., 2013). The application of deep learning in 

medicine is on the rise, however, to our knowledge, many of the recommendations for 

preprocessing have not changed or been updated in a similar fashion. CNN are 

translationally invariant, extract low level features in early layers of the model, and allow 

an entire image to be used as input. In comparison, other ML models require features 

from regions of interest to be extracted. Therefore, segmentation and textural extraction in 

general in combination with CNN seems rather redundant. Based on this, from a pure 

deep learning perspective, it is not surprising that we were able to move forward and get 

comparable model behavior without these extra preprocessing steps.   

However, when we take the clinical perspective and consider the SFU classification 

system which only describes the features directly associated with the kidney itself (e.g. 

parenchymal thickness, calices), it may seem unclear why segmenting the images would 

not improve model performance (Fernbach et al., 1993). Segmentation removes 

background noise/information, which based on the SFU classification system, should be 

irrelevant. However, perhaps this background information within the US images is 

important and helps physicians with classification. We found these results surprising 
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considering the numerous studies that support segmentation and textural extraction and 

therefore decided to use a smaller sample of images to rule out whether background noise 

is present but just gets averaged out with more images. We found that when we only used 

10 randomly selected images of each SFU grade as input to our models (total of 50 

images), each of the different input types produced similar model performance. If the 

background of the US images was in fact noise, we would have expected decreased 

performance from the models using non-segmented images since the background noise 

would be less likely to be averaged out and would therefore have more of an influence on 

what the CNN is learning. However, these smaller models produced the same pattern of 

results as the larger models, providing further support that the background information 

does not hinder model performance.  

Anecdotal evidence from one of the urologists at McMaster University who graded 

the renal US images revealed that some physicians, including himself, do in fact use the 

background information when interpreting renal US images. Although not directly related 

to the features of the SFU grading system, the urologist stated that they use the density 

(i.e. how light or dark) of the liver and spleen are in comparison to the kidney to 

determine how echogenic (i.e. ability to bounce an ultrasound wave) the kidney is. The 

echogenicity of the kidney indicates whether the kidney has scar tissue. Although this 

account comes from a single physician and does not directly relate to the SFU 

classification system, based on our segmentation findings, it may be beneficial to assess 

the usage and possible benefit of including background information into 

classification/grading guidelines. It has been shown that expert physicians are poor at 
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articulating which individual diagnostic features they are attending to, and instead come 

to a diagnosis more holistically (Eva, Norman, Neville, Wood, & Brooks, 2002). 

Therefore, it is possible that using background information when interpreting HN US 

images is common, but physicians do not articulate all components that were considered 

when rendering a diagnosis, and thus these components are not well documented. If this is 

the case, the usage of background HN US image information is not standardized within 

any of the current HN classification systems, which could be attributing to the poor inter-

rater reliability of HN.   

Limitations and Future Directions 

 The current study only used 491 images in total, and only 393 of those images 

were used to train the model during each cross-validation loop. We did find that all 

models significantly overfit which might suggest that it is simply memorizing the data. 

However, based on the confusion matrices from each input type we can see that the model 

was not randomly guessing a single class and was instead predicting all 5 classes with a 

similar frequency, and consistently achieved better than chance level accuracy for all 

input types. Therefore, although the model had less data than what might typically be 

used for this kind of approach, it does seem like it was able to learn. Considering the 

depth of our network, it would be beneficial to train the model with a larger number of 

images to ensure that the model behaves similarly and that there are still no differences 

between the four input types.  
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Although the size of the dataset is an important factor to be aware of, being able to 

achieve similar or better model results without segmentation or preprocessing is a very 

useful, informative and promising finding. Segmentation can be a very cumbersome task, 

especially when there is high variability between the images. Therefore, bypassing this 

step can save a substantial amount of time that can otherwise be used to fine tune model 

architectures. Finally, these findings have suggested that an investigation of the 

importance of the background information in the renal US images might be beneficial. 

Along with re-running these models with a larger subset of data, further studies should be 

conducted to determine whether physicians and/or CNN utilize background US 

information when interpreting and classifying HN US images. If physicians do regularly 

use background information, it would help to explain why inter-rater reliability is so poor. 

Furthermore, if CNN find relevant information from the background of HN US images, it 

suggests that these diagnostic features should be standardized for physicians to use. 
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Chapter 5: Investigating Convolutional Neural Network Architectures  

Overview 

The following study investigated CNN architectures with the goal of maximizing 

model performance in terms of accuracy and F1 score (average of precision and recall) 

for classifying kidney ultrasound images into the 5 SFU grades. This was an exploratory 

study and all models were developed sequentially, meaning that changes were made to 

iteratively improve upon the results of previous models. We have included the original 

model architectures, along with all noteworthy models that were developed as we 

progressed towards finding the best model architecture. 

Methodology 

Database  

We used the same database of renal US images as we did in Chapter 3 for a total 

of 2484 sagittal, and 2185 transverse US images from 773 different HN patients. Each 

image was graded using the SFU classification system by at least 3 pediatric urologists to 

maximize the accuracy of the image labels. We compared models that were either non-

fused single input models, or fused models that used both sagittal and transverse US as 

input. All 4670 images were used as input into the single input CNN models. For our 

fused CNN, 2016 sagittal and 2016 transverse images were used as paired input to our 

models. Each pair of images was from the same patient and the same visit. 638 sagittal 

and transverse US were not used for these models because they did not have a 

corresponding partner to be a used as input with.  
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Preprocessing  

 All images were cropped, despeckled, and resized in the same manner as in 

Chapter 3, however based on the results of study 1, neither wavelet transformation nor 

segmentation improved model performance, so the images were not segmented, or 

wavelet transformed. All images had their pixel values rescaled between 0 and 1, and then 

normalized to have a mean pixel of zero. Finally, each pixel value was divided by the 

standard deviation across all pixels in the corresponding image. 

Data Augmentation 

Although our database is large within the domain of HN, as well as in comparison 

to other diagnostic aid studies, it is still a small amount of data by machine learning 

standards. This problem becomes even more apparent when we consider the number of 

classes, and the amount of variability within each of the classes. When there is 

insufficient data, ML models in general are at a higher risk of simply memorizing the 

training data rather than learning generalizable rules from it, resulting in overfitting where 

model performance decreases when applied to new data.   

Data augmentation was applied to artificially expand the dataset by applying 

affine transformations to it, and can be used to reduce overfitting in small data problems 

(Cireşan, Meier, & Schmidhuber, 2012, p.; Krizhevsky et al., 2012; Simard, Steinkraus, 

& Platt, 2003).  The variance introduced by the transformations allows the model to learn 

invariant features and generalize better to testing data. Some of the models’ data were 

augmented by applying rotations of up to 45º, horizontal and vertical flips, as well as 
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width and height shifts of up to 20% (51 pixels). Not all models used data augmentation, 

and data augmentation was only applied to the training data and not the testing data. We 

will note which models used data augmentation. 

Single Input Convolutional Neural Networks 

All models were trained to minimize the categorical cross-entropy across classes 

using the nonlinear optimization algorithm Adam (Kingma & Ba, 2014); unless otherwise 

indicated, all models were trained with a learning rate of 0.01 and a decay of 10-6. The 

decay parameter reduces the weight vectors towards zero during each iteration which 

stabilizes the learning process. After the final convolutional layer, global average pooling 

was applied to decrease the number of parameters in the model and prevent overfitting in 

each model. Finally, each layer in all models used a rectifying nonlinearity (ReLU), 

except for the last layer which used the softmax activation function for classification. All 

models were created using the Keras neural network API with TensorFlow. 

Model 1. The CNN contained 5 convolutional layers, a fully connected layer of 

512 units, and a final output layer of 5 units (see Figure 13 for a visual representation of 

the architecture).  The first convolutional layer contained 16 filters, the second and third 

layer contained 32 filters and the fourth and fifth layer contained 64 filters. The filters in 

all layers had input patches of 3 x 3 pixels, and a stride length of 1 pixel was used in all 

convolutional layers. Each convolutional layer was followed by batch normalization and 

then max pooling with 3 x 3 pixel input and a stride length of 2 x 2 pixels. A dropout of 
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0.5 was used for the fully connected layer to reduce overfitting and promote the learning 

of independent features. Data augmentation was not applied.  

 Model 2. The number of dense nodes was changed from 512 units to 400 units. 

All other aspects of Model 2’s architecture was the same as Model 1. Data augmentation 

was not applied.  

Model 3. The number of dense nodes was changed from 400 units to 350 units All 

other aspects of Model 3’s architecture was the same as Model 1. Data augmentation was 

not applied.  

Model 4. Based on the performance of Models 1-3, Model 3 was dropped from 

further consideration. The architecture of Model 4 was the same as Model 1 except data 

augmentation was applied to the inputs.  

Model 5. The architecture of Model 5 was the same as Model 2 except data 

augmentation was applied to the inputs.  

Model 6. Since Model 5 was the current best performing architecture, Model 4 

was dropped from consideration. We simplified the architecture of Model 5 by decreasing 

the number of convolutional layers. Model 6 contained 4 convolutional layers, a fully 

connected layer of 400 units, and a final output layer of 5 units. Model 6 used a learning 

rate of 0.01 and a decay of 1e-4. 

 The first convolutional layer contained 8 filters, the second and third layer 

contained 16 filters and the fourth layer contained 32 filters. The filters in all layers had 

input patches of 3 x 3 pixels, and a stride length of 1 x 1 pixel was used in all 
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convolutional layers. Each convolutional layer was followed by batch normalization and 

then max pooling with 3 x 3 pixel input and a stride length of 2 x 2 pixels. A dropout of 

50% was used for the neurons in the fully connected layer. Data augmentation was 

applied to the input images.  

Model 7. Rather than simplifying a CNN by decreasing the number of layers, we 

decreased the number of filters in each layer. Therefore, Model 7 still had 5 layers, a fully 

connected layer of 400 units, and an output layer of 5 units. The model was trained with a 

learning rate of 0.01 and a decay of 10-6. 

The first and second convolutional layers contained 8 filters, and the third, fourth 

and fifth layers contained 16 filters. The filters in all layers had input patches of 3 x 3 

pixels, and a stride length of 1 x 1 pixel was used in all convolutional layers. Each 

convolutional layer was followed by batch normalization and then max pooling with 3 x 3 

pixel input and a stride length of 2 x 2 pixels. A dropout of 0.5 was used for the fully 

connected layer, and data augmentation was applied to the inputs. 

Model 8. The architecture was the same as Model 5, except class weights were 

introduced to adjust for imbalanced classes – although the imbalance was relatively small. 

Class weights influence the magnitude of the gradient calculated during backpropagation. 

We used SFU class 3 as a reference since it was the most common class, and calculated 

ratios across the whole dataset to increase the importance of the under-represented 

classes. The ratios were as follows: 1:3.68 (SFU 0), 1:1.76 (SFU I), 1:1.16 (SFU II), 1:1 

(SFU III), 1:2.46 (SFU IV). The model was trained to minimize the sparse categorical 
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cross-entropy, which is used when data is labelled using integers rather than one-hot 

encoding, across classes using Adam with a learning rate of 0.01 and a decay of 1e-6. 

Data augmentation was applied to the inputs. 

Fused Convolutional Neural Networks 

Fused CNN were investigated to see whether providing two different US views of 

the kidney from the same patient during the same visit would improve performance. 

Physicians usually have access to multiple different US images of kidneys at different 

angles and are therefore able to come to a diagnosis by combining information from 

multiple views. Similarly, it was hypothesized that providing two different US views to a 

CNN to simultaneously process would allow the network to learn correlations between 

the images, thus improving classification performance (Dolata, Mrzygłód, & Reiner, 

2017, p.). All models were created using the Keras neural network API with TensorFlow. 

 Model 9. The Fused CNN contained 5 convolutional layers in total, a fully 

connected layer of 400 units, and a final output layer of 5 units. After the final 

convolutional layer, global average pooling was applied to reduce the number of 

parameters in the model. Each layer used ReLU, except for the last layer which used the 

Softmax activation function for classification. The model was trained to minimize the 

categorical cross-entropy across classes using Adam with a learning rate of 0.01 and a 

decay of 1e-5. 

 The first convolutional layer was a shared layer containing 16 filters each with 

input patches of 3 x 3 pixels, and a stride length of 1 x 1 pixel. This shared layer was 

applied to both inputs (sagittal and transverse images). Therefore, the shared filter was 
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learning the same features within both images, however they were not overlapping and 

learning from both the sagittal and transverse images. After both inputs had been 

convolved, the output was concatenated, batch normalization was performed, and max 

pooling with a 3 x 3 pixel input and a stride of 2 x 4 pixels was implemented to reduce the 

output to a square matrix.  

 Layers two and three contained 32 filters, and layers four and five contained 64 

filters. Each filter had input patches of 3 x 3 pixels, and a stride length of 1 x 1 pixel. 

Each of these convolutional layers was followed by batch normalization and then max 

pooling with 3 x 3 pixel input and a stride length of 2 x 2 pixels. A dropout of 0.5 was 

used for the fully connected layer, and data augmentation was applied to both sets of 

inputs. See Figure 14 for a visual representation of this architecture.  

Model 10. We simplified the architecture by decreasing the number of filters in 

each of the convolutional layers, however, all other aspects of the architecture were the 

same as Model 9. The first shared convolutional layer contained 8 filters, the second and 

third layers contained 16 filters, and the fourth and fifth layers contained 32 filters. 

Model 11. We increased the number of filters in each convolutional layer. The 

first shared convolutional layer contained 12 filters, the second and third layers contained 

24 filters, and the fourth and fifth layers contained 48 filters. All other aspects of the 

architecture were the same as Model 9.  
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Figure 13. A visual representation of Model 1’s architecture, including all convolutional 

and dense layers.  
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Figure 14. A visual representation of Model 9’s fused architecture, including all 

convolutional and dense layers.  
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Model 12. To investigate whether the generalization would improve if the model 

was trained on simultaneously presented stereo image pairs, the fused CNN was trained 

on two separate streams of data fused after each of their respective third convolutional 

layers. Each input passed through 5 convolutional layers, a fully connected layer of 400 

units, a fully connected layer of 200 units, and a final output layer of 5 units. After the 

final convolutional layer, global average pooling was applied to reduce the number of 

parameters in the model. Each layer used ReLU, except for the last layer which used the 

softmax activation function for classification.  

 The first layer for each input consisted of 8 filters, followed by batch 

normalization and then max pooling with 3 x 3 pixel input and a stride length of 2 x 2 

pixels. The second layer in both streams contained 24 filters, followed by batch 

normalization and then max pooling with 3 x 3 pixel input and a stride length of 2 x 2 

pixels. In each stream, layer three contained 24 filters. After this set of convolutions, the 

outputs from both streams were concatenated together and then underwent batch 

normalization and max pooling with 3 x 3 pixel input and a stride length of 2 x 4 pixels to 

reduce the output to a square matrix. Layers four and five both contained 48 filters and 

were each followed by batch normalization and max pooling with 3 x 3 pixel input and a 

stride length of 2 x 2. A dropout of 0.5 was used for the fully connected layer, and data 

augmentation was applied to both sets of inputs. 

Model 13. We increased the number of filters in each convolutional layer. 

Convolutional layer 1 in both streams contained 16 filters, convolutional layers 2 and 3 
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contained 32 filters, and convolutional layers 4 and 5 used 64 filters. The rest of Model 

13’s architecture was the as Model 12.  

Model 14. An extra dense layer of 200 units was added after the first dense layer 

of 400 units. All other architectural aspects were the same as Model 13.  

Model 15. We changed the number of dense units in the first dense layer from 400 

units to 500 units. All other architectural aspects were the same as Model 14.   

Results 

Each model was evaluated using a 5-fold cross validation loop. The images were 

shuffled and then split into five sets, and all images belonging to a patient always 

remained in the same set to ensure that within-patient similarities would not cause the 

model to overfit. Each set was used as the test set once, and in that case the remaining 

four sets were combined in to the corresponding training set. We evaluated model 

performance using the average accuracy and the average F1 score across the five different 

test sets (see Tables 4 and 5). 

Single Input Models 

Model 5, which used data augmentation during training and contained 400 dense 

units, was the best performing model with an average accuracy of 49% + 1 and an 

average F1 score of 0.48 (see Table 4). Model 5 only made errors greater than two grades 

(e.g. predicted SFU grade I, but the correct class was SFU grade III) 8% of the time, and 
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the rest of the predictions (43%) were clustered within 1 grade of the correct SFU 

diagnosis (see Figure 15). Finally, Model 5 did not overfit (see Figure 16 and 17). 

Table 4.  

5-way SFU classification results for the single input CNN. Average accuracy is reported 

with the standard deviation of the accuracy scores across the 5 folds.  

Model Description Accuracy  F1 

Model 1  512 dense units 44 + 2 0.44 

Model 2  400 dense units 44 + 2 0.42 

Model 3  350 dense units 43 + 2 0.42 

Model 4  512 dense, data augmentation 48 + 1 0.45 

Model 5 400 dense, data augmentation 49 + 1 0.48 

Model 6  Fewer layers 45 + 1 0.42 

Model 7  Fewer filters 47 + 1 0.44 

Model 8  Class with fewer images 

weighted higher 

46 + 2 0.45 

 

 

Figure 15. Example confusion matrix from a typical cross-validation run when 

performing 5-way classification using Model 5. 
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Figure 16. Loss from a typical cross-validation run when performing 5-way classification 

using Model 5, the highest performing single input CNN. 

 

Figure 17. Accuracy from a typical cross-validation run when performing 5-way 

classification using Model 5, the highest performing single input CNN. 

 

Fused Models 

Model 9, our original fused model, was the top performing fused model with an 

average accuracy of 49% + 2 and an average F1 score of 0.48 (see Table 5). Model 9 

made errors greater than 2 grades 10% of the time, and the rest of the predictions (41%) 

clustered within 1 grade of the correct SFU diagnosis (see Figure 18). Model 9 did tend to 

overfit by 4-11% between model training and testing (see Figure 19 and 20). 
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Table 5.  

5- way SFU classification results for the fused CNN. Average accuracy is reported as a 

percentage with the standard deviation of the accuracy scores across the 5 folds.  

Model Description  Accuracy  F1 

Model 9  Original fused model 49 + 2 0.48 

Model 10  Fewer filters per layer 48 + 4 0.47 

Model 11  Moderate filters per layer 49 + 3 0.46 

Model 12  Fused later, 400 and 200 

dense units, fewer filters 

47 + 4 0.44 

Model 13  Fused later, 400 and 200 

dense units, more filters  

49 + 2 0.47 

Model 14 Dense layers of 500 and 

200 

48 + 2 0.43 

Model 15 Moderate filters, dense 

layer of 500 

47 + 3 0.45 

 

 

Figure 18. Example confusion matrix from a typical cross-validation run when 

performing 5-way classification using Model 9. 
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Figure 19. Loss from a typical cross-validation run when performing 5-way classification 

using Model 9, the highest performing fused CNN. 

 

Figure 20. Accuracy from a typical cross-validation run when performing 5-way 

classification of Model 9, the highest performing fused CNN. 

 

Discussion 

Comparing Top Model Performances 

The top performing model overall was Model 5, our best single input model, and 

the top performing fused model was Model 9. Considering the standard deviations of the 

accuracies, both models performed similarly, which is surprising considering 

simultaneous processing of two different views of the same object usually improves 

performance (Dolata et al., 2017). Although model performance in terms of accuracy and 

F1 scores were similar between these two models, there are important differences 

between them that must be considered.  



 

M.Sc. – L. Smail; McMaster University – Psychology, Neuroscience & Behaviour  

52 
 

Model 9 was more complex than Model 5. It required more input images, merged 

two separate streams of data, and required an extra and larger dense layer to reach a 

comparable accuracy to Model 5. These characteristics meant that Model 9 had a greater 

number of parameters, making it prone to overfitting, which was what we observed (see 

Figure 11). The overfitting in Model 9 was moderate, with a difference in accuracy of 

approximately 4-11% between training and testing, however, it was still present, unlike in 

the more simplified Model 5.  

Along with Model 9 having a greater number of parameters, it also requires two 

paired images as input for both training and testing. Using two images per training/testing 

example effectively reduced our dataset by a factor of two, which could also explain the 

overfitting we observed in Model 9. When there is insufficient data, ML models in 

general are at a higher risk of simply memorizing the training data rather than learning 

from it, thus resulting in overfitting. This phenomenon is especially true of neural 

network-based models and is directly related to the large numbers of parameters in these 

types of models. Therefore, the fact that Model 9 contains more parameters and requires 

more data makes Model 9 a less effective model.  

Although both models performed similarly in terms of accuracy and F1 score, 

Model 9 also made a larger number of errors greater than two SFU grades than did Model 

5. Therefore, taking all of this into consideration, it does appear that Model 5 is superior. 

Model 9 is an expensive model to train and US images, or any medical images, do not 

come cheaply. Our dataset is small by deep learning standards since medical data is not 

easy to come by. Until we can share medical data across institutions to increase the size 
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of medical databases, CNN and other ML algorithms must be applied with care to these 

datasets. Therefore, to maximize our database and produce fewer larger errors, we believe 

that Model 5 is our current best option. 

We developed many CNN, both single input and fused, but our search for the best 

CNN was not exhaustive. Model 5 can likely still be improved with an exhaustive search; 

however, we believe that the results of our model architecture exploration provide an 

excellent starting point to begin to fine tune both the architecture and hyperparameters of 

Model 5. Various incremental changes were made to our models to arrive at our best 

model (Model 5), and we will discuss the important changes to understand why they did 

or did not improve our models’ performances.  

Model Changes and Their Effect on Performance 

Number of dense layer nodes. In both our single input and fused models, we 

varied the number of nodes in our first dense layers. Three separate models were 

developed to assess how many dense nodes would result in the best model performance. 

We assessed models with 512, 400 and 350 nodes. We found that the Model 3 with 350 

dense nodes performed the worst out of these three, however, the Models 1 and 2 with 

512 and 400 nodes respectively performed similarly. However, both Models 1 and 2 were 

still overfitting, therefore we continued to investigate architectures with both 512 and 400 

dense nodes and other techniques were applied to minimize overfitting. 

Data augmentation. We began to augment our training data by applying flips, 

rotations and shifts in Model 4, and found that it provided the largest increase in model 
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performance. Therefore, all the following models applied data augmentation to the 

training data. Applying these augmentations to our training data artificially expanded the 

dataset and introduced more variability. Overfitting can occur when models 

learn/memorize specific instances of the data. Introducing variability and expanding our 

training set provided more training samples for our model, which increased the number of 

backpropagation iterations, but is also required our model to learn general rules since the 

input images were all augmented differently and could not be simply memorized. Since 

the model learned rules rather than instances, it was better able to generalize to our testing 

data. Data augmentation eliminated any overfitting in model 5, and increased model 

performance, therefore, all subsequent models applied data augmentation to the input 

images. After testing data augmentation on models with 400 and 512 dense units, it was 

found that the model with 400 dense units performed best, therefore all subsequent 

models had 400 units. 

Simplifying our models. The first few single input models used five convolutional 

layers. This was based on a previous model that was developed for HN US classification 

(Dhindsa et al., 2018). However, five convolutional layers is quite deep, therefore we 

attempted to simplify the models by reducing the number of convolutional layers. After 

reducing the model to four convolutional layers we found that model performance 

noticeably dropped. We hypothesize that this could be because with fewer layers, the 

feature maps of the final convolutional layer were larger (15 x 15 pixels). Therefore, the 

receptive fields of the final convolutional layer of this shallower model were smaller and 

couldn’t learn as complex of features as the deeper models.   
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To accommodate this possibility, we also briefly investigated whether reducing the 

number of filters in each layer, rather than reducing the number of layers themselves, 

would benefit model performance. Reducing the number of filters slightly reduced model 

accuracy. Extracting more features from the input images resulted in improved 

performance and therefore we did not continue to reduce the depth of our model, or the 

number of filters in each layer.  

Misclassified Images and Their Implications 

Most of the images in our dataset were classified correctly or within one value of 

their correct grade by our best performing model (Model 5). However, 8% of the time 

images were classified greater than two values away from their correct grade. The fact 

that such a small percentage of images were misclassified in this manner is very positive, 

however, we were curious why our model was making such large mistakes on such a 

small subset of images. 

We visually inspected the images that were badly misclassified and although there 

were some where our model simply made the wrong diagnosis, there were several 

instances where Model 5 did in fact make the correct diagnosis. However, the provided 

label was incorrect, and therefore the model’s diagnosis was deemed ‘incorrect’. All 

observed instances of mislabelling were confirmed by a senior pediatric urologist. Some 

of the instances were obvious. For example, one of the kidney US was SFU grade 4, and 

was predicted as such, however it was labelled as SFU grade 0 (see Figure 21). Other 

instances were slightly less extreme (see Figure 22).  
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Figure 22. An US image that was classified as SFU grade 0 by our model, which was the 

correct grade, however, the supplied grade label was SFU 2. 

Figure 21. An US image that was classified as SFU grade 4 by our model, which was the 

correct grade, however, the supplied grade label was SFU 0.  
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Individual inspections of each image would be required to determine what 

percentage of our dataset is affected by mislabelling. Nevertheless, this finding has strong 

implications for our best model. Incorrectly labelled images impact our accuracy 

calculations as we found, however, they also greatly impact model training. During 

training weights are updated as the model attempts to minimize a chosen cost function. 

The weights are updated based on model error, therefore, when mislabelled data passes 

through the network it can negatively influence how the weights are updated since the 

errors are not accurate in all instances. Therefore, it’s very likely that our model didn’t 

properly converge and find the correct weights to minimize the cost function.  

The only way to solve this problem is to go through and fix all mislabelled 

images. It’s likely that many of the mislabelled images will have predicted scores that are 

greater than two values away from their labelled values, therefore we can use Model 5 to 

verify these images by inspecting its predictions. Targeting this smaller subset of images 

and updating their respective labels will be most effective since this subset likely contains 

the most errors. However, it cannot be ruled out that there are no mislabelled images that 

fall within one value of the correct score, therefore eventually these images will also need 

to be inspected. Although we are unsure how pervasive this issue is, we believe that once 

the image labels have been updated we will see a significant increase in our model’s 

performance.  

Although this small subset of badly misclassified images is concerning, most of 

the time our model either correctly classified or misclassified our US images by 1 SFU 

grade. This finding makes sense since considering that SFU grades are a discrete 
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approximation of severity, a continuous phenomenon. Furthermore, physicians do tend to 

confuse adjacent SFU grades, especially the intermediate ones. Therefore, although we 

hypothesize that cleaning this small subset of images will improve performance, this is 

not to say that our best model performs poorly. Our model has learned useful 

characteristics and is performing similarly to a physician.  

Based on our findings, it would be interesting to examine the ‘confidence’ of our 

models output. Our model outputs a set of probabilities for each SFU grade, and then 

classifies the images as the grade with the highest probability. It is likely that in many 

instances two adjacent SFU grades have similar probabilities, meaning that the model 

thinks the image falls between two different SFU grades. However, like physicians, the 

model must choose one grade to classify the image, even if the probabilities are very 

close (e.g. 45% and 42%) and the image appears to lie somewhere in the middle. 

Examining the individual probabilities for each SFU grade would provide a way of 

placing each image along a continuous scale and may provide insight into how 

‘confident’ the model is in each of it’s classifications, and what sub features place an 

image on the upper or lower spectrum of each SFU grade. 

Limitations and Future Directions 

The findings from the current study are limited in that we did not conduct an 

exhaustive search for the best CNN architecture. We made a variety of incremental 

architectural changes to our models, however, there are many combinations that were not 

attempted due to the feasibility of a manual search. We believe that our exploration 

provides a strong starting point for further investigation. Now that there is a general 
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understanding of how architectural/hyper-parameter changes impacted model 

performance (e.g. decreasing depth, the number of filters in each layer etc.), an exhaustive 

search, where all combinations of architectural/hyper-parameter changes that were made 

in the current study are tested, should be performed. We believe that grid search, which is 

an exhaustive search through a subset of hyperparameter space, could be conducted. Grid 

search has been criticized by Bergstra and Bengio (2012) because often times feature 

space is so large that it can be computationally expensive to conduct. However, we 

believe that since an initial educated search has been conducted, the feature space has 

shrunk to a reasonable size to conduct an exhaustive grid search. There are infinite 

different CNN architectures, however, basing our grid search off the results of the current 

study should result in an optimal CNN architecture with improved accuracy for 

classifying HN US images.   

Another major limitation of the current study was the discovery that our dataset 

contains mislabelled images. The mislabelling no doubt impacted training, and thus 

overall model performance. Although our current best model is not at an acceptable level 

for clinical use, it can be used to verify our image labels. Optimizing our current best 

architecture along with verifying our image labels should result in significantly higher 

HN classification accuracy.  
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Chapter 6: Conclusion 

Currently, HN diagnosis is highly subjective and unreliable. Considering how 

important accurate diagnosis is for patient care and overall well-being, this problem must 

be addressed. Machine learning based diagnostic aids are becoming increasingly popular 

for medical image-based diagnosis, and their usage as a second opinion has been shown 

to improve physicians’ diagnostic accuracy. We believe that HN can benefit from such a 

diagnostic aid as it will provide consistent and objective feedback to physicians for 

diagnostic consideration. 

HN is diagnosed using US images. Therefore, we hypothesize that developing a 

CNN based diagnostic aid will produce the best results, since CNN are currently the 

leading model type for image recognition and classification tasks. To our knowledge, 

developing a CNN based diagnostic aid that can be applied to US images has not been 

done before, and therefore the current thesis conducted two exploratory studies to 

investigate two important methodological considerations, namely US image 

preprocessing and model architecture. Most recommendations for medical image 

preprocessing for developing diagnostic aids are geared towards classic ML techniques 

and not neural networks. Therefore, we investigated whether two common 

recommendations, image segmentation and textural extraction, are beneficial and improve 

performance when they are applied to CNN input images. Our results showed that image 

segmentation and textural extraction did not improve model performance, and therefore 

might not be required when using CNN medical image classification. The results of this 

study also suggested that background features from the US image that are not associated 
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with the kidney itself might be useful for diagnosis. Further studies should be conducted 

to assess whether our model utilized background information, and whether physicians 

utilize cues from the background of the US image. If physicians do regularly use 

background information, it would help to explain why inter-rater reliability is so poor. 

Furthermore, if CNN find relevant information from the background of HN US images, it 

suggests that these diagnostic features should be standardized for physicians to use. 

The second study investigated CNN architectures. There are infinite combinations 

of CNN architectures/hyperparameters, therefore the goal was to investigate how various 

changes impacted performance in an attempt to find an optimal model for HN 

classification. Our search resulted in a best model with 49% 5-way classification 

accuracy. Physician accuracy for 5-way HN classification is unknown, however, we 

believe that our model performs well considering the low-inter rater reliability of the SFU 

classification system and the fact that 92% of images were either correctly classified or 

within one grade of the correct diagnosis. Interestingly, while investigating our models 

we found that our database contained mislabelled images, which is not surprising 

considering the data was entered into our database manually. Our inspection revealed that 

many of the images that were classified greater than two grades away from their “correct” 

SFU grade were mislabelled.  

This finding has important implications. Training our models with mislabelled 

images negatively affects model training, and results in lower accuracy scores during 

testing. However, since many of the mislabelled images tend to be badly misclassified, 

we can utilize our current model to verify our images by inspecting the images that are 
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classified greater than two grades away from their provided SFU label. Therefore, 

although our current best model is not ready for clinical use as diagnostic aid, it can be 

used as an aid for data curation.   

Overall, the current studies have provided insight into important methodological 

considerations for developing a diagnostic aid for HN. Although the current model is not 

yet at an appropriate level for clinical use, it can be applied to verify the accuracy of our 

database. Once our images and their respective labels have been verified, we can further 

optimize our model architecture by conducting an exhaustive hyperparameter search. We 

hypothesize that the combination of these two changes will significantly improve model 

performance and bring our diagnostic aid closer to clinical application.  
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Appendix A 

Backpropagation 

Backpropagation is a method to calculate the gradients that are needed to update 

all of the weights, include those that are hidden, in a neural network. Since gradient 

descent relies on backpropagation, the cost function must be continuous and 

differentiable. Therefore, a step function is not appropriate and other differentiable 

activation functions, such as sigmoid or softmax, should be used depending on whether 

the task is binary or multi-classification respectively. Using continuous functions allows 

for the approximation of changes in the cost function.  

Using the backpropagation algorithm, the training of neural networks is done as 

follows:  

1. After the forward propagation, calculate the error signal of the final output 

layer at all neurons by calculating the gradient of the cost function with 

respect to each output where ��D is the output of the final layer (L) at neuron �, 
E is the activation function, "�D is the activation of the final layer at neuron j, 

and C is the cost function (which can vary), and ⊙ indicates component-wise 

multiplication: 

1�D 
 	 GHG"�D EI���D�					�13	 
2. Calculate the error of each neuron in each layer using backpropagation where 

0 represents an earlier layer in the network:  

1�J 
 ���JK��L1�JK�⊙EI���J�						�14	 
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3. Calculate the derivative of the cost function with respect to the weights and 

biases:  

GH
G��MJ 
 "MJ��1�J 					�15																 GHGN�J 
 1�J				�16	 

4. Update the weights and biases according to the delta rule (Equations 17 and 

18). O	represents the learning rate, or more informally, the size of the weight 

and bias change that will be made after each forward pass through the 

network. 

Δ�J 
	�O	Σ�	1�J�"�J���L				�17	              ΔNJ 
 	�O	Σ�	1�J 					�18	 
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Appendix B  

Active Shape Model Algorithm  

1. Using a subset of renal US images, save the X and Y coordinates of representative 

points along the edges of each of the kidneys. This will result in a 2/	�	1 vector 

(��) for each US where each US has the same number of points (/) organized in 

the same order: 

 �� 
 R���� , ����, ��'� , �'��, ��S� , �S��, … , ��U� , �U��V			�19	 
 

2. All shapes will be translated and centered at (0,0). 

3. Fix one shape (e.g. ��), and scale so that |��| 
 1. 

4. Scale and rotate all other shapes to align with this shape using Procrustes Analysis 

where �XY� 	and �XY� represent the new point locations for a given kidney, and =� 
represent the sets of points 

"� 
 	�� ⋅ ��‖��‖' 							�20	 
 

N� 
���Y��Y� � �Y��Y��
U

Y��
∕ ]��]'							�21	 

 

=� 
 ^�"�	' � �N�	'					�22	 
 

_� 
 �"/�� `N�"�a					 �23	 
 

                b�XY��XY�c 
 =� d 7.=_� =-/_��=-/_� 7.=_�e b�Y
�
�Y�c						�24	 

 

5. Principal Components Analysis (PCA) is used to reduce the dimensionality of the 

data. 

a. Compute the mean of the data:  

 

μ 
 	1= 	��Y
g

Y��
						�25	 
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b. Compute the covariance of the data: 

 

Σ 
 	 1= � 1	���Y � h	��Y � h�Lg

Y��
						�26	 

 

c. Compute the eigenvalues and eigenvectors of Σ: 

 �O�, 6��	=7ℎ	�ℎ"�	O� ≥ 	O' ≥ OS… 		Σ6� 
 O�6� 						�27	 
 

6. Each eigenvalue O� gives variance of data in the direction 6�. Compute total 

variance 

 

> 
	�O�
g

Y��
					 �28	 

 

7. Choose K largest eigenvalues to account for a desired proportion of variance.  

8. We can now approximate any of the kidneys as where P is a matrix of the 

eigenvalues from the covariance matrix, and b defines a small number of 

parameters for the active shape model:  

 � 
 h � <N					�29	 
 

9. To fit this model to new data: 

a. Initialize N 
 0 

b. Generate model points: � 
 h � <N 

c. Search around each �Y for best nearby image point �Y using gradients to 

find edges. 

d. Fit new parameters (=, _, �, N		to � using equations from step 4. 

e. Enforce constraint that ‖NY‖ < 3OY to ensure that shapes are reasonable. 

f. Update model parameters: N 
 <L�� � h	 
g. Iterate until convergence.  

 


